
1

Serving Niche Video-on-Demand Content in a Managed
P2P Environment

Eli Brosh1, Chitra Agastya2, John Morales2, Vishal Misra1, Dan Rubenstein1

affaddr Department of Computer Science, Columbia University
1 {elibrosh, misra,danr}@cs.columbia.edu

2 {csa2111, jm2873}@columbia.edu

ABSTRACT
A limitation of existing P2P VoD services is their inability
to support efficient streamed access to niche content that has
relatively small demand. This limitation stems from the poor
performance of P2P when the number of peers sharing the
content is small. In this paper, we propose a new provider-
managed P2P VoD framework for efficient delivery of niche
content based on two principles: reserving small portions of
peers’ storage and upload resources, as well as using novel,
weighed caching techniques. We demonstrate through an-
alytical analysis, simulations, and experiments on planetlab
that our architecture can provide high streaming quality for
niche content. In particular, we show that our architecture
increases the catalog size by up to 40% compared to stan-
dard P2P VoD systems, and that a weighted cache policy
can reduce the startup delay for niche content by a factor of
more than three.

1. INTRODUCTION
Video-on-demand (VoD) is an attractive service that

has already gained popularity in the Internet [10] by
allowing users to view a video from a catalog of popu-
lar choices at any time. However, current VoD design
requires a large amount of costly server resources and
significant bandwidth to support its users. The peer-
to-peer (P2P) approach has been proven to be an effec-
tive solution for scalable content distribution without
imposing a significant burden on a centralized infras-
tructure [5, 15]. In a P2P VoD system, users receive
streamed videos from VoD servers as well as from the
peers. The ability of peers that are viewing the videos
to collaborate with each other reduces the load on serv-
ing infrastructure.

A limitation of existing P2P VoD services is their in-
ability to support efficient streamed access to content
throughout the full spectrum of popularity: not just the
blockbuster releases but also niche content that has rel-
atively small demand: re-runs of TV shows, replays of
sporting events, or user-generated content. This limita-
tion stems from the poor performance of P2P when the
number of peers sharing the content is small [14] and
the insufficient availability of niche content across the

system [19]. While the ability to serve a single niche
video is insignificant from both a resource-consumption
and revenue-producing perspective, there is ample evi-
dence [4] that there is a “long tail” of low-demand items,
so that not serving them translates into lost revenues,
and serving them using conventional client-server mech-
anisms is inefficient and costly.

In this paper, we propose a new cross-content P2P
VoD framework that supports a large library of stored
media. The proposed architecture is TiVo/cable-like,
in that the peers remain owned and under the control
of the VoD service provider. Our approach uses two
key principles specific for the efficient delivery of niche
content:

• Cross-content caching and serving: Unlike tradi-
tional P2P systems in which clients are greedy and
participate mainly in transfer of content that is of
immediate interest to themselves, our system re-
quires clients to contribute a portion of their re-
sources strictly for the purpose of serving others.
The large shared demand for popular content is
handled by the greedy component, while the pro-
portionally smaller demand for unpopular content
is handled by the altruistic component.

• Weighted caching strategies: In VoD, earlier por-
tions of videos must be retrieved shortly after the
request for the video, whereas later portions can
tolerate larger delivery delays. We reduce the ex-
pected delay of retrieving earlier portions by forc-
ing a higher replication rate of the earlier video
parts than the later parts in the niche caching com-
ponent.

We use a combination of mathematical analysis, sim-
ulation, and prototyping to study how effective can a
P2P VoD system be at supporting files across the full
spectrum of popularity. Our analytical models yield
the proper cache policy for niche content and an opti-
mized strategy for sharing cache resources among multi-
ple videos. The analysis coupled with simulation allows
us to explore a wide range of the design space, while
the prototype demonstrates a proof-of-concept.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161435508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

`

Transfer
 Tracker

Dedicated

 servers

Cache
 Tracker

Video

Repository

`

Peer Peer

peer cache peer cache

(a) Overall

`

User-

controlled

Tracker-

controlled

Peer Cache

(b) Peer

Figure 1: High Level Architectural Views

Our work makes the following contributions:

• We develop a stochastic model that captures the
performance of niche content delivery in P2P VoD
environments (Section 4.1). We use the model
to derive novel, weighted caching strategies. We
evaluate our architecture via extensive simulations
(Section 4.2) as well as with a prototype imple-
mentation (Section 4.3) and show that our caching
policy significantly improves the streaming qual-
ity of unpopular videos. In particular, we show
that weighted caching can reduce the startup de-
lay requirement by more than three compared to
uniform caching.

• We demonstrate that the cache distribution plays
a less significant role as the popularity of the video
increases and that it can lessen the impact of over
aggressive piece selection policies (Section 5).

• We demonstrate the ability of content providers to
support much larger catalogs for VoD (Section 6).
In particular, we show that our architecture in-
creases the catalog size by up to 40% compared
to standard P2P VoD systems. In addition, the
NaDa project [1] is postulating enormous energy
savings in a managed P2P architecture for VoD
delivery as compared to a traditional monolithic
datacenter or CDN approach.

2. SYSTEM ARCHITECTURE
We now describe the architecture of our system. We

consider a VoD system based on client’s boxes that co-
operate in a peer-to-peer manner. Each client’s box

implements the VoD functionality and remains owned
and under the control of the provider, e.g., like a ca-
ble set-top box, a “triple play box” or TiVo box [2].
This control enables the provider to implement opti-
mized replication strategies and manage the content
stored at the peers’ caches, improving the performance
of the overall system, rather than just benefiting the
local peer. Since we consider a controlled environment,
client’s boxes can remain powered and connected to the
network, even when not actively watching a video. The
peers’ connectivity can be taken advantage of to provide
storage and forwarding within the P2P setting.

Our system incorporates the successful and widely
used BitTorrent protocol [8]. With BitTorrent, peers
viewing the same video are organized into a swarm and
collaborate to distribute the video. A swarm consists of
peers which are downloading (viewing) the video, called
downloaders and of peers which have finished download-
ing, called seeds. Figure 1(a) presents a high-level view
of our provider-controlled VoD architecture. Solid ar-
rows indicate exchange of actual video information and
dashed arrows represent exchange of control informa-
tion. A large video repository chops each video into
pieces, and these pieces are distributed by dedicated
servers across peer nodes, who are then able to exchange
these videos on demand. The servers also help with
the on-demand distribution when necessary. A transfer
tracker has functionality similar to what exists in Bit-
Torrent’s tracker. It helps peers locate other peers who
have cached the content which they seek [16]. An addi-
tional cache tracker is employed whose job is to monitor
the state of the peer’s cache and push as well as redis-
tribute the various video pieces across the peers and
servers. Peers that were seeded with parts of the video
can also act as seeds and upload video pieces.

Figure 1(b) depicts the architecture of a peer, focus-
ing specifically on the peer’s cache. The cache is split
into two parts:

• A part, called the personal cache component
(PCC), that remains under complete control of a
user and stores the recently watched videos, like
part of a TiVo system. This part is necessary to
allow users to instantly access a video rented for
some specific time period, or for services such as
rewinding.

• A second part, which is kept hidden from the user,
called the niche cache component (NCC). This
part is seeded with video pieces according to the
cache tracker’s instructions. The video content can
be pushed to the peers’ NCC before the video dis-
tribution begins, e.g., during off-peak hours. The
inclusion of an NCC deviates from traditional VoD
architecture.

3

Peer
(v1)

Unchoke

Peer
(v1)

Peer
(v1)

Peer
(v1)

Peer
(v1)

Peer
(v2) Unchoke

Figure 2: Traditional and modified choke

2.1 A simple BitTorrent extension
We make a simple modification to the BitTorrent pro-

tocol so that peers participate not only in exchanging
content in their PCC, but also serve users whose re-
quests are serveable from the NCC. Traditionally, a peer
who is downloading a file, or video, V1 directs all of its
resources toward the active swarm [5, 9]. It uploads
(unchokes) to several other peers. Posing a limit on the
number of concurrent peers being served ensures an ac-
ceptable startup delay and low protocol overhead [7].
Periodically, a new peer is chosen at random to upload
to, as a way to search ’good’ new peers.

Figure 2 depicts our extension. We use an existing
connection also for an alternate video V2 that is not the
focus of the primary swarm, but is within the (NCC
or PCC) cache of the uploading peer. In-line with Bit-
Torent, we periodically select a peer to unchoke. A
random selection is made among the interested peers,
such that the upload is directed to the active swarm for
a fixed portion of the time, and shared among the alter-
nate swarms throughout the remaining time. This be-
havior is very useful to peers who are interested in niche
videos where the number of peers is too small to coop-
erate efficiently. A shown in Section 6, the intrusion of
the additional swarms does not significantly affect the
performance of a popular, active swarm, served from
the PCC, as such a swarm is often over provisioned.

3. GENERAL MODEL
We begin by presentation a formalization of our sys-

tem that will enable us to formally state our perfor-
mance metrics and optimization objectives. We con-
sider a P2P on-demand streaming system with a varying
number of active peers and multiple files with different
popularity. For ease of exposition, we first focus on the
service model for a single video file, and further gener-
alize the service model to account for multiple files of
different popularity in Section 6.

