
RICE UNIVERSITY

Designing Incentives for Peer-to-Peer Systems

by

Seth J a m e s Nielson

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE D E G R E E

Doctor of Phi losophy

APPROVED, THESIS COMMITTEE:

Dan S. Wallach, Chair
Associate Professor of Computer Science
and Electrical and Computer Engineering

v3 / j €w icc^
Devika Subramanian
Professor of Computer Science and
Electrical and Computer Engineering

Edward Knightj,
Professor of Electrical and Computer
Engineering

Houston, Texas

October, 2009

UMI Number: 3421401

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3421401
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

Designing Incentives for Peer-to-Peer Systems

by

Seth James Nielson

Peer-to-peer systems, networks of egalitarian nodes without a central authority,
can achieve massive scalability and fault tolerance through the pooling together of
individual resources. Unfortunately, most nodes represent self-interested, or ratio­
nal, parties that will attempt to maximize their consumption of shared resources
while minimizing their own contributions. This constitutes a type of attack that can
destabilize the system.

The first contribution of this thesis is a proposed taxonomy for these rational
attacks and the most common solutions used in contemporary designs to thwart
them. One approach is to design the P2P system with incentives for cooperation,
so that rational nodes voluntarily behave. We broadly classify these incentives as
being either genuine or artificial, with the former describing incentives inherent in
peer interactions, and the latter describing a secondary enforcement system. We
observe that genuine incentives tend to be more robust to rational manipulations
than artificial counterparts.

Based on this observation, we also propose two extensions to BitTorrent, a P2P
file distribution protocol. While this system is popular, accounting for approximately
one-third of current Internet traffic, it has known limitations. Our extensions use
genuine incentives to address some of these problems.

The first extension improves seeding, an altruistic mode wherein nodes that have
completed their download continue to provide upload service. We incentivize seeding
by giving long-term identifiers to clients enabling seeding clients to be recognized
and rewarded in subsequent downloads. Simulations demonstrate that our method is
highly effective in protecting swarms from aggressive clients such as Bit Tyrant.

Finally, we introduce The BitTorrent Anonymity Marketplace, wherein each peer
simultaneously joins multiple swarms to disguise their true download intentions. Peers
then trade one torrent for another, making the cover traffic valuable as a means of
obtaining the real target. Thus, when a neighbor receives a request from a peer for
blocks of a torrent, it does not know if the peer is really downloading that torrent, or
only using it in trade. Using simulation, we demonstrate that nodes cannot determine
peer intent from observed interactions.

Acknowledgments

My thanks first and foremost to my Creator and for a chance to walk upon His foot­
stool. It is ever a privilege and an honor to research the mysteries of His handiwork.

And, of course, my thanks to my wife Amy. I could not ask for a better partner.
No matter how frustrated I was with my research, her joke about "it's all just a for-
loop" would put a big smile on my face. Thanks also goes to Alex, Drystan, Kael,
and Saige who all suffered through this difficult journey. Without your support, I
would not have made it.

This work was strongly helped by Johan Pouwelse who collected and shared traces
of real BitTorrent swarms.

The component chapters were reviewed and critiqued by Matthew Green, Steven
Bono, Gabriel Landau, Eugene Ng, Dan Sandler, and Scott Crosby. My thanks for
the invaluable help in getting the thesis finished.

Finally, my thanks to my thesis committee members. To my adviser Dan Wallach
who got me started on this path and saw it through to the end. Thanks also to Devika
Subramanian for encouraging me in difficult decisions and helping me through tough
academic spots. And to Edward Knightly for asking insightful questions that forced
me to come up with better answers.

Contents

Abstract ii
Acknowledgments iii
List of Illustrations vi
List of Tables viii

1 Introduction 1
1.1 Background and Motivation 2
1.2 Contribution 5
1.3 Thesis Organization 6

2 A Taxonomy of Rational Attacks 8
2.1 Introduction 8
2.2 Economics Background 10
2.3 Model 11

2.3.1 Incentives Capabilities 11
2.3.2 Service Maturation 13
2.3.3 System Model 15

2.4 Taxonomy of Rational Attacks 16
2.4.1 Unrecorded Misuse of Resources 17
2.4.2 Unpunished Misuse of Resources 18

2.5 Solutions 19
2.5.1 Eliminate rationality as a concern 19
2.5.2 Design genuine incentives 20
2.5.3 Improving artificial incentives design 21

2.6 Conclusions 23

3 Long-Term Incentives in BitTorrent 24
3.1 Introduction 24
3.2 Background 26

3.2.1 The BitTorrent Protocol 26
3.2.2 BitTorrent Strategies 27
3.2.3 Ambient Altruism and BitTyrant 28

3.3 Incentives Design 30
3.4 Methodology 31

3.4.1 Simulator 31
3.4.2 Simulation Setup 33

V

3.4.3 Incentives Evaluation 35
3.5 Evaluation 39

3.5.1 Importance of Seeding 40
3.5.2 Rewarding Seeding 41
3.5.3 Bandwidth Reservation 42
3.5.4 Altruistic Population Size 44
3.5.5 Overlap 45
3.5.6 Seeding Rewards versus Bit Tyrant 46
3.5.7 BitTyrant Exploitation 47

3.6 Discussion and Future Work 50
3.7 Related Work 53
3.8 Conclusion 54

4 Bit Torrent Anonymity Marketplace 57
4.1 Introduction 57
4.2 Background 59

4.2.1 BitTorrent 59
4.2.2 Incentives 60

4.3 Related Work 61
4.3.1 Tor . . . 61
4.3.2 BitTorent Specific Solutions 63

4.4 Design 64
4.5 Evaluation 67

4.5.1 Implementation 68
4.5.2 Development of the Valuation Function 69
4.5.3 Anonymity Results 72
4.5.4 Analysis 77

4.6 Discussion and Future Work 81
4.6.1 Stronger Anonymity and Ethical Issues 81
4.6.2 Informed Risk 84
4.6.3 Future Work 85

4.7 Conclusion 87

5 Conclusions 88
5.1 Genuine Incentives: Simplicity 89
5.2 Genuine Incentives: Impervious to Auditing Attacks 90
5.3 Genuine Incentives: Bounded Rationality 91
5.4 Genuine Incentives: Limitations 92
5.5 Genuine Incentives: Future Work and the Final Word 93

Bibliography 95

Illustrations

2.1 Service Maturation Taxonomy 14

3.1 Simulated swarm membership over time based on a real-world trace
from a flash-crowd swarm 33

3.2 Cumulative distribution of efficiency (bandwidth utilization) over
different populations in the same swarm 37

3.3 Cumulative distribution of download time over different populations
in the same swarm. (A different view of the same experiment shown
in Figure 3.2.) 37

3.4 The median efficiency of the overall swarm under different
compositions of clients. The worst performance is experienced when
there is only one seed. When 70% of the clients seeding for 1-2 hours,
the performance improves significantly. When 10% of the nodes seed
for 1-2 days, the median efficiency approaches 100% 40

3.5 Median efficiency when the altruistic population reserves 75% of the
seeding bandwidth for other altruistic nodes 42

3.6 Median efficiency as a function of the reserved bandwidth by the
altruistic nodes 43

3.7 Median efficiency as a function of the percentage of altruistic nodes in
the swarm 43

3.8 Median efficiency as a function of the percentage of overlap in the
altruistic nodes 43

3.9 Altruistic nodes versus tyrants under different amounts of reserved
bandwidth 48

3.10 Altruistic nodes versus tyrants with different ratios of altruistic nodes
in the population 48

3.11 Reward-seeding altruists, modified to trade tyrannically before they
begin seeding, versus tyrant-leeches under different amounts of
reserved bandwidth 48

3.12 Median efficiency when altruistic nodes refuse to seed anything to
tyrannical leech nodes 49

Vll

1 The mean start rank of native interests plotted against popularity.
The a:-axis is the number of peers natively interested in the torrent,
the y-axis is the starting rank. The error bars show the standard
deviation. The wide standard deviations mean that native interests
have a wide range of start rank 74

2 The mean start rank of the various torrents plotted against the start
rank for the same torrent for peers not natively interested. This
graph shows that native interests do start sooner, but the mean lies
within the standard deviation of non-native interest start times for
most torrents 75

3 Similar to Figure 4.1, this graph shows the mean ending ranks and
the standard deviation. As with start times, end times vary
sufficiently to make them poor predictors of interest 75

4 The mean end ranks for native interest compare to mean end ranks
for non-native interest. As before, there is a noticeable shift
downwards, but, as before, the means for the native interests tend to
lie within the standard deviations of the non-native interests 76

5 Native and non-native traffic patterns super-imposed. While native
traffic is above non-native traffic for the same node, the median for
the native is within the standard deviation of the other 78

6 This figure is similar to Figure 4.5 but limited to the viewpoint of
single clients. In other words, the former figure is a global
representation of download patterns, while this figure is
representative of what a single peer observes 79

Tables

3.1 Basic simulator performance as the number of simulated nodes (n)
grows 33

3.2 Comparison of median efficiency and median download time for the
same experiment 36

3.3 Median efficiency, averaged over twenty different experimental runs,
differing only in the random seed 36

3.4 Median efficiency, averaged over twenty experimental runs as above,
with the leech nodes replaced by standard nodes 36

1

Chapter 1

Introduction

The distinguishing feature of peer-to-peer (P2P) systems is the egalitarian responsi­

bilities of the participants. Each node that joins the system is expected to contribute

as well as consume shared resources. When the peers cooperate, the whole system

can outperform traditional client-server systems in terms of scalability, resiliency, and

fault-tolerance. Unfortunately, because most of the participants are rational, or mo­

tivated solely by their own interests, cooperation is not the default behavior and,

without a centralized authority, it cannot be easily enforced. Selfishness drives nodes

to consume more than their fair share of resources or refuse to give expected contri­

butions. Behavior such as this, when contrary to system specifications, constitutes

rational attacks, and these attacks can degrade performance or destabilize the system.

To counter this threat, many P2P protocols are built around an incentives structure

designed to make obedience the selfish choice because it is the only way to obtain

maximum reward.

This thesis investigates principles of incentive design that increase the robustness

of P2P systems to rational attacks. In this introduction, we first provide background

and motivation for this effort as well as a sketch of our contributions to the research

landscape. Chapter 2 then proposes a taxonomy of rational attacks and evaluates

various defensive design principles including incentives. We then apply the insights

of this evaluation to guide the development of two extensions to BitTorrent. These

extensions for improved performance and improved anonymity are described in Chap-

2

ter 3 and Chapter 4 respectively. Chapter 5 subsequently presents our conclusions.

1.1 Background and Motivation

Traditional client-server computing is based on a central node or nodes that control

the operation of the overall system. Client nodes may connect to, contribute to,

and participate with these central servers but the servers are in control, and clients

participate as guests. While clients may be allowed to communicate with each other,

such inter-client communications are routed through the central authority where they

are subject to review, filtering, and modification.

On the other hand, P2P systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] are built on an anti­

thetical concept of node equality and direct peer-to-peer communication. Eliminating

the central authority has tremendous benefits. The most immediate of these is that

there is no single point of failure that can bring down the entire system. Scalability

is also improved because, in general, the P2P system aggregates resources from the

participants so that capacity is more or less proportional to load. On the other hand,

servers must generally maintain a fixed resource profile that either struggles with

peak use or is over-provisioned for average demand.

Despite these theoretical advantages, practical P2P systems completely deterio­

rate if and when participants refuse to cooperate. This so-called "free-riding" prob­

lem [11, 12, 13], is the general rule, unfortunately, because most nodes are rational,

or utility-maximizing. Such nodes seek to maximize their own acquisition of shared

resources while minimizing their own contributions. For example, consider a P2P sys­

tem designed for content streaming [14]. To decrease the upload bandwidth burden

on the original source, only a small number of nodes directly contact it. The con­

tent is then propagated from these nodes to additional peers. This system can only

3

scale if nodes obey specification and pass on content to downstream neighbors. The

self-interested node, however, may simply decide not to expend upload bandwidth

altruistically and refuse to retransmit the stream. Assuming that rational nodes are

a large portion of the P2P population, it is likely that the system will not function

well, if at all.

In most P2P systems, self-interested behavior at the expense of the system can

be classified as a rational manipulation failure [15] or, from a different perspective, a

rational attack. These attacks represent the primary and most fundamental challenge

to P2P operations.

However, system designers have a powerful point of leverage in dealing with ra­

tional nodes. Unlike traditional attackers operating with the intent to cause harm

through theft or vandalism, rational attackers are motivated by the benefits and

services of the system. In other words, harming the system is not their primary mo­

tivation, but only an unfortunate side-effect. Therefore, if the only way to maximize

utility is through cooperation, these nodes will voluntarily alter their behavior. Thus,

a system designed with proper incentives [16, 17, 18, 19, 20] can achieve obedience

despite the lack of a centralized enforcement authority. This approach is drawn from

models of game theory and mechanism design [21]. We note, for completeness, that

other forms of attack still matter and have been investigated [22], but are beyond the

scope of this work.

Ideally, a P2P system should be perfectly faithful to the designer's specification.

In such a system, a self-interested, utility-maximizing node "will follow the default

strategy because... there is no other strategy that yields a higher utility for this

node" [23]. When this ideal cannot be achieved, the practical goal is simply to make

the system sufficiently robust for continued viability. Determining what incentives

4

should be used in a system and how they should be employed represent a significant

challenge to designers, and an intriguing academic problem.

One example of a P2P system that makes effective use of incentives is Bit Tor­

rent [1], a distributed download protocol that is popular in practice and research.

The key incentive in the protocol is a tit-for-tat [24] exchange mechanism wherein

peers trade different chunks of the file with each other. Peers reserve most of their

upload bandwidth for rewarding their most generous neighbors. The remaining up­

load bandwidth is used to search for better partners by donating to other peers in the

hope of being subsequently rewarded. While it has been shown that the Bit Torrent

protocol can be exploited [25, 26, 27, 28, 29], it has been sufficiently robust against

rational attackers for practical purposes [23]. In fact, various measures of BitTor-

rent traffic have estimated that the BitTorrent protocol accounts for approximately

one-third of all Internet traffic [30, 31, 32].

Nevertheless, the BitTorrent protocol can still be improved. For example, it per­

mits nodes that have completed the download of the file to continue serving the

swarm as a seed. BitTorrent requires at least one seed at all times or the other nodes

cannot be guaranteed to complete the full download. In addition, seeds improve the

overall performance of the swarm because they consume no resources, while still mak­

ing contributions. Despite their importance, however, the default protocol offers no

incentives for this mode of operation and many nodes contribute little if any seeding.

Another concern in the operation of BitTorrent is that of anonymity. BitTorrent

itself was not designed to anonymize the participants in any way [1]. However, the

design of the protocol is such that a node will expose its actions to potentially thou­

sands [33] of peers, creating a visibility footprint that many users are uncomfortable

with. One method for dealing with this problem is to pass BitTorrent traffic through

5

Tor [34]. Tor is a P2P anonymity network that routes traffic through a series of

internal nodes to disguise the point of origin. Measurements [35] have shown that

BitTorrent traffic represents a significant drain on Tor resources. Unfortunately, the

incentives for contributing bandwidth resources to Tor are not clear and this results in

low contributions and poor scalability. In the interest of improving these conditions,

a few BitTorrent specific anonymity solutions [36, 37, 38] have been proposed, but

none of them make effective use of incentives for cooperation.

1.2 Contribution

In this research, we answer the following questions:

1. What are the general principles of incentives design that produce

effective peer cooperation?

2. How can these principles be applied to BitTorrent's seeding opera­

tion?

3. How can these principles be applied to the BitTorrent anonymity

problem?

The foundation of this research is our presentation of a taxonomy of rational at­

tacks and corresponding principles of system design for ameliorating them. We answer

our first key question by demonstrating that incentives can be broken into genuine

and artificial categories. Genuine incentives are built into the P2P operations directly

while artificial incentives are superimposed as a correction to the core protocol. Gen­

uine incentives are generally more simple to understand and more robust to rational

attacks.

6

Based on this principle of genuine incentives, our research then extends the BitTor-

rent protocol to incentivize the seeding operation. This extension modifies BitTorrent

slightly to provide long term identifiers to participants. Nodes can then remember one

another from one download to next. In this manner, nodes that seed in one swarm can

be rewarded in later ones. Even though this extension requires a slight modification

to the protocol, it can be implemented in a backwards compatible manner.

Finally, we also apply genuine incentives to the BitTorrent anonymity prob­

lem. Our extension creates a BitTorrent-like system that we term The BitTorrent

Anonymity Marketplace. Inside this system, peers participate in many downloads at

the same time to obscure their actual intention. In other words, the most powerful

observer cannot reduce their actual intended download any further than 1 in k, where

k is the number of simultaneous downloads. The key incentives design is that nodes

compute a value for the cover traffic torrents they are trading. Nodes request torrents

that they believe will help them download the item they really want. When a node

makes a request from its peer, the peer cannot tell if the node really wants it or if it

simply believes it can be used in trade. This incentives system ensures that any tor­

rent in the Marketplace can be valuable to uninterested parties preventing starvation

and strengthening anonymity.

1.3 Thesis Organization

This thesis is derived from three independent papers.

Chapter 2 is primarily derived from our paper, "A Taxonomy of Rational Attacks"

by the author, Scott Crosby, and Dan S. Wallach. This chapter lays out how various

types of attacks are connected to one another, the weak points of a system they

exploit, and system design principles that improve them. Most importantly, it details

7

the nature of and the differences between genuine and artificial incentives.

Next, Chapter 3 is taken from, "Building Better Incentives for Increased Robust­

ness in BitTorrent" by the author, Caleb Spare, and Dan S. Wallach. Contained in

this part of the thesis is our proposed extension to BitTorrent as well as the intro­

duction of a simulator we developed for evaluating the result. We also examine the

behavior of BitTyrant, a strategic BitTorrent client, and its effect on our system.

Part of our overall solution takes advantage of a BitTyrant bug we discovered.

The subsequent Chapter 4 is largely identical to, "The BitTorrent Anonymity

Marketplace" by the author and Dan S. Wallach. Herein we present our design for

the Marketplace, its implementation in simulation, and our results. This chapter also

discusses significant ethical, legal, and moral issues that naturally arise in anonymity

discussions.

Finally, in Chapter 5 we revisit our goals and our findings. This chapter ties

together our results from the three component papers and discusses the significance.

It also identifies opportunities for future work and several overarching questions raised

by our research.

