
Physical Hypermedia: a Context-Aware approach

Cecilia Challiol1, Andrés Fortier1,2, Gustavo Rossi1’3, Silvia Gordillo1'4
1 LIFIA. Facultad de Informática. UNLP. La Plata, Argentina.
{ceciliac, andres, gustavo, gordillo}@lifia.info.unlp.edu.ar 

2 DSIC, Universidad Politécnica de Valencia. Valencia, España.
3 CONICET
4 CICPBA

Abstract. In this paper we describe an original architecture for building and 
deploying physical hypermedia applications, i.e. those applications in which 
digital and real world objects are linked together using the well-known 
navigational metaphor of the World Wide Web. We also explain how our 
architecture evolved from a substrate for implementing location-based services 
to a powerful and open basis for supporting different navigation semantics and 
for building travel assistance services according to the current user's context. 
After motivating our research and describing the architecture, we illustrate our 
ideas with some simple examples and compare our research with other related 
work in the subject.

1 Introduction
Physical Hypermedia (PH) extends the Hypermedia paradigm by allowing navigation 
through physical and digital objects in a hypermedia network. In PH, physical objects 
are enhanced with digital information, allowing the mobile user to get that 
information through a web browser as he explores the real (physical) world [8,9]. In 
these systems a minimal sensor network is assumed to be set up, so that the system is 
notified when the user is in front of a digitally enhanced object. As the response to 
such notification, the system presents the user information about that physical object 
and a set of links (e.g. in the form of urls) to other objects. These links can be either 
physical or digital, each one with its own navigation semantics. Digital links behave 
just like conventional hypermedia links and thus navigation is atomic (i.e., the act of 
clicking on a link means issuing an http request and navigating to a web page without 
any intermediate steps). On the other hand, clicking on a physical link expresses the 
user's intention to physically walk from the current physical object to the link's 
target. However, there is no guarantee that the user will effectively complete this task, 
which implies making the decision to navigate and then “walking the link” [10] to the 
target object. Only when the user arrives to the target, we can say that he has 
effectively navigated the physical link.

The main problem in PH is that physical navigation is not atomic and it heavily 
depends on the user's activity and will. He can get lost in his way, he can be 
distracted by other attractions and make a detour, or even cancel the trip to the



original target and choose a new destiny. The aim of our current research in PH is to 
find ways to improve the user’s experience in navigating a digitally enhanced world 
[4,15]. In our research we found four major and relevant issues:

• The importance to incorporate a contextual model to adapt the application 
to the user’s needs. As an example, consider that the user is in a digitally 
enhanced museum and chooses to make a hypermedia trip whose 
estimated completion time is an hour. If the museum closes in half an 
hour and the user is not aware of this, he will start the activity and 
interrupt if due to the closing time of the museum. If the system is aware 
of the user’s preferences and the museum schedule, it can warn him about 
the situation and present a list of different activities to perform, ranked 
according to his preferences and the time left.

• The need to offer different (perhaps not hypermedia) services to the user. 
Physical objects should be enhanced to provide not only information but 
also services. As an example, consider an art exposition where people can 
buy any artwork in exhibition. When a person stands in front of an 
artwork the object might offer the user a service to make a bid. At the end 
of the day those who made the best bids receive the corresponding 
notification to end the buying process.

• The importance of changing the role (behavior) of physical objects 
according to the current user’s activity. For example, if the user decides to 
physically navigate from A to B and he gets lost in his way, some objects 
should play more the role of active guides than just offer their usual 
information. While in the “helper guide” role, the object should indicate 
the user that he is lost and show him how to arrive to the intended target 
object. In this case the basic physical object’s services have been extended 
with the specific role behaviors. Notice that the same object might play 
different roles for different users at the same moment.

• The relevance of assuring system’s modularity. Even though this should 
be a rule of thumb for any software development, having a flexible and 
scalable architecture is crucial in this case, since we expect new 
enhancements to be delivered to the user as soon as possible. As an 
example consider adding new context features (e.g. the means of 
transportation the user is employing for traversing a physical link), adding 
new role types or behaviors to physical objects, as for example an alert or 
warning push service when some unexpected event happen (e.g. a road is 
blocked because of an accident).

