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ABSTRACT 

Designing Incentives for Peer-to-Peer Systems 

by 

Seth James Nielson 

Peer-to-peer systems, networks of egalitarian nodes without a central authority, 
can achieve massive scalability and fault tolerance through the pooling together of 
individual resources. Unfortunately, most nodes represent self-interested, or ratio­
nal, parties that will attempt to maximize their consumption of shared resources 
while minimizing their own contributions. This constitutes a type of attack that can 
destabilize the system. 

The first contribution of this thesis is a proposed taxonomy for these rational 
attacks and the most common solutions used in contemporary designs to thwart 
them. One approach is to design the P2P system with incentives for cooperation, 
so that rational nodes voluntarily behave. We broadly classify these incentives as 
being either genuine or artificial, with the former describing incentives inherent in 
peer interactions, and the latter describing a secondary enforcement system. We 
observe that genuine incentives tend to be more robust to rational manipulations 
than artificial counterparts. 

Based on this observation, we also propose two extensions to BitTorrent, a P2P 
file distribution protocol. While this system is popular, accounting for approximately 
one-third of current Internet traffic, it has known limitations. Our extensions use 
genuine incentives to address some of these problems. 

The first extension improves seeding, an altruistic mode wherein nodes that have 
completed their download continue to provide upload service. We incentivize seeding 
by giving long-term identifiers to clients enabling seeding clients to be recognized 
and rewarded in subsequent downloads. Simulations demonstrate that our method is 
highly effective in protecting swarms from aggressive clients such as Bit Tyrant. 

Finally, we introduce The BitTorrent Anonymity Marketplace, wherein each peer 
simultaneously joins multiple swarms to disguise their true download intentions. Peers 
then trade one torrent for another, making the cover traffic valuable as a means of 
obtaining the real target. Thus, when a neighbor receives a request from a peer for 
blocks of a torrent, it does not know if the peer is really downloading that torrent, or 
only using it in trade. Using simulation, we demonstrate that nodes cannot determine 
peer intent from observed interactions. 
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Chapter 1 

Introduction 

The distinguishing feature of peer-to-peer (P2P) systems is the egalitarian responsi­

bilities of the participants. Each node that joins the system is expected to contribute 

as well as consume shared resources. When the peers cooperate, the whole system 

can outperform traditional client-server systems in terms of scalability, resiliency, and 

fault-tolerance. Unfortunately, because most of the participants are rational, or mo­

tivated solely by their own interests, cooperation is not the default behavior and, 

without a centralized authority, it cannot be easily enforced. Selfishness drives nodes 

to consume more than their fair share of resources or refuse to give expected contri­

butions. Behavior such as this, when contrary to system specifications, constitutes 

rational attacks, and these attacks can degrade performance or destabilize the system. 

To counter this threat, many P2P protocols are built around an incentives structure 

designed to make obedience the selfish choice because it is the only way to obtain 

maximum reward. 

This thesis investigates principles of incentive design that increase the robustness 

of P2P systems to rational attacks. In this introduction, we first provide background 

and motivation for this effort as well as a sketch of our contributions to the research 

landscape. Chapter 2 then proposes a taxonomy of rational attacks and evaluates 

various defensive design principles including incentives. We then apply the insights 

of this evaluation to guide the development of two extensions to BitTorrent. These 

extensions for improved performance and improved anonymity are described in Chap-
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ter 3 and Chapter 4 respectively. Chapter 5 subsequently presents our conclusions. 

1.1 Background and Motivation 

Traditional client-server computing is based on a central node or nodes that control 

the operation of the overall system. Client nodes may connect to, contribute to, 

and participate with these central servers but the servers are in control, and clients 

participate as guests. While clients may be allowed to communicate with each other, 

such inter-client communications are routed through the central authority where they 

are subject to review, filtering, and modification. 

On the other hand, P2P systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] are built on an anti­

thetical concept of node equality and direct peer-to-peer communication. Eliminating 

the central authority has tremendous benefits. The most immediate of these is that 

there is no single point of failure that can bring down the entire system. Scalability 

is also improved because, in general, the P2P system aggregates resources from the 

participants so that capacity is more or less proportional to load. On the other hand, 

servers must generally maintain a fixed resource profile that either struggles with 

peak use or is over-provisioned for average demand. 

Despite these theoretical advantages, practical P2P systems completely deterio­

rate if and when participants refuse to cooperate. This so-called "free-riding" prob­

lem [11, 12, 13], is the general rule, unfortunately, because most nodes are rational, 

or utility-maximizing. Such nodes seek to maximize their own acquisition of shared 

resources while minimizing their own contributions. For example, consider a P2P sys­

tem designed for content streaming [14]. To decrease the upload bandwidth burden 

on the original source, only a small number of nodes directly contact it. The con­

tent is then propagated from these nodes to additional peers. This system can only 
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scale if nodes obey specification and pass on content to downstream neighbors. The 

self-interested node, however, may simply decide not to expend upload bandwidth 

altruistically and refuse to retransmit the stream. Assuming that rational nodes are 

a large portion of the P2P population, it is likely that the system will not function 

well, if at all. 

In most P2P systems, self-interested behavior at the expense of the system can 

be classified as a rational manipulation failure [15] or, from a different perspective, a 

rational attack. These attacks represent the primary and most fundamental challenge 

to P2P operations. 

However, system designers have a powerful point of leverage in dealing with ra­

tional nodes. Unlike traditional attackers operating with the intent to cause harm 

through theft or vandalism, rational attackers are motivated by the benefits and 

services of the system. In other words, harming the system is not their primary mo­

tivation, but only an unfortunate side-effect. Therefore, if the only way to maximize 

utility is through cooperation, these nodes will voluntarily alter their behavior. Thus, 

a system designed with proper incentives [16, 17, 18, 19, 20] can achieve obedience 

despite the lack of a centralized enforcement authority. This approach is drawn from 

models of game theory and mechanism design [21]. We note, for completeness, that 

other forms of attack still matter and have been investigated [22], but are beyond the 

scope of this work. 

Ideally, a P2P system should be perfectly faithful to the designer's specification. 

In such a system, a self-interested, utility-maximizing node "will follow the default 

strategy because... there is no other strategy that yields a higher utility for this 

node" [23]. When this ideal cannot be achieved, the practical goal is simply to make 

the system sufficiently robust for continued viability. Determining what incentives 



4 

should be used in a system and how they should be employed represent a significant 

challenge to designers, and an intriguing academic problem. 

One example of a P2P system that makes effective use of incentives is Bit Tor­

rent [1], a distributed download protocol that is popular in practice and research. 

The key incentive in the protocol is a tit-for-tat [24] exchange mechanism wherein 

peers trade different chunks of the file with each other. Peers reserve most of their 

upload bandwidth for rewarding their most generous neighbors. The remaining up­

load bandwidth is used to search for better partners by donating to other peers in the 

hope of being subsequently rewarded. While it has been shown that the Bit Torrent 

protocol can be exploited [25, 26, 27, 28, 29], it has been sufficiently robust against 

rational attackers for practical purposes [23]. In fact, various measures of BitTor-

rent traffic have estimated that the BitTorrent protocol accounts for approximately 

one-third of all Internet traffic [30, 31, 32]. 

Nevertheless, the BitTorrent protocol can still be improved. For example, it per­

mits nodes that have completed the download of the file to continue serving the 

swarm as a seed. BitTorrent requires at least one seed at all times or the other nodes 

cannot be guaranteed to complete the full download. In addition, seeds improve the 

overall performance of the swarm because they consume no resources, while still mak­

ing contributions. Despite their importance, however, the default protocol offers no 

incentives for this mode of operation and many nodes contribute little if any seeding. 

Another concern in the operation of BitTorrent is that of anonymity. BitTorrent 

itself was not designed to anonymize the participants in any way [1]. However, the 

design of the protocol is such that a node will expose its actions to potentially thou­

sands [33] of peers, creating a visibility footprint that many users are uncomfortable 

with. One method for dealing with this problem is to pass BitTorrent traffic through 
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Tor [34]. Tor is a P2P anonymity network that routes traffic through a series of 

internal nodes to disguise the point of origin. Measurements [35] have shown that 

BitTorrent traffic represents a significant drain on Tor resources. Unfortunately, the 

incentives for contributing bandwidth resources to Tor are not clear and this results in 

low contributions and poor scalability. In the interest of improving these conditions, 

a few BitTorrent specific anonymity solutions [36, 37, 38] have been proposed, but 

none of them make effective use of incentives for cooperation. 

1.2 Contribution 

In this research, we answer the following questions: 

1. What are the general principles of incentives design that produce 

effective peer cooperation? 

2. How can these principles be applied to BitTorrent's seeding opera­

tion? 

3. How can these principles be applied to the BitTorrent anonymity 

problem? 

The foundation of this research is our presentation of a taxonomy of rational at­

tacks and corresponding principles of system design for ameliorating them. We answer 

our first key question by demonstrating that incentives can be broken into genuine 

and artificial categories. Genuine incentives are built into the P2P operations directly 

while artificial incentives are superimposed as a correction to the core protocol. Gen­

uine incentives are generally more simple to understand and more robust to rational 

attacks. 
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Based on this principle of genuine incentives, our research then extends the BitTor-

rent protocol to incentivize the seeding operation. This extension modifies BitTorrent 

slightly to provide long term identifiers to participants. Nodes can then remember one 

another from one download to next. In this manner, nodes that seed in one swarm can 

be rewarded in later ones. Even though this extension requires a slight modification 

to the protocol, it can be implemented in a backwards compatible manner. 

Finally, we also apply genuine incentives to the BitTorrent anonymity prob­

lem. Our extension creates a BitTorrent-like system that we term The BitTorrent 

Anonymity Marketplace. Inside this system, peers participate in many downloads at 

the same time to obscure their actual intention. In other words, the most powerful 

observer cannot reduce their actual intended download any further than 1 in k, where 

k is the number of simultaneous downloads. The key incentives design is that nodes 

compute a value for the cover traffic torrents they are trading. Nodes request torrents 

that they believe will help them download the item they really want. When a node 

makes a request from its peer, the peer cannot tell if the node really wants it or if it 

simply believes it can be used in trade. This incentives system ensures that any tor­

rent in the Marketplace can be valuable to uninterested parties preventing starvation 

and strengthening anonymity. 

1.3 Thesis Organization 

This thesis is derived from three independent papers. 

Chapter 2 is primarily derived from our paper, "A Taxonomy of Rational Attacks" 

by the author, Scott Crosby, and Dan S. Wallach. This chapter lays out how various 

types of attacks are connected to one another, the weak points of a system they 

exploit, and system design principles that improve them. Most importantly, it details 
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the nature of and the differences between genuine and artificial incentives. 

Next, Chapter 3 is taken from, "Building Better Incentives for Increased Robust­

ness in BitTorrent" by the author, Caleb Spare, and Dan S. Wallach. Contained in 

this part of the thesis is our proposed extension to BitTorrent as well as the intro­

duction of a simulator we developed for evaluating the result. We also examine the 

behavior of BitTyrant, a strategic BitTorrent client, and its effect on our system. 

Part of our overall solution takes advantage of a BitTyrant bug we discovered. 

The subsequent Chapter 4 is largely identical to, "The BitTorrent Anonymity 

Marketplace" by the author and Dan S. Wallach. Herein we present our design for 

the Marketplace, its implementation in simulation, and our results. This chapter also 

discusses significant ethical, legal, and moral issues that naturally arise in anonymity 

discussions. 

Finally, in Chapter 5 we revisit our goals and our findings. This chapter ties 

together our results from the three component papers and discusses the significance. 

It also identifies opportunities for future work and several overarching questions raised 

by our research. 
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Chapter 2 

A Taxonomy of Rational Attacks 

For peer-to-peer services to be effective, participating nodes must cooperate, but in 

most scenarios a node represents a self-interested party and cooperation can neither be 

expected nor enforced. A reasonable assumption is that a large fraction of p2p nodes 

are rational and will attempt to maximize their consumption of system resources 

while minimizing the use of their own. If such behavior violates system policy then it 

constitutes an attack. In this chapter we identify and create a taxonomy for rational 

attacks and then identify corresponding solutions if they exist. The most effective 

solutions directly incentivize cooperative behavior, but when this is not feasible the 

common alternative is to incentivize evidence of cooperation instead. 

2.1 Introduction 

A significant challenge in peer-to-peer (p2p) computing is the problem of cooperation. 

Unlike client-server systems, a p2p network's effectiveness in meeting design goals 

is directly correlated to the cooperation of the member nodes. For example, a p2p 

system might be designed for content distribution. To decrease the upload bandwidth 

burden on the original content server, only a small number of nodes directly contact it. 

The content is then propagated from these nodes to additional peers. This system can 

only scale if nodes are willing to pass on content to downstream peers. Unfortunately, 

a self-interested node may realize that it can save expensive upload bandwidth if it 

chooses not to share. If a large number of nodes are self-interested and refuse to 
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contribute, the system may destabilize. 

In most p2p systems, self-interested behavior at the expense of the system can 

be classified as a rational manipulation failure [15] or, from a different perspective, a 

rational attack*. Successful p2p systems must be designed to be robust against this 

class of failure. Ideally, a p2p system should be perfectly faithful to the designer's 

specification. In such a system, a self-interested, utility-maximizing node "will follow 

the default strategy because... there is no other strategy that yields a higher utility 

for this node" [23]. To achieve faithfulness, a system may employ various measures 

such as problem partitioning, catch-and-punish, and incentives [15]. Even when these 

techniques cannot make a system perfectly faithful, they may be enough to prevent 

destabilization. 

An example of a viable p2p technology designed to be robust against rational 

manipulation failures is BitTorrent [1]. This technology first breaks large files into 

chunks that are downloaded individually and reassembled by the receiver. The re­

ceiving nodes contact one another and trade for chunks they do not yet possess. Each 

node employs an incremental exchange algorithm that leads it to upload chunks to 

cooperating nodes and not to share with selfish ones. These incentives encourage 

cooperative behavior in participating nodes [1]. While BitTorrent is not completely 

immune to rational manipulation, it is viable in practice [23]. 

In this chapter, we identify, analyze, and create a taxonomy of rational attacks in 

p2p systems. We then examine this taxonomy to identify corresponding solutions. In 

the next two sections, we first provide a short background on the economics principles 

applicable to p2p systems and then specify our system model. The following two 

*Our definition for rational follows the narrow definition provided by Shneidman et al [15]. For 
the purposes of this chapter, rational participants are only interested in exploiting the resources and 
benefits of the system. 
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sections define our taxonomy of rational attacks and discuss solutions. The final 

section presents our conclusions. 

2.2 Economics Background 

Much of our analysis of p2p cooperation is based on economic models of game theory 

and mechanism design [21]. In this section, we briefly review some critical terms and 

concepts as they relate to p2p systems. 

An economic game is a model of interaction between players in which the actions 

of any player influence the outcome of all other players. The mechanism in a game 

defines what legitimate actions the players can perform and the outcome of their 

behavior. These outcomes are assigned a numeric value called utility. Players that 

use an algorithm to determine behavior are said to follow a strategy 

Players in the p2p world represent the nodes participating in the system. There 

are two types of nodes that do not strategize. 

• Altruistic or obedient nodes cooperate with the system irrespective of any other 

considerations. 

• Faulty nodes stop responding, drop messages, or act arbitrarily. 

There are two types of nodes that do strategize. 

• Rational nodes strategize to achieve maximal utility and their actions are based 

on their current knowledge and understanding of the p2p system. Rational 

nodes will not attempt to disrupt routing, censor data, or otherwise corrupt 

the system unless such behavior increases the node's access to shared resources. 

These nodes are also described as self-interested. 
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• Irrational nodes also strategize, but their strategies are either incomplete be­

cause they cannot understand the mechanism or they lie outside the economic 

mechanisms of the system. Denial of service or censorship attacks are examples 

of this second form of economically irrational behavior*. 

