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A b s t r a c t - - T h i s  paper  presents a novel method of assessing cellular au tomata  based models. The 
cellular model considered in this  paper was designed to simulate sediment t ranspor t  and topographic 
changes in rivers. It is demonstrated how prior knowledge about  part ial  differential equations and 
their  solution schemes can be used to provide deeper insight into the performance of two numerical 
implementat ions for this cellular model. Assessment of the  implementat ions as solution schemes of 
the  derived part ial  differential equations showed tha t  the cellular model is robust  for two numerical 
implementations,  one of which is superior in terms of accuracy, stability and convergence. In compar- 
ison with more sophisticated solution methods, bo th  implementat ions re turn  accurate results. This 
study encourages the further application of cellular au tomata  based models to complex problems. 
(~) 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - C e l l u l a r  automata,  Numerical models of fluvial processes, Part ial  differential equa- 
tions. 

1. I N T R O D U C T I O N  

Mathematical and numerical models have become a common tool for studying complex natural 

phenomena. Traditional modeling approaches aim to identify the governing mechanical processes 
and represent them by systems of partial and integro-differential equations. In most cases, these 
can only be solved by numerical approximations. This reductionist modeling approach has proved 
greatly successful in simulating the behavior of many complex systems. The formulation and as- 
sessment of numerical solution schemes has become a major research field. However, the detailed 
representation of the governing physical processes associated with the reductionist approach re- 
quires expert numerical skills often combined with large amounts of computational resources. 

Moreover, interpretation of the model results is often obscured by the strong interaction between 
several complex phenomena, which are simultaneously represented in the model. 

In recent decades, cellular automata models have emerged as an alternative modeling ap- 
proach [i]. Instead of reducing the system to its fundamental components, cellular automata 
models focus on key aspects of the system and use simple rules to represent them quantitatively. 

*Author  to whom all correspondence should be addressed. Current  address: Animal Nutri t ion and Health 
Department,  Scottish Agricultural College, Bush Estate, Penicuik, EH26 0PH, UK. 
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They don't reproduce the detailed behavior of a system, but aim to capture its relevant character- 
istics and produce the enigmatic behaviors of interest [2]. Cellular automata portray the system 
by discrete sets of cells which interact with each other according to their properties and accord- 
ing to rules that represent the system's mechanics in a highly simplified manner. This discrete, 
simplistic representation certainly lacks the microscopic fidelity of reductionist models, but the 
simplicity of the formal representations of the modeled processes increases the clarity of insight 
and explanatory power regarding the mechanisms causing a poorly understood phenomenon [2]. 
In systems with complicated boundary conditions or domain geometry, cellular models can be 
much faster than reductionist models [3]. These models are easy to construct and modify, and 
so offer many possibilities for exploring system behavior. 

Both modeling approaches have their obvious advantages and have contributed a great deal to 
a better understanding of many natural and artificial systems. However, both approaches also 
demand a high price for their advantages. Reductionist models often obscure the fundamental 
aspects that control the overall behaviour of the modelled system. Further, they reach their lim- 
its when the underlying physical principles of the considered phenomenon are unknown or when 
systems become too complex to solve by analytical or numerical means. Cellular models, which 
concentrate on key aspects of the modelled system, are generally difficult to validate. The assess- 
ment of these models is often restricted to visualization of the results and lacks rigorous analysis. 
Alternatively, appropriate assessment requires the development of new assessment methods or a 
deep understanding of already existing methods from other research fields. 

To enhance the recognition of the key aspects and to relieve the burden of lengthy computations, 
many reductionist models depicted by complex systems of partial differential equations have 
been simplified to cellular automata [4]. The question arises, whether insights obtained from 
the traditional reductionist modeling approach can also contribute a more rigorous assessment of 
cellular models. The aim of this paper is to demonstrate how partial differential equations can 
be used to assess numerical schemes arising from a mathematical cellular automata model. 

The present study focuses on a cellular model for sediment transport and topographic changes 
in river beds. The model was generated to examine the essential criteria for the establishment and 
propagation of braided channel patterns in rivers [5]. It has been applied to study the impact of 
environmental change in catchment areas (see [6]) and the role of vegetation for bank stability [7]. 
Due to the simplified representation of the governing processes, the model has provoked intense 
debates in the fluvial community [7]. Whereas many are attracted by the simple, fast computa- 
tions, others are skeptical about the validity of the model results. The model predictions have 
been assessed according to methods ranging from visualization, dynamical systems theory [8,9] 
and fractal analysis [10] to statistics [11]. But questions about the accuracy, convergence, and 
stability of the model predictions or the model's robustness to various implementations cannot 
be answered by these methods. 

