

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open
Access.

This item is the archived peer-reviewed author-version of:

Configuration of Smart Environments Made Simple – Combining Visual Modeling with Semantic
Metadata and Reasoning

Simon Mayer, Nadine Inhelder, Ruben Verborgh, Rik Van de Walle, and Friedemann Mattern

In: Proceedings of the International Conference on the Internet of Things, 61–66, 2014.

https://www.vs.inf.ethz.ch/publ/papers/mayersi-iot-2014.pdf

To refer to or to cite this work, please use the citation to the published version:

Mayer, S., Inhelder, N., Verborgh, R., Van de Walle, R., and Mattern, F. (2014). Configuration of
Smart Environments Made Simple – Combining Visual Modeling with Semantic Metadata and
Reasoning. Proceedings of the International Conference on the Internet of Things 61–66.
10.1109/IOT.2014.7030116

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74752109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Configuration of Smart Environments Made Simple
Combining Visual Modeling with Semantic Metadata and Reasoning

Simon Mayer∗, Nadine Inhelder∗, Ruben Verborgh†, Rik Van de Walle†, and Friedemann Mattern∗
∗Institute for Pervasive Computing, ETH Zurich, Zurich, Switzerland
†Multimedia Lab, Ghent University - iMinds, Ghent, Belgium

Abstract—We present an approach that combines semantic
metadata and reasoning with a visual modeling tool to enable the
goal-driven configuration of smart environments for end users.
In contrast to process-driven systems where service mashups
are statically defined, this approach makes use of embedded
semantic API descriptions to dynamically create mashups that
fulfill the user’s goal. The main advantage of the presented system
is its high degree of flexibility, as service mashups can adapt
to dynamic environments and are fault-tolerant with respect to
individual services becoming unavailable. To support end users
in expressing their goals, we integrated a visual programming
tool with our system. This tool enables users to model the
desired state of their smart environment graphically and thus
hides the technicalities of the underlying semantics and the
reasoning. Possible applications of the presented system include
the configuration of smart homes to increase individual well-being,
and reconfigurations of smart environments, for instance in the
industrial automation or healthcare domains.

I. MOTIVATION

For a long time, researchers in academia and industry alike
have been focusing on bringing to life the vision of smart
environments, and in particular the smart home by integrating
ideas from pervasive computing and the Internet of Things
(IoT) with “classical” home automation systems. Despite this
grand effort to put residents in control of a growing number
of smart devices in their home and workplace environments
and despite the necessary technologies being readily available,
smart homes have not yet been widely adopted, which seems
to be caused to a large extent by the poor manageability and
inflexibility of current home automation solutions [1]–[3].

Indeed, in environments populated by many heterogeneous
smart things that can modify the users’ environment (e.g.,
smart thermostats) or provide relevant contextual information
(e.g., motion sensors), it is difficult for users to find and
utilize services that provide the functionality they require [4].
This is especially true when considering more complex user
requirements that involve multiple co-operating devices within
so-called “physical mashups,” i.e. composite applications that
involve sensing or actuation of the physical world [5]. Enabling
owners of smart homes to create such mashups has been
identified as an important domain in the field of ubiquitous
computing research [1], and the easy configuration of smart
environments is also gaining importance in the context of
industrial automation in “smart factories” [6].

To facilitate the configuration of smart environments for end
users, others have applied graphical programming abstractions
for home automation (e.g., [7], [8]) that allow users to create
mashups that are able to perform complex tasks by integrating
functionality across multiple devices or services – an excellent
overview of such systems that also considers semantically
assisted mashup creation is presented in [9]. These approaches,
however, take a process-driven approach where users create

static links between individual services: once created, they
cannot adapt to a dynamic context where devices might become
unavailable or new services might appear at runtime.

In this paper, we explore a novel method to facilitate
the composition of heterogeneous services for end users. We
propose a goal-driven approach, meaning that we ask users
to state which properties their smart environment should have
(e.g., regarding their personal comfort, such as setting the
ambient temperature). Given this statement of a user’s goal,
our system determines whether the goal can be reached given
the set of available services, and also infers which user actions
(i.e., HTTP requests in this case) are necessary to reach it.
The user can then execute these requests and thereby modify
his environment to reach the desired goal. Because service
mashups are created at runtime from user goals, this approach
can handle highly dynamic service environments.