Mechanism design (MD) is the process of creating games where rational behavior 

by players leads to outcomes desired by the designer. Of course, such systems only 

affect the behavior of rational nodes. Mechanism design has no impact on faulty or 

irrational nodes and we exclude them from further discussion, though we recognize 

that any practical p2p system deployed "in the wild" must be resistant to their 

behavior. Of course, most p2p systems are robust against failure. The impact of 

irrational and malicious nodes is an open research problem that is discussed in Castro 

et al [22]. 

Distributed algorithmic mechanism design (DAMD) is a subclass of MD that 

is computationally tractable and operates without centralization. For this reason 

DAMD is well suited to systems like p2p networks [21]. DAMD assumes each node 

can independently reward the cooperation of other nodes or penalize their misbe­

havior but that each node has only limited information on the global state of the 

system. 

2.3 Model 

2.3.1 Incentives Capabilities 

Incentives in p2p systems have some limitations. First, incentives are limited in 

the guarantees they can provide. While the use of incentives strengthens the p2p 

tOur goal is to design systems which are immune to manipulation by nodes seeking increased 
shared resources. Our definition of rational only includes nodes whose utility function is independent 
of utility payout to other nodes. Strategies, such as censorship strategies, that obtain benefit by 
denying utility to other nodes are considered irrational. 
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system against rational attacks, by themselves they do not guarantee that the system 

is faithful. To be guaranteed faithful, a mechanism must be validated by a formal 

proof, the construction of which is not trivial. 

The second limitation is that they must be DAMD compatible. DAMD is lim­

ited to creating mechanisms that are are computationally tractable across distributed 

computing resources. Nodes are expected to reward cooperation and penalize misbe­

havior, but doing so is difficult when trusted global knowledge is unavailable. 

With these two limitations in mind, we identify two types of incentives that may 

be used to create a faithful p2p system. The first type is genuine incentives and is 

characterized by directly incentivizing cooperation. A genuine incentive ties current 

behavior and future payoff together in some inseparable way. Genuine incentives 

are inherently robust against rational attacks and limit the strategies available to 

adversaries. 

One example of genuine incentives is incremental exchanges as used in Bit Torrent. 

Money could also be an effective genuine incentive but it would require very efficient 

micropayment schemes, where potentially every network packet transmission would 

require an associated payment. Unfortunately, the current generation of such systems 

(e.g., Millicent [39]) were never intended for such fine-grained commerce. 

The second type of incentive is artificial incentives* which incentivize evidence of 

cooperation. Such incentives are weaker than their genuine counterparts because, to 

be rewarded, a node only has to appear to cooperate. Nevertheless, artificial incentives 

are generally easier to create and deploy and may be necessary under circumstances 

•f Roussopoulos et al. suggests that highly valuable shared resources have inherent incentives while 
less valuable ones require an extrinsic or artificial incentives for cooperation [20]. Our concept of 
genuine and artificial incentives is similar, but focuses only on the mechanism and not the value of 
the resources or social network in which the resources are exchanged. 



13 

where genuine incentives are not feasible. 

Artificial incentives are often designed around an auditing process on top of which 

an enforcement mechanism is layered. In a decentralized system, auditing cannot be 

globally managed. Each node is aware of the system's policies, but is independently 

responsible for determining whether peers are in compliance. This can be done by 

requiring each node to publish assertions about its state which are audited by other 

nodes. An auditing policy of this type is consistent with DAMD; each node is capable 

of determining its behavior within the system. An auditing system, however, is 

subject to the vulnerabilities that we describe in Section 2.4.1. 

2.3.2 Service Maturation 

A p2p service provides some tangible benefit to participating nodes. New partici­

pants may obtain their payout spread over time, or they can obtain maximal benefit 

immediately in a lump sum. We have termed this service characteristic as service 

maturation. A service is mature when a node has obtained all of the benefit that 

the service can provide. Services that give out all possible benefit immediately have 

instantaneous maturation while services that distribute benefit over time have pro­

gressive maturation. Progressive maturation can be further classified as bounded or 

unbounded based on whether or not the service has a known, fixed termination of ben­

efit pay-out. The relationship between the different classes of maturation is illustrated 

in Figure 2.1. 

A content distribution service might have instantaneous or progressive matura­

tion depending on policy. If a newly joined node can completely download its desired 

content before redistributing that content to peers, the service has instantaneous 

maturation. Conversely, BitTorrent has progressive maturation because it only al-
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Figure 2.1 : Service Maturation Taxonomy 

lows nodes to obtain the full content through repeated interaction with the system. 

Because Bit Torrent's pay-out of benefit ends when the file download is complete, its 

progressive maturation is bounded. 

An example of a service with unbounded progressive maturation is a remote back­

up service. In such a system, the benefit payout is distributed over time without a 

fixed point of termination. 

There is a correlation between instantaneous maturation to the Prisoner's Dilemma 

(PD) and progressive maturation to the Iterated Prisoner's Dilemma (IPD). In the 

single round PD, all of the utility that the game can pay out is disbursed in a single 

interaction. In IPD, the total utility is paid out to participants over some arbitrary 

number of interactions. 

IPD also has an analog to the concept of bounded maturation. The game can be 

played with the players either aware or ignorant of the number of rounds that they 

will play. From the players' perspective, the game is bounded only if they know the 

number of rounds. An IPD game degenerates into a PD game if the number of rounds 

are known. 

Game theoretic analysis has proven that it is not rational to cooperate in single 

round PD but that it is rational to cooperate in IPD [24]. Services with instantaneous 

maturation are extremely susceptable to the attacks described in Section 2.4.2. 

Progressive 

I 
1 

Unbounded 



15 

2.3.3 System Model 

For convenience, we define a constrained environment suitable to explore rational 

attacks. The p2p model characterized in this section has many features that are 

common to most p2p networks. In Section 2.5 we break some of these assumptions 

as possible solutions to rational attacks. 

Our model is described by the following assumptions and limitations. 

Assumption: Secure node ID's. Douceur [40] observes that if identity within 

the p2p system is not centrally controlled, any participant can simultaneously 

assume a plethora of electronic personae. With many identities at its disposal, a 

participant can subvert the entire network by subverting the routing primitive. 

We assume that the node ID's in our model are made secure in one of three 

ways: 

Trust - Node ID creation and distribution is done through a centralized and 

mutually trusted agent. 

Expense - Node ID creation has some arbitrary cost attached. A participant 

can replace its node ID infrequently and with some difficulty. 

Relevance - Node ID creation is unrestricted because having multiple ID's 

cannot aid the rational attacker. 

Assumption: There is no "trusted" software. A p2p system cannot guaran­

tee that their members are using conforming software. Trusted computing 

technologies allow a node to attest that it is running a conforming applica­

tion [41, 42]. Enforcing a trusted software policy is not only technically chal­

lenging, but developing and deploying such a policy is undesirable to many 
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groups for ethical or practical reasons [43]. 

Assumption: Nodes are computationally limited. We assume that any given 

node may have the same resources as the typical desktop PC. Nodes may subvert 

their machine to behave in arbitrary ways. However nodes are assumed to be 

incapable of breaking cryptographic primitives or taking global control of the 

underlying network. 

Due to the potential size of p2p systems and because nodes are in mutually untrusting 

domains, we apply the following limitations to our model. 

Limitation: Each node maintains minimal state. A node can only have first­

hand observations about a small fraction of the nodes in the system. Similarly a 

node can only maintain state about a small number of the nodes in the system. 

Limitation: No second-hand information. Nodes can only trust what they di­

rectly observe because there is no inherent reason to trust an assertion by any 

node about a third party. An accusation can only be trusted if the evidence is 

independently believable regardless of trust in the accuser. Such proofs usually 

require the cooperation of the accused to create. 

2.4 Taxonomy of Rational Attacks 

The motive for the attacks we consider are unfairly increased access to p2p shared 

resources. We identify two general classes of attack: 

1. Unrecorded Misuse of Resources 

2. Unpunished Misuse of Resources 
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Attacks can be made by a single node, or by several nodes colluding together for an 

advantage. 

2.4.1 Unrecorded Misuse of Resources 

If an attacker can obtain resources without producing a record of the misuse, the 

attacker is safe from any sanctions. Attacks of this kind exploit "holes" in auditing 

policies (policy attacks), or actively disrupt the auditing mechanism (auditing attack). 

Policy Attacks 

A rational node may exploit an auditing policy. We identify two examples. 

Excuses Any legitimate "excuse" for being unable to perform a service may be 

exploited. Such excuses may be needed to deal with edge conditions including 

crash recovery, network interruption, packet loss, etc. Consider a remote backup 

system like Samsara that requires every node to contribute as much space as 

it consumes [44]. If the system policy is overly generous to recovering nodes 

that recently crashed by not requiring them to prove they are maintaining their 

quota, a malicious node may exploit this by repeatedly claiming to have crashed. 

Picking on the newbie Some systems require that new nodes "pay their dues" by 

requiring them to give resources to the system for some period of time before 

they can consume any shared resources [45, 46]. If this policy is not carefully 

designed, a veteran node could move from one newbie node to another, leeching 

resources without being required to give any resources back. 

Auditing Attacks 

Auditing attacks are designed to prevent the auditing system from identifying mis­

behavior. These attacks only apply to designs based around auditing using artificial 
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incentives. Here are a number of examples of this type of attack: 

Fudged books Auditing relies on the accounting records being tamper-resistant 

and difficult to forge. 

Manufactured evidence In this scenario, an attacker who is in a state of non­

compliance manages to produce "proof of compliance deceptively. 

Accounting interruption (kill the auditor) A node being audited can attempt 

to interfere with the auditing node. This might be accomplished by a denial-

of-service attack, a worm, a virus, etc. 

Group deception, local honesty This attack is a type of manufactured evidence 

attack through collusion. Ngan, et al describes an accounting system where 

nodes publishing their debits and credits publicly in logs which are later audited 

by nodes' peers [47]. Debts on one node must match credits on another node, 

making it more difficult for a node to cook its books. However, it is possible for 

single node in debt to become locally honest for an audit by pushing its debt to 

a co-conspirator. As a group, the conspiring nodes' books are not balanced and 

they are in debt jointly. All colluding nodes reciprocate in sharing (or hiding) 

the debt. 

2.4.2 Unpunished Misuse of Resources 

An identified misbehaving node may attempt to avoid or mitigate punishment. Two 

such attacks are: 

Elusion The attacker leaves the system permanently before they can be sanctioned 

by the p2p system. This attack generally exploits short-maturation and high-

value resources. In such a scenario, the attacker obtains the resources and leaves 
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(e.g., join a content distribution service long enough to obtain an object and 

then disappear forever). 

Reincarnation Reincarnation is repeated elusion. The attacker avoids punishment 

for misbehavior by assuming a new node ID thus releasing them from any 

penalties associated with its old reputation. We note that this attack is a limited 

form of the Sybil attack [40] where multiple ID's are acquired and discarded over 

time rather than all at once. 

This class of attacks operates almost entirely against p2p services with instantaneous 

maturation. 

2.5 Solutions 

As stated previously, an ideal p2p system is perfectly faithful, but creating such a 

mechanism and proving its validity is difficult. In some cases a perfectly faithful 

design may be impossible, but a p2p system need not be perfectly faithful to be 

viable. In this section, we describe defenses against rational attacks by self-interested 

nodes in descending order of theoretical effectiveness. 

2.5.1 Eliminate rationality as a concern 

Under certain circumstances, forcing all nodes to be obedient may be practical and 

desirable. We identify three options for coercing obedience. 

Out-of-band trust Obedience is enforced external to the p2p system. Such a sce­

nario might be viable for a group of friends, or centrally administered machines 

within corporations, academic institutions, and government agencies. 

Partial centralization It may be possible to introduce some aspect of centraliza­

tion that induces nodes to be obedient. For instance a central authority can 
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be used to require secure node ID creation. BitTorrent uses a central authority 

to act as a rendezvous point where nodes can determine the addresses of their 

peers. 

Trusted software - If a user is prevented from modifying their software, they must 

behave obediently. Many software applications are closed-source and difficult to 

modify. This may also be done with "trusted computing" technologies [48, 42]. 

2.5.2 Design genuine incentives 

Genuine incentives are always preferred to artificial incentives. Because they are 

often difficult to implement in a DAMD context, it may be tempting for a designer 

to overlook them. Not only do genuine incentives eliminate many of the attacks 

described in Section 2.4.1, but they are also simpler than artificial incentives because 

they require no additional enforcement mechanisms. 

For example, consider a back-up system with a storage policy similar to Samsara 

where each node must provide as much disk-space as it consumes in backups. One 

artificial incentives approach proposed by Fuqua, et al is to require that all nodes 

publish what data they are storing locally and to prove that they actually have that 

data in their possession on audit [47]. The auditing mechanism may be vulnerable to 

one or more of the auditing attacks described in Section 2.4.1. 

A genuine incentive for the remote back-up service is to require that all of a 

node's data that is stored on the network be tangled with the data it is supposed 

to be storing [45]. Nodes can then occasionally broadcast portions of the tangled 

data they are storing and ask for its owner to claim it or risk its deletion. Now the 

self-interested node must actually keep the data it claims to be storing or it cannot 

recognize claim-requests for its own data. However, to be useful, there must be a 
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policy that allows a node to reclaim its data after a crash even if it has lost all local-

storage. This policy may expose the mechanism to the excuses attack described in 

Section 2.4.1. Despite this weakness, however, this mechanism is more robust and 

significantly simpler than the auditing alternative. 

2.5.3 Improving artificial incentives design 

Artificial incentives are a less desirable solution to rational attacks, but they may 

be the easiest to design into a service and are sometimes the only viable solution. 

Artificial incentives will generally entail having a well-defined auditing policy. A 

number of design decisions influence the effetiveness of these incentives. 

Eliminating instantaneous maturation 

A service which instantaneously matures is difficult to secure against rational attacks. 

Once a rational node has obtained the maximum benefit for a service, it has no in­

centive to continue participation. Thus, services that instantly mature are inherently 

vulnerable to elusion and reincarnation attacks. Also, because a node obtains its de­

sired utility quickly, there is not much time for an auditing scheme to stop an attacker. 

Several techniques may help convert instantaneous to progressive maturation: 

Centralized ID Creation If node ID's are centrally created and distributed, a 

node will be forced to maintain its identity in all of its future interactions with 

the p2p system. In this case if a node steals from the system and leaves, it will 

face punishment when it returns. 

Security Deposit A node must contribute resources during a probationary period 

before it can benefit from the system's shared resources. Tangier is an example 

of system using this technique [45, 46]. 
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Limited number of peers 

Changing a node's ID incurs a cost. If an auditing system can detect and kick out a 

misbehaving node sufficiently fast, then the cost of changing identity outweighs the 

benefit. In most p2p systems, a node can only access the network through a limited 

number of neighbors. Once an attacker has freeloaded on its neighbors, they will 

refuse to interact with it and it will be effectively removed from the system. This 

solution has been used for multicast and storage accounting [18, 49, 50]. 

Reputation 

With perfect global knowledge of every peer's behavior, a node would be incentivized 

to cooperate because any time it cheated, that information would be immediately 

available to all of its peers. Unfortunately, perfect global knowledge is only possible 

through an oracle which is not available in a DAMD context such as p2p networks. 

Distributed systems may try to recreate the notion of a global, trusted oracle 

using gossip protocols, rating schemes, or some other from of peer endorsements. 

Mojo Nation had a global reputation system and EigenTrust describes how such 

systems might be built [51]. 

Protecting an auditing infrastructure 

Because artificial incentives require building and protecting an auditing infrastruc­

ture, these mechanisms have additional complexity that may be prone to design and 

implementation errors. We suggests three practices for building effective auditing 

mechanisms: 

Force the truth to be told Nodes can usually only believe what they observe for 

themselves. Secure history techniques [52], however, may be useful to generate 
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authenticated records of misbehavior that are trustable by remote hosts. 

Double-entry bookkeeping A double-entry bookkeeping system as described ear­

lier in Section 2.4.1. 

Create a global clock When multiple nodes are being audited, they may be able 

to pass debts around from one node to the next, such that any particular node, 

while it is being audited, appears to have its books balanced. If several nodes 

can be simultaneously audited at provably the same time, this may defeat such 

attacks. Again, secure history techniques may provide an approximate solution 

to this problem. 