For the purpose of this study it is convenient to reduce the original two-dimensional model 
to one dimension. In one dimension, the model no longer represents braided river processes; 
instead, it predicts the evolution of a longitudinal river profile through the propagation of water 
and sediment. Although this is a high price to pay, reduction to one spatial dimension facili- 
tates the model assessment in terms of robustness, accuracy, and stability and provides insight 
into the model performance that would be more difficult to obtain in higher dimensions. Two 
rival numerical implementations will be presented, provoking questions about the advantages of 
either approach and about the model's robustness to different numerical implementations. These 
questions are tackled by deriving partial differential equations from both implementations and by 
assessing the numerical models as solution schemes of the corresponding equations. Depending 
on the parameter choice, the model can be either linear or nonlinear. The investigations start 
with the linear model, for which a variety of rigorous assessment methods for numerical solution 
schemes can be applied, and continue with a more realistic nonlinear model for this phenomenon. 
An outline of this paper is sketched in Figure 1. 
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Figure 1. Schematic diagram of the contents of this paper. 
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Figure 2. Schematic diagram of the temporal evolution of a river bed profile. 
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2. T H E  C E L L U L A R  M O D E L  I N  O N E  D I M E N S I O N  

In one dimension, the model mimics the following simple process: starting with a longitudinal 
initial profile of a riverbed, water and sediment introduced at the upstream end propagate in the 
downstream direction. The propagation of sediment causes erosion and deposition at different 
locations, which changes the bed profile (see Figure 2). The cellular model divides the bed profile 
into a sequence of discrete cells of equal length Ax. Each cell of the one-dimensional lattice has 
coordinates (x, y), where x is the location of the cell center and y is the average bed elevation 
in the cell length. The model variables are the water flux Q and the sediment flux M. The 
propagation of water and sediment is discretized by transferring both quantities from cell to cell. 
The propagation of water follows the principle of conservation of mass: the amount of water that 
enters a cell also leaves the cell during the same time step. In one dimension, this implies a 
constant water flux Q. The sediment transport between adjacent ceils obeys the following rule, 
which was deduced from empirical studies [8,12], 

I f  (QS) m if S < O, 
M ~ ' - -  

0, if S >  0. 

The parameter K in the above equation is an unconstrained scaling constant and the expo- 
nent m is positive. The variable S is the slope between adjacent cells. Empirical studies [12,13] 
suggest values between m = 5/3 and m = 5/2 . Since, in one dimension, Q is constant, the above 
equation simplifies to 

( / ( S  "~, i f S _ 0 ,  
M =  l 0, if S < 0. (1) 

The cell elevation change during a time step is denoted by Ay and obeys the mass balance 
equation, 

Ay - Min - Mout, 

where Min and Mout denote the amounts of sediment entering and leaving the cell, respectively. 

3. T W O  RIVAL NUMERICAL IMPLEMENTATIONS 

Many mathematical models offer different numerical implementations which represent the 
physics of the problem from different perspectives. Alternative numerical implementations help 
test the model's robustness, since they only change the viewpoint from which one looks at the 
problem, but should not affect the results. For fluvial processes, the main rival numerical im- 
plementations are the Eulerian and the Lagrangian approach. The Eulerian approach describes 
the state of the system at fixed points in space and calculates subsequent states by synchronous 
updates of all mesh points. The Lagrangian method employs a moving frame of reference and 
describes the state of the system by particles that move with respect to each other [14]. 

The above cellular model lends itself to two different numerical implementations: the Eulerian 
approach and a method that compromises between the Eulerian and the Lagrangian approach. 
In the Eulerian approach, which operates on a fixed lattice, the amounts of water and sediment in 
each cell at time kAt are calculated from the corresponding amounts at the previous time (k-1)At  
and the incoming and outflowing quantities during that time interval. If M k is the quantity of 
a material in a cell at time kAt  and M (k'k+0 and AZ(k'k+l) -Win "~out are the quantities entering and 
leaving the cell during the time interval [kAt, (k + 1)At] respectively, then, the quantity M at 
time (k + 1)At is given by 

= Az(k,k+i) Mk+l Mk + M;~ 'k+l) - -~-out • (2) 

In the Eulerian approach, all grid cells are updated simultaneously during an iteration, so that 
one iteration corresponds to one time step [kAt, (k + 1)At]. The output after k iterations is the 
topography at time kAt. 
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The second approach, which we call the marker-in-cell (MIC) method,  also uses a fixed lattice. 

But  instead of looking at the evolution of the entire lattice simultaneously, one moves with the 

quantities as they propagate  along the lattice. One starts  at the first lattice cell and updates  the 

cell quantities as one propagates in the downstream direction. Thus, it only requires the initial 

fluxes at the ups t ream end of the s tudy reach as model input, in contrast  to the Eulerian approach, 

which requires initial flux values at all grid cells. We call the sequence of water  and sediment 

distribution from the first to the last lattice column one sweep, tn contrast  to one iteration in the 

Eulerian method,  one sweep is associated with several t ime steps. The  material  transfer between 
the first and second cells happens before the material  transfer between consecutive cells. Thus, 

the MIC method provides direct answers to questions concerning the effects of events at one 
location on further downstream locations. Est imates of the bed profile at a given t ime k A t  can 
also be calculated. Using the same notat ion as in equation (2), the quanti ty M in a cell changes 
twice during one sweep and satisfies the following system of equations, 

M k+l = M k -F M~ 'k+l), 
Mk+ 2 __= Mk+ 1 _ ]l/f (k-t-i ,  k-l-2) 

-,Lout 

where M k+2 denotes the quantity M at the end of the sweep and the superscripts (k, k + 1) 

and (k + 1, k + 2) correspond to the t ime intervals [kAt, (k + 1)At] and [(k + 1)At,  (k + 2)At], 

respectively. The biggest difference between the two modeling approaches is the immediate  

update  of cell elevations in the MIC method.  This affects the local slopes and consequently the 

amounts  of transferred sediment between adjacent cells. These discrepancies may cause essential 

differences in the model predictions. Such a lack of robustness would cast doubt  on the whole 
modelling exercise. 
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Figure 3. Time snapshots of the bed profile predicted by the Eulerian (left) and MIC 
method (right). The parameters used in this experiments were K = 0.1 and m = 2. 
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Figure 3 shows time snapshots of a river bed profile represented by a one-dimensionai lattice 
of six cells, predicted by the Eulerian (left) and MIC approach (right). In this computational 
experiment, the Eulerian approach calculates a different profile at a given time than the MIC 
approach (dashed lines). However, both methods predict the same asymptotic behavior (solid 
lines). The lattice boundaries affect the long-term predictions of both approaches similarly, as 
is represented by the steps in the cell elevations after the first and before the last lattice cells. 
Various computational experiments for one- and two-dimensional lattices of different dimensions 
and for different parameter choices indicate that both approaches predict in general similar long- 
term behaviors. This study aims to support the observations from the numerical experiments by 
a more rigorous mathematical analysis. 