In this paper we describe a software architecture and an associated framework for 
building PH applications. This framework, which is an evolution of our previous 
research on context-aware systems [5,16], provides a platform to enrich physical 
objects such that they can present information, physical and digital links, and a 
collection of services according to the actual role they are playing. The framework 
supports a scalable context model, allowing to dynamically add and remove relevant 
contextual features, and to provide personalized user assistance. Finally, it offers an 
extensible model of roles to be played by physical objects, depending on the user 
context (such as activity, location, preferences, etc). The framework also supports an 
important variety of sensing mechanisms and its modularity allows graceful evolution



and improvement of sensing policies. In this paper, however we will ignore sensing 
issues which can be read in [7].

The two main contributions of the paper are the following:
• We describe a physical hypermedia-aware architecture supporting 

different kind of navigation and assistance functionality.
• We show how a modular, object-oriented architecture gracefully evolved 

from supporting location-based services to include (physical) navigational 
contexts and roles.

The rest of the paper is structured as follows: in Section 2 we present an example 
of a PH application for tourists in the city of La Plata. In Section 3, we describe our 
previous work in context-aware services. In Section 4, we present the architecture to 
develop PH applications. Finally in Section 5 we compare our work with other 
research projects in the field and in Section 6 we discuss some further work we are 
pursuing.

2 Motivation: A Physical Hypermedia Example
Through the rest of the paper we will use an example of a PH tourist guide for the city 
of La Plata, to illustrate the kind of problems we need to solve. Similar to a 
conventional hypermedia the user navigates through a network of nodes (using a Web 
browser), which comprise information on points of interest (buildings, squares, 
museums, etc) and related material (history, traditions, etc). Nodes are connected with 
links, which reflect meaningful relationships between nodes. There are two main 
differences between conventional and physical hypermedia; first, some of the nodes 
have their physical counterpart in the real world (e.g. a building), and they are open 
when the user is in front of the physical object; besides, some links “point” to 
physical objects and navigation is intended to be physical, meaning that the user must 
move to the target to get it opened. We next concentrate on the behavior of physical 
objects and physical links.

Let us suppose that the user is standing in front of the Natural Sciences Museum in 
La Plata, and as a consequence the browser shows information about the museum 
(history, opening hours, etc), and a collection of digital and physical links. Some 
physical links may refer to other related buildings (e.g. which were built in the same 
period) such as La Plata’s Cathedral. When the user clicks on this physical link, he 
gets as a result a map describing the itinerary from his current position to the target’s 
location. Figure 1 shows an example of this behavior.

Once the map is presented, the user can choose to go to the Cathedral or cancel the 
requested itinerary. If the user follows the recommended path, at some point he will 
walk by the Theater, which is another point of interest. Since the user is walking in 
the correct way (from the point of view of the activity he started when he clicked the 
physical link), the Theater should take the role of an information guide; playing this 
role, the Theater informs the user that he is in the right way and gives information 
about the estimated time of arrival to his destiny. Also some of the Theater services 
(selling tickets for example) are not displayed, since that would distract the user from 
his current activity. Finally, the Theater could even present information related to the



Cathedral, since that is the target of the user’s activity (for example, how many tickets 
are left to access the cathedral elevator to see a panoramic view of the city). Figure 
2.a depicts this situation.

Natural Sciences Museum 

It ¡s a Neoclassic - Barraque 
building with ornaments typical 
of Pre - Columbian Cultures 
that place ¡t as one of the most 
oufstanding cultural 
monuments of the city.

Natural Sciences 
Museum La Plata’s Cathedral

Archaeoloov Room

It is located in La Plata 
geographlcal centre.

The most outstanding cultural 
monument: La Plata Cathedra

Fig. 1. As a result of clicking on a physical link, the system presents a map showing the path 
that the user should follow to reach his destiny.

At a certain moment, the user may get lost and walk in other direction, without 
following the planned route. When he walks by another point of interest (for example, 
the Government House) he will receive information based on the actual role played by 
the building. Since the user is not in the right way, the Government House could take 
the helper guide role and advise the user that he is walking in the wrong way with 
respect to his intended task, (i.e. to reach the cathedral). It also gives the user 
information about how to go back to his intended path. This situation is depicted in 
Figure 2.b.