The target video file is divided intom fixed-size pieces,
and is encoded for playback at rate s. There are multi-
ple peers participating in a distribution swarm. Peer j
provides an NCC of size aj that can be used by the sys-
tem to store videos, such that the aggregated NCC has
size

∑
aj . Peer j has an average upload rate of µj and

download at rate cj . Unless otherwise specified, we gen-
erally assume a homogeneous model with aj , µj and cj

Notation Definition
ri Number of replicas of piece i
pi Playback continuity of piece i
ti Playback time of piece i
wi Playback completion time of piece i
Pa Upload availability of a peer
N Number of seeding peers
d Startup delay before playback commences
r Number of replicas of a given video
s Media playback rate
µ Uploading bandwidth of a peer
c Downloading bandwidth of a peer
a Size of NCC provided by a peer
zi Cache capacity allocated to video i
λi Arrival rate of requests for video i
li Size of video i
ηi Swarming effectiveness of video i
γi Seed residence time for video i
Ti Playback completion time of video i

Table 1: Summary of model notations

respectively equalling fixed values a, µ and c. Similarly
to other P2P studies [20], we assume that the upload
capacity of peers, µi, is the primary bandwidth bottle-
neck. The limit on upload capacity is often an artifact
of the last-mile technology (e.g., cable, DSL), but can
also be imposed by the peer so as to keep bandwidth
available for other tasks. We summarize the parameters
used in our system model Table 1.

3.1 Performance Metrics
Our general objective is to obtain seamless, perfect

playback once the video starts playing. Often the user
is willing to tolerate a short pre-buffer time, presumably
on the order of seconds, which can vastly improve the
remaining viewing experience. We let d represent the
startup delay, the time since arrival until a peer begins
playback. A small d is of course preferred. A piece that
arrives later than its playback time leads to a playback
glitch. To achieve seamless playback for a media play-
back rate of s pieces per time unit, piece i must be in
the peer’s buffer by time d+ i/s

We focus on two natural performance measures, based
on two different forms of video playback:

• Skip-missing-piece: playback skips over any piece
that is not available by its playback time. We de-
fine the playback continuity of piece i, denoted by
pi, as the probability that piece i is received in
time for playback. We use the fraction of pieces
that arrive in-time to measure the performance. A
simple objective is then to minimize the loss rate
of the highest-lost piece, maxi min pi.

• Waitfor-missing-piece: when a piece is missing,

4

playback stops until the piece is available. We de-
fine the playback completion time of a piece i, de-
noted by wi as the playback time of piece i relative
to that of piece i−1. If ti is the play time of piece i,
then wi = ti+1−ti, where tm = tm−1+1/s and the
pieces of the file are enumerated 0, . . . ,m− 1. We
use the time taken to complete the entire playback,
tm−1, as the performance measure1. Our objective
is then to minimize the playback completion time
of the video, minE[tm−1] = min

∑m−1
i=0 E[wi].

The waitfor-missing piece is probably the more prac-
tical method, as it is generally preferred to pause rather
than miss part of a stored video. When presenting
results, we mainly focus on the waitfor-missing-piece
metric. Nonetheless, the skipfor-missing-piece is more
tractable to analysis due to the reduced dependence of
piece’s playback on previous piece playbacks, and thus
can provide additional insight on playback behavior.

3.2 Cache Distrbution
To assist in formalizing a strategy for assigning pieces

within peers’ NCC we introduce the notation ri for
the number of global replicas of piece i of the video.
Clearly, 0 ≤ ri ≤ N , where N is the number of peers
in the network. A cache distribution refers to the val-
ues {ri/

∑
j rj} over all pieces i. For instance, a uni-

form distribution would be one in which ri = rj for all
pieces i 6= j in the video. To ensure high availability of
video content, we follow the common practice in man-
aged P2P VoD systems [7,12], and store r replicas of a
video in the NCC. The replication can be done as part
of the off-line content injection process.

4. INTRA-VIDEO PIECE DISTRIBUTION
Our main goal is to study the cache tracker’s algo-

rithm that facilitates efficient delivery of niche content:
where to put pieces of videos, and how many copies of
each are needed, based on the playback position of a
piece, and its video popularity.

To facilitate exposition of the design and analysis of
the caching policy, we go through three typical scenar-
ios. First, we analyze a single client accessing a single
video (Section 4.1), the common case when the popu-
larity distribution of videos exhibits a long-tail. Here,
we focus on the intra-video piece distribution: how to
distribute the pieces of a video as a function of cache
size, number of peers, and their availability to maxi-
mize the viewing objective measures. Then, we analyze
multiple clients all accessing a single video (Section 5).
Here, we focus on the effect of a swarm’s ability to
self-serve, which enables more efficient transfer of early
movie pieces from other peers rather than NCC, on the
1Observe that this time is different from the time taken to
complete downloading and cannot be smaller than it.

piece distribution. Finally, we analyze multiple clients
accessing multiple videos and focus on the inter-video
piece distribution i.e., how to share the NCC among
multiple videos of varying popularity (Section 6).

4.1 Single Client
To derive the desired distribution of pieces for small

swarms, we develop a simple homogenous model that
captures the playback performance, i.e., the portion of
late pieces and the playback completion time, for a sin-
gle client accessing as single video (see Section 4). The
single client assumption greatly simplifies the problem
in that: (a) all pieces are retrieved from peers’ NCC
(b) there is no benefit to using a ’rarest-first’ policy [8]
to select which piece to request first (i.e., selecting the
piece that is rarest in the system), since the downloader
has no peers to trade pieces. Hence, we can assume that
an ’earliest-first policy’ is implemented and that pieces
are selected in strict, sequential order.

We perform the analysis within the context of time in-
tervals, or rounds. The duration of a round corresponds
to the time it takes to playback a single piece. A peer
joins the system with no pieces locally available. It may
buffer data for d rounds before commencing playback.
The peer departs the system as soon as it completes the
video playback.

A key challenge in modeling this system is emulat-
ing the behavior that the peers whose NCC contains
the video’s pieces are also participating in their own
swarms of interest, or are busy serving other videos.
Our approach is to capture this behavior using a sim-
ple availability model in which each round, when a peer
is issued a request for upload of a piece in its NCC,
it is available to serve that request in that round with
a probability Pa < 1. Within a round, the peer can
determine the availability of every uploading peer. It
can then schedule for download the most needed pieces
(those closest to playback deadline) for simultaneous
download within the round that fit under its download
constraint and the uploading peer upload constraint.

4.1.1 Playback Continuity Model
To derive the desired cache distribution, we first model

the playback performance of a single downloader in dis-
tribution swarm with N seeding peers. The state-space
of our model consists of {(i, k)|i = 0, . . . ,m − 1; k =
0, . . . ,m + d − 1} where i is the piece index, k is the
current round, d is the startup delay in rounds, and
m is the number of pieces of a target video v. The
states {(., k)|k = 0, . . . , d−1} correspond to the rounds
a newly-arrived peer buffers data before commencing
playback.

We denote by p(i, k) the probability that a down-
loader at round k has successfully acquired piece i. We
assume the method of playback is skip-missing-piece

5

and follow the definitions in Section 3.1. We denote
by pi = p(i, i + d) the playback continuity of piece i,
i.e., the probability piece i has been acquired before its
deadline i+d. For simplicity of analysis, we assume that
a peer can upload one piece per round and download a
large number of pieces per round2.

We adapt a similar methodology as that in [29] to
compute p(i, k) by determining its steady-state behav-
ior. We define q(i, k) as the probability that piece i is
chosen for download at round k, W (i, k) as the prob-
ability that the downloader does not have piece i at
round k, F (i) as the probability that at least one of the
uploading peers with piece i is available, and S(i, k) as
the probability that piece i is the most needed one at
round k. We can express p(i, k) as

p(i, k) = p(i, k − 1) +
{
q(i, k) if k ≤ i+ d
0 otherwise (1)

with q(i, k) as the product of three components:

q(i, k) = W (i, k)F (i)S(i, k) (2)

W (i, k) = 1− p(i, k − 1), F (i) = 1− (1− Pa)ri

S(i, k) =
i−1∏

j=max (0,k−d)

1− F (j)
PaN

(1− p(j, k − 1))

where ri is the number of seeds that have cached piece
i. S(i, k) is determined as the probability that the
uploader has no useful piece j with an earlier dead-
line than i. The probability that a downloader wants
piece j is 1 − p(j, k − 1). The probability that an up-
loader is selected to serve piece j is the probability that
at least one uploader with piece j is available F (j),
normalized by the average number of serving peers in
the system PaN . With a skip-missing-piece playback,
pieces are requested only if they can be received be-
fore their scheduled deadline, yielding that q(i, k) = 0,
∀k : k > i + d. The boundary condition of Eq. (1) is
p(i, k) = 0,∀i, k : k < 0.