4. D E R I V A T I O N  O F  P A R T I A L  D I F F E R E N T I A L  
E Q U A T I O N S  F R O M  B O T H  N U M E R I C A L  S C H E M E S  

4.1. Partial  Differential  Equation Associated W i t h  the Eulerian Approach 

Let yp = y(iAx, nat) denote the elevation of cell i at time t~ = nat, where Ax and At are 
the cell length and the time step in the numerical models. Taking cell dimension and time into 
account, the mass balance equation is 

y n + l  S n { S n } m l  ' - Y ? A x = K [ H ( - S ~ ) ( - S ~ )  m - H ( -  ,+1)~- i+1/ j ,  
At 

(4) 

where 
y?-~ - y ?  

Sp = Ax 

and H(x) is the Heaviside step function, which is one, if x _> 0 and zero, for x < 0. In the 
following, we will assume that the slopes S~ and S n = i+1 are always negative so that H 1. If 
this is not the case, equation (4) does not yield a partial differential equation and modifications 
of the function H are required. We refer the discussion of the resulting complications to the 
concluding section of this paper. For H = 1, applying truncated Taylor series expansions in the 
limits Ax ~ 0 and At --, 0 to equation (4) yields the differential equation, 

(OY) m-1 02Y = 0. (5) Oy _ Km - ~ x  Ox 2 Ot 

Equation (5) is a diffusion equation with diffusion coefficient K m ( : ~ )  "~-1. The Eulerian 
approach is known as the explicit difference scheme for solving the diffusion equation (see [15]). 

4.2. Partial  Differential  Equation Associated W i t h  the Marker-In-Cell  Method  

The MIC-method involves three time levels during one sweep. Using the same notation as 
above, the mass-balance equation for cell i can be expressed as 

~] n -& 2 ] 
' -Y~ A x =  K [Y ( -S~) ( -S~)  m -  H (-S~+11) (-S:+11) m • 

2At 

The terms in the above equation can be expanded into truncated Taylor series expansions at 
the mesh point (iAx, (n + 1)At). If, as above, we assume that H -- I and that v ---- Ax/At  is 
finite 1 yields, after taking the limits At --~ 0 and Ax --~ 0, the differential equation, 

OYot = g m  --~x Ox ---~ --v \ --~x ] OxOt" (7) 

1In t h e  following, we set  v = 1, w i t hou t  loss of  generality.  
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The first term on the right-hand side is the diffusion term that was obtained from the Euler 
method. The propagation of sediment, an explicit component in the cellular MIC method, results 
in the additional mixed derivative term in the MIC-partial differentiM equation. Understanding 
and interpreting the difference between the cellular Eulerian and MIC approach therefore reduces 
to the question: How does the additional term on the right-hand side of equation (7) affect the 
solutions of the corresponding initial-value problem? 

The extra 
K i n (  Oy~ m-1 02y 

v \ - T x )  OzOt 

term transforms the parabolic diffusion equation (5) into a hyperbolic equation (7). Both 
parabolic and hyperbolic equations describe evolution processes, but hyperbolic equations are 
generally associated with the propagation of waves or signals, see [16]. The equations require 
different solution techniques and lead to solutions with different qualitative behaviors. In con- 
trast to the Eulerian method, which is the well-known forward Euler method for solving the 
diffusion equation, the MIC-method cannot be identified as a familiar numerical solution scheme 
for approximating the solution of equation (7). 

5. A N A L Y Z I N G  T H E  L I N E A R  P D E S  A N D  T H E I R  S O L U T I O N S  

For m = 1, the differential equations (5) and (7) are linear and analytic solutions can be 
obtained for appropriate initial and boundary conditions. The solution of the linear diffusion 
problem, 

Oy 02y 
O-t - g o ' x 2 '  (8) 

y o) = yo 

with an integrable real function y0 is 

y (x, t) = i f ~  YO (u) e -(z-~)2/4Kt du. (9)  

Hyperbolic linear second-order partial differential equations generally require two initial con- 
ditions for a unique solution. However, a unique solution can be obtained for the following 
initial-boundary value problem that uses one initial condition and a weak boundary condition at 
infinity 

OY = K ( O2y 02y 
+ for e t > 0 ,  

0--~ 

y (x, 0) = Y0 (x), for x e ~, (10) 

lim ly(x,t)l < oo, for t > 0, 
I~1-~oo 

for a continuous, differentiable, bounded real-valued function Y0 (see [17]). The solution of the 
above problem was derived in [17] and has the form, 

y (x, t) = g (x - u) e(~-2t)/KIo -~ du, (11) 
O 0  

where 
1 

g ( x )  = ( x )  - (x) 

and I0 is the modified Bessel function of the first kind of order zero. 
At first glance, the analytical solutions (9) and (11) of the linear diffusion and MIC equations do 

not appear similar. For example, for fixed times t > 0, the solution of the linear diffusion equation 
is an even function in x provided the initial function yo(x) is even. In contrast, the solution of 
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the MIC equation involves the integration over the interval (-c~,  t] indicating a nonsymmetrical 
temporal evolution of an even initial function. Despite this, in [17] it is shown that  the exact 
solutions of systems (8) and (10) rapidly converge to each other as time increases. Further, for 
finite times and bounded initial functions with bounded first derivatives, the discrepancy between 
both solutions is also bounded. 