PDA of the User A (RightWay) Government House PDA of the User B (WrongWay)

a
Fig. 2. Examples of physical object’s role according to the user’s activity and current location.

In case the user in Figure 2.b follows the instructions presented while being in 
front of the Government House, he will end up reaching the Cathedral. At this 
moment the user finishes his current physical navigation, because he has arrived to 
the final target and gets as a result a Web page with information about the Cathedral, 
similar to the one presented in Figure 1. Alternatively, the user could have made



another choice when he found out that he was outside the intended path and asked the 
system to cancel his current navigation.

Although we have been describing physical objects which are evident components 
of a tourism hypermedia network, there are also other types of useful physical objects 
which can help to guide the user. These objects are usually found in the physical 
space the user is traversing (like traffic lights, public phones, ATMs, corners, etc.) but 
are not considered to be points of interest from the tourist point of view. These objects 
may also provide physical information and physical links.

The same ideas presented before can be also used in an indoor setting. For 
example, if the user decides to visit the museum before going to the Cathedral, he 
would find “live” geological objects displaying their characteristics, exhibiting links 
to digital information or recommending a visit to another part of the museum where 
the user can find other objects of interest (for example, in the paleontology room) of 
the same geological era. A well designed system should make the outdoor-indoor 
transition seamless to the user, keeping the same paradigm and form of interaction. In 
the following section we briefly describe our context aware framework and next we 
show its evolution to support the previously described PH features.

3 The Underlying Framework
The PH framework is a step forward in our previous research work [5,16] aimed at 
providing support for deploying dynamically varying services according to the user’s 
context. The framework has been generalized in order to accommodate different 
customization hot spots, in particular the ones required by physical hypermedia 
applications.

We will first focus on how to provide location-based services for a tourist system 
similar to the one presented in the previous section (but without hypermedia features). 
For this purpose we assume that there is an underlying software which already 
provides the basic information about the city and the relevant points of interest (like 
museums, churches and so on); this system is used for example by potential visitors. 
Our goal is to enhance the system so that it can be accessed by means of a mobile 
device (like a PDA or a Smartphone), and to allow information and services to be 
presented according to the user’s context. Initially, the system shows a set of services, 
which are present all the time (for example, a map showing the city and the user’s 
current position) while others are context aware (for example a list of nearby 
restaurants is enabled at lunch time, ranked by distance and user’s food taste). The 
system can also be enhanced by taking into an account the context of other objects, 
such as the activity in a given building. Suppose that the user whishes to visit the city 
town hall, which is closed due to unscheduled maintenance operations. If the system 
can be aware of the town hall context, the user could have been warned about it or the 
trip planned in a different way.

Due to space constraints we will only explain the architecture’s main components 
and the process of configuring the framework to support location-based services. The 
most important abstractions we defined are the following:



Aware Object: An aware object is a standard application object (e.g. a building, 
person, etc) that has been enhanced with the ability to keep track of the context 
features that are relevant for it at a given moment in time. In the tourist example, the 
user itself is represented by an aware object which manages relevant context features, 
like his location or his food preferences. Other example of aware object could be a 
building which manages context features like its state (closed, opened, etc). An aware 
object is an observer [6] of every context feature he owns, so that any change in its 
context can be captured and processed.

Context Feature: Aware objects rely on a collection of context features which, as 
their name suggest, model the relevant context. A context feature holds its current 
“value”, which is usually a high level view of the information gathered by sensors 
(either hardware sensors such as a GPS or software sensors as will be shown later). 
Following the tour example, the aware object that represents the user will have a 
location feature which holds his position in a given location system [13] (the 
connection between sensing devices and context features is out of the scope of this 
paper; the interested reader can consult our previous work in this field [5,7,16]). In 
case the user is moving outdoors and has a GPS in his PDA, each time a new location 
is gathered the location feature gets its current situation updated and a context-change 
event is triggered so that it can be captured by the aware object.

