3,636 research outputs found

    Validating Semi-Analytic Models of High-Redshift Galaxy Formation using Radiation Hydrodynamical Simulations

    Get PDF
    We use a cosmological hydrodynamic simulation calculated with Enzo and the semi-analytic galaxy formation model (SAM) GAMMA to address the chemical evolution of dwarf galaxies in the early universe. The long-term goal of the project is to better understand the origin of metal-poor stars and the formation of dwarf galaxies and the Milky Way halo by cross-validating these theoretical approaches. We combine GAMMA with the merger tree of the most massive galaxy found in the hydrodynamic simulation and compare the star formation rate, the metallicity distribution function (MDF), and the age-metallicity relationship predicted by the two approaches. We found that the SAM can reproduce the global trends of the hydrodynamic simulation. However, there are degeneracies between the model parameters and more constraints (e.g., star formation efficiency, gas flows) need to be extracted from the simulation to isolate the correct semi-analytic solution. Stochastic processes such as bursty star formation histories and star formation triggered by supernova explosions cannot be reproduced by the current version of GAMMA. Non-uniform mixing in the galaxy's interstellar medium, coming primarily from self-enrichment by local supernovae, causes a broadening in the MDF that can be emulated in the SAM by convolving its predicted MDF with a Gaussian function having a standard deviation of ~0.2 dex. We found that the most massive galaxy in the simulation retains nearby 100% of its baryonic mass within its virial radius, which is in agreement with what is needed in GAMMA to reproduce the global trends of the simulation.Comment: 26 pages, 13 figures, 2 tables, submitted to ApJ (version 2

    Short gamma-ray bursts from dynamically-assembled compact binaries in globular clusters: pathways, rates, hydrodynamics and cosmological setting

    Full text link
    We present a detailed assessment of the dynamical pathways leading to the coalescence of compact objects in Globular Clusters (GCs) and Short Gamma-Ray Burst (SGRB) production. We consider primordial binaries, dynamically formed binaries (through tidal two-body and three-body exchange interactions) and direct impacts of compact objects (WD/NS/BH). We show that if the primordial binary fraction is small, close encounters dominate the production rate of coalescing compact systems. We find that the two dominant channels are the interaction of field NSs with dynamically formed binaries, and two-body encounters. We then estimate the redshift distribution and host galaxy demographics of SGRB progenitors, and find that GCs can provide a significant contribution to the overall observed rate. We have carried out hydrodynamical modeling of evolution of close stellar encounters with WD/NS/BH, and show that there is no problem in accounting for the energy budget of a typical SGRB. The particulars of each encounter are variable and lead to interesting diversity: the encounter characteristics are dependent on the impact parameter, in contrast to the merger scenario; the nature of the compact star itself can produce very different outcomes; the presence of tidal tails in which material falls back onto the central object at later times is a robust feature of these calculations, with the mass involved being larger than for binary mergers. It is thus possible to account generically in this scenario for a prompt episode of energy release, as well as for activity many dynamical time scales later (abridged).Comment: Accepted for publication in ApJ (24 pages, 19 figures

    Dynamical friction of massive objects in galactic centres

    Full text link
    Dynamical friction leads to an orbital decay of massive objects like young compact star clusters or Massive Black Holes in central regions of galaxies. The dynamical friction force can be well approximated by Chandrasekhar's standard formula, but recent investigations show, that corrections to the Coulomb logarithm are necessary. With a large set of N-body simulations we show that the improved formula for the Coulomb logarithm fits the orbital decay very well for circular and eccentric orbits. The local scale-length of the background density distribution serves as the maximum impact parameter for a wide range of power-law indices of -1 ... -5. For each type of code the numerical resolution must be compared to the effective minimum impact parameter in order to determine the Coulomb logarithm. We also quantify the correction factors by using self-consistent velocity distribution functions instead of the standard Maxwellian often used. These factors enter directly the decay timescale and cover a range of 0.5 ... 3 for typical orbits. The new Coulomb logarithm combined with self-consistent velocity distribution functions in the Chandrasekhar formula provides a significant improvement of orbital decay times with correction up to one order of magnitude compared to the standard case. We suggest the general use of the improved formula in parameter studies as well as in special applications.Comment: 22 pages, 28 figures, accepted by MNRA