Figure 4 shows time snapshots of the analytic solutions (left) of the initial value problems (8) 
and (10) and of the corresponding difference function e(x, t) (right) for different initial func- 
tions Y0. As flow propagates over the undulations, they spread out and decrease in altitude. The 
analytical solutions greatly resemble one another and the magnitude of the difference function 
decreases as time increases. The mixed derivative term in the MIC equation can be identified as 
a process that  inhibits the symmetric evolution of the initial function, which is controlled by the 
diffusion process. But compared to the diffusion process, this inhibiting process is very weak. 2 

Solutions for Yo (x) = 4-x z for Ixl <= 2 

r 
i 

. . . . . . . . . . . . . . . . . . .  2 ,i ' X  
. lO -8 ~ ,.4 " u ' 6 l~ ii3 

Difference: M I C  - Explic i t  solution 

o.o61 i~ 

" #]1 

Solutions for Yo(X) = cos ( l -x )  for Ixl< = 2 Difference: M I C  - Expl ic i t  solution 

Y o ~ O  o.o~ , t ' l O  
" ' "  ~ o.8 t - O  -~o . ~  , ! , \  ~ x  ,~p  . . . .  

Figure 4. Time snapshots of the solutions for the  MIC and Euler equation for different 
initial functions (left) and of their  differences (right). 

5.1. A s s e s s m e n t  of  t h e  L i n e a r  N u m e r i c a l  E u l e r i a n  a n d  M I C  Schemes  

The quality of finite difference schemes for approximating solutions of partial differential equa- 
tions is determined by the following four criteria: accuracy of the numerical solutions, consistency 
and convergence of the schemes as well as stability, see [15]. The accuracy of solutions is deter- 
mined by the local truncation errors at the mesh-points (lAx, nat). A scheme is consistent if 
the solution of the difference equation converges to the solution of the differential equation as the 

n = Z~ - z~ between the mesh lengths tend to zero and convergent, if the discretization error e~ , ,  

2The s tudy of the  MIC equation revealed tha t  the hyperbolic MIC equation shares some properties with parabolic 
equations. This observation is interesting in its own right and is investigated by two of the  authors in [17]. 
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exact solutions Z~ and z~ of the differential and difference equations at the (i, n) th mesh-point 

converges to zero, for all i and n. Stability refers to a limited amplification of all components 
of the initial conditions. For linear finite difference schemes, methods to assess the validity of 

all four criteria are well established. Assessment of the explicit (Eulerian) method as solution 
scheme of the linear diffusion initial-value problem according to the above criteria can be found in 
standard textbooks (e.g., [15]) and is summarized in the top row of Table 1. Substitution of the 
exact solution of the linear MIC equation into the finite difference equation (6) yields the local 

truncation errors and the result for consistency for the MIC scheme, as presented in the second 
row in Table 1. Lax-Richtmyer's definition of stability [15] yields tha t  the linear MIC scheme 

is unstable and, hence, not convergent. Nevertheless, applying von Neumann's Fourier-series 
method, it can be shown that  the amplification rate of the round-off errors is small (i.e., for 

K A t  1 
< 5' 

the stability condition for the linear explicit scheme, round-off errors grow at a rate less than 
x/5), suggesting that  the MIC model is valid for a finite time span (see Figure 5). According 
to these criteria, the Eulerian method is bet ter  than the MIC method on three counts: it has a 
lower truncation error, it is conditionally stable, and it is convergent. The MIC method is still a 
valid solution method if predictions are made over sufficiently small t ime spans. 

Table 1. Evaluation of the linear numerical difference schemes according to four 
criteria. 

Criterion/Scheme Local Truncation Error Consistent Convergent Stable 

K At  Euler O(At) + O(Ax 2) yes yes if ~ < 0.5 

MIC O(At) + O(At 2) yes no no, but bounded O(Ax 2) 
growth of errors 

I 

T 

/ 
/ / 

5 

4 

3 

Figure 5. Amplification factor r 2 of the round-off errors in the MIC model as function 
of b = KAt / (Ax )  2 and sAx, where s = ~r/NAx. 

6. A N A L Y Z I N G  T H E  N O N L I N E A R  P D E S  
A N D  T H E I R  N U M E R I C A L  S O L U T I O N S  

Most natural  phenomena represent nonlinear relationships between interacting components. 
In our study, the components are water and sediment flux. An exaggerated nonlinear response 
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of sediment to water flux is crucial for topographic changes in many rivers (see [7]). For m > 1, 
the PDEs (5) and (7) cannot be solved analytically and most methods devised to assess the 
numerical linear solution schemes are inapplicable. The quality of the nonlinear Eulerian and 
MIC schemes will be assessed by comparing them with other numerical solution schemes for the 
corresponding PDEs. Although the analysis of the nonlinear numerical schemes is less rigorous 
than the analysis of the linear counterparts, insight into model behaviors is still obtained. 