This formula simplifies to

pi = 1−
i+d∏
k=0

(1− F (i)S(i, k)), (3)

where F (i) and S(i, k) are defined in (2). The simpli-
fication is given in the Appendix. Intuitively, it can be
understood as follows. The playback continuity is the
probability a piece is obtained in a sequence of at most
i+d+ 1 rounds. The probability of obtaining piece i in
a round is F (i), and the probability piece i is the most
needed one in the kth round is S(i, k).
2We observe that the results provided by our model are in
agreement with measurements when a peer’s download rate
is twice or more its upload rate, a common assumption P2P
in studies [15].

4.1.2 Playback Completion Time Model
We generalize the previous model to account for waitfor-

missing-piece playback, the more practical metric. We
consider a distribution swarm with single downloader
and N seeds. The state-space of our model consists of
{(i, k, s)|i, s = 0, . . . ,m−1; k = 0, . . . , 4m−1} where i is
the piece index, k is the time to complete the playback
of piece i, s is the peer’s playback position, and m is the
number of pieces of the video. We assume k < 4m, as a
conservative bound on the time to complete the video
playback. We follow the notations in Section 3.1 and de-
fine ti as the playback time of piece i, and wi = ti+1−ti
as the playback completion time of piece i. The lat-
ter time consists of the time playback is stalled due
to a missing piece and a piece’s playback time. The
playback completion time of the entire video can thus
be expressed as E[tm−1] = d +

∑m−1
i=0 E[wi]. Seamless

playback is obtained when E[tm−1] = m+ d.
We define ci(k) as the probability that playback is

continuous (k = 0) or held at position corresponding to
piece i for k rounds (k > 0), and pi(i) as the probabil-
ity that piece i is available when playback advances to
position i. We build on the model in Section 4.1.1 to
derive the playback completion time of piece i in steady
state:

E[wi] =
2m−1∑
k=0

(k + 1)ci(k) = 1 +
1− pi(i)
F (i)

(4)

ci(k) =
{
pi(i) if k = 0
(1− pi(i))(1− F (i))k−1F (i) otherwise

Assuming playback is held at position i (k > 0), the
playback completion time of piece i is modeled using a
geometric distribution with parameter F (i), the prob-
ability that at least one peer with piece i is available
and is defined by Eq. (2). Computing pi(i) leads to a
rather complex expression, which we present in detail
in the Appendix.

We can simplify the expression for pi(i) by assuming
that playback was not held for all the pieces before i.
This assumption allows us to approximate pi(i), the
probability of continuous playback of piece i, by pi, the
playback continuity of piece i for the skip-missing-piece
method defined in Eq. (3). Applying the simplification,
we get

E[wi] =
1− pi

1− (1− Pa)ri
. (5)

The playback completion time of the video can thus be
expressed as

E[tm−1] = d+m+
m−1∑
s=0

1− pi
1− (1− Pa)ri

, (6)

where the summation term represents the total amount
of time playback is stalled.

6

4.1.3 Deriving a Good Cache Distribution
Using our derivation of pi, we can derive closed-form

bounds on the continuity and playback completion time
metrics. First, we show that when the allocation of
pieces to cache is uniform, i.e., ri = rj for all i, j, then
pi is an increasing function of the piece position i 3,
and E[wi] is a decreasing function of the piece posi-
tion. The proof for pi’s monotonicity can be found in
the Appendix, and that for E[wi]’s monotonicity follows
immediately from Eq. (4).

This results justifies the intuitive reasoning that ear-
lier pieces are more likely to miss their deadlines than
later pieces when the cache is uniformly allocated. Next,
we can bound continuity using the functions previously
defined:

Proposition 4.1. The playback continuity function
pi is bounded by

(1− F (i))i+d+1 ≤ 1− pi ≤ (1− F (i)S(i))i+d+1 (7)

where

S(i) =
1

i+ d+ 1

i+d∑
k=0

i−1∏
j=max (0,k−d)

1− F (j)
paN

.

Theorem 4.1 indicates that the playback continuity func-
tion has an upper bound whose shape is exponential
with respect to the piece’s position in the video. Fur-
thermore, numerical analysis shows that we can approx-
imate the playback performance using the upper bound
in Eq. (7), namely:

pi ' 1− (1− Pa)ri(i+d+1). (8)

We use the above approximation to simplify the play-
back completion time expression in Eq. (6) into

E[tm−1] ' d+m+
m−1∑
s=0

(1− Pa)rs(s+d+1)

1− (1− Pa)rs
(9)

Assuming a skip-missing-piece method, an optimal
replica distribution function can be obtained by solving
maxi min pi, as described in Section 3.1. We derive an
approximation to the optimal distribution, in which all
pieces are equally likely to be retrieved in time, by set-
ting all pi = D for some constant D where pi is defined
in Eq. (8). Solving for ri, we get

ri =
log (1−D)

log (1− p)(i+ g + 1)
(10)

Since the size of the aggregate cache reserved for a video
is bounded by R =

∑m−1
i=0 ri, we have

ri =
R

(i+ d+ 1)
∑m−1
j=0

1
j+d+1

≈ R

(i+ d+ 1) logm
.

(11)
3Note this result is not trivial, as the priority of serving a
piece is inversely proportional to its deadline requirement.

5 10 15 20
0

50

100

Seed Availability (%)

C
ac

he
 s

iz
e

(%
)

Figure 3: Cache sizing as function of availability.

This result shows that the number of replicas of a piece
needs to be inversely proportional to its playback dead-
line. We can use the same methodology to derive an
approximation for the optimal cache distribution un-
der waitfor-missing-piece. Due to the complexity of the
completion time expression in Eq. (9) we revert to nu-
merical analysis. As before, the resulting cache distri-
bution is inversely correlated with the piece position.

Observe that the larger we make the cache, the more
a video can be globally replicated, the greater its avail-
ability within the system. Hence, given we know the
right distribution, how large must the cache be for suf-
ficient availability? Since we derived explicit expres-
sions for the playback performance as a function of peer
availability, Pa, we simply need to determine a desirable
playback performance, and given the availability rate,
we can compute the cache size. For example, Figure 3
shows the cache sizing as function of peer’s availability
for 20 peers, each with cache capacity of a single video,
and a target playback completion time that is 1.05 times
the video’s length.

4.1.4 Two-value Availability Model
So far, we have overlooked the typical scenario where

peers that are actively watching a movie are likely to
offer less availability to alternate swarms than inactive
peers who effectively serve as a seed for all videos stored
in their NCC. To be able to compute the right cache
distribution for this scenario, we generalize our model to
account for two classes of peers: viewing peers who offer
availability Pa1 and seeding peers who offer availability
Pa2 , Pa1 < Pa2 . It is easy to see that structure of the
expression for the playback completion time in Eq. (4)
and that for the playback continuity in Eq. (1) is not
altered by the introduction of the two classes of peers.
However, the probability of finding an available seed
with piece i, F (i), and the probability that i is the most
needed piece, S(i, k), is now expressed as:

F (i) = 1− (1− Pa1)ri1 (1− Pa2)ri2

S(i, k) =
i−1∏

j=max (0,k−d)

1− F (j)
(Pa1 + Pa2)N

(1−p(j, k−1)),

where ri1 and ri2 are the number of replicas of piece i
across the viewing peers and seeding peers, respectively.
We can use numerical analysis to derive a playback-

7

optimized cache distribution, as described in Section 4.1.3.
The resulting cache distribution is inversely correlated
with the piece position and is typically more flat than
that for the single-value availability model. The flat-
tening happens because the introduction of additional
peers increases the availability of early pieces, and thus
lowers the need for front weighting the cache distribu-
tion.

4.1.5 Striped vs. Aggregate caching
An important question we seek to address is how

should a niche video be dispersed within a global, dis-
tributed cache allocated to it? To this end, we study
the affect of a piece grouping strategy, that is, the rela-
tive placement of various pieces of a video across peers’
NCCs, on the playback performance. We assume there
are enough peers so that each peer holds no more than
one replica4. For example, one strategy is to minimize
the number of NCCs used to support a video by group-
ing all pieces of a replica within a single NCC, and
another is to distribute (stripe) pieces among multiple
peers.

2 4 6 8 10 12 14 16
1

1.2

1.4

1.6

1.8

Striping degree

P
la

y
co

m
pl

et
io

n
tim

e

(a) Fixed Availability

2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

Striping degree

P
la

y
co

m
pl

et
io

n
tim

e f
a
=1

f
a
=0.8

f
a
=0.6

f
a
=0.5

(b) Proportional Availability

Figure 4: The playback performance vs. strip-
ing degree when peer’s availability is (a) fixed;
(b) inversely proportional to the number served
videos.

For a fixed availability rate Pa, the playback perfor-
mance increases with the number of peers serving a copy
of the video, which we hereafter refer to as the striping
degree. Figure 4(a) shows the playback completion time
as a function of the striping degree when seed availabil-
ity is Pa = 0.1 and the allocated cache in the NCC is
double the size of the video. The wide striping is bet-
ter because the client can receive copies from peers in
parallel, so multiple peers being available to serve simul-
taneously adds value. However, the availability Pa may
depend on how many different videos the peer is respon-
sible for serving. We study this scenario by introducing
a simple model for the availability a peer provides for a

4There is no benefit to having two identical replicas in a
single peer’s cache, since a single copy can be transmitted
to multiple peers simultaneously

single video:

Pa = fa
r

N
(12)

where fa is the probability a peer is available to serve
any content from its NCC cache (see Section 2.1), r
is the number of replicas of a video in the NCC, and
N is the number of peers serving the video. Assuming
each peer has an NCC cache capacity of a single video,
the number of videos a peer serves is equivalent to the
striping degree S = N/r. Hence, the availability is
proportional to the fraction of upload service allocated
to the video. Figure 4(b) shows the playback comple-
tion time as a function of the peer’s total availability fa
and the striping degree S in a setting where r = 2 and
2 ≤ N ≤ 20. We see that the playback performance de-
grades as the striping degree increases. By striping, the
amount of NCC cache dedicated to the observed video
reduces, and this reduction is significant to cancel the
above noticed gains from striping.

