22 research outputs found

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Private and censorship-resistant communication over public networks

    Get PDF
    Society’s increasing reliance on digital communication networks is creating unprecedented opportunities for wholesale surveillance and censorship. This thesis investigates the use of public networks such as the Internet to build robust, private communication systems that can resist monitoring and attacks by powerful adversaries such as national governments. We sketch the design of a censorship-resistant communication system based on peer-to-peer Internet overlays in which the participants only communicate directly with people they know and trust. This ‘friend-to-friend’ approach protects the participants’ privacy, but it also presents two significant challenges. The first is that, as with any peer-to-peer overlay, the users of the system must collectively provide the resources necessary for its operation; some users might prefer to use the system without contributing resources equal to those they consume, and if many users do so, the system may not be able to survive. To address this challenge we present a new game theoretic model of the problem of encouraging cooperation between selfish actors under conditions of scarcity, and develop a strategy for the game that provides rational incentives for cooperation under a wide range of conditions. The second challenge is that the structure of a friend-to-friend overlay may reveal the users’ social relationships to an adversary monitoring the underlying network. To conceal their sensitive relationships from the adversary, the users must be able to communicate indirectly across the overlay in a way that resists monitoring and attacks by other participants. We address this second challenge by developing two new routing protocols that robustly deliver messages across networks with unknown topologies, without revealing the identities of the communication endpoints to intermediate nodes or vice versa. The protocols make use of a novel unforgeable acknowledgement mechanism that proves that a message has been delivered without identifying the source or destination of the message or the path by which it was delivered. One of the routing protocols is shown to be robust to attacks by malicious participants, while the other provides rational incentives for selfish participants to cooperate in forwarding messages

    BitTorrent-Like Protocols for Interactive Access to VoD Systems

    Get PDF
    This article presents two novel protocols for interactive access to video-on-demand systems. They are both based on the well-known BitTorrent paradigm. As main innovative aspects, the video chunks are categorized in different priority sets and there is the deployment of a user-behavior predicting model. The analysis and the validation are carried out through simulations using workloads from a real server. Furthermore, the novel protocols are compared with others of the literature. The final results outline optimizations of up to one order of magnitude over the various competitive metrics considered herein

    BitTorrent-Like Protocols for Interactive Access to VoD Systems

    Get PDF
    This article presents two novel protocols for interactive access to video-on-demand systems. They are both based on the well-known BitTorrent paradigm. As main innovative aspects, the video chunks are categorized in different priority sets and there is the deployment of a user-behavior predicting model. The analysis and the validation are carried out through simulations using workloads from a real server. Furthermore, the novel protocols are compared with others of the literature. The final results outline optimizations of up to one order of magnitude over the various competitive metrics considered herein

    ModelNet-TE : an emulation tool for the study of P2P and Traffic Engineering interaction dynamics

    Get PDF
    Este artículo ha sido aceptado para su inclusión en la revista Peer-to-Peer Networking and ApplicationsIn the Internet, user-level performance of P2P applications may be determined by the interaction of two independent dynamics: on the one hand, by the end-to-end control policies applied at the P2P application layer (L7), on the other hand, by Traffic Engineering (TE) decisions taken at the network level (L3). Currently available tools do not allow to study L7/L3 interactions in realistic settings due to a number of limitations. Building over ModelNet, we develop a framework for the real-time emulation of TE capabilities, named ModelNet-TE, that we make available to the scientific community as open source software. ModelNet-TE allows (i) to deploy real unmodified Internet P2P applications, and to test their interaction with (ii) many TE algorithms, as its design allows to easily integrate other TE algorithms than those we already provide, (iii) in a furthermore controlled network environment. Due to these features, ModelNet-TE is a complementary tool with respect to hybrid simulation/protoyping toolkits (that constrain application development to a specific language and framework, and cannot be used with existing or proprietary applications) and to other open testbeds such as PlanetLab or Grid5000 (lacking of control or TE-capabilities respectively). ModelNet-TE can thus be useful to L7-researchers, as it allows to seamlessly and transparently test any existing P2P application without requiring any software modification. At the same time, ModelNet-TE can be useful to L3-researchers as well, since they can test their TE algorithms on the traffic generated by real applications. As a use case, in this work we carry on an experimental campaign of L7/L3 routing layers interaction through ModelNet-TE. As TE we consider the classic minimum congestion load-balancing, that we compare against standard IP routing. As example P2P applications, we take BitTorrent, one among the most popular file-sharing applications nowadays, and WineStreamer, an open source live-streaming application. We emulate BitTorrent and WineStreamer swarms over both realistic topologies (e.g., Abilene) and simplistic topologies that are commonly in use today (e.g., where the bottleneck is located at the network edge) under a variety of scenarios. Results of our experimental campaign show that user-level performance may be significantly affected by both the TE mechanism in use at L3 (e.g., due to interactions with TCP congestion control or P2P chunk trading logic), as well as scenario parameters that are difficult to control in the wild Internet, which thus testifies the interest for tools such as ModelNet-TE