6.1. Numer i ca l  Solutions of the  Nonl inear  Diffusion Ini t ial-Value P r o b l e m  

An alternative numerical solution of the nonlinear initial-value diffusion problem 

¢ OY~ m - 1  
Oy = K m  02Y (12) 
0-7 2 axe' 

y (x, 0) = y0 (x), (13) 

with m 7~ 1 can be obtained using similarity transformations (see [18]). The above system has 
stretching symmetry provided 

y0 (Az) = g (A) y0 (z) ,  (14) 

for every real constant A and a real function g. In particular, functions of the form, 

Yo (x) --- A x  a, 

satisfy the above condition. The restriction to a finite domain or additional boundary conditions, 
however, would break the stretching symmetry. The stretching symmetry of the initial value 
problem (12),(13) yields similarity transformations of the system's variables, which transform 
the above initial value problem into an ordinary differential equation boundary-value problem. 
As the transformation depends on the initial values, we restrict the assessment to two specific 
examples where the initial function yo(x) = y(x,  0) satisfies condition (14). For the purpose of 
this study, we consider the following initial conditions, 

y (X, 0) = { kl,X, for x < 0, (15) 
k2,x, f o r x > 0 ,  

and 
{ Av/-2~, for x < 0, (16) 

y (x, 0) = -Av/x,  for x > 0, 

where kl and k2 are negative constants and A is a positive constant. Problems (12),(15) can be 

solved with the transformations, 

r = t - 1 / 2 x ,  

Y (r) = t -1 /2y  (x, t ) ,  

and 

where u(x , t )  = °o~(x,t ). 
first-order ordinary differential equations 

Y' = U, 

Y - rU 
U I = 

2Kin  ( -U)  m - l '  

r =-- t - 1 / 2 x ,  

U (r) = u ( x , t ) ,  

These yield, after substitution into equations (12),(15), the system of 

(17) 
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with boundary conditions, 

Y (- -00)  = 00, V (--(X~) = --~;1, 
(lS) 

r ( ~ )  = - o o ,  v ( ~ )  = k2. 

Instead of the partial differential equation (12) with initial conditions (15), we now have to solve 
the first-order system of ordinary differential equations (17) with boundary conditions (18). The 
problematic infinite boundary points can be overcome using the shooting method (see [19]), in 
which constants ]I0 = Y(0) and U0 = U(0) are sought that yield the correct behavior of U 
and Y at -boo. The same techniques applied to the initial value problem (12),(16) give rise to 
the similarity transformations, 

r = t-2/(rn+3)X, 

Y (r) -~ t-1/(m+3)y (x, t) ,  

u (r) = Irl - v~  Y (r), 

and yield after substitution the second-order ordinary differential equation, 

m + 3  
(19) 

with constant boundary conditions, 

lim U(r) = A, 

lim U ( r ) = - A .  
~ ' - ' - 4 0 0  

(20) 

By transforming the original problems (12) with initial conditions (15),(16), respectively to the 
boundary value problems (17),(18) and (19),(20), more sophisticated numerical solution schemes 
can be applied to estimate the solution of the original problems. Numerical similarity solutions 
to solve the boundary value problems (17),(18) and (19),(20) were obtained by the solution 
method dverk78--a seventh to eighth order Runge-Kutta method (see [20]) in the software pack- 
age MAPLE 6. Amongst the variety of numerical solvers incorporated into MAPLE 6, dverk78 
presented the best compromise between calculation time and error tolerance. The presented 
numerical results correspond to an error tolerance of 10 -8 . 

The Eulerian method operates on a finite spatial domain. To allow the comparison with 
the numerical similarity solutions, the influence of the domain boundaries for the explicit (Eu- 
lerian) method was minimized by calculating the solutions for a large spatial domain (i.e., 
x E [-500,500]) without fixing the elevations at the boundaries. Then, the comparison with 
the approximated similarity solutions was performed for a relatively small range of x values 
(i.e., x E [-10, 10]) far away from the boundaries. In Section 6.3, the numerical similarity solu- 
tions are compared with the solutions of the much simpler Eulerian method. 

6.2. Numer i ca l  Solut ions  of  the  Nonl inear  M I C  Ini t ia l-Value P r o b l e m  

The MIC initial value problem, 

Oy ¢ Oy'~ m-1 ( 02y 
o-7 = g m  \ - ~  ) \-b-~ 

y (x,  o) = yo (~), 

02Y ~ (21) + b - ~ / '  

(22) 

also has stretching symmetry for particular initial functions. However, the resulting differential 
equation contains singularities, which disable the application of the shooting method to estimate 
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starting points for the numerical schemes. For this reason, we aimed to construct a finite difference 

scheme that satisfies the same initial and boundary conditions as the MIC method. These criteria 

hold for an implicit scheme that uses forward difference approximations for the derivatives, ~/t 
Oy 02 

and ~ ,  respectively, and a central difference approximation for ~-~. The mixed derivative, °2~ 
OxOt ' 

at the (i, ?~)th mesh-point is approximated by 

02y 1 (. n+l ~ n+l 
O-~t - -  Y i - 1  

,yi - y~ + yn_l) • 
A x A t  (i,~) 