To find out whether the system can provide a mashup that
achieves the user’s goal, it requires a way of determining what
functionality the individual services provide and how to use
them. Proposals of tackling this challenge include middleware
platforms that are tightly integrated with a user’s smart home
(e.g., [3]) and API directories such as ProgrammableWeb1.
Because these, however, do not support the functionality-based
discovery of services, we instead suggest to combine semantic
information about what functionality a service provides with a
description of its REST program interface (i.e. of how it can
be invoked by clients) and expose this data using metadata
documents that are linked to the service URLs (see sections II-A
and II-B for details about what these descriptions look like).
However, since we cannot assume that users are familiar with
semantic languages such as RDF, we integrated our system with
a visual programming language that allows users to graphically
specify the desired state of their smart environment (see Section
II-C).

A. Use Case: The Smart Environments Configurator

The concrete use case that we will use as an example to
illustrate the components of our system throughout the rest of
this paper is an application that automatically modifies smart
environments to match end-user preferences. Using a handheld
or wearable device such as a tablet computer, smartphone,
or smartwatch, users specify the song or radio station to be
played in their environment and their comfort temperature,
set ambient alarms in the environment, or adjust the lighting
to match their preferred levels. This device then negotiates
with the environment to adjust the specified parameters to the
user’s comfort settings and can also provide feedback (see
Figure 1). Our goal is to enable such applications to operate
successfully in arbitrary environments, i.e. not only in the user’s

1http://programmableweb.com/

Fig. 1. Feedback of the Smart Environments Configurator application after
attempting to modify a smart environment to match the user’s preferences with
respect to lighting, audio playback, and the ambient temperature (mock-up).

private home but also in an office environment, in hotel rooms,
cars, and potentially also in public places. In an industrial
context, machines or assembly lines could automatically adjust
to support their current operator, and semantics could assist
the rapid reconfiguration of manufacturing systems [6]. Finally,
such a system could be helpful in medical environments, for
instance to increase the oxygen saturation to aid asthmatics,
or could automatically configure monitor systems to support
doctors during clinical diagnostics.

As a simple example to illustrate our approach, we assume
that a user wants to set the temperature at his current location
to a specific value that is given in degrees Celsius. We further
assume that the locally available smart thermostat can take
Fahrenheit temperatures as input, which necessitates the usage
of a converter and thus can demonstrate our system’s ability
to chain services for yielding higher-level functionality.

B. System Context

To be able to create service mashups, our system must
have access to a means of discovering the individual services
that are available in the current environment (such as a smart
thermostat that is located at a specific location), as well as the
semantic metadata they embed. Our system uses a specialized
search engine for Web-enabled smart things [10] to accomplish
this. However, any search engine or repository that allows to
browse or search for service endpoints can be used instead, such
as the CoRE Resource Directory2 when considering resource-
constrained devices that support the CoAP protocol, or even
industrial standards like UPnP.

Our system also requires access to a semantic reasoner
that is able to infer the global structure of a physical mashup
from the metadata provided by individual services. While it is
possible to use a reasoner that is situated in the “cloud” for
this task, we decided to instead use a local implementation
in our prototype deployment because of the higher delays
when using a remote reasoning instance, and privacy and
security considerations: we consider the reasoner a “trusted
entity” from the user’s perspective, as it requires access to
all service metadata. Moreover, the client eventually executes
HTTP requests that were proposed by the reasoner.

The final component of our system is the user interface
that could, for instance, be a smartphone or tablet computer, or

2http://datatracker.ietf.org/doc/draft-ietf-core-resource-directory/

a Web application that allows the user to configure his smart
environment. This interface is also responsible for executing
the requests that are proposed by the reasoner.

II. USABLE SEMANTICS FOR SMART ENVIRONMENTS

In the following, we describe the integration of our service
discovery and look-up component with services that embed
functional semantic metadata in the form of RESTdesc descrip-
tions [11]. We also show how a semantic reasoner can use such
metadata to infer which mashups can be created in a smart
environment and the actions that these can perform for a user
(Section II-A). Furthermore, we discuss an important extension
to the RESTdesc format that guarantees its usability in the
context of smart environments while preserving the logical
integrity of the reasoning (Section II-B). Finally, we present
how we integrated our approach with ClickScript3, a visual
programming tool that enables end users to easily describe the
desired state of their smart environment (Section II-C).