8

Chapter 2

A Taxonomy of Rational Attacks

For peer-to-peer services to be effective, participating nodes must cooperate, but in

most scenarios a node represents a self-interested party and cooperation can neither be

expected nor enforced. A reasonable assumption is that a large fraction of p2p nodes

are rational and will attempt to maximize their consumption of system resources

while minimizing the use of their own. If such behavior violates system policy then it

constitutes an attack. In this chapter we identify and create a taxonomy for rational

attacks and then identify corresponding solutions if they exist. The most effective

solutions directly incentivize cooperative behavior, but when this is not feasible the

common alternative is to incentivize evidence of cooperation instead.

2.1 Introduction

A significant challenge in peer-to-peer (p2p) computing is the problem of cooperation.

Unlike client-server systems, a p2p network's effectiveness in meeting design goals

is directly correlated to the cooperation of the member nodes. For example, a p2p

system might be designed for content distribution. To decrease the upload bandwidth

burden on the original content server, only a small number of nodes directly contact it.

The content is then propagated from these nodes to additional peers. This system can

only scale if nodes are willing to pass on content to downstream peers. Unfortunately,

a self-interested node may realize that it can save expensive upload bandwidth if it

chooses not to share. If a large number of nodes are self-interested and refuse to

9

contribute, the system may destabilize.

In most p2p systems, self-interested behavior at the expense of the system can

be classified as a rational manipulation failure [15] or, from a different perspective, a

rational attack*. Successful p2p systems must be designed to be robust against this

class of failure. Ideally, a p2p system should be perfectly faithful to the designer's

specification. In such a system, a self-interested, utility-maximizing node "will follow

the default strategy because... there is no other strategy that yields a higher utility

for this node" [23]. To achieve faithfulness, a system may employ various measures

such as problem partitioning, catch-and-punish, and incentives [15]. Even when these

techniques cannot make a system perfectly faithful, they may be enough to prevent

destabilization.

An example of a viable p2p technology designed to be robust against rational

manipulation failures is BitTorrent [1]. This technology first breaks large files into

chunks that are downloaded individually and reassembled by the receiver. The re­

ceiving nodes contact one another and trade for chunks they do not yet possess. Each

node employs an incremental exchange algorithm that leads it to upload chunks to

cooperating nodes and not to share with selfish ones. These incentives encourage

cooperative behavior in participating nodes [1]. While BitTorrent is not completely

immune to rational manipulation, it is viable in practice [23].

In this chapter, we identify, analyze, and create a taxonomy of rational attacks in

p2p systems. We then examine this taxonomy to identify corresponding solutions. In

the next two sections, we first provide a short background on the economics principles

applicable to p2p systems and then specify our system model. The following two

*Our definition for rational follows the narrow definition provided by Shneidman et al [15]. For
the purposes of this chapter, rational participants are only interested in exploiting the resources and
benefits of the system.

10

sections define our taxonomy of rational attacks and discuss solutions. The final

section presents our conclusions.

2.2 Economics Background

Much of our analysis of p2p cooperation is based on economic models of game theory

and mechanism design [21]. In this section, we briefly review some critical terms and

concepts as they relate to p2p systems.

An economic game is a model of interaction between players in which the actions

of any player influence the outcome of all other players. The mechanism in a game

defines what legitimate actions the players can perform and the outcome of their

behavior. These outcomes are assigned a numeric value called utility. Players that

use an algorithm to determine behavior are said to follow a strategy

Players in the p2p world represent the nodes participating in the system. There

are two types of nodes that do not strategize.

• Altruistic or obedient nodes cooperate with the system irrespective of any other

considerations.

• Faulty nodes stop responding, drop messages, or act arbitrarily.

There are two types of nodes that do strategize.

• Rational nodes strategize to achieve maximal utility and their actions are based

on their current knowledge and understanding of the p2p system. Rational

nodes will not attempt to disrupt routing, censor data, or otherwise corrupt

the system unless such behavior increases the node's access to shared resources.

These nodes are also described as self-interested.

11

• Irrational nodes also strategize, but their strategies are either incomplete be­

cause they cannot understand the mechanism or they lie outside the economic

mechanisms of the system. Denial of service or censorship attacks are examples

of this second form of economically irrational behavior*.

Mechanism design (MD) is the process of creating games where rational behavior

by players leads to outcomes desired by the designer. Of course, such systems only

affect the behavior of rational nodes. Mechanism design has no impact on faulty or

irrational nodes and we exclude them from further discussion, though we recognize

that any practical p2p system deployed "in the wild" must be resistant to their

behavior. Of course, most p2p systems are robust against failure. The impact of

irrational and malicious nodes is an open research problem that is discussed in Castro

et al [22].

Distributed algorithmic mechanism design (DAMD) is a subclass of MD that

is computationally tractable and operates without centralization. For this reason

DAMD is well suited to systems like p2p networks [21]. DAMD assumes each node

can independently reward the cooperation of other nodes or penalize their misbe­

havior but that each node has only limited information on the global state of the

system.

2.3 Model

2.3.1 Incentives Capabilities

Incentives in p2p systems have some limitations. First, incentives are limited in

the guarantees they can provide. While the use of incentives strengthens the p2p

tOur goal is to design systems which are immune to manipulation by nodes seeking increased
shared resources. Our definition of rational only includes nodes whose utility function is independent
of utility payout to other nodes. Strategies, such as censorship strategies, that obtain benefit by
denying utility to other nodes are considered irrational.

12

system against rational attacks, by themselves they do not guarantee that the system

is faithful. To be guaranteed faithful, a mechanism must be validated by a formal

proof, the construction of which is not trivial.

The second limitation is that they must be DAMD compatible. DAMD is lim­

ited to creating mechanisms that are are computationally tractable across distributed

computing resources. Nodes are expected to reward cooperation and penalize misbe­

havior, but doing so is difficult when trusted global knowledge is unavailable.

With these two limitations in mind, we identify two types of incentives that may

be used to create a faithful p2p system. The first type is genuine incentives and is

characterized by directly incentivizing cooperation. A genuine incentive ties current

behavior and future payoff together in some inseparable way. Genuine incentives

are inherently robust against rational attacks and limit the strategies available to

adversaries.

One example of genuine incentives is incremental exchanges as used in Bit Torrent.

Money could also be an effective genuine incentive but it would require very efficient

micropayment schemes, where potentially every network packet transmission would

require an associated payment. Unfortunately, the current generation of such systems

(e.g., Millicent [39]) were never intended for such fine-grained commerce.

The second type of incentive is artificial incentives* which incentivize evidence of

cooperation. Such incentives are weaker than their genuine counterparts because, to

be rewarded, a node only has to appear to cooperate. Nevertheless, artificial incentives

are generally easier to create and deploy and may be necessary under circumstances

•f Roussopoulos et al. suggests that highly valuable shared resources have inherent incentives while
less valuable ones require an extrinsic or artificial incentives for cooperation [20]. Our concept of
genuine and artificial incentives is similar, but focuses only on the mechanism and not the value of
the resources or social network in which the resources are exchanged.

13

where genuine incentives are not feasible.

Artificial incentives are often designed around an auditing process on top of which

an enforcement mechanism is layered. In a decentralized system, auditing cannot be

globally managed. Each node is aware of the system's policies, but is independently

responsible for determining whether peers are in compliance. This can be done by

requiring each node to publish assertions about its state which are audited by other

nodes. An auditing policy of this type is consistent with DAMD; each node is capable

of determining its behavior within the system. An auditing system, however, is

subject to the vulnerabilities that we describe in Section 2.4.1.

2.3.2 Service Maturation

A p2p service provides some tangible benefit to participating nodes. New partici­

pants may obtain their payout spread over time, or they can obtain maximal benefit

immediately in a lump sum. We have termed this service characteristic as service

maturation. A service is mature when a node has obtained all of the benefit that

the service can provide. Services that give out all possible benefit immediately have

instantaneous maturation while services that distribute benefit over time have pro­

gressive maturation. Progressive maturation can be further classified as bounded or

unbounded based on whether or not the service has a known, fixed termination of ben­

efit pay-out. The relationship between the different classes of maturation is illustrated

in Figure 2.1.

A content distribution service might have instantaneous or progressive matura­

tion depending on policy. If a newly joined node can completely download its desired

content before redistributing that content to peers, the service has instantaneous

maturation. Conversely, BitTorrent has progressive maturation because it only al-

14

Maturation

i "-
Instantaneous

r~
Bounded

Figure 2.1 : Service Maturation Taxonomy

lows nodes to obtain the full content through repeated interaction with the system.

Because Bit Torrent's pay-out of benefit ends when the file download is complete, its

progressive maturation is bounded.

An example of a service with unbounded progressive maturation is a remote back­

up service. In such a system, the benefit payout is distributed over time without a

fixed point of termination.

There is a correlation between instantaneous maturation to the Prisoner's Dilemma

(PD) and progressive maturation to the Iterated Prisoner's Dilemma (IPD). In the

single round PD, all of the utility that the game can pay out is disbursed in a single

interaction. In IPD, the total utility is paid out to participants over some arbitrary

number of interactions.

IPD also has an analog to the concept of bounded maturation. The game can be

played with the players either aware or ignorant of the number of rounds that they

will play. From the players' perspective, the game is bounded only if they know the

number of rounds. An IPD game degenerates into a PD game if the number of rounds

are known.

Game theoretic analysis has proven that it is not rational to cooperate in single

round PD but that it is rational to cooperate in IPD [24]. Services with instantaneous

maturation are extremely susceptable to the attacks described in Section 2.4.2.

Progressive

I
1

Unbounded

15

2.3.3 System Model

For convenience, we define a constrained environment suitable to explore rational

attacks. The p2p model characterized in this section has many features that are

common to most p2p networks. In Section 2.5 we break some of these assumptions

as possible solutions to rational attacks.

Our model is described by the following assumptions and limitations.

Assumption: Secure node ID's. Douceur [40] observes that if identity within

the p2p system is not centrally controlled, any participant can simultaneously

assume a plethora of electronic personae. With many identities at its disposal, a

participant can subvert the entire network by subverting the routing primitive.

We assume that the node ID's in our model are made secure in one of three

ways:

Trust - Node ID creation and distribution is done through a centralized and

mutually trusted agent.

Expense - Node ID creation has some arbitrary cost attached. A participant

can replace its node ID infrequently and with some difficulty.

Relevance - Node ID creation is unrestricted because having multiple ID's

cannot aid the rational attacker.

Assumption: There is no "trusted" software. A p2p system cannot guaran­

tee that their members are using conforming software. Trusted computing

technologies allow a node to attest that it is running a conforming applica­

tion [41, 42]. Enforcing a trusted software policy is not only technically chal­

lenging, but developing and deploying such a policy is undesirable to many

16

groups for ethical or practical reasons [43].

Assumption: Nodes are computationally limited. We assume that any given

node may have the same resources as the typical desktop PC. Nodes may subvert

their machine to behave in arbitrary ways. However nodes are assumed to be

incapable of breaking cryptographic primitives or taking global control of the

underlying network.

Due to the potential size of p2p systems and because nodes are in mutually untrusting

domains, we apply the following limitations to our model.

Limitation: Each node maintains minimal state. A node can only have first­

hand observations about a small fraction of the nodes in the system. Similarly a

node can only maintain state about a small number of the nodes in the system.

Limitation: No second-hand information. Nodes can only trust what they di­

rectly observe because there is no inherent reason to trust an assertion by any

node about a third party. An accusation can only be trusted if the evidence is

independently believable regardless of trust in the accuser. Such proofs usually

require the cooperation of the accused to create.

2.4 Taxonomy of Rational Attacks

The motive for the attacks we consider are unfairly increased access to p2p shared

resources. We identify two general classes of attack:

1. Unrecorded Misuse of Resources

2. Unpunished Misuse of Resources

17

Attacks can be made by a single node, or by several nodes colluding together for an

advantage.

2.4.1 Unrecorded Misuse of Resources

If an attacker can obtain resources without producing a record of the misuse, the

attacker is safe from any sanctions. Attacks of this kind exploit "holes" in auditing

policies (policy attacks), or actively disrupt the auditing mechanism (auditing attack).

Policy Attacks

A rational node may exploit an auditing policy. We identify two examples.

Excuses Any legitimate "excuse" for being unable to perform a service may be

exploited. Such excuses may be needed to deal with edge conditions including

crash recovery, network interruption, packet loss, etc. Consider a remote backup

system like Samsara that requires every node to contribute as much space as

it consumes [44]. If the system policy is overly generous to recovering nodes

that recently crashed by not requiring them to prove they are maintaining their

quota, a malicious node may exploit this by repeatedly claiming to have crashed.

Picking on the newbie Some systems require that new nodes "pay their dues" by

requiring them to give resources to the system for some period of time before

they can consume any shared resources [45, 46]. If this policy is not carefully

designed, a veteran node could move from one newbie node to another, leeching

resources without being required to give any resources back.

Auditing Attacks

Auditing attacks are designed to prevent the auditing system from identifying mis­

behavior. These attacks only apply to designs based around auditing using artificial

18

incentives. Here are a number of examples of this type of attack:

Fudged books Auditing relies on the accounting records being tamper-resistant

and difficult to forge.

Manufactured evidence In this scenario, an attacker who is in a state of non­

compliance manages to produce "proof of compliance deceptively.

Accounting interruption (kill the auditor) A node being audited can attempt

to interfere with the auditing node. This might be accomplished by a denial-

of-service attack, a worm, a virus, etc.

Group deception, local honesty This attack is a type of manufactured evidence

attack through collusion. Ngan, et al describes an accounting system where

nodes publishing their debits and credits publicly in logs which are later audited

by nodes' peers [47]. Debts on one node must match credits on another node,

making it more difficult for a node to cook its books. However, it is possible for

single node in debt to become locally honest for an audit by pushing its debt to

a co-conspirator. As a group, the conspiring nodes' books are not balanced and

they are in debt jointly. All colluding nodes reciprocate in sharing (or hiding)

the debt.

2.4.2 Unpunished Misuse of Resources

An identified misbehaving node may attempt to avoid or mitigate punishment. Two

such attacks are:

Elusion The attacker leaves the system permanently before they can be sanctioned

by the p2p system. This attack generally exploits short-maturation and high-

value resources. In such a scenario, the attacker obtains the resources and leaves

19

(e.g., join a content distribution service long enough to obtain an object and

then disappear forever).

Reincarnation Reincarnation is repeated elusion. The attacker avoids punishment

for misbehavior by assuming a new node ID thus releasing them from any

penalties associated with its old reputation. We note that this attack is a limited

form of the Sybil attack [40] where multiple ID's are acquired and discarded over

time rather than all at once.

This class of attacks operates almost entirely against p2p services with instantaneous

maturation.

2.5 Solutions

As stated previously, an ideal p2p system is perfectly faithful, but creating such a

mechanism and proving its validity is difficult. In some cases a perfectly faithful

design may be impossible, but a p2p system need not be perfectly faithful to be

viable. In this section, we describe defenses against rational attacks by self-interested

nodes in descending order of theoretical effectiveness.

2.5.1 Eliminate rationality as a concern

Under certain circumstances, forcing all nodes to be obedient may be practical and

desirable. We identify three options for coercing obedience.

Out-of-band trust Obedience is enforced external to the p2p system. Such a sce­

nario might be viable for a group of friends, or centrally administered machines

within corporations, academic institutions, and government agencies.

Partial centralization It may be possible to introduce some aspect of centraliza­

tion that induces nodes to be obedient. For instance a central authority can

20

be used to require secure node ID creation. BitTorrent uses a central authority

to act as a rendezvous point where nodes can determine the addresses of their

peers.

Trusted software - If a user is prevented from modifying their software, they must

behave obediently. Many software applications are closed-source and difficult to

modify. This may also be done with "trusted computing" technologies [48, 42].

2.5.2 Design genuine incentives

Genuine incentives are always preferred to artificial incentives. Because they are

often difficult to implement in a DAMD context, it may be tempting for a designer

to overlook them. Not only do genuine incentives eliminate many of the attacks

described in Section 2.4.1, but they are also simpler than artificial incentives because

they require no additional enforcement mechanisms.

For example, consider a back-up system with a storage policy similar to Samsara

where each node must provide as much disk-space as it consumes in backups. One

artificial incentives approach proposed by Fuqua, et al is to require that all nodes

publish what data they are storing locally and to prove that they actually have that

data in their possession on audit [47]. The auditing mechanism may be vulnerable to

one or more of the auditing attacks described in Section 2.4.1.

A genuine incentive for the remote back-up service is to require that all of a

node's data that is stored on the network be tangled with the data it is supposed

to be storing [45]. Nodes can then occasionally broadcast portions of the tangled

data they are storing and ask for its owner to claim it or risk its deletion. Now the

self-interested node must actually keep the data it claims to be storing or it cannot

recognize claim-requests for its own data. However, to be useful, there must be a

21

policy that allows a node to reclaim its data after a crash even if it has lost all local-

storage. This policy may expose the mechanism to the excuses attack described in

Section 2.4.1. Despite this weakness, however, this mechanism is more robust and

significantly simpler than the auditing alternative.

2.5.3 Improving artificial incentives design

Artificial incentives are a less desirable solution to rational attacks, but they may

be the easiest to design into a service and are sometimes the only viable solution.

Artificial incentives will generally entail having a well-defined auditing policy. A

number of design decisions influence the effetiveness of these incentives.

Eliminating instantaneous maturation

A service which instantaneously matures is difficult to secure against rational attacks.

Once a rational node has obtained the maximum benefit for a service, it has no in­

centive to continue participation. Thus, services that instantly mature are inherently

vulnerable to elusion and reincarnation attacks. Also, because a node obtains its de­

sired utility quickly, there is not much time for an auditing scheme to stop an attacker.

Several techniques may help convert instantaneous to progressive maturation:

Centralized ID Creation If node ID's are centrally created and distributed, a

node will be forced to maintain its identity in all of its future interactions with

the p2p system. In this case if a node steals from the system and leaves, it will

face punishment when it returns.

Security Deposit A node must contribute resources during a probationary period

before it can benefit from the system's shared resources. Tangier is an example

of system using this technique [45, 46].

22

Limited number of peers

Changing a node's ID incurs a cost. If an auditing system can detect and kick out a

misbehaving node sufficiently fast, then the cost of changing identity outweighs the

benefit. In most p2p systems, a node can only access the network through a limited

number of neighbors. Once an attacker has freeloaded on its neighbors, they will

refuse to interact with it and it will be effectively removed from the system. This

solution has been used for multicast and storage accounting [18, 49, 50].

Reputation

With perfect global knowledge of every peer's behavior, a node would be incentivized

to cooperate because any time it cheated, that information would be immediately

available to all of its peers. Unfortunately, perfect global knowledge is only possible

through an oracle which is not available in a DAMD context such as p2p networks.

Distributed systems may try to recreate the notion of a global, trusted oracle

using gossip protocols, rating schemes, or some other from of peer endorsements.

Mojo Nation had a global reputation system and EigenTrust describes how such

systems might be built [51].

