

THESIS – TE 142599

IMPLEMENTATION OF HEVC CODEC ON FPGA-
BASED PLATFORM

OKTAVIA AYU PERMATA
2213 203 019

SUPERVISOR
Dr. Ir. Wirawan, DEA

MASTER PROGRAM
MULTIMEDIA TELECOMMUNICATION FIELD
DEPARTMENT OF ELECTRICAL ENGINEERING
FACULTY OF INDUSTRIAL TECHNOLOGY
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA
2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ITS Repository

https://core.ac.uk/display/291460584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IMPLEMENTASI HEVC CODEC PADA PLATFORM BERBASIS FPGA

Oleh : Oktavia Ayu Permata
NRP : 2213203019
Pembimbing : Dr. Ir. Wirawan, DEA.

ABSTRAK

High Efficiency Video Coding (HEVC) telah di desain sebagai standar
baru untuk beberapa aplikasi video dan memiliki peningkatan performa dibanding
dengan standar sebelumnya. Meskipun HEVC mencapai efisiensi coding yang
tinggi, namun HEVC memiliki kekurangan pada beban pemrosesan tinggi dan
loading yang berat ketika melakukan proses encoding video. Untuk meningkatkan
performa encoder, kami bertujuan untuk mengimplementasikan HEVC codec
pada Zynq 7000 AP SoC.

Kami mencoba mengimplementasikan HEVC menggunakan tiga desain
sistem. Pertama, HEVC codec di implementasikan pada Zynq PS. Kedua, encoder
HEVC di implementasikan dengan hardware/software co-design. Ketiga,
mengimplementasikan sebagian dari encoder HEVC pada Zynq PL. Pada
implementasi kami menggunakan Xilinx Vivado HLS untuk mengembangkan
codec.

Hasil menunjukkan bahwa HEVC codec dapat di implementasikan pada
Zynq PS. Codec dapat mengurangi ukuran video dibanding ukuran asli video pada
format H.264. Kualitas video hampir sama dengan format H.264. Sayangnya,
kami tidak dapat menyelesaikan desain dengan hardware/software co-design
karena kompleksitas coding untuk validasi kode C pada Vivado HLS. Hasil lain,
sebagian dari encoder HEVC dapat di implementasikan pada Zynq PL, yaitu
HEVC 2D IDCT. Dari implementasi kami dapat mengoptimalkan fungsi loop
pada HEVC 2D dan 1D IDCT menggunakan pipelining. Perbandingan hasil
antara pipelining inner-loop dan outer-loop menunjukkan bahwa pipelining di
outer-loop dapat meningkatkan performa dilihat dari nilai latency.

Key Word : Zynq, HEVC, Vivado HLS, SoC

v

IMPLEMENTATION OF HEVC CODEC ON FPGA-BASED PLATFORM

By : Oktavia Ayu Permata

Student Identity Number : 2213203019

Supervisor : Dr. Ir. Wirawan, DEA.

ABSTRACT

High Efficiency Video Coding (HEVC) has been designated as future

standard for many video coding application and has significant performance

improvement compared to its predecessors. Although HEVC achieves highly

efficient coding, it has an impact in higher processing load and severe loading

while processing the video encoding. To improve the encoder performance, we

aim to implement HEVC codec to Zynq 7000 AP SoC. We try to implement

HEVC using three system designs. First, implementation of HEVC codec to

Zynq PS as a standalone application. Second, implementation of HEVC encoder

as hardware/software co-design. And third, implementing a part of HEVC encoder

to Zynq PL independently. In the implementation we use Xilinx Vivado HLS tool

to develop the codec.

The results shows that HEVC codec can be implemented on Zynq PS.

The codec can reduce the size of video file compared to its original size in H.264

format. The quality of video almost the same compared to H.264 format.

Unfortunately we can not finished the work with hardware/software co-design

because the coding complexity for validation C code in Vivado HLS. The other

result we can get from this project is a part of HEVC codec can be implemented

on Zynq PL, which is HEVC 2D IDCT. From the implementation we can

optimize the loop function in HEVC 2D and 1D IDCT using pipelining. The

compared results between pipelining in inner-loop and in outer-loop shows that

pipelining in outer-loop can increase the performance as indicated by increased

latency.

