1,289 research outputs found

    Physical Hypermedia: a Context-Aware approach

    Get PDF
    In this paper we describe an original architecture for building and deploying physical hypermedia applications, i.e. those applications in which digital and real world objects are linked together using the well-known navigational metaphor of the World Wide Web. We also explain how our architecture evolved from a substrate for implementing location-based services to a powerful and open basis for supporting different navigation semantics and for building travel assistance services according to the current user’s context. After motivating our research and describing the architecture, we illustrate our ideas with some simple examples and compare our research with other related work in the subject.Facultad de InformáticaLaboratorio de Investigación y Formación en Informática Avanzad

    Physical Hypermedia: a Context-Aware approach

    Get PDF
    In this paper we describe an original architecture for building and deploying physical hypermedia applications, i.e. those applications in which digital and real world objects are linked together using the well-known navigational metaphor of the World Wide Web. We also explain how our architecture evolved from a substrate for implementing location-based services to a powerful and open basis for supporting different navigation semantics and for building travel assistance services according to the current user’s context. After motivating our research and describing the architecture, we illustrate our ideas with some simple examples and compare our research with other related work in the subject.Facultad de InformáticaLaboratorio de Investigación y Formación en Informática Avanzad

    Configuration of smart environments made simple combining visual modeling with semantic metadata and reasoning

    Get PDF
    We present an approach that combines semantic metadata and reasoning with a visual modeling tool to enable the goal-driven configuration of smart environments for end users. In contrast to process-driven systems where service mashups are statically defined, this approach makes use of embedded semantic API descriptions to dynamically create mashups that fulfill the user's goal. The main advantage of the presented system is its high degree of flexibility, as service mashups can adapt to dynamic environments and are fault-tolerant with respect to individual services becoming unavailable. To support end users in expressing their goals, we integrated a visual programming tool with our system. This tool enables users to model the desired state of their smart environment graphically and thus hides the technicalities of the underlying semantics and the reasoning. Possible applications of the presented system include the configuration of smart homes to increase individual well-being, and reconfigurations of smart environments, for instance in the industrial automation or healthcare domains

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Decentralized Control and Adaptation in Distributed Applications via Web and Semantic Web Technologies

    Get PDF
    The presented work provides an approach and an implementation for enabling decentralized control in distributed applications composed of heterogeneous components by benefiting from the interoperability provided by the Web stack and relying on semantic technologies for enabling data integration. In particular, the concept of Smart Components enables adaptability at runtime through an adaptation layer and is complemented by a reference architecture as well as a prototypical implementation

    Some Research Questions and Results of UC3M in the E-Madrid Excellence Network

    Get PDF
    32 slides.-- Contributed to: 2010 IEEE Global Engineering Education Conference (EDUCON), Madrid, Spain, 14-16 April, 2010.-- Presented by C. Delgado Kloos.Proceedings of: 2010 IEEE Global Engineering Education Conference (EDUCON), Madrid, Spain, 14-16 April, 2010Universidad Carlos III de Madrid is one of the six main participating institutions in the eMadrid excellence network, as well as its coordinating partner. In this paper, the network is presented together with some of the main research lines carried out by UC3M. The remaining papers in this session present the work carried out by the other five universities in the consortium.The Excellence Network eMadrid, “Investigación y Desarrollo de Tecnologías para el e-Learning en la Comunidad de Madrid” is being funded by the Madrid Regional Government under grant No. S2009/TIC-1650. In addition, we acknowledge funding from the following research projects: iCoper: “Interoperable Content for Performance in a Competency-driven Society” (eContentPlus Best Practice Network No. ECP-2007-EDU-417007), Learn3: Hacia el Aprendizaje en la 3ª Fase (“Plan Nacional de I+D+I” TIN2008-05163/ TSI), Flexo: “Desarrollo de aprendizaje adaptativo y accesible en sistemas de código abierto” (AVANZA I+D, TSI-020301- 2008-19), España Virtual (CDTI, Ingenio 2010, CENIT, Deimos Space), SOLITE (CYTED 508AC0341), and “Integración vertical de servicios telemáticos de apoyo al aprendizaje en entornos residenciales” (Programa de creación y consolidación de grupos de investigación de la Universidad Carlos III de Madrid).Publicad

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid
    • …
    corecore