Protecting an auditing infrastructure

Because artificial incentives require building and protecting an auditing infrastruc­

ture, these mechanisms have additional complexity that may be prone to design and

implementation errors. We suggests three practices for building effective auditing

mechanisms:

Force the truth to be told Nodes can usually only believe what they observe for

themselves. Secure history techniques [52], however, may be useful to generate

23

authenticated records of misbehavior that are trustable by remote hosts.

Double-entry bookkeeping A double-entry bookkeeping system as described ear­

lier in Section 2.4.1.

Create a global clock When multiple nodes are being audited, they may be able

to pass debts around from one node to the next, such that any particular node,

while it is being audited, appears to have its books balanced. If several nodes

can be simultaneously audited at provably the same time, this may defeat such

attacks. Again, secure history techniques may provide an approximate solution

to this problem.

2.6 Conclusions

In this chapter we explored a number of rational attacks. While we used a narrow

definition of "rational", we feel that this usage is justified by the unique nature of

such attacks. Prom our analysis, we believe that designs that incorporate genuine

incentives will generally be simpler and more robust that those with artificial incen­

tives. Artificial incentives often require an auditing mechanism that is complicated

and difficult to construct.

Unfortunately, given the difficulty of designing and implementing genuine incen­

tives in a DAMD context such as p2p networks, artificial incentives will often be

essential to incentivize cooperation for some parts of the system. When this is the

case, avoiding instantaneous maturation eliminates unpunished misuse of resources

attacks. A carefully designed policy and a robust auditing scheme are essential to

mitigating unrecorded misuse of resources.

24

Chapter 3

Long-Term Incentives in BitTorrent

BitTorrent is a widely-deployed, peer-to-peer file transfer protocol engineered with a

"tit for tat" mechanism that encourages cooperation. Unfortunately, there is little

incentive for nodes to altruistically provide service to their peers after they finish

downloading a file, and what altruism there is can be exploited by aggressive clients

like BitTyrant. This altruism, called seeding, is always beneficial and sometimes

essential to BitTorrent's real-world performance. We propose a new long-term in­

centives mechanism in BitTorrent to encourage peers to seed and we evaluate its

effectiveness via simulation. We show that when nodes running our algorithm re­

ward one another for good behavior in previous swarms, they experience as much as

a 50% improvement in download times over unrewarded nodes. Even when aggres­

sive clients, such as BitTyrant, participate in the swarm, our rewarded nodes still

outperform them, although by smaller margins.

3.1 Introduction

Peer-to-peer file transfer protocols provide scalable architectures for distributing large

files. The core idea is to have peers participating in the download also contribute

upload service back to the system, thus scaling the available bandwidth as more peers

join. Even centralized services with large network connections can be overwhelmed

by flash crowds, while p2p services can ostensibly continue to scale, even in such

extreme scenarios.

25

In the practical world, however, scalability and stability in p2p systems are limited

by the cooperation of the participants. These systems only have as much bandwidth as

is collectively donated. Proper behavior cannot necessarily be enforced; participants

are going to behave rationally, taking whatever steps maximize their own benefit

without particularly caring about the well-being of other peers. Consequently, the

default behavior of most participants is to consume and not contribute. This is often

called the "free rider" problem.

BitTorrent [1] mitigates the free rider problem by rewarding uploads by granting

faster downloads through a "tit for tat" (TFT) protocol, thus making cooperation

a rational behavior. This design has been highly successful, enabling BitTorrent's

wide acceptance in the Internet community. While there is no consensus on the true

amount of BitTorrent data in-flight today, it is clear that the number is large at

somewhere between one-third and one-half of all Internet traffic [30, 31, 32, 53].

Despite the practical success of BitTorrent, numerous researchers have exposed

weaknesses to the TFT incentives mechanism [25, 26, 27, 28]. One prominent weak­

ness is the significant level of altruism that remains in the system despite the TFT

mechanism. More specifically, many peers still contribute significant upload band­

width without necessarily improving their download performance. Such contributions

are produced by asymmetries in upload and download bandwidth as well as by al­

truistic BitTorrent behaviors like seeding and optimistic unchoking. (Section 3.2.3

discusses this "ambient altruism" in detail.)

These exploits are not simply theoretical. BitTyrant [25] takes advantage of the

intrinsic altruism to achieve high download rates while reducing upload contributions.

Most BitTorrent clients can be easily configured to rely exclusively on leeching, and

some research suggests this is effective despite the TFT incentives [29, 27].

26

Our goal in this work is to reduce the altruism in BitTorrent seeding by adding

incentives to the seeding component of the protocol. We present the design and eval­

uation of our seeding reward algorithm which requires a minor change to BitTorrent

in the form of a long-term identifier for participating clients. Through simulation

we demonstrate that rewarded peers get better performance than unrewarded peers.

This differential creates an incentive for rational nodes to switch into the rewarded

population. We further show that the rewarding mechanism improves node perfor­

mance even when some portion of the swarm is composed of Bit Tyrant nodes.

In the remainder of the chapter, we first review the operations and altruism of

BitTorrent in Section 4.2 as well as an overview of the BitTyrant variant. Sections

3.3 and 3.4 present our algorithm and the methodology we use to evaluate its perfor­

mance. Our results are detailed in Section 4.5 and further analyzed in Section 4.6.

We close with a discussion of related work in Section 4.3 and our conclusions in

Section 4.7.

3.2 Background

BitTorrent [1] is a highly successful and popular peer-to-peer protocol which aims to

enable efficient, rapid distribution of potentially large amounts of data to a group of

clients. It is designed to utilize the available upload bandwidth of the clients to scale

the capacity of the system to support many users and has built-in mechanisms to

incentivize participation in this scheme.

3.2.1 The BitTorrent Protocol

A torrent is a file or a set of files users wish to download. The data is divided into

equal-sized pieces, typically 256KB, which are further subdivided into small blocks.

A central node called the tracker keeps track of the peers participating in the distri-

27

bution of a torrent. The tracker does not serve the actual content, but instead serves

as a rendezvous point for peers to discover one another.

BitTorrent clients use a file of metadata, called a torrent file, to begin download­

ing content. This file, typically downloaded from a traditional web server, specifies

the address for the tracker as well as information about the files to be downloaded,

including names, sizes, and SHA-1 checksums for each piece.

The set of clients working on downloading a given torrent is referred to as a swarm.

Clients notify the tracker as they join and leave the swarm, as well as every 30 minutes

they are active within the swarm. To discover other clients, a client may query the

tracker, which gives it a random subset of the active peers. (A variety of extensions

exist which supplement the tracker, including a gossip protocol as well two DHT-

based schemes.) Once it has a set of peers, a client establishes TCP connections to

its peers, forming a neighborhood with whom it shares information about which pieces

it has and has not completed downloading. A legitimate publisher might establish

one or more official seeds, which provide round-robbin, best-effort service to anyone

who asks. These seeds are then supplemented by altruistic peers who seed after they

finish their downloads.

3.2.2 BitTorrent Strategies

Popular BitTorrent clients employ a number of strategies to encourage fair participa­

tion in uploading and to deal with a variety of corner cases [1].

A client only uploads to a small number of peers in its neighborhood at any given

time. This group of nodes is called the client's active set. The size of the active

set is typically four, although both the reference implementation and BitTyrant [25]

note that this number should scale with maximum upload bandwidth capacity. The

28

majority of the nodes in the active set are the nodes that have given the best service

over a rolling 20 second average. The client saves one or two slots in the active set for

the exploration of new neighbors. Optimistic unchokes pick a random peer every 30

seconds, allowing the client to search for better neighbors while also bootstrapping

newly joined clients that have not yet downloaded anything to share.

BitTorrent clients share current status information with other clients to indicate

which pieces are completely downloaded. Clients will bias their block requests to

complete one piece before they begin downloading a different piece. To pick a piece

to download, BitTorrent follows a rarest first policy, where a client picks pieces based

on lowest availability within its neighborhood. The exception to this rule is for new

clients, which need a complete piece before they can advertise any content for upload.

In this case, they instead pick a random piece.

When a block has been requested, a client does not reissue the request until either

the block is received or the request times out. This can be a problem when a user has

received most of the pieces in a file and has just has a few outstanding requests to

go. If the final peers are slow or unresponsive, the system might never finish. In this

case, the client goes into endgame mode and sends redundant requests for any missing

blocks to its peers; as they are received the client sends messages to the remaining

peers to cancel unnecessary requests.

3.2.3 Ambient Altruism and BitTyrant

BitTorrent aims to reduce the free-rider problem, but it is not intended to eliminate

altruism in the system. Instead, BitTorrent aims to ensure that a node will expe­

rience significantly improved performance if it participates in TFT trading, rather

than leeching. Consequently, altruistic features remain in the protocol and pose two

29

separate, but related, problems. First, a client can reduce or eliminate its own altru­

istic participation, reducing the overall swarm performance. Second, if a client can

recognize peers that are participating altruistically, it may be able to obtain suffi­

cient service from these peers to find it unnecessary to deal with those that require

cooperation.

Two significant sources of altruistic contributions are seeding and optimistic un-

choking. Seeding is inherently altruistic under the current Bit Torrent protocol. The

altruism of optimistic unchoking is more complex. The optimistic unchoke operation

is Bit Torrent's method of searching the peer space for better TFT service. An un­

choke that results in improved service because a better peer is found is clearly not

altruistic, but unchokes are performed with random peers, rather than being biased

away from known leeches. This means that BitTorrent's standard unchoking behavior

can still provide a source of altruism, to the benefit of leeches.

Differences between peer bandwidth capacities also produce altruism. When a

normal BitTorrent client unchokes a peer, it sends data as fast as the TCP stack will

go, so peers with faster network connections will tend to give more out than they get

in return when dealing with slower peers. Of course, two fast peers with content to

trade will be more likely to establish TFT trading with one another than a fast peer

and a slow peer.

BitTyrant is a strategic BitTorrent variant that exploits ambient altruism and

reduces its own altruistic contributions [25]. BitTyrant was designed to download as

fast as possible while contributing the minimum amount required to achieve it. To

achieve this, BitTyrant abandons BitTorrent's policy of giving each member of the

active set an equal share of its upload bandwidth. Instead, BitTyrant unchokes as

many neighbors as possible but limits the speed of each upload stream to be only as

30

much as is necessary to obtain reciprocation.

This scheme does not work for other BitTyrant nodes, however, and two BitTyrant

nodes must enter a special mode when dealing with each other. In Section 3.5.6, we

will describe this special mode in detail and demonstrate how it can be used as part

of a defense against Bit Tyrant's behavior.

3.3 Incentives Design

Our incentives design for seeding in Bit Torrent requires that the BitTorrent protocol

support some form of long-term identifier. The basic concept for our algorithm is

that BitTorrent clients recognize seeders from previous swarms and this is impossible

without these IDs. Fortunately, the exchange of long-term identifiers can be built into

the peer handshaking process in a backwards compatible fashion. Clients without a

long-term ID are simply assumed to have no history. It is also worth noting that

some clients [54] already support an optional long-term ID.

Our proposed design consists of an observation phase and a reward phase. The

observation phase is in effect whenever the node is receiving seeding bytes, or bytes

received from a neighboring peer without the expectation of TFT reciprocation. The

detection of seeding bytes, in our basic implementation, is based on first-hand, veri­

fiable information only. Obviously, it is possible that the neighbor is only pretending

to seed, but from the observing node's perspective, all bytes received without giving

any bytes in return are seeded bytes.

The reward phase occurs when the node is in seeding mode. The goal is to schedule

outbound seeding with higher priority given to peers who have seeded in the past.

To do this, the algorithm first computes a score for each node; nodes who seeded get

higher scores. These scores are used to initialize a scheduler, giving more slots to

31

nodes with higher scores. While virtually any scheduling algorithm would suffice, we

chose to use lottery scheduling [55]. Each peer gets at least one ticket, but peers that

seed get additional tickets in proportion to the logarithm of the number of bytes we

have received from them in seeding.

Obviously, a node that chooses to be a good citizen and seed may not be rewarded

at all in the future. For node A to be rewarded by node B, A must seed to B and

then B must seed to A in some subsequent swarm. That means that both nodes must

interact repeatedly over time. For any real benefit to the algorithm, a group of nodes

must interact repeatedly.

We note that a Sybil attack [40] is possible against this protocol. For example,

malicious nodes could create a large number of false identifiers, gaining additional

shares of the bandwidth. We deal with this by reserving a percentage of a seeder's

upstream bandwidth for other known seeders. Sybil attackers may well fight it out for

the remaining unreserved bandwidth, but there is a larger pool of bandwidth available

if they cooperate.

Another possible Sybil attack would be a reincarnation attack [56] where a client

sheds an old identifier for a new identifier in every swarm to erase previously observed

bad behavior. Such behavior would be unhelpful to the node, however, because a

fresh identifier begins with no rewards at all. Rewards only come with observed good

behavior.

3.4 Methodology

3.4.1 Simulator

We chose simulation as our primary method for analyzing incentives and altruism in

Bit Torrent. The advantages of a simulator over real world tests or the use of network

32

emulation lies primarily in the repeatability of the experiment and the time required

to run the experiment. Our research requires comparison of algorithms against one

another as well as experimentation with hundreds of combinations of parameters.

Repeatability and fast time to completion were both incredibly helpful.

Several Bit Torrent simulators exist but they did not fully meet our needs. One

simulator from MSR [57] does not implement asynchronous communication nor does

it capture some BitTorrent details, such as piece chunk transmission, that we deemed

necessary. An ns-2 [58] BitTorrent simulator was also available, but it simulates

TCP effects and other network level details that were too low level for our purposes.

GPS [59] is a general purpose p2p simulator that includes a BitTorrent module and

simulates at about the same level of granularity as our work. GPS is written in Java

and our work appears to run faster.

To meet our objective, we have designed an optimized C++ simulator with a

Python front end for simulation setup and execution. Our simulator allows swarms of

thousands of clients, with several hundred running simultaneously, many times faster

than real-time. To illustrate this, we ran a series of tests on an Athlon 2.4Ghz dual-

processor server with 4GB of RAM and running with the Linux 2.6.9 kernel. These

tests employed a simple swarm where a given number of clients arrive simultaneously

and join the swarm. There is only a single seed for the swarm. We fix the file size

at 100MB, the seed's upload capacity at 512Kbps, and each client's bandwidth at

56Kbps, symmetric for uploads and downloads. The results for various swarm sizes is

shown in Table 3.1. These results show that the time required to simulate the swarm

is proportional to the number of peers.

33

n
10

100
1000

Sim Time (hours)
5.86
4.77
5.24

Real Time (hours)
0.004
0.07
0.86

Messages
233,950

1,381,715
13,635,955

Memory (MB)
20
60

492

Table 3.1 : Basic simulator performance as the number of simulated nodes (n) grows.

250

200

150

e
I
o
* 100

50

°0 50 100 150 200 250 300 350 400 450
Houre

Figure 3.1 : Simulated swarm membership over time based on a real-world trace from
a flash-crowd swarm.

3.4.2 Simulation Setup

All the evaluations in this chapter are based on a flash-crowd, 1GB file Bit Torrent

swarm. We used a total population of 2000 DSL clients with a range of download

bandwidths from 128Kbps to 5Mbps. Each client's upload bandwidth is precisely half

of its download bandwidth. To obtain reasonable churn, we make use of real-world

BitTorrent traces taken in 2005 by Johan Pouwelse. These traces provide realistic

join times for flash-crowd behavior in real swarms.

Each simulation is also configured with experiment-specific parameters. The sig­

nificant parameters are:

N\

- jo ins
- seed only
- swarmsize

V\

aftsadri^sa*^^

34

Seeding Time The 2000 clients of the swarm are assigned one of three seeding

population types. Altruistic clients will seed for 24 to 48 hours after their download

is complete. Standard clients seed for one to two hours. Leech clients terminate their

connection immediately after downloading the object. These values are based on why

peers choose to seed; altruistic clients intentionally stay around to be helpful, standard

clients will continue running until the user notices the download is done and kills the

client, and leech clients leave as quickly as possible. Even though these numbers are

guesses, we have validated that a swarm with 10% altruistic nodes and 70% standard

nodes yields seed-to-swarm ratios similar to those observed in a prior measurement

study. (Figure 3.1 in this chapter closely resembles Figure 5 in Pouwelse et al. [33].)

Seeding Algorithm Populations in the swarm can be assigned to use different

seeding algorithms. The standard seeding algorithm simply seeds round-robbin to

all of the peers in a seed's neighborhood. We also support an "incentives seeding"

algorithm, as described in Section 3.3.

Incentives Seeding Parameters For peers using the incentives seeding algorithm,

we can vary the bandwidth reservation for rewards as a percentage of the total band­

width; all incentives seeding nodes will use the same reservation percentage in a given

simulation run. Also, for nodes using our rewarding seeding algorithm, we invent a

past history for each one, assigning them a number of bytes that they have seeded in

the past. We similarly vary what portion of the population are aware of this history,

allowing us to simulate everything from oracular knowledge of every node's past be­

havior down to fragmentary knowledge that would be a more realistic approximation

of prior, first-hand observations.

While oracular knowledge is unrealistic in practice, it allows us to place an up-

35

per bound on the benefits of seeding policies that use this knowledge. First hand

information is more limited in scope but much more difficult to exploit [56]. In our

research we are assuming that there are no disjoint cliques of overlapping peers. This

would seem to adequately capture common classes of real-world behavior as we might

expect from people who download related content, such as new episodes of TV shows

released on a weekly basis.

Trading Algorithm We have implemented both the regular Bit Torrent TFT and

the Bit Tyrant trading algorithms in our simulator. Trading and seeding algorithms

may be assigned independently; a peer can use the BitTyrant trading algorithm and

our incentives seeding algorithm if desired.

3.4.3 Incentives Evaluation

Our goal is to create an incentive for participants in Bit Torrent to seed. We will eval­

uate the effectiveness of our algorithm by demonstrating that rewarded populations

perform better than unrewarded populations in our simulated swarms. By running

the experiments under a variety of configuration parameters, we will characterize how

these parameters affect the success of our incentives algorithm.

In evaluating the performance of a node, our basic measurement is the download

efficiency, denned as the utilization of the peer's download pipe over its lifetime in

the swarm. Efficiency is a direct measure of the node's happiness, and it is perfectly

normalized. Any node, regardless of speed, cannot be happier than when it has 100%

download utilization.

Computing the efficiency e is straightforward. Let k be the maximum download

capacity of the node measured in bits per second (bps). Then let t0 be the time the

peer connected to the swarm and let tj be the time that it finished the download,

36

Median Efficiency
Altruistic

98.8
Standard

48.9

(%)
Leech
90.1

Median Download time (s)
Altruistic

3304
Standard

7443
Leech
4402

Table 3.2 : Comparison of median efficiency and median download time for the same
experiment.