Key Word : Zynq, HEVC, Vivado HLS, SoC

vi

 vii

ACKNOWLEDGEMENT

This Master’s Thesis would not be possible without the support of

scholarship from Ministry of Education and Culture, Republic of Indonesia, the

Bureau of Planning and International Cooperation, and the guidence from

Pascasarjana’s program of ITS.

I would like to thank to Dr. Wirawan, my supervisor at ITS, for all the

meeting and for his valuable comments and advices during the thesis work. His

attention and inspiration during the time I spent working with him is invaluable. I

would also like to thank him for encouraging my ideas and for giving access to all

the facilities in Multimedia Communication Laboratory. All I have learnt through

the master’s program and the thesis is something that I will never forget.

I would like to thank to UBO for having trust on me and giving me the

possibility of doing half of my thesis with them. I want to thank them for making

my stay over the last six months comfortable.

I would like to thank to Xilinx’s forum for all the support, clarifications

and guidance that they have given to me during the thesis work. I would like to

express my gratitude to all the person involved in my education in both

universities, ITS and UBO, that have helped me to improve my skills and my

knowledge during the last 2 years. I am really thankful with them due to giving

me the opportunity of living this great experience.

Finally, I would like to say that all these would not be possible without the

love and support of my families and friends.

Oktavia Ayu Permata

 viii

ix

CONTENTS

Cover ... i

Approval sheet .. iii

Abstract .. v

Acknowledgement .. vii

Table of contents .. ix

List of figures ... xiii

List of tables ... xv

1 INTRODUCTION

1.1 Background .. 1

1.2 Thesis Scope and Objectives ... 2

1.3 Related Work .. 3

1.4 Thesis Organization ... 3

2 HIGH EFFICIENCY VIDEO CODING

2.1 Overview of HEVC .. 5

2.2 Video Compression Basics ... 6

2.3 Development of HEVC ... 9

2.4 Application Impact .. 10

2.5 How HEVC is Different .. 11

2.6 HEVC and Parallel Processing .. 13

3 ZYNQ

3.1 Overview of System-on-Chip with Zynq .. 15

3.2 Zynq Device .. 16

 3.2.1 Processing System ... 16

x

3.2.2 Programmable Logic .. 18

3.2.3 Processing System – Programmable Logic Interfaces 20

3.2.4 Comparison: Zynq vs Standard Processor .. 20

3.3 Zynq System-on-Chip Development .. 21

 3.3.1 Hardware/Software Partitioning ... 21

 3.3.2 Profiling .. 22

3.3.3 Software Development Tools ... 23

3.4 IP Block Design ... 24

 3.4.1 IP Core Design Methods .. 24

3.5 High-Level Synthesis ... 24

 3.5.1 Vivado HLS ... 26

4 IMPLEMENTATION

4.1 Design Tools .. 29

4.2 System Setup and Requirements .. 29

4.3 Reference Software .. 31

 4.3.1 HEVC Test Model (HM) ... 31

 4.3.2 Kvazaar .. 32

4.4 System Designs .. 32

 4.4.1 HM on Zynq SoC Processing System .. 32

 4.4.2 Kvazaar on Hardware/Software co-design 41

 4.4.3 HM on Zynq Programmable Logic .. 46

 4.4.3.1 HEVC Inverse DCT Using Vivado HLS 46

5 RESULTS

5.1 Performance in Linux vs Zynq PS ... 49

5.2 Profiling .. 51

5.3 Zynq PL .. 52

5.4 Processor Operation in Zynq PS .. 54

xi

6 CONCLUSION ... 55

6.1 Conclusions .. 55

6.2 Future Work .. 56

Bibliography ... 59

Appendix A ... 63

Appendix B ... 64

xii

xiii

LIST OF FIGURES

Figure 2.1 Scope of video compression standardization..................................... 6