2.6 Conclusions 

In this chapter we explored a number of rational attacks. While we used a narrow 

definition of "rational", we feel that this usage is justified by the unique nature of 

such attacks. Prom our analysis, we believe that designs that incorporate genuine 

incentives will generally be simpler and more robust that those with artificial incen­

tives. Artificial incentives often require an auditing mechanism that is complicated 

and difficult to construct. 

Unfortunately, given the difficulty of designing and implementing genuine incen­

tives in a DAMD context such as p2p networks, artificial incentives will often be 

essential to incentivize cooperation for some parts of the system. When this is the 

case, avoiding instantaneous maturation eliminates unpunished misuse of resources 

attacks. A carefully designed policy and a robust auditing scheme are essential to 

mitigating unrecorded misuse of resources. 
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Chapter 3 

Long-Term Incentives in BitTorrent 

BitTorrent is a widely-deployed, peer-to-peer file transfer protocol engineered with a 

"tit for tat" mechanism that encourages cooperation. Unfortunately, there is little 

incentive for nodes to altruistically provide service to their peers after they finish 

downloading a file, and what altruism there is can be exploited by aggressive clients 

like BitTyrant. This altruism, called seeding, is always beneficial and sometimes 

essential to BitTorrent's real-world performance. We propose a new long-term in­

centives mechanism in BitTorrent to encourage peers to seed and we evaluate its 

effectiveness via simulation. We show that when nodes running our algorithm re­

ward one another for good behavior in previous swarms, they experience as much as 

a 50% improvement in download times over unrewarded nodes. Even when aggres­

sive clients, such as BitTyrant, participate in the swarm, our rewarded nodes still 

outperform them, although by smaller margins. 

3.1 Introduction 

Peer-to-peer file transfer protocols provide scalable architectures for distributing large 

files. The core idea is to have peers participating in the download also contribute 

upload service back to the system, thus scaling the available bandwidth as more peers 

join. Even centralized services with large network connections can be overwhelmed 

by flash crowds, while p2p services can ostensibly continue to scale, even in such 

extreme scenarios. 
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In the practical world, however, scalability and stability in p2p systems are limited 

by the cooperation of the participants. These systems only have as much bandwidth as 

is collectively donated. Proper behavior cannot necessarily be enforced; participants 

are going to behave rationally, taking whatever steps maximize their own benefit 

without particularly caring about the well-being of other peers. Consequently, the 

default behavior of most participants is to consume and not contribute. This is often 

called the "free rider" problem. 

BitTorrent [1] mitigates the free rider problem by rewarding uploads by granting 

faster downloads through a "tit for tat" (TFT) protocol, thus making cooperation 

a rational behavior. This design has been highly successful, enabling BitTorrent's 

wide acceptance in the Internet community. While there is no consensus on the true 

amount of BitTorrent data in-flight today, it is clear that the number is large at 

somewhere between one-third and one-half of all Internet traffic [30, 31, 32, 53]. 

Despite the practical success of BitTorrent, numerous researchers have exposed 

weaknesses to the TFT incentives mechanism [25, 26, 27, 28]. One prominent weak­

ness is the significant level of altruism that remains in the system despite the TFT 

mechanism. More specifically, many peers still contribute significant upload band­

width without necessarily improving their download performance. Such contributions 

are produced by asymmetries in upload and download bandwidth as well as by al­

truistic BitTorrent behaviors like seeding and optimistic unchoking. (Section 3.2.3 

discusses this "ambient altruism" in detail.) 

These exploits are not simply theoretical. BitTyrant [25] takes advantage of the 

intrinsic altruism to achieve high download rates while reducing upload contributions. 

Most BitTorrent clients can be easily configured to rely exclusively on leeching, and 

some research suggests this is effective despite the TFT incentives [29, 27]. 



26 

Our goal in this work is to reduce the altruism in BitTorrent seeding by adding 

incentives to the seeding component of the protocol. We present the design and eval­

uation of our seeding reward algorithm which requires a minor change to BitTorrent 

in the form of a long-term identifier for participating clients. Through simulation 

we demonstrate that rewarded peers get better performance than unrewarded peers. 

This differential creates an incentive for rational nodes to switch into the rewarded 

population. We further show that the rewarding mechanism improves node perfor­

mance even when some portion of the swarm is composed of Bit Tyrant nodes. 

In the remainder of the chapter, we first review the operations and altruism of 

BitTorrent in Section 4.2 as well as an overview of the BitTyrant variant. Sections 

3.3 and 3.4 present our algorithm and the methodology we use to evaluate its perfor­

mance. Our results are detailed in Section 4.5 and further analyzed in Section 4.6. 

We close with a discussion of related work in Section 4.3 and our conclusions in 

Section 4.7. 

3.2 Background 

BitTorrent [1] is a highly successful and popular peer-to-peer protocol which aims to 

enable efficient, rapid distribution of potentially large amounts of data to a group of 

clients. It is designed to utilize the available upload bandwidth of the clients to scale 

the capacity of the system to support many users and has built-in mechanisms to 

incentivize participation in this scheme. 

3.2.1 The BitTorrent Protocol 

A torrent is a file or a set of files users wish to download. The data is divided into 

equal-sized pieces, typically 256KB, which are further subdivided into small blocks. 

A central node called the tracker keeps track of the peers participating in the distri-
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bution of a torrent. The tracker does not serve the actual content, but instead serves 

as a rendezvous point for peers to discover one another. 

BitTorrent clients use a file of metadata, called a torrent file, to begin download­

ing content. This file, typically downloaded from a traditional web server, specifies 

the address for the tracker as well as information about the files to be downloaded, 

including names, sizes, and SHA-1 checksums for each piece. 

The set of clients working on downloading a given torrent is referred to as a swarm. 

Clients notify the tracker as they join and leave the swarm, as well as every 30 minutes 

they are active within the swarm. To discover other clients, a client may query the 

tracker, which gives it a random subset of the active peers. (A variety of extensions 

exist which supplement the tracker, including a gossip protocol as well two DHT-

based schemes.) Once it has a set of peers, a client establishes TCP connections to 

its peers, forming a neighborhood with whom it shares information about which pieces 

it has and has not completed downloading. A legitimate publisher might establish 

one or more official seeds, which provide round-robbin, best-effort service to anyone 

who asks. These seeds are then supplemented by altruistic peers who seed after they 

finish their downloads. 

3.2.2 BitTorrent Strategies 

Popular BitTorrent clients employ a number of strategies to encourage fair participa­

tion in uploading and to deal with a variety of corner cases [1]. 

A client only uploads to a small number of peers in its neighborhood at any given 

time. This group of nodes is called the client's active set. The size of the active 

set is typically four, although both the reference implementation and BitTyrant [25] 

note that this number should scale with maximum upload bandwidth capacity. The 
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majority of the nodes in the active set are the nodes that have given the best service 

over a rolling 20 second average. The client saves one or two slots in the active set for 

the exploration of new neighbors. Optimistic unchokes pick a random peer every 30 

seconds, allowing the client to search for better neighbors while also bootstrapping 

newly joined clients that have not yet downloaded anything to share. 

BitTorrent clients share current status information with other clients to indicate 

which pieces are completely downloaded. Clients will bias their block requests to 

complete one piece before they begin downloading a different piece. To pick a piece 

to download, BitTorrent follows a rarest first policy, where a client picks pieces based 

on lowest availability within its neighborhood. The exception to this rule is for new 

clients, which need a complete piece before they can advertise any content for upload. 

In this case, they instead pick a random piece. 

When a block has been requested, a client does not reissue the request until either 

the block is received or the request times out. This can be a problem when a user has 

received most of the pieces in a file and has just has a few outstanding requests to 

go. If the final peers are slow or unresponsive, the system might never finish. In this 

case, the client goes into endgame mode and sends redundant requests for any missing 

blocks to its peers; as they are received the client sends messages to the remaining 

peers to cancel unnecessary requests. 

3.2.3 Ambient Altruism and BitTyrant 

BitTorrent aims to reduce the free-rider problem, but it is not intended to eliminate 

altruism in the system. Instead, BitTorrent aims to ensure that a node will expe­

rience significantly improved performance if it participates in TFT trading, rather 

than leeching. Consequently, altruistic features remain in the protocol and pose two 
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separate, but related, problems. First, a client can reduce or eliminate its own altru­

istic participation, reducing the overall swarm performance. Second, if a client can 

recognize peers that are participating altruistically, it may be able to obtain suffi­

cient service from these peers to find it unnecessary to deal with those that require 

cooperation. 

Two significant sources of altruistic contributions are seeding and optimistic un-

choking. Seeding is inherently altruistic under the current Bit Torrent protocol. The 

altruism of optimistic unchoking is more complex. The optimistic unchoke operation 

is Bit Torrent's method of searching the peer space for better TFT service. An un­

choke that results in improved service because a better peer is found is clearly not 

altruistic, but unchokes are performed with random peers, rather than being biased 

away from known leeches. This means that BitTorrent's standard unchoking behavior 

can still provide a source of altruism, to the benefit of leeches. 

Differences between peer bandwidth capacities also produce altruism. When a 

normal BitTorrent client unchokes a peer, it sends data as fast as the TCP stack will 

go, so peers with faster network connections will tend to give more out than they get 

in return when dealing with slower peers. Of course, two fast peers with content to 

trade will be more likely to establish TFT trading with one another than a fast peer 

and a slow peer. 

BitTyrant is a strategic BitTorrent variant that exploits ambient altruism and 

reduces its own altruistic contributions [25]. BitTyrant was designed to download as 

fast as possible while contributing the minimum amount required to achieve it. To 

achieve this, BitTyrant abandons BitTorrent's policy of giving each member of the 

active set an equal share of its upload bandwidth. Instead, BitTyrant unchokes as 

many neighbors as possible but limits the speed of each upload stream to be only as 
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much as is necessary to obtain reciprocation. 

This scheme does not work for other BitTyrant nodes, however, and two BitTyrant 

nodes must enter a special mode when dealing with each other. In Section 3.5.6, we 

will describe this special mode in detail and demonstrate how it can be used as part 

of a defense against Bit Tyrant's behavior. 

3.3 Incentives Design 

Our incentives design for seeding in Bit Torrent requires that the BitTorrent protocol 

support some form of long-term identifier. The basic concept for our algorithm is 

that BitTorrent clients recognize seeders from previous swarms and this is impossible 

without these IDs. Fortunately, the exchange of long-term identifiers can be built into 

the peer handshaking process in a backwards compatible fashion. Clients without a 

long-term ID are simply assumed to have no history. It is also worth noting that 

some clients [54] already support an optional long-term ID. 

Our proposed design consists of an observation phase and a reward phase. The 

observation phase is in effect whenever the node is receiving seeding bytes, or bytes 

received from a neighboring peer without the expectation of TFT reciprocation. The 

detection of seeding bytes, in our basic implementation, is based on first-hand, veri­

fiable information only. Obviously, it is possible that the neighbor is only pretending 

to seed, but from the observing node's perspective, all bytes received without giving 

any bytes in return are seeded bytes. 

The reward phase occurs when the node is in seeding mode. The goal is to schedule 

outbound seeding with higher priority given to peers who have seeded in the past. 

To do this, the algorithm first computes a score for each node; nodes who seeded get 

higher scores. These scores are used to initialize a scheduler, giving more slots to 
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nodes with higher scores. While virtually any scheduling algorithm would suffice, we 

chose to use lottery scheduling [55]. Each peer gets at least one ticket, but peers that 

seed get additional tickets in proportion to the logarithm of the number of bytes we 

have received from them in seeding. 

Obviously, a node that chooses to be a good citizen and seed may not be rewarded 

at all in the future. For node A to be rewarded by node B, A must seed to B and 

then B must seed to A in some subsequent swarm. That means that both nodes must 

interact repeatedly over time. For any real benefit to the algorithm, a group of nodes 

must interact repeatedly. 

We note that a Sybil attack [40] is possible against this protocol. For example, 

malicious nodes could create a large number of false identifiers, gaining additional 

shares of the bandwidth. We deal with this by reserving a percentage of a seeder's 

upstream bandwidth for other known seeders. Sybil attackers may well fight it out for 

the remaining unreserved bandwidth, but there is a larger pool of bandwidth available 

if they cooperate. 

Another possible Sybil attack would be a reincarnation attack [56] where a client 

sheds an old identifier for a new identifier in every swarm to erase previously observed 

bad behavior. Such behavior would be unhelpful to the node, however, because a 

fresh identifier begins with no rewards at all. Rewards only come with observed good 

behavior. 

3.4 Methodology 

3.4.1 Simulator 

We chose simulation as our primary method for analyzing incentives and altruism in 

Bit Torrent. The advantages of a simulator over real world tests or the use of network 
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emulation lies primarily in the repeatability of the experiment and the time required 

to run the experiment. Our research requires comparison of algorithms against one 

another as well as experimentation with hundreds of combinations of parameters. 

Repeatability and fast time to completion were both incredibly helpful. 

Several Bit Torrent simulators exist but they did not fully meet our needs. One 

simulator from MSR [57] does not implement asynchronous communication nor does 

it capture some BitTorrent details, such as piece chunk transmission, that we deemed 

necessary. An ns-2 [58] BitTorrent simulator was also available, but it simulates 

TCP effects and other network level details that were too low level for our purposes. 

GPS [59] is a general purpose p2p simulator that includes a BitTorrent module and 

simulates at about the same level of granularity as our work. GPS is written in Java 

and our work appears to run faster. 

To meet our objective, we have designed an optimized C++ simulator with a 

Python front end for simulation setup and execution. Our simulator allows swarms of 

thousands of clients, with several hundred running simultaneously, many times faster 

than real-time. To illustrate this, we ran a series of tests on an Athlon 2.4Ghz dual-

processor server with 4GB of RAM and running with the Linux 2.6.9 kernel. These 

tests employed a simple swarm where a given number of clients arrive simultaneously 

and join the swarm. There is only a single seed for the swarm. We fix the file size 

at 100MB, the seed's upload capacity at 512Kbps, and each client's bandwidth at 

56Kbps, symmetric for uploads and downloads. The results for various swarm sizes is 

shown in Table 3.1. These results show that the time required to simulate the swarm 

is proportional to the number of peers. 
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n 
10 

100 
1000 

Sim Time (hours) 
5.86 
4.77 
5.24 

Real Time (hours) 
0.004 
0.07 
0.86 

Messages 
233,950 

1,381,715 
13,635,955 

Memory (MB) 
20 
60 

492 

Table 3.1 : Basic simulator performance as the number of simulated nodes (n) grows. 
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Figure 3.1 : Simulated swarm membership over time based on a real-world trace from 
a flash-crowd swarm. 

3.4.2 Simulation Setup 

All the evaluations in this chapter are based on a flash-crowd, 1GB file Bit Torrent 

swarm. We used a total population of 2000 DSL clients with a range of download 

bandwidths from 128Kbps to 5Mbps. Each client's upload bandwidth is precisely half 

of its download bandwidth. To obtain reasonable churn, we make use of real-world 

BitTorrent traces taken in 2005 by Johan Pouwelse. These traces provide realistic 

join times for flash-crowd behavior in real swarms. 

Each simulation is also configured with experiment-specific parameters. The sig­

nificant parameters are: 

N\ 

- jo ins 
- seed only 
- swarmsize 

V\ 

aftsadri^sa*^^ 
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Seeding Time The 2000 clients of the swarm are assigned one of three seeding 

population types. Altruistic clients will seed for 24 to 48 hours after their download 

is complete. Standard clients seed for one to two hours. Leech clients terminate their 

connection immediately after downloading the object. These values are based on why 

peers choose to seed; altruistic clients intentionally stay around to be helpful, standard 

clients will continue running until the user notices the download is done and kills the 

client, and leech clients leave as quickly as possible. Even though these numbers are 

guesses, we have validated that a swarm with 10% altruistic nodes and 70% standard 

nodes yields seed-to-swarm ratios similar to those observed in a prior measurement 

study. (Figure 3.1 in this chapter closely resembles Figure 5 in Pouwelse et al. [33].) 