Population
Altruistic
Standard

Leech

Average
98.0%
57.9%
87.6%

Std. Dev
1.8%
8.5%
4.8%

95% Confidence Interval
4.1%

15.3%
8.2%

Table 3.3 : Median efficiency, averaged over twenty different experimental runs, dif­
fering only in the random seed.

Population
Altruistic
Standard
"Leech"

Average
97.9%
71.1%
71.2%

Std. Dev
1.9%
7.9%
7.6%

95% Confidence Interval
4.6%

11.9%
12.9%

Table 3.4 : Median efficiency, averaged over twenty experimental runs as above, with
the leech nodes replaced by standard nodes.

where both values are measured in seconds. Finally, let n be the number of bits in

the download object. Then

6 ~ k

Of course, when simulating a large population of nodes with various configura­

tions assigned at random, we would expect significant variation in individual nodes'

efficiency, even when they have the same configuration. Figure 3.2 shows cumulative

distribution functions over nodes' efficiency in a simulation with altruistic, standard,

and leech nodes. A curve that stays closer to the bottom of the graph, as the altru­

istic data series does, represents more nodes operating closer to their peak efficiency.

(This experiment shares the same configuration as used later in Figure 3.12.)

While we could potentially generate a figure like this for every possible simulation

37

40

• Altruistic
Standard
Leech

Figure 3.2 : Cumulative distribution of efficiency (bandwidth utilization) over differ­
ent populations in the same swarm.

100,
Optimal
Altruistic
Standard
Leech

te To*
Download Time (s)

10»

Figure 3.3 : Cumulative distribution of download time over different populations in
the same swarm. (A different view of the same experiment shown in Figure 3.2.)

38

configuration, and every simulation run would generate a figure with the same general

shape, this would obscure trends from one simulation to the next. Instead, we observe

that the median value of each data series (i.e., the efficiency value for which the data

series reaches 50% on the y-axis) represents an effective proxy for the overall behavior

of the data. If the median values are close, then the curves will be close. If the median

values are far apart, then the curves will be far apart.

For our experiments, then, any given set of experimental parameters (as described

in Section 3.4.2) will yield three values: the median efficiency of each of the three

populations (altruistic, standard, and leech), which we can then plot as we vary the

simulation parameters.

An alternative to efficiency would be to consider the download times, without nor­

malizing them for differences in each node's available bandwidth. Figure 3.3 shows

CDFs of download times for the same experimental setup as Figure 3.2. We added

an "optimal" distribution, representing the best that the altruistic nodes could ever

have performed if they had achieved 100% utilization of their download bandwidth.

We could have added additional "optimal" lines for each population, but this would

make reading the figure more complicated. Furthermore, median values are less mean­

ingful because the underlying distribution of bandwidths would vary if the random

assignment were done differently.

Of course, absolute download time and download efficiency are measuring the

same underlying phenomenon; improving one metric would clearly improve the other.

Table 3.2 shows the median values from each of these figures. The efficiency values

elide unnecessary experimental details and concisely describe the relative performance

of each population.

Lastly, we must convince ourselves that efficiency is a reliable metric from one

39

experimental run to the next. Since many of the parameters in our system are assigned

randomly, we experimentally re-ran our experiment twenty times, each time with a

different random seed. The results, shown in Table 3.3, show significant variation

from one run to the next, but the variations among altruistic nodes are smaller than

among standard nodes. For an additional experiment, we changed the leech nodes

to be standard nodes. We would expect, then, that they would behave the same as

standard nodes. Table 3.4 clearly validates this behavior.

From these measurements, it appears that standard nodes are more likely to be

the victims of circumstance, while altruistic nodes and leech nodes are more stable

in the face of random variation. As such, the reported performance of standard

nodes should be considered to be noisier than the reported performance of altruistic

or leech nodes. While we could precisely work out the minimum change between

different populations that would represent a statistically significant difference, this is

insufficient for our needs. Experimentally, we must show that our desired altruistic

behavior doesn't just make a statistically significant improvement. We must show a

large enough improvement to incentivize BitTorrent users to choose clients that follow

our desired behavior.

(For the remainder of the chapter, we only run each experiment a single time for

a given set of experimental parameters. Since each data point takes as long as a day

to compute, we cannot afford to run every experiment twenty different times.)

3.5 Evaluation

In this section, we detail the findings of our research. We will first demonstrate why

seeding is important for swarms of nodes with asymmetric bandwidth. We will then

demonstrate how our algorithm improves performance for seeding nodes. The next

40

Figure 3.4 : The median efficiency of the overall swarm under different compositions
of clients. The worst performance is experienced when there is only one seed. When
70% of the clients seeding for 1-2 hours, the performance improves significantly. When
10% of the nodes seed for 1-2 days, the median efficiency approaches 100%.

three subsections explore how bandwidth reservation, altruistic population size, and

rewarding node overlap impact the effectiveness of our seeding algorithm. Finally, we

analyze the performance of our algorithm in swarms that include BitTyrant nodes.

3.5.1 Importance of Seeding

Our first objective was to establish the importance of seeding to a BitTorrent swarm.

We ran our simulation with three different population configurations. First, we ran

the swarm with 1 initial seed and 100% of the swarm composed of our leech clients

that do no seeding whatsoever. Next, we ran the swarm with 1 initial seed, 70% of

the standard clients that do a small amount of seeding, and 30% of the leech clients.

Finally, we ran a simulation with 10% altruistic nodes that seed significantly, 70% of

the standard clients, and 20% of the leech clients. The results are shown in Figure 3.4.

There are two reasons why the swarm cannot obtain high efficiency without signif­

icant seeding contributions. First, the swarm is comprised of nodes with asymmetric

bandwidth profiles. In our swarm, the upload is always half of the download ca­

pacity. Even with idealized operations, a swarm could hope for no more than 50%

41

efficiency from TFT trading alone. The second issue is that a BitTorrent swarm is not

ideal. Various factors such as churn reduce the effectiveness of the protocol. Seeding

provides enough additional capacity to overcome these deficiencies.

Clearly, seeding is essential for nodes in a swarm to maximize their download

bandwidth; if we can design a mechanism that incentivizes more BitTorrent users to

seed for longer periods, this should have a clear, positive impact on the system.

3.5.2 Rewarding Seeding

To evaluate our reward seeding algorithm, we first ran a baseline simulation. The

setup for this simulation was 10% altruistic nodes, 70% of the standard clients, and

20% of the leech clients. All three populations were running the standard BitTorrent

trading and seeding algorithms, thus we expected all three populations to experience

similar performance. As expected, the results for all three populations was near 100%

efficiency.

We then repeated this baseline experiment with all of the altruistic nodes con­

figured to run our reward seeding algorithm, reserving 75% of their bandwidth for

rewards to prior seeders. The other two populations continued to use normal seeding

algorithms. In this version of our experiment, we assumed perfect overlap for this

altruistic group. In other words, every altruistic node had been previously seeded

by every other altruistic node, prior to the start of the experiment, and would thus

allow the other altruistic nodes to share in the bandwidth reserved for rewards. The

results of this simulation are shown in Figure 3.5. The altruistic population main­

tained nearly perfect efficiency, while the two unrewarded populations experienced a

significant drop in performance.

42

Figure 3.5 : Median efficiency when the altruistic population reserves 75% of the
seeding bandwidth for other altruistic nodes.

3.5.3 Bandwidth Reservation

As described before, our seeding algorithm can reserve bandwidth for the exclusive

use of nodes being rewarded. To understand the necessity of these bandwidth reserva­

tions, we ran a simulation where we varied the percentage of reserved vs. unreserved

seeding bandwidth. The results, shown in Figure 3.6, show the median efficiency of

the altruistic, standard, and leech populations in simulations with different reserved

bandwidth configurations. In all simulations, there are 10% altruistic, 70% standard,

and 20% leech clients. The bandwidth reservation applies to altruistic nodes' seeding

bandwidth. For the moment, we are assuming that altruistic nodes all have prior

history and know which other nodes have seeded in the past.

One immediate observation is that our seeding algorithm, without any bandwidth

reservation, does no better than normal seeding. This seems counter-intuitive because

the rewarded nodes should still be getting more seeded bytes than their unrewarded

peers. One might think that there would be some performance improvement for

the altruistic nodes, even with 0% reserved bandwidth, but they are already getting

nearly 100% efficiency.

43

A * Leech
• -• Standard
•—• Altruistic

10 20 30 40 50 60
Reserved.Bandwidth

70 80 90

Figure 3.6 : Median efficiency as a function of the reserved bandwidth by the altruistic
nodes.

1
/ _ , . , . • » • . : - : : . ; : : * : • •

/ . . • • • & ' . ' '

/ • • > • - ' • - • • • • • • ' '

' - ' /

/

*• -A Leech
« • Standard
-—*• Altruistic

5 10 15 20 25
Percent of Altruistic Nodes in Population

Figure 3.7 : Median efficiency as a function of the percentage of altruistic nodes in
the swarm.

4 * beech
• •-•Standard
'—* Altruistic

40 60
Percent Altruistic Overlap

Figure 3.8 : Median efficiency as a function of the percentage of overlap in the altru­
istic nodes.

44

With bandwidth reservations, if there is insufficient demand from the "reward"

population, then that portion of the seeding bandwidth will go unused. In short,

our work suggests that the only way to create a performance differential between

rewarded and non-rewarded nodes is to withhold service from unrewarded nodes.

There is an interesting trade-off, however. If the reservation is too high, then all

of the bandwidth is effectively being spent on maintaining old relationships rather

than establishing new ones. As nodes quit old swarms and join new ones on a regular

basis, there is a clear incentive to have seeded to strangers in the past if there might

be a payout in the future.

3.5.4 Altruistic Population Size

We cannot predict what percentage of nodes in a given swarm might be running our

reward seeding algorithm. We would like to verify, regardless of the breakdown, that

incremental growth in the reward seeding group will yield benefits both for those

nodes as well as for everybody else. This leads to the question of how the system will

respond as the population dynamics change. Figure 3.7 shows how efficiency changes

as a function of the percentage of the altruistic and standard populations in the total

swarm. The leech population is fixed at 20% and the rewarding nodes reserve 75% of

their bandwidth.

This experiment demonstrates that the performance of the entire swarm improves

as more nodes follow our altruistic scheme, even when reserving 75% of their band­

width for reward seeding. That other 25% is enough to improve things for everybody

else.

At some point, beyond the 30% altruism rate where we terminated our simulation,

the standard nodes may have sufficient efficiency that they would be disincentivized

45

to change to the altruism strategy. By then, the altruism strategy would already be

the dominant behavior in the swarm. Also, regardless of the rate of altruistic nodes,

this experiment shows that altruism always wins, and sometimes wins big, even with

relatively low populations of altruistic nodes.

3.5.5 Overlap

In this section, we explore the highly critical overlap parameter. Our algorithm

assumes that nodes are rewarding based on first-hand information gleaned from prior

interactions in prior swarms. In previous experiments, we have assumed that this

knowledge of prior interactions, which we call overlap, is complete. Every node has

prior, positive interactions with its altruistic peers and thus knows to include them

in the reward population during future interactions. Such oracular knowledge is not

realistic.

For simulation purposes, we wish to vary the degree to which altruistic nodes have

had past interactions with other altruistic nodes and thus have the first-hand knowl­

edge necessary to give reward seeding to their peers. To accomplish this, we partition

the altruistic nodes into two sub-groups: rewarding and non-rewarding nodes. Re­

warding nodes will reward all other altruistic nodes, including non-rewarders, while

non-rewarding nodes will reward nobody. Non-rewarding nodes still have the same

75% bandwidth reservation, but they never use it. By varying the ratio of rewarding

to non-rewarding nodes, we can roughly simulate the real-world effects that might be

seen as the degree of overlap between altruistic nodes varies.

Figure 3.8 shows the efficiency for each population as a function of the percentage

of altruistic nodes that are rewarders. We maintain a 10% altruistic, 70% standard,

and 20% leech population. Reserved bandwidth remains fixed at 75%.

46

Our experiment demonstrates that overlap is clearly necessary to achieve the

benefits of our reward seeding strategy. Once the overlap reaches 50% (i.e., about

half of the seeding interactions between altruistic nodes are rewarded with higher

bandwidth), the performance improvement for the altruistic strategy is undeniable.

Whether such an overlap rate can be achieved in the real world is unclear. We discuss

some strategies that might compensate for this in Section 4.6.

3.5.6 Seeding Rewards versus BitTyrant

In this section, we test the altruistic reward seeding algorithm against clients run­

ning the more aggressive BitTyrant trading algorithm. BitTyrant clients tend to see

improved performance at the expense of other nodes in the system. (BitTyrant was

introduced in Section 3.2.3.)

Our first experiment, shown in Figure 3.9, pits rewarding seeders against tyranni­

cal leeches. This test repeats the bandwidth reservation experiment of Section 3.5.3

with the leeching population configured to use the BitTyrant trading algorithm. All

other parameters remain the same.

Comparing these results against those of the earlier bandwidth reservation test,

we note that BitTyrant-leeches performed as well as the rewarded altruists. At the

same time the leeches degraded the performance of the standard nodes significantly.

From this we conclude that the reward-seeding algorithm protects against, or at least

ameliorates the exploitation of the BitTyrant protocol, but that it does not sufficiently

penalize the leeching clients.

To evaluate how the size of the altruistic population impacts the performance

of these populations, we repeated the experiment of Section 3.5.4, again with the

rewarding altruistic seeders versus the tyrannical leeches. We hoped that increasing

47

numbers of altruists might be able to penalize the tyrannical leeches. Unfortunately,

as shown in Figure 3.10, the tyrannical leeches still had no trouble achieving near

perfect efficiency.

We considered the possibility that the leeching nodes would not do so well if the

altruistic nodes were more stingy during the TFT trading phase. To test this, we

reconfigured the bandwidth reservation test. In this experiment, the altruists use the

BitTyrant TFT strategy rather than the default BitTorrent TFT strategy, but still

perform the incentivized reward seeding. The leech population still practices tyranni­

cal TFT trading and never seeds. The standard population uses standard algorithms

for both seeding and TFT trading. All other simulation parameters remained the

same. The results are shown in Figure 3.11.

Based on these experiments, a rational user might just as well run a tyrannical

client as an altruistic client. They will receive the same download efficiency and they

will minimize their upload bandwidth.

3.5.7 BitTyrant Exploitation

In the pursuit of finding a weakness in BitTyrant's seemingly anti-social behavior, we

discovered a problem with BitTyrant's exchange mechanism (also noted by Carra et

al. [60]). The original BitTyrant paper [25] says:

As such, BitTyrant continually reduces send rates for peers that recipro­

cate, attempting to find the minimum rate required. Rather than attempt­

ing to ramp up send rates between high capacity peers, BitTyrant tends

to spread available capacity among many low capacity peers, potentially

causing inefficiency due to TCP effects.

To work around this ... effect, BitTyrant advertises itself at connection

48

I .

* »l«ech
• 'Standard
i — Altruistic

»• '•••••^Ji^—rr-i . .' ! ' '

B . . .

10 20 30 40 50 60 70 80 90
Reserved Bandwidth

Figure 3.9 : Altruistic nodes versus tyrants under different amounts of reserved band­
width.

80

M
e
d
ia

n
 E

ffi
ci

e
n
cy

20

- — " " . • • * • • •

* • '

* * Leech
• - • Standard
-—• Altruistic

i • • • •

. „ . - • • • —

- - I " . ' . . . - .

10 15 20 25
Percent of Altruistic Nodes in Population

Figure 3.10 : Altruistic nodes versus tyrants with different ratios of altruistic nodes
in the population.

» * Ijeech
• ••• Standard
—— Altruistic

0 10 20 30 40 50 60 70 80 90
Reserved Bandwidth

Figure 3.11 : Reward-seeding altruists, modified to trade tyrannically before they
begin seeding, versus tyrant-leeches under different amounts of reserved bandwidth.

49

—

f I

>
1 <

fc

1 t

* * (

Figure 3.12 : Median efficiency when altruistic nodes refuse to seed anything to
tyrannical leech nodes.

time using the Peer ID hash. Without protocol modification, BitTyrant

peers recognize one another and switch to a block-based TFT strategy

that ramps up send rates until capacity is reached.

The authors believe that their weakness is looking for too many low bandwidth flows,

or that the many low bandwidth flows are inefficient because of TCP effects.

To evaluate this, we ran several simulations without the BitTyrant block-level

TFT component (i.e., we disabled BitTyrant's ability to detect that a peer is also

running BitTyrant). BitTyrant nodes did very poorly when communicating with each

other.

BitTyrant assumes it is receiving reciprocation when it receives an unchoke. This

is a valid assumption for BitTorrent nodes, but it is not as clear of a signal from

another BitTyrant node because it does not indicate how much they are willing to

upload. So, if two BitTyrant nodes unchoke each other, they both assume they have

an estimate for the minimum upload speed necessary to achieve reciprocation. They

then both begin to drop their upload rates potentially down to zero in a quest to

achieve lower estimates for the minimum upload speed.

50

BitTyrant solves this problem by self-identification, disabling the reciprocation-

discovery mechanism because it doesn't really work between two tyrants. This iden­

tification features can be exploited by altruistic nodes to deny service to tyrants! A

BitTyrant node cannot lie or obscure that it's a tyrant without incurring a penalty

when trading with other tyrants.

We re-ran our baseline simulation with 10% altruistic, 70% standard, and 20%

leech nodes. The altruistic nodes used the normal trade algorithm and our reward

seeding algorithm. The leech nodes used the BitTyrant trade algorithm. Bandwidth

was reserved at 75% and the altruistic nodes ignored tyrants during seeding, but

interacted with them normally when still downloading the torrent. The results are

shown in Figure 3.12.

By ignoring tyrants, the altruistic nodes achieve a small but significant perfor­

mance improvement relative to the tyrants. There may well be other ways to exploit

tyrants, such as refusing to interact with them at all. It is sufficient to say that

BitTyrant is vulnerable to exploitation, itself, as a consequence of its necessary self-

identification mechanism.

3.6 Discussion and Future Work

The development of this research gives rise to a number of important discussion points

that we will address here. These points include issues relating to the practicality of

our algorithm to real-life solutions as well as topics of future research.

Privacy / Anonymity is of significant concern for many BitTorrent users. Natu­

rally, a long-term identifier would impact anonymity. However, the BitTorrent proto­

col was never engineered to provide anonymity to BitTorrent users. (They announce

their presence to everybody in the swarm, based on their IP address, and adver-

51

tise what pieces they have available to trade!) Prom this perspective, a long-term

identifier is not much worse than an IP address.