Figure 2.2 Block-based motion compensation .. 8

Figure 2.3 A typical sequence with I-, B-, and P-frames 9

Figure 2.4 Expected compression bit rates at time of standardization 10

Figure 2.5 H.264 vs HEVC intra prediction modes .. 11

Figure 2.6 An example of a 16x16 H.264 vs MxM HEVC partitions 12

Figure 2.7 H.264 macroblock partitions for inter prediction 13

Figure 2.8 HEVC quadtree coding structure for inter prediction 13

Figure 3.1 Zynq processing system... 17

Figure 3.2 The logic fabric and its constituent elements 19

Figure 3.3 The design flow for Zynq SoC .. 22

Figure 3.4 Vivado HLS flow... 25

Figure 3.5 Vivado HLS design flow ... 27

Figure 3.6 Vivado HLS GUI prespectives .. 28

Figure 4.1 Zynq development setup .. 30

Figure 4.2 SDK software development flow .. 33

Figure 4.3 Zynq7 processing system with connection 36

Figure 4.4 ZC702 board power switch .. 38

Figure 4.5 Import existing code to SDK ... 40

Figure 4.6 Kvazaar HEVC intra encoder modeled as a state machine 41

Figure 4.7 The design step of Vivado HLS .. 43

Figure 4.8 Reviewing the testbench code ... 44

Figure 5.1 Display Sintel video in H.264 vs H.265 format 51

Figure 5.2 Comparison of pipelining directives.. 52

xiv

xv

LIST OF TABLES

Table 4.1 Parameter to create a new project ... 34

Table 4.2 Parameter to create block design wizard ... 35

Table 4.3 Parameter to create a new application in SDK 39

Table 4.4 Kvazaar HEVC encoding parameters used in this design 42

Table 5.1 HEVC test in Linux ... 49

Table 5.2 PSNR Kimono in Linux .. 49

Table 5.3 HEVC test on Zynq PS.. 50

Table 5.4 PSNR Kimono on Zynq PS ... 50

Table 5.5 Kvazaar profiling... 51

Table 5.6 Xilinx Vivado HLS implementation results .. 53

xvi

1

Chapter 1

INTRODUCTION

1.1 Background

High Efficiency Video Coding (HEVC) is the recent standard for video

compression and has significant performance improvement compared to its

predecessor. This new standard is going to be used in many video coding

application to fulfill the higher demand on video, especially in resolution which

continually increasing. Before HEVC can be widely used, it is necessary to test its

performance on appropriate platform based on which typical application will be

developed. For this thesis, we aim to implement HEVC codec to Zynq 7000 All

Programmable System on Chip, an FPGA-based development system, to test its

performance for various scenarios of video application.

Zynq consist of two main architecture: Processing System which has dual-

core ARM Cortex-A9 processor and Programmable Logic (PL) which has Field

Programmable Gate Array (FPGA) logic fabric. The PS and PL are combined in a

single chip. The processor and logic can be used independently or in conjuction.

This platform is well-suited for video processing applications, i.e. video

compression, because the capability of processing a large amounts of pixel data

and software algorithms which can extract information from images (suited to PS

and PL, respectively) [1].

Usually when developer want to make an application which can be run on

FPGA, they create VHDL or Verilog code that can generate Register Transfer

Logic (RTL) for hardware implementation. In traditional FPGA design, creating

the system design can take very long time as referred in [1]. Zynq provide a

development tools, Vivado High Level System (HLS), that can convert C

language directly into RTL code. In this project, Vivado HLS with C-based

language is used because it has potential to significantly reduce the design time.

Three system designs for implementing HEVC codec to Zynq 7000 AP SoC

is used in this project. First, the HEVC codec is implemented in Zynq Processing

System (PS) as standalone application. Second, HEVC is implemented in Zynq

2

using hardware/software co-design. And third, HEVC is implemented in Zynq

Programmable Logic (PL) independently. The experiments start from the open-

source reference software for HEVC video compression. This software can then

be run on the internal processor of the specialized Xilinx Zynq-7000 System on a

Chip. This SoC then gives the possibility to execute certain parts in hardware and

doing this efficiently will be the main challenge in this thesis.

