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ABSTRAK 

High Efficiency Video Coding (HEVC) telah di desain sebagai standar 
baru untuk beberapa aplikasi video dan memiliki peningkatan performa dibanding 
dengan standar sebelumnya. Meskipun HEVC mencapai efisiensi coding yang 
tinggi, namun HEVC memiliki kekurangan pada beban pemrosesan tinggi dan 
loading yang berat ketika melakukan proses encoding video. Untuk meningkatkan 
performa encoder, kami bertujuan untuk mengimplementasikan HEVC codec 
pada Zynq 7000 AP SoC.  

Kami mencoba mengimplementasikan HEVC menggunakan tiga desain 
sistem. Pertama, HEVC codec di implementasikan pada Zynq PS. Kedua, encoder 
HEVC di implementasikan dengan hardware/software co-design. Ketiga, 
mengimplementasikan sebagian dari encoder HEVC pada Zynq PL. Pada 
implementasi kami menggunakan Xilinx Vivado HLS untuk mengembangkan 
codec.  

Hasil menunjukkan bahwa HEVC codec dapat di implementasikan pada 
Zynq PS. Codec dapat mengurangi ukuran video dibanding ukuran asli video pada 
format H.264. Kualitas video hampir sama dengan format H.264. Sayangnya, 
kami tidak dapat menyelesaikan desain dengan hardware/software co-design 
karena kompleksitas coding untuk validasi kode C pada Vivado HLS. Hasil lain, 
sebagian dari encoder HEVC dapat di implementasikan pada Zynq PL, yaitu 
HEVC 2D IDCT. Dari implementasi kami dapat mengoptimalkan fungsi loop 
pada HEVC 2D dan 1D IDCT menggunakan pipelining. Perbandingan hasil 
antara pipelining inner-loop dan outer-loop menunjukkan bahwa pipelining di 
outer-loop dapat meningkatkan performa dilihat dari nilai latency. 
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ABSTRACT 

High Efficiency Video Coding (HEVC) has been designated as future 

standard for many video coding application and has significant performance 

improvement compared to its predecessors. Although HEVC achieves highly 

efficient coding, it has an impact in higher processing load and severe loading 

while processing the video encoding. To improve the encoder performance, we 

aim to implement HEVC codec to Zynq 7000 AP SoC. We try to implement 

HEVC using three system designs. First, implementation of  HEVC codec to 

Zynq PS as a standalone application. Second, implementation of  HEVC encoder 

as hardware/software co-design. And third, implementing a part of HEVC encoder 

to Zynq PL independently. In the implementation we use Xilinx Vivado HLS tool 

to develop the codec.  

The results  shows that HEVC codec can be implemented on Zynq PS. 

The codec can reduce the size of video file compared to its original size in H.264 

format. The quality of video almost the same compared to H.264 format. 

Unfortunately we can not finished the work with hardware/software co-design 

because the coding complexity for validation C code in Vivado HLS. The other 

result we can get from this project is a part of HEVC codec can be implemented 

on Zynq PL, which is HEVC 2D IDCT. From the implementation we can 

optimize the loop function in HEVC 2D and 1D IDCT using pipelining. The 

compared results between pipelining in inner-loop and in outer-loop shows that 

pipelining in outer-loop can increase the performance as indicated by increased 

latency. 
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Chapter 1 

INTRODUCTION 

 
1.1 Background  

High Efficiency Video Coding (HEVC) is the recent standard for video 

compression and has significant performance improvement compared to its 

predecessor. This new standard is going to be used in many video coding 

application to fulfill the higher demand on video, especially in resolution which 

continually increasing. Before HEVC can be widely used, it is necessary to test its 

performance on appropriate platform based on which typical application will be 

developed. For this thesis, we aim to implement HEVC codec to Zynq 7000 All 

Programmable System on Chip, an FPGA-based development system, to test its 

performance for various scenarios of video application.  

Zynq consist of two main architecture: Processing System which has dual-

core ARM Cortex-A9 processor and Programmable Logic (PL) which has Field 

Programmable Gate Array (FPGA) logic fabric. The PS and PL are combined in a 

single chip. The processor and logic can be used independently or in conjuction. 

This platform is well-suited for video processing applications, i.e. video 

compression, because the capability of processing a large amounts of pixel data 

and software algorithms which can extract information from images (suited to PS 

and PL, respectively) [1].   

Usually when developer want to make an application which can be run on 

FPGA, they create VHDL or Verilog code that can generate Register Transfer 

Logic (RTL) for hardware implementation. In traditional FPGA design, creating 

the system design can take very long time as referred in [1]. Zynq provide a 

development tools, Vivado High Level System (HLS), that can convert C 

language directly into RTL code. In this project, Vivado HLS with C-based 

language is used because it has potential to significantly reduce the design time. 

Three system designs for implementing HEVC codec to Zynq 7000 AP SoC 

is used in this project. First, the HEVC codec is implemented in Zynq Processing 

System (PS) as standalone application. Second, HEVC is implemented in Zynq 
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using hardware/software co-design. And third, HEVC is implemented in Zynq 

Programmable Logic (PL) independently. The experiments start from the open-

source reference software for HEVC video compression. This software can then 

be run on the internal processor of the specialized Xilinx Zynq-7000 System on a 

Chip. This SoC then gives the possibility to execute certain parts in hardware and 

doing this efficiently will be the main challenge in this thesis.  

 

1.2 Thesis scope and objectives 

This thesis has been developed in Multimedia Communication Laboratory 

of Electrical Engineering Department of ITS. Half of this thesis has been 

presented to the jury of internship defense from UBO, France. All the hardware 

and support I have needed has been provided by my supervisor during this time, 

and we have also received very useful help from Xilinx’s forum during the thesis 

to understand the tool better. Two versions of open-source reference software for 

HEVC video compression have been used during the thesis, starting with HEVC 

test Model (HM) reference software, but during the development of the thesis we 

changed to an open-source Kvazaar encoder for HEVC intra coding to solve some 

issues in coding complexity while using hardware/software co-design. 

The main objective of this Master’s thesis is to evaluate, Zynq 7000 AP 

SoC, for the design of HEVC. 

These are the objectives of the work: 

 Get started and familiar with a commercial Vivado tools 

 Verify the quality of the software-based HEVC, in terms of processing 

time and size of video 

 Profiling the open-source reference software for HEVC video compression 

to know which part need to optimize 

 Study the coding complexity using Vivado HLS for easier and faster 

design 

 Asses which are the part of designs that are more suitable to obtain better 

results. 
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We have accomplished all these objectives by testing different coding style 

and tools. For the first step of implementation, we use only the Zynq PS to work 

with HM. Then we compare the result with linux-based system. The first step has 

been to evaluate encoder and decoder to learn the different configuration 

parameters and the limitations of the tool; in other words, to get familiar with the 

tool. Once this was done, a larger design (hardware/software co-design), will be 

tested on Zynq 7000 AP SoC. This report describes the latest video compression 

standard (HEVC), the main uses of Zynq 7000 AP SoC, and how the 

implementation has been done through the tool. 

 

1.3 Related Work 

There are some existing HEVC implementation on FPGA. Some of them is 

done using HLS implementation such as in [38]. The HLS is used for core 

functions like intra-prediction that supports all block sizes from 4x4 to 32x32 and 

achieves 17 frames per second on Alteria Aria II. In [39] it has shown that FPGA 

implementation can be used for real-time HEVC encoding of 8k video, but it has 

17 boards and each capable of encoding full-HD at 60 fps. 

 Another work is HEVC decoder implementation on FPGA using HLS in 

[40]. In addition, Verisilicon has created a WebM (VP9) video decoder for 

Google. They report less than 6 month of the development time, compared to a 

one year estimate for a traditional RTL approach [41]. The project includes 69k 

lines of C++ source code, which is much smaller compared to 300k lines of RTL 

source code. 

 

1.4 Thesis organization 

The thesis is organized as follows: 

Chapter 2 describes the technical and market implications of HEVC’s 

adoption in the content creation and delivery market.  

Chapter 3 cover the essential information about Zynq. It begins with an 

overview of the Zynq device, the development flow for these devices, and as a 

hybrid device which is both software and hardware programmable, this chapter 
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spans hardware  design tools  as well as the higher level software tools and flow 

which include Vivado High Level Synthesis (HLS). 

Chapter 4 explain the implementation of HEVC codec on Zynq starting 

with the design tools, system setup and requirements, reference software, and 

system designs. Also, the problems and its solutions have been written in each 

step of implementations.  

The results obtained in the thesis are presented in the chapter 5. Finally, 

we discuss future work in this field and the conclusions in chapter 6. 
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Chapter 2 

HIGH EFFICIENCY VIDEO CODING  
 

This chapter contains a brief description of the latest video compression 

standard, High Efficiency Video Coding (HEVC), which has been used during the 

thesis. The description focuses on the technical and market implications of 

HEVC’s adoption in the content creation and delivery market. We will start with 

the overview of HEVC, an explanation about video compression basics, the 

development of HEVC, the application impact, and how HEVC is different with 

the previous standard. 

 

2.1 Overview of HEVC 

High Efficiency Video Coding (HEVC), also known as H.265, is an open 

standard defined by standardization organisations in the telecommunications 

(ITU-T VCEG) and technology industries (ISO/IEC MPEG) [2]. In every decade, 

video compression standard has performance improvement compared to the 

previous standard. For HEVC, it can reduce the overall cost of delivering and 

storing video while maintaining or increasing the quality of video. HEVC can 

reduce the size of a video file or bit stream by as much as 50% compared to 

AVC/H.264 or as much as 75% compared to MPEG-2 standards without 

sacrificing video quality [3]. This achievements can reduced video storage, 

transmission costs, and also give the possibility for higher definition content to be 

delivered for consumer consumption. 