In contrast to the above similarity solutions, the implicit scheme operates like the MIC and 
Eulerian scheme on finite domains. For specified values at the boundaries x = 0, x = L, and t = 0, 
the implicit scheme calculates the values of the interior mesh-points via 

L(y '~ ,y51)  °'~+1 R n .,~+1, 
Y i  , Y i - 1  ] 

where L and R are the nonlinear functions 

(yr - 
L =  1 - - - ~ x  ~xx ] 

K m A t  y~ - yi~+l 
R = y~ + (Ax)  2 A z  

Km (yr 
\ ) 

n _ o n+l~ 

6.3. Numer i ca l  Resu l t s  

The same criteria applied to the linear schemes are used to assess the nonlinear Eulerian, 
Runge-Kutta, MIC and implicit methods. The domain for comparing the Eulerian and similarity 
solutions was defined in Section 6.1. The three finite difference schemes (Eulerian, MIC and 
implicit) operate on a finite domain. In order to compare the three methods, the initial conditions 
(15),(16) were modified to the following set of initial-boundary conditions 

y ( x , O ) = {  klx,  for - 1 0 < x < 0 ,  (23) 
k2x, f o r 0 < x < 1 0 ,  

and 

y ( -L ,  t) = klL,  (24) 
y(L, t) = - k2L ,  

{ Av/-2-x, for - 10 < x < 0, (25) 
y ( x , 0 ) =  _Av/~, f o r 0 < x < 1 0 ,  

y ( -L ,  t) = Av~ ,  (26) 

y ( L , t )  -- - A v e ,  

with the same constants kl, k2, and A as in equations (15),(16). Instead of fixed boundary values, 
we could have also used zero or constant flux conditions at the boundaries of the spatial domain. 

COMPARISON OF THE NUMERICAL RESULTS. Time snapshots of the approximated solutions 
to the nonlinear diffusion and MIC problems for the above initial conditions are presented in 
Figures 6 and 7, respectively. All applied numerical schemes predict the evolution of the initial 
topographies towards a straight line. However, while the time snapshots corresponding to the 
numerical similarity solutions and the solutions of the explicit scheme are indistinguishable, a 
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Figure 6. Time snapshots of the approximated solutions of the nonlinear diffusion 
equation with initial function (15) (top) and and (16) (bottom) for step sizes Ax = 
At = 0.5. The constants are rn = 5/3,  kl = --1.4, k2 = --4.5 and K = 0.01 (top) 
and A = 3.56 and K = 0.1 (bottom). The similarity solutions and the solutions of 
the Eulerian method are visually indistinguishable. 

significant d iscrepancy between the  solutions of  the MIC scheme and the  implicit  scheme can be 

detected (solid versus do t ted  lines in Figure 7). 

A C C U R A C Y  OF THE N U M E R I C A L  S C H E M E S .  The local t runca t ion  errors of  the  finite difference 
schemes are 

O (At)  + O (Ax  2) (Euler) 

Tin = O (At)  + O (At  2) + O ( A x  2) (MIC) 

O (At)  + O (Ax)  (Implicit)  

and imply  t h a t  the explicit me thod  is more  accurate  t han  the  MIC me thod  and t h a t  the lat ter  
is more  accura te  t han  the implicit  scheme. To compare  these accuracies with the  accuracy  of  the  

similari ty solutions, a d iscrepancy funct ion D(t) between the  solutions ~) and ~ of two numerical  
schemes was defined by 

D (t) = m Iax (1~ (=.  t) - ~ (=,, t)l}, 
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Figure 7. Time snapshots of the approximated solutions of the nonlinear diffusion 
equation with initial function (23),(24) (top) and and (25),(26) (bottom) for step 
sizes Ax = At  = 0.5. The constants are m = 5/3, kl = --1.4, k2 = --4.5 and 
K ---- 0.01 (top) and A = 3.56 and K = 0.1 (bottom). The similarity solutions and 
the solutions of the Eulerian method are visually indistinguishable. 

where  I deno tes  the  set of x-values  for which b o t h  so lu t ions  were ob ta ined .  F i g u r e  8 shows 

t h a t  for A x  = A t  = 0.5, t h e  m a x i m M  d i sc repancy  be tween  the  so lu t ions  of  t h e  Eu le r i an  and  

the  s imi l a r i t y  m e t h o d  at  f ixed t -values has  o rder  10 - 2  for values  of  t be tween  0 and  500 and  x 

in [ -10 ,  10] ( top  left  g raph) .  T h e  d i sc repancy  is su rpr i s ing ly  smal l  cons ider ing  the  va r i e ty  of 

errors  i n t roduced  by  the  shoo t ing  m e t h o d  and  the  numer icM solver  in MAPLE in t he  numer ica l  

s imi l a r i t y  so lu t ions  as well as t he  local  t r u n c a t i o n  error  of  the  Eu le r i an  solut ion.  T h e  m a x i m a l  

d i sc repanc ies  be tween  the  f inite difference solut ions,  in pa r t i cu l a r  be tween  t h e  so lu t ions  of  t h e  

impl ic i t  scheme and  the  cel lular  schemes,  are  s ignif icant ly  higher  (see F i g u r e  8). 

