2,092 research outputs found

    Hyperbolic tilings and formal language theory

    Full text link
    In this paper, we try to give the appropriate class of languages to which belong various objects associated with tessellations in the hyperbolic plane.Comment: In Proceedings MCU 2013, arXiv:1309.104

    Noncooperative algorithms in self-assembly

    Full text link
    We show the first non-trivial positive algorithmic results (i.e. programs whose output is larger than their size), in a model of self-assembly that has so far resisted many attempts of formal analysis or programming: the planar non-cooperative variant of Winfree's abstract Tile Assembly Model. This model has been the center of several open problems and conjectures in the last fifteen years, and the first fully general results on its computational power were only proven recently (SODA 2014). These results, as well as ours, exemplify the intricate connections between computation and geometry that can occur in self-assembly. In this model, tiles can stick to an existing assembly as soon as one of their sides matches the existing assembly. This feature contrasts with the general cooperative model, where it can be required that tiles match on \emph{several} of their sides in order to bind. In order to describe our algorithms, we also introduce a generalization of regular expressions called Baggins expressions. Finally, we compare this model to other automata-theoretic models.Comment: A few bug fixes and typo correction

    A Survey of Cellular Automata: Types, Dynamics, Non-uniformity and Applications

    Full text link
    Cellular automata (CAs) are dynamical systems which exhibit complex global behavior from simple local interaction and computation. Since the inception of cellular automaton (CA) by von Neumann in 1950s, it has attracted the attention of several researchers over various backgrounds and fields for modelling different physical, natural as well as real-life phenomena. Classically, CAs are uniform. However, non-uniformity has also been introduced in update pattern, lattice structure, neighborhood dependency and local rule. In this survey, we tour to the various types of CAs introduced till date, the different characterization tools, the global behaviors of CAs, like universality, reversibility, dynamics etc. Special attention is given to non-uniformity in CAs and especially to non-uniform elementary CAs, which have been very useful in solving several real-life problems.Comment: 43 pages; Under review in Natural Computin

    Causal graph dynamics

    Full text link
    We extend the theory of Cellular Automata to arbitrary, time-varying graphs. In other words we formalize, and prove theorems about, the intuitive idea of a labelled graph which evolves in time - but under the natural constraint that information can only ever be transmitted at a bounded speed, with respect to the distance given by the graph. The notion of translation-invariance is also generalized. The definition we provide for these "causal graph dynamics" is simple and axiomatic. The theorems we provide also show that it is robust. For instance, causal graph dynamics are stable under composition and under restriction to radius one. In the finite case some fundamental facts of Cellular Automata theory carry through: causal graph dynamics admit a characterization as continuous functions, and they are stable under inversion. The provided examples suggest a wide range of applications of this mathematical object, from complex systems science to theoretical physics. KEYWORDS: Dynamical networks, Boolean networks, Generative networks automata, Cayley cellular automata, Graph Automata, Graph rewriting automata, Parallel graph transformations, Amalgamated graph transformations, Time-varying graphs, Regge calculus, Local, No-signalling.Comment: 25 pages, 9 figures, LaTeX, v2: Minor presentation improvements, v3: Typos corrected, figure adde

    A counterexample to Thiagarajan's conjecture on regular event structures

    Full text link
    We provide a counterexample to a conjecture by Thiagarajan (1996 and 2002) that regular event structures correspond exactly to event structures obtained as unfoldings of finite 1-safe Petri nets. The same counterexample is used to disprove a closely related conjecture by Badouel, Darondeau, and Raoult (1999) that domains of regular event structures with bounded ♼\natural-cliques are recognizable by finite trace automata. Event structures, trace automata, and Petri nets are fundamental models in concurrency theory. There exist nice interpretations of these structures as combinatorial and geometric objects. Namely, from a graph theoretical point of view, the domains of prime event structures correspond exactly to median graphs; from a geometric point of view, these domains are in bijection with CAT(0) cube complexes. A necessary condition for both conjectures to be true is that domains of regular event structures (with bounded ♼\natural-cliques) admit a regular nice labeling. To disprove these conjectures, we describe a regular event domain (with bounded ♼\natural-cliques) that does not admit a regular nice labeling. Our counterexample is derived from an example by Wise (1996 and 2007) of a nonpositively curved square complex whose universal cover is a CAT(0) square complex containing a particular plane with an aperiodic tiling. We prove that other counterexamples to Thiagarajan's conjecture arise from aperiodic 4-way deterministic tile sets of Kari and Papasoglu (1999) and Lukkarila (2009). On the positive side, using breakthrough results by Agol (2013) and Haglund and Wise (2008, 2012) from geometric group theory, we prove that Thiagarajan's conjecture is true for regular event structures whose domains occur as principal filters of hyperbolic CAT(0) cube complexes which are universal covers of finite nonpositively curved cube complexes

    Boolean Delay Equations: A simple way of looking at complex systems

    Full text link
    Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classification of ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth of complexity in time. They represent therewith metaphors for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil's staircases and ``fractal sunbursts``. All known solutions of dissipative BDEs have stationary variance. BDE systems of this type, both free and forced, have been used as highly idealized models of climate change on interannual, interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficient models of colliding cascades in earthquake modeling and prediction, as well as in genetics. In this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid earth problems. The former have used small systems of BDEs, while the latter have used large networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in space (``partial BDEs``) and discuss connections with other types of dynamical systems, including cellular automata and Boolean networks. This research-and-review paper concludes with a set of open questions.Comment: Latex, 67 pages with 15 eps figures. Revised version, in particular the discussion on partial BDEs is updated and enlarge

    Impact of local information in growing networks

    Full text link
    We present a new model of the evolutionary dynamics and the growth of on-line social networks. The model emulates people's strategies for acquiring information in social networks, emphasising the local subjective view of an individual and what kind of information the individual can acquire when arriving in a new social context. The model proceeds through two phases: (a) a discovery phase, in which the individual becomes aware of the surrounding world and (b) an elaboration phase, in which the individual elaborates locally the information trough a cognitive-inspired algorithm. Model generated networks reproduce main features of both theoretical and real-world networks, such as high clustering coefficient, low characteristic path length, strong division in communities, and variability of degree distributions.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    Existential questions in (relatively) hyperbolic groups {\it and} Finding relative hyperbolic structures

    Full text link
    This arXived paper has two independant parts, that are improved and corrected versions of different parts of a single paper once named "On equations in relatively hyperbolic groups". The first part is entitled "Existential questions in (relatively) hyperbolic groups". We study there the existential theory of torsion free hyperbolic and relatively hyperbolic groups, in particular those with virtually abelian parabolic subgroups. We show that the satisfiability of systems of equations and inequations is decidable in these groups. In the second part, called "Finding relative hyperbolic structures", we provide a general algorithm that recognizes the class of groups that are hyperbolic relative to abelian subgroups.Comment: Two independant parts 23p + 9p, revised. To appear separately in Israel J. Math, and Bull. London Math. Soc. respectivel
    • 

    corecore