On the other hand, if a Bit Torrent user chose to tunnel Bit Torrent through an

anonymization system like Tor, then the IP address would be obscured, while the

long-term identifier would still be advertised. While a number of BitTorrent users

do tunnel traffic through Tor, their performance will suffer greatly, as Tor was never

intended to support the kind of massive, sustained traffic flows that BitTorrent can

generate. Engineering an anonymity service specifically for BitTorrent would be an

interesting opportunity for future research.

Bootstrapping and Overlap are the most critical concerns for further develop­

ment of this incentives mechanism. The reward mechanisms in our research depend

on the same nodes seeing one another, again and again. This may not occur much,

in the general case, but it could well happen in particular subcommunities.

Existing Small Groups: A number of relatively small (compared to the entire

world) communities exist for the purpose of BitTorrent distribution. The traces we

described in Section 3.4 were collected from f i l e l i s t . org over a three month period.

This community requires a sign-in name which was associated with each download.

We observed that 50% of all peers participated in at least two of the same swarms.

These types of groups would be able to switch over to the seed-rewarding algorithm

with very little difficulty and would likely have sufficient overlap.

Social Groups: Existing social communities, brought together by mutual interests

on social networks, could be used to leverage a relatively small BitTorrent community

suitable for the seed-rewarding algorithm.

52

Shared Interests: Even without explicit social groupings, one would reasonably

expect that many people will follow similar patterns. For example, a variety of

television shows are distributed via Bit Torrent. Users who download the current

show are likely to download subsequent shows. Similar affinities would be expected

around other content that is updated on a regular basis, such as updated Linux

distributions.

Transitive Trading and similar methods, may be able to ameliorate the need for

extensive overlap. Transitive trading [49, 61] allows two clients that have never met

to exchange "credits" through a mutual contact.

BitTyrant is an important development in BitTorrent because it improves the

efficiency of certain core concepts. For example, the optimistic unchoke in standard

BitTorrent trading is a search method for finding better peers, but it simply searches

randomly. However, as we discussed in Section 3.5.7, BitTyrant clients must identify

whether they are speaking to other tyrants and change strategies. Otherwise, the

default BitTyrant TFT strategy will have both clients dropping their bandwidth all

the way to zero.

This BitTyrant flaw creates interesting opportunities. Since BitTyrant clients

must identify themselves as such, they can be trivially ignored by other clients who,

perhaps, do not with to support their tyrannical behavior. However, there are many

other options. BitTyrant clients (or, really, any BitTorrent client) could publish

categorical statements about their unchoking policies. For example a node might

declare: "If you give me at least X bytes per second, then I'll unchoke you and give

you X in return, up to Y bytes per second max." Of course, a tyrant could lie about

such policies, but it creates an interesting opportunity for future research, both in

53

terms of simulation studies and in terms of economic modeling.

Carra et al. [60] also examined the strengths of BitTyrant-style behavior versus

simply expanding the number of simultaneous connections in traditional Bit Torrent

clients by simulation. However, their simulation models ignored churn and other

real-world conditions leading us to believe that their results are unreliable.

3.7 Related Work

open The BitTorrent protocol and associated algorithms were introduced by Cohen

in 2003 [1] with a reference client implementation. A fluid model for the system was

given by Qiu et al. [62], who used it to show that in certain cases a Nash equilibrium

can exist in systems where peers choose upload rates to match their download rates.

Studies performed on emulated swarms by Legout et al. [28] validated the effectiveness

of the BitTorrent unchoking algorithm. Legout et al. [63] also concluded from real-

world tests that the rarest-first algorithm is very important to system performance,

and argued that the default unchoking algorithm provides adequate robustness from

free-riders.

A fluid-model simulator was used by Bharambe et al. [57] to represent a BitTorrent

system in a more abstract manner than our own. They confirmed the utility of the

rarest-first policy for piece selection. They also investigated unfairness with respect to

volume uploaded and argued that the rate-based TFT strategy fails to prevent such

unfairness, especially in systems with a great disparity of bandwidth among peers.

They proposed a new block-level, volume-based TFT trading algorithm, although

subsequent researchers challenged its effectiveness [63].

De Vogeleer et al. [64], made an event-based simulator for BitTorrent based on

the algorithms in the reference implementation and used it to model a variety of typ-

54

ical swarm scenarios, verifying the performance characteristics against the expected

behavior of a standard BitTorrent client.

A simulation-based study by Eger et al. [58] compared flow-level and packet-level

simulations for BitTorrent-like systems and found that, while flow-level simulations

are useful for demonstrating the theoretic performance of the de facto BitTorrent

scheme, the delay of TCP packets and other cross-layer effects have a significant im­

pact on BitTorrent performance, and these effects require a more granular simulation

to be adequately captured.

Much research has been performed concerning the robustness of BitTorrent's tit-

for-tat trading mechanism against selfish behaviors. BitTorrent was modeled as a form

of the Iterated Prisoner's Dilemma problem by Jun et al. [65], who suggested that the

current peer-selection algorithm is susceptible to free-riders; they proposed a different

TFT strategy. Tian et al. [26] used mathematical models as well as simulation-based

and real-world experiments to argue for a modified TFT algorithm.

Sirivianos et al. [27] emulated a strictly free-riding client which contacts the tracker

often to gain a large neighborhood from which to free-ride; they concluded that this

attack was feasible in practice. Liogkas et al. [28] use PlanetLab to demonstrate three

different exploits: downloading from seeds, downloading from the fastest peers, and

advertising fake pieces.

3.8 Conclusion

At present, BitTorrent's seeding mechanism is entirely altruistic; nodes have no ra­

tional reason to offer seeding service to their peers, yet the additional bandwidth

provided by seeding is essential to the efficient operation of BitTorrent. Anything

that can encourage seeding would have an immediate knock-on benefit for BitTorrent

55

users.

In this work, we have proposed a method for rewarding seeding in BitTorrent by

means of long-term identification. Nodes remember peers that seeded to them in the

past and reciprocate by seeding to them in later swarms.

To evaluate our algorithm and its parameter space, we developed and employed a

flow-level simulator. The algorithm was tested on realistic file-sizes and trace-driven

churn to improve its accuracy. We found that our algorithm improved the download

efficiency of the BitTorrent nodes from 70% to 95% or better. This improvement

represents the upper bound of our algorithm's performance and was based on oracular

knowledge that would not be available in real scenarios. We tested more realistic

settings and found that our algorithm could still increase the download efficiency by

ten percentage points.

Finally, we evaluated our seed-rewarding algorithm in swarms that had some por­

tion of the population running Bit Tyrant, a variant on BitTorrent that is aggressive

about getting fast downloads with minimal investments of upload bandwidth. We

found that our algorithm could protect nodes from being exploited by Bit Tyrant, but

could not sufficiently penalize tyrannical behavior to discourage users from choosing

to run BitTyrant. However, leveraging a weakness in BitTyrant, where BitTyrant

nodes must identify themselves as such, we can ignore tyrants during seeding and

reduce their performance.

So long as BitTorrent peers have sufficient overlap in successive swarms, allow­

ing them to build individual long-term histories of who has seeded in the past, we

conclude that BitTorrent peers using our incentivized reward seeding algorithm will

enjoy better performance for themselves and also improve performance for their peers,

whether running our algorithm or not. By adding in our mechanism, for which peers

56

have a genuine incentive to follow, we can build better robustness in Bit Torrent.

57

Chapter 4

BitTorrent Anonymity Marketplace

The very nature of operations in peer-to-peer systems such as BitTorrent exposes

information about participants to their peers. Nodes desiring anonymity, therefore,

often chose to route their peer-to-peer traffic through anonymity relays, such as Tor.

Unfortunately, these relays have little incentive for contribution and struggle to scale

with the high loads that P2P traffic foists upon them. We propose a novel modification

for BitTorrent that we call the BitTorrent Anonymity Marketplace. Peers in our

system trade in k swarms obscuring the actual intent of the participants. But because

peers can cross-trade torrents, the k — 1 cover traffic can actually serve a useful

purpose. This creates a system wherein a neighbor cannot determine if a node actually

wants a given torrent, or if it is only using it as leverage to get the one it really wants.

In this chapter, we present our design, explore its operation in simulation, and analyze

its effectiveness. We demonstrate that the upload and download characteristics of

cover traffic and desired torrents are statistically difficult to distinguish.

4.1 Introduction

Peer-to-peer file transfer protocols, such as the very popular BitTorrent [1] protocol,

provide massively scalable architectures for distributing large files. Unfortunately,

privacy is a direct casualty of the peer cooperation that drives them. For traditional

client-server architectures, the client need only trust the server not to reveal to addi­

tional parties the details of the transaction. While some information is revealed just

58

from observing that the client and server communicated with each other, the specifics

are confidential. With appropriate cryptographic and protocol mechanisms, the client

can have strong assurances of privacy in the transaction so long as the server remains

trusted.

On the other hand, in peer-to-peer cooperation, an individual, by necessity, reveals

details of the transaction to many parties, each of which must be trusted if privacy is

to be maintained. This problem is exacerbated by the nature of peers in such systems.

In the client-server model a user can limit interactions to well-known, vetted servers,

but in contemporary p2p systems peers could be controlled by an incompetent or

malicious individual or organization.

A number of solutions to the peer-to-peer anonymity problem have been proposed.

The most common solution in practice is to route traffic through anonymity relays

such as Tor [34]. Unfortunately, Tor has, by default, no incentives for cooperation

and struggles to scale with P2P workloads. Our goal at the onset of this research

was to develop an anonymity mechanism for BitTorrent that incentivizes participa­

tion and induces scalability. Such a mechanism would provide better performance

than BitTorrent-over-Tor while still providing sufficient anonymity guarantees. Fur­

thermore, it would draw BitTorrent users away from the Tor network and all parties

would be better off.

We have created the BitTorrent Anonymity Marketplace as novel solution to this

problem. This system provides genuine incentives for nodes to participate in cross

trading of multiple swarms obscuring the actual intent of the driving nodes creating

what we refer to as k-traffic-anonymity. We demonstrate in simulation the effective­

ness of this obfuscation and show that it has nearly optimal performance tradeoffs.

Our result is distinguished from other BitTorrent specific anonymity solutions either

59

because participation is incentivized, or because the attack model we address is more

powerful.

This chapter is organized as follows. We first review some of the operations of

Bit Torrent and some of the principles of incentives in Section 4.2. In Section 4.3 we

review the current solution space to the p2p anonymity problem. Then we introduce

our own objectives and design in Section 4.4. We evaluate our results in Section 4.5.

Finally, we close with a discussion of our research in Section 4.6 and our conclusions

in Section 4.7.

4.2 Background

4.2.1 BitTorrent

BitTorrent [1] is a highly successful and popular peer-to-peer protocol that enables

efficient, rapid distribution of potentially large amounts of data to a group of clients. It

utilizes the available upload bandwidth of the participants to scale to support many

users. Most important, it has built-in incentives mechanisms that reward correct

participation.

To make an item available for BitTorrent downloading, a publisher makes avail­

able a tracker and at least one seed. The tracker follows the nodes participating in

the swarm, helping nodes locate their peers. Seed provide round-robbin, best-effort

service to all connecting peers.

To download the object, a group of nodes, collectively called the swarm join the

system by contacting the tracker, indicating their intent to participate. The tracker

informs joining nodes of random subsets of their peers. The nodes then establish

direct connections with these subsets forming their local neighborhoods. Thus joined,

the nodes download the object in equal sized chunks of the file called pieces. Nodes

60

share information with their neighborhood about the pieces they have available and

update them as new pieces are acquired.

Nodes, however, limit the number of peers in their neighborhood that can down­

load from them at any given time. They evaluate their peers based on how much each

has recently uploaded. The node then provides download service to the top three or

four contributors. Each node also provides service to one or two random nodes as

a method of searching the neighborhood for better partners. Thus, peers have an

incentive to contribute to their neighbors in order to receive reciprocal contributions

from their neighbors in turn. When a node decides to service a peer, it is said to

unchoke the peer. Conversely, when it will no longer serve the peer, it is said to choke

it. Once a peer is unchoked, it can send Request messages asking for data. If the

unchoking node refuses, the peer considers itself snubbed and will not do business

with that node for some time. Nodes update their peers with Have messages when a

new piece is received so that the neighborhood keeps abreast of what a node can and

cannot trade.

While a significant corpus of research has demonstrated that Bit Torrent can be

exploited [25, 26, 27, 28], BitTorrent continues to work well in practice. The incentives

in BitTorrent are sufficient, at present, for keeping the system stable. Indeed, while

there is no consensus on the true amount of BitTorrent data in-flight today, it is clear

that the number is large at somewhere between one-third and one-half of all Internet

traffic [30, 31, 32, 53].

4.2.2 Incentives

Peer-to-peer systems' greatest strength is their lack of centralization. At the same

time, this lack of centralization makes enforcement of peer behavior difficult. In

61

general, the system designers intend for peers to behave in a certain way, but peers

may choose to behave differently. Most nodes are assumed to be rational, or self-

interested, and want to maximize their benefit from the system while simultaneously

minimizing their own contributions. Faithfulness is the measure of a node's obedience

to designer specification. By definition, rational nodes are only faithful if it is in their

own interest, and, therefore, faithfulness can only be achieved by designing systems

with proper incentives [15, 23].

In previous work, we identified two general classes of incentives in peer-to-peer

systems: artificial and genuine [56]. Genuine incentives are characterized by being

an intrinsic property of the p2p protocol, whereas artificial incentives are a super-

imposition of reward and punishment on top of an unincnentivized system. The

intrinsic nature of genuine incentives makes them more robust to rational manipula­

tions and are, therefore, preferred.

4.3 Related Work

A number of solutions to the peer-to-peer anonymity problem exist or have been

proposed. We briefly outline some of these approaches here.

4.3.1 Tor

Tor [34] is distributed network of relays operated by volunteers that allows clients to

route network traffic through them to disguise the true origin. If used properly, the

client's identity and physical location are kept hidden from other entities. Per-relay

encryption also provides anonymity against wire-traces and packet sniffing. Each

relay is allowed to define its own policy about what it will and will not do for the

network. Entry routers, as the name implies, accept traffic from outside the Tor

network. Conversely, exit routers allow traffic out to the true destination. Middle

62

routers only relay traffic within Tor itself.

A node that desires anonymity computes an onion route through the Tor network.

It encrypts its packet with a layer of encryption for each router in the network. Each

intermediate node peels off a layer of encryption, and forwards the traffic to the next

hop. Each node only knows the preceding and subsequent steps in the route. The

nodes cannot be sure if the packet they are receiving is from the original sender, or

simply a relay in the route.

Measurements taken in [35] indicate that 40% of the traffic from a sample Tor exit

node was used for BitTorrent indicating how popular Tor is for providing Bit Torrent

anonymity.

Despite Tor's usefulness, it does struggle with a significant problem. It has trouble

encouraging participants to contribute new computers to serve in the Tor network,

impacting Tor's ability to scale with the traffic it receives. Additional nodes also

strengthen anonymity. However, the value of serving as a relay to a user is unclear;

it has no impact on the quality of service that they observe from the Tor network.

Consequently, most users choose not to contribute.

Another important observation is that any negative legal or social response result­

ing from the originator's connection will be borne by the exit node. Consequently,

many nodes have a strict disincentive to not serve as an exit node.

Artificial Incentives for Tor Recently, researchers have proposed extending Tor

with incentives for better participation. One proposal [66] is to create a central au­

thority that tracks each node's contributions and publicizes their good behavior so

that other nodes can reward them. Alternatively, other research proposes micropay-

ments, where Tor users may buy a higher quality of service [67].

63

4.3.2 BitTorent Specific Solutions

In addition to the Tor general anonymity network, anonymity mechanisms have been

proposed that are specific to BitTorrent.

BitBlender [36] extends BitTorrent to route traffic through peers in an anonymity

directory. In a fashion similar to Tor, members of the swarm can forward requests

through other peers providing a form of anonymity it calls "A;-anonymity." They

define this as "users are indistinguishable from a set of k users." Unfortunately, as

with Tor, BitBlender provides no incentive for nodes to offer relay services. Please

note that fc-anonymity in their system is not the same as ^-traffic anonymity in this

chapter.

OneSwarm [37] attempts to solve the BitTorrent anonymity problem more gener­

ally. Nodes have extensive control over what information about themselves they will

share and with whom. In particular, OneSwarm would be used with social network­

ing so that information is only shared with "friends." OneSwarm does not solve the

problem of maintaining anonymity in large groups of untrusted peers.

SwarmScreen [38], in a fashion similar to our work, proposes anonymity through

the use of cover traffic. In particular, they assert that nodes achieve plausible deniabil-

ity "by simply adding a small percent (between 25 and 50%) of additional random con­

nections that are statistically indistinguishable from natural ones." SwarmScreen's

attack model has an observer classify nodes based on the behavior of the community

they participate in. Its stated goal is the disrupting of these "guilt-by-association"

attacks, or in other words, obscuring the community that a node is participating with

at any given point in time. We will make further comparisons to SwarmScreen as we

64

outline our own solution. Our work is only superficially similar.

4.4 Design

Our objectives for this work break down into three categories: anonymity, perfor­

mance, and incentives. As we detail our objectives, we will compare and contrast our

solution with SwarmScreen to illustrate the differences in approach and philosophy.

Our primary goal is an obfuscation of participant behavior that we call k-traffic-

anonymity. Nodes in our system must have an indistinguishability of intent as they

are observed by their peers. In other words, a node's peers can see that they are

downloading k items but cannot distinguish which one of them the node picked in­

tentionally. The intentionally picked torrent is called the native interest.

Our primary threat: observers wish to ascertain a target node's native interest.

We call the attacker an inquisitor and define three different classes of attacks. Fully

passive inquisitors do not contact any other peers. Instead, these nodes exclusively

scan the tracker's data on where nodes are participating. Decoy passive inquisitors do

contact peers and can appearance to participate. They may lie and announce piece

reception, make requests for pieces from their peers, and in any other way appear to be

normal nodes, but they will not actually accept downloads or make uploads. Finally,

Active inquisitors can participate and behave like any other node in the system.

Within our anonymity constraints, we want good performance. We will measure

performance in terms of the number of additional download bytes required to achieve

a given level of anonymity. In an idealized world where all torrents are the same

size, optimal performance for fc-tramc-anonymity is k times the number of bytes in

a torrent. In other words, the node downloads exactly k torrents and nothing more.

Our objective is nearly optimal performance; we are not interested in designs, for

65

example, that require 2k or more download cost for fc-traffic-anonymity.