1.2 Thesis scope and objectives

This thesis has been developed in Multimedia Communication Laboratory

of Electrical Engineering Department of ITS. Half of this thesis has been

presented to the jury of internship defense from UBO, France. All the hardware

and support I have needed has been provided by my supervisor during this time,

and we have also received very useful help from Xilinx’s forum during the thesis

to understand the tool better. Two versions of open-source reference software for

HEVC video compression have been used during the thesis, starting with HEVC

test Model (HM) reference software, but during the development of the thesis we

changed to an open-source Kvazaar encoder for HEVC intra coding to solve some

issues in coding complexity while using hardware/software co-design.

The main objective of this Master’s thesis is to evaluate, Zynq 7000 AP

SoC, for the design of HEVC.

These are the objectives of the work:

 Get started and familiar with a commercial Vivado tools

 Verify the quality of the software-based HEVC, in terms of processing

time and size of video

 Profiling the open-source reference software for HEVC video compression

to know which part need to optimize

 Study the coding complexity using Vivado HLS for easier and faster

design

 Asses which are the part of designs that are more suitable to obtain better

results.

3

We have accomplished all these objectives by testing different coding style

and tools. For the first step of implementation, we use only the Zynq PS to work

with HM. Then we compare the result with linux-based system. The first step has

been to evaluate encoder and decoder to learn the different configuration

parameters and the limitations of the tool; in other words, to get familiar with the

tool. Once this was done, a larger design (hardware/software co-design), will be

tested on Zynq 7000 AP SoC. This report describes the latest video compression

standard (HEVC), the main uses of Zynq 7000 AP SoC, and how the

implementation has been done through the tool.

1.3 Related Work

There are some existing HEVC implementation on FPGA. Some of them is

done using HLS implementation such as in [38]. The HLS is used for core

functions like intra-prediction that supports all block sizes from 4x4 to 32x32 and

achieves 17 frames per second on Alteria Aria II. In [39] it has shown that FPGA

implementation can be used for real-time HEVC encoding of 8k video, but it has

17 boards and each capable of encoding full-HD at 60 fps.

 Another work is HEVC decoder implementation on FPGA using HLS in

[40]. In addition, Verisilicon has created a WebM (VP9) video decoder for

Google. They report less than 6 month of the development time, compared to a

one year estimate for a traditional RTL approach [41]. The project includes 69k

lines of C++ source code, which is much smaller compared to 300k lines of RTL

source code.

1.4 Thesis organization

The thesis is organized as follows:

Chapter 2 describes the technical and market implications of HEVC’s

adoption in the content creation and delivery market.

Chapter 3 cover the essential information about Zynq. It begins with an

overview of the Zynq device, the development flow for these devices, and as a

hybrid device which is both software and hardware programmable, this chapter

4

spans hardware design tools as well as the higher level software tools and flow

which include Vivado High Level Synthesis (HLS).

Chapter 4 explain the implementation of HEVC codec on Zynq starting

with the design tools, system setup and requirements, reference software, and

system designs. Also, the problems and its solutions have been written in each

step of implementations.

The results obtained in the thesis are presented in the chapter 5. Finally,

we discuss future work in this field and the conclusions in chapter 6.

5

Chapter 2

HIGH EFFICIENCY VIDEO CODING

This chapter contains a brief description of the latest video compression

standard, High Efficiency Video Coding (HEVC), which has been used during the

thesis. The description focuses on the technical and market implications of

HEVC’s adoption in the content creation and delivery market. We will start with

the overview of HEVC, an explanation about video compression basics, the

development of HEVC, the application impact, and how HEVC is different with

the previous standard.

2.1 Overview of HEVC

High Efficiency Video Coding (HEVC), also known as H.265, is an open

standard defined by standardization organisations in the telecommunications

(ITU-T VCEG) and technology industries (ISO/IEC MPEG) [2]. In every decade,

video compression standard has performance improvement compared to the

previous standard. For HEVC, it can reduce the overall cost of delivering and

storing video while maintaining or increasing the quality of video. HEVC can

reduce the size of a video file or bit stream by as much as 50% compared to

AVC/H.264 or as much as 75% compared to MPEG-2 standards without

sacrificing video quality [3]. This achievements can reduced video storage,

transmission costs, and also give the possibility for higher definition content to be

delivered for consumer consumption.