A. Semantic Metadata for REST Services

All services that we consider feature Web APIs that are
modeled according to the REST principles [12]. While their
protocol semantics are thus specified by HTTP, we define
their high-level domain semantics (i.e., which function a
service can perform) using RESTdesc, a machine-interpretable
functional service description format for REST APIs. To enable
the automated discovery of the semantic metadata, services
advertise their functionality by linking to RESTdesc description
documents using the Link HTTP header’s describedby
relation4 as part of their responses to HTTP GET and OPTIONS
requests. This enables any component to look up the metadata
for a specific service, given its URL.

RESTdesc descriptions are expressed in Notation3 (N3)5,
an RDF superset that adds support for quantification. As for
RDF/XML, the basic unit in N3 is the triple that is expressed in
the format “Subject Predicate Object.” RESTdesc
descriptions are regular N3 implications and can be applied
by any N3 reasoner without requiring special support. As an
example to illustrate the main RESTdesc concepts, the following
description of a Celsius-to-Fahrenheit converter communicates
how the service can convert a Celsius temperature to the
equivalent Fahrenheit temperature:

1 {
2 ?tempC a dbpedia:Temperature; ex:hasValue ?cVal;
3 ex:hasUnit "Celsius".
4 }
5 =>
6 {
7 _:tempF a dbpedia:Temperature; ex:hasValue ?fVal;
8 ex:hasUnit "Fahrenheit"; owl:sameAs ?tempC.
9

10 _:request http:methodName "GET";
11 http:requestURI ("converter.net?temp=" ?cVal);
12 http:resp [http:body ?fVal].
13 }.

At the highest level, a RESTdesc description consists of
three parts: preconditions, postconditions, and an HTTP request
that realizes the postconditions from the preconditions. In the
above example, the preconditions (lines 2 and 3) stipulate that

3http://clickscript.ch
4http://tools.ietf.org/html/rfc5988
5http://www.w3.org/TeamSubmission/n3/

a certain temperature expressed in degrees Celsius exists, and
that this temperature has a specific value. The postconditions
(lines 7 and 8) warrant that there exists a temperature expressed
in degrees Fahrenheit that is the same as the Celsius temperature.
Finally, the HTTP request (lines 10 to 12) is a GET request
to a URL determined by the Celsius value that returns the
Fahrenheit value in the response body. This HTTP request is
described by the HTTP in RDF vocabulary6. In this example,
the method name, request URI, and the body of the response are
specified. When multiple predicate-object pairs are separated
using semicolons (e.g., line 2), all of these pairs are associated
to the leading subject. Note how N3 adds formulas (between
braces {}) that group together triples, variables (starting with
a question mark ?), and implications (triples where the predicate
is =>). We omitted the necessary @prefix declarations that
indicate which ontologies are used within the document.

Given a reasoner that has access to the service description
of the temperature converter, users can now formulate a goal
to ask which Fahrenheit temperature is equivalent to 20◦C:

1 :myTemp a dbpedia:Temperature; ex:hasValue "20";
2 ex:hasUnit "Celsius".
3 _:convTemp ex:hasValue ?value; ex:hasUnit "Fahrenheit";
4 ex:sameAs :myTemp.

From this goal, a reasoner can instantiate the temperature
conversion description that will indicate that the answer
is given in the response body of an HTTP GET request
to http://converter.net?temp=20. When a reasoner
has access to multiple rules, it can chain the implications they
contain and thereby find out how the client must co-ordinate
invocations of different services that can together achieve the
user goal. For instance, if the user wants to set a temperature of
20◦C in an environment that contains a smart thermostat that
can only take inputs in degrees Fahrenheit, the reasoner will
instruct it to first send an HTTP GET to the converter service,
unpack the response body, and send the obtained temperature
value (in degrees Fahrenheit) to the thermostat. The combination
of RESTdesc descriptions with reasoning thus yields a powerful
service composition mechanism.