The technique used in HEVC is based on hybrid video coding. The main 

focus in hybrid video coding is on the three aspects: dividing the block, inter/intra 

prediction process, and transform process. For the three processes, HEVC uses 

larger partitioning block from 4x4 to 32x32, resulting in more complex algorithm 

than those used in H.264 and MPEG-2. There are more decisions to make and 

more calculations need to be made in compressing video which can make higher 

processing load on the video encoding processor. To improve the encoder 
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performance, the development platform can be used to make the compression 

algorithm parallel and execute everything on hardware.  

 

2.2 Video Compression Basics 

The goal of video compression is to remove a redundant information from a 

video stream so that the video can be sent over a network as efficiently as 

possible. The process of encoding is used to eliminate the excess of information 

using an algorithm. Encoding latency is the amount of the time to accomplished 

encoding process. The decoding process is used to play back the compressed 

video and return it as closely as possible to its original state. Compression and 

decompression process, together can form basic codec. The codec is used to 

reduce the amount of information in a video bit stream. 

The general block diagram of a video coding system is shown in Figure 2.1. 

The general step of video processing can be explained with Figure 2.1 as follow. 

The raw uncompressed video source is processed in pre-processing block using 

some of operations such as trimming, color format compression, color correction, 

or denoising. Then, the encoding block transform the input video sequence into a 

coded bitstream and package the bitstream into an appropriate format before being 

transmitted over the channel. In the decoding block, the received bitstream is 

reconstructed into video sequence. The post-processing block can used the 

reconstructed video sequence for adaptation of the sequence for display. Finally, 

the video sequence is ready for viewing in viewing device.  

Within a given codec standard, the decoder algorithms are firmly defined, 

the scope of the standard is generally based around the decoder [4]. 

 

 
Figure 2.1: Scope of video compression standardization [4] 
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Encoders within a given standard can vary from vendor to vendor, or even from 

product to product from a single vendor. This variation is caused by how the 

designer want to develop certain part of standard using certain tool. Several 

categories which can be considered during designing including device 

capabilities, commercial factors, design and development, physical device 

characteristics, and flexibility.  

Encoders do follow these phases and illustrated [5]: 

a. Devide each frame into blocks of pixels so that processing can occur 

simultaneously at a block level. 

b. Identify and leverage spatial redundancies that exist within a frame by 

encoding some of the original blocks via spatial prediction and other 

coding techniques. 

c. Exploit temporal linkages that exist between blocks in subsequent frames 

so that only the changes between frames are encoded. This is 

accomplished via motion estimation vectors that predict qualities of the 

target block. 

d. Identify and take advantage of any remaining spatial redundancies that 

exist within a frame by encoding only the differences between original and 

predicted blocks through quantization, transform, and entropy coding. 

During the encoding process, different types of video frames, such as I-

frames, P-frames, and B-frames, may be used by an encoder. When these different 

frame types are used in combination, video bit rates can be reduced by looking for 

temporal (time-based) and spatial redundancy between frames that create 

extraneous information [2]. In this way, objects, or more precisely, pixels or 

blocks of pixels, that do not change from frame to frame or are exact replicas of 

pixels or blocks of pixels around them, can be processed in an intelligent manner 

[5]. 

With motion compensation algorithms implemented in the encoding 

process, the codec is able to take into account the fact that most of what makes up 

a new frame  in a video sequence is based on what happened in previous frames 

[2]. So at a block by block level, the encoder can simply code the position of a 

matching object in the frame and where it is predicted to exist in the next frame 
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via motion vector. The motion vector takes fewer bits to encode than an entire 

block and thereby saves bandwidth on the encoded stream. 

 
Figure 2.2: Block-based motion compensation [2] 

 

An I-frame or intra frame, is a self-contained frame that can be 

independently decoded without reference to preceding or upcoming images. The 

first image in a video sequence is always an I-frame and these frame act as 

starting points if the transmitted bit stream is damaged. I-frames can be used to 

implement fast-forward, rewind and scene change detection [6]. The lack of I-

frames is that they consume many more bits and do not offer compression 

savings. On the other hand, I-frames do not generate many artifacts because they 

respresent a complete picture. 

A P-frame, which stands for predictive inter frame, references earlier I- or 

P-frames to encode an image. P-frames typically require fewer bits than I-frames, 

but are susceptible to transmission errors because of their significant dependency 

on earlier reference frames [5]. 

A B-frames, derived from bi-predictive inter frame, is a frame that 

references both an earlier reference frame and a future frame [5]. A P-frames may 

only reference preceding I- or P-frames, while a B-frame may reference both 

preceding and succeeding I- or P-frames. 
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Figure 2.3: A typical sequence with I-, B-, and P-frames [2] 

 

These are the basic techniques and objectives of video compression. There are 

other algorithm involved that transform information about video into fewer and 

fewer transmitted bits. For futher information can be referred in [7]. 

 

2.3 Development of HEVC 

HEVC is developed based on previous standard H.264 and both are the 

output of a joint effort between the ITU-T’s Video Coding Experts Group and the 

ISO/IEC Moving Picture Experts Groups (MPEG). The ITU-T facilitates creation 

and adoption of telecommunications standards and the ISO/IEC manages 

standards for the electronics industries. HEVC is designed to evolve the video 

compression and intends to [6]: 

 Deliver an average bit rate reduction of 50% for a fixed video quality 

compared to H.264 

 Deliver higher quality at same bit rate 

 Define a standard syntax to simplify implementation and maximize 

interoperability 

 Remain network friendly –i.e. wrapped in MPEG Transport Streams 
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Figure 2.4: Expected compression bit rates at time of standardization 

 

The standard of HEVC lays the foundation by defining 8-bit and 10-bit 4:2:0 

compression, which is relevant to the majority of video distribution to connected 

devices. Complete informations regarding the development of HEVC standard can 

be found in [8]. 

 

2.4 Application Impact [2] 

In the mobile straming market, the HEVC bit rate reduction of 30 – 50% to 

achieve comparable quality to H.264 is realized in the cost savings of delivery 

across networks. Mobile operators will not need to deliver as much data for a 

given quality level, making for lower costs and more reliable playback, of course, 

assumes the device’s hardware can smoothly decode HEVC. 

HEVC also aligns with the push towards high-resolution Ultra HD 4K and 

8K video in the mainstream market. With 4K resolution featuring four times the 

number of pixels as 1080p, the efficiencies provided by HEVC make broadcasting 

4K much more feasible. 

Media companies with significantly-sized content libraries will also feel the 

positive impact of bit rate savings. As their storage effort keep pace with 

multiscreen consumer demand, these companies will increase their infrastructure. 

With HEVC halving file sizes, transitioning to the new codec will stretch storage 

capacity twice as far going forward. 
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2.5 How HEVC is Different 

The primary goal of the new HEVC standard is to provide the tools 

necessary to transmit the smallest amount of information necessary for a given 

level of video quality. The underlying approach to HEVC is very similar to 

previously adopted standards such as MPEG-2 and H.264. Simply put: it is much 

more of the same. While there are a number of differences between H.264 and 

HEVC, two stand out: increased modes for intra prediction and refined 

partitioning for inter prediction. 

 

Intra Prediction and Coding [5] 

In the H.264 standard, nine modes of prediction exist in a 4x4 block for 

intra prediction within a given frame and nine modes of prediction exist at the 8x8 

level. It’s even fewer at 16x16 block level, dropping down to only four modes of 

prediction. Intra prediction attempts to estimate the state of adjacent blocks in a 

direction that minimizes the error of the estimate. In HEVC, a similar technique 

exist, but the number of possible modes is 35 – in line with the additional 

complexity of the codec. This creates a dramatically higher number of decision 

points involved in the analysis, as there are nearly two times the number of spatial 

intra-prediction sizes in HEVC as compared to H.264 and nearly four times the 

number of spatial intra-prediction directions. 

 
Figure 2.5: H.264 vs HEVC intra prediction modes 
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Inter Prediction and Coding [5] 

H.264 uses block-based motion compensation with adjustable block size 

and shape to look for temporal redundancy across frames in a video. Motion 

compensation is often noted as the most demanding portion of the encoding 

process. The degree to which it can be implemented intelligently within the 

decision space has a major impact on the efficiency of the codec. Again, HEVC 

takes this to a new level. 

HEVC replaces the H.264 macroblock structure with a more efficient, but 

also complex, set of treeblocks. Each treeblock can be larger up to 64x64 than the 

standard 16x16 macroblock, and can be efficiently partitioned using a quadtree. 

This system affords the encoder a large amount of flexibility to use large 

partitions when they predict well and small partitions when more detailed 

predictions are needed. This leads to higher coding efficiency, since large 

prediction units up to and including the size of the treeblock can be cheaply coded 

when they fit the content. By the same action, when some parts of the treeblock 

need more detailed  predictions, these can also be efficiently described. 

 

  
 

Figure 2.6: An example of a 16x16 H.264 macroblock vs MxM HEVC partitions 
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Figure 2.7: H.264 macroblock partitions for inter prediction 

 

 
Figure 2.8: HEVC quadtree coding structure for inter prediction 

 

2.6 HEVC and Parallel Processing [7] 

HEVC has been designed in improving performance in parallel processing. 