The technique used in HEVC is based on hybrid video coding. The main

focus in hybrid video coding is on the three aspects: dividing the block, inter/intra

prediction process, and transform process. For the three processes, HEVC uses

larger partitioning block from 4x4 to 32x32, resulting in more complex algorithm

than those used in H.264 and MPEG-2. There are more decisions to make and

more calculations need to be made in compressing video which can make higher

processing load on the video encoding processor. To improve the encoder

6

performance, the development platform can be used to make the compression

algorithm parallel and execute everything on hardware.

2.2 Video Compression Basics

The goal of video compression is to remove a redundant information from a

video stream so that the video can be sent over a network as efficiently as

possible. The process of encoding is used to eliminate the excess of information

using an algorithm. Encoding latency is the amount of the time to accomplished

encoding process. The decoding process is used to play back the compressed

video and return it as closely as possible to its original state. Compression and

decompression process, together can form basic codec. The codec is used to

reduce the amount of information in a video bit stream.

The general block diagram of a video coding system is shown in Figure 2.1.

The general step of video processing can be explained with Figure 2.1 as follow.

The raw uncompressed video source is processed in pre-processing block using

some of operations such as trimming, color format compression, color correction,

or denoising. Then, the encoding block transform the input video sequence into a

coded bitstream and package the bitstream into an appropriate format before being

transmitted over the channel. In the decoding block, the received bitstream is

reconstructed into video sequence. The post-processing block can used the

reconstructed video sequence for adaptation of the sequence for display. Finally,

the video sequence is ready for viewing in viewing device.

Within a given codec standard, the decoder algorithms are firmly defined,

the scope of the standard is generally based around the decoder [4].

Figure 2.1: Scope of video compression standardization [4]

7

Encoders within a given standard can vary from vendor to vendor, or even from

product to product from a single vendor. This variation is caused by how the

designer want to develop certain part of standard using certain tool. Several

categories which can be considered during designing including device

capabilities, commercial factors, design and development, physical device

characteristics, and flexibility.

Encoders do follow these phases and illustrated [5]:

a. Devide each frame into blocks of pixels so that processing can occur

simultaneously at a block level.

b. Identify and leverage spatial redundancies that exist within a frame by

encoding some of the original blocks via spatial prediction and other

coding techniques.

c. Exploit temporal linkages that exist between blocks in subsequent frames

so that only the changes between frames are encoded. This is

accomplished via motion estimation vectors that predict qualities of the

target block.

d. Identify and take advantage of any remaining spatial redundancies that

exist within a frame by encoding only the differences between original and

predicted blocks through quantization, transform, and entropy coding.

During the encoding process, different types of video frames, such as I-

frames, P-frames, and B-frames, may be used by an encoder. When these different

frame types are used in combination, video bit rates can be reduced by looking for

temporal (time-based) and spatial redundancy between frames that create

extraneous information [2]. In this way, objects, or more precisely, pixels or

blocks of pixels, that do not change from frame to frame or are exact replicas of

pixels or blocks of pixels around them, can be processed in an intelligent manner

[5].

With motion compensation algorithms implemented in the encoding

process, the codec is able to take into account the fact that most of what makes up

a new frame in a video sequence is based on what happened in previous frames

[2]. So at a block by block level, the encoder can simply code the position of a

matching object in the frame and where it is predicted to exist in the next frame

8

via motion vector. The motion vector takes fewer bits to encode than an entire

block and thereby saves bandwidth on the encoded stream.

Figure 2.2: Block-based motion compensation [2]

An I-frame or intra frame, is a self-contained frame that can be

independently decoded without reference to preceding or upcoming images. The

first image in a video sequence is always an I-frame and these frame act as

starting points if the transmitted bit stream is damaged. I-frames can be used to

implement fast-forward, rewind and scene change detection [6]. The lack of I-

frames is that they consume many more bits and do not offer compression

savings. On the other hand, I-frames do not generate many artifacts because they

respresent a complete picture.

A P-frame, which stands for predictive inter frame, references earlier I- or

P-frames to encode an image. P-frames typically require fewer bits than I-frames,

but are susceptible to transmission errors because of their significant dependency

on earlier reference frames [5].

