70 research outputs found

    IMPLEMENTASI HEVC CODEC PADA PLATFORM BERBASIS FPGA

    Get PDF
    High Efficiency Video Coding (HEVC) telah di desain sebagai standar baru untuk beberapa aplikasi video dan memiliki peningkatan performa dibanding dengan standar sebelumnya. Meskipun HEVC mencapai efisiensi coding yang tinggi, namun HEVC memiliki kekurangan pada beban pemrosesan tinggi dan loading yang berat ketika melakukan proses encoding video. Untuk meningkatkan performa encoder, kami bertujuan untuk mengimplementasikan HEVC codec pada Zynq 7000 AP SoC. Kami mencoba mengimplementasikan HEVC menggunakan tiga desain sistem. Pertama, HEVC codec di implementasikan pada Zynq PS. Kedua, encoder HEVC di implementasikan dengan hardware/software co-design. Ketiga, mengimplementasikan sebagian dari encoder HEVC pada Zynq PL. Pada implementasi kami menggunakan Xilinx Vivado HLS untuk mengembangkan codec. Hasil menunjukkan bahwa HEVC codec dapat di implementasikan pada Zynq PS. Codec dapat mengurangi ukuran video dibanding ukuran asli video pada format H.264. Kualitas video hampir sama dengan format H.264. Sayangnya, kami tidak dapat menyelesaikan desain dengan hardware/software co-design karena kompleksitas coding untuk validasi kode C pada Vivado HLS. Hasil lain, sebagian dari encoder HEVC dapat di implementasikan pada Zynq PL, yaitu HEVC 2D IDCT. Dari implementasi kami dapat mengoptimalkan fungsi loop pada HEVC 2D dan 1D IDCT menggunakan pipelining. Perbandingan hasil antara pipelining inner-loop dan outer-loop menunjukkan bahwa pipelining di outer-loop dapat meningkatkan performa dilihat dari nilai latency

    Thermal Characterization of Next-Generation Workloads on Heterogeneous MPSoCs

    Get PDF
    Next-generation High-Performance Computing (HPC) applications need to tackle outstanding computational complexity while meeting latency and Quality-of-Service constraints. Heterogeneous Multi-Processor Systems-on-Chip (MPSoCs), equipped with a mix of general-purpose cores and reconfigurable fabric for custom acceleration of computational blocks, are key in providing the flexibility to meet the requirements of next-generation HPC. However, heterogeneity brings new challenges to efficient chip thermal management. In this context, accurate and fast thermal simulators are becoming crucial to understand and exploit the trade-offs brought by heterogeneous MPSoCs. In this paper, we first thermally characterize a next-generation HPC workload, the online video transcoding application, using a highly-accurate Infra-Red (IR) microscope. Second, we extend the 3D-ICE thermal simulation tool with a new generic heat spreader model capable of accurately reproducing package surface temperature, with an average error of 6.8% for the hot spots of the chip. Our model is used to characterize the thermal behaviour of the online transcoding application when running on a heterogeneous MPSoC. Moreover, by using our detailed thermal system characterization we are able to explore different application mappings as well as the thermal limits of such heterogeneous platforms

    Exploring manycore architectures for next-generation HPC systems through the MANGO approach

    Full text link
    [EN] The Horizon 2020 MANGO project aims at exploring deeply heterogeneous accelerators for use in High-Performance Computing systems running multiple applications with different Quality of Service (QoS) levels. The main goal of the project is to exploit customization to adapt computing resources to reach the desired QoS. For this purpose, it explores different but interrelated mechanisms across the architecture and system software. In particular, in this paper we focus on the runtime resource management, the thermal management, and support provided for parallel programming, as well as introducing three applications on which the project foreground will be validated.This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 671668.Flich Cardo, J.; Agosta, G.; Ampletzer, P.; Atienza-Alonso, D.; Brandolese, C.; Cappe, E.; Cilardo, A.... (2018). Exploring manycore architectures for next-generation HPC systems through the MANGO approach. Microprocessors and Microsystems. 61:154-170. https://doi.org/10.1016/j.micpro.2018.05.011S1541706

    An energy-aware system-on-chip architecture for intra prediction in HEVC standard

    Get PDF
    High resolution 4K and 8K are becoming the more used in video applications. Those resolutions are well supported in the new HEVC standard. Thus, embedded solutions such as development of dedicated ystems-On-Chips (SOC) to accelerate video processing on one chip instead of only software solutions are commendable. This paper proposes a novel parallel and high efficient hardware accelerator for the intra prediction block. This accelerator achieves a high-speed treatment due to pipelined processing units and parallel shaped architecture. The complexity of memory access is also reduced thanks to the proposed design with less increased power consumption. The implementation was performed on the 7 Series FPGA 28 nm technology resources on Zynq-7000 and results show, that the proposed architecture takes 16520 LUTs and can reach 143.65 MHz as a maximum frequency and it is able to support the throughput of 3840×2160 sequence at 90 frames per second