Our goal is thus to identify the ’cross-point’. In other
words, what functional behavior must Pa have with re-
spect to the fraction of cache allocated to the video
whereby the two caching strategies, wide striping and
aggregate placement, offer identical performance? Since
the biased cache distribution attempts to equalize the
continuity of all pieces (see Section 4.1.3), it is sufficient
to find the condition for which the continuity of the first
piece is independent of the video’s cache fraction N/r.
To simplify the analysis, we seek to find the condition
for which the continuity is independent of the number
of serving peers N , assuming the number of replicas of
the video r is fixed. We empirically observe that with
a biased cache distribution the first piece is typically
replicated across all serving peers. Setting the conti-
nuity of the first piece to some constant C ≤ 1, and
solving for Pa, where r0 = N and pi is given by Eq. (8),
yields Pa’s functional behavior

Pa = 1− (1− C)
1

N(d+1) . (13)

Thus, to achieve a target continuity C, the availabil-
ity should be inversely correlated with the number of
videos a peer serves as in Eq. (13). For example, the
availability Pa should be nearly inversely proportional
to the number of videos a peer serves to obtain some
target continuity when the start delay is zero (d = 0).
We can derive the cross-point for the waitfor-missing-
piece playback by applying the same methodology. For
d = 0, the functional behavior of Pa is the same as in
Eq. (13), where C = E[w0]/(1 + E[w0]). We validate
the cross-point by simulations (see Section 4.2). We
consider a setting where r = 4 and each seed has NCC
cache capacity of a single video. We vary the number
of seeds between 4 and 60, so that a peer concurrently
serves 1 to 15 videos, and adjust the availability accord-
ing to Eq. (13). We measure the playback completion

8

time and playback continuity of the first 10% and 50%
of the video. We observe near constant performance
with small deviations from the mean of less than 8%,
thus providing empirical evidence to support the cross-
point rule.

4.2 Simulation Experiments
To explore the parameter space and study the useful-

ness of the cache distribution proposed in Section 4.1.3,
we conduct an extensive performance study using an
event-driven simulator that emulates real BitTorrent
behavior [6]. We enhance the simulator to support an
earliest-first (EF) and rarest-first (RF) hybrid policy
to select which piece to download first. With a hy-
brid policy [9], a peer randomly selects either the piece
that is closest to the playback point or the one that is
rarest in the system. The hybrid policy has been shown
to achieve a good tradeoff between high piece diver-
sity and sequential progress [9, 22, 29]. We use a pure
earliest-first policy for the single client experiments, and
a hybrid policy with an EF fraction of 0.8 for the multi
client experiments in Section 5, as suggested by [17,25].

We further modify the baseline BitTorrent protocol
to support cross-content caching and uploading. Cross-
content uploading is done over a single connection: a
peer selects to upload to (unchoke) the primary swarm
with probability 1 − Pa and to the additional swarms
for which it has content in its cache with probability
Pa. We further modify the protocol to allow peers to
be seeded with parts of a video file according to a given
cache distribution. Unless specified otherwise, we use
the following simulation settings to derive the simula-
tion results. We consider a file of 25MB chopped into
100 pieces, each of 256KB. The upload and downland
bandwidth of a peer is 1000Kbps and 5000Kbps, respec-
tively, and the video playback rate is 1000kpbs. The
unchoke interval is 2 seconds.

We consider a simple setup with two videos, A and B,
being concurrently downloaded by N + 1 clients. Out
of the N + 1 clients, N download video B and seed
A, and one downloads A. An additional peer is used
to seed B. Thus, the peers from two swarms: one for
the popular video B with N downloaders and one for
the unpopular video A with a single downloader and N
peers seeded with parts of A. Each of the N seeding
peers offers an availability of Pa for serving A’s pieces.
The aggregated cache for A across the seeding peers is r
times the video size. In the beginning of the simulation,
we iteratively distribute video pieces among peers, such
that the number of replicas of each piece follows a target
cache distribution function. In each iteration, we select
a piece replica at random and assign it to the peer with
the smallest number of assigned pieces. The process
stops when all pieces are assigned.

We focus on the performance of the less popular video

0 50 100
0

0.2

0.4

0.6

0.8

1

 Piece index

P
la

yb
ac

k
co

nt
in

ui
ty

Simulation
Model

(a) skip-missing-piece

0 50 100
1

2

3

4

5

6

 Piece index

P
la

y
co

m
pl

et
io

n
tim

e Simulation
Model

(b) waitfor-missing-piece

Figure 5: Model validation assuming playback
(a) skips a missing piece; (b) waits for a missing
piece.

A. For each set of parameters, we repeat the experiment
100 times and report the average results. When present-
ing results, the playback completion time of a video is
expressed relative to the time length of the video. For
example, a playback completion time of 1.25 means that
the time it takes to playback the video is 1.25 times the
video’s length. In other words, the total time playback
is stalled is 25% of the video length. The piece-level
playback completion time, as well as the startup delay,
are expressed relative to the playback time of a piece.
We repeat each video download experiment 100 times,
and typically present the average result in the plots.

4.2.1 Simulation Results
We begin by comparing the results obtained using

our models to those obtained using the BitTorrent sim-
ulator. We consider a setting with 20 seeds (N = 20),
seed availability of 0.05 (Pa = 0.05), 100-piece video
(m = 100), zero startup delay (d = 0), and an allo-
cated cache in the NCC that is four times the video
size (r = 4), populated uniformly. Figure 5 shows the
predicted vs. measured playback continuity (pi) and
playback completion time (E[tm−1]) functions, respec-
tively, as a function of the piece position. As described
in Section 3.1, we use the playback continuity metric
for skip-missing-piece playback and playback comple-
tion time metric for wait-missing-piece playback. We
observe a good match with an average error of less than
5% between the predicted and measured playback con-
tinuity and playback completion time functions. We
repeat the validation when the number of seeds is var-
ied from 10 to 40, the NCC cache size is varied from
2 to 10 times the video size, the availability is varied
between 0.05 and 0.2, and using a front-weighted cache
distribution, all while keeping the remaining parameters
fixed. We observe a similar match between the model
and the measurement.

Figure 6 depicts experimental results that show the
benefit of a biased distribution. Figure 6(a) depicts how
we distribute replicas of pieces within a 100-piece video

9

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

Piece index

R
ep

lic
a

di
st

rib
ut

io
n Uniform

Weighted

(a) Cache distributions

0 10 20 30 40 50
1

2

3

4

Piece index

P
la

y
co

m
pl

et
io

n
tim

e Uniform
Weighted

(b) Playback times

Figure 6: Performance comparison between uni-
form and biased distributions using simulation.

when the allocated cache in the NCC is four times the
size of the video (400 pieces), the number of seeds is 20,
the availability is Pa = 0.1, and d = 0. For the uniform
policy, there are four copies of each piece. As a sec-
ond strategy, we implement a biased caching strategy
according to the results in Section 4.1.1. The biased
strategy reduces the number of replicas of pieces 62-100
to two to significantly increase the number of replicas
of the first 15 pieces, and slight increases in the next
6. Figure 6(b) depicts the playback completion time
of pieces relative to a single piece’s playback time as a
function of piece position. We see a gain of 30% in play-
back completion time of the first 10% of the video, i.e.,
the first 10 pieces, and a gain of 75% in the total time
playback is stalled. This gain significantly improves the
viewing experience. Intuitively, the benefit stems from
the fact that the peers who can provide pieces are only
available a fraction of the time, so that forcing a higher
replication rate for the earlier pieces with tight retrieval
deadlines at the expense of later ones that have relaxed
deadlines improves performance.

Figure 7 plots the relative reduction in the time play-
back is stalled across the first 10% and 50% of the video
of a biased cache distribution in comparison to uniform
distribution. Figure 7(a) shows the performance im-
provement as a function the availability of seeds, Fig-
ure 7(b) as a function of the the number of seeds, and
Figure 7(c) as function of the number of replicas cached
in the NCC. We observe significant gains when seed
availability ranges from 10% to 20% and when the num-
ber of seeds is between 15 and 30. When the piece avail-
ability is too scarce, the timely playback of later parts of
the video becomes a bottleneck. Hence, shifting repli-
cas from later parts to earlier ones does not benefit the
playback completion time, rendering the biased distri-
bution ineffective. We see significant gains even when
the cache allocated to the video is minimal (e.g., twice
the video size). The results for the skip-missing-piece
metric are similar. We repeat the experiments for videos
with 300 and 500 pieces and for small swarms with 4
or less clients (see also Section 5) and observe slightly

5 10 15 20
0

20

40

60

80

100

Seed availlability (%)

W
ai

t t
im

e
re

du
ct

io
n

(%
)

First 10%
First 50%

(a) Seed availability

10 15 20 30
0

20

40

60

80

100

Number of seeds

W
ai

t t
im

e
re

du
ct

io
n

(%
)

First 10%
First 50%

(b) Number of seeds

5 10 15
20

40

60

80

100

Cache size

W
ai

t t
im

e
re

du
ct

io
n

(%
)

First 10%
First 50%

(c) Cache size

Figure 7: Benefit of a biased distribution in re-
ducing the time playback is stalled when vary-
ing (a) availability; (b) the number of seeds; (c)
cache size.