A B-frames, derived from bi-predictive inter frame, is a frame that

references both an earlier reference frame and a future frame [5]. A P-frames may

only reference preceding I- or P-frames, while a B-frame may reference both

preceding and succeeding I- or P-frames.

9

Figure 2.3: A typical sequence with I-, B-, and P-frames [2]

These are the basic techniques and objectives of video compression. There are

other algorithm involved that transform information about video into fewer and

fewer transmitted bits. For futher information can be referred in [7].

2.3 Development of HEVC

HEVC is developed based on previous standard H.264 and both are the

output of a joint effort between the ITU-T’s Video Coding Experts Group and the

ISO/IEC Moving Picture Experts Groups (MPEG). The ITU-T facilitates creation

and adoption of telecommunications standards and the ISO/IEC manages

standards for the electronics industries. HEVC is designed to evolve the video

compression and intends to [6]:

 Deliver an average bit rate reduction of 50% for a fixed video quality

compared to H.264

 Deliver higher quality at same bit rate

 Define a standard syntax to simplify implementation and maximize

interoperability

 Remain network friendly –i.e. wrapped in MPEG Transport Streams

10

B
IT

 R
A

TE

1995 2005 2015

MPEG-2
1994

AVC
2003

HEVC
2013

50% bit rate
Saving target

50% bit rate
Saving target

Figure 2.4: Expected compression bit rates at time of standardization

The standard of HEVC lays the foundation by defining 8-bit and 10-bit 4:2:0

compression, which is relevant to the majority of video distribution to connected

devices. Complete informations regarding the development of HEVC standard can

be found in [8].

2.4 Application Impact [2]

In the mobile straming market, the HEVC bit rate reduction of 30 – 50% to

achieve comparable quality to H.264 is realized in the cost savings of delivery

across networks. Mobile operators will not need to deliver as much data for a

given quality level, making for lower costs and more reliable playback, of course,

assumes the device’s hardware can smoothly decode HEVC.

HEVC also aligns with the push towards high-resolution Ultra HD 4K and

8K video in the mainstream market. With 4K resolution featuring four times the

number of pixels as 1080p, the efficiencies provided by HEVC make broadcasting

4K much more feasible.

Media companies with significantly-sized content libraries will also feel the

positive impact of bit rate savings. As their storage effort keep pace with

multiscreen consumer demand, these companies will increase their infrastructure.

With HEVC halving file sizes, transitioning to the new codec will stretch storage

capacity twice as far going forward.

11

2.5 How HEVC is Different

The primary goal of the new HEVC standard is to provide the tools

necessary to transmit the smallest amount of information necessary for a given

level of video quality. The underlying approach to HEVC is very similar to

previously adopted standards such as MPEG-2 and H.264. Simply put: it is much

more of the same. While there are a number of differences between H.264 and

HEVC, two stand out: increased modes for intra prediction and refined

partitioning for inter prediction.

Intra Prediction and Coding [5]

In the H.264 standard, nine modes of prediction exist in a 4x4 block for

intra prediction within a given frame and nine modes of prediction exist at the 8x8

level. It’s even fewer at 16x16 block level, dropping down to only four modes of

prediction. Intra prediction attempts to estimate the state of adjacent blocks in a

direction that minimizes the error of the estimate. In HEVC, a similar technique

exist, but the number of possible modes is 35 – in line with the additional

complexity of the codec. This creates a dramatically higher number of decision

points involved in the analysis, as there are nearly two times the number of spatial

intra-prediction sizes in HEVC as compared to H.264 and nearly four times the

number of spatial intra-prediction directions.

Figure 2.5: H.264 vs HEVC intra prediction modes

12

Inter Prediction and Coding [5]

H.264 uses block-based motion compensation with adjustable block size

and shape to look for temporal redundancy across frames in a video. Motion

compensation is often noted as the most demanding portion of the encoding

process. The degree to which it can be implemented intelligently within the

decision space has a major impact on the efficiency of the codec. Again, HEVC

takes this to a new level.

HEVC replaces the H.264 macroblock structure with a more efficient, but

also complex, set of treeblocks. Each treeblock can be larger up to 64x64 than the

standard 16x16 macroblock, and can be efficiently partitioned using a quadtree.