STABILITY AND CONVERGENCE. For  the  co r respond ing  l inear  p rob lems ,  t he  E u l e r i a n  m e t h o d  

was cond i t i ona l ly  s t ab le  and  t h e  MIC m e t h o d  was uns t ab l e  w i t h  a r e l a t ive ly  smal l  ampl i f i ca t ion  
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Figure 8. Maximal discrepancies between the solutions of different schemes. Dia- 
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tively. All runs used the same step sizes Ax ---- At ---- 0.5 and constants K -- 0.01 and 
m = 5/3. 
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factor. Since rigorous general methods for assessing the stability of nonlinear solution schemes do 
not exist (see [21]), assessment of stability of the numerical methods is tackled by empirical means. 
These rely on the observation that  the symptom of instability of the finite difference schemes 

are oscillations with temporally increasing amplitudes. Stability depends on the parameter K,  
and the step sizes Ax and At. Using fixed step sizes Ax ---- At ---- 0.5 for the finite difference 

schemes and varying exponent m, the largest value of the scaling constant K was computed, for 
which oscillations occurred within 10,000 time steps. Under the assumption that  the absence 
of oscillations indicates stability of the finite difference schemes, the following observations were 
made (see Figure 9). 

(1) Stability depends part ly on the initial conditions. 
(2) For all difference schemes, stability decreases with increasing exponent m. Combined with 

the results for the linear method, this observation implies instability for the nonlinear MIC 
scheme and at most a conditional stability for the nonlinear Eulerian scheme with stricter 
conditions than for the linear Eulerian scheme. The separation line between the stable 
and unstable region approximately satisfies the inverse logarithmic relationship 

1 
loglo (K) ~ - - .  

m 
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Figure 9. Relat ionship between the constants m and K for s tabi l i ty  of the nonl in- 
ear Eulerian, MIC and implicit schemes. The top figure refers to initial conditions 
(23),(24), the bottom figure refers to initial conditions (25),(26). 

(3) The Eulerian method is always more stable than the MIC method. For relatively small m 
(i.e., m _< 2.5 in Section 6.3), both, the MIC and Eulerian method are more stable than 
the implicit method. For larger m, the contrary is true. 

The instability of the numerical Runge-Kutta scheme used to calculate the approximate simi- 
larity solutions, does not manifest itself in oscillating solutions. Although for some values of m 
and K in the unstable region of the Eulerian method, starting points (Y(0), U(0)) yielding the 
appropriate boundary conditions could not be obtained, numerical experiments with different K- 
values indicate that the Runge-Kutta method devised for the similarity solutions is more stable 
than the other presented schemes. 

The convergence of the Runge-Kutta scheme (see [22]) and the strong agreement between the 
solutions of the nonlinear Eulerian and Runge-Kutta schemes in the common stability region 
suggests that the nonlinear Eulerian scheme is also convergent when stable. Since the linear MIC 
scheme is not convergent, we deduce that the nonlinear MIC method is also not convergent. 
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7. D I S C U S S I O N  A N D  
C O N C L U S I O N S  

The main goal of this study was to demonstrate how partial differential equations can be used 
to assess numerical models arising from a cellular automata approach. The study focused on 
two rival numerical models for morphological processes in river beds and addressed the following 
questions. How do the models differ in their predictions and what are the advantages of each ap- 
proach? Can these simple numerical models compete with more sophisticated numerical schemes 
that model the same processes? 

The relationship between the numerical cellular automata based models and partial differen- 
tial equations was established by viewing the models as numerical solution schemes of partial 
differential equations with initial and boundary values derived from the governing equations of 
the cellular models. This viewpoint conversion revealed that both models, when reduced to one 
dimension, have a strong diffusive component. The difference between the models consists of 
an additional expression in the MIC partial differential equation, represented by a second-order 
mixed derivative term. Understanding the difference between the numerical models boiled down 
to understanding the impact of this additional term in the MIC equation. 

The foundations of this study were laid by analyzing the linear equations and solution proce- 
dures (m -- 1) using a variety of established techniques. We could prove that the exact solutions 
of both problems are very similar and eventually converge. This implies that the additional, 
mixed derivative term in the MIC equation has negligible influence on the model predictions 
and confirms the observations from numerical experiments. It implies that the linear cellular 
automata based model is robust to different numerical implementations. Computational experi- 
ments suggest that these results are also valid for the nonlinear models in one and two dimensions. 
Further, we could show that the Eulerian method to solve the linear diffusion initial-value prob- 
lem is more accurate and more stable than the MIC method for solving the MIC initial-boundary 
value problem. The combined results of the rigorous linear and the more empirical nonlinear 
analysis suggest that the Eulerian approach is somewhat better than the MIC approach for mod- 
eling the temporal evolution of a longitudinal river profile. However, although the MIC method 
is less accurate and unstable, it produces good results for a limited time with sufficiently small 
time steps. The MIC model is, therefore, a valid approach if conditions are only known at an up- 
stream region of the river or if phenomena, such as the impact of upstream events on downstream 
regions, are investigated. 

Comparison with other numerical schemes to solve the corresponding nonlinear partial differ- 
ential equations shed light onto the advantages of both cellular models. As an alternative to 
the Eulerian model to solve the nonlinear diffusion initial-value problem, the similarity method 
combined with sophisticated numerical ODE solvers was applied. Although these procedures 
appear more stable and may generate solutions of greater accuracy, their application is restricted 
to certain initial and boundary conditions. The Eulerian model, on the contrary, generates solu- 
tions which differ little from those of the more sophisticated scheme, but can be applied to a wide 
range of initial and boundary conditions. To solve the nonlinear MIC equation, we developed an 
implicit scheme that satisfies the same initial and boundary conditions as the MIC scheme. The 
implicit scheme required similarly little computational effort as the explicit Eulerian and MIC 
schemes, but was trumped by the latter in accuracy and, for m < 2.5, also in stability. In sum- 
mary, for the one-dimensional initial and initial-boundary value problems, for which alternative 
numerical models could be applied, the cellular models performed well. 