0 20 40 60 80 100
0

0.05

0.1

Piece index

R
ep

lic
a

di
st

rib
ut

io
n

delay=0
delay=4
delay=16

Figure 8: The affect of the startup delay on the
optimized cache distribution.

smaller gains.
Increasing the tolerance for the initial startup delay d

lessens the demand for the immediate availability of the
early pieces, and thus can have a flattening affect on the
cache distribution. This behavior is seen in Figure 8 for
startup delays of 0, 4, and 16 seconds. We see that the
distribution plays a less critical role as the startup delay
increases. We also explore the affect of the biased distri-
bution on reducing the startup delay requirement. We
measure the lowest possible startup delay a peer needs
to choose such that the playback completion time is be-
low some target threshold, and present the reduction
in startup delay requirement of the biased distribution
in comparison to uniform. We see that the biased dis-
tribution can reduce the start delay by 3.5 on average.
In summary, the simulation results show that our cache
design achieves lower startup delays and significantly
improves the streaming quality of small swarms.

10

1 1.05 1.1 1.15
0

20

40

Playback completion time

S
ta

rt
up

 d
el

ay Uniform
Weighted

Figure 9: Benefit of a biased distribution in re-
ducing the startup delay.

4.3 PlanetLab Experiments
To demonstrate a proof-of-concept and to measure

the performance of the biased cache distribution (see
Section 4.1.3) in a real network environment, we de-
velop a prototype of a P2P VoD system and conduct
experiments on PlanetLab. We base the prototype on
the mainline BitTorrent client and modify it to sup-
port in-order piece selection, cross-content serving and
caching, and seeding of partial files, as in Section 4.2.

We setup two distribution swarms with 10 peers in
total, in which one peer is downloading a niche video,
another is seeding a popular video, and the remaining
peers are downloading the popular video. The peers
downloading the popular video are also set to seed the
niche movie. We compare the playback performance
of the niche video, i.e., playback completion time and
continuity, for the biased cache distribution and uni-
form. In the experiments, we vary the the number of
seeds for the niche video swarm from 4 to 7, the up-
load rate of peers from 768Kbps to 3072Kbps, and the
maximum number of unchoked connections from 3 to
6. All except one connection are used for serving the
swarm for the popular video. Out of U connections a
peer unchokes, U−1 are reserved for the popular video’s
swarm. The other connection is used to serve the niche
video’s swarm with probability 1/(N − U), where N is
the number of seeding peers. Thus, the availability of-
fered by the seeding peers can vary from 0.16 to 0.33.
The remaining BitTorrent parameters as set as follows.
We consider a 25MB video split into 100 pieces, each
256KB in size. The playback rate is 512Kbps, so that
the time to playback the entire video without interrup-
tions is 400 seconds. The unchoke interval is 4 seconds.

Figure 10(a) shows the playback completion time for
the biased cache distribution and the uniform distribu-
tion. We see that the gain is largest when the aggre-
gated upload bandwidth is less than 1.5 times the play-
back rate, a common working point for VoD swarms [7].
Figure 10(b) and Figure 10(c) show the relative im-
provement in the playback continuity across the first
10% and 50% of the video for the biased distribution in
comparison to uniform as a function of the availability
of the seeds and the number of seeds, respectively. The
gain is most drastic when seeds are rarely available, i.e.,
very active in their own swarm or serving other videos,

1.2 1.3 1.4 1.5 1.6 1.7 1.8
400

450

500

Ratio of upload bandwidth to playback rate

P
la

y
tim

e
(s

ec
)

Unifrom
Weighted

(a) Ratio of aggregated upload bandwidth and playback rate

20 25 30
0

20

40

60

80

Seed availlability (%)

P
la

y
tim

e
re

du
ct

io
n

(%
)

First 10%
First 50%

(b) Availability of seeds

4 5 6 7
0

20

40

60

80

Number of seeds

P
la

y
tim

e
re

du
ct

io
n

(%
)

First 10%
First 50%

(c) Number of seeds

Figure 10: Performance comparison between bi-
ased and uniform cache design in PlanetLab ex-
periments when varying (a) the ratio of upload
bandwidth to playback rate; (b) availability of
seeding peers; (c) number of seeding peers.

or when the number of peers actively seeding the video
is minimal. In more realistic systems, where the avail-
ability of niche content can significantly vary (e.g., due
to peer upload heterogeneity), we expect our cache de-
sign to have even larger impact.

5. MULTIPLE CLIENTS
We now explore the the impact of the size of the

swarm on the cache policy. Our interest lies in videos
that have high likelihood to be actively downloaded by
multiple clients. That is, medium to large distribution
swarms. We study the impact of the swarm size on the
cache distribution using simulations (see Section 4.2).
To derive the distribution of the cache, we develop a
simple on-line algorithm that adapts the cache during
successive transmissions of the video, where the play-
back times of the video pieces are monitored over time.
The on-line algorithm does not require knowledge about
node availability and the swarming mechanisms, which
are often complex and co-dependant in large-scale dis-
tribution swarms [9,16], and hence is applicable for gen-
eral VoD swarming systems. The basic idea of the algo-
rithm is to attempt and shift replicas from pieces that
have high continuity to pieces that have low continuity,
which will have the affect of equaling continuity across
all pieces. Further details are given in Section 5.1.

In the default setting, we consider a distribution swarm
with multiple peers downloading video A and 40 peers
who are not actively downloading A, but have space in
their NCC to store it. Each such peer offers availability

11

10 20 30
0

20

40

60

80

Number of clients

P
la

y
tim

e
re

du
ct

io
n

(%
)

(a) Playback improvement

10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

Piece index

R
ep

lic
a

di
st

rib
ut

io
n 2 peers

8 peers

(b) Cache distribution

Figure 11: Benefit of the biased distribution in
a multiple client setting.

of Pa = 0.1, and the aggregated cache is two times the
video size. The peers interested in A arrive according
to a poisson process. Figure 11(a) shows the relative
improvement in playback completion time across the
first 50% of the video for the biased cache distribution
computed using the on-line algorithm in comparison to
a uniform distribution. Figure 11(b) shows the biased
cache distribution for swarms with 2 and 8 downloading
peers. We see that the distribution of the cache plays
a less significant role as the size of the swarm grows.
Thus, the swarm becomes ’self-supporting’. The re-
sults are similar when considering a more general setting
with two classes of peers: peers who serve pieces from
their NCC, and peers who serve pieces from their PCC
and typically offer high availability,e.g., 0.8 in our set-
ting. We also compare the biased caching distribution
in Section 4.1.3 based on the (weighted) average of peer
availability to that derived using the on-line algorithm
and observe similar distributions (up to 10% difference
in placement) and playback times for small swarms,
demonstrating the usefulness of the biased cache dis-
tribution for small swarms.

The results in Figure 11 can be explained by not-
ing that the downloading peers are more aggressive in
prioritizing the swarm than those acting as seeds, and
thus piece availability is dominated by the download-
ing peers. Since the downloading peers are at some
midpoint in the video playback, this naturally creates
a higher density of earlier pieces in the swarm. Next,
we study how adjustments in the hybrid piece selec-
tion policy (e.g., the fraction of time an RF-like request
is made versus an EF-like request) affect the desirable
distribution of pieces. We observe that a policy that
prioritizes in-order delivery too aggressively can lead to
a playback continuity that flattens out towards the end
of the video [9]. In this case, the on-line algorithm yields
a back-weighted cache distribution, which significantly
improves the playback completion time, e.g., by 55%
for a 64-peer swarm. Similarly, the cache distribution
can compensate for piece selection policies that priori-
tizes rarest-first delivery too aggressively by weighting
the front more heavily. In summary, we observe that

the cache distribution flattens out as the swarm size
increases, and that it can lessen the performance im-
pact resulting from varying the EF/RF mixture in the
hybrid piece selection policy.

5.1 On-line Caching Strategy
A drawback of our model-based caching policy is the

required knowledge about node availability (Pa) and
the swarming mechanisms in use. We thus present an
adaptive algorithm that determines the cache distri-
bution. The algorithm optimizes the playback perfor-
mance, while adapting to variations in the availability
of peers. Recall from Section 4.1.3 that our primary
goal is to minimize the video’s playback completion
time: min{ri}E[tm−1] subject to a constraint on the
total cache size,

∑m−1
i=0 ri ≤ R, and a constraint on the

number of replicas of a piece, 1 ≤ ri ≤ N .
We develop an algorithm that adapts the distribu-

tion of the cache during successive transmissions of the
video, where the playback times of the video pieces are
monitored over time. We let t̂i represent the measured
playback time of piece i and ŵi = t̂i+1 − t̂i represent
piece i’s playback time relative to that of piece i − 1.
We set our objective to minimize t̂m−1 =

∑m−1
i=0 ŵi.