Adaptation Environment: Our framework provides a set of hot-spots to use it as 
a platform that provides different (customized) behavior responses. One of these hot- 
spot is the AdaptationEnvironment class, used to create different types of adaptation 
mechanisms. In the guided tour case, a ServicesEnvironment is created by sub- 
classing AdaptationEnvironment and adding the required behavior to keep track of 
available services. If we want to provide groupware services (e.g. a messenger whose 
contact list are the users present in a room), we should define a 
GroupwareServicesEnvironment that would be in charge of setting network 
connections and discovering available devices. The aware object should be registered 
in one or more environments depending on the adaptation it needs. In the guided tour 
case, the aware object which represents the user should be registered in the 
ServicesEnvironment.

Event Handlers: When a context feature changes, it triggers a context-change 
event, which is captured by the aware object. As a response to this event, the aware 
object forwards it to all the environments to which he is registered, so that they can 
perform their specific behaviors. An event handler that is registered in an environment 
will receive a message each time a context event is fired. An event handler may 
specify to be called only when a certain aspect triggers the event (e.g. location 
change) and/or when it is fired by a specific aware object (this is useful when many 
aware objects share a common environment, like a groupware one). By decoupling 
the context model from the possible customization based on context changes, adding 
new capabilities to the application is straightforward. In the guided tour example, a 
services event handler should be registered to the ServicesEnvironment to determine if 
new services should be added or active ones removed, according to the user location.

In Figure 3 we show a simplified class diagram of the framework. In Figure 4 we 
show a class diagram with the service classes. The basic framework classes that are 
extended appear grayed out.



Fig. 3. A simplified class diagram of the framework.

AdaptationEnvironment

-environments

Fig. 4. A class diagram showing the extensions needed to achieve location-based Services.



4 Supporting Physical Hypermedia Features
In this section we show how to use the described framework to instantiate PH 
applications like the one described in Section 2. Since PH applications usually require 
handling “fine grained” physical objects, we assume that points of interest are tagged 
with beacons, which can be Bluetooth [11] or Infrared [17]. With this configuration, 
when the user stands near the physical object his device will receive a signal that 
identifies that particular place and thus let the system know where he is standing. 
Though similar behaviors can be achieved by using GPS or a combination of both 
GPS and beacons, the tradeoffs of using these different location-sensing devices are 
outside the scope of this paper.

In order to support the PH concepts, we modified an existing PDA-based web 
browser to extend nodes and links semantics. To explain its behavior, in Figure 5 we 
show the typical information displayed when the user is standing in front of a point of 
interest. The web page contains five main categories:

• Digital information, explaining the place’s features.
• Digital links, which are standard hypermedia links.
• Physical information, about the point of interest location.
• Physical links, which can be used to start a walking activity.
• Services provided by the point of interest.

Physical Information 

Physical Links

Digital information 

Digital Links

Services

Fig. 5. The standard information web page, divided in five categories: digital information, 
digital links, physical information, physical links and services.

When the user clicks on a digital link, only the digital information is changed, 
showing the contents of the Web page requested by the user, but the physical links 
and services remain the same. In other words, even though the user is digitally 
navigating if he is still standing in front of the same physical object, physical 
information should be kept unchanged. On the other hand, when the user clicks on a 
physical link he indicates that he wants to reach a physical location; therefore a map 
(or other multimedia representation), showing the path he should follow, must appear; 
only when the user reaches his destination the complete information about that place 
(digital and physical information, physical and digital links and services) are shown.

Since our architecture adheres to the MVC [12] paradigm, the modified web 
browser is embedded in the final application just as any other view would be. As we



show in the following sub-section, the browser is an aware object which acts as a 
view of one specific context feature that models the navigation history. When the user 
clicks a links, the context feature is changed and as a result the web page is updated. 
Notice that in the MVC paradigm, views are aware objects with respect to models.

4.1 Main Components

In this section we show how we derived the basic functionality of a physical 
hypermedia application using the framework components. As in the tourist example, 
the user is represented by an aware object which “observes” a collection of context 
features that are relevant to configure the application behavior. These context features 
are:

• Location: Indicates the physical object in front of the user. In case the 
user is not in front of a physical object (for example, while walking a 
physical link), his location is represented as anywhere. Locations are not 
“just” strings or latitude/longitude pairs, but full fledged objects. Objects 
may be hypermedia nodes (i.e. physical objects that have their digital 
counterparts, with both physical and digital links) or plain physical 
objects that can only have physical links. When we later show how to add 
role support to the PH application, we will demonstrate that the location 
feature will hold a physical object wrapped with the role it is playing.

• User Activity: It indicates the activity that the user is actually performing, 
in terms of the PH application. The most important activities related to the 
example are in front of a point of interest, walking a link in the right way 
or walking a link in the wrong way. The framework is open-ended 
regarding activities, but for the sake of comprehension we emphasize the 
previously mentioned one. It is important to notice that, when using 
beacon-based sensing, we only know the precise user’s location when he 
is in front of a physical object (either a node in the hypermedia or other 
physical object like a traffic light). In case we use a GPS this would still 
hold, but we could additionally have information about the user’s position 
in latitude/ longitude coordinates, and therefore we could be able to show 
him in real time the path he is following.

• Navigation: Keeps track of the current url the user is visualizing, and of 
all the previous links the user has requested (either physical or digital). 
When the user clicks on a link, the url requested by the user is set as the 
feature’s current situation. Also, when the user senses a new physical 
object, the navigation feature situation is set to a url describing the 
physical object’s information. Since the web browser is set as an observer 
of this context feature, an http request will be triggered and the display 
will be updated.

• Digital Navigation: Keeps track of the current digital object and of all the 
previous digital objects the user has visited. Notice that the user can 
digitally navigate while standing in the same physical location, thus the 
digital navigation feature can change its current situation while the 
location feature remains unchanged.



Figure 6 depicts the relationship (according to the MVC paradigm) between the 
views (the main GUI and the enhanced web browser) and their corresponding models 
(the aware object and the navigation context feature respectively). The browser is a 
component of the view, which acts as an Observer [6] of the navigation context 
feature. When the navigation feature changes, the browser receives a notification and 
generates an http request with the url provided by the current situation of the 
navigation context feature. The browser therefore is only updated when it receives a 
notification that the navigation feature has changed.

Fig. 6. The enhanced web browser as a view of an aware object.

When the user’s device senses a physical object’s signal, it changes his state to the 
in front of activity, displaying the objects information. Unless explicitly specified by 
the user when clicking a physical link, he is supposed to stay in the same activity. The 
information displayed in his browser is updated as he walks by different physical 
objects. In case the user clicks a physical link the system is optimistic and assumes 
that he will be walking the right way unless a point of interest out of his path is found. 
Once the user reaches his destination, his activity goes back to in front of. In order to 
implement this behavior, activities are modeled as first class objects whose 
responsibility is to process transitions by returning the new activity the user should 
switch to. Activities are modeled as a variant of the State [6] pattern.

As a final remark, it should be noticed that all transitions except two are triggered 
by changes in the user’s location. The first exception is the transition from the in front 
of activity to walking right way, which is triggered when the user clicks a physical 
link. The second one can happen while the user is walking and he explicitly cancels 
his trip. As we will see in the next section, this is important to determine which 
handler should perform this transition.

To provide navigation assistance we designed a role model inspired in [18] and 
which is intended to let physical objects exhibit different services according to the 
user’s state, as explained in Section 2. In our architecture, each role is modeled by a 
class, which acts as a wrapper of the physical object to which it is assigned. This class 
is used to modify or extend (depending on the situation) the basic services that the 
user receives when he stands in front of the physical object. To do so, a group of 
services are associated with each role; these services can be generated dynamically 
according to the needs of the user in that moment and therefore the services provided



by a given role can vary according to the user’s context. As an example we detail 
some possible roles a physical object may play:

- Navigation Guide: this role is relevant when the user has chosen to walk a 
physical link. Once he has started to walk, he can be either walking in the right 
way or in the wrong way according to the presented path. Therefore, we have 
two different roles that represent this situation:

o Information guide, which represents the role to be played by a 
physical object if the user is in the correct way, giving the user 
confidence that he is in the path to reach his target. 

o Helper guide, which is the role which corresponds to the situation in 
which the user is outside of the way, warning him about this and 
providing a set of alternative services to resume his trip. If the user 
wants to return to his previous path, the system offers a service 
showing a map to do so (Return to previous path service). On the 
other hand, the system can find a new path from the user’s position to 
his original destiny (find a new path service).

Notice that both roles could have common services such as Show Map to 
provide a map with the user’s location, Cancel Navigation to stop the current 
physical link navigation and so on. These are shared services since they are 
related with the activity of walking a link itself and are independent of whether 
the user is in the correct way or not. Another shared service is View 
Information, which provides digital links and information to the object that is 
being sensed by the user.

- Query guide, which can be used to perform searches in the PH network, for 
example searching for nearby points of interest, finding paths and so on. The 
service provided by this role is the analog of performing a search inside a web 
site, but adapted to the PH paradigm.

- Alert guide, which is used to alert the user about critical events. For example, 
the user can receive a notification about a fire taking place a few blocks from 
his position. Notice that in this case we expect the alert guide to suppress any 
other irrelevant service that may disturb the user, so this role not only adds 
services to the wrapped object but also inhibits others.

- Attention guide, which is used to capture the user’s attention to inform him 
about interesting things. For example, this guide can let the user know that in 
that day the access to museum is free. Notice that this role is different from the 
previous one in two main aspects: it doesn’t inhibit other services and it is 
used for non-critical notifications.

4.2 Handling Context Changes

Once the context features have been defined, we need to design the different handlers 
to respond to changes in the user’s context. For the sake of clarity we decided to use a 
naming convention for handlers with the form <DependentContextAspect>- 
<ContextAspectToChange>. As an example, a Location-Activity handler is triggered 
when there is a change in the location context feature and acts on the activity feature.



Location-Activity Handler: this handler is registered to be triggered when the 
location feature changes. As a response, the user’s activity is re-evaluated according 
to his new location. As explained in the previous section this is achieved by asking 
the current activity to process the new location, which returns the new user activity.
Navigation-Activity Handler: when the user clicks a link in the browser, the url is 

set as the current situation for the navigation feature. As a response to this change, the 
navigation-activity handler is triggered. In case the selected url is a physical link (i.e., 
the user asks for physical navigation), the user’s activity is simply set to walking a 
link in the right way and the travel variable corresponding to this activity is set with 
the itinerary from his current position to his destiny (the target of the link). This 
itinerary is showed when the browser is updated (as a response of the fact that the 
navigation feature has changed). On the other hand, if the selected link is a digital 
one, the digital navigation feature is updated with the digital object representing the 
target of the link. The browser is updated (because the navigation feature has 
changed) and it shows the information of the digital object that has been stored in the 
digital navigation feature.
Location-Navigation: The user’s location has changed (e.g. new data has been 

gathered from a sensor). Depending on the user’s current and previous activity, the url 
of the digital navigation feature is updated according to the following rules:

• If the user is in front of an object, the url is set to inFrontOf.ssp1, that 
displays the object’s information as was shown in Figure 5.

• If the user is walking (either in the right or wrong way) and has reached 
his target, the url is set to inFrontOfTarget.ssp.

• If the user is walking (either in the right or wrong way) and has passed by 
a point of interest that is not the target, the url is set to passedBy.ssp.

It should be noticed that, as a result of the process made by this handler, the 
navigation feature is changed, which means that the browser will be updated.

Once the basic handlers have been defined, we can proceed to handle context 
changes in order to assign a role to the current physical object in front of the user. 
This role is assigned to the physical objects dynamically, according to the user’s 
context (so far we only take into an account the user activity, but we plan to extend 
this to other context aspects in the future). When a physical object has been sensed, its 
role is determined to better suit the user’s needs. Since the role is assigned when the 
user changes his position, we created a new handler named Location-Role, which is 
registered to be triggered when the location feature changes (since the object’s role 
depends on the users activity, this handler is registered to be triggered after the 
Location-Activity handler processes the location change event). As a response to a 
change in the user’s location the control is passed to an instance of the RoleBuilder 
class which acts as a Facade [6]. The RoleBuilder performs a double-dispatching 
between the user and his current activity in order to determine the physical object’s 
role. In Figure 7 we show an interaction diagram depicting the collaborations between 
the handler, the role builder and the activity in order to get the physical object’s role.

Notice that the role assignment process starts as a response to a change in the 
current location (i.e. the physical object that is in front of the user), and ends up 
adding a role to the physical object. As a result, the location context feature will now

1 ssp stands for Smalltalk Server Pages, the Smalltalk counterpart of jsp pages



hold a role (which wraps the physical object), indicating that the user is standing in 
front of a physical object, that has been reshaped to adapt its behavior to the user 
needs.

Fig. 7 An interaction diagram depicting the creation of a role based on the user’s activity.

5 Related Work
The term Physical Hypermedia was coined in [8]. In [9], the authors present a 

comprehensive framework (HyCon) whose goal is to extend the Hypermedia 
paradigm with the manipulation of real world objects. This framework supports not 
only context-aware physical navigation but also allows users to create their own 
linking structures and trails. Another related approach is the HyperReal framework 
[14], an object-oriented framework which allows mixing the real and the digital 
world. Finally, Harper et al [10] extended the metaphor of links with the idea of 
“walking” a link as they augment Hypertext with physical relationships present in the 
real world.

Our research has been certainly inspired by these seminal research projects; we 
further characterize real-world objects according to the role they can play to assist the 
user’s travel. From an architectural point of view, we chose not to build a software 
substrate from scratch but to extend a service-oriented architecture with hypermedia 
services; in this way we can integrate hypermedia behaviors with other context-aware 
services not directly related with navigation. We do so by composing relevant context 
features, which describe the user’s situation and a set of handlers to respond to 
changes in the context model.

We found our model of context to be quite similar to the one presented in [3]. 
While in most approaches, context is viewed as a collection of data that must be 
specified at design time and whose structure is supposed to remain unaltered during 
the lifetime of the application, [3] proposes a phenomenological view of context. In 
this approach, context is considered as an emergent of the relationships and 
interactions of the entities involved in a given situation. In our approach, the intended 
behavior is the combination of the context features (which together make up the 
whole context) and of the interaction between the aware-objects, the context features



and the handlers. In addition, we do not assume a pre-defined context shape, and 
allow for run-time changes on the context model.

From an architectural point of view, our work has been inspired in [2]: the sum of 
our micro-architectural decisions (such as using dependencies or decorators) also 
generates a flexible, evolvable architecture. Finally, we adapted part of the ideas in 
[18] to define the set of roles which physical objects may play in the context of the 
user’s journey.

6 Concluding Remarks and Further Work
We have described an architecture for building context-aware physical hypermedia 
applications; the architecture and its associated software framework supports different 
kinds of browsing behaviors. In particular, it allows building navigation assistance by 
providing a model for assigning behavioral roles to physical objects according to the 
user’s navigation activity. One of the main strengths of our approach is that it allows 
incremental development of this kind of software systems; for example new services 
or object’s roles can be added dynamically, therefore supporting Abowd’s view on 
ubiquitous computing [1]. The framework and the PH prototype were developed in 
VisualWorks, a Smalltalk-based environment, which is cross-platform and can be 
executed in PDAs. Although we used a web browser written entirely in Smalltalk, any 
other browser that supports a callback facility to intercept link selection can be used.

We are now researching in several areas: first we are devising a finer grained 
strategy for assigning roles to physical objects, taking into an account several context 
features, such as the user’s history or his preferences. To improve the construction of 
PH applications we are also developing a user friendly tool. We are studying how 
other metaphors of hypermedia navigation can be mapped to PH (e.g. what is the 
counterpart of the back button for a physical link). Finally, we are developing a set of 
widgets to generate a better GUI; our main concern is how to present a large amount 
of services provided by a physical object in small displays such as the ones found in 
mobile devices. In this regard, our hypotheses is that zoomable interfaces are well 
suited for this situation, since they allow to structure a large amount of items in a 
small area, with a smooth interaction and a bigger nesting depth that can be applied in 
the same situation with standard menus.

7 References
1. Abowd, G. D.: Software Engineering Issues for Ubiquitous Computing. Proc. 21st Int'l 

Conf. Software Engineering, ACM Press, 1999, pp. 75-84.
2. Beck, K., Johnson, R. E.: Patterns Generate Architectures. ECOOP 1994: 139-149.
3. Dourish, P.: What we talk about when we talk about context. Personal and Ubiquitous 

Computing 8(1): 19-30 (2004).
4. Challiol, C., Gordillo, S., Rossi, G., Laurini, R.: Designing Pervasive Services for Physical 

Hypermedia Applications. Proceedings of the IEEE International Conference on Pervasive 
Services. Lyon, June 2006.



5. Fortier, A., Rossi G., Gordillo, G.: Decoupling design concerns in location-aware Services. 
In Mobile Information Systems II, pages 187-202, 2005.

6. Gamma, E., Helm, R., Johnson, J., Vlissides, J.: Design Patterns. Elements of reusable 
object-oriented software, Addison Wesley 1995.

7. Grigera, J., Fortier, A., Rossi, G., Gordillo, S.: A Modular Architecture for Context 
Sensing. To be presented in “The Second IEEE International Symposium on Pervasive 
Computing and Ad Hoc Communications (PCAC-07)”, Niagara Falls, Canada, May 21­
23,2007

8. Gronbaek, K., Kristensen, J., Eriksen, M.: Physical Hypermedia: Organizing Collections 
of Mixed Physical and Digital Material. Proceedings of the 14th. ACM International 
Conference of Hypertext and Hypermedia (Hypertext 2003), ACM Press, 10-19.

9. Hansen, F., Bouvin, N., Christensen, B., Gronbaek, K., Pedersen, T., Gagach, J.: 
Integrating the Web and the World: Contextual Trails on the Move. Proceedings of the 
15th. ACM International Conference of Hypertext and Hypermedia (Hypertext 2004), 
ACM Press. 2004.

10. Harper, S., Goble, C., Pettitt, S.: proXimity: Walking the Link. In Journal of Digital 
Information, Volume 5, Issue 1, Article No 236 , 2004-04-07.
http//jodi.ecs.soton.ac.uk/Articles/v05/i01/Harper/.

11. Huang, A., Rudolph, L.: A privacy conscious bluetooth infrastructure for location aware 
computing,.http://people.csail.mit.edu/albert/pubs/2004-albert-infrastructure-forlocation- 
aware-computing.pdf.

12. Krasner, G., Pope, S.: A Cookbook for Using Model-View-Controller User Interface 
Paradigm in Smalltalk-80, Journal of Object Oriented Programming, August/ September, 
1988, 26-49.

13. Leonhardt, U.: Supporting Location-Awareness in Open Distributed Systems. Ph.D. 
Thesis, Dept. of Computing, Imperial College London, May 1998.

14. Romero, L., Correia, N.: HyperReal: A Hypermedia model for Mixed Reality. Proceedings 
of the 14th ACM International Conference of Hypertext and Hypermedia (Hypertext 
2003), ACM Press, 2-9.

15. Rossi, G., Gordillo, S., Challiol, C., Fortier, A.: Context-Aware Services for Physical 
Hypermedia Applications. OTM Workshops (2) 2006: 1914-1923

16. Rossi, G., Gordillo, S., Fortier, A.: Seamless Engineering of Location-Aware Services. 
Proceedings of CAMS 2005, 2nd Workshop on Context-Aware and Mobile Services, 
Ciprus, October 2005, Springer Verlag.

17. Want, R., Hopper, A., Falcao, V., Gibbon, J.: The Active Badge Location System. ACM 
Trans. Information Systems, Jan. 1992, pp. 91-102.

18. Yesilada, Y., Stevens R., Goble, C.: A foundation for tool based mobility support for 
visually impaired web users. In Proceedings of the Twelfth International Conference on 
World Wide Web, pages 422-430, 2003.

http://people.csail.mit.edu/albert/pubs/2004-albert-infrastructure-forlocation-aware-computing.pdf
http://people.csail.mit.edu/albert/pubs/2004-albert-infrastructure-forlocation-aware-computing.pdf