This includes enhancements for both encoding and decoding. Some of the specific 

improvements are found in: 

 Tiles 

 The in-loop deblocking filter 

 Wavefront parallel processing 

Tiles allows for a picture to be devided into a grid of rectangular regions that can 

be independently decoded and encoded simultaneously. They also enable random 
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access to specific regions of a picture in a video stream. 

In the case of the in-loop deblocking filter, it has been defined such that it 

only applies to edges aligned on an 8x8 grid in order to reduce the number of 

interactions between blocks and simplify parallel processing methodologies. The 

processing order has been specified as horizontal filtering on vertical edges 

followed by vertical filtering of horizontal edges. This allows for multiple parallel 

threads of deblocking filter calculations to be run simultaneously. 

Finally, wavefront parallel processing (WPP) allows each slice to be broken 

into coding tree units (CTUs) and each CTU unit can be decoded based on 

information from the preceding CTU. The first row is decoded normally but each 

additional row requires decisions be made in the previous row. 
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Chapter 3 

ZYNQ  
 

This chapter cover the essential information about the platform we used in the 

project; Zynq. Before getting started with the project, we have to know how Zynq 

work and how to use it. The contents of this chapter includes an overview of System-

on-Chip with Zynq, the main architecture of Zynq, the development of Zynq, IP 

block design, and also a description of high level synthesis (HLS) and its tool like 

Vivado HLS. 

 

3.1 Overview of System-on-Chip with Zynq [1] 

Xilinx gave their new device the name Zynq, because it represents a processing 

element that can be applied to anything. Zynq devices are intended to be flexible and 

form a compelling platform for a wide variety of applications, just as the metal zync 

can be mixed with various other metals to form alloys with different desirable 

properties.  

The defining feature of Zynq is that it combines a dual-core ARM Cortex-A9 

processor with traditional Field Programmable Gate Array (FPGA) logic fabric. 

Therefore its features, capabilities, and potential applications are somewhat different 

to those of an FPGA or processor in isolation. In Zynq, the ARM Cortex-A9 is an 

application grade processor, capable of running full operating systems such as Linux, 

while the programmable logic is based on Xilinx 7-series FPGA architecture. 

Meanwhile, Zynq as System-on-Chip raising benefits from simplifying the system to 

a single chip including reductions in physical size and overall cost. System-on-Chip 

(SoC) is a rapidly growing field in Very Large Scale Integrated circuits (VLSI) 

design. A complex system can be integrated into a single chip via SoC design, 

achieving lower power, lower cost, and higher speed than traditional board level 

design. 
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3.2 Zynq Device 

The general architecture of the Zynq comprises two sections: the Processing 

System (PS), and the Programmable Logic (PL). These can be used independently or 

together. However, the most compelling use model for Zynq is when both of its 

constituent parts are used in conjunction. The architecture of Zynq is reviewed over 

this section, starting with the PS and PL. Extended information can be found in the 

Zynq-7000 Technical Reference Manual [10].  

 

3.2.1 Processing System 

 All Zynq devices have the same basic architecture, and all of them contain, as 

the basis of the processing system, a dual-core ARM Cortex-A9 processor. 

Importantly, the Zynq processing system encompasses not just the ARM processor, 

but a set of associated processing resources forming an Application Processing Unit 

(APU), and further peripheral interfaces, cache memory, memory interfaces, 

interconnect, and clock generation circuitry [9]. A block diagram showing the 

architecture of the PS is shown in Figure 3.1, where the APU is highlighted. 

 

Application Processing Unit (APU) [1] 

The APU is primarily comprised of two ARM processing cores, each with 

associated computational units: a NEON™ Media Processing Engine (MPE) and 

Floating Point Unit (FPU); a Memory Management Unit (MMU); and a Level 1 

cache memory (in two sections for instructions and data). The APU also contains a 

Level 2 cache memory, and a further On Chip Memory (OCM). Finally, a Snoop 

Control Unit (SCU) forms a bridge between the ARM cores and the Level 2 cache 

and OCM memories; this unit also has some responsibility for interfacing with the PL. 

From a programming perspective, support for ARM instructions is provided 

via the Xilinx Software Development Kit (SDK) which includes all necessary 

components to develop software for deployment on the ARM processor. The 

compiler supports the ARM and Thumb instruction sets (16-bit or 32-bit), along with 
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8-bit Java bytecodes (used for Java Virtual Machines) when in the appropriate state. 

For further information about instruction set options and details can be found in [11]. 

 

 
Figure 3.1: Zynq processing system [1] 

 

The ARM Model 

ARM’s business model is to license Original Equipment Manufacturers 

(OEMs), such as Xilinx, to utilise ARM processor IP within the devices they develop 

(in this case, Zynq). The Zynq includes the Cortex-A9, which is one of a range of 

available processors, and this is based on a specific profile (A) of a specific 

architecture (ARM v7). For the helpful overview of this structure and methodology 

can be referred in [12]. 

 

 



18 
 

Processing System External Interfaces 

Communication between the PS and external interfaces is achieved primarily 

via the Multiplexed Input/Output (MIO). Certain connections can also be made via 

the Extended MIO (EMIO), which is not a direct path from the PS to external 

connections, but instead passes through and shares the I/O resources of the PL.  

The available I/O includes standard communications interfaces, and General 

Purpose Input/Output (GPIO) which can be used for a variety of purposes including 

simple buttons, switches, and LEDs. Extensive further information about each of 

these interfaces is available in the Zynq-7000 Technical Reference Manual [10]. 

 

3.2.2 Programmable Logic [1] 

The second principal part of the Zynq architecture is the programmable logic. 

This is based on the Artix-7 and Kintex-7 FPGA fabric. The PL part of the Zynq 

device is shown in Figure 3.2, with various features highlighted. The PL is 

predominantly composed of general purpose FPGA logic fabric, which is composed 

of slices and Configurable Logic Blocks (CLBs), and there are also Input/Output 

Blocks (IOBs) for interfacing. 

Features of the PL (shown in Figure 3.2) can be summarised as follows: 

 Configurable Logic Block (CLB) ; CLBs are small, regular groupings of 

logic elements that are laid out in a two-dimensional array on the PL, and 

connected to other similar resources via programmable interconnects. Each 

CLB is positioned next to a switch matrix and contains two logic slices. 

 Slice ; A sub-unit within the CLB, which contains resources for implementing 

combinatorial and sequential logic circuits. Zynq slices are composed of 4 

Lookup Tables, 8 Flip-Flops, and other logic.  

 Lookup Table (LUT) ; A flexible resource capable of implementing a logic 

function of up to six inputs; a small Read Only Memory (ROM); a small 

Random Access Memory (RAM); or a shift register. LUTs can be combined 
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together to form larger logic functions, memories, or shift registers, as 

required. 

 
Figure 3.2: The logic fabric and its constituent elements [1] 

 

 Flip-flop (FF) ; A sequential circuit element implementing a 1-bit register, 

with reset functionality. One of the FFs can optionally be used to implement a 

latch.  

 Switch Matrix ; A switch matrix sits next to each CLB, and provides a 

flexible routing facility for making connections between elements within a 

CLB; and from one CLB to other resources on the PL. 
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 Carry logic; Arithmetic circuits require intermediate signals to be propagated 

between adjacent slices, and this is achieved via carry logic. The carry logic 

comprises a chain of routes and multiplexers to link slices in a vertical column. 

 Input / Output Blocks (IOBs); IOBs are resources that provide interfacing 

between the PL logic resources, and the physical device ‘pads’ used to 

connect to external circuitry. Each IOB can handle a 1-bit input or output 

signal. IOBs are usually located around the perimeter of the device. 

 

Although it is useful for the designer to have a knowledge of the underlying 

structure of the logic fabric, in most cases there is no need to specifically target these 

resources. The Xilinx tools will automatically infer the required LUTs, FFs, IOBs etc. 

from the design, and map them accordingly. 

 

3.2.3 Processing System – Programmable Logic Interfaces 

As mentioned in the previous section, the appeal of Zynq lies not just in the 

properties of its constituent parts, the PS and the PL, but in the ability to use them in 

tandem to form complete, integrated systems. The key enabler in this regard is the set 

of highly specified AXI interconnects and interfaces forming the bridge between the 

two parts. There are also some other types of connections between the PS and PL, in 

particular EMIO. Extended information can be found in [10]. 

 

3.2.4 Comparison: Zynq vs Standard Processor  

A wide variety of processors are available and their performances can be 

evaluated and compared using a standard benchmark. It is particularly convenient that 

the website of the Embedded Microprocessor Benchmark Consortium (EEMBC) 

provides a database of submitted CoreMark scores [6]. Through this, it may be 

confirmed that Zynq compares favourably with other implementations of the ARM 

Cortex-A9 architecture. 
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3.3 Zynq System-on-Chip Development 

In this section we will describe the Zynq design flow that concentrate on 

software development in general. This section explore the important concept of 

hardware/software partitioning, Zynq software development, and profiling. 

 

3.3.1 Hardware/Software Partitioning [1] 

Hardware/software partitioning, also known as hardware/software co-design, 

is an important stage in the design of embedded systems and, if well executed, can 

result in a significant improvement in system performance. The process of 

hardware/software partitioning involves deciding which system components should 

be implemented in hardware and which should be implemented in software. The 

reason behind the partitioning process is that hardware components, FPGA 

programmable logic fabric, are typically much faster due to the parallel processing 

nature of FPGA devices. Software components, on the other hand, implemented on a 

GPP or a microprocessor, are both to create and maintain, but are also slower due to 

the inherent sequential processing. The design flow for hardware/software 

partitioning in Zynq SoC is shown in Figure 3.3. 