In our concrete system, this process works as follows: To
access the individual service descriptions, the reasoner first does
a look-up (as described in Section I-B) to find service entry
URLs. It accesses these URLs using HTTP OPTIONS requests,
follows the links that are returned within the Link header
fields, and parses the N3 documents at these locations, thereby
creating a local service catalog. When the user asks for a certain
goal, the reasoner is invoked with the service descriptions from
that catalog and the user’s goal. Using backwards chaining, the
reasoner then searches for a path from the current state to the
goal state. If successful, it returns the necessary HTTP requests
that are executed by the client to realize the goal.

B. Reasoning in Smart Environments

In the previous section, we described how RESTdesc can
be used to semantically annotate REST service APIs and how
a reasoner can infer whether – and how – a user’s goal can
be reached by integrating functionality across services. It is
however not straightforward to apply RESTdesc in the context
of the configuration of smart environments: the main issue

6http://www.w3.org/TR/HTTP-in-RDF10/

when trying to integrate its semantic descriptions with our
systems is that RESTdesc – being grounded in first-order logic
– is not able to distinguish between mutually exclusive states.
Therefore, while RESTdesc works very well for describing
services that do not induce incompatible states such as the
temperature converter in the previous example, already the most
basic use cases that involve stateful objects cause problems
regarding the soundness of the reasoning. As an example,
assume that the system has access to the fact that a room has
a temperature of 23◦C and the user sets the same room to
22◦C. This introduces a logical contradiction because the room
cannot have two different temperatures at the same moment. We
therefore extended RESTdesc by incorporating a mechanism
that allows to explicitly describe states, in our case of smart
environments and of the devices they contain. Furthermore,
we introduced the concept of state transitions to enable the
annotation of services that induce state changes. Consider the
following RESTdesc description of a smart thermostat:

1 {
2 ?newTemp a ex:Temperature; ex:hasValue ?fVal; ex:

hasUnit "Fahrenheit".
3 ?thermostat a dbpedia:Thermostat; geonames:locatedIn

?place.
4 ?state a st:State; log:includes { ?place ex:hasTemp

?oldTemp. }.
5 }
6 =>
7 {
8 [a st:StateChange;
9 st:removed { ?place ex:hasTemp ?oldTemp. };

10 st:added { ?place ex:hasTemp ?newTemp. };
11 st:parent ?state].
12

13 _:request http:methodName "PUT";
14 http:requestURI (?thermostat);
15 http:reqBody ?fVal.
16 }.

From the antecedent of this rule, we can see that an
execution of the service requires a temperature value in degrees
Fahrenheit (line 2) as well as the presence of a device of type
Thermostat at a specific location (line 3). The preconditions
furthermore contain a state description that specifies that
the ambient temperature at the location of the thermostat is
?oldTemp (line 4). From the consequent of the rule, we learn
that an HTTP PUT request to the thermostat (lines 13 to 15)
will result in a state transition: the new state does not anymore
include the ?place having a temperature of ?oldTemp,
but rather includes the new fact that the temperature at the
location of the thermostat is ?newTemp. The semantics of
state transitions are described in a publicly available states
ontology7 that can be looked up by reasoners for successful
state handling. As an example, to set the ambient temperature
at a specific location to 23◦C, a user would formulate the
following goal:

1 :temp23 a ex:Temperature; ex:hasValue "23"; ex:hasUnit
"Celsius".

2 ?state a st:State; log:includes { :Office ex:hasTemp
:temp23. }.

In this goal, the user first defines the temp23 constant
that includes the desired temperature value in degrees Celsius.
This entity is then used when defining the desired state of the
location Office. This goal can now be sent to a reasoner that
will indicate that the goal state can be reached by first sending
an HTTP GET request to the converter service to obtain the
corresponding Fahrenheit value, and then sending an HTTP

7http://purl.org/restdesc/states#

Fig. 2. A ClickScript representation of a user goal that specifies the desired
ambient temperature for the room Office, selects a song for audio playback,
and sets an alarm. The connected “Target” component (top right) will lead to
the goal being textually displayed on the screen.

PUT request to the URL of the thermostat at the location
Office. The URL of that thermostat is found at runtime with
the help of line 3 of the thermostat’s description shown before.