    Application-Specific Cache and Prefetching for HEVC CABAC Decoding

    Get PDF
    Context-based Adaptive Binary Arithmetic Coding (CABAC) is the entropy coding module in the HEVC/H.265 video coding standard. As in its predecessor, H.264/AVC, CABAC is a well-known throughput bottleneck due to its strong data dependencies. Besides other optimizations, the replacement of the context model memory by a smaller cache has been proposed for hardware decoders, resulting in an improved clock frequency. However, the effect of potential cache misses has not been properly evaluated. This work fills the gap by performing an extensive evaluation of different cache configurations. Furthermore, it demonstrates that application-specific context model prefetching can effectively reduce the miss rate and increase the overall performance. The best results are achieved with two cache lines consisting of four or eight context models. The 2 × 8 cache allows a performance improvement of 13.2 percent to 16.7 percent compared to a non-cached decoder due to a 17 percent higher clock frequency and highly effective prefetching. The proposed HEVC/H.265 CABAC decoder allows the decoding of high-quality Full HD videos in real-time using few hardware resources on a low-power FPGA.EC/H2020/645500/EU/Improving European VoD Creative Industry with High Efficiency Video Delivery/Film26

    Feasibility Study of High-Level Synthesis : Implementation of a Real-Time HEVC Intra Encoder on FPGA