Seeding Algorithm Populations in the swarm can be assigned to use different 

seeding algorithms. The standard seeding algorithm simply seeds round-robbin to 

all of the peers in a seed's neighborhood. We also support an "incentives seeding" 

algorithm, as described in Section 3.3. 

Incentives Seeding Parameters For peers using the incentives seeding algorithm, 

we can vary the bandwidth reservation for rewards as a percentage of the total band­

width; all incentives seeding nodes will use the same reservation percentage in a given 

simulation run. Also, for nodes using our rewarding seeding algorithm, we invent a 

past history for each one, assigning them a number of bytes that they have seeded in 

the past. We similarly vary what portion of the population are aware of this history, 

allowing us to simulate everything from oracular knowledge of every node's past be­

havior down to fragmentary knowledge that would be a more realistic approximation 

of prior, first-hand observations. 

While oracular knowledge is unrealistic in practice, it allows us to place an up-
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per bound on the benefits of seeding policies that use this knowledge. First hand 

information is more limited in scope but much more difficult to exploit [56]. In our 

research we are assuming that there are no disjoint cliques of overlapping peers. This 

would seem to adequately capture common classes of real-world behavior as we might 

expect from people who download related content, such as new episodes of TV shows 

released on a weekly basis. 

Trading Algorithm We have implemented both the regular Bit Torrent TFT and 

the Bit Tyrant trading algorithms in our simulator. Trading and seeding algorithms 

may be assigned independently; a peer can use the BitTyrant trading algorithm and 

our incentives seeding algorithm if desired. 

3.4.3 Incentives Evaluation 

Our goal is to create an incentive for participants in Bit Torrent to seed. We will eval­

uate the effectiveness of our algorithm by demonstrating that rewarded populations 

perform better than unrewarded populations in our simulated swarms. By running 

the experiments under a variety of configuration parameters, we will characterize how 

these parameters affect the success of our incentives algorithm. 

In evaluating the performance of a node, our basic measurement is the download 

efficiency, denned as the utilization of the peer's download pipe over its lifetime in 

the swarm. Efficiency is a direct measure of the node's happiness, and it is perfectly 

normalized. Any node, regardless of speed, cannot be happier than when it has 100% 

download utilization. 

Computing the efficiency e is straightforward. Let k be the maximum download 

capacity of the node measured in bits per second (bps). Then let t0 be the time the 

peer connected to the swarm and let tj be the time that it finished the download, 
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Median Efficiency 
Altruistic 

98.8 
Standard 

48.9 

(%) 
Leech 
90.1 

Median Download time (s) 
Altruistic 

3304 
Standard 

7443 
Leech 
4402 

Table 3.2 : Comparison of median efficiency and median download time for the same 
experiment. 

Population 
Altruistic 
Standard 

Leech 

Average 
98.0% 
57.9% 
87.6% 

Std. Dev 
1.8% 
8.5% 
4.8% 

95% Confidence Interval 
4.1% 

15.3% 
8.2% 

Table 3.3 : Median efficiency, averaged over twenty different experimental runs, dif­
fering only in the random seed. 

Population 
Altruistic 
Standard 
"Leech" 

Average 
97.9% 
71.1% 
71.2% 

Std. Dev 
1.9% 
7.9% 
7.6% 

95% Confidence Interval 
4.6% 

11.9% 
12.9% 

Table 3.4 : Median efficiency, averaged over twenty experimental runs as above, with 
the leech nodes replaced by standard nodes. 

where both values are measured in seconds. Finally, let n be the number of bits in 

the download object. Then 

6 ~ k 

Of course, when simulating a large population of nodes with various configura­

tions assigned at random, we would expect significant variation in individual nodes' 

efficiency, even when they have the same configuration. Figure 3.2 shows cumulative 

distribution functions over nodes' efficiency in a simulation with altruistic, standard, 

and leech nodes. A curve that stays closer to the bottom of the graph, as the altru­

istic data series does, represents more nodes operating closer to their peak efficiency. 

(This experiment shares the same configuration as used later in Figure 3.12.) 

While we could potentially generate a figure like this for every possible simulation 
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Figure 3.2 : Cumulative distribution of efficiency (bandwidth utilization) over differ­
ent populations in the same swarm. 
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Figure 3.3 : Cumulative distribution of download time over different populations in 
the same swarm. (A different view of the same experiment shown in Figure 3.2.) 
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configuration, and every simulation run would generate a figure with the same general 

shape, this would obscure trends from one simulation to the next. Instead, we observe 

that the median value of each data series (i.e., the efficiency value for which the data 

series reaches 50% on the y-axis) represents an effective proxy for the overall behavior 

of the data. If the median values are close, then the curves will be close. If the median 

values are far apart, then the curves will be far apart. 

For our experiments, then, any given set of experimental parameters (as described 

in Section 3.4.2) will yield three values: the median efficiency of each of the three 

populations (altruistic, standard, and leech), which we can then plot as we vary the 

simulation parameters. 

An alternative to efficiency would be to consider the download times, without nor­

malizing them for differences in each node's available bandwidth. Figure 3.3 shows 

CDFs of download times for the same experimental setup as Figure 3.2. We added 

an "optimal" distribution, representing the best that the altruistic nodes could ever 

have performed if they had achieved 100% utilization of their download bandwidth. 

We could have added additional "optimal" lines for each population, but this would 

make reading the figure more complicated. Furthermore, median values are less mean­

ingful because the underlying distribution of bandwidths would vary if the random 

assignment were done differently. 

Of course, absolute download time and download efficiency are measuring the 

same underlying phenomenon; improving one metric would clearly improve the other. 

Table 3.2 shows the median values from each of these figures. The efficiency values 

elide unnecessary experimental details and concisely describe the relative performance 

of each population. 

Lastly, we must convince ourselves that efficiency is a reliable metric from one 
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experimental run to the next. Since many of the parameters in our system are assigned 

randomly, we experimentally re-ran our experiment twenty times, each time with a 

different random seed. The results, shown in Table 3.3, show significant variation 

from one run to the next, but the variations among altruistic nodes are smaller than 

among standard nodes. For an additional experiment, we changed the leech nodes 

to be standard nodes. We would expect, then, that they would behave the same as 

standard nodes. Table 3.4 clearly validates this behavior. 

From these measurements, it appears that standard nodes are more likely to be 

the victims of circumstance, while altruistic nodes and leech nodes are more stable 

in the face of random variation. As such, the reported performance of standard 

nodes should be considered to be noisier than the reported performance of altruistic 

or leech nodes. While we could precisely work out the minimum change between 

different populations that would represent a statistically significant difference, this is 

insufficient for our needs. Experimentally, we must show that our desired altruistic 

behavior doesn't just make a statistically significant improvement. We must show a 

large enough improvement to incentivize BitTorrent users to choose clients that follow 

our desired behavior. 

(For the remainder of the chapter, we only run each experiment a single time for 

a given set of experimental parameters. Since each data point takes as long as a day 

to compute, we cannot afford to run every experiment twenty different times.) 

3.5 Evaluation 

In this section, we detail the findings of our research. We will first demonstrate why 

seeding is important for swarms of nodes with asymmetric bandwidth. We will then 

demonstrate how our algorithm improves performance for seeding nodes. The next 
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Figure 3.4 : The median efficiency of the overall swarm under different compositions 
of clients. The worst performance is experienced when there is only one seed. When 
70% of the clients seeding for 1-2 hours, the performance improves significantly. When 
10% of the nodes seed for 1-2 days, the median efficiency approaches 100%. 

three subsections explore how bandwidth reservation, altruistic population size, and 

rewarding node overlap impact the effectiveness of our seeding algorithm. Finally, we 

analyze the performance of our algorithm in swarms that include BitTyrant nodes. 

3.5.1 Importance of Seeding 

Our first objective was to establish the importance of seeding to a BitTorrent swarm. 

We ran our simulation with three different population configurations. First, we ran 

the swarm with 1 initial seed and 100% of the swarm composed of our leech clients 

that do no seeding whatsoever. Next, we ran the swarm with 1 initial seed, 70% of 

the standard clients that do a small amount of seeding, and 30% of the leech clients. 

Finally, we ran a simulation with 10% altruistic nodes that seed significantly, 70% of 

the standard clients, and 20% of the leech clients. The results are shown in Figure 3.4. 

There are two reasons why the swarm cannot obtain high efficiency without signif­

icant seeding contributions. First, the swarm is comprised of nodes with asymmetric 

bandwidth profiles. In our swarm, the upload is always half of the download ca­

pacity. Even with idealized operations, a swarm could hope for no more than 50% 
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efficiency from TFT trading alone. The second issue is that a BitTorrent swarm is not 

ideal. Various factors such as churn reduce the effectiveness of the protocol. Seeding 

provides enough additional capacity to overcome these deficiencies. 

Clearly, seeding is essential for nodes in a swarm to maximize their download 

bandwidth; if we can design a mechanism that incentivizes more BitTorrent users to 

seed for longer periods, this should have a clear, positive impact on the system. 

3.5.2 Rewarding Seeding 

To evaluate our reward seeding algorithm, we first ran a baseline simulation. The 

setup for this simulation was 10% altruistic nodes, 70% of the standard clients, and 

20% of the leech clients. All three populations were running the standard BitTorrent 

trading and seeding algorithms, thus we expected all three populations to experience 

similar performance. As expected, the results for all three populations was near 100% 

efficiency. 

We then repeated this baseline experiment with all of the altruistic nodes con­

figured to run our reward seeding algorithm, reserving 75% of their bandwidth for 

rewards to prior seeders. The other two populations continued to use normal seeding 

algorithms. In this version of our experiment, we assumed perfect overlap for this 

altruistic group. In other words, every altruistic node had been previously seeded 

by every other altruistic node, prior to the start of the experiment, and would thus 

allow the other altruistic nodes to share in the bandwidth reserved for rewards. The 

results of this simulation are shown in Figure 3.5. The altruistic population main­

tained nearly perfect efficiency, while the two unrewarded populations experienced a 

significant drop in performance. 
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Figure 3.5 : Median efficiency when the altruistic population reserves 75% of the 
seeding bandwidth for other altruistic nodes. 

3.5.3 Bandwidth Reservation 

As described before, our seeding algorithm can reserve bandwidth for the exclusive 

use of nodes being rewarded. To understand the necessity of these bandwidth reserva­

tions, we ran a simulation where we varied the percentage of reserved vs. unreserved 

seeding bandwidth. The results, shown in Figure 3.6, show the median efficiency of 

the altruistic, standard, and leech populations in simulations with different reserved 

bandwidth configurations. In all simulations, there are 10% altruistic, 70% standard, 

and 20% leech clients. The bandwidth reservation applies to altruistic nodes' seeding 

bandwidth. For the moment, we are assuming that altruistic nodes all have prior 

history and know which other nodes have seeded in the past. 

One immediate observation is that our seeding algorithm, without any bandwidth 

reservation, does no better than normal seeding. This seems counter-intuitive because 

the rewarded nodes should still be getting more seeded bytes than their unrewarded 

peers. One might think that there would be some performance improvement for 

the altruistic nodes, even with 0% reserved bandwidth, but they are already getting 

nearly 100% efficiency. 



43 

A * Leech 
• -• Standard 
•—• Altruistic 

10 20 30 40 50 60 
Reserved.Bandwidth 

70 80 90 

Figure 3.6 : Median efficiency as a function of the reserved bandwidth by the altruistic 
nodes. 
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Figure 3.7 : Median efficiency as a function of the percentage of altruistic nodes in 
the swarm. 
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Figure 3.8 : Median efficiency as a function of the percentage of overlap in the altru­
istic nodes. 
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With bandwidth reservations, if there is insufficient demand from the "reward" 

population, then that portion of the seeding bandwidth will go unused. In short, 

our work suggests that the only way to create a performance differential between 

rewarded and non-rewarded nodes is to withhold service from unrewarded nodes. 

There is an interesting trade-off, however. If the reservation is too high, then all 

of the bandwidth is effectively being spent on maintaining old relationships rather 

than establishing new ones. As nodes quit old swarms and join new ones on a regular 

basis, there is a clear incentive to have seeded to strangers in the past if there might 

be a payout in the future. 

3.5.4 Altruistic Population Size 

We cannot predict what percentage of nodes in a given swarm might be running our 

reward seeding algorithm. We would like to verify, regardless of the breakdown, that 

incremental growth in the reward seeding group will yield benefits both for those 

nodes as well as for everybody else. This leads to the question of how the system will 

respond as the population dynamics change. Figure 3.7 shows how efficiency changes 

as a function of the percentage of the altruistic and standard populations in the total 

swarm. The leech population is fixed at 20% and the rewarding nodes reserve 75% of 

their bandwidth. 

This experiment demonstrates that the performance of the entire swarm improves 

as more nodes follow our altruistic scheme, even when reserving 75% of their band­

width for reward seeding. That other 25% is enough to improve things for everybody 

else. 

At some point, beyond the 30% altruism rate where we terminated our simulation, 

the standard nodes may have sufficient efficiency that they would be disincentivized 
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to change to the altruism strategy. By then, the altruism strategy would already be 

the dominant behavior in the swarm. Also, regardless of the rate of altruistic nodes, 

this experiment shows that altruism always wins, and sometimes wins big, even with 

relatively low populations of altruistic nodes. 

3.5.5 Overlap 

In this section, we explore the highly critical overlap parameter. Our algorithm 

assumes that nodes are rewarding based on first-hand information gleaned from prior 

interactions in prior swarms. In previous experiments, we have assumed that this 

knowledge of prior interactions, which we call overlap, is complete. Every node has 

prior, positive interactions with its altruistic peers and thus knows to include them 

in the reward population during future interactions. Such oracular knowledge is not 

realistic. 

For simulation purposes, we wish to vary the degree to which altruistic nodes have 

had past interactions with other altruistic nodes and thus have the first-hand knowl­

edge necessary to give reward seeding to their peers. To accomplish this, we partition 

the altruistic nodes into two sub-groups: rewarding and non-rewarding nodes. Re­

warding nodes will reward all other altruistic nodes, including non-rewarders, while 

non-rewarding nodes will reward nobody. Non-rewarding nodes still have the same 

75% bandwidth reservation, but they never use it. By varying the ratio of rewarding 

to non-rewarding nodes, we can roughly simulate the real-world effects that might be 

seen as the degree of overlap between altruistic nodes varies. 

Figure 3.8 shows the efficiency for each population as a function of the percentage 

of altruistic nodes that are rewarders. We maintain a 10% altruistic, 70% standard, 

and 20% leech population. Reserved bandwidth remains fixed at 75%. 
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Our experiment demonstrates that overlap is clearly necessary to achieve the 

benefits of our reward seeding strategy. Once the overlap reaches 50% (i.e., about 

half of the seeding interactions between altruistic nodes are rewarded with higher 

bandwidth), the performance improvement for the altruistic strategy is undeniable. 

Whether such an overlap rate can be achieved in the real world is unclear. We discuss 

some strategies that might compensate for this in Section 4.6. 

3.5.6 Seeding Rewards versus BitTyrant 

In this section, we test the altruistic reward seeding algorithm against clients run­

ning the more aggressive BitTyrant trading algorithm. BitTyrant clients tend to see 

improved performance at the expense of other nodes in the system. (BitTyrant was 

introduced in Section 3.2.3.) 

Our first experiment, shown in Figure 3.9, pits rewarding seeders against tyranni­

cal leeches. This test repeats the bandwidth reservation experiment of Section 3.5.3 

with the leeching population configured to use the BitTyrant trading algorithm. All 

other parameters remain the same. 

Comparing these results against those of the earlier bandwidth reservation test, 

we note that BitTyrant-leeches performed as well as the rewarded altruists. At the 

same time the leeches degraded the performance of the standard nodes significantly. 

From this we conclude that the reward-seeding algorithm protects against, or at least 

ameliorates the exploitation of the BitTyrant protocol, but that it does not sufficiently 

penalize the leeching clients. 