The basic idea of the algorithm is to shift replicas from
pieces that have high continuity to pieces that have low
continuity. To this end, we order the pieces in ascend-
ing order according to their playback completion times
ŵi. Assuming the aggregate size of the cache must stay
fixed, whenever we find ŵi � ŵj then we attempt to
shift a replica of piece j to piece i, which can poten-
tially decrease the playback completion time of the en-
tire video.

We associate a timeout value for each pair of pieces
participating in a replica shift to avoid frequent moves
of the same pieces. We let {hi,j} represent the number
of iterations of the algorithm for which a replica shift
between j and i is prohibited, and decrease all entries
{hi,j > 0} in every iteration. We restart the sampling
for the piece playback times t̂i every time the cache allo-
cation is shifted for a piece. In addition, we periodically
update t̂i to their real measured values using a weighted
moving average to allow the algorithm to track system
dynamics. At initialization, we set the cache distribu-
tion to a uniform distribution ri = R/N . The algorithm
returns a new replica distribution candidate {r̃i} if one
exists. The details of the cache optimization algorithm
are given in Algorithm 1. Our algorithm can be eas-
ily extended to optimize the playback performance for
skip-missing piece by measuring the continuity rate of
pieces, and adapting the cache distribution to equalize
the continuity across all pieces.

We compare the cache distribution based on the on-
line algorithm to that based on our model for multiple
simulation settings. We set the frequency with which

12

to invoke the replica shift to 50 successive downloads to
accurately estimate peers’ availability. We observe sim-
ilarity in the distributions and the corresponding results
for small swarms of three or less clients, namely, up to
10% difference in piece placement and 6% difference in
the resulting playback performance. Typically, it takes
the algorithm less than 200 iterations to compute the
cache distribution.

Algorithm 1 On-line Cache Optimization
Given {t̂i}
Sort the pieces {i}m−1

i=0 in ascending order according
to their playback completion time
xk ← the piece that has the kth smallest playback
completion time
if ∃i, j such that j = arg mink{xk} and i =
arg maxk{xk} and ŵxj − ŵxi > th and hi,j = 0 and
hj,i = 0 and rj > 1 and ri < N then
{r̃i} ← {ri}
r̃k ← r̃k + 1
r̃j ← r̃j − 1
hi,j ← m
return {r̃i}

end if
return null

6. INTER-VIDEO DISTRIBUTION
Given a system with multiple videos of different pop-

ularity, how should peers share their bandwidth and
cache resources across the various videos? To address
this question we develop a model to characterize multi-
file P2P VoD systems. We then use the model to de-
rive an optimal cache allocation strategy across multiple
videos, justifying the system’s bias toward niche content
in the form of the NCC.

More formally, we consider a P2P VoD system serv-
ing a set of videos V. A video i ∈ V has size li and
is requested at a rate of λi, with larger λi indicating
a more popular video. The system has a total cache
capacity of Z. The cache capacity allocated to video i
is zi. Different weight values {αi} are assigned to the
video files to indicate how important they are. For ex-
ample, the weight of a video can be proportional to its
popularity αi = λi, so that the service can be biased
towards popular videos at the expense of niche ones.
Observe that the heavy tail of demand for niche con-
tent means that their performance cannot be ignored.
Alternatively, the weight can be constant αi = α, so
that all videos are treated equally.

6.1 Cross-content Optimization
Our primary goal is to minimize the playback com-

pletion time for a video request within our system, as

0 5 10 15 20 25 30
0

0.5

1

Swarm size

η

Figure 12: The effectiveness of swarming as
function of swarm size.

described in Section 3.1. When considering all videos,
we can specify our global objective as:

min
{zi}

G =
∑
i

αiTi

subject to
∑
i

zi = Z

where αi is the weight of video i and Ti is playback
completion time of video i.

We make several simplification assumptions in our
analysis, as follows. First, we use a parameter β to
capture the ratio of the sequential progress of a video
download, the ability to acquire pieces sequentially, and
the download progress, the rate at which pieces are ob-
tained. It has been empirically shown that for popular
swarms, a BitTorrent-like protocol with in-order piece
selection and FCFS upload queues can achieve near
optimal download progress as well as ideal sequential
progress [20], i.e., β close to 1. For unpopular content,
β can be computed from our model in Section 4.1. We
empirically observe that β decreases with the swarm size
and therefore assume βi ≥ βj for λi ≤ λj . The play-
back completion time can thus be expressed as Ti =
max { lis , βiT

(d)
i }, where T

(d)
i is the download time of

video i and li
s is the video length. Second, we assume

that each unit of storage is associated with a unit of
bandwidth. This allows us to transfer the optimization
problem into a bandwidth allocation problem.

We build on the results in [13,21] to develop a simple
fluid model for the download time in a multi-file P2P
VoD system with dedicated seeding peers. The seeds
represent the service contribution of the NCC. We give
a detailed description of the model in the Appendix.
To keep the exposition simple, we consider here the case
where peers do not abort the download and stop seeding
after download is complete, which is a conservative as-
sumption from provisioning perspective. Based on the
download time expression in Eq. (27) in the Appendix,
the playback completion time of video i in steady-state
can be written as:

Ti = max
{
li
s
,
βi
ηi

(
li
µ
− zi
λiµ

)}
(14)

where zi is the now the dedicated seed bandwidth as-
signed to video i and ηi is the effectiveness of swarm-
ing, that is, the probability that the upload capacity

13

of peers is fully utilized. We see that the reduction in
download time due to the dedicated seed bandwidth zi

λiµ
decreases linearly with the arrival rate λi. In accordance
with other P2P system studies [13,16], we assume that
s ≥ µ. That is, the peers’ upload bandwidth is most
certainly the constraint. Thus, the bandwidth allocated
to video i should satisfy

zi ≤ λili
(

1− ηiµ

sβi

)
. (15)

We base the preference in bandwidth capacity assign-
ment on the marginal utility of each video, the marginal
improvement in the system-wide performance upon unit
increase in capacity:

−dG
dzi

=
αiβi
ηiµλi.

(16)

To solve the optimization problem, we first allocate the
capacity to v1 until zv1 is saturated. The residual ca-
pacity is then allocated to v2, and the process repeats
recursively. Hence,

zvi = min

z̃i, Z −
i−1∑
j=1

zvj

 (17)

where z̃i = λili

(
1− ηiµ

sβi

)
. This result indicates that

the capacity allocated to a video should be proportional
to the video popularity times 1 − ηiµ

sβi
, a factor that is

inversely correlated with η. Thus, the capacity alloca-
tion per peer is higher for small swarms than that of a
large swarm.

To determine the marginal utility, we observe that
peers become more busy uploading as the swarm size
increases [20]. For example, Figure 12 shows the mea-
sured value of η as function of swarm size in the ex-
perimental environment in Section 4.2. Thus, ηi ≤ ηj
for λi ≤ λj . This result combined with Eq. (16) allows
us to determine preference in bandwidth capacity as-
signment: the capacity should be allocated according
to videos popularity, least popular videos first. This al-
location holds for both proportional video weights and
uniform weights. The primary difference with respect to
proportional is that the performance of relatively pop-
ular swarms is essentially independent of the allocation
strategy. This occurs because once a swarm acquires
few peers, the swarming effectiveness η increases very
slowly with additional peers, so that the marginal utility
of popular videos is essentially the same. In summary,
the above analysis shows that the allocation of stor-
age within the NCC should be proportionally to the
the video popularity, but with a bias in favor of niche
content. The bias is needed to compensate for the low
swarming efficiency of small swarms.

We use a similar approach to demonstrate that re-
serving resources for niche content has small effect on

the performance of popular swarms served from the
PCC. Here, we assume that peers become seeds once
they complete the download, serving the video for an
average time of time 1/γ. Based on the download time
expression in Eq. (26) in the Appendix, we have

Ti = max
{
li
s
,
βi
ηi

(
li
µ
− 1
γ

)}
(18)

This result indicates that if users keep videos in their
PCC for relatively long times, the common case in our
system, the seed residence time 1/γ is likely to be larger
than the latency of uploading the entire file li/µ, so that
the download time is not constrained by the peers’ up-
load bandwidth. Hence, we can conclude that popular
swarms have more than enough capacity that a small
percentage of upload capacity can be sacrificed without
noticeable effect on the performance.

6.2 Numerical Results

0 5 10 15 20
0

20

40

60

80

Reserved BW fraction (%)

Lo
ad

 r
ed

uc
tio

n
(%

)

(a) Server load

0 5 10 15 20
0

10

20

30

40

Reserved BW fraction (%)

#v
id

eo
s

in
cr

ea
se

(%
)

(b) Catalog size Availability

Figure 13: Performance improvement of our sys-
tem in comparison to a traditional P2P VoD sys-
tem in terms of (a) server bandwidth savings (b)
catalog size increase.