To summarize, we have successfully extended RESTdesc
with the concepts of states and state changes. This allows to use
the system to describe any service that induces state transitions,
and specifically to model smart environments. Based on our
approach, it is now possible to create an application that runs on
the user’s smartphone and lets the user specify the desired state
of different named locations with respect to properties such as
the ambient temperature or the desired media playback. Since,
however, the introduction of states adds a lot of complexity to
the goal creation, end users cannot be expected to write valid
goal descriptions by themselves: users would not only need
to know about the predicates to use (e.g., ex:hasTemp) but
also about the states ontology itself, as well as the correct N3
syntax to express their goal.

C. Creation of User Goals: Usability Considerations

To enable end users to generate goals themselves, we have
integrated our system with ClickScript, a visual programming
tool that allows users to graphically model their desired
environment [13]. To model the different attributes of a room
state, users drag icons that represent the matching components
to ClickScript’s editing view and connect them to the desired
inputs (see Figure 2). Note that these icons do not represent
concrete devices or services, but rather stand for different
aspects of the state of the environment. When satisfied with
the configuration, a user can choose among multiple options
of how the created model should be processed by ClickScript:
ClickScript can display the goal in N3 notation, invoke the
reasoner to get textual feedback about which HTTP requests
should be executed to reach the specified room state, or even
execute the derived requests itself, thus directly modifying
the user’s smart environment to match the modeled goal state.
Although we did not conduct a usability evaluation, according
to our own and others’ experience [14], ClickScript is simple
to use even for persons without any programming experience.

III. DISCUSSION

In the previous section, we presented the RESTdesc format,
as well as an extension to RESTdesc that allows to use its
description style to configure smart environments. To facilitate

the goal creation for end users, we integrated our system with
ClickScript, an intuitive graphical editor.

Others have also employed visual programming abstractions
to create mashups that perform higher-level tasks by composing
individual services, and even for managing service interactions
in smart environments. An excellent overview of different
approaches to end-user mashup development is provided in [9]
that also presents a “User Assisted Composition” tool that uses
semantic technologies to assist users in assembling individual
services. Systems such as homeBLOX [8] or Pervasive Maps
[15] also allow users to configure their smart homes via a
graphical editor, the former using a metaphor of stacking blocks
to create composite services and the latter with the help of
pictures of devices instead of icons. Earlier commercial projects
in this domain include Yahoo! Pipes and the Ninja8 platform
for service composition in the home automation domain.

While many of the systems presented in the literature thus
are process-driven, meaning that end users or developers use
them to create mashups manually by connecting or stacking
representations of individual services, we demonstrated that
by adopting a goal-driven approach, the complexity of the
development process as a whole can be reduced: users are
only required to model their goals and semantic reasoning is
used for the composition itself. Because the mashup creation is
done on-the-fly by inferring a path to the user’s goal state, this
method avoids static linking of services within mashups and
therefore is much more flexible than process-driven mashup
creation: it automatically adapts to incorporate services that
newly appear in a smart environment and circumvents those
that become unavailable, thus adding fault-tolerant behavior
to physical mashups by finding alternative routes to reach the
user’s goal in the case of a service outage.

Automatically composing heterogeneous services has been
a highly researched topic already before the advent of Web
services – [16] represents an excellent overview of previous
work. Still, the creation of a generic automatic service compo-
sition tool represents an open challenge which is, according to
[16], largely due to the lack of expressibility of the planning
languages that are used in approaches presented in the literature.
Furthermore, many of the proposed automatic composition
systems are unable to adapt to dynamic environments – context
dynamicity, however, should be considered the default rather
than an exception in pervasive computing scenarios and,
especially, when targeting applications on mobile devices whose
entire smart environment changes when they are on the move.
A very interesting system that is in many ways similar to
our approach is presented in [17]. The authors use a graph
matching algorithm to create a service composition given a
user task and introduce a hierarchy of service levels that are
offered by devices, where “higher-level” services such as service
discovery are in a different service category than less complex
entities such as sensors or actuators. In our approach, we do
not require to differentiate between different service levels,
and our RESTdesc service descriptions hold the necessary
API information to invoke appropriate services along with the
semantic descriptions of the services themselves. However, the
biggest advantage of the approach presented in this paper is
that we use a standard semantic language for specifying service

8http://ninjablocks.com

TABLE I. DELAYS INCURRED BY PARSING AND REASONING.