To evaluate how the size of the altruistic population impacts the performance 

of these populations, we repeated the experiment of Section 3.5.4, again with the 

rewarding altruistic seeders versus the tyrannical leeches. We hoped that increasing 
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numbers of altruists might be able to penalize the tyrannical leeches. Unfortunately, 

as shown in Figure 3.10, the tyrannical leeches still had no trouble achieving near 

perfect efficiency. 

We considered the possibility that the leeching nodes would not do so well if the 

altruistic nodes were more stingy during the TFT trading phase. To test this, we 

reconfigured the bandwidth reservation test. In this experiment, the altruists use the 

BitTyrant TFT strategy rather than the default BitTorrent TFT strategy, but still 

perform the incentivized reward seeding. The leech population still practices tyranni­

cal TFT trading and never seeds. The standard population uses standard algorithms 

for both seeding and TFT trading. All other simulation parameters remained the 

same. The results are shown in Figure 3.11. 

Based on these experiments, a rational user might just as well run a tyrannical 

client as an altruistic client. They will receive the same download efficiency and they 

will minimize their upload bandwidth. 

3.5.7 BitTyrant Exploitation 

In the pursuit of finding a weakness in BitTyrant's seemingly anti-social behavior, we 

discovered a problem with BitTyrant's exchange mechanism (also noted by Carra et 

al. [60]). The original BitTyrant paper [25] says: 

As such, BitTyrant continually reduces send rates for peers that recipro­

cate, attempting to find the minimum rate required. Rather than attempt­

ing to ramp up send rates between high capacity peers, BitTyrant tends 

to spread available capacity among many low capacity peers, potentially 

causing inefficiency due to TCP effects. 

To work around this ... effect, BitTyrant advertises itself at connection 
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Figure 3.9 : Altruistic nodes versus tyrants under different amounts of reserved band­
width. 
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Figure 3.10 : Altruistic nodes versus tyrants with different ratios of altruistic nodes 
in the population. 
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Figure 3.11 : Reward-seeding altruists, modified to trade tyrannically before they 
begin seeding, versus tyrant-leeches under different amounts of reserved bandwidth. 
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Figure 3.12 : Median efficiency when altruistic nodes refuse to seed anything to 
tyrannical leech nodes. 

time using the Peer ID hash. Without protocol modification, BitTyrant 

peers recognize one another and switch to a block-based TFT strategy 

that ramps up send rates until capacity is reached. 

The authors believe that their weakness is looking for too many low bandwidth flows, 

or that the many low bandwidth flows are inefficient because of TCP effects. 

To evaluate this, we ran several simulations without the BitTyrant block-level 

TFT component (i.e., we disabled BitTyrant's ability to detect that a peer is also 

running BitTyrant). BitTyrant nodes did very poorly when communicating with each 

other. 

BitTyrant assumes it is receiving reciprocation when it receives an unchoke. This 

is a valid assumption for BitTorrent nodes, but it is not as clear of a signal from 

another BitTyrant node because it does not indicate how much they are willing to 

upload. So, if two BitTyrant nodes unchoke each other, they both assume they have 

an estimate for the minimum upload speed necessary to achieve reciprocation. They 

then both begin to drop their upload rates potentially down to zero in a quest to 

achieve lower estimates for the minimum upload speed. 
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BitTyrant solves this problem by self-identification, disabling the reciprocation-

discovery mechanism because it doesn't really work between two tyrants. This iden­

tification features can be exploited by altruistic nodes to deny service to tyrants! A 

BitTyrant node cannot lie or obscure that it's a tyrant without incurring a penalty 

when trading with other tyrants. 

We re-ran our baseline simulation with 10% altruistic, 70% standard, and 20% 

leech nodes. The altruistic nodes used the normal trade algorithm and our reward 

seeding algorithm. The leech nodes used the BitTyrant trade algorithm. Bandwidth 

was reserved at 75% and the altruistic nodes ignored tyrants during seeding, but 

interacted with them normally when still downloading the torrent. The results are 

shown in Figure 3.12. 

By ignoring tyrants, the altruistic nodes achieve a small but significant perfor­

mance improvement relative to the tyrants. There may well be other ways to exploit 

tyrants, such as refusing to interact with them at all. It is sufficient to say that 

BitTyrant is vulnerable to exploitation, itself, as a consequence of its necessary self-

identification mechanism. 

3.6 Discussion and Future Work 

The development of this research gives rise to a number of important discussion points 

that we will address here. These points include issues relating to the practicality of 

our algorithm to real-life solutions as well as topics of future research. 

Privacy / Anonymity is of significant concern for many BitTorrent users. Natu­

rally, a long-term identifier would impact anonymity. However, the BitTorrent proto­

col was never engineered to provide anonymity to BitTorrent users. (They announce 

their presence to everybody in the swarm, based on their IP address, and adver-
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tise what pieces they have available to trade!) Prom this perspective, a long-term 

identifier is not much worse than an IP address. 

On the other hand, if a Bit Torrent user chose to tunnel Bit Torrent through an 

anonymization system like Tor, then the IP address would be obscured, while the 

long-term identifier would still be advertised. While a number of BitTorrent users 

do tunnel traffic through Tor, their performance will suffer greatly, as Tor was never 

intended to support the kind of massive, sustained traffic flows that BitTorrent can 

generate. Engineering an anonymity service specifically for BitTorrent would be an 

interesting opportunity for future research. 

Bootstrapping and Overlap are the most critical concerns for further develop­

ment of this incentives mechanism. The reward mechanisms in our research depend 

on the same nodes seeing one another, again and again. This may not occur much, 

in the general case, but it could well happen in particular subcommunities. 

Existing Small Groups: A number of relatively small (compared to the entire 

world) communities exist for the purpose of BitTorrent distribution. The traces we 

described in Section 3.4 were collected from f i l e l i s t . org over a three month period. 

This community requires a sign-in name which was associated with each download. 

We observed that 50% of all peers participated in at least two of the same swarms. 

These types of groups would be able to switch over to the seed-rewarding algorithm 

with very little difficulty and would likely have sufficient overlap. 

Social Groups: Existing social communities, brought together by mutual interests 

on social networks, could be used to leverage a relatively small BitTorrent community 

suitable for the seed-rewarding algorithm. 
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Shared Interests: Even without explicit social groupings, one would reasonably 

expect that many people will follow similar patterns. For example, a variety of 

television shows are distributed via Bit Torrent. Users who download the current 

show are likely to download subsequent shows. Similar affinities would be expected 

around other content that is updated on a regular basis, such as updated Linux 

distributions. 

Transitive Trading and similar methods, may be able to ameliorate the need for 

extensive overlap. Transitive trading [49, 61] allows two clients that have never met 

to exchange "credits" through a mutual contact. 

BitTyrant is an important development in BitTorrent because it improves the 

efficiency of certain core concepts. For example, the optimistic unchoke in standard 

BitTorrent trading is a search method for finding better peers, but it simply searches 

randomly. However, as we discussed in Section 3.5.7, BitTyrant clients must identify 

whether they are speaking to other tyrants and change strategies. Otherwise, the 

default BitTyrant TFT strategy will have both clients dropping their bandwidth all 

the way to zero. 

This BitTyrant flaw creates interesting opportunities. Since BitTyrant clients 

must identify themselves as such, they can be trivially ignored by other clients who, 

perhaps, do not with to support their tyrannical behavior. However, there are many 

other options. BitTyrant clients (or, really, any BitTorrent client) could publish 

categorical statements about their unchoking policies. For example a node might 

declare: "If you give me at least X bytes per second, then I'll unchoke you and give 

you X in return, up to Y bytes per second max." Of course, a tyrant could lie about 

such policies, but it creates an interesting opportunity for future research, both in 
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terms of simulation studies and in terms of economic modeling. 

Carra et al. [60] also examined the strengths of BitTyrant-style behavior versus 

simply expanding the number of simultaneous connections in traditional Bit Torrent 

clients by simulation. However, their simulation models ignored churn and other 

real-world conditions leading us to believe that their results are unreliable. 

3.7 Related Work 

open The BitTorrent protocol and associated algorithms were introduced by Cohen 

in 2003 [1] with a reference client implementation. A fluid model for the system was 

given by Qiu et al. [62], who used it to show that in certain cases a Nash equilibrium 

can exist in systems where peers choose upload rates to match their download rates. 

Studies performed on emulated swarms by Legout et al. [28] validated the effectiveness 

of the BitTorrent unchoking algorithm. Legout et al. [63] also concluded from real-

world tests that the rarest-first algorithm is very important to system performance, 

and argued that the default unchoking algorithm provides adequate robustness from 

free-riders. 

A fluid-model simulator was used by Bharambe et al. [57] to represent a BitTorrent 

system in a more abstract manner than our own. They confirmed the utility of the 

rarest-first policy for piece selection. They also investigated unfairness with respect to 

volume uploaded and argued that the rate-based TFT strategy fails to prevent such 

unfairness, especially in systems with a great disparity of bandwidth among peers. 

They proposed a new block-level, volume-based TFT trading algorithm, although 

subsequent researchers challenged its effectiveness [63]. 

De Vogeleer et al. [64], made an event-based simulator for BitTorrent based on 

the algorithms in the reference implementation and used it to model a variety of typ-
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ical swarm scenarios, verifying the performance characteristics against the expected 

behavior of a standard BitTorrent client. 

A simulation-based study by Eger et al. [58] compared flow-level and packet-level 

simulations for BitTorrent-like systems and found that, while flow-level simulations 

are useful for demonstrating the theoretic performance of the de facto BitTorrent 

scheme, the delay of TCP packets and other cross-layer effects have a significant im­

pact on BitTorrent performance, and these effects require a more granular simulation 

to be adequately captured. 

Much research has been performed concerning the robustness of BitTorrent's tit-

for-tat trading mechanism against selfish behaviors. BitTorrent was modeled as a form 

of the Iterated Prisoner's Dilemma problem by Jun et al. [65], who suggested that the 

current peer-selection algorithm is susceptible to free-riders; they proposed a different 

TFT strategy. Tian et al. [26] used mathematical models as well as simulation-based 

and real-world experiments to argue for a modified TFT algorithm. 

Sirivianos et al. [27] emulated a strictly free-riding client which contacts the tracker 

often to gain a large neighborhood from which to free-ride; they concluded that this 

attack was feasible in practice. Liogkas et al. [28] use PlanetLab to demonstrate three 

different exploits: downloading from seeds, downloading from the fastest peers, and 

advertising fake pieces. 

3.8 Conclusion 

At present, BitTorrent's seeding mechanism is entirely altruistic; nodes have no ra­

tional reason to offer seeding service to their peers, yet the additional bandwidth 

provided by seeding is essential to the efficient operation of BitTorrent. Anything 

that can encourage seeding would have an immediate knock-on benefit for BitTorrent 
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users. 

In this work, we have proposed a method for rewarding seeding in BitTorrent by 

means of long-term identification. Nodes remember peers that seeded to them in the 

past and reciprocate by seeding to them in later swarms. 

To evaluate our algorithm and its parameter space, we developed and employed a 

flow-level simulator. The algorithm was tested on realistic file-sizes and trace-driven 

churn to improve its accuracy. We found that our algorithm improved the download 

efficiency of the BitTorrent nodes from 70% to 95% or better. This improvement 

represents the upper bound of our algorithm's performance and was based on oracular 

knowledge that would not be available in real scenarios. We tested more realistic 

settings and found that our algorithm could still increase the download efficiency by 

ten percentage points. 

Finally, we evaluated our seed-rewarding algorithm in swarms that had some por­

tion of the population running Bit Tyrant, a variant on BitTorrent that is aggressive 

about getting fast downloads with minimal investments of upload bandwidth. We 

found that our algorithm could protect nodes from being exploited by Bit Tyrant, but 

could not sufficiently penalize tyrannical behavior to discourage users from choosing 

to run BitTyrant. However, leveraging a weakness in BitTyrant, where BitTyrant 

nodes must identify themselves as such, we can ignore tyrants during seeding and 

reduce their performance. 

So long as BitTorrent peers have sufficient overlap in successive swarms, allow­

ing them to build individual long-term histories of who has seeded in the past, we 

conclude that BitTorrent peers using our incentivized reward seeding algorithm will 

enjoy better performance for themselves and also improve performance for their peers, 

whether running our algorithm or not. By adding in our mechanism, for which peers 
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have a genuine incentive to follow, we can build better robustness in Bit Torrent. 
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Chapter 4 

BitTorrent Anonymity Marketplace 

The very nature of operations in peer-to-peer systems such as BitTorrent exposes 

information about participants to their peers. Nodes desiring anonymity, therefore, 

often chose to route their peer-to-peer traffic through anonymity relays, such as Tor. 

Unfortunately, these relays have little incentive for contribution and struggle to scale 

with the high loads that P2P traffic foists upon them. We propose a novel modification 

for BitTorrent that we call the BitTorrent Anonymity Marketplace. Peers in our 

system trade in k swarms obscuring the actual intent of the participants. But because 

peers can cross-trade torrents, the k — 1 cover traffic can actually serve a useful 

purpose. This creates a system wherein a neighbor cannot determine if a node actually 

wants a given torrent, or if it is only using it as leverage to get the one it really wants. 

In this chapter, we present our design, explore its operation in simulation, and analyze 

its effectiveness. We demonstrate that the upload and download characteristics of 

cover traffic and desired torrents are statistically difficult to distinguish. 

4.1 Introduction 

Peer-to-peer file transfer protocols, such as the very popular BitTorrent [1] protocol, 

provide massively scalable architectures for distributing large files. Unfortunately, 

privacy is a direct casualty of the peer cooperation that drives them. For traditional 

client-server architectures, the client need only trust the server not to reveal to addi­

tional parties the details of the transaction. While some information is revealed just 
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from observing that the client and server communicated with each other, the specifics 

are confidential. With appropriate cryptographic and protocol mechanisms, the client 

can have strong assurances of privacy in the transaction so long as the server remains 

trusted. 

On the other hand, in peer-to-peer cooperation, an individual, by necessity, reveals 

details of the transaction to many parties, each of which must be trusted if privacy is 

to be maintained. This problem is exacerbated by the nature of peers in such systems. 

In the client-server model a user can limit interactions to well-known, vetted servers, 

but in contemporary p2p systems peers could be controlled by an incompetent or 

malicious individual or organization. 

A number of solutions to the peer-to-peer anonymity problem have been proposed. 

The most common solution in practice is to route traffic through anonymity relays 

such as Tor [34]. Unfortunately, Tor has, by default, no incentives for cooperation 

and struggles to scale with P2P workloads. Our goal at the onset of this research 

was to develop an anonymity mechanism for BitTorrent that incentivizes participa­

tion and induces scalability. Such a mechanism would provide better performance 

than BitTorrent-over-Tor while still providing sufficient anonymity guarantees. Fur­

thermore, it would draw BitTorrent users away from the Tor network and all parties 

would be better off. 

We have created the BitTorrent Anonymity Marketplace as novel solution to this 

problem. This system provides genuine incentives for nodes to participate in cross 

trading of multiple swarms obscuring the actual intent of the driving nodes creating 

what we refer to as k-traffic-anonymity. We demonstrate in simulation the effective­

ness of this obfuscation and show that it has nearly optimal performance tradeoffs. 

Our result is distinguished from other BitTorrent specific anonymity solutions either 
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because participation is incentivized, or because the attack model we address is more 

powerful. 

This chapter is organized as follows. We first review some of the operations of 

Bit Torrent and some of the principles of incentives in Section 4.2. In Section 4.3 we 

review the current solution space to the p2p anonymity problem. Then we introduce 

our own objectives and design in Section 4.4. We evaluate our results in Section 4.5. 

Finally, we close with a discussion of our research in Section 4.6 and our conclusions 

in Section 4.7. 

4.2 Background 

4.2.1 BitTorrent 

BitTorrent [1] is a highly successful and popular peer-to-peer protocol that enables 

efficient, rapid distribution of potentially large amounts of data to a group of clients. It 

utilizes the available upload bandwidth of the participants to scale to support many 

users. Most important, it has built-in incentives mechanisms that reward correct 

participation. 

To make an item available for BitTorrent downloading, a publisher makes avail­

able a tracker and at least one seed. The tracker follows the nodes participating in 

the swarm, helping nodes locate their peers. Seed provide round-robbin, best-effort 

service to all connecting peers. 