To understand how efficient is an NCC-enabled sys-
tem design, we calculate the system-wide performance
numerically based on the equations provided in Sec-
tion 6.1. We assume that we have a central server that
can complement video streaming when the P2P network
cannot satisfy a request. We focus on two performance
measures: the server workload and the supported video
catalog size, where a video is included in the catalog if
its playback time is close to its original length l/s.

We consider a system with a content library of 1000
videos, each of which encoded at rate of s = 1000Kbps,
and 1000 peers. The video popularity is modeled ac-
cording to the Zipf’s distribution with parameter θ =
0.75. The Zipf distribution allows us to capture the
long-tail phenomena typical in video rental services [4]
and Web-based video services with user generated con-
tent [10]. Video i is requested at rate λi = 1.25K

iθ
,

where K =
∑1000
i=1 1/iθ. We assume that on average a

peer stays as a seed after completing the video download
for 1/γ = 1.66 hours. The swarming effectiveness and β

14

are derived empirically using experimentation (see Sec-
tion 4.2).

We compare the server load and the supported cata-
log size for two designs: traditional P2P system (base-
line), where peers use their entire upload bandwidth to
serve all the video requests, and NCC-enabled, where
a fraction 1 − fa of a peer’s bandwidth is dedicated to
serving the ’top’ videos and the remaining fraction fa
allocated to the rest of the videos according to the policy
described in Section 6.1. The ’top’ videos are the pop-
ular, overprovisioned videos in the system, i.e., those
that do not suffer noticeable playback time decrease
due to the reduction in the peers’ upload bandwidth.
For example, for fa = 0.2, we have 250 top videos. Fig-
ure 13(a) shows the savings in server load of our system
in comparison to baseline as a function of the fraction
of peer’s upload bandwidth reserved for niche content
fa. We see that the gain of an NCC-enabled system
increases with the reserved bandwidth; the savings can
go up to 70%. Intuitively, the improvement stems from
the overprovisioning for popular content, while less pop-
ular content experiences low service (download) rates
due to low swarming effectiveness and thus needs to
rely more heavily on the central server to cope with
the demand. Figure 13(b) shows the improvement in
the supported catalog size for our system in compari-
son to baseline. As shown, the improvement increases
linearly with the fraction of reserved bandwidth. While
the baseline can support 650 videos, our architecture
can reach 920 videos with fa = 0.2, allowing nearly full
access to the video catalog, as desired.

7. RELATED WORK
P2P VoD has attracted great research interests in re-

cent years. Compared to traditional client-server VoD
systems [3], a P2P-based VoD solution is less costly and
more scalable [15, 15]. In the context of provider man-
aged P2P VoD systems, there are few related papers.
Janardhan et al. [18] proposed a P2P architecture for
set-top boxes. Allen et al. [3] empirically evaluated
the the benefits of using the storage of set-top boxes
in a P2P fashion using a trace-driven approach. Suh
et al. [24] designed an architecture for pushing content
into boxes, and analyzed optimal placement strategies.
Empirical evaluation of such an architecture for IPTV
is provided in [12] and analysis of the achievable catalog
size for such an architecture is given in [7]. Our work
differs from these studies in that we focus on efficient
delivery of the long-tail of unpopular content, rather
than the popular videos.

In addition, a lot of recent work focuses on the design
and enhancement of BitTorrent-like swarming proto-
cols, designed originally for downloading systems [8,21],
for live streaming systems [28, 29], and more recently
for stored media streaming systems [5,20,25]. However,

most of this work focuses on large-scale swarms, paying
little attention to the behavior of small swarms. Fur-
thermore, most of these works focus on single-file service
models. Recently, there have been few papers that ana-
lyze multi-channel P2P streaming systems [26,27]. Hov-
erer, these studies are not directly applicable to stored
media streaming where users viewing videos are unsyn-
chronized.

The idea of using caching to support large user base
and large catalogs is not new. In fact, is has been sug-
gested that proxy caching [11] and prefix-caching [23]
can significantly improve the performance of traditional
client-server VoD systems. The key difference between
these proposals and our system is that we consider a
distribution swarm with out-of-order delivery of video
pieces, while the previous proposals use unicast stream-
ing for video delivery and hence rely on in-order delivery
of video pieces.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a provider-managed P2P

VoD framework for efficient delivery of niche content.
By reserving small portions of peers’ resources and us-
ing novel, weighed caching techniques, providers can
support much larger catalogs for VoD. We demonstrated
through analytical analysis, simulations and experiments
on planetlab that our system design can provide short
startup delays and high streaming quality for niche con-
tent.

As part of future work, we intend to systematically
explore how to determine and adapt the barrier be-
tween NCC and PCC to optimize system-wide perfor-
mance. We also intend to address video popularity dy-
namics. As a video becomes more popular, the swarm
becomes more reliable, the video more prevalent in the
PCC, and hence presumably it can be thinned from the
NCC. In contrast, as the video becomes less popular,
and clients begin to flash the video from their PCC, the
NCC capacity may need to be increased to compensate
for the video deletions. We intend to explore on-line
algorithms that adapt the cache so that the number of
copies of a video across both NCC and PCC never falls
below a desired level. Finally, we intend to explore how
to support video seeking operations of users, such as
fast-forwarding. Our initial approach is to use anchor-
points [16]. When a user attempts to go to a particular
position in the video, if the piece for that position is
missing then the closest anchor point is used instead.
To improve the startup delay after such a jump, we in-
tent to apply the biased distribution in between these
points.

APPENDIX
A. CONTINUITY ANALYSIS

15

Simplification of continuity expression in Eq. (3):
Using algebraic manipulation, we can rewrite the ex-
pression for p(i, k) given by Eq. (1) and (2) as

p(i, k) = 1− (1− p(i, k̃ − 1))(1− F (i)S(i, k̃))

where k̃ , max (k, i+ d). From the above equation we
can see that p(i, k) has linear recurrence relation on k.
Applying recursive substitutions on p(i, k), we get

p(i, k) = 1−
k̃∏
j=0

(1− F (i)S(i, k̃ − j)) (19)

The simplified representation follows immediately from
Eq. (19) since pi = p(i, i+ d).

Derivation of piece continuity ps(i) in Eq. (4):
Let ci(k) be the probability that playback is continu-

ous (k = 0) or held at piece i for k rounds (k > 0), and
ps(i) be the probability that piece i is available when
playback advances to position i. Then, we can express
ps(i) as

ps(i) =
2m−1∑
k=0

cs−1(k)ps−1(i, k)

ps(i, k) = 1− (1− ps(i))
k∏
j=0

(1− F (i)Ss(i, j))

Ss(i, k) =
i−1∏
j=s

1− F (j)
paN

(1− ps(j, k − 1))

where ps(i, k) is the probability that a peer has piece i
when the time spent on playback of s is k + 1 rounds,
Ss(i, k) is the probability that piece i is the most needed
piece available for download, and F (i) is the probability
that at least one peer with piece i, as defined in Eq. (2).

The probability piece i is available when playback is
at position 0, p0(i), is the probability to acquire piece
i within d startup rounds. Based on Eq. (3), we have
that p0(i) = 1 −

∏d−1
j=0(1 − F (i)S(i, j)). The expres-

sion for ps(i, k) and that for Ss(i, k) can be derived in
a similar way to that used to derive the playback conti-
nuity expression p(i, k) in Eq. (1) and S(i, k) in Eq.(2),
respectively, given an additional assumption that play-
back is held at s while i is being fetched.

Proposition A.1. Given a uniform piece distribu-
tion and a startup delay of zero, the playback continuity
function pi is monotonic increasing

pi < pi+1 (20)

Proof. We prove the proposition by showing that:

p(i+ 1, k + 1) ≥ p(i, k) ∀i, k : k ≤ i.

The claim above immediately yields the proposition since
pi = p(i, i) for a zero startup delay. We prove the claim

using induction on i. First, we consider the base case.
From Eq. (3), we have

p(1, 1) = 1− (1− F (1)S(1, 0)(1− F (1)) ≥ S(1, 0),

where the inequity holds since F (i) is a probability (i.e.,
F (i) ≤ 1). From Eq. 19, we also have

S(1, 0) = 1− F (1)
paN

(1− p(0, 0)) ≥ p(0, 0),

where the inequity holds since p(0, 0) is a probability.
Now, suppose the claim holds for i. From Eq. (3), we
have that for k ≤ i:

p(i+ 1, k + 1) = 1−
k+1∏
j=0

(1− F (i+ 1)S(i+ 1, j))

≥ 1−
k∏
j=0

(1− F (i+ 1)S(i+ 1, j + 1))

= 1−
k∏
j=0

(1− F (i)S(i+ 1, j + 1)).

The second step holds since F (i + 1) and p(i + 1, 0)
are probabilities. The last step holds since F (i + 1) =
F (i) when the replica distribution is unifrom. Based on
the expression for S(i, k) in Eq (2) and the induction
hypothesis, it is easy to see that S(i+1, k+1) ≥ S(i, k),
∀k : k ≤ i. Substituting the inequality for S(i+1, k+1)
in the expression above, we get

p(i+ 1, k + 1) ≥ 1−
k∏
j=0

(1− F (i)S(i, j)) = p(i, k).

Observe that the proof above is valid for a cache distri-
bution function that is monotonic non-decreasing, i.e.,
∀i : ri ≤ ri+1. Hence, proposition A.2 holds for these
cache distributions as well.

Proposition A.2. The playback continuity function
pi is bounded by

(1− F (i))i+d+1 ≤ 1− pi ≤ (1− F (i)S(i))i+d+1

where

S(i) =
1

i+ d+ 1

i+d∑
k=0

i−1∏
j=max (0,k−d)

1− F (j)
paN

.

Proof. Since p(i, k) is a probability (in particular
0 ≤ p(i, k) ≤ 1), we can bound s(i, k) in Eq. (2) by

i−1∏
j=max (0,k−d)

1− F (j)
paN

≤ s(i, k) ≤ 1.

Substituting the upper bound on s(i, k) into (3), we get
the upper bound on pi. Substituting the lower bound
into (3) and then applying holder’s inequality, we get
the lower bound on pi.

16

B. MODELING DOWNLOAD TIME
We build upon the models in [13, 21] to develop a

model for the download time in a VoD system using a
BitTorrent-like protocol. Similarly to [13], our model
captures the the impact of the service capacity of ded-
icated seeders on the performance, i.e., the impact of
the service capacity provided by the peer’s NCC on
the download time. We extend the single-file mod-
els in [13, 21] to account for a system serving multiple
videos with different popularity. The set of videos being
served is denoted by {1, · · · , |V |}. For video i, we use
the notations in Table 1, as well as the following ones

• xi(t) number of peers who are downlaoding video i at
time t. xi is the equilibrium value of xi(t).

• yi(t) The number of peers who are seeding video i
after downloading it. yi is the equilibrium value of
yi(t).

• zi The dedicated seed bandwidth assigned to video i.

• γ The rate at which peers abort seeding the recently
downloaded video.

• θ The rate at which clients abort the download.

• ηi The effectiveness of swarming

In the fluid model, the evolution of the number of
peers with video i is given by:

dxi(t)
dt

= λi − θx(t)− min{cxi(t), µxi(t)ηi + µyi(t) + zi}
li

(21)
dyi(t)
dt

=
min{cxi(t), µxi(t)ηi + µyi(t) + zi}

li
− γyi(t).

(22)

The number of peers and seeds in steady state can
be computed by letting dxi(t)

dt = 0, dyi(t)
dt = 0. When

the downloading bandwidth is the constraint, i.e., cxi ≤
µxiηi + µyi + zi, we have

x =
λ

θ + c
(23)

When the uploading bandwidth is the constraint, i.e.,
cxi > µxiηi + µyi + zi, we have

x =
λ

νi

(
1 + θ

νi

) − zi

ηiµ
(

1 + θ
νi

) (24)

where 1
νi

= 1
ηi

(
li
µ −

1
γ

)
To calculate the average download time of video i, we

can use Little’s law, as follows

λi − θx
λ

x = (λi − θx)Ti (25)

Using eqs. (23) and (24) we can express the average

download time of video i as

Ti = max

 li
θ + c

,
1

νi

(
1 + θ

νi

) (1− ziνi
ληiµ

) (26)

Assuming that peers do not seed the recently down-
loaded video (1

γ → 0) and do not abort the download
(θ → 0), we can simplify the average download time to

Ti = max
{
li
c
,
li
ηi

(
1
µ
− zi
λiliµ

)}
(27)

.

C. REFERENCES
[1] Nada home page:

http://www.nanodatacenters.eu/.
[2] Tivo home page: http://www.tivo.com/.
[3] M. S. Allen, B. Y. Zhao, and R.Wolski. Deploying

video-on-demand services on cable networks. In
ICDCS, Toronto, Canada, June 2007.

[4] C. Anderson. The Long Tail: Why the Future of
Business is Sellecing Less of More. Hyperion,
July 2006.

[5] S. Annapureddy and S. Guha. Exploring VoD in
P2P swarming systems. In IEEE INFOCOM,
Anchorage, Alaska , USA, May 2007.

[6] A. R. Bharambe, C. Herley, and V. N.
Padmanabhan. Analyzing and improving a
bittorrent networks performance mechanisms. In
IEEE INFOCOM, Barcelona, Spain, April 2006.

[7] Y. Boufkhad, F. Mathieu, F. de Montgolfier,
D. D. Perino, and L. Viennot. Achievable catalog
size in peer-to-peer video-on-demand systems. In
IPTPS, Tampa Bay, FL, USA, February 2008.

[8] C. Bram. Incentives build robustness in
bittorrent. In Workshop on Economics of
Peer-to-Peer Systems, May 2003.

[9] N. Carlsson and D. L. Eager. Peer-assisted
on-demand streaming of stored media using
bittorrent-like protocols. In IFIP/TC6
Networking, pages 570–581, Atlanta, GA, USA,
May 2007.

[10] M. Cha, H. Kwak, P. Rodriguez, Y. Y. Ahn, and
S. Moon. I tube, you tube, everybody tubes:
analyzing the world’s largest user generated
content video system. In ACM IMC, New York,
NY, USA, October 2007.

[11] Y. Chae, K. Guo, M. M. Buddhikot, S. Suri, and
E. W. Zegura. Silo, rainbow, and caching token:
schemes for scalable, fault tolerant stream
caching. IEEE JSAC, 20(7):1328– 1344, 2002.

[12] Y. F. Chen, Y. Huang, R. Jana, H. Jiang,
M. Rabinovich, J. Rahe, B. Wei, and Z. Xiao.
Towards capacity and profit optimization of
video-on-demand services in a peer-assisted iptv
platform. Multimedia Systems, 15(1):19–32, 2009.

17

[13] S. Das, S. Tewari, and L. Kleinrock. The case for
servers in a peer-to-peer world. In IEEE ICC,
Washington, DC, USA, June 2006.

[14] G. Dn and N. Carlsson. Dynamic swarm
management for improved bittorrent performance.
In IPTPS, Boston, MA, USA, April 2009.

[15] C. Huang, J. Li, and K. W. Ross. Can internet
video-on-demand be profitable? In ACM
SIGCOMM, Kyoto, Japan, August 2007.

[16] Y. Huang, T. Z. J. Fu, D. M. Chiu, J. C. S. Lui,
and C. Huang. Challenges, design and analysis of
a large-scale p2p-vod system. In ACM
SIGCOMM, Seattle, WA, USA, August 2008.

[17] K. W. Hwang, V. Misra, and D. Rubenstein.
Stored media streaming in bittorrent-like p2p
networks. Technical Report cucs-024-08,
Columbia University, New York, NY, April 2008.

[18] V. Janardhan and H. Schulzrinne. Peer assisted
vod for set-top box based ip network. In P2P-TV,
New York, NY, USA, 2007.

[19] J. G. Luo, Q. Zhang, Y. Tang, and S. Q. Yang. A
trace-driven approach to evaluate the scalability
of p2p-based video-on-demand service. IEEE
TPDS, 20(1):59–70, 2009.

[20] N. Parvez, C. Williamson, A. Mahanti, and
N. Carlsson. Analysis of bittorrent-like protocols
for on-demand stored media streaming. In ACM
SIGMETRICS, volume 36, pages 301–312,
Annapolis, MD, USA, 2008.

[21] D. Qiu and R. Srikant. Modeling and performance
analysis of bittorrent-like peer-to-peer networks.
In ACM SIGCOMM, Portland, OR, USA, August
2004.

[22] P. Rodriguez, S. Annapureddy, and C. Gkantsidis.
Providing video-on-demand using peer-to-peer
networks. In IPTV Workshop, WWW, May 2006.

[23] S. Sen, J. Rexford, and D. Towsley. Proxy prex
caching for multimedia streams. In IEEE
INFOCOM, New York, NY, USA, March 1999.

[24] K. Suh, C. Diot, J. Kurose, L. Massoulie,
C. Neumann, D. F. Towsley, and M. Varvello.
Push-to-peer video-on-demand system: Design
and evaluation. IEEE JSAC, 25(9):1706–1716,
2007.

[25] A. Vlavianos, M. Iliofotou, and M. Faloutsos.
Bitos: Enhancing bittorrent for supporting
streaming applications. In IEEE INFOCOM,
Barcelona, Spain, April 2006.

[26] C. Wu, B. Li, and S. Zhao. Multi-channel live p2p
streaming: Refocusing on servers. In IEEE
INFOCOM, Phoenix, AZ, USA, Feb 2008.

[27] D. Wu, Y. Liu, and K. Ross. Queuing network
models for multi-channel p2p live streaming
systems. In IEEE INFOCOM, Rio De Zaneiro,
Brazil, April 2009.

[28] X. Zhang, J. Liu, B. Li, and T. P. Yum.
Coolstreaming/donet: A data-driven overlay
network for peer-to-peer live media streaming. In
IEEE INFOCOM, Miami, FL, USA, April 2005.

[29] Y. Zhou, D. M. Chiu, and J. C. S. Lui. A simple
model for analyzing p2p streaming protocols. In
IEEE ICNP, Beijing, China, October 2007.