#services 1,024 4,096 16,384 65,536 131,072
parsing 276 ms 1,001 ms 3,916 ms 17,127 ms 34,526 ms

reasoning 12 ms 18 ms 107 ms 122 ms 228 ms
total 289 ms 1,019 ms 4,023 ms 17,249 ms 34,754 ms

capabilities and therefore do not require custom matching
algorithms but can make use of the existing wealth of research
in reasoning technologies, as standard reasoners are used to
combine services. This is also what allows our system to
potentially make use of a wealth of remotely hosted services
and knowledge sources (i.e. third-party ontologies). To illustrate
this property, consider again the example that was discussed in
Section II-B, where users configured their preferred temperature
(in degrees Celsius): to enable interactions with thermostats that
take temperatures in degrees Fahrenheit as input, the reasoner
is simply required to have access to a (local or remote) service
that can convert temperatures from one unit to the other. Many
more supporting services could be provided by third parties,
published on the Web, and used globally by reasoners in smart
environments.

A. Scalability of the Reasoning

Especially when considering third-party services and knowl-
edge sources, a major concern is whether the proposed system
remains scalable in light of a multitude of different services
being considered by the reasoner. Although other tests with
reasoner-based composition already give positive indications
[18], we conducted a test to see how fast the reasoning engine
we used9 can compose the required services when the number
of available services grows. During the tests, we fixed the
composition length to 32 services which is sufficiently high in
the context of configuring smart environments, and increased
the number of services that are considered during the reasoning
to up to 217. The results indicate that the reasoning time remains
well under a few hundred milliseconds on an average consumer
computer, and thus within reasonable limits (see Table I). The
time required for downloading and parsing the rules, however,
does significantly increase, but this problem can be mitigated
by caching service descriptions locally at the reasoner.

B. Conflicting Semantic Information

Apart from the required high scalability, incorporating third-
party services and ontologies in the reasoning also gives rise
to a challenge at the heart of the Semantic Web: the issue
of conflicting semantic information. While the Semantic Web
and related technologies exist for more than a decade, many
researchers are still skeptical about their fitness for real-world
applications [19], [20]. In particular, some find it questionable
whether these technologies are actually able to achieve the
promised interoperability. Indeed, RDF (and, by extension, N3)
is not a universal remedy: there will probably always be cases in
smart environments that are impossible to solve using a solution
based on it. Furthermore, two services that might match in
terms of functionality could be using different vocabularies
in their RESTdesc descriptions, which would deter a reasoner
from deriving that match. Thus, subtle differences in meaning
might give rise to false positives or negatives [11]. These are

9The Euler Yap Engine (EYE), available at http://eulersharp.sourceforge.net/

limitations the Semantic Web community is still working on,
but we believe that we must take a pragmatic viewpoint with
respect to these problems: while many examples can be found
that cannot (yet) be solved using the technologies proposed
in this paper, many others do already work. By focusing on
the cases we can solve, we were able to show that semantic
technologies can offer a flexible solution – an example of
a comparatively complex use case that involves interactions
between eleven different services and has been implemented
using RESTdesc descriptions is presented in [21].

In the context of smart environments, we thus view
semantic technologies as a very flexible form of standardization.
Certainly, standards – if honored by all relevant stakeholders
– could also accomplish the use cases that we put forward
in this paper. While standardization can improve interoper-
ability among compliant components, it however impedes
or complicates the integration of elements that were out of
scope at the time the standard was designed [6]. Furthermore,
semantic technologies offer more freedom with respect to the
description of REST endpoints and semantic goals itself. For
instance, the RESTdesc descriptions of the services offered
by different smart thermostats may differ, or they could use
different formats to express the semantics of their offered
functionality altogether. However, semantics offer the benefit
of allowing decentralized decisions and they can evolve faster
than standards can. Using semantics within service descriptions
thus represents a lightweight approach to support new services
in an evolving way. They also bring with them other benefits, for
instance with respect to the customization of user environments:
the reasoning process could take into account tailored ontologies
that could also capture user preferences, and thus derive service
compositions that are even better adapted to individuals.