To download the object, a group of nodes, collectively called the swarm join the 

system by contacting the tracker, indicating their intent to participate. The tracker 

informs joining nodes of random subsets of their peers. The nodes then establish 

direct connections with these subsets forming their local neighborhoods. Thus joined, 

the nodes download the object in equal sized chunks of the file called pieces. Nodes 
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share information with their neighborhood about the pieces they have available and 

update them as new pieces are acquired. 

Nodes, however, limit the number of peers in their neighborhood that can down­

load from them at any given time. They evaluate their peers based on how much each 

has recently uploaded. The node then provides download service to the top three or 

four contributors. Each node also provides service to one or two random nodes as 

a method of searching the neighborhood for better partners. Thus, peers have an 

incentive to contribute to their neighbors in order to receive reciprocal contributions 

from their neighbors in turn. When a node decides to service a peer, it is said to 

unchoke the peer. Conversely, when it will no longer serve the peer, it is said to choke 

it. Once a peer is unchoked, it can send Request messages asking for data. If the 

unchoking node refuses, the peer considers itself snubbed and will not do business 

with that node for some time. Nodes update their peers with Have messages when a 

new piece is received so that the neighborhood keeps abreast of what a node can and 

cannot trade. 

While a significant corpus of research has demonstrated that Bit Torrent can be 

exploited [25, 26, 27, 28], BitTorrent continues to work well in practice. The incentives 

in BitTorrent are sufficient, at present, for keeping the system stable. Indeed, while 

there is no consensus on the true amount of BitTorrent data in-flight today, it is clear 

that the number is large at somewhere between one-third and one-half of all Internet 

traffic [30, 31, 32, 53]. 

4.2.2 Incentives 

Peer-to-peer systems' greatest strength is their lack of centralization. At the same 

time, this lack of centralization makes enforcement of peer behavior difficult. In 
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general, the system designers intend for peers to behave in a certain way, but peers 

may choose to behave differently. Most nodes are assumed to be rational, or self-

interested, and want to maximize their benefit from the system while simultaneously 

minimizing their own contributions. Faithfulness is the measure of a node's obedience 

to designer specification. By definition, rational nodes are only faithful if it is in their 

own interest, and, therefore, faithfulness can only be achieved by designing systems 

with proper incentives [15, 23]. 

In previous work, we identified two general classes of incentives in peer-to-peer 

systems: artificial and genuine [56]. Genuine incentives are characterized by being 

an intrinsic property of the p2p protocol, whereas artificial incentives are a super-

imposition of reward and punishment on top of an unincnentivized system. The 

intrinsic nature of genuine incentives makes them more robust to rational manipula­

tions and are, therefore, preferred. 

4.3 Related Work 

A number of solutions to the peer-to-peer anonymity problem exist or have been 

proposed. We briefly outline some of these approaches here. 

4.3.1 Tor 

Tor [34] is distributed network of relays operated by volunteers that allows clients to 

route network traffic through them to disguise the true origin. If used properly, the 

client's identity and physical location are kept hidden from other entities. Per-relay 

encryption also provides anonymity against wire-traces and packet sniffing. Each 

relay is allowed to define its own policy about what it will and will not do for the 

network. Entry routers, as the name implies, accept traffic from outside the Tor 

network. Conversely, exit routers allow traffic out to the true destination. Middle 
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routers only relay traffic within Tor itself. 

A node that desires anonymity computes an onion route through the Tor network. 

It encrypts its packet with a layer of encryption for each router in the network. Each 

intermediate node peels off a layer of encryption, and forwards the traffic to the next 

hop. Each node only knows the preceding and subsequent steps in the route. The 

nodes cannot be sure if the packet they are receiving is from the original sender, or 

simply a relay in the route. 

Measurements taken in [35] indicate that 40% of the traffic from a sample Tor exit 

node was used for BitTorrent indicating how popular Tor is for providing Bit Torrent 

anonymity. 

Despite Tor's usefulness, it does struggle with a significant problem. It has trouble 

encouraging participants to contribute new computers to serve in the Tor network, 

impacting Tor's ability to scale with the traffic it receives. Additional nodes also 

strengthen anonymity. However, the value of serving as a relay to a user is unclear; 

it has no impact on the quality of service that they observe from the Tor network. 

Consequently, most users choose not to contribute. 

Another important observation is that any negative legal or social response result­

ing from the originator's connection will be borne by the exit node. Consequently, 

many nodes have a strict disincentive to not serve as an exit node. 

Artificial Incentives for Tor Recently, researchers have proposed extending Tor 

with incentives for better participation. One proposal [66] is to create a central au­

thority that tracks each node's contributions and publicizes their good behavior so 

that other nodes can reward them. Alternatively, other research proposes micropay-

ments, where Tor users may buy a higher quality of service [67]. 
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4.3.2 BitTorent Specific Solutions 

In addition to the Tor general anonymity network, anonymity mechanisms have been 

proposed that are specific to BitTorrent. 

BitBlender [36] extends BitTorrent to route traffic through peers in an anonymity 

directory. In a fashion similar to Tor, members of the swarm can forward requests 

through other peers providing a form of anonymity it calls "A;-anonymity." They 

define this as "users are indistinguishable from a set of k users." Unfortunately, as 

with Tor, BitBlender provides no incentive for nodes to offer relay services. Please 

note that fc-anonymity in their system is not the same as ^-traffic anonymity in this 

chapter. 

OneSwarm [37] attempts to solve the BitTorrent anonymity problem more gener­

ally. Nodes have extensive control over what information about themselves they will 

share and with whom. In particular, OneSwarm would be used with social network­

ing so that information is only shared with "friends." OneSwarm does not solve the 

problem of maintaining anonymity in large groups of untrusted peers. 

SwarmScreen [38], in a fashion similar to our work, proposes anonymity through 

the use of cover traffic. In particular, they assert that nodes achieve plausible deniabil-

ity "by simply adding a small percent (between 25 and 50%) of additional random con­

nections that are statistically indistinguishable from natural ones." SwarmScreen's 

attack model has an observer classify nodes based on the behavior of the community 

they participate in. Its stated goal is the disrupting of these "guilt-by-association" 

attacks, or in other words, obscuring the community that a node is participating with 

at any given point in time. We will make further comparisons to SwarmScreen as we 
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outline our own solution. Our work is only superficially similar. 

4.4 Design 

Our objectives for this work break down into three categories: anonymity, perfor­

mance, and incentives. As we detail our objectives, we will compare and contrast our 

solution with SwarmScreen to illustrate the differences in approach and philosophy. 

Our primary goal is an obfuscation of participant behavior that we call k-traffic-

anonymity. Nodes in our system must have an indistinguishability of intent as they 

are observed by their peers. In other words, a node's peers can see that they are 

downloading k items but cannot distinguish which one of them the node picked in­

tentionally. The intentionally picked torrent is called the native interest. 

Our primary threat: observers wish to ascertain a target node's native interest. 

We call the attacker an inquisitor and define three different classes of attacks. Fully 

passive inquisitors do not contact any other peers. Instead, these nodes exclusively 

scan the tracker's data on where nodes are participating. Decoy passive inquisitors do 

contact peers and can appearance to participate. They may lie and announce piece 

reception, make requests for pieces from their peers, and in any other way appear to be 

normal nodes, but they will not actually accept downloads or make uploads. Finally, 

Active inquisitors can participate and behave like any other node in the system. 

Within our anonymity constraints, we want good performance. We will measure 

performance in terms of the number of additional download bytes required to achieve 

a given level of anonymity. In an idealized world where all torrents are the same 

size, optimal performance for fc-tramc-anonymity is k times the number of bytes in 

a torrent. In other words, the node downloads exactly k torrents and nothing more. 

Our objective is nearly optimal performance; we are not interested in designs, for 
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example, that require 2k or more download cost for fc-traffic-anonymity. 

Finally, our last objective is that the incentives structure of our system encourages 

full participation of the rational nodes. The critical incentive that we identify is that 

participating in a torrent, purely for anonymity reasons, can still offer performance 

benefits. This is important for two reasons connected with anonymity. First, to do 

otherwise would create a system wherein some torrents might only ever have natively 

interested nodes downloading it. This is a form of anonymity starvation. Second, if 

there is no value to the cover-traffic torrents in the download set, an inquisitor might 

be able to distinguish the native-interest in the set. By creating a system where all 

torrents can be valuable as cover-traffic, nodes have incentives to participate in them 

preventing torrent starvation and obscuring the native interests of the participants. 

We emphasize that this is a genuine incentive, requiring no additional enforcement 

mechanisms or auditing. 

In contrast, SwarmScreen is interested in a much weaker attack model. They 

showed that BitTorrent communities tend to form around interests rather than around 

language, geography, or even friendship. They further showed that these communi­

ties can be monitored and classified by observing a small number of the nodes. The 

describe this invasion of privacy as "guilt by association" attacks. Finally, the also 

demonstrated that monitoring just 1% of the network is sufficient for assigning users 

to their communities with 86% accuracy. They solve this attack model by mixing in 

traffic to other random torrents to obscure which community a SwarmScreen partic­

ipant belongs to. Defeating this simpler attack model only costs them 25% to 50% 

overhead. 

However, the stronger attack model we defeat with our system is worth the in­

creased cost. An observer that can follow a SwarmScreen node for a long period 
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of time can easily determine which torrents the node was downloading, because the 

node never fully downloads the torrents it uses as cover traffic. At the same time, 

our system also disrupts the guilt by association attack as described. 

BitTorrent Anonymity Marketplace, High-Level Design. Our basic system 

works for any given k level of anonymity. First, each node participates in k different 

torrents simultaneously. It advertises all k torrents, hereafter called its active set, to 

its local neighborhood. While the composition of the active set can change over time, 

it must eventually completely download k complete torrents (we will call these the 

download set), or else a long-term observer could immediately filter out the cover-

traffic. 

Our design also requires that nodes will "cross trade" their torrents, i.e., a node 

unchoke its peers' requests for any torrent, not just the torrents where a node has 

benefited from its peers. In our design, a node will consider every possible torrent it 

sees advertised by its peers, and will prefer to join those torrents which it believes 

will be most beneficial in its quest to download its native interest. 

The design of our valuation function is drawn from models of supply and demand 

in economics [68]. In general, the value of a torrent to a node is raised by increased 

numbers of peers that desire it, while the value is lowered by increased numbers of 

peers that provide it. Unfortunately, it is impossible to directly measure a torrent's 

supply and demand in BitTorent, and so we use several factors to approximate this. 

These factors include how much of the torrent the peer requires to complete it, Have 

announcements indicating what it is currently trading, and direct Request messages 

to measure what is available. 

We highlight that our valuation function was derived from empirical data and 
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not an economic or mathematical model. Developing a coherent economic valuation 

function is a significant research undertaking in and of itself and is beyond the scope 

of this chapter. Our experimental version was constructed by taking the factors 

that impact the value of a torrent and combining them in a weighted sum. This 

construction, similar to how utility functions are built [69], enabled us to experiment 

with different weights for the factors by dialing up or down the constant associated 

with that variable. Later in this chapter, we will detail our derivation of our constants 

from experimentation. 

The critical hypothesis tested in this work is whether using a valuation function on 

torrents will drive node behavior such that protocol exchanges related to the native 

interest are statistically indistinguishable from protocol exchanges for cover traffic. 

The core idea is that a peer has no idea if a node is asking for pieces of a torrent 

because it actually wants it, or if it is just asking for those pieces because it has a 

high value due to the neighborhood's "market" conditions. 

4.5 Evaluation 

We employed a simulator developed in previous research [70] to evaluate our imple­

mentation of the BitTorrent Anonymity Marketplace. The simulator, running faster 

than real-time, enabled fast design cycles. After completing a simulation, we studied 

the results, modified the configuration, and re-ran our experiments. This was a sig­

nificant advantage over using an artificial environment such as PlanetLab or EmuLab 

to run a "real" BitTorrent client. Simulation is also preferred to releasing a client to 

public users because it allows us better access to system and client state information 

and it avoids any potential legal or ethical issues we are not yet prepared to confront. 
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4.5.1 Implementation 

Our client implementation was developed to be as realistic as possible in all stages 

of their operation. One notable departure from a stock BitTorrent system is that we 

assume the presence of a distributed hash table (DHT) in which to store metadata, 

rather than the more limited tracker functionality in the current BitTorrent. What 

follows is an overview of how nodes participate in the Marketplace. 

Publishing. It is essential that objects exchanged in the Marketplace are opaque 

to users that are uninterested in them. Otherwise, users may choose not to trade 

in objects they deem overly sensitive. For this reason, all content is encrypted and 

assigned random identifiers. We assume out-of-band methods (e.g., publisher web 

servers) help users discover specific torrents and obtain the decryption keys. In this 

manner, participating nodes will trade in many torrents without any knowledge of 

their content, except for their own native interest, thus obtaining a modicum of 

plausible deniability. Once a publisher has encrypted the object and created its 

random ID, it stores a record similar to a torrent-file into the DHT and announces 

nodes that are seeding the torrent within the DHT. 

Messages. All inter-peer communication consists of unmodified BitTorrent mes­

sages with one exception. While normal BitTorrent Choke and Unchoke messages 

identify a specific torrent, in the Marketplace these messages are not torrent-specific. 

These two messages instead signal that the sender is willing or unwilling to fulfill 

requests for any of the torrents it has currently advertised. 

Joining. To use the BitTorrent Anonymity Marketplace, a participant first acquires 

the random ID for the desired object, as described earlier. Next, the node joins the 
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DHT and requests a list of active torrents. From this list, the node creates a list 

of k torrents consisting of its desired torrent plus k — 1 randomly selected torrents. 

The node then indicates to the DHT that it is joining those k torrents and requests 

participating peers. The node creates a neighborhood from these lists, preferring 

peers that show up in multiple torrents. 

Trading. After nodes join the system, they unchoke peers in a manner similar to 

BitTorrent with the highest upload services getting the unchoke slots. However, in 

the Marketplace, all upload service is adjusted by the estimated value of the received 

pieces. Our implementation keeps the value constant across an entire torrent, al­

though different pieces could ostensibly have different values. Once the values of the 

upload services are adjusted, unchoking proceeds normally. At the same time, if the 

node can find a more valuable torrent than the least valuable torrent in its active set, 

it drops that torrent and joins the new one. 

Seeding and Termination. A Marketplace participant must complete k down­

loads before leaving the system. Before all k torrents have completed, a node may 

find value in seeding one of its completed torrents, depending on its observations of 

the supply and demand for those torrents. Alternately, it could forgo seeding and 

instead look for more profitable ways to trade its available bandwidth. 

4.5.2 Development of the Valuation Function 

We have developed a valuation function based on reasonable economic assumptions, 

refined by experimentation, and suitable for enabling our evaluation of our anonymity 

objectives. We started with basic supply and demand concepts [68]. In other words, 

we accept the assumption that increased desire and scarcity raise the value of a given 
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object, while decreased desire and abundance reduce the value of same. In terms of 

the BitTorrent Anonymity Marketplace, the number of nodes wishing to download a 

pieces of a torrent constitute the desire, and the nodes that can service those requests 

constitute the supply. These two factors are the basis for our valuation function. 

Unfortunately, the node cannot measure these factors directly and must therefore 

estimate them. For example, a node sees all the peers within its neighborhood, but 

it cannot see further. It cannot see every peer participating in every torrent, thus 

it cannot determine the global supply and demand of torrent pieces, nor even can it 

determine any other peer's view of this data. To estimate supply, Marketplace nodes 

treat what they can see, within their own neighborhood, as an estimate for what their 

peers can see. (Neighborhood visibility is not transitive. If A is in B's neighborhood 

and B is in C's neighborhood, there is no guarantee that A knows anything about 

C.) Nodes can make a better estimate about the demand for a torrent by totaling 

the number of pieces required for their peers. They then combine these two estimates 

into a single factor hereafter referred to as approximate demand over supply. 