This system affords the encoder a large amount of flexibility to use large

partitions when they predict well and small partitions when more detailed

predictions are needed. This leads to higher coding efficiency, since large

prediction units up to and including the size of the treeblock can be cheaply coded

when they fit the content. By the same action, when some parts of the treeblock

need more detailed predictions, these can also be efficiently described.

Figure 2.6: An example of a 16x16 H.264 macroblock vs MxM HEVC partitions

13

Figure 2.7: H.264 macroblock partitions for inter prediction

Figure 2.8: HEVC quadtree coding structure for inter prediction

2.6 HEVC and Parallel Processing [7]

HEVC has been designed in improving performance in parallel processing.

This includes enhancements for both encoding and decoding. Some of the specific

improvements are found in:

 Tiles

 The in-loop deblocking filter

 Wavefront parallel processing

Tiles allows for a picture to be devided into a grid of rectangular regions that can

be independently decoded and encoded simultaneously. They also enable random

14

access to specific regions of a picture in a video stream.

In the case of the in-loop deblocking filter, it has been defined such that it

only applies to edges aligned on an 8x8 grid in order to reduce the number of

interactions between blocks and simplify parallel processing methodologies. The

processing order has been specified as horizontal filtering on vertical edges

followed by vertical filtering of horizontal edges. This allows for multiple parallel

threads of deblocking filter calculations to be run simultaneously.

Finally, wavefront parallel processing (WPP) allows each slice to be broken

into coding tree units (CTUs) and each CTU unit can be decoded based on

information from the preceding CTU. The first row is decoded normally but each

additional row requires decisions be made in the previous row.

15

Chapter 3

ZYNQ

This chapter cover the essential information about the platform we used in the

project; Zynq. Before getting started with the project, we have to know how Zynq

work and how to use it. The contents of this chapter includes an overview of System-

on-Chip with Zynq, the main architecture of Zynq, the development of Zynq, IP

block design, and also a description of high level synthesis (HLS) and its tool like

Vivado HLS.

3.1 Overview of System-on-Chip with Zynq [1]

Xilinx gave their new device the name Zynq, because it represents a processing

element that can be applied to anything. Zynq devices are intended to be flexible and

form a compelling platform for a wide variety of applications, just as the metal zync

can be mixed with various other metals to form alloys with different desirable

properties.

The defining feature of Zynq is that it combines a dual-core ARM Cortex-A9

processor with traditional Field Programmable Gate Array (FPGA) logic fabric.

Therefore its features, capabilities, and potential applications are somewhat different

to those of an FPGA or processor in isolation. In Zynq, the ARM Cortex-A9 is an

application grade processor, capable of running full operating systems such as Linux,

while the programmable logic is based on Xilinx 7-series FPGA architecture.

Meanwhile, Zynq as System-on-Chip raising benefits from simplifying the system to

a single chip including reductions in physical size and overall cost. System-on-Chip

(SoC) is a rapidly growing field in Very Large Scale Integrated circuits (VLSI)

design. A complex system can be integrated into a single chip via SoC design,

achieving lower power, lower cost, and higher speed than traditional board level

design.

16

3.2 Zynq Device

The general architecture of the Zynq comprises two sections: the Processing

System (PS), and the Programmable Logic (PL). These can be used independently or

together. However, the most compelling use model for Zynq is when both of its

constituent parts are used in conjunction. The architecture of Zynq is reviewed over

this section, starting with the PS and PL. Extended information can be found in the

Zynq-7000 Technical Reference Manual [10].

3.2.1 Processing System

 All Zynq devices have the same basic architecture, and all of them contain, as

the basis of the processing system, a dual-core ARM Cortex-A9 processor.

Importantly, the Zynq processing system encompasses not just the ARM processor,

but a set of associated processing resources forming an Application Processing Unit

(APU), and further peripheral interfaces, cache memory, memory interfaces,

interconnect, and clock generation circuitry [9]. A block diagram showing the

architecture of the PS is shown in Figure 3.1, where the APU is highlighted.

Application Processing Unit (APU) [1]

The APU is primarily comprised of two ARM processing cores, each with

associated computational units: a NEON™ Media Processing Engine (MPE) and

Floating Point