    Evolution of shocks and turbulence in major cluster mergers

    Full text link
    We performed a set of cosmological simulations of major mergers in galaxy clusters to study the evolution of merger shocks and the subsequent injection of turbulence in the post-shock region and in the intra-cluster medium (ICM). The computations were done with the grid-based, adaptive mesh refinement hydro code Enzo, using an especially designed refinement criteria for refining turbulent flows in the vicinity of shocks. A substantial amount of turbulence energy is injected in the ICM due to major merger. Our simulations show that the shock launched after a major merger develops an ellipsoidal shape and gets broken by the interaction with the filamentary cosmic web around the merging cluster. The size of the post-shock region along the direction of shock propagation is about 300 kpc h^-1, and the turbulent velocity dispersion in this region is larger than 100 km s^-1. Scaling analysis of the turbulence energy with the cluster mass within our cluster sample is consistent with M^(5/3), i.e. the scaling law for the thermal energy in the self-similar cluster model. This clearly indicates the close relation between virialization and injection of turbulence in the cluster evolution. We found that the ratio of the turbulent to total pressure in the cluster core within 2 Gyr after the major merger is larger than 10%, and it takes about 4 Gyr to get relaxed, which is substantially longer than typically assumed in the turbulent re-acceleration models, invoked to explain the statistics of observed radio halos. Striking similarities in the morphology and other physical parameters between our simulations and the "symmetrical radio relics" found at the periphery of the merging cluster A3376 are finally discussed. In particular, the interaction between the merger shock and the filaments surrounding the cluster could explain the presence of "notch-like" features at the edges of the double relics.Comment: 16 pages, 19 figures, Published in Astrophysical Journal (online) and printed version will be published on 1st January, 201

    BOSS-LDG: A Novel Computational Framework that Brings Together Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery

    Get PDF
    We present a novel computational framework that connects Blue Waters, the NSF-supported, leadership-class supercomputer operated by NCSA, to the Laser Interferometer Gravitational-Wave Observatory (LIGO) Data Grid via Open Science Grid technology. To enable this computational infrastructure, we configured, for the first time, a LIGO Data Grid Tier-1 Center that can submit heterogeneous LIGO workflows using Open Science Grid facilities. In order to enable a seamless connection between the LIGO Data Grid and Blue Waters via Open Science Grid, we utilize Shifter to containerize LIGO's workflow software. This work represents the first time Open Science Grid, Shifter, and Blue Waters are unified to tackle a scientific problem and, in particular, it is the first time a framework of this nature is used in the context of large scale gravitational wave data analysis. This new framework has been used in the last several weeks of LIGO's second discovery campaign to run the most computationally demanding gravitational wave search workflows on Blue Waters, and accelerate discovery in the emergent field of gravitational wave astrophysics. We discuss the implications of this novel framework for a wider ecosystem of Higher Performance Computing users.Comment: 10 pages, 10 figures. Accepted as a Full Research Paper to the 13th IEEE International Conference on eScienc

    Properties of hierarchically forming star clusters

    Full text link
    We undertake a systematic analysis of the early (< 0.5 Myr) evolution of clustering and the stellar initial mass function in turbulent fragmentation simulations. These large scale simulations for the first time offer the opportunity for a statistical analysis of IMF variations and correlations between stellar properties and cluster richness. The typical evolutionary scenario involves star formation in small-n clusters which then progressively merge; the first stars to form are seeds of massive stars and achieve a headstart in mass acquisition. These massive seeds end up in the cores of clusters and a large fraction of new stars of lower mass is formed in the outer parts of the clusters. The resulting clusters are therefore mass segregated at an age of 0.5 Myr, although the signature of mass segregation is weakened during mergers. We find that the resulting IMF has a smaller exponent (alpha=1.8-2.2) than the Salpeter value (alpha=2.35). The IMFs in subclusters are truncated at masses only somewhat larger than the most massive stars (which depends on the richness of the cluster) and an universal upper mass limit of 150 Msun is ruled out. We also find that the simulations show signs of the IGIMF effect proposed by Weidner & Kroupa, where the frequency of massive stars is suppressed in the integrated IMF compared to the IMF in individual clusters. We identify clusters through the use of a minimum spanning tree algorithm which allows easy comparison between observational survey data and the predictions of turbulent fragmentation models. In particular we present quantitative predictions regarding properties such as cluster morphology, degree of mass segregation, upper slope of the IMF and the relation between cluster richness and maximum stellar mass. [abridged]Comment: 21 Pages, 25 Figure
    • …
    corecore