In addition to this information, BitTorrent nodes can make use of the Have 

announcements and Request messages from peers to know more about demand in 

the neighborhood. The Have messages indicate a degree of freshness to what tor­

rents neighbors are trading and, of course, Request messages are the strongest, most 

straight-forward measure of demand available. 

Our early valuation function was a weighted sum of these three factors. Using 

this construction, each factor could be experimentally measured to determine if it 

had an impact at all, and the ideal weighting could be derived experimentally using 

our simulations. By fixing a weight of 1 to all but one factors, the remaining factor 

can be evaluated independently. Setting this experimental factor to 0, for example, 
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completely eliminates its impact on the function. 

For testing the Marketplace, we fixed k = 5, set the total number of torrents in the 

marketplace to 40, initiated 100 clients plus 40 seeds, and used 125 MB files for each 

torrent*. For simplicity, all the clients have the same upload and download speeds 

of 1Mbps, start at the same time, and end when their k downloads are complete. 

To test the effects of torrent popularity, we configured 10% of the torrents to be the 

native interest of 50% of the clients. 

Our initial simulations immediately demonstrated that our initial valuation func­

tion was insufficient. Regardless of configuration, the clients in the simulation would 

not complete their downloads. We determined that the nodes were dropping the 

torrents in their active set, regardless of how much they had completed, for a new 

torrent that was surging in popularity in their neighborhood. We decreased the fre­

quency at which nodes would update their active set but that didn't solve the problem 

sufficiently. 

After some additional experimentation, we determined that because one of the 

goals of the node is to complete k downloads, the completeness of a torrent should 

factor into the valuation function. In other words, if all other factors are equal, a more 

complete torrent should be valued higher than a less complete one. We retooled the 

valuation function with this new factor and re-ran the simulations and were rewarded 

with converging results. 

Using our more mature valuation function, we tested the factors in the function 

independently. For each factor tested, we experimented with weights of 0, 0.25, 0.5, 

0.75, 1.0, 2.0, 4.0, 8.0 and 16.0. For completeness, we also tested a few other non-

* Individually 125 MB is a small file for BitTorrent, but because our nodes are exchanging five 
files simultaneously, the amount of data in transit is 625MB per client. 
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value related variables such as how often the node updates its active set, and so forth. 

In total, we ran fifty different different configurations of the simulator, again fixing 

all but one factor at a time and varying it across this broad range of weights. 

These tests demonstrated, again, that biases toward completing torrents that 

have been started are essential, and that data collected from direct requests is the 

best proxy for overall demand. When we reconfigured the simulation to ignore direct 

requests, performance worsened by nearly twenty percent. Interestingly, the remain­

ing factors proved to be much poorer estimates of demand and had little impact on 

average performance. However, they are useful to a node at times when the node has 

not recently received any such requests. A small weight for these factors was better 

than no weight at all. We conclude that when the direct request factor is in play, 

it should dominate the equation. However, when the direct request factor drops to 

zero, these weaker factors serve as a backup. 

While the specific coefficients of valuation function are optimized for our simula­

tion configuration and are thus not directly applicable for a real-world deployment, 

the insights obtained from this empirical evaluation are still essential. Moreover, we 

can now test our central hypothesis: will cross-trading nodes that use a valuation func­

tion to decide which cover-traffic nodes to trade have the A;-traffic-indistinguishability 

property? 

4.5.3 Anonymity Results 

To evaluate anonymity, we took the best observed weight for each of the valuation fac­

tors and reconfigured the simulator appropriately. With this valuation configuration, 

we ran twenty simulations. Each took several hours to complete on a 2.4 Ghz Athlon 

and covered approximately 7 hours of simulation time. Each run involved about 
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70GB of simulated data transfer and approximately 10 million control messages. The 

simulations output logs that detail the data transfers and control messages and we 

used them to trace how the peers interacted with each other as well as to calculate 

costs and determine performance. 

Our primary goal was to quantify indistinguishability of intent. This property 

means that a node downloading 1 native interest, and k — 1 cover traffic torrents will 

not reveal its native interest by its behavior to its peers. We will examine three node 

behaviors that could potentially reveal the native interest to peers: start times for 

torrents, end times for torrents, and download patterns. 

Start Time. We first evaluate the indistinguishability of start times, where start 

time is measured as an integer rank. In other words, the first torrent that a node 

makes requests for is ranked 1, and the second torrent that a node makes requests for 

is ranked 2, and so on. We evaluated this aspect of indistinguishability in two ways. 

First, we checked that there was sufficient variability of start times for native 

interests. It is important, of course, that native interests not have a predictable start 

rank. Our results are shown in Figure 4.1. The graph is parameterized on the number 

of nodes natively interested in the torrent, as a measure of popularity. The y axis is 

the average start rank for nodes of that popularity and the standard deviation. The 

graph shows that the standard deviation is high for start rank, so a node's native 

interests are suitably obscured from its peers. 

Our second measure of the indistinguishability of start times is to measure the 

average start time for the same torrent for peers that are natively interested relative 

to peers that are not (see Figure 4.2). There is a noticeable shift to earlier start 

times for native interests. Nevertheless, the average times for the native interests 
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Figure 4.1 : The mean start rank of native interests plotted against popularity. The 
x-axis is the number of peers natively interested in the torrent, the y-axis is the 
starting rank. The error bars show the standard deviation. The wide standard 
deviations mean that native interests have a wide range of start rank. 

lie within the standard deviations of the start times for non-native interests. The 

distributions are not statistically different enough to be detectable. Furthermore, the 

native and non-native graphs have similar shapes, suggesting similar behavior for the 

two populations. 

End Time. It is also important that native interests not end predictably. Express­

ing end times as integer ranks, we evaluated the variability of native end times in 

Figure 4.3 and compared those times to non-native end times in Figure 4.4. These 

graphs show that, as with start times, there is a wide variability in the end times and 

that the mean is within the standard deviation of cover-traffic start times. 

Download Rates Over Time. Finally, we examined the rate of piece transmis­

sions for native and non-native populations in the Marketplace to verify that trans­

mission patterns are indistinguishable. We created our transmission pattern by ag­

gregating each node's download volume within 500 second buckets. All nodes are 
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Figure 4.2 : The mean start rank of the various torrents plotted against the start 
rank for the same torrent for peers not natively interested. This graph shows that 
native interests do start sooner, but the mean lies within the standard deviation of 
non-native interest start times for most torrents. 
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Figure 4.3 : Similar to Figure 4.1, this graph shows the mean ending ranks and the 
standard deviation. As with start times, end times vary sufficiently to make them 
poor predictors of interest. 
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Figure 4.4 : The mean end ranks for native interest compare to mean end ranks for 
non-native interest. As before, there is a noticeable shift downwards, but, as before, 
the means for the native interests tend to lie within the standard deviations of the 
non-native interests. 

normalized such that their first 500 second slice of time is slice 0, the second 500 

seconds is slice 1, and so forth. Within each slice, we separated the download volume 

for the native interest from the average download volume for the cover-traffic. The 

average for all nodes and the standard deviations are computed for each time slice. 

Figure 4.5 shows the download pattern for all nodes across the entire simulation. We 

again observe that the nodes' averages for native traffic is within the standard devi­

ation of the cover-traffic. Note also that this graph represents a global view over all 

nodes, so this any node's local view would have higher error. 

We can examine a weaker observer by computing the observed download patterns 

for a single client. That is, for each node, we aggregated all the traffic that only that 

node observed directly. As before, we aggregated into 500 second buckets, dividing 

the native interest traffic from cover traffic. Then we used the average and standard 

deviations for each node's observed patterns to create Figure 4.6. The two types of 

traffic overlap even more in this graph, demonstrating that a single peer observes 

less differences between native interest traffic and cover traffic then can be observed 
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across the swarm as a whole. 

4.5.4 Analysis 

We now revisit anonymity against each of the inquisitors that we previously identified. 

Passive Inquisitor. These nodes do not directly interact with any actual nodes 

but only talk to the tracker or DHT. The passive inquisitor can, at best, track a 

given node's active set. Prom this information, it cannot determine the node's native 

interest. As we demonstrated, the entrance and exits of a given torrent in a node's 

active set appear indistinguishable, regardless of the torrent's status as native interest. 

Decoy Passive Inquisitor. These nodes directly interact with other nodes, but 

do not actually exchange pieces. They can, however, advertise pieces and unchoke 

other nodes. Such inquisitors gain additional information, because rational nodes will 

drop them regularly for their poor performance. However, with a Sybil attack [40], 

these nodes can connect to a given node over and over from different IP addresses, 

simulating a continuous connection. Such a Sybil attack could track the traffic of 

a rational node by capturing all Have announcements. Nevertheless, even a Sybil 

attacker will not determine the node's native interest from this information because, 

as we demonstrated, the download rates for a given torrent for a node are similar, 

regardless of the node's native or non-native interest in that torrent. 

Active Inquisitor. The most powerful non-wiretap node, these nodes actively 

trade with peers in the network. This feature allows them to attempt to "trick" 

a victim node into revealing state through carefully crafted trading. For example, an 

active inquisitor might obtain a large number of blocks from all the nodes in active 
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Figure 4.5 : Native and non-native traffic patterns super-imposed. While native traffic 
is above non-native traffic for the same node, the median for the native is within the 
standard deviation of the other. 

set. Then, it might selectively advertise these blocks to the victim to see which blocks 

the victim takes a higher interest in. Furthermore, a very well provisioned inquisitor 

might introduce identifiable torrents into the marketplace that it can use to manip­

ulate torrent values within a neighborhood. The active inquisitor can use such value 

manipulation to attempt to pierce the indistinguishability. 

At present, we have not yet attempted to simulate active inquisitors. Nevertheless, 

we expect that unless the inquisitor can control a large portion of a victim node's 

local neighborhood (e.g., using a Sybil attack), it cannot have high confidence about 

the motivation for a node's interest in any given torrent. This attack, however, is 

made non-trivial because DHTs or trackers give out random subsets of the peers to 

a participating node, thus dramatically increasing the costs of overtaking a node's 

neighborhood. Nevertheless, Sybil attacks are a significant security issue and remains 

a point of research. 

In addition to our successful anonymity results, we also quantified the costs in 
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Figure 4.6 : This figure is similar to Figure 4.5 but limited to the viewpoint of single 
clients. In other words, the former figure is a global representation of download 
patterns, while this figure is representative of what a single peer observes. 

these simulations. The amount of data downloaded, expressed as a multiple of a 

single torrent, averaged 5.71 ± 0.43 Given that the optimal value is 5, this indicates 

that our nodes are not wasting a lot of time downloading torrents that they do not 

complete. 

To conclude our evaluation, we review our incentives qualitatively along two of 

three axes suggested by previous work [15, 23]. We now consider incentives for com­

munication and incentives for computation. There is no need to evaluate incentives 

for message passing because the Marketplace, as in regular BitTorrent, does not have 

peers relay messages for one another. 

Incentives for Communication. The first question is, does a rational node have 

any incentive to lie about its state? 

1. Active Torrents: The only incentive for a node to lie about its active set is 

for increased anonymity against passive inquisitors. However, we have demon-
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strated that the native interest of a node is not revealed by the makeup and 

dynamics of the active set. Furthermore, the active set is necessary for perfor­

mance and anonymity. Therefore, there is no incentive to lie about this state. 

2. Choke Status: There is no incentive for a rational node to misinform a neigh­

bor about the choke state between them. A lie about choke status might result 

in a snub, which is undesirable. 

3. Piece-Interest Status: The incentives to lie about this are unclear. There 

is an incentive for a node to announce that it has pieces, even for pieces it 

does not actually have because the value of the torrent in the marketplace will 

increase. On the other hand, unchoked neighbors may ask for these pieces and 

subsequently snub the lying node when it cannot produce them. We have not yet 

quantified these incentives, but snubing is undesirable, providing a disincentive 

to this behavior. 

4. Piece Requests: A node has an incentive to request pieces that it already 

has in order to drive the value of the torrent higher. However, it also affects 

the value of torrents by pretending not to have the piece. Requesting pieces 

already present costs additional bandwidth, which is valuable and limited, so 

that behavior is certainly disincentived. Similarly, pretending not to have a 

piece means that a peer who might have something to trade might skip over 

this node. As with core BitTorrent, Marketplace nodes have an incentive to 

participate normally in torrent trading such that they get what they want in 

an efficient manner. 
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Incentives for Computation. We next ask, does a rational node have any in­

centive to compute a non-conforming value for torrents in the marketplace? The 

answer is no, by definition, because nodes will compute their own market valuations. 

Theoretically, all nodes have an incentive to develop effective methods of evaluating 

torrents of non-native interest. The cooperation model supports and encourages this 

form of self-interested operation. 

In summary, the Marketplace is built on a sound foundation of incentives, although 

some small components are currently manipulable, and aggressive Sybil attacks may 

be able to weaken the anonymity guarantees. These are open problems for future 

research. 

4.6 Discussion and Future Work 

Our proposal of the Bit Torrent Anonymity Marketplace is a valuable contribution to 

p2p-anonymity, particularly if an implementation of it could draw away traffic from 

Tor. However, our work has produced many more questions than it has answered. 

4.6.1 Stronger Anonymity and Ethical Issues 

Our anonymity model is designed to shroud a peer's intentions from the observations 

of its neighbors. However, many Bit Torrent users would be interested in shrouding 

their intentions from adversaries that can tap their wire, such as their ISP. The Bit-

Torrent Anonymity Marketplace could potentially be hardened to improve anonymity 

in such cases when the adversary can tap the peer's line. 

Per-peer encryption. Peers can communicate with one another via encrypted 

links, an optional feature already present in BitTorrent. This immediately hides the 

message exchanges that divulge the Marketplace's state. Despite this link encryption, 
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an adversary would still have access to the public information in the DHT. 

Late-start native interest. A node does not need to connect to its native interest 

upon initialization. Instead, it can choose its fc-active set randomly, which may or 

may not include the native interest. If not present in the initial active set, the node 

can rotate it into activity at a later time. 

Even split peers. Because our system biases a node's selection of its peers based 

on the value of the torrents they are trading, an observer could approximate the value 

of each torrent to the node based on its neighbor selection. Nodes could remove this 

bias, selecting peers evenly from their desired torrents. 

Improving cover traffic. Users that are sensitive to their anonymity should ensure 

that the Marketplace is well stocked with items that are legitimate candidates for 

cover traffic. Such items would include sensitive, but highly-legal objects that provide 

better plausible deniability. 

This last point about cover traffic leads to interesting ethical questions about the 

Bit Torrent Anonymity Marketplace because it will, without a doubt, provide cover for 

individuals engaging in illegal and reprehensible behavior. Unfortunately, it is often 

the assumption that anonymity only benefits individuals engaging in such actions. 

The truth is that anonymity is valuable for many legitimate purposes. For example, 

• An individual with a medical condition may not wish to reveal it. Doing research 

on the internet can expose them to other parties. The BitTorrent Anonymity 

Marketplace does not provide anonymity for the initial search for documents (a 

standard service like Tor is well suited to this task), but could provide cover for 

downloading and viewing a video about treatment options. 
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• Legality is highly dependent on the jurisdiction. What may be legal in one 

region of the world may be highly illegal somewhere else. Such content may 

be sensitive to the downloader even if it is legal. This is especially true if the 

downloader is from, or has ties to, a jurisdiction where it is illegal. 

• Anonymity also protects individuals from commercial exploitation. In cases 

where BitTorrent is being used for legal content, corporations can easily learn 

a user's tastes and interests from very simple observations of the tracker or 

DHT. Absent regulations to the contrary, corporations will naturally begin using 

this information to target users with advertising and so forth. The BitTorrent 

Anonymity Marketplace significantly reduces the effectiveness of such attacks, 

since many or most of the nodes participating in any given torrent will be there 

for the cover-traffic, not because it's their native interest. In fact, they will have 

no idea what they're sharing. 

The effectiveness of the Marketplace is greatly increases when there are many 

kinds of legitimate, yet sensitive, torrents actively in trade. On the other hand, if 

only illegally copied music is found therein, it won't matter if you have /c-anonymous 

cover traffic. K illegal music or movie downloads is no better (and, in fact, could be 

worse) than just one. 

That said, there will be individuals that would be interested in using a service 

such as the BitTorrent Anonymity Marketplace to engage in illegal behavior. They 

should be aware that /c-traffic anonymity will probably not shield them effectively 

from government observation (see, e.g., You-are-not-a-lawyer [71]). It is possible, 

however, that the BitTorrent Anonymity Marketplace does help to cover users against 

corporate investigation. For corporations looking to bring lawsuits against individuals 
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based on downloads, the BitTorrent Anonymity Marketplace greatly increases the 

cost of determining infringement, and introduces a risk of false positive to the suing 

company. 

Can a user be held legally liable for downloading a torrent, as cover traffic, assum­

ing the content in question would be illegal to have downloaded via ordinary means? 

The essence of the user's defense would be that they were just helping random peers 

to download content, while they, themselves, were getting something entirely differ­

ent. Of course, if they are faced with all k of their encrypted downloads and asked to 

prove which one they can decrypt, they may be stuck. Furthermore, even if the user 

legitimately doesn't know what is being downloaded, the adversary might well crawl 

the various content discovery sites (e.g., PirateBay and the like), creating their own 

reverse-mapping from encrypted torrents to their true identities. 

As such, the degree of anonymity proffered by the BitTorrent Anonymity Mar­

ketplace seems to be comparable to serving as the exit node of Tor or another such 

onion-route system. The exit node is clearly observable doing fetching what could 

well be illegal content. The exit node's operator may well claim that the content in 

question was being delivered to a third party, but the exit node is clearly partici­

pating in the process. Of course, such arguments quickly become absurd. Internet 

core routers certainly have significant volumes of undesirable content transiting them 

every day, all day long. They might claim a "common carrier" defense if sued. Could 

a BitTorrent Anonymity Marketplace node, or for that matter a Tor exit node, claim 

a similar defense? 
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4.6.2 Informed Risk 

One possible development to the BitTorrent Anonymity Marketplace would be chan­

nels that inform the participant of risk. In particular, these third-parties would 

uncover the content names and descriptions for the opaque DHT identifiers. Users of 

these services could then fill their active sets with elements from white lists or pre­

vent elements from black lists from getting in. This would, of course, erase plausible 

deniability about not knowing the content. However, the user could choose their own 

level of risk. 

Most importantly users could be absolutely sure that morally, ethically, and legally 

unacceptably risky content, such as child pornography, would never pass through their 

systems. Users looking for anonymity for sensitive but legal content, such as medical 

treatment videos, could also ensure that they were not taking any legal risks for their 

behavior and might, instead, find themselves downloading medical videos for a wide 

variety of different ailments. Moreover, certain organizations that believe in civil 

disobedience to what they perceive as unjust laws might purposefully participate in 

providing cover traffic for certain classes of torrents. Curiously, the black list for one 

organization might be a white list for another. 

As a concrete example, consider a government that runs a black list of videos that 

are deemed illegal for whatever reason (e.g., criticism of the king is illegal). Citizens 

within that country that wish to have anonymity and avoid legal risk could use that 

list as a black list. Other individuals, inside or outside of the country, might treat 

that as a white list, looking to provide cover traffic for those torrents by making them 

more popular. 
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4.6.3 Future Work 

Several aspects of the BitTorrent Anonymity Marketplace remain unresolved or re­

quire further exploration. The aforementioned legal issues are one such area. It would 

be valuable to explore the legal possibilities of the BitTorrent Anonymity Marketplace 

under the laws of various jurisdictions. 

Another area of significant future research is the valuation function that each 

peer performs on the torrents it is trading. Just as we are not lawyers, we are 

also not economists. We recognize that the economic interactions of our proposed 

system are complicated but subtle. In a real world implementation, there might be 

thousands of torrents and hundreds of thousands of clients in the Marketplace, not 

to mention churn, disparities of upload and download capacities and so forth. It will 

be a daunting challenge to uncover a generalized valuation function that works well 

under all circumstances. 

Our current simulations are pedagogical and unrealistic. In particular, we have 

not studied the BitTorrent Anonymity Marketplace under realistic churn or other such 

conditions. Because our simulations lack these features, we have been unable to see 

some predicted behaviors that require them. Also, in a real-world scenario, torrents 

will be of different sizes and nodes would have widely varying network performance. 

Different nodes might have different values of A;-anonymity that they desire. It would 

be convenient if the choice of k value for a client had no impact on its neighbors, but 

we have not examined this. 

We have also not completely explored the attack space for either inquisitors or 

rational attackers. Our simulation does not yet include an active inquisitor that 

attempts to introduce tainted information in an effort to reveal the interests of peers. 

Similarly, our simulations do not yet include a rational manipulators that lies about 
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state in an effort to manipulate torrent values. 

Finally, it should be obvious that simulation alone is insufficient for evaluating the 

Bit Torrent Anonymity Marketplace. An actual implementation must be created and 

evaluated for real-world operations. A whole host of difficulties is involved in such 

development, although most of them are legal, rather than technical. 

4.7 Conclusion 

In this work, we have explored a new method for cooperative anonymity in BitTorrent 

swarms, called the BitTorrent Anonymity Marketplace, where peers exchange pieces 

of multiple torrents based on their value for trading with other peers. This creates 

a world where intent is difficult to discern because motivations are obscured by the 

shifting values within the local neighborhood. Nodes always download k different 

torrents, selected randomly, to completion, obscuring their true intent, yet still biased 

in favor of increasing the nodes' observed performance. 

With detailed event-based simulations, we demonstrated that the download be­

havior for native interests and cover traffic was statistically similar, making it difficult 

for observers to distinguish between the two. We also demonstrated in simulation that 

our Marketplace completes without unreasonable overhead beyond the cover traffic's 

costs. We also evaluated the incentives of our system and found that the overall 

setup is sound against rational manipulations, but that there are obvious places for 

exploitation. 
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Chapter 5 

Conclusions 

In this thesis, we have investigated one of the most difficult problems for peer-to-peer 

networks: preventing rational attacks through proper incentives design. Our results 

contribute to both the theory and practice of such design by elucidating attributes 

important to successful incentives and then using those principles in concrete imple­

mentations. Specifically, genuine incentives generally provide more effective rational 

robustness than their artificial counterparts. In fact, genuine incentives completely 

eliminate the auditing class of attacks that many artificial-incentives systems are 

subject to. Armed with this key observation, we implemented two extensions to the 

BitTorrent p2p protocol that improve performance and anonymity. Both extensions 

have the incentives built directly into the peer-interactions requiring no additional 

infrastructure for behavior enforcement. 

In this chapter we present our conclusions regarding genuine incentives given our 

experiences developing the two aforementioned extensions. This discussion excludes 

any analysis of the effectiveness of the extensions in achieving their designated ob­

jectives. Such analysis is already provided in their respective individual chapters. 

Instead, our conclusions in this final chapter are focused on how our understanding 

of genuine incentives has grown through the development of these extensions. 

In summary, our experiences have strengthened our belief in the superiority of gen­

uine incentives. We observed them to be simple in design and impervious to auditing 

attacks by definition. Those observations were not novel, but were reassuring. On the 
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other hand, in the development of our extensions, we also observed that a genuine 

incentives system was also easy to understand from a rational agent's perspective. 

In other words, the incentives system was so simple that the agent could easily be 

expected to understand the mechanism. This is critical to rational robustness as we 

will describe later in the chapter. 

5.1 Genuine Incentives: Simplicity 

When we began to approach the problem of adding incentives for seeding in Bit Tor­

rent, our first solution used an artificial incentives. The basic idea was for a node to 

seed in return for a cryptographically signed token from the receiver. In the future, 

if the nodes were to re-encounter one another, the previous seeder could "demand" 

service from the previous receiver by returning the tokens. Failure to honor these 

commitments would result in a negative reputation. We then began designing the 

system to allow for the trading of these tokens between peers to create a form of 

virtual currency. 

While the design is interesting, we quickly abandoned it for the sheer complexity 

of the mechanism. Consider these problems: 

1. Cross Trading Value - If cross trading of tokens is supported, so that a node 

trades tokens with another node, the purchasing node must have some belief 

that the tokens will be honored. Otherwise, they would have no value. This 

means that the purchaser must expect to encounter the tokens' signer in the 

future, or another node that is willing to purchase them. This would obviously 

be a probabilistic computation, but we could not easily identify factors that 

would influence the probabilities. 

2. Reputation - To adequately punish nodes that refused to honor their signed 
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tokens, the slighted node would have to convince peers to refuse to interact 

with the transgressor. This is complicated for two reasons. First, the method 

for accusing a node of breaking its word must deal with problems such as false 

accusations, and a number of other difficult issues. Second, the accuser must 

be able to reach a large number of peers in the BitTorrent swarm to be able to 

have any effect. In any event, even if the accuser can prove that another node 

is slighting it, other peers may choose to do business with it anyway because it 

has always been honest with them. 

This solution was discarded because of its overwhelming complexity in favor of the 

solution we implemented. While our genuine incentives approach has some non-trivial 

design concerns, the overall system is significantly simpler. 

Obviously, this is merely an anecdotal evidence, but it does illustrate typical 

problems encountered by artificial incentives. In general, artificial incentives require 

an additional enforcement protocol in addition to the cooperative protocol. This lack 

of protocol cohesion introduces extra complexity that makes implementation difficult 

and also more prone to rational attacks simply because the attack surface is larger. 

This is not to say that creating genuine incentives is easy. As we will describe 

later, genuine incentives require greater design time than artificial ones. 

5.2 Genuine Incentives: Impervious to Auditing Attacks 

The enforcement protocol common to artificial incentives system is often designed 

around an auditing mechanism of some type. In the original design we suggested for 

seeding incentives, the tokens issued by a node were cryptographically signed to be 

used as a form of evidence. In theory, unhonored tokens would be shown to other 

peers that would subsequently shun the offender. 
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Unfortunately, this relatively simple idea is complicated in practice. Consider a 

malicious node that falsely accuses a victim of refusing to honor its tokens. A properly 

designed crypto system provides a mechanism for the victim to refute the charges, 

but the victim is unable to trace all of the gossip, This means that nodes hearing the 

accusations would either have to trust them, or validate them directly. The latter 

option is costly because they must either stop their current operations to track down 

the accused node to determine guilt, or wait until they encounter the node in normal 

interactions then ask for refutation of all accusations received until that point. 

The problem with auditing attacks drives to the heart of the problem of artificial 

incentives. If the primary protocol can proceed without the enforcement protocol, 

than a rational attacker need only disable or disrupt the latter to misuse the former. 

On the other hand, genuine incentives generally forgo auditing altogether and 

this entire attack class disappears. Most systems of this type rely on first-hand 

information, throwing away all the complications of trust, reputation, and third-

party enforcement. Obviously, this reduction also introduces limitations that we will 

discuss later. 

5.3 Genuine Incentives: Bounded Rationality 

In our discussion thus far, we have modeled P2P nodes as rational agents. That 

means they know the rules of the game, and will use those rules to maximize their 

utility. 

In real life, however, most participants are not rational by these definitions, but 

are bounded rational. Bounded rational parties want to maximize their utility, but 

either do not know the full rules of the game, or have insufficient resources to play 

the maximizing strategy. Restated, even if an incentives system is designed such that 
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obedience is the utility maximizing strategy, participants may choose a different strat­

egy because they do not know better or because obedience requires more resources 

than they have available. 

Consider for example an artificial incentives system with an auditing component. 

Even if the auditing mechanism is impervious to attack, if the system is sufficiently 

complicated, rational attackers may believe that the mechanism can be circumvented. 

The result may be that the attackers play sub-optimal strategies to their own detri­

ment, but also to the detriment of the entire system. 

Genuine incentives, however, are simple and easy-to-understand and difficult or 

expensive to abuse. For example, it has been shown that BitTorrent is imminently 

abusable, yet it has been one of the most stable p2p systems to date. Despite all of the 

known methods for exploiting BitTorrent, enough nodes continue to cooperate to keep 

the system viable. We believe this is partially because the trading mechanism is easy 

to understand and easy to follow, while the exploits are complicated to understand 

or have a high barrier for entry such as a non-standard or unpopular client. 

Bounded rationality is probably the strongest reason to choose genuine over arti­

ficial incentives. Even if artificial incentives are robust and stable, their complexity 

may still result in bounded rational participants being disobedient. Conversely, a 

genuine incentive with provable vulnerabilities might still be more effective if the 

incentive is easy and vulnerabilities are hard. 

5.4 Genuine Incentives: Limitations 

Despite the various advantages of genuine incentives, we have identified two limita­

tions designers must account for. 

First, genuine incentives require a greater design time. While they are generally 
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more simple in implementation, the incentive itself is often difficult to identify. Cre­

ating a genuine incentive requires tying incentives and resource-exchange together. 

The implementation of such an entanglement is relatively simple, but discovering the 

entanglement is difficult and time consuming. 

Second, there is no free lunch. Genuine incentives cannot be optimal for all pos­

sible p2p problems. They are, by definition, limited to influencing behaviors tied to 

resource exchange. While this may sound obvious, consider the following two com­

mon uses of artificial incentives for which there are no genuine equivalents. First, 

artificial incentives can be, and are often, used to enable transitive cooperation. This 

enables nodes that have not encountered one another before to not have to start from 

scratch in their cooperative relationship because of some transitive relationship. Sec­

ond, punishments from artificial incentives can include the excommunication of the 

offender from the swarm. This means that a wider variety of bad behaviors can be 

penalized because the penalty is not just tied to performance. 

These were issues we dealt with in the process of developing our own extensions. 

Because we made the conscious choice of exclusively using genuine incentives, we had 

to design around these limitations. 

5.5 Genuine Incentives: Future Work and the Final Word 

The concept of a genuine versus artificial incentive is entirely novel and an important 

contribution to p2p design theory. In this work we have investigated the nature 

of genuine incentives through survey and experimentation. In doing so, we have 

illuminated the concept and demonstrated that it is a useful design principle. We feel 

this justifies future research and propose the following questions as starting points. 

Can the definition of genuine incentives be formalized? We have used a loose 
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and informal definition of genuine and artificial incentives throughout this work. It 

has been useful as a design principle and a method of classifying systems. Moreover, 

it has helped provide useful insight. Nevertheless, the next step is to formalize its 

definition and clearly identify its characteristics and limitations. 

Can we formally prove that genuine incentives are more robust than artificial 

ones? Our assertions about the value of genuine incentives are based on experience, 

surveys, and reasoning. Obviously, any incentive that does not use auditing is not 

subject to auditing attacks, but this is not the salient point. If we succeeded in 

creating a formal definition of genuine incentive, then perhaps we could subsequently 

investigate a formal model of its robustness. 

How can artificial incentives be designed to bolster genuine incentives? Given that 

all behaviors cannot be genuinely incentivized, artificial incentives may often need to 

be added to a genuine incentives system. However, it is not clear if a p2p system 

would benefit from the two systems designed to inter-operate as opposed to simply 

co-existing. 

Breaking the limitations of genuine incentives Although we found it difficult to use 

genuine incentives beyond direct-contact peers, we have no proof that such incentives 

do not exist. Genuine incentives of this form could greatly expand the robustness 

of many p2p systems. Such a solution would have to tie the transfer of cooperation 

into the direct transfer of resources. We also identified excommunication of a node 

as something tied to artificial incentives. Uncovering a genuine incentives method of 

kicking a node out of a system would also be beneficial to p2p systems. 

Having identified these avenues for further investigation, we conclude this thesis 

by restating our fundamental contribution. In this work we have identified an im­

portant class of incentives in p2p systems: genuine incentives. In surveys of existing 
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systems we identified the strength of these incentives versus their artificial counter­

parts. We then used this observation to create two extensions to BitTorrent based 

on genuine incentives. In this endeavor, we strengthened our understanding of how 

this type of incentive works, as well as what its limitations are. More importantly, 

we demonstrated that this concept was useful in the design of practical p2p systems. 

Our extensions solved unrelated problems, but in both cases, the guiding design goal 

was to use a genuine incentive and the results were effective and interesting. We hope 

that this research aides in the development of future p2p computing by improving 

incentives design. 
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