Traditionally to decide which of the design modules would be implemented in 

hardware and which would be realised as software was carried out manually by 

systems designer. More recently, a number of algorithms and techniques have been 

developed which enable the automation of the partitioning decision process for a 

variety of different design environments. Another factor to consider when deciding 

whether a process should be implemented in hardware or software, is the number 

format which will be used. For further information about hardware/software 

partitioning can be referred in [1], [13]. 
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Figure 3.3: The design flow for Zynq SoC 

 

3.3.2 Profiling [1] 

Profiling is a form of program analysis that is used to aid the optimisation of a 

software application. It is used to measure a number of properties of application code, 

including: 

 Memory usage 

 Execution time of function calls 

 Frequency of function calls 

 Instruction usage 
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Profiling can be performed statically (without executing the software program) or 

dynamically (performed while the software application is running on a physical or 

virtual processor). Static profiling generally performed by analysing the source code, 

or sometimes the object code, whereas dynamic profiling is an intrusive process 

whereby the execution of a program on a processor is interrupted to gather 

information. 

The use of profiling allows us to identify bottlenecks in the code execution 

that may be a result of inefficient code, or poor communication between function 

interactions with a module in the PL or another function within software. It could also 

be the case that the algorithm may more suitable for implementation in hardware. 

Once identified, the bottlenecks can be optimised by rewriting the original software 

function or by moving it to the PL for acceleration.  

 

3.3.3 Software Development Tools 

Software application development flows for the Zynq-7000 AP SoC devices 

allow the user to create software applications using a set of Xilinx tools, as well as 

utilising a wide range of tools from third-party vendors which target the ARM 

Cortex-A9 processors [14]. 

Xilinx provides design tools for the development and debugging of software 

applications for Zynq-7000 AP SoC devices. Provided software includes: software 

IDE, GNU-based compiler toolchain, JTAG debugger, and various other associated 

utilities. 

Xilinx provides two hardware configurations tool which provide support for the 

Zynq-7000 AP SoC devices. These are: Vivado IDE design suite IP integrator and 

ISE design suite embedded development kit (EDK) Xilinx platform studio (XPS). 

Another software development tools that was provided by Xilinx is Software 

Development Kit (SDK). Xilinx SDK provides an environment where fully 

functioning software application can be created, compiled, and debugged all within 

one tool. SDK includes GNU-based compiler toolchain (GCC compiler, GDB 



24 
 

debugger, utilities, and libraries), JTAG debugger, flash programmer, driver for 

Xilinx’s IP, etc. All of the features that have been mentioned are accessible from 

within the Eclipse-based IDE, which incorporates the C/C++ Development Kit 

(CDK). For further and complete information can be referred in [14]. 

 

3.4 IP Block Design 

IP block or IP core is a hardware specification that can be used to configure the 

logic resources of an FPGA or for other silicon devices, physically manufacture an 

integrated circuit [15]. In term of IP cores, there are two types: hard IP cores and soft 

IP cores. Further information can be found in [1]. 

 

3.4.1 IP Core Design Methods 

Xilinx provide a number of tools which enable the creation of custom IP blocks 

for use in our own embedded system designs. There are HDL, System generator, 

HDL coder, and Vivado High Level Synthesis. For this project, we use Vivado High 

Level Synthesis for designing the IP core. Figure 3.4 show an overview of Vivado 

HLS design flow. Vivado HLS is a tool provided by Xilinx, as a part of the Vivado 

Design Suite, which is capable of converting C-based design (C, C++ or SystemC) 

into RTL design files (VHDL/Verilog or System C) for implementation of Xilinx All 

Programmable devices. Vivado HLS will be described in detail in the next section. 

 

3.5 High-Level Synthesis 

Before proceeding to the description of Vivado HLS tool, it is important to 

establish some information about high level synthesis.  

Back in the early 1990s started the idea of changing the hardware design 

methods, looking for another programming language that can substitute to the tedious 

Hardware Description Languages (HDL). The principal limitation of handwritten 

Register Transfer Level (RTL) was and continues being the time the designers spend 

writing code, and because of this, High Level Synthesis (HLS) is becoming more 
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relevant and has emerged as a possible substitution of the RTL description, to shorten 

the development time of new hardware devices.  

 

 
Figure 3.4: Vivado HLS flow [1] 

 

HLS is a process that transforms an algorithmic description of a desired 

behavior into a hardware implementation. The input code is analyzed, architecturally 

constrained and scheduled to generate RTL. This means that the designer can use a 

higher level functional description, avoiding some hardware details, to get the same 

design with the same architecture. The HLS flow uses a serie of steps which are 

allocation, scheduling, binding and RTL generation. Allocation is the step deciding 

how much resources are needed; scheduling divides the software behavior into the 

steps that define the finite state machine (FSM); binding maps the variables and 

instructions to hardware components; and finally the RTL generation creates HDL 

code that can be synthesized. These steps make debugging of HLS tools complicated. 

For example a small change in the schedule produces a significant impact on the 

generated RTL. 
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The languages uses for HLS are predominantly C-based, including C, C++, 

and SystemC as supported in Vivado HLS. 

  

3.5.1 Vivado HLS 

Vivado HLS transforms a C, C++ or SystemC design into an RTL implemen-

tation, which can then be synthesised and implemented onto the programmable logic 

of a Xilinx FPGA or Zynq device [17]. 

In performing HLS, the two primary aspects of the design are analysed: 

 The interface of the design, i.e. its top-level connections, and  

 The functionality of the design, i.e. the algorithm that it implements.  

 

In Vivado HLS design, the functionality is synthesised from the input code 

via the process of Algorithm Synthesis. The interface is created using one of two 

alternatives: it can either be manually specified, or inferred from the code (Interface 

Synthesis). For brief description about Algorithm Synthesis and Interface Synthesis 

can be referred in [17]. The full design flow of Vivado HLS is shown in Figure 3.5. 

The stages used in the design flow includes inputs to the HLS process, functional 

verification, High-level synthesis, C/RTL cosimulation, evaluation of implementation, 

design iterations, and RTL export, which each descriptions can be found in [17]. 
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Figure 3.5:  Vivado HLS design flow [1] 

 

Vivado HLS tool provides both Graphical User Interface (GUI) and a 

Command Line Interface (CLI), which may be used separately or in conjunction with 

each other. Figure 3.6 provides an overview of Vivado HLS GUI. The GUI actually 

provides three different perspectives: Debug, Synthesis, and Analysis. 
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Figure 3.6: Vivado HLS GUI perspectives 

 

When using traditional design methods for FPGAs, it is necessary to specify 

data types carefully. This aspect is equally important in Vivado HLS as compared to 

other methods such as HDL development or block-based design, even if the data 

types at the point of design entry are different. Understanding the available C, C++ 

and SystemC data types, and their synthesis, is fundamental to developing effective 

and efficient designs. 
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Chapter 4 

IMPLEMENTATION 

  

In this chapter we are going to explain the implementation of HEVC codec 

on Zynq development platform. The explanations start with the implementation of 

HEVC codec to Zynq PS, then the implementation as hardware/software co-

design, and the implementation to Zynq PL. Those three implementations is our 

effort to make hardware encoder for HEVC. Although some of implementation 

can not be finished yet, but in this chapter I try to give all the explanation for all 

the experiments  that I have tried during the work. The problems and the solutions 

are also written in each designs step. 

 

4.1 Design Tools 

To start designing for Zynq, we need to obtain the appropriate design tools 

from Xilinx. These can be ordered on DVD, or downloaded from Xilinx website. 

There are a number of design tools available, but we need only these:  

 Vivado Design Suite (version 2014.1 or later) 

 License Management Tools (2014.1 Utilities or later) 

We need also to install some properties from the Xilinx Tools depending on our 

requirements. 

 

4.2 System Setup and Requirements 

As general statement from Xilinx, recent versions of Windows and selected 

versions of Linux are supported. For this project, we use Ubuntu 14.04 LTS as 

operating system. When using Vivado, it is important that the operating system 

grants the user write permissions for all directories containing design files. 

For the hardware specification of the development computer, it is 

particularly notable that 32-bit operating systems are not suitable for targeting the 

two largest Zynq devices. At least 4GB of RAM is recommended for the three 

smaller devices, while the largest may require up to 12GB of RAM. So we use 
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CPU Intel core i7 with 4GB RAM (64-bit system). The computer hardware 

configuration also requires a USB port for programming the Zynq over JTAG, 

and ideally another for PC-Zynq communication via the UART and Terminal 

application for debugging designs. 

For prototyping and testing the design, we use the Xilinx ZC702 Rev 1.0 

evaluation board. A development board hosts a Zynq device, together with 

various other resources such as power circuitry, external memory, interfaces for 

programming and communication, simple user I/O such as buttons, LEDs, 

switches, and usually a number of other peripheral interfaces and connectors. 

During the debugging stage, designs developed on the computer using the Vivado 

design suite can be downloaded onto the development board using a Joint Test 

Action Group (JTAG) or ethernet connection, then tested in hardware using 

peripherals and external interfaces if required. Debugging may include, for 

instance: using a debugger to interact with the processor and monitor its 

behaviour; user interaction with the design running on the chip via a USB-UART 

connection and the Terminal interface on the PC; and by executing hardware-in-

the-loop simulations with the aid of an ethernet connection. 

Figure 4.1 provide a graphical summary of a typical setup for getting started 

with Zynq. 