Finally, our last objective is that the incentives structure of our system encourages

full participation of the rational nodes. The critical incentive that we identify is that

participating in a torrent, purely for anonymity reasons, can still offer performance

benefits. This is important for two reasons connected with anonymity. First, to do

otherwise would create a system wherein some torrents might only ever have natively

interested nodes downloading it. This is a form of anonymity starvation. Second, if

there is no value to the cover-traffic torrents in the download set, an inquisitor might

be able to distinguish the native-interest in the set. By creating a system where all

torrents can be valuable as cover-traffic, nodes have incentives to participate in them

preventing torrent starvation and obscuring the native interests of the participants.

We emphasize that this is a genuine incentive, requiring no additional enforcement

mechanisms or auditing.

In contrast, SwarmScreen is interested in a much weaker attack model. They

showed that BitTorrent communities tend to form around interests rather than around

language, geography, or even friendship. They further showed that these communi­

ties can be monitored and classified by observing a small number of the nodes. The

describe this invasion of privacy as "guilt by association" attacks. Finally, the also

demonstrated that monitoring just 1% of the network is sufficient for assigning users

to their communities with 86% accuracy. They solve this attack model by mixing in

traffic to other random torrents to obscure which community a SwarmScreen partic­

ipant belongs to. Defeating this simpler attack model only costs them 25% to 50%

overhead.

However, the stronger attack model we defeat with our system is worth the in­

creased cost. An observer that can follow a SwarmScreen node for a long period

66

of time can easily determine which torrents the node was downloading, because the

node never fully downloads the torrents it uses as cover traffic. At the same time,

our system also disrupts the guilt by association attack as described.

BitTorrent Anonymity Marketplace, High-Level Design. Our basic system

works for any given k level of anonymity. First, each node participates in k different

torrents simultaneously. It advertises all k torrents, hereafter called its active set, to

its local neighborhood. While the composition of the active set can change over time,

it must eventually completely download k complete torrents (we will call these the

download set), or else a long-term observer could immediately filter out the cover-

traffic.

Our design also requires that nodes will "cross trade" their torrents, i.e., a node

unchoke its peers' requests for any torrent, not just the torrents where a node has

benefited from its peers. In our design, a node will consider every possible torrent it

sees advertised by its peers, and will prefer to join those torrents which it believes

will be most beneficial in its quest to download its native interest.

The design of our valuation function is drawn from models of supply and demand

in economics [68]. In general, the value of a torrent to a node is raised by increased

numbers of peers that desire it, while the value is lowered by increased numbers of

peers that provide it. Unfortunately, it is impossible to directly measure a torrent's

supply and demand in BitTorent, and so we use several factors to approximate this.

These factors include how much of the torrent the peer requires to complete it, Have

announcements indicating what it is currently trading, and direct Request messages

to measure what is available.

We highlight that our valuation function was derived from empirical data and

67

not an economic or mathematical model. Developing a coherent economic valuation

function is a significant research undertaking in and of itself and is beyond the scope

of this chapter. Our experimental version was constructed by taking the factors

that impact the value of a torrent and combining them in a weighted sum. This

construction, similar to how utility functions are built [69], enabled us to experiment

with different weights for the factors by dialing up or down the constant associated

with that variable. Later in this chapter, we will detail our derivation of our constants

from experimentation.

The critical hypothesis tested in this work is whether using a valuation function on

torrents will drive node behavior such that protocol exchanges related to the native

interest are statistically indistinguishable from protocol exchanges for cover traffic.

The core idea is that a peer has no idea if a node is asking for pieces of a torrent

because it actually wants it, or if it is just asking for those pieces because it has a

high value due to the neighborhood's "market" conditions.

4.5 Evaluation

We employed a simulator developed in previous research [70] to evaluate our imple­

mentation of the BitTorrent Anonymity Marketplace. The simulator, running faster

than real-time, enabled fast design cycles. After completing a simulation, we studied

the results, modified the configuration, and re-ran our experiments. This was a sig­

nificant advantage over using an artificial environment such as PlanetLab or EmuLab

to run a "real" BitTorrent client. Simulation is also preferred to releasing a client to

public users because it allows us better access to system and client state information

and it avoids any potential legal or ethical issues we are not yet prepared to confront.

68

4.5.1 Implementation

Our client implementation was developed to be as realistic as possible in all stages

of their operation. One notable departure from a stock BitTorrent system is that we

assume the presence of a distributed hash table (DHT) in which to store metadata,

rather than the more limited tracker functionality in the current BitTorrent. What

follows is an overview of how nodes participate in the Marketplace.

Publishing. It is essential that objects exchanged in the Marketplace are opaque

to users that are uninterested in them. Otherwise, users may choose not to trade

in objects they deem overly sensitive. For this reason, all content is encrypted and

assigned random identifiers. We assume out-of-band methods (e.g., publisher web

servers) help users discover specific torrents and obtain the decryption keys. In this

manner, participating nodes will trade in many torrents without any knowledge of

their content, except for their own native interest, thus obtaining a modicum of

plausible deniability. Once a publisher has encrypted the object and created its

random ID, it stores a record similar to a torrent-file into the DHT and announces

nodes that are seeding the torrent within the DHT.

Messages. All inter-peer communication consists of unmodified BitTorrent mes­

sages with one exception. While normal BitTorrent Choke and Unchoke messages

identify a specific torrent, in the Marketplace these messages are not torrent-specific.

These two messages instead signal that the sender is willing or unwilling to fulfill

requests for any of the torrents it has currently advertised.

Joining. To use the BitTorrent Anonymity Marketplace, a participant first acquires

the random ID for the desired object, as described earlier. Next, the node joins the

69

DHT and requests a list of active torrents. From this list, the node creates a list

of k torrents consisting of its desired torrent plus k — 1 randomly selected torrents.

The node then indicates to the DHT that it is joining those k torrents and requests

participating peers. The node creates a neighborhood from these lists, preferring

peers that show up in multiple torrents.

Trading. After nodes join the system, they unchoke peers in a manner similar to

BitTorrent with the highest upload services getting the unchoke slots. However, in

the Marketplace, all upload service is adjusted by the estimated value of the received

pieces. Our implementation keeps the value constant across an entire torrent, al­

though different pieces could ostensibly have different values. Once the values of the

upload services are adjusted, unchoking proceeds normally. At the same time, if the

node can find a more valuable torrent than the least valuable torrent in its active set,

it drops that torrent and joins the new one.

Seeding and Termination. A Marketplace participant must complete k down­

loads before leaving the system. Before all k torrents have completed, a node may

find value in seeding one of its completed torrents, depending on its observations of

the supply and demand for those torrents. Alternately, it could forgo seeding and

instead look for more profitable ways to trade its available bandwidth.

4.5.2 Development of the Valuation Function

We have developed a valuation function based on reasonable economic assumptions,

refined by experimentation, and suitable for enabling our evaluation of our anonymity

objectives. We started with basic supply and demand concepts [68]. In other words,

we accept the assumption that increased desire and scarcity raise the value of a given

70

object, while decreased desire and abundance reduce the value of same. In terms of

the BitTorrent Anonymity Marketplace, the number of nodes wishing to download a

pieces of a torrent constitute the desire, and the nodes that can service those requests

constitute the supply. These two factors are the basis for our valuation function.

Unfortunately, the node cannot measure these factors directly and must therefore

estimate them. For example, a node sees all the peers within its neighborhood, but

it cannot see further. It cannot see every peer participating in every torrent, thus

it cannot determine the global supply and demand of torrent pieces, nor even can it

determine any other peer's view of this data. To estimate supply, Marketplace nodes

treat what they can see, within their own neighborhood, as an estimate for what their

peers can see. (Neighborhood visibility is not transitive. If A is in B's neighborhood

and B is in C's neighborhood, there is no guarantee that A knows anything about

C.) Nodes can make a better estimate about the demand for a torrent by totaling

the number of pieces required for their peers. They then combine these two estimates

into a single factor hereafter referred to as approximate demand over supply.

In addition to this information, BitTorrent nodes can make use of the Have

announcements and Request messages from peers to know more about demand in

the neighborhood. The Have messages indicate a degree of freshness to what tor­

rents neighbors are trading and, of course, Request messages are the strongest, most

straight-forward measure of demand available.

Our early valuation function was a weighted sum of these three factors. Using

this construction, each factor could be experimentally measured to determine if it

had an impact at all, and the ideal weighting could be derived experimentally using

our simulations. By fixing a weight of 1 to all but one factors, the remaining factor

can be evaluated independently. Setting this experimental factor to 0, for example,

71

completely eliminates its impact on the function.

For testing the Marketplace, we fixed k = 5, set the total number of torrents in the

marketplace to 40, initiated 100 clients plus 40 seeds, and used 125 MB files for each

torrent*. For simplicity, all the clients have the same upload and download speeds

of 1Mbps, start at the same time, and end when their k downloads are complete.

To test the effects of torrent popularity, we configured 10% of the torrents to be the

native interest of 50% of the clients.

Our initial simulations immediately demonstrated that our initial valuation func­

tion was insufficient. Regardless of configuration, the clients in the simulation would

not complete their downloads. We determined that the nodes were dropping the

torrents in their active set, regardless of how much they had completed, for a new

torrent that was surging in popularity in their neighborhood. We decreased the fre­

quency at which nodes would update their active set but that didn't solve the problem

sufficiently.

After some additional experimentation, we determined that because one of the

goals of the node is to complete k downloads, the completeness of a torrent should

factor into the valuation function. In other words, if all other factors are equal, a more

complete torrent should be valued higher than a less complete one. We retooled the

valuation function with this new factor and re-ran the simulations and were rewarded

with converging results.

Using our more mature valuation function, we tested the factors in the function

independently. For each factor tested, we experimented with weights of 0, 0.25, 0.5,

0.75, 1.0, 2.0, 4.0, 8.0 and 16.0. For completeness, we also tested a few other non-

* Individually 125 MB is a small file for BitTorrent, but because our nodes are exchanging five
files simultaneously, the amount of data in transit is 625MB per client.

72

value related variables such as how often the node updates its active set, and so forth.

In total, we ran fifty different different configurations of the simulator, again fixing

all but one factor at a time and varying it across this broad range of weights.

These tests demonstrated, again, that biases toward completing torrents that

have been started are essential, and that data collected from direct requests is the

best proxy for overall demand. When we reconfigured the simulation to ignore direct

requests, performance worsened by nearly twenty percent. Interestingly, the remain­

ing factors proved to be much poorer estimates of demand and had little impact on

average performance. However, they are useful to a node at times when the node has

not recently received any such requests. A small weight for these factors was better

than no weight at all. We conclude that when the direct request factor is in play,

it should dominate the equation. However, when the direct request factor drops to

zero, these weaker factors serve as a backup.

While the specific coefficients of valuation function are optimized for our simula­

tion configuration and are thus not directly applicable for a real-world deployment,

the insights obtained from this empirical evaluation are still essential. Moreover, we

can now test our central hypothesis: will cross-trading nodes that use a valuation func­

tion to decide which cover-traffic nodes to trade have the A;-traffic-indistinguishability

property?

4.5.3 Anonymity Results

To evaluate anonymity, we took the best observed weight for each of the valuation fac­

tors and reconfigured the simulator appropriately. With this valuation configuration,

we ran twenty simulations. Each took several hours to complete on a 2.4 Ghz Athlon

and covered approximately 7 hours of simulation time. Each run involved about

73

70GB of simulated data transfer and approximately 10 million control messages. The

simulations output logs that detail the data transfers and control messages and we

used them to trace how the peers interacted with each other as well as to calculate

costs and determine performance.

Our primary goal was to quantify indistinguishability of intent. This property

means that a node downloading 1 native interest, and k — 1 cover traffic torrents will

not reveal its native interest by its behavior to its peers. We will examine three node

behaviors that could potentially reveal the native interest to peers: start times for

torrents, end times for torrents, and download patterns.

Start Time. We first evaluate the indistinguishability of start times, where start

time is measured as an integer rank. In other words, the first torrent that a node

makes requests for is ranked 1, and the second torrent that a node makes requests for

is ranked 2, and so on. We evaluated this aspect of indistinguishability in two ways.

First, we checked that there was sufficient variability of start times for native

interests. It is important, of course, that native interests not have a predictable start

rank. Our results are shown in Figure 4.1. The graph is parameterized on the number

of nodes natively interested in the torrent, as a measure of popularity. The y axis is

the average start rank for nodes of that popularity and the standard deviation. The

graph shows that the standard deviation is high for start rank, so a node's native

interests are suitably obscured from its peers.

Our second measure of the indistinguishability of start times is to measure the

average start time for the same torrent for peers that are natively interested relative

to peers that are not (see Figure 4.2). There is a noticeable shift to earlier start

times for native interests. Nevertheless, the average times for the native interests

74

-
,
\ A
V

1 A-ANativilntiirfidr. 1

^ \
^'"'

*
\

,

'o 5 10 IS 20

Figure 4.1 : The mean start rank of native interests plotted against popularity. The
x-axis is the number of peers natively interested in the torrent, the y-axis is the
starting rank. The error bars show the standard deviation. The wide standard
deviations mean that native interests have a wide range of start rank.

lie within the standard deviations of the start times for non-native interests. The

distributions are not statistically different enough to be detectable. Furthermore, the

native and non-native graphs have similar shapes, suggesting similar behavior for the

two populations.

End Time. It is also important that native interests not end predictably. Express­

ing end times as integer ranks, we evaluated the variability of native end times in

Figure 4.3 and compared those times to non-native end times in Figure 4.4. These

graphs show that, as with start times, there is a wide variability in the end times and

that the mean is within the standard deviation of cover-traffic start times.

Download Rates Over Time. Finally, we examined the rate of piece transmis­

sions for native and non-native populations in the Marketplace to verify that trans­

mission patterns are indistinguishable. We created our transmission pattern by ag­

gregating each node's download volume within 500 second buckets. All nodes are

75

i, Native interest
t Cover Traffic

Figure 4.2 : The mean start rank of the various torrents plotted against the start
rank for the same torrent for peers not natively interested. This graph shows that
native interests do start sooner, but the mean lies within the standard deviation of
non-native interest start times for most torrents.

L.Native interest 1

i

\ i!

%

K
\

\
N

Figure 4.3 : Similar to Figure 4.1, this graph shows the mean ending ranks and the
standard deviation. As with start times, end times vary sufficiently to make them
poor predictors of interest.

76

0 5 10 15 20
Popularity

Figure 4.4 : The mean end ranks for native interest compare to mean end ranks for
non-native interest. As before, there is a noticeable shift downwards, but, as before,
the means for the native interests tend to lie within the standard deviations of the
non-native interests.

normalized such that their first 500 second slice of time is slice 0, the second 500

seconds is slice 1, and so forth. Within each slice, we separated the download volume

for the native interest from the average download volume for the cover-traffic. The

average for all nodes and the standard deviations are computed for each time slice.

Figure 4.5 shows the download pattern for all nodes across the entire simulation. We

again observe that the nodes' averages for native traffic is within the standard devi­

ation of the cover-traffic. Note also that this graph represents a global view over all

nodes, so this any node's local view would have higher error.

We can examine a weaker observer by computing the observed download patterns

for a single client. That is, for each node, we aggregated all the traffic that only that

node observed directly. As before, we aggregated into 500 second buckets, dividing

the native interest traffic from cover traffic. Then we used the average and standard

deviations for each node's observed patterns to create Figure 4.6. The two types of

traffic overlap even more in this graph, demonstrating that a single peer observes

less differences between native interest traffic and cover traffic then can be observed

77

across the swarm as a whole.

4.5.4 Analysis

We now revisit anonymity against each of the inquisitors that we previously identified.

Passive Inquisitor. These nodes do not directly interact with any actual nodes

but only talk to the tracker or DHT. The passive inquisitor can, at best, track a

given node's active set. Prom this information, it cannot determine the node's native

interest. As we demonstrated, the entrance and exits of a given torrent in a node's

active set appear indistinguishable, regardless of the torrent's status as native interest.

Decoy Passive Inquisitor. These nodes directly interact with other nodes, but

do not actually exchange pieces. They can, however, advertise pieces and unchoke

other nodes. Such inquisitors gain additional information, because rational nodes will

drop them regularly for their poor performance. However, with a Sybil attack [40],

these nodes can connect to a given node over and over from different IP addresses,

simulating a continuous connection. Such a Sybil attack could track the traffic of

a rational node by capturing all Have announcements. Nevertheless, even a Sybil

attacker will not determine the node's native interest from this information because,

as we demonstrated, the download rates for a given torrent for a node are similar,

regardless of the node's native or non-native interest in that torrent.

Active Inquisitor. The most powerful non-wiretap node, these nodes actively

trade with peers in the network. This feature allows them to attempt to "trick"

a victim node into revealing state through carefully crafted trading. For example, an

active inquisitor might obtain a large number of blocks from all the nodes in active

78

i Native In te res t
r Cover Traffic

5000 10000 15000 20000 25000
Time Elapsed (seconds)

Figure 4.5 : Native and non-native traffic patterns super-imposed. While native traffic
is above non-native traffic for the same node, the median for the native is within the
standard deviation of the other.

set. Then, it might selectively advertise these blocks to the victim to see which blocks

the victim takes a higher interest in. Furthermore, a very well provisioned inquisitor

might introduce identifiable torrents into the marketplace that it can use to manip­

ulate torrent values within a neighborhood. The active inquisitor can use such value

manipulation to attempt to pierce the indistinguishability.

At present, we have not yet attempted to simulate active inquisitors. Nevertheless,

we expect that unless the inquisitor can control a large portion of a victim node's

local neighborhood (e.g., using a Sybil attack), it cannot have high confidence about

the motivation for a node's interest in any given torrent. This attack, however, is

made non-trivial because DHTs or trackers give out random subsets of the peers to

a participating node, thus dramatically increasing the costs of overtaking a node's

neighborhood. Nevertheless, Sybil attacks are a significant security issue and remains

a point of research.

In addition to our successful anonymity results, we also quantified the costs in

79

2500 -

2000

©

<b

S 1500

u

•a looo

I
| 500

1
I °

-500

" 1 0 0 0 0 5000 10000 15000 20000 25000
Time Elapsed (seconds)

Figure 4.6 : This figure is similar to Figure 4.5 but limited to the viewpoint of single
clients. In other words, the former figure is a global representation of download
patterns, while this figure is representative of what a single peer observes.

these simulations. The amount of data downloaded, expressed as a multiple of a

single torrent, averaged 5.71 ± 0.43 Given that the optimal value is 5, this indicates

that our nodes are not wasting a lot of time downloading torrents that they do not

complete.

To conclude our evaluation, we review our incentives qualitatively along two of

three axes suggested by previous work [15, 23]. We now consider incentives for com­

munication and incentives for computation. There is no need to evaluate incentives

for message passing because the Marketplace, as in regular BitTorrent, does not have

peers relay messages for one another.