The fact that the cellular models are valid schemes to model simple processes, encourages 
the application of these models to more complicated, higher-dimensional problems. However, 
since the original cellular models of this study were-two dimensional and applied to all initial 
topographies, it would be desirable to extend the present analysis to two dimensions and to lift 
the restriction to negative slopes. The latter could be achieved by replacing the Heaviside step 
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funct ions  in equa t ions  (4) and  (6) by  the  dif ferent iable  funct ion,  

1 (1 4- t a n h  (ax) )  H (x) = ~ 

where the constant a determines the slope of the curve near x : 0. The resulting, more compli- 
cated, differential equations apply for all local slopes and approximate the derived diffusion and 
MIC equation when a is large. 

Deriving partial differential equations from the two-dimensional numerical models is also pos- 
sible, but involves the consideration of water and sediment transport and the inclusion of six 
instead of two neighbors. In contrast to the one-dimensional cellular automata based model, 
discharge is no longer constant in two dimensions, but depends on the local slopes, so that the 
models relate to systems of differential equations instead of one differential equation. The ad- 
ditional inclusion of more cell neighbors yields more terms in the mass balance equations. The 
differential equations resulting from these extensions, therefore, are significantly more compli- 
cated than the one-dimensional initial value problems considered in this study and are not likely 
to serve as a means to gain insights into the cellular models. They rather confirm the advantage 
of the cellular approach as a tool to model processes that are difficult to model by other means. 

R E F E R E N C E S  

1. S. Wolfram, Universality and complexity in cellular automata, Physica D 10, 1-35, (1984). 
2. A.B. Murray, Contrasting the goal, strategies, and predictions associated with simplified numerical models 

and detailed simulations, In Prediction in Geomorphology, Geographical Monograph 135, American Geophys- 
ical Union, (Edited by Dick Iverson and Peter Wilcock), pp. 151-165, (2003). 

3. B. McArdell and R. Faeh, A computational investigations of river braiding, In Gravel-bed Rivers 5, Hydro- 
logical Society, Inc., Wellington, New Zealand~ (2000). 

4. G.B. Ermentrout and L. Edelstein-Keshet, Cellular automata approaches to biological modeling, J. Theor. 
Biol. 160, 97-133, (1993). 

5. A.B. Murray and C. Paola, A cellular model of braided rivers, Nature 371, 54-57, (1984). 
6. T.J. Coulthard, M.J. Kirkby and G.M. Macklin, Fluvial Processes and Environmental Change, John Wiley 

and Sons Ltd., (1999). 
7. C. Paola, Gravel-bed Rivers 5, Hydrological Society, Inc., Wellington, New Zealand, (2000). 
8. A.B. Murray and C. Paola, Properties of a cellular braided stream model, Earth Surface Processes and 

Landforms 22, 1001-1025, (1997). 
9. A.B. Murray and C. Paola, A new quantitative test of geomorphic models, applied to a model of braided 

streams, Water Resources Research 32 (8), 2579-2587, (1996). 
10. V. Sapozhnikov, A.B. Murray, C. Paola and E. Foufoula-Georgiou, Validation of braided-stream models: 

Spatial state-space plots, self-affine scaling and island shape comparison, Water Resources Research 34 (9), 
2353-2364, (1998). 

11. A. Doeschl, Assessing Braided River Dynamics With a Cellular Model, Ph.D. Dissertation, University of 
Western Ontario, Canada, (2000). 

12. F. Engelund and E. Hansen, A Monograph of Sediment Transport in Alluvial Streams, Teknisk Forlag, 
Copenhagen, (1967). 

13. P. Ashmore, Process and form in gravel braided streams: Laboratory modelling and field observations, Ph.D. 
Dissertation, University of Alberta, Canada, (1985). 

14. D.M. Tetzlaff and J.W. Harbaugh, Simulating Clastic Sedimentation, Van Norstrand Reinhold, New York, 
(1989). 

15. G.D. Smith, Numerical solution of partial differential equations: Finite difference methods, In Oxford Applied 
Mathematics and Computing Science Series, Third Edition, Oxford University Press, (1985). 

16. i.D. Logan, An Introduction to Nonlinear Partial Differential Equations, John Wiley and Sons, Inc., (1988). 
17. M. Davison and A. Doeschl, A hyperbolic PDE with parabolic behaviour, SIAM Review 46 (1), 115-127, 

(2004). 
18. L. Dresner, Similarity Solutions of Nonlinear Partial Differential Equations, Springer-Verlag, New York, 

(1983). 
19. L.W. Johnson and R.D. Riess, Numerical Analysis, Chapter 7.8.2, Addison-Wesley Publishing Company, 

(1982). 
20. W.H. Enright, The relative efficiency of alternative defect control schemes for high order continuous Runge- 

Kutta formulas, Technical Report 252/91, Department of Computer Science, University of Toronto, Canada, 
(1991). 

21. W.F. Ames, Numerical Methods for Partial Differential Equations, Academic Press, Inc., (1992). 
22. J.H.E. Cartwright and P. Oreste, The dynamics of Runge-Kutta methods, Int. J. Bifurcation and Chaos 2, 

427-449, (1992). 