    Get PDF
    High-Level Synthesis (HLS) on automatisoitu suunnitteluprosessi, joka pyrkii parantamaan tuottavuutta perinteisiin suunnittelumenetelmiin verrattuna, nostamalla suunnittelun abstraktiota rekisterisiirtotasolta (RTL) käyttäytymistasolle. Erilaisia kaupallisia HLS-työkaluja on ollut markkinoilla aina 1990-luvulta lähtien, mutta vasta äskettäin ne ovat alkaneet saada hyväksyntää teollisuudessa sekä akateemisessa maailmassa. Hidas käyttöönottoaste on johtunut pääasiassa huonommasta tulosten laadusta (QoR) kuin mitä on ollut mahdollista tavanomaisilla laitteistokuvauskielillä (HDL). Uusimmat HLS-työkalusukupolvet ovat kuitenkin kaventaneet QoR-aukkoa huomattavasti. Tämä väitöskirja tutkii HLS:n soveltuvuutta videokoodekkien kehittämiseen. Se esittelee useita HLS-toteutuksia High Efficiency Video Coding (HEVC) -koodaukselle, joka on keskeinen mahdollistava tekniikka lukuisille nykyaikaisille mediasovelluksille. HEVC kaksinkertaistaa koodaustehokkuuden edeltäjäänsä Advanced Video Coding (AVC) -standardiin verrattuna, saavuttaen silti saman subjektiivisen visuaalisen laadun. Tämä tyypillisesti saavutetaan huomattavalla laskennallisella lisäkustannuksella. Siksi reaaliaikainen HEVC vaatii automatisoituja suunnittelumenetelmiä, joita voidaan käyttää rautatoteutus- (HW ) ja varmennustyön minimoimiseen. Tässä väitöskirjassa ehdotetaan HLS:n käyttöä koko enkooderin suunnitteluprosessissa. Dataintensiivisistä koodaustyökaluista, kuten intra-ennustus ja diskreetit muunnokset, myös enemmän kontrollia vaativiin kokonaisuuksiin, kuten entropiakoodaukseen. Avoimen lähdekoodin Kvazaar HEVC -enkooderin C-lähdekoodia hyödynnetään tässä työssä referenssinä HLS-suunnittelulle sekä toteutuksen varmentamisessa. Suorituskykytulokset saadaan ja raportoidaan ohjelmoitavalla porttimatriisilla (FPGA). Tämän väitöskirjan tärkein tuotos on HEVC intra enkooderin prototyyppi. Prototyyppi koostuu Nokia AirFrame Cloud Server palvelimesta, varustettuna kahdella 2.4 GHz:n 14-ytiminen Intel Xeon prosessorilla, sekä kahdesta Intel Arria 10 GX FPGA kiihdytinkortista, jotka voidaan kytkeä serveriin käyttäen joko peripheral component interconnect express (PCIe) liitäntää tai 40 gigabitin Ethernettiä. Prototyyppijärjestelmä saavuttaa reaaliaikaisen 4K enkoodausnopeuden, jopa 120 kuvaa sekunnissa. Lisäksi järjestelmän suorituskykyä on helppo skaalata paremmaksi lisäämällä järjestelmään käytännössä minkä tahansa määrän verkkoon kytkettäviä FPGA-kortteja. Monimutkaisen HEVC:n tehokas mallinnus ja sen monipuolisten ominaisuuksien mukauttaminen reaaliaikaiselle HW HEVC enkooderille ei ole triviaali tehtävä, koska HW-toteutukset ovat perinteisesti erittäin aikaa vieviä. Tämä väitöskirja osoittaa, että HLS:n avulla pystytään nopeuttamaan kehitysaikaa, tarjoamaan ennen näkemätöntä suunnittelun skaalautuvuutta, ja silti osoittamaan kilpailukykyisiä QoR-arvoja ja absoluuttista suorituskykyä verrattuna olemassa oleviin toteutuksiin.High-Level Synthesis (HLS) is an automated design process that seeks to improve productivity over traditional design methods by increasing design abstraction from register transfer level (RTL) to behavioural level. Various commercial HLS tools have been available on the market since the 1990s, but only recently they have started to gain adoption across industry and academia. The slow adoption rate has mainly stemmed from lower quality of results (QoR) than obtained with conventional hardware description languages (HDLs). However, the latest HLS tool generations have substantially narrowed the QoR gap. This thesis studies the feasibility of HLS in video codec development. It introduces several HLS implementations for High Efficiency Video Coding (HEVC) , that is the key enabling technology for numerous modern media applications. HEVC doubles the coding efficiency over its predecessor Advanced Video Coding (AVC) standard for the same subjective visual quality, but typically at the cost of considerably higher computational complexity. Therefore, real-time HEVC calls for automated design methodologies that can be used to minimize the HW implementation and verification effort. This thesis proposes to use HLS throughout the whole encoder design process. From data-intensive coding tools, like intra prediction and discrete transforms, to more control-oriented tools, such as entropy coding. The C source code of the open-source Kvazaar HEVC encoder serves as a design entry point for the HLS flow, and it is also utilized in design verification. The performance results are gathered with and reported for field programmable gate array (FPGA) . The main contribution of this thesis is an HEVC intra encoder prototype that is built on a Nokia AirFrame Cloud Server equipped with 2.4 GHz dual 14-core Intel Xeon processors and two Intel Arria 10 GX FPGA Development Kits, that can be connected to the server via peripheral component interconnect express (PCIe) generation 3 or 40 Gigabit Ethernet. The proof-of-concept system achieves real-time. 4K coding speed up to 120 fps, which can be further scaled up by adding practically any number of network-connected FPGA cards. Overcoming the complexity of HEVC and customizing its rich features for a real-time HEVC encoder implementation on hardware is not a trivial task, as hardware development has traditionally turned out to be very time-consuming. This thesis shows that HLS is able to boost the development time, provide previously unseen design scalability, and still result in competitive performance and QoR over state-of-the-art hardware implementations

    An evaluation of current SIMD programming models for C++

    Get PDF
    SIMD extensions were added to microprocessors in the mid '90s to speed-up data-parallel code by vectorization. Unfortunately, the SIMD programming model has barely evolved and the most efficient utilization is still obtained with elaborate intrinsics coding. As a consequence, several approaches to write efficient and portable SIMD code have been proposed. In this work, we evaluate current programming models for the C++ language, which claim to simplify SIMD programming while maintaining high performance. The proposals were assessed by implementing two kernels: one standard floating-point benchmark and one real-world integer-based application, both highly data parallel. Results show that the proposed solutions perform well for the floating point kernel, achieving close to the maximum possible speed-up. For the real-world application, the programming models exhibit significant performance gaps due to data type issues, missing template support and other problems discussed in this paper

    Challenges and solutions in H.265/HEVC for integrating consumer electronics in professional video systems

    Get PDF

    Low-power high-efficiency video decoding using general purpose processors

    Get PDF
    In this article, we investigate how code optimization techniques and low-power states of general-purpose processors improve the power efficiency of HEVC decoding. The power and performance efficiency of the use of SIMD instructions, multicore architectures, and low-power active and idle states are analyzed in detail for offline video decoding. In addition, the power efficiency of techniques such as “race to idle” and “exploiting slack” with DVFS are evaluated for real-time video decoding. Results show that “exploiting slack” is more power efficient than “race to idle” for all evaluated platforms representing smartphone, tablet, laptop, and desktop computing systems
    corecore