Incentives for Communication. The first question is, does a rational node have

any incentive to lie about its state?

1. Active Torrents: The only incentive for a node to lie about its active set is

for increased anonymity against passive inquisitors. However, we have demon-

80

strated that the native interest of a node is not revealed by the makeup and

dynamics of the active set. Furthermore, the active set is necessary for perfor­

mance and anonymity. Therefore, there is no incentive to lie about this state.

2. Choke Status: There is no incentive for a rational node to misinform a neigh­

bor about the choke state between them. A lie about choke status might result

in a snub, which is undesirable.

3. Piece-Interest Status: The incentives to lie about this are unclear. There

is an incentive for a node to announce that it has pieces, even for pieces it

does not actually have because the value of the torrent in the marketplace will

increase. On the other hand, unchoked neighbors may ask for these pieces and

subsequently snub the lying node when it cannot produce them. We have not yet

quantified these incentives, but snubing is undesirable, providing a disincentive

to this behavior.

4. Piece Requests: A node has an incentive to request pieces that it already

has in order to drive the value of the torrent higher. However, it also affects

the value of torrents by pretending not to have the piece. Requesting pieces

already present costs additional bandwidth, which is valuable and limited, so

that behavior is certainly disincentived. Similarly, pretending not to have a

piece means that a peer who might have something to trade might skip over

this node. As with core BitTorrent, Marketplace nodes have an incentive to

participate normally in torrent trading such that they get what they want in

an efficient manner.

81

Incentives for Computation. We next ask, does a rational node have any in­

centive to compute a non-conforming value for torrents in the marketplace? The

answer is no, by definition, because nodes will compute their own market valuations.

Theoretically, all nodes have an incentive to develop effective methods of evaluating

torrents of non-native interest. The cooperation model supports and encourages this

form of self-interested operation.

In summary, the Marketplace is built on a sound foundation of incentives, although

some small components are currently manipulable, and aggressive Sybil attacks may

be able to weaken the anonymity guarantees. These are open problems for future

research.

4.6 Discussion and Future Work

Our proposal of the Bit Torrent Anonymity Marketplace is a valuable contribution to

p2p-anonymity, particularly if an implementation of it could draw away traffic from

Tor. However, our work has produced many more questions than it has answered.

4.6.1 Stronger Anonymity and Ethical Issues

Our anonymity model is designed to shroud a peer's intentions from the observations

of its neighbors. However, many Bit Torrent users would be interested in shrouding

their intentions from adversaries that can tap their wire, such as their ISP. The Bit-

Torrent Anonymity Marketplace could potentially be hardened to improve anonymity

in such cases when the adversary can tap the peer's line.

Per-peer encryption. Peers can communicate with one another via encrypted

links, an optional feature already present in BitTorrent. This immediately hides the

message exchanges that divulge the Marketplace's state. Despite this link encryption,

82

an adversary would still have access to the public information in the DHT.

Late-start native interest. A node does not need to connect to its native interest

upon initialization. Instead, it can choose its fc-active set randomly, which may or

may not include the native interest. If not present in the initial active set, the node

can rotate it into activity at a later time.

Even split peers. Because our system biases a node's selection of its peers based

on the value of the torrents they are trading, an observer could approximate the value

of each torrent to the node based on its neighbor selection. Nodes could remove this

bias, selecting peers evenly from their desired torrents.

Improving cover traffic. Users that are sensitive to their anonymity should ensure

that the Marketplace is well stocked with items that are legitimate candidates for

cover traffic. Such items would include sensitive, but highly-legal objects that provide

better plausible deniability.

This last point about cover traffic leads to interesting ethical questions about the

Bit Torrent Anonymity Marketplace because it will, without a doubt, provide cover for

individuals engaging in illegal and reprehensible behavior. Unfortunately, it is often

the assumption that anonymity only benefits individuals engaging in such actions.

The truth is that anonymity is valuable for many legitimate purposes. For example,

• An individual with a medical condition may not wish to reveal it. Doing research

on the internet can expose them to other parties. The BitTorrent Anonymity

Marketplace does not provide anonymity for the initial search for documents (a

standard service like Tor is well suited to this task), but could provide cover for

downloading and viewing a video about treatment options.

83

• Legality is highly dependent on the jurisdiction. What may be legal in one

region of the world may be highly illegal somewhere else. Such content may

be sensitive to the downloader even if it is legal. This is especially true if the

downloader is from, or has ties to, a jurisdiction where it is illegal.

• Anonymity also protects individuals from commercial exploitation. In cases

where BitTorrent is being used for legal content, corporations can easily learn

a user's tastes and interests from very simple observations of the tracker or

DHT. Absent regulations to the contrary, corporations will naturally begin using

this information to target users with advertising and so forth. The BitTorrent

Anonymity Marketplace significantly reduces the effectiveness of such attacks,

since many or most of the nodes participating in any given torrent will be there

for the cover-traffic, not because it's their native interest. In fact, they will have

no idea what they're sharing.

The effectiveness of the Marketplace is greatly increases when there are many

kinds of legitimate, yet sensitive, torrents actively in trade. On the other hand, if

only illegally copied music is found therein, it won't matter if you have /c-anonymous

cover traffic. K illegal music or movie downloads is no better (and, in fact, could be

worse) than just one.

That said, there will be individuals that would be interested in using a service

such as the BitTorrent Anonymity Marketplace to engage in illegal behavior. They

should be aware that /c-traffic anonymity will probably not shield them effectively

from government observation (see, e.g., You-are-not-a-lawyer [71]). It is possible,

however, that the BitTorrent Anonymity Marketplace does help to cover users against

corporate investigation. For corporations looking to bring lawsuits against individuals

84

based on downloads, the BitTorrent Anonymity Marketplace greatly increases the

cost of determining infringement, and introduces a risk of false positive to the suing

company.

Can a user be held legally liable for downloading a torrent, as cover traffic, assum­

ing the content in question would be illegal to have downloaded via ordinary means?

The essence of the user's defense would be that they were just helping random peers

to download content, while they, themselves, were getting something entirely differ­

ent. Of course, if they are faced with all k of their encrypted downloads and asked to

prove which one they can decrypt, they may be stuck. Furthermore, even if the user

legitimately doesn't know what is being downloaded, the adversary might well crawl

the various content discovery sites (e.g., PirateBay and the like), creating their own

reverse-mapping from encrypted torrents to their true identities.

As such, the degree of anonymity proffered by the BitTorrent Anonymity Mar­

ketplace seems to be comparable to serving as the exit node of Tor or another such

onion-route system. The exit node is clearly observable doing fetching what could

well be illegal content. The exit node's operator may well claim that the content in

question was being delivered to a third party, but the exit node is clearly partici­

pating in the process. Of course, such arguments quickly become absurd. Internet

core routers certainly have significant volumes of undesirable content transiting them

every day, all day long. They might claim a "common carrier" defense if sued. Could

a BitTorrent Anonymity Marketplace node, or for that matter a Tor exit node, claim

a similar defense?

85

4.6.2 Informed Risk

One possible development to the BitTorrent Anonymity Marketplace would be chan­

nels that inform the participant of risk. In particular, these third-parties would

uncover the content names and descriptions for the opaque DHT identifiers. Users of

these services could then fill their active sets with elements from white lists or pre­

vent elements from black lists from getting in. This would, of course, erase plausible

deniability about not knowing the content. However, the user could choose their own

level of risk.

Most importantly users could be absolutely sure that morally, ethically, and legally

unacceptably risky content, such as child pornography, would never pass through their

systems. Users looking for anonymity for sensitive but legal content, such as medical

treatment videos, could also ensure that they were not taking any legal risks for their

behavior and might, instead, find themselves downloading medical videos for a wide

variety of different ailments. Moreover, certain organizations that believe in civil

disobedience to what they perceive as unjust laws might purposefully participate in

providing cover traffic for certain classes of torrents. Curiously, the black list for one

organization might be a white list for another.

As a concrete example, consider a government that runs a black list of videos that

are deemed illegal for whatever reason (e.g., criticism of the king is illegal). Citizens

within that country that wish to have anonymity and avoid legal risk could use that

list as a black list. Other individuals, inside or outside of the country, might treat

that as a white list, looking to provide cover traffic for those torrents by making them

more popular.

86

4.6.3 Future Work

Several aspects of the BitTorrent Anonymity Marketplace remain unresolved or re­

quire further exploration. The aforementioned legal issues are one such area. It would

be valuable to explore the legal possibilities of the BitTorrent Anonymity Marketplace

under the laws of various jurisdictions.

Another area of significant future research is the valuation function that each

peer performs on the torrents it is trading. Just as we are not lawyers, we are

also not economists. We recognize that the economic interactions of our proposed

system are complicated but subtle. In a real world implementation, there might be

thousands of torrents and hundreds of thousands of clients in the Marketplace, not

to mention churn, disparities of upload and download capacities and so forth. It will

be a daunting challenge to uncover a generalized valuation function that works well

under all circumstances.

Our current simulations are pedagogical and unrealistic. In particular, we have

not studied the BitTorrent Anonymity Marketplace under realistic churn or other such

conditions. Because our simulations lack these features, we have been unable to see

some predicted behaviors that require them. Also, in a real-world scenario, torrents

will be of different sizes and nodes would have widely varying network performance.

Different nodes might have different values of A;-anonymity that they desire. It would

be convenient if the choice of k value for a client had no impact on its neighbors, but

we have not examined this.

We have also not completely explored the attack space for either inquisitors or

rational attackers. Our simulation does not yet include an active inquisitor that

attempts to introduce tainted information in an effort to reveal the interests of peers.

Similarly, our simulations do not yet include a rational manipulators that lies about

87

state in an effort to manipulate torrent values.

Finally, it should be obvious that simulation alone is insufficient for evaluating the

Bit Torrent Anonymity Marketplace. An actual implementation must be created and

evaluated for real-world operations. A whole host of difficulties is involved in such

development, although most of them are legal, rather than technical.

4.7 Conclusion

In this work, we have explored a new method for cooperative anonymity in BitTorrent

swarms, called the BitTorrent Anonymity Marketplace, where peers exchange pieces

of multiple torrents based on their value for trading with other peers. This creates

a world where intent is difficult to discern because motivations are obscured by the

shifting values within the local neighborhood. Nodes always download k different

torrents, selected randomly, to completion, obscuring their true intent, yet still biased

in favor of increasing the nodes' observed performance.

With detailed event-based simulations, we demonstrated that the download be­

havior for native interests and cover traffic was statistically similar, making it difficult

for observers to distinguish between the two. We also demonstrated in simulation that

our Marketplace completes without unreasonable overhead beyond the cover traffic's

costs. We also evaluated the incentives of our system and found that the overall

setup is sound against rational manipulations, but that there are obvious places for

exploitation.

88

Chapter 5

Conclusions

In this thesis, we have investigated one of the most difficult problems for peer-to-peer

networks: preventing rational attacks through proper incentives design. Our results

contribute to both the theory and practice of such design by elucidating attributes

important to successful incentives and then using those principles in concrete imple­

mentations. Specifically, genuine incentives generally provide more effective rational

robustness than their artificial counterparts. In fact, genuine incentives completely

eliminate the auditing class of attacks that many artificial-incentives systems are

subject to. Armed with this key observation, we implemented two extensions to the

BitTorrent p2p protocol that improve performance and anonymity. Both extensions

have the incentives built directly into the peer-interactions requiring no additional

infrastructure for behavior enforcement.

In this chapter we present our conclusions regarding genuine incentives given our

experiences developing the two aforementioned extensions. This discussion excludes

any analysis of the effectiveness of the extensions in achieving their designated ob­

jectives. Such analysis is already provided in their respective individual chapters.

Instead, our conclusions in this final chapter are focused on how our understanding

of genuine incentives has grown through the development of these extensions.

In summary, our experiences have strengthened our belief in the superiority of gen­

uine incentives. We observed them to be simple in design and impervious to auditing

attacks by definition. Those observations were not novel, but were reassuring. On the

89

other hand, in the development of our extensions, we also observed that a genuine

incentives system was also easy to understand from a rational agent's perspective.

In other words, the incentives system was so simple that the agent could easily be

expected to understand the mechanism. This is critical to rational robustness as we

will describe later in the chapter.

5.1 Genuine Incentives: Simplicity

When we began to approach the problem of adding incentives for seeding in Bit Tor­

rent, our first solution used an artificial incentives. The basic idea was for a node to

seed in return for a cryptographically signed token from the receiver. In the future,

if the nodes were to re-encounter one another, the previous seeder could "demand"

service from the previous receiver by returning the tokens. Failure to honor these

commitments would result in a negative reputation. We then began designing the

system to allow for the trading of these tokens between peers to create a form of

virtual currency.

While the design is interesting, we quickly abandoned it for the sheer complexity

of the mechanism. Consider these problems:

1. Cross Trading Value - If cross trading of tokens is supported, so that a node

trades tokens with another node, the purchasing node must have some belief

that the tokens will be honored. Otherwise, they would have no value. This

means that the purchaser must expect to encounter the tokens' signer in the

future, or another node that is willing to purchase them. This would obviously

be a probabilistic computation, but we could not easily identify factors that

would influence the probabilities.

2. Reputation - To adequately punish nodes that refused to honor their signed

90

tokens, the slighted node would have to convince peers to refuse to interact

with the transgressor. This is complicated for two reasons. First, the method

for accusing a node of breaking its word must deal with problems such as false

accusations, and a number of other difficult issues. Second, the accuser must

be able to reach a large number of peers in the BitTorrent swarm to be able to

have any effect. In any event, even if the accuser can prove that another node

is slighting it, other peers may choose to do business with it anyway because it

has always been honest with them.

This solution was discarded because of its overwhelming complexity in favor of the

solution we implemented. While our genuine incentives approach has some non-trivial

design concerns, the overall system is significantly simpler.

Obviously, this is merely an anecdotal evidence, but it does illustrate typical

problems encountered by artificial incentives. In general, artificial incentives require

an additional enforcement protocol in addition to the cooperative protocol. This lack

of protocol cohesion introduces extra complexity that makes implementation difficult

and also more prone to rational attacks simply because the attack surface is larger.

This is not to say that creating genuine incentives is easy. As we will describe

later, genuine incentives require greater design time than artificial ones.

5.2 Genuine Incentives: Impervious to Auditing Attacks

The enforcement protocol common to artificial incentives system is often designed

around an auditing mechanism of some type. In the original design we suggested for

seeding incentives, the tokens issued by a node were cryptographically signed to be

used as a form of evidence. In theory, unhonored tokens would be shown to other

peers that would subsequently shun the offender.

91

Unfortunately, this relatively simple idea is complicated in practice. Consider a

malicious node that falsely accuses a victim of refusing to honor its tokens. A properly

designed crypto system provides a mechanism for the victim to refute the charges,

but the victim is unable to trace all of the gossip, This means that nodes hearing the

accusations would either have to trust them, or validate them directly. The latter

option is costly because they must either stop their current operations to track down

the accused node to determine guilt, or wait until they encounter the node in normal

interactions then ask for refutation of all accusations received until that point.

The problem with auditing attacks drives to the heart of the problem of artificial

incentives. If the primary protocol can proceed without the enforcement protocol,

than a rational attacker need only disable or disrupt the latter to misuse the former.

On the other hand, genuine incentives generally forgo auditing altogether and

this entire attack class disappears. Most systems of this type rely on first-hand

information, throwing away all the complications of trust, reputation, and third-

party enforcement. Obviously, this reduction also introduces limitations that we will

discuss later.

5.3 Genuine Incentives: Bounded Rationality

In our discussion thus far, we have modeled P2P nodes as rational agents. That

means they know the rules of the game, and will use those rules to maximize their

utility.

In real life, however, most participants are not rational by these definitions, but

are bounded rational. Bounded rational parties want to maximize their utility, but

either do not know the full rules of the game, or have insufficient resources to play

the maximizing strategy. Restated, even if an incentives system is designed such that

92

obedience is the utility maximizing strategy, participants may choose a different strat­

egy because they do not know better or because obedience requires more resources

than they have available.

Consider for example an artificial incentives system with an auditing component.

Even if the auditing mechanism is impervious to attack, if the system is sufficiently

complicated, rational attackers may believe that the mechanism can be circumvented.

The result may be that the attackers play sub-optimal strategies to their own detri­

ment, but also to the detriment of the entire system.

Genuine incentives, however, are simple and easy-to-understand and difficult or

expensive to abuse. For example, it has been shown that BitTorrent is imminently

abusable, yet it has been one of the most stable p2p systems to date. Despite all of the

known methods for exploiting BitTorrent, enough nodes continue to cooperate to keep

the system viable. We believe this is partially because the trading mechanism is easy

to understand and easy to follow, while the exploits are complicated to understand

or have a high barrier for entry such as a non-standard or unpopular client.

Bounded rationality is probably the strongest reason to choose genuine over arti­

ficial incentives. Even if artificial incentives are robust and stable, their complexity

may still result in bounded rational participants being disobedient. Conversely, a

genuine incentive with provable vulnerabilities might still be more effective if the

incentive is easy and vulnerabilities are hard.

5.4 Genuine Incentives: Limitations

Despite the various advantages of genuine incentives, we have identified two limita­

tions designers must account for.

First, genuine incentives require a greater design time. While they are generally

93

more simple in implementation, the incentive itself is often difficult to identify. Cre­

ating a genuine incentive requires tying incentives and resource-exchange together.

The implementation of such an entanglement is relatively simple, but discovering the

entanglement is difficult and time consuming.

Second, there is no free lunch. Genuine incentives cannot be optimal for all pos­

sible p2p problems. They are, by definition, limited to influencing behaviors tied to

resource exchange. While this may sound obvious, consider the following two com­

mon uses of artificial incentives for which there are no genuine equivalents. First,

artificial incentives can be, and are often, used to enable transitive cooperation. This

enables nodes that have not encountered one another before to not have to start from

scratch in their cooperative relationship because of some transitive relationship. Sec­

ond, punishments from artificial incentives can include the excommunication of the

offender from the swarm. This means that a wider variety of bad behaviors can be

penalized because the penalty is not just tied to performance.

These were issues we dealt with in the process of developing our own extensions.

Because we made the conscious choice of exclusively using genuine incentives, we had

to design around these limitations.

5.5 Genuine Incentives: Future Work and the Final Word

The concept of a genuine versus artificial incentive is entirely novel and an important

contribution to p2p design theory. In this work we have investigated the nature

of genuine incentives through survey and experimentation. In doing so, we have

illuminated the concept and demonstrated that it is a useful design principle. We feel

this justifies future research and propose the following questions as starting points.

Can the definition of genuine incentives be formalized? We have used a loose

94

and informal definition of genuine and artificial incentives throughout this work. It

has been useful as a design principle and a method of classifying systems. Moreover,

it has helped provide useful insight. Nevertheless, the next step is to formalize its

definition and clearly identify its characteristics and limitations.