C. Semantics and Linked Data

A different approach to enable automatic service compo-
sition that we want to mention and that is complementary to
ours has its roots in the Linked Data [22] movement and aims
to exploit the REST “Hypermedia as the Engine of Application
State” (HATEOAS) constraint to guide service interactions. In
contrast to our scheme, this approach does not make use of
embedded functional rules or reasoning to construct mashups,
but focuses on exposing links between services. The task of
actually composing services is left to the client that uses the
linking information for determining its next step in an ad-hoc
fashion. Links between services are published in so-called
Linkbases10, thereby “globalizing” HATEOAS – the concrete
way of how these are implemented differs between projects.

One major shortcoming of the Linked Data approach is that
such Linkbases for the most part have to be created manually,
and therefore are a lot less flexible than our approach when
adapting to dynamic contexts. Also, it is not clear how a client
would navigate a mashup that is constructed lazily at runtime in
a goal-driven fashion, i.e. how it would know about which step
to take next without looking further ahead. However, Linked
Data principles can be integrated with our approach, and can
indeed serve to facilitate the reasoning about service capabilities:
if links between services are exposed and can be discovered
by our system, the reasoning engine could use that information
to narrow down the number of potential paths.

10http://www.w3.org/TR/xlink/

D. Usability Considerations

To make our system usable for end users, we presented an
integration with a graphical programming language for goal
creation. Potentially, however, end users will never have to
formulate goals themselves, as these could be encapsulated in
tailored applications on smartphones or other devices, which
could also integrate further knowledge about the user’s context
and his preferences. As an example, it would be perfectly
feasible that experts create an application that uses the user’s
history to infer his favorite songs, automatically creates goals
to make his environment play these songs, and executes the
corresponding requests without any intervention by the user.
Similar applications could be created for office environments,
or to support specific use cases in industrial settings.

IV. CONCLUSION

In this paper, we presented a novel approach that enables
end users to configure their smart environment at home, at
their workplace, and potentially even at public places. An
intuitive graphical editor can be used to create a model of the
desired state of the user’s environment that is translated into
a semantic goal in the Notation3 format. A reasoning engine
that has access to functional semantic metadata of services
in the user’s environment can then infer whether or not it
is possible to reach the desired state, and outputs the HTTP
requests that are necessary to do so. We implemented and
presented a prototypical use case, where the system configures
a user’s surroundings with respect to the ambient temperature,
media playback, and ambient alarms.

Our approach combines concepts from the Semantic Web
domain with the configuration of smart environments that
contain services offered by physical devices. We created a
system that can flexibly combine heterogeneous services to
accomplish complex user goals while integrating local and
remote services. As it avoids creating statically connected
service mashups, it is more flexible than other approaches and
has advantages regarding the availability of mashups and their
fault tolerance with respect to individual services becoming
unavailable. This property is enabled using semantic metadata
and reasoning that remain, to a certain extent, brittle. We
were however able to hide the complexity and to mitigate the
system’s fragility by constraining end users’ leeway to the
specific functionality that is offered by the graphical editor.

In this paper, we did not investigate the requirement to
enable multi-user support any further, but believe that majority-
or consensus-based systems are conceivable for multi-user
environments. In the future, we plan to further explore the
potential of the precondition/postcondition-style of RESTdesc
descriptions to enable the client to actively guide the reasoning,
for instance regarding security or QoS guarantees. A reasoner
could, for instance, automatically restrict the inference to
mashups that “ensure confidentiality of the transmitted data”
or whose execution “costs less than 3$.” Finally, we want to
experiment with mixed interaction scenarios: here, the reasoner
can ask the user for more instructions in situations where
multiple paths lead to the same goal. We expect that this
approach will increase the robustness of the system and that
the additional feedback will help users gain confidence in it.

Acknowledgments: This work was supported by the Swiss
National Science Foundation under grant number 341627. The
authors thank Jos De Roo for his help with the EYE reasoner.

REFERENCES

[1] A. J. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon,
“Home Automation in the Wild: Challenges and Opportunities,” in Proc.
CHI, ACM, 2011, pp. 2115–2124.