 

 
Figure 4.1: Zynq development setup [1] 



31 
 

4.3 Reference Software 

Reference software take an important role as source code for this project. 

Up to this date, several HEVC encoders have been released but most of them are 

commercial products whose features and operating principles are kept confidential. 

Therefore, we use open-source encoders for this project.  

 Among the existing open-source HEVC encoders, only HEVC test model 

(HM), x265, f265, and Kvazaar HEVC encoder are under active development. 

HM as an HEVC reference codec is able to achieve the best coding efficiency 

among the existing HEVC encoders, but its object-based C++ implementation 

results in poor performance. Hence, it is targeted for research and conformance 

testing rather than practical encoding. The commercially funded x265 is the most 

well-known practical open-source HEVC encoder. It is based on HM C++ source 

code which has been enhanced by extensive assembly optimizations, 

multithreading, and techniques from the open-source x264 encoder. f265 is 

another industrial HEVC encoder. It is implemented in C with assembly 

optimizations. Although the source codes for these two commercially led projects 

are under open-source licenses, contributors to these projects must sign an 

agreement giving the companies copyright to their work. Requiring such 

agreements leaves room for non-commercial projects, like Kvazaar, that do not 

require signing separate agreements to participate. Kvazaar is an academic open-

source HEVC encoder initiated and coordinated by Ultra Video Group [27]. It is 

licensed under GNU GPLv2 license [24]. 

Considering the usage of all open-source HEVC encoders, I initiate to use 

HM and Kvazaar as reference software for this project. 

 

4.3.1 HEVC Test Model (HM) 

We use HM software encoder version 16.06 to encode and decode a video 

file. This reference software is useful to establish and demonstrate the capabilities 

of the standard. The code is made in C++ language. Before we can use this 

reference software, we have to install and compile the project files. Various 

project files are provided for the development environments. There are also a lot 

of sample configuration files provided by the reference software. For this project, 
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we use encoder_intra_main.cfg as the configuration. HM is used in 

implementation to Zynq PS and Zynq PL, independently. 

 

4.3.2 Kvazaar  

Kvazaar uses a reverse design approach compared with x265. It has been 

developed from HM primarily as a reference for its encoding scheme and 

individual algorithm implementations, but it adopts completely new data and 

function call tree structures. Kvazaar is developed in C. This more hardware-

oriented approach eases source code acceleration, portability, and parallelization 

[24]. The source codes and issue tracker for Kvazaar can be found on its GitHub 

page [26]. Kvazaar version 0.72 is used in this experiments. 

 

4.4 System Designs 

In this section we are going to explain the system designs we have used in 

the project. We have three system designs because we try to experiment the close 

possibility of HEVC which can be implemented and work properly on Zynq 

ZC702. Each of designs gives the explanation about the trials and errors during 

the work. The following section will discuss how I implement open-source HEVC 

to Zynq PS and Zynq PL, independently, and as hardware/software co-design. 

 

4.4.1 HM on Zynq SoC Processing System 

We will begin using Xilinx Vivado Design Suite to develop an embedded 

system (codec) using the Zynq 7000 AP SoC Processing System (PS). As we 

mentioned before, Zynq SoC consists of ARM Cortex-A9 hard intellectual 

property (IP) and programmable logic (PL). This offering can be used in two 

ways: 

 The Zynq SoC PS can be used in a standalone mode, without attaching any 

additional fabric IP. 

 IP cores can be instantiated in fabric and attached to the Zynq PS as a PS 

+PL combination. 
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In this design, I implement HM to Zynq PS as a standalone application. Vivado 

Design Suite is used to create a project with an embedded processor system as the 

top level. Figure 4.2 ilustrate the SDK software development flow for this design. 

 

Hardware platform exported from 
Vivado to SDK

Create an SDK workspace

Create a BSP

Create a software project

Develop the software application 
(HM)

Generate a linker script

Download the hardware bitstream 
to the FPGA device

Profile software applicationDebug software application Run software application
 

Figure 4.2: SDK software development flow 

 

From Figure 4.2 I have knowledge that I won’t be able to import the open-source 

HM directly into a Xilinx SDK workspace unless I developed the existing project 

in Xilinx SDK. So first, I create a fresh workspace and create a Xilinx SDK 

Makefile project from our existing source code. Then I can edit the resulting 

makefile as I need to build the hierarchies. Also, I need to include the hardware 

platform project, created in Vivado, that describes the hardware the embedded 

software will run on (the available resources and peripherals on the Zynq ZC702). 

We can summarise the step for making this design as follow: 



34 
 

Step 1: Create a new project 

To create a new project in Vivado design tool, we need to make selections 

in each of the wizard screen. Table 4.1 show informations to create a new project 

using this design. 

 

Tabel 4.1: Parameter to create a new project 

Wizard Screen System Property Setting or Command to Use 

Project name Project name edt_tutorial 

Project location /opt/Xilinx/Vivado/……/bin 

Create project 

subdirectory 

Leave this checked 

Project type Specify the type of 

sources for the design.  

RTL Project 

Do not specify sources at 

this time 

Leave this unchecked 

Add Sources Do not make any changes to this screen 

Add existing IP Do not make any changes to this screen 

Add constraints Do not make any changes to this screen 

Default part Select  Boards  

 Board  Zynq-7 ZC702 Evaluation 

Board 

New project 

summary 

Project summary Review the project summary 

before clicking Finish to create 

the project 

 

Step 2: Create an Embedded Processor Project 

We will now use the Add Sources wizard to create an embedded processor 

project. We can use the information in the Table 4.2 to make selections in the 

Create Block Design wizard. The Diagram window view should automatically 

appear with a message that states that this design is empty. To get started, add 

some IP from the catalog. In the search box, we can type "zynq" to find the Zynq 
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device IP options, and double-click the ZYNQ7 Processing System IP to add it to 

the Block Design. Then the Zynq SoC processing system IP block appears in the 

Diagram view. 

 

Table 4.2: Parameter to create block design wizard  

Wizard Screen System Property Setting or Command to Use 

Create Block Design Design name tutorial_bd 

 Directory  <Local to Project> 

 Specify source set Design Sources 

 

Step 3: Managing the Zynq7 Processing System in Vivado 

We have added the processor system to the design, then we can begin by 

managing the various options available for the Zynq7 Processing System.  

When we double-click the ZYNQ7 Processing System block in the Block 

Diagram window, the Re-customize IP dialog box opens. By default, the 

processor system does not have any peripherals connected. Connections are 

symbolized with check marks. We use a preset template created for the ZC702 

board. This configuration wizard enables many peripherals in the Processing 

System with some MIO pins assigned to them as per the board layout of the 

ZC702 board. For example, UART1 is enabled and UART0 is disabled. This is 

because UART1 is connected to the USB-UART connector through UART to the 

USB converter chip on the ZC702 board. The check marks that appear next to 

each peripheral name in the Zynq device block diagram signify the I/O 

Peripherals that are active. After Vivado implements the changes that we made to 

apply to ZC702 board presets, the message stating that Designer assistance is 

available. We can use Run Block Automation link to accept the default processor 

system options and make default pin connections. 

 

Step 4: Validating the Design and Connecting Ports 

To validate the design, alternatively, we can press the F6 key. When a 

critical error message appears, it indicates that M_AXI_GP0_ACLK must be 
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connected. From Block Diagram view of the ZYNQ7 Processing System, we can 

hover our mouse over the connecter port until the pencil icon appears. Click the 

M_AXI_GP0_ACLK port and drag to the FCLK_CLK0 input port to make a 

connection between the two ports. Then validate the design again to ensure there 

are no other errors. Figure 4.3 show the ZYNQ7 Processing System with 

Connection. 

 
Figure 4.3: ZYNQ7 processing system with connection 

 

In the Block Design view, under the Sources tab, we can create HDL 

wrapper file for the processor subsystem. We can select Let Vivado manage 

wrapper and auto-update, then select Generate Output Products. This step builds 

all required output products for the selected source. For example, constraints do 

not need to be manually created for the IP processor system. Vivado automatically 

generates the .XDC file for the processor sub-system when Generate Output 

Products is selected. We can find the output products that we just generated in IP 

Source directory. 

 

Step 5: Synthesizing the Design, Running Implementation, and Generating 

the Bitstream 

We can now synthesize the design. In the Flow Navigator pane, under 

Synthesis, we can click Run Synthesis, Run Implementation, and Generate 

Bitstreams. After the Bitstream generation completes, export the hardware and 

launch the Software Development Kit (SDK). 
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Step 6: Exporting to SDK 

We can launch SDK from Vivado with the Export Hardware command. 

Make sure that the Include bitstream check box is checked only when design has 

PL design and bitstream generated, and that the Export to field is set to the default 

option of <Local to Project>. Notice that when SDK launches, the hardware 

description file is automatically loaded. The system.hdf tab shows the address 

map for the entire Processing System. 

So far, Vivado has exported the hardware specifications to the selected 

workspace where software development will take place. If <Local to Project> was 

selected, then Vivado created a new workspace in the Vivado project folder. The 

name of the workspace is <project_name>.sdk. In this project, the workspace 

created is /opt/Xilinx/Vivado/…/bin/edt_tutorial/edt_tutorial.sdk. 

The Vivado design tool exported the Hardware Platform Specification for 

the design (system.hdf) to SDK. In addition to system.hdf, the following 

additional files are exported to SDK: 

 design_1_bd.tcl 

 ps7_init.c 

 ps7_init.h 

 ps7_init.html 

 ps7_init.tcl 

 ps7_init_gpl.c 

 ps7_init_gpl.h 

 system.hdf 

The system.hdf file opens by default when SDK launches. The address map of 

the system read from this file is shown by default in the SDK window. The 

ps7_init.c, ps7_init.h, ps7_init_gpl.c, and ps7_init_gpl.h files 

contain the initialization code for the Zynq SoC Processing System and 

initialization settings for DDR, clocks, phase-locked loops (PLLs), and MIOs. 

SDK uses these settings when initializing the processing system so that 

applications can be run on top of the processing system. Some settings in the 

processing system are fixed for the ZC702 evaluation board. Next we can start 

developing the software for this project using SDK. 
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Step 7: Running the HM Application 

We will learn how to manage the board settings, make cable connections, 

connect to the board through PC, and run a HM software application in SDK. 

We can connect the power cable to the board using digilent cable with the 

following SW10 switch setting: bit-1 is 0 (switch open), bit-2 is 1 (switch closed). 

Then connect USB cable to connector J17 on the target board with the Linux host 

machine for USB to serial transfer. And the ZC702 board is ready to switch on. In 

the SDK, we can ensure the workspace path to the project file, which is 

/opt/Xilinx/Vivado/…/bin/edt_tutorial/edt_tutorial.sdk. 

 

 

Figure 4.4: ZC702 board power switch 

 

Now we can make serial connection. First we have to know which port is used to 

connect with board. For checking the active port, we can type dmesg in terminal 

Linux. A lot of active port will be shown. We can see the name of port that used 

to connect to the board. Then we can make serial connection through SDK. In 

terminal SDK, we can modify the setting to make the connection. 

 We need to create a new application project in the SDK. We can use the 

information in the Table 4.3 to make selections in the wizard screens. Then SDK 

creates the HM_encoder application project and HM_encoder_bsp board 

support package (BSP) project under the project explorer. It automatically 

compiles both and creates the ELF file.  
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Table 4.3: Parameter to create a new application in SDK 

Wizard Screen System Properties Setting or Command to Use 

Application 

Project 

Project name HM_encoder 

 Use default location Select this option 

Hardware platform tutorial_bd_wrapper_hw_platform_0 

Processor  PS7_cortexa9_0 

OS platform standalone 

Language  C++ 

Board Support 

Package 

Select Create New and provide the 

name of HM_encoder_bsp 

Templates Available templates Empty Application 

 

The board support package (BSP) is the support code for a given hardware 

platform or board that helps in basic initialization at power up and helps software 

applications to be run on top of it. It can be specific to some operating systems 

with bootloader and device drivers [30].  

Standalone is a simple, low-level software layer. It provides access to basic 

processor features such as caches, interrupts, and exceptions, as well as the basic 

processor features of a hosted environment. These basic features include standard 

input/output, profiling, abort, and exit. It is a single threaded semi-hosted 

environment. The application we ran in this section was created on top of the 

Standalone OS. The BSP, software application targets, is selected during the New 

Application Project creation process. If we would like to change the target BSP 

after project creation, we can manage the target BSP by right-clicking the 

software application and selecting Change Referenced BSP [30]. 

After the application project has been created, we can import the open-

source HM to the existing application project. Open-source HM consist of so 

many libraries. In the linux, we can easily build the HM using the makefile that 

already available in there. Makefile is used to link all the libraries in the code. In 
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the SDK, we need to create our own makefile. So we can import the makefile from 

open-source HM to SDK. 

 

 
Figure 4.5: Import existing code to SDK 

 

We can then select Run Configurations. While doing this step I face some errors 

in linker and library path. There were some missing libraries in error notification. 

The solution is to make the right path and linking it to our project. It took some 

times to solve this problems. Another problem is compiler. The compiler seems 

did not work when I try to run the program. After checking the development 

environment of the system design, I found that I forgot to install Xilinx Toolchain 

which is Sourcery CodeBench Lite Edition for Xilinx Cortex-A9 Compiler 

Toolchain. Next we can run the project application. A message appears asking if 

we want to launch the application even though configuration of the FPGA is not 

done. We can click OK. HM_encoder software application appears on the serial 

communication utility in Terminal 1 with 8 binary as HEVC codec. Those binary 

can then be run with video file to test the ability of HM encoder as HEVC 

standard.  

 



41 
 

4.4.2 Kvazaar on Hardware/Software co-design 

In this section, I try to implement open source Kvazaar HEVC encoder to 

Zynq 7000 AP SoC as hardware/software co-design using Vivado HLS. The 

source code I use for this design is Kvazaar because its less complex than HM and 

Kvazaar use C language that make it more hardware-friendly. In this experiment, I 

focus on all-intra coding configuration of Kvazaar. Figure 4.6 show a state 

machine model of Kvazaar HEVC intra encoder to illustrate its computational 

complexity. This design is intended to focus on a rapid implementation of the 

HEVC encoder through a HLS flow. 

 

 
Figure 4.6: Kvazaar HEVC intra encoder modeled as a state machine 
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Kvazaar intra encoder supports HEVC all-intra coding of 8-bit video with 4:2:0 

chroma sampling. The parameter listed in Table 4.4 is used in this design. We use 

Kvazaar version 0.72 for this experiment. 

Table 4.4: Kvazaar HEVC coding parameters used in this design 

Features Kvazaar HEVC intra encoder 

Profile  Main 

Internal bit depth, color format 8, 4:2:0 

Coding modes Intra 

Sizes of luma coding blocks 64x64, 32x32, 16x16, 8x8 

Sizes of luma transform blocks 32x32, 16x16, 8x8, 4x4 

Sizes of luma prediction blocks 64x64, 32x32, 16x16, 8x8, 4x4 

Intra prediction modes DC, planar, 33 angular 

Mode decision metric SAD 

RDO Disabled  

RDOQ Disabled 

Transform Integer DCT (integer DST for luma 

4x4) 

4x4 transform skip Enabled 

Loop filtering DF, SAO 

 

The design step can be shown in Figure 4.7. Before we start create a new 

project, the first phase, functional verification, is done on PC using ready-made 

make for Linux GCC compiler. The next step is profiling for early performance 

estimation, in which I use Gprof, gprof2dot, and Graphviz. Potential functions for 

hardware acceleration are selected by examining the Gprof results.  

According to our profiling with Kimono 1080p 240 frame test sequence, 

the most time-consuming encoding functions are intra prediction, quantization, 

dst/dct, inverse dst/dct, and dequantization. Furthermore in Kvazaar intra 

prediction (search_intra_rough) the most time consuming function is 

intra_get_angular with 35.75% of whole encoding process.  
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Search_intra_rough function calls intra_get_pred function to calculate the 

prediction for all 35 modes, then calculates the Sum of Absolute Difference (SAD) 

for all these modes, and finally returns the costs for all modes through a pointer 

passed to the function (Figure 4.6). These functions are the most potential 

candidates for hardware acceleration. Based on Gprof profiling results, a new 

project in Vivado HLS is created for design space exploration and 

hardware/software partitioning. 

 
Create a new project 

in Vivado HLS

C validation

Interface synthesis

Design analysis

Design optimization

RTL verification

Load and run HEVC on 
Zynq 7000 AP SoC  

Figure 4.7: The design step of Vivado HLS 

 

Step 1: Create new project 

A Vivado HLS project arranges data in a hierarchical form. The project 

holds information on the design source, test bench, and solutions. In this design, 

the design source is Kvazaar, the location of the project is located in open-source 

Kvazaar folder, I set encmain.c as the top level design that signify the design 

specification, and the rest C code for test bench files for design test. Any header 

files that exist in the local directory open-source Kvazaar are automatically 

included in the project. We can specify the solution according to the specification 
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of ZC702 board. The solution holds information on the target technology, design 

directives, and results.  

 

Step 2: Validate the C source code  

The first step in an HLS project is to confirm that the C code is correct. 

This process is called C Validation or C Simulation. In this design, the test bench 

compares the output data from the encmain function with known good values. 

 

 
Figure 4.8: Reviewing the testbench code 

 

The test bench file, contains the top-level C function main(), which in turn calls 

the function to be synthesized (encmain). Then we can Run C Simulation to 

compile and execute the C design.  

Up to this step, I face a lot of problems. When I run C simulation there 

were a lot of errors. Some of them can be solved and some can not be solved yet. 

So for this design, my work is stop until this step.  Here are those errors and the 

solutions.  
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Problems : 

 Can not find header file  

For this problem we can solve it by using Edit CFLAGS button to add the 

standard gcc/g++ search path information. For example, -

I<path_to_header_file_dir> 

 Integer data type 

In the encmain.c there are a lot of looping. And each looping in C language 

declare the data type in its inner loop while Vivado HLS require to declare the 

data type in its outer loop. So I manage to declare the data type in its outer loop. 

Again, standard C compilers such as gcc compile the attributes used in the header 

file to define the bit sizes, but they do know what they means. The final 

executable created by standard C compiler will issue messages such as the 

following  

$VIVADO_HLS_ROOT/include/etc/autopilot_dt.def:1036: warning: 
bit-width attribute directive ignored 
 

and proceed to use native C data types for the simulation and producing results 

which do not reflect the bit-accurate behavior of the code. Those can be solved by 

enabling apcc compiler in the project setting using menu Project > Project 

Settings > Simulation and select Use APCC for Compiling C Files. Apcc will 

overcomes this limitation and allows the function to be compiled and verified in a 

bit-accurate manner. 

 Unsupported C language construct 

While High-Level Synthesis is able to synthesize a large subset of all three C 

modeling standards (C, C++ and SystemC) there are some constructs which 

cannot be synthesized such as pointer casting. Pointer casting is not supported in 

the general case but is supported between native C types. The following is not 

synthesizable and must be transformed, and I do not know how to transform these 

pointer casting type yet. 
typedef struct kvz_data_chunk { 
  /// \brief Buffer for the data. 
  uint8_t data[KVZ_DATA_CHUNK_SIZE]; 
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  /// \brief Number of bytes filled in this chunk. 
  uint32_t len; 
 
  /// \brief Next chunk in the list. 
  struct kvz_data_chunk *next; 
} kvz_data_chunk; 
 

4.4.3 HM on Zynq Programmable Logic 

Because I can not continue working with hardware/software partitioning, I 

try to implement HEVC on Zynq Programmable Logic independently. I use HM 

as the source code because I want to know the performance of HM when 

implemented on Zynq PL. And also, the system design before this has been 

implemented HM on Zynq PS. After studying the coding, unfortunately, I can not 

use the full HM as a source code. There will be another problem like in the design 

before while try to run C simulation. So I decide to take a part of HM which is 

IDCT to implement on Zynq PL. 

 

4.4.3.1 HEVC Inverse DCT Using Vivado HLS 

Since HEVC 2D IDCT performs matrix multiplication operations, it is 

suitable for HLS implementation. HEVC IDCT algorithm is one of the most 

computationally complex algorithms compared to other HLS implementation for 

both image processing and video compression. IDCT inputs are selected 

depending on size of the IDCT operation (4x4, 8x8, 16x16 or 32x32). First, 1D 

column IDCT is performed, and the resulting coefficients are clipped. Then, 1D 

row IDCT is performed using transpose of the resulting matrix as input, and the 

resulting coefficients are clipped.  

Like in the Figure 4.7, this design use the same design step for Vivado 

HLS. Vivado HLS has several optimization options such as pipelining, loop 

unrolling, and loop merging. It allows adding specific DSP blocks such as 

multiplier, divider, or square unit. It also has an option to select I/O port as bus, 

memory, FIFO or acknowledge type. It also allows adding high speed AXI-4 

busses for data transfer. 
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A part of C codes developed as input to Vivado HLS is shown in Figure 

4.9. Because HEVC 2D IDCT perform matrix multiplication operations, many for 

loops are used in the C codes. Therefore, loop unrolling directive is used in the C 

codes to increase performance. Pipelining directives is also used in the C codes to 

increase performance. 

 
void COL_partialButterflyInverse8( 
int15 resid[DCT_8], int7 coeff[31], int7 coef8[16], 
int16 *Y1, int16 *Y2, int16 *Y3, int16 *Y4, 
int16 *Y5, int16 *Y6, int16 *Y7, int16 *Y8) 
{ 
char j,l,k = 0; 
int26 E[4], O[4], EE[2], EO[2]; 
for(l=0; l<4; l++)  
 
#pragma HLS unroll factor=2 
{O[l] = coef8[l*4]*resid[1] + coef8[l*4+1]*resid[3] + 
coef8[l*4+2]*resid[5] + coef8[l*4+3]*resid[7]; 
}; 
EO[0] = coeff[1]*resid[2] + coeff[2]*resid[6]; 
EO[1] = coeff[2]*resid[2] - coeff[1]*resid[6]; 
EE[0] = coeff[0]*resid[0] + coeff[0]*resid[4]; 
EE[1] = coeff[0]*resid[0] - coeff[0]*resid[4]; 
 
#pragma HLS pipeline 
E[0] = EE[0] + EO[0]; 
E[1] = EE[0] - EO[0]; 
E[2] = EE[1] + EO[1]; 
E[3] = EE[1] - EO[1]; 
*Y1 = Clip3(-32768, 32767, (E[0] + O[0] + 64) >> 7); 
*Y2 = Clip3(-32768, 32767, (E[1] + O[1] + 64) >> 7); 
*Y3 = Clip3(-32768, 32767, (E[2] - O[2] + 64) >> 7); 
*Y4 = Clip3(-32768, 32767, (E[3] - O[3] + 64) >> 7); 
*Y5 = Clip3(-32768, 32767, (E[3] + O[3] + 64) >> 7); 
*Y6 = Clip3(-32768, 32767, (E[2] + O[2] + 64) >> 7); 
*Y7 = Clip3(-32768, 32767, (E[1] - O[1] + 64) >> 7); 
*Y8 = Clip3(-32768, 32767, (E[0] - O[0] + 64) >> 7); 
} 

Figure 4.9: Xilinx Vivado C code 
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Chapter 5 

Results 

 

This chapter shows the result of implementation open-source HEVC on 

Zynq 7000 AP SoC. Unfortunately, we can not obtain the result from 

hardware/software co-design because of the coding complexity. Still, we have the 

results from the implementation of HEVC to Zynq PS and Zynq PL 

independently.  

 

5.1 Performance in Linux vs Zynq PS 

In this section, we compare two results from HM 16 which have been run in 

Linux and Zynq PS. The implementation results includes the comparison of video 

size after being compressed, processing time of encoding and decoding video, and 

the video quality of HEVC codec. We use two video file in YUV format for input 

of video compression; Kimono.yuv and Sintel.yuv. Both of the video have the 

same resolution 1920x1080p and same fps 24 which relevance with minimum fps 

for HD video. We use encoder_intra_main.cfg as configuration parameter 

with QP = 32. 

 

A. Run in Linux 

Table 5.1: HEVC test in Linux 
Input  
video 

Original 
size 

Number 
of frame 

Encoding 
time (s) 

Decoding 
time (s) 

Encoding 
size  

Decoding 
size 

Kimono 746,5 
MB 

240 
frame 

2167,291 18,381 8,6 MB 746,5 MB 

Sintel  3.9 GB 1253 
frame 

10151,592 52,21 10,9 MB 3,9 GB 

 

Table 5.2: PSNR Kimono in Linux 
Y-PSNR U-PSNR V-PSNR YUV-PSNR 
38,9512 41,1150 42,0501 39,5547 

 

From both of the results of implementation, we can say that the processing time of 

encoding and decoding video is depend on the number of video frame. The more 
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frame the video have, the longer time to encode and decode video. HM 16 is 

obviously can reduce the video size of video, although the percentage of 

decreased size of video is not stable. As stated in the HM guide, this reference 

software is not intended to prove the ability of HEVC standard which can reduce 

the size of video halve of its predecessor. If we want to reduce the size of video up 

to 50%, we need to modify the configuration parameter in HM. The results also 

show that HM 16 can work faster on Zynq PS than in Linux. 

 

B. Run on Zynq PS 

Table 5.3: HEVC test on Zynq PS 
Input 
video 

Original 
size 

Number 
of frame 

Encoding 
time (s) 

Decoding 
time (s) 

Encoding 
size 

Decoding 
size 

Kimono  746,5 
MB 

240 
frame 

1167,211 17,301 8,6 MB 746,5 MB 

Sintel 3.9 GB 1253 
frame 

11151,522 50,12 10,9 MB 3,9 GB 

 
Table 5.4: PSNR Kimono on Zynq PS 

Y-PSNR U-PSNR V-PSNR YUV-PSNR 
38.8394 41.9582 39.5621 38.4775 

 

From Table 5.1 and Table 5.3, the processing time of Zynq PS is 5% faster than 

Linux. HM 16 can not obtain optimal processing time when used in Zynq PS. This 

probably because the selection criteria when designing HM 16 is not intended in 

fast processing speed. Also, the algorithm in HM 16 is quite complex which can 

results in high processing load of encoding video in processor.  

For the visual quality comparison, Figure 5.1 show the different of 

Sintel.h264 and Sintel.h265. In Figure 5.1, the big display is Sintel H.265 and the 

small display is Sintel H.264. Displaying together, there is no significant different 

between H.264 format and H.265 format. The video quality of Sintel H.265 

appeared to be very close to the one of the original video. The visual quality also 

can be compared from the PSNR. Both of the video format almost have the same 

PSNR. 
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Figure 5.1: Display Sintel video in H.264 vs H.265 format 

 

5.2 Profiling  

Profiling is used before implementing Kvazaar on hardware/software co-

design. Profiling can define which processing block of the Kvazaar HEVC intra 

coding need to optimize. Table 5.5 show the result of profiling Kimono 1080p in 

Kvazaar using Gprof. 

 

Table 5.5: Kvazaar profiling 

Functions Time consuming for encoding 

intra prediction  67,74% 

quantization 8,54% 

dst/dct 4,69% 

inverse dst/dct 3,78% 

dequantization 0,95% 

 

From Table 5.5 it is obvious that intra prediction consume the most time in 

encoding. In order to optimize the hardware/software co-design, intra prediction 

can be run on hardware which is FPGA to reduce the time processing in encoding 

process. Unfortunately, the work can not be continued for the next step because 

the problem in C validation in  Vivado HLS. Using HLS indeed can simplify the 
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development time and make the design simple, but it requires the knowledge 

about the development behaviour of HLS first. The problems and solutions in this 

design have been explained in the previous chapter. 

 

5.3 Zynq PL 

In this section, a part of HEVC was implemented using Vivado HLS to 

Zynq PL. The results from implementing HEVC 2D IDCT using Vivado HLS can 

be described as follow. In the hardware, IDCT inputs are selected depending on 

size of the IDCT operation (4x4, 8x8, 16x16 or 32x32). The hardware uses an 

efficient butterfly structure for column and row transforms. After 1D column 

IDCT, the resulting coefficients are stored in a transpose memory, and they are 

used as input for 1D row IDCT. The multiplication operations are performed in 

the datapaths using only adders and shifters. There are 4 multiplier blocks in 8x8 

datapath, 8 multiplier blocks in 16x16 datapath and 16 multiplier blocks in 32x32 

datapath. 

 Another experiment was adding pipelining directives to the loops and review 

for loop optimization. Pipeline is added to the inner-loop and outer-loop of HEVC 

1D IDCT  and 2D IDCT. Figure 5.2 show the comparison results of pipelining in 

inner-loop and pipelining in outer-loop.  

 
Figure 5.2: Comparison of pipelining directives 
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Figure 5.2 shows the results of comparing solution 1, solution2, and solution3. 

Solution 1 is the result of original design without pipelining, Solution 2 is the 

results of pipelining the inner-loop of HEVC 1D and 2D IDCT, Solution 3 is the 

results of pipelining the outer-loop of HEVC 1D and 2D IDCT. From the the three 

solution, pipelining the outer-loop has in fact resulted in performance 

improvement. The significant latency benefit is achieved because multiple loops 

in the design call the dct_1d function multiple times. Saving latency in this block 

is multiplied because this function is used inside many loops. Pipelining loops 

transforms the latency from  

Latency = iteration latency * (tripcount * interval)  

to  
Latency = iteration latency + (tripcount * interval) 

After reviewing the loop optimization, the design of Solution 3 is used to 

run C synthesis. Table 5.6 shows the results of implementation HEVC 2D IDCT 

using Vivado HLS. 

 

Table 5.6: Xilinx Vivado HLS implementation results 

TU LUTs DFFs Slices BRAMs I/O 

4x4 663 373 212 1 134 

8x8 2834 2010 919 1 262 

16x16 5000 4090 1601 1 518 

32x32 40764 28772 12605 13 1030 

All 50566 34955 14944 13 1045 

 

Actually there are others results from Vivado HLS that can be analized from this 

design. But because of a limited knowledge about Vivado HLS, further analysis 

can not be done yet. At least, from this experiment, Vivado HLS can be used for 

FPGA implementation of HEVC encoder. 
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5.4 Processor Operation in Zynq PS 

The resources of a processor are fixed, and limited to two processing cores, 

which are required to operate at a specific clock frequency. The cost of 

implementing a desired software implementation is measured in terms of clock 

(execution) cycles, which will of course require some specific amount of time to 

execute at the desired clock frequency; the more complex the required processing, 

the longer the execution time will be.  

Considering the behaviour of a generic processor, it has a finite number of 

timeslots (clock cycles) that are occupied — or not — by particular operations 

scheduled onto them. As the processor becomes ‘busy’, the level of occupation of 

timeslots increases, and therefore its performance in terms of executing software 

routines may become slower. It is also true that the timeliness of completing 

particular tasks is variable as a result of the sharing of the processor resources 

between different tasks.  
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Chapter 6 

Conclusion  
 

At the end of this Master’s Thesis I am glad that I have tried to implement 

HEVC codec on Zynq 7000 AP SoC with three system designs. First, I try to 

implement HEVC codec to Zynq PS as standalone application. Second, I try to 

implement HEVC encoder to Zynq 7000 AP SoC as hardware/software co-design. 

Although in this design I can not finished the work, I’m glad at least I know the 

flow to work with hardware/software co-design. And also, we got the result from 

profiling HEVC encoder. Thrid, I try to implement HEVC encoder to Zynq PL.  

 

6.1 Conclusions  

From the three experiments that have been done, I can conclude that: 

1. HM 16 can be run on Zynq PS and can reduce the size of video up to 

50% of the original video format (YUV). From the quality video, HM 

16 appeared to be very close to the one of the original video in H.264 

format. This design can be used for delivering high quality video while 

maintaining the storage. 

2. Profiling can be used to analyze HEVC encoder to find the function 

that consume a lot of time during encoding process. Intra prediction 

consume 67,74% time in encoding process. Those function can then be 

optimized in hardware part. 

3. HM 16 also can be run on Zynq PL using Vivado HLS. The important 

part in this design is optimizing the loop using pipelining. Pipelining 

the outer-loop can increase the latency 2x faster than using original 

design. In this experiment, I still do not use video file as input. The 

results is based on the synthesis of C simulation from HEVC 2D IDCT 

using Vivado HLS.     

There are also advantages and disadvantages while using Vivado HLS. Some of 

the advantages are : 
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- A programming language as C can be understood and developed by 

many users: one of the advantages of using C code is that it does not need 

many detailed description of the functionality, for example the user does 

not have to generate registers, or implement some operations (for example 

the division), therefore it is easier than usual Hardware Description Level 

languages, where all the operations not supported by VHDL or Verilog 

have to be coded by the user. 

- Verification of the code: HLS tools have included in the software a useful 

way to verify the code. Only with one test bench the user can verify the 

written C code and also the generated RTL description. This is a huge 

advantage, because the functionality is tested fast in C and the user only 

needs to develop the testbench in C, and the tool is responsible to generate 

the necessary files to use it for the RTL simulation. 

- The most convenient while using HLS tools is saving time. With HLS the 

user can save time if the user knows how to use the tool properly. The user 

only has to write a C model, with the HLS rules and describing all the 

hardware blocks, check the functionality of C code, and then the user can 

generate RTL fast. 

Although HLS gives a very important advantage (saves time) it has also some 

disadvantages or problems that should be mentioned in this report. 

- Very detailed C code: although the user writes in C, it can not be written 

like a standard C program. The HLS C code needs many details and also 

includes the non-software modules. This means that a normal C model 

where only is described the functionality is not always valid for HLS 

because there are some missing libraries. 

- In complex designs it is difficult to reach same characteristics: each 

time the encoder design increases the complexity, HLS has more problems 

to reach the same area result. 

6.2 Future Work 

For future work, I can suggest to continue our work in implementing 

HEVC to Zynq 7000 AP SoC as hardware/software co-design. This design will be 
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useful to optimize system performances and also for making real-time 

implementation of UHD / 4K applications. Considering the ever increasing 

resolution of video, software based solutions are not capable of encoding video in 

real time anymore. One solution would be to make the compression algorithm 

parallel and execute everything on GPUs or hardware. Those can be achieved by 

using hardware/software co-design. 
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APPENDIX A 
Comparison of Video Coding Standard  

 

Table A.1: MPEG-2 VS. H.264 VS. HEVC 

COMPONENT MPEG-2 H.264 HEVC/H.265 
General Motion 

compensated 
predictive, residual, 
tranformed, 
entropy coded 

Same basics as 
MPEG-2 

Same basics as 
MPEG-2 

Intra prediction DC only Multi-direction, 
multi-pattern, 9 
intra modes fir 4x4, 
9 for 8x8, 4 for 
16x16 

35 modes for intra 
prediction, 32x32, 
16x16, 8x8, and 4x4 
prediction size 

Coded image types I, B, P I, B, P, SI, SP I, P, B 
Transform  8x8 DCT 8x8 and 4x4 DCT-

like integer 
transform 

32xx32, 16x16, 8x8 
and 4x4 DCT-like 
integer transform 

Motion estimation 
blocks 

16x16 16x16, 16x8, 8x16, 
8x8, 8x4, 4x8, 4x4 

64x64 and 
hierarchical quad-
tree partitioning 
down to 32x32, 
16x16, 8x8 
Each size can be 
partitioned once 
more in up to 8 
ways 

Entropy coding Multiple VLC tables Context adaptive 
binary arithmetic 
coding (CABAC) and 
context adaptive 
VLC tables (CAVLC)  

Context adaptive 
binary arithmetic 
coding (CABAC) 

Frame distance for 
prediction 

1 past and 1 futuure 
reference frame 

Up to 16 past 
and/or future 
reference frames, 
including longterm 
references 

Up to 15 past 
and/or future 
reference frames, 
including longterm 
references 

Fractional motion 
estimation 

½ pixel bilinear 
interpolation 

½ pixel 6-tap filter, 
¼ pixel linear 
interpolation 

¼ pixel 8-tap filter 

In-loop filter None Adaptive deblocking 
filter 

Adaptive 
deblocking filter 
and sample 
adaptive offset 
filter 
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APPENDIX B 
Creating Embedded Project (HEVC codec) Using Zynq SoC Processing 

System 

 
Figure B.1: Create Block Design Button 

 

 
Figure B.2: Zynq SoC Processing System IP Block 
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Figure B.3: Re-customize IP Dialog Box 

 

 
Figure B.4: I/O Peripherals with Active Peripherals Identified 
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Figure B.5: MIO Configuration Window 

 

 
Figure B.6: Run Block Automation Link 

 

 



67 
 

 
Figure B.7: Critical Message Dialog Box 

 

 
Figure B.8: Generate Output Products Dialog Box 
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Figure B.9: Outputs Generated Under IP Sources 

 

 
Figure B.10: Run Synthesis Button 

 

 
Figure B.11: Status Bar 
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Figure B.12: Export Hardware to SDK 

 

 
Figure B.13: Launch SDK  Dialog Box 
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Figure B.14: Address Map in SDK system.hdf Tab 

 

 
Figure B.15: Terminal Window Header Bar 
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Figure B.16: Terminal Settings Dialog Box 

 

 
Figure B.17: Sample running HEVC encoding process 
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Implementation of HEVC 2D IDCT on Zynq PL 

 

 
Figure B.17: Optimization Directives for DCT Loop Pipelines 
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