Can we formally prove that genuine incentives are more robust than artificial

ones? Our assertions about the value of genuine incentives are based on experience,

surveys, and reasoning. Obviously, any incentive that does not use auditing is not

subject to auditing attacks, but this is not the salient point. If we succeeded in

creating a formal definition of genuine incentive, then perhaps we could subsequently

investigate a formal model of its robustness.

How can artificial incentives be designed to bolster genuine incentives? Given that

all behaviors cannot be genuinely incentivized, artificial incentives may often need to

be added to a genuine incentives system. However, it is not clear if a p2p system

would benefit from the two systems designed to inter-operate as opposed to simply

co-existing.

Breaking the limitations of genuine incentives Although we found it difficult to use

genuine incentives beyond direct-contact peers, we have no proof that such incentives

do not exist. Genuine incentives of this form could greatly expand the robustness

of many p2p systems. Such a solution would have to tie the transfer of cooperation

into the direct transfer of resources. We also identified excommunication of a node

as something tied to artificial incentives. Uncovering a genuine incentives method of

kicking a node out of a system would also be beneficial to p2p systems.

Having identified these avenues for further investigation, we conclude this thesis

by restating our fundamental contribution. In this work we have identified an im­

portant class of incentives in p2p systems: genuine incentives. In surveys of existing

95

systems we identified the strength of these incentives versus their artificial counter­

parts. We then used this observation to create two extensions to BitTorrent based

on genuine incentives. In this endeavor, we strengthened our understanding of how

this type of incentive works, as well as what its limitations are. More importantly,

we demonstrated that this concept was useful in the design of practical p2p systems.

Our extensions solved unrelated problems, but in both cases, the guiding design goal

was to use a genuine incentive and the results were effective and interesting. We hope

that this research aides in the development of future p2p computing by improving

incentives design.

Bibliography

[1] B. Cohen, "Incentives build robustness in BitTorrent," in Proceedings of the 1st

Internation Workshop on Economics of P2P Systems (P2PECON '03), (Berke­

ley, CA), June 2003.

[2] D. R. Sandler and D. S. Wallach, "Birds of a fethr: Open, decentralized microp-

ublishing," in Proceedings of the 8th International Workshop on Peer-to-Peer

Systems (IPTPS '09), (Boston, MA), 2009.

[3] X. Yang, M. Gjoka, P. Chhabra, A. Markopoulou, and P. Radriguez, "Kangaroo:

Video seeking in p2p systems," in Proceedings of the 8th International Workshop

on Peer-to-Peer Systems (IPTPS '09), (Boston, MA), 2009.

[4] J. Terrace, H. Laidlaw, H. E. Liu, S. Stern, and M. J. Freedman, "Bringing p2p

to the web: Security and privacy in the firecoral network," in Proceedings of

the 8th International Workshop on Peer-to-Peer Systems (IPTPS '09), (Boston,

MA), 2009.

96

[5] A. Post, P. Kuznetsov, and P. Druschel, "Podbase: transparent storage manage­

ment for personal devices," in Proceedings of the 1th International Workshop on

Peer-to-Peer Systems (IPTPS '08), (Tampa Bay, FL), 2008.

[6] S. Guha, N. Daswani, and R. Jain, "An experimental study of the skype peer-to-

peer VoIP system," in Proceedings of the 6th International Workshop on Peer-

to-Peer Systems (IPTPS '04), 2007.

[7] F. Kaashoek and D. R. Karger, "Koorde: A simple degree-optimal hash table," in

Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS

'03), (Berkeley, CA), 2003.

[8] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems," in Proceedings of the 18th

IFIP/ACM International Conference on Distributed Systems Platforms (Mid­

dleware '01), (Heidelberg, Germany), Nov. 2001.

[9] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, "Tapestry: An infrastructure

for fault-resilient wide-area location and routing," Tech. Rep. UCB-CSD-01-1141,

U. C. Berkeley, Apr. 2001.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A

scalable peer-to-peer lookup service for Internet applications," in Proceedings of

the 2001 Conference on Applications, Technologies, Architectures, and Protocols

For Computer Communications (ACM SIGCOMM '01), (San Diego, CA), Aug.

2001.

[11] E. Adar and B. A. Huberman, "Free riding on gnutella," First Monday, vol. 5,

2000.

97

[12] L. Ramaswamy, "Free riding: A new challenge to peer-to-peer file sharing sys­

tems," in In Proceedings of Hawaii International Conference on Systems Science

36, 2003.

[13] M. Feldman, C. Papadimitriou, and J. Chuang, "Free-riding and whitewashing

in peer-to-peer systems," in In Proc. PINS, pp. 228-236, 2004.

[14] F. Liu, B. Li, and L. Zhong, "How p2p streaming systems scale over time under a

flash crowd," in Proceedings of the 8th International Workshop on Peer-to-Peer

Systems (IPTPS '09), (Boston, MA), 2009.

[15] J. Shneidman and D. C. Parkes, "Specification faithfulness in networks with

rational nodes," in Proceedings of the 23rd ACM Symposium on Principles of

Distributed Computing (PODC'04), (St. John's, Canada), July 2004.

[16] K. Leyton-brown, I. Mironov, and M. Lillibridge, "Incentives for sharing in peer-

to-peer networks," in In Proceedings of the 3rd ACM conference on Electronic

Commerce, 2001.

[17] K. Lai, M. Feldman, I. Stoica, and J. Chuang, "Incentives for cooperation in

peer-to-peer networks," in Proceedings of the 1st Workshop on Economics of

Peer-to-Peer Systems (P2PECON '03), (Berkeley, CA), 2003.

[18] T.-W. J. Ngan, D. S. Wallach, and P. Druschel, "Incentives-compatible peer-

to-peer multicast," in Proceedings of the 2nd Workshop on the Economics of

Peer-to-Peer Systems (P2PECON '04), (Cambridge, MA), June 2004.

[19] M. Feldman, K. Lai, I. Stoica, and J. Chuang, "Robust incentive techniques for

peer-to-peer networks," in EC '04•' Proceedings of the 5th ACM conference on

Electronic commerce, (New York, NY), pp. 102-111, 2004.

98

[20] M. Roussopoulos, M. Baker, and D. S. H. Rosenthal, "2 p2p or not 2 p2p?,"

in Proceedings of the Third International Workshop on Peer-to-Peer Systems

(IPTPS '04), Feb. 2004.

[21] J. Shneidman and D. Parkes, "Rationality and self-interest in peer to peer net­

works," in Proceedings of the 2nd International Workshop on Peer-to-Peer Sys­

tems (IPTPS '03), (Berkeley, CA, USA), Feb. 2003.

[22] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach, "Se­

cure routing for structured peer-to-peer overlay networks," in Proceedings of the

5th Symposium on Operating System Design and Implementation (OSDI '02),

(Boston, MA), Dec. 2002.

[23] J. Shneidman, D. C. Parkes, and L. Massoulie, "Faithfulness in internet algo­

rithms," in Proceedings of the SIGCOMM Workshop on Practice and Theory of

Incentives and Game Theory in Networked Systems (PINS'04), (Portland, OR,

USA), Sept. 2004.

[24] R. Axelrod and W. D. Hamilton, "The evolution of cooperation," Science,

vol. 211, pp. 1390-1396, 1981.

[25] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani, "Do

incentives build robustness in BitTorrent?," in Proceedings of 4th USENIX Sym­

posium on Networked Systems Design & Implementation (NSDI 2007), (Cam­

bridge, MA), April 2007.

[26] Y. Tian, D. Wu, and K. W. Ng, "Modeling, analysis and improvement for

BitTorrent-like file sharing networks," in Proceedings of 25th IEEE Interna­

tional Conference on Computer Communications (INFOCOM 2006), (Barcelona,

99

Spain), Apr. 2006.

[27] M. Sirivianos, J. H. Park, R. Chen, and X. Yang, "Free-riding in BitTorrent

with the large view exploit," in Proceedings of the 6th International Workshop

on Peer-to-Peer Systems (IPTPS '07), (Bellevue, WA), 2007.

[28] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, "Clustering and sharing incen­

tives in BitTorrent systems," in Proceedings of the 2007 ACM SIGMETRICS,

(San Diego, CA), pp. 301-312, June 2007.

[29] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, "Free riding in BitTorrent is

cheap," in Proceedings of the 5th Workshop on Hot Topics in Networks (HotNets-

V), (Irvine, CA), Nov. 2006.

[30] A. Parker, The True Picture of Peer-to-Peer Filesharing. CacheLogic, 2004. No

longer available from original site http://www.cachelogic.com/home/pages/

studies/2004_01.php. Downloaded from archive.org on January 8, 2009.

[31] Ernesto, "BitTorrent: The "one third of all internet traf­

fic" myth," Sept. 2006. Viewed at h t tp : / / t o r ren t f r eak .com/

b i t t o r r e n t - t h e - o n e - t h i r d - o f - a l l - i n t e r n e t - t r a f f i c - m y t h / on January

8, 2009.

[32] R. Singel, Internet Mysteries: How Much File Sharing Traffic Travels the Net?

Wired, May 2008. Viewed at ht tp: / /blog.wired.com/27bstroke6/2008/05/

how-much-iile-s.html on January 8, 2009.

[33] J. Pouwelse, P. Garbacki, D. Epema, and H. J. Sips, "The BitTorrent P2P file-

sharing system: Measurements and analysis," in J^th International Workshop on

http://www.cachelogic.com/home/pages/
http://archive.org
http://torrentfreak.com/
http://blog.wired.com/27bstroke6/2008/05/

100

Peer-to-Peer Systems (IPTPS '05), vol. 3640, (Ithaca, NY), pp. 205-216, Feb.

2005.

[34] R. Dingledine, N. Mathewson, and P. Syverson, "Tor: The second-generation

onion router," in Proceedings of the 13th USENIX Security Symposium, (San

Diego, CA), August 2004.

[35] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker, "Shining light

in dark places: Understanding the tor network," in Proceedings of the 8th Pri­

vacy Enhancing Technologies Symposium (PETS 2008), (Leuven, Belgium), July

2008.

[36] K. Bauer, D. McCoy, D. Grunwald, and D. Sicker, "Bitblender: Light-weight

anonymity for Bit Torrent," in Proceedings of the Workshop on Applications of

Private and Anonymous Communications (AlPACa 2008) in conjunction with

SecureComm 2008, (Istanbul, Turkey), September 2008.

[37] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson, "Friend-to-friend data

sharing with oneswarm," Tech. Rep. N/A, UW-CSE, February 2009.

[38] D. Choffnes, J. Duch, D. Malmgren, R. Guimer, L. Amaral, and F. E. Busta-

mante, "Swarmscreen: Pirvacy through plausible deniability in p2p systems,"

Tech. Rep. N/A, Northwestern EECS, March 2009.

[39] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and P. Sobalvarro, "The mil-

licent protocol for inexpensive electronic commerce," World Wide Web Journal,

Fourth International World Wide Web Conference Proceedings, vol. 1, no. 1,

pp. 603-618, 1996.

101

[40] J. R. Douceur, "The Sybil attack," in Proceedings for the 1st International Work­

shop on Peer-to-Peer Systems (IPTPS '02), (Cambridge, Massachusetts), Mar.

2002.

[41] "Microsoft "Palladium": A business overview," 2002. http://www.microsoft.

com/presspass/features/2002/jul02/0724palladiumwp.asp.

[42] TCPA, "Building a foundation of trust in the PC," tech. rep., Trusted Computing

Platform Alliance, 2000.

[43] '"Trusted Computing' frequently asked questions," 2003. http://www.cl.cam.

ac .uk/~r ja l4 / tcpa-faq .h tml .

[44] L. P. Cox and B. D. Noble, "Samsara: Honor among thieves in peer-to-peer stor­

age," in Proceedings of the Nineteenth ACM Symposium on Operating Systems

Principles (SOSP '03), pp. 120-132, ACM Press, Oct. 2003.

[45] M. Waldman and D. Mazieres, "Tangier: a censorship-resistant publishing sys­

tem based on document entanglements," in Proceedings of the 8th ACM Con­

ference on Computer and Communications Security, pp. 126-135, ACM Press,

Nov. 2001.

[46] E. J. Friedman and P. Resnick, "The social cost of cheap pseudonyms," Journal

of Economics & Management Strategy, vol. 10, pp. 173-199, June 2001.

[47] A. C. Fuqua, T.-W. J. Ngan, and D. S. Wallach, "Economic behavior of peer-

to-peer storage networks," in Proceedings of the 1st Workshop on Economics of

Peer-to-Peer Systems (P2PECON '03), (Berkeley, CA), June 2003.

http://www.microsoft
http://www.cl.cam

102

[48] W. A. Arbaugh, D. J. Farber, and J. M. Smith, "A secure and reliable boot­

strap architecture," in Proceedings of the 1997 IEEE Symposium on Security

and Privacy, (San Diego, CA, USA), p. 65, IEEE Computer Society, May 1997.

[49] T.-W. J. Ngan, A. Nandi, A. Singh, D. S. Wallach, and P. Druschel, "On de­

signing incentives-compatible peer-to-peer systems," in 2nd Bertinoro Workshop

on Future Directions in Distributed Computing (FuDiCo II: S.O.S.), (Bertinoro,

Italy), June 2004.

[50] T.-W. J. Ngan, D. S. Wallach, and P. Druschel, "Enforcing fair sharing of peer-

to-peer resources," in Proceedings of the 2nd International Workshop on Peer-

to-Peer Systems (IPTPS '03), LNCS 2735, (Berkeley, CA), pp. 149-159, Feb.

2003.

[51] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, "The eigentrust algo­

rithm for reputation management in p2p networks," in Proceedings of the 12th

International Conference on World Wide Web, pp. 640-651, May 2003.

[52] P. Maniatis and M. Baker, "Secure history preservation through timeline entan­

glement," in Proceedings of the 11th USENIX Security Symposium, pp. 297-312,

USENIX Association, 2002,

[53] H. Schulze and K. Mochalski, Internet Study 2007. Ipoque, 2007. Downloaded at

h t t p : //www. ipoque. com/userf i l e s / f i le/ internet_study_2007. pdf on Jan­

uary 8, 2009.

[54] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, and A. Iosup, "Tribler:

A social-based peer-to-peer system," in Proceedings of the 5th International P2P

conference (IPTPS '06), (Santa Barbara, CA), Feb. 2006.

103

[55] C. A. Waldspurger and W. E. Weihl, "Lottery scheduling: flexible proportional-

share resource management," in Proceedings of the 1st USENIX conference on

Operating Systems Design and Implementation (OSDI '94), (Monterey, CA),

Nov. 1994.

[56] S. Nielson, S. Crosby, and D. Wallach, "A taxonomy of rational attacks," in

The 4th Annual International Workshop on Peer-To-Peer Systems (IPTPS '05),

(Ithaca, NY), Feb. 2005.

[57] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, "Analyzing and improv­

ing BitTorrent performance," Tech. Rep. MSR-TR-2005-03, Microsoft Research,

Redmond, WA, Feb. 2005.

[58] K. Eger, T. HoBfeld, A. Binzenhofer, and G. Kunzmann, "Efficient simulation of

large-scale P2P networks: Packet-level vs. flow-level simulations," in 2nd Work­

shop on the Use of P2P, GRID and Agents for the Development of Content

Networks (UP GRADE-CW 01), (Monterey, CA), pp. 9-16, June 2007.

[59] W. Yang and N. Abu-Ghazaleh, "GPS: a general peer-to-peer simulator and

its use for modeling BitTorrent," in 13th Annual Meeting of the IEEE/ACM

International Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems (MASCOTS 2007), (Atlanta, GA), pp. 425-

432, Oct. 2005.

[60] D. Carra, G. Neglia, and P. Michiardi, "On the impact of greedy strategies in

BitTorrent networks: The case of Bit Tyrant," in Proceedings of the 2008 Eighth

International Conference on Peer-to-Peer Computing (P2P '08), (Aachan, Ger­

many), pp. 311-320, Sept. 2008.

104

[61] A. Nandi, T.-W. J. Ngan, A. Singh, P. Druschel, and D. S. Wallach,

"Scrivener: Providing incentives in cooperative content distribution systems,"

in ACM/IFIP/USENIX 6th International Middleware Conference (Middleware

2005), (Grenoble, France), Nov. 2005.

[62] D. Qiu and R. Srikant, "Modeling and performance analysis of BitTorrent-like

peer-to-peer networks," SIGCOMM Comput. Commun. Rev., vol. 34, no. 4,

pp. 367-378, 2004.

[63] A. Legout, G. Urvoy-Keller, and P. Michiardi, "Rarest first and choke algorithms

are enough," in Proceedings of the 6th ACM SIGCOMM Conference on Internet

Measurement (IMC '06), (Rio de Janeriro, Brazil), pp. 203-216, Oct. 2006.

[64] K. D. Vogeleer, D. Erman, and A. Popescu, "Simulating BitTorrent," in Proceed­

ings of the 1st International Conference on Simulation Tools and Techniques for

Communications, Networks and Systems Workshop (SIMUTools '08), (Marseille,

Prance), pp. 1-7, Mar. 2008.

[65] S. Jun and M. Ahamad, "Incentives in BitTorrent induce free riding," in

P2PECON '05: Proceedings of the 2005 ACM SIGCOMM Workshop on Eco­

nomics of Peer-to-Peer Systems, (Philadelphia, PA), pp. 116-121, 2005.

[66] T.-W. J. Ngan, R. Dingledine, and D. S. Wallach, "Building incentives into tor,"

Tech. Rep. TR08-09, Rice University, Department of Computer Science, 2008.

[67] A. Androulaki, M. Raykova, S. Srivatsan, A. Stavrou, and S. M. Bellovin, "Par:

Payment for anonymous routing," in Proceedings of the Eighth International

Symposium on Privacy Enhancing Technologies (PETS 2008), (Leuven, Bel­

gium), July 2008.

105

[68] A. Smith, An Inquiry into the Nature and Causes of the Wealth of Nations.

London, England: W. Strahan and T. Cadel, fifth edition ed., 1776.

[69] P. K. Dutta, Strategies and Games, ch. Utility and Expected Utility. Mas­

sachusetts Institute of Technology, 2001.

[70] S. J. Nielson and D. S. Wallach, "Building better incentives for robustness

in bittorrent." http: / / s y s . c s . r i ce . edu/~sethn/btsim/output/longterm_

incentives.pdf, January 2009.

[71] O. Paul, "Being acquitted versus being searched

(yanal)." http://www.freedom-to-tinker, com/blog/paul/

being-acquitted-versus-being-searched-yanal, February 2009.

http://www.freedom-to-tinker