[2] R. Harper, “From Smart Home to Connected Home,” in The Connected
Home - The Future of Domestic Life, R. Harper, Ed., Springer, 2011,
pp. 3–18.

[3] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu, and
P. Bahl, “An Operating System for the Home,” in Proc. NSDI, 2012,
pp. 337–352.

[4] L. Takayama, C. Pantofaru, D. Robson, B. Soto, and M. Barry, “Making
Technology Homey: Finding Sources of Satisfaction and Meaning in
Home Automation,” in Proc. UbiComp, ACM, 2012, pp. 511–520.

[5] D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards Physical
Mashups in the Web of Things,” in Proc. INSS, 2009, pp. 196–199.

[6] J. L. M. Lastra and I. M. Delamer, “Semantic Web Services in Factory
Automation: Fundamental Insights and Research Roadmap,” IEEE Trans.
Ind. Informat., vol. 2, no. 1, pp. 1–11, 2006.

[7] J. Humble, A. Crabtree, T. Hemmings, K.-P. Åkesson, B. Koleva,
T. Rodden, and P. Hansson, “Playing with the Bits - User-Configuration
of Ubiquitous Domestic Environments,” in Proc. UbiComp, Springer,
2003, pp. 256–263.

[8] M. Rietzler, J. Greim, M. Walch, F. Schaub, B. Wiedersheim, and
M. Weber, “HomeBLOX: Introducing Process-Driven Home Automation,”
in Adj. Proc. UbiComp, ACM, 2013, pp. 801–808.

[9] N. Mehandjiev, A. Namoun, F. Lécué, U. Wajid, and G. Kleanthous,
“End Users Developing Mashups,” in Web Services Foundations, Springer,
2014, pp. 709–736.

[10] S. Mayer, D. Guinard, and V. Trifa, “Searching in a Web-based
Infrastructure for Smart Things,” in Proc. IoT, 2012, pp. 119–126.

[11] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. Gabarró Vallés,
and R. Van de Walle, “Functional Descriptions as the Bridge between
Hypermedia APIs and the Semantic Web,” in Proc. 3rd Int. Workshop
on RESTful Design, ACM, 2012, pp. 33–40.

[12] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[13] S. Mayer, N. Inhelder, R. Verborgh, and R. V. de Walle, “User-friendly
Configuration of Smart Environments,” in Proc. PerCom, IEEE, 2014,
pp. 163–165.

[14] D. Guinard, C. Floerkemeier, and S. Sarma, “Cloud Computing,
REST and Mashups to Simplify RFID Application Development and
Deployment,” in Proc. WoT, 2011.

[15] G. Vanderhulst, K. Luyten, and K. Coninx, “Pervasive Maps: Explore
and Interact with Pervasive Environments,” in Proc. PerCom, IEEE,
2010, pp. 227–234.

[16] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
“Web services composition: A decade’s overview,” Information Sciences,
vol. 280, pp. 218–238, 2014.

[17] S. Kalasapur, M. Kumar, and B. Shirazi, “Dynamic Service Composition
in Pervasive Computing,” IEEE Trans. Parallel Distrib. Syst., vol. 18,
no. 7, pp. 907–918, 2007.

[18] R. Verborgh, V. Haerinck, T. Steiner, D. Van Deursen, S. Van Hoecke,
J. De Roo, R. Van de Walle, and J. Gabarró Vallés, “Functional
Composition of Sensor Web APIs,” in Proc. 5th Int. Workshop on
Semantic Sensor Networks, 2012, pp. 65–80.

[19] N. Shadbolt, T. Berners-Lee, and W. Hall, “The Semantic Web revisited,”
IEEE Intell. Syst., vol. 21, no. 3, pp. 96–101, Mar. 2006.

[20] C. C. Marshall and F. M. Shipman, “Which Semantic Web?” in Proc.
14th ACM Conf. on Hypertext and Hypermedia, ACM, 2003, pp. 57–66.

[21] S. Mayer and G. Basler, “Semantic Metadata to Support Device
Interaction in Smart Environments,” in Adj. Proc. UbiComp, ACM,
2013, pp. 1505–1514.

[22] E. Wilde, “Linked Data and Service Orientation,” in Proc. Service-
Oriented Computing, Springer, 2010, pp. 61–76.