    Designing incentives for peer-to-peer systems

    Get PDF
    Peer-to-peer systems, networks of egalitarian nodes without a central authority, can achieve massive scalability and fault tolerance through the pooling together of individual resources. Unfortunately, most nodes represent self-interested, or rational, parties that will attempt to maximize their consumption of shared resources while minimizing their own contributions. This constitutes a type of attack that can destabilize the system. The first contribution of this thesis is a proposed taxonomy for these rational attacks and the most common solutions used in contemporary designs to thwart them. One approach is to design the P2P system with incentives for cooperation, so that rational nodes voluntarily behave. We broadly classify these incentives as being either genuine or artificial , with the former describing incentives inherent in peer interactions, and the latter describing a secondary enforcement system. We observe that genuine incentives tend to be more robust to rational manipulations than artificial counterparts. Based on this observation, we also propose two extensions to BitTorrent, a P2P file distribution protocol. While this system is popular, accounting for approximately one-third of current Internet traffic, it has known limitations. Our extensions use genuine incentives to address some of these problems. The first extension improves seeding, an altruistic mode wherein nodes that have completed their download continue to provide upload service. We incentivize seeding by giving long-term identifiers to clients enabling seeding clients to be recognized and rewarded in subsequent downloads. Simulations demonstrate that our method is highly effective in protecting swarms from aggressive clients such as BitTyrant. Finally, we introduce The BitTorrent Anonymity Marketplace , wherein each peer simultaneously joins multiple swarms to disguise their true download intentions. Peers then trade one torrent for another, making the cover traffic valuable as a means of obtaining the real target. Thus, when a neighbor receives a request from a peer for blocks of a torrent, it does not know if the peer is really downloading that torrent, or only using it in trade. Using simulation, we demonstrate that nodes cannot determine peer intent from observed interactions

    Enabling Internet-Scale Publish/Subscribe In Overlay Networks

    Get PDF
    As the amount of data in todays Internet is growing larger, users are exposed to too much information, which becomes increasingly more difficult to comprehend. Publish/subscribe systems leverage this problem by providing loosely-coupled communications between producers and consumers of data in a network. Data consumers, i.e., subscribers, are provided with a subscription mechanism, to express their interests in a subset of data, in order to be notified only when some data that matches their subscription is generated by the producers, i.e., publishers. Most publish/subscribe systems today, are based on the client/server architectural model. However, to provide the publish/subscribe service in large scale, companies either have to invest huge amount of money for over-provisioning the resources, or are prone to frequent service failures. Peer-to-peer overlay networks are attractive alternative solutions for building Internet-scale publish/subscribe systems. However, scalability comes with a cost: a published message often needs to traverse a large number of uninterested (unsubscribed) nodes before reaching all its subscribers. We refer to this undesirable traffic, as relay overhead. Without careful considerations, the relay overhead might sharply increase resource consumption for the relay nodes (in terms of bandwidth transmission cost, CPU, etc) and could ultimately lead to rapid deterioration of the system’s performance once the relay nodes start dropping the messages or choose to permanently abandon the system. To mitigate this problem, some solutions use unbounded number of connections per node, while some other limit the expressiveness of the subscription scheme. In this thesis work, we introduce two systems called Vitis and Vinifera, for topic-based and content-based publish/subscribe models, respectively. Both these systems are gossip-based and significantly decrease the relay overhead. We utilize novel techniques to cluster together nodes that exhibit similar subscriptions. In the topic-based model, distinct clusters for each topic are constructed, while clusters in the content-based model are fuzzy and do not have explicit boundaries. We augment these clustered overlays by links that facilitate routing in the network. We construct a hybrid system by injecting structure into an otherwise unstructured network. The resulting structures resemble navigable small-world networks, which spans along clusters of nodes that have similar subscriptions. The properties of such overlays make them an ideal platform for efficient data dissemination in large-scale systems. The systems requires only a bounded node degree and as we show, through simulations, they scale well with the number of nodes and subscriptions and remain efficient under highly complex subscription patterns, high publication rates, and even in the presence of failures in the network. We also compare both systems against some state-of-the-art publish/subscribe systems. Our measurements show that both Vitis and Vinifera significantly outperform their counterparts on various subscription and churn scenarios, under both synthetic workloads and real-world traces

    Development of Multiport Single Stage Bidirectional Converter for Photovoltaic and Energy Storage Integration

    Get PDF
    The energy market is on the verge of a paradigm shift as the emergence of renewable energy sources over traditional fossil fuel based energy supply has started to become cost competitive and viable. Unfortunately, most of the attractive renewable sources come with inherent challenges such as: intermittency and unreliability. This is problematic for today\u27s stable, day ahead market based power system. Fortunately, it is well established that energy storage devices can compensate for renewable sources shortcomings. This makes the integration of energy storage with the renewable energy sources, one of the biggest challenges of modern distributed generation solution. This work discusses, the current state of the art of power conversion systems that integrate photovoltaic and battery energy storage systems. It is established that the control of bidirectional power flow to the energy storage device can be improved by optimizing its modulation and control. Traditional multistage conversion systems offers the required power delivery options, but suffers from a rigid power management system, reduced efficiency and increased cost. To solve this problem, a novel three port converter was developed which allows bidirectional power flow between the battery and the load, and unidirectional power flow from the photovoltaic port. The individual two-port portions of the three port converter were optimized in terms of modulation scheme. This leads to optimization of the proposed converter, for all possible power flow modes. In the second stage of the project, the three port converter was improved both in terms of cost and efficiency by proposing an improved topology. The improved three port converter has reduced functionality but is a perfect fit for the targeted microinverter application. The overall control system was designed to achieve improved reference tracking for power management and output AC voltage control. The bidirectional converter and both the proposed three port converters were analyzed theoretically. Finally, experimental prototypes were built to verify their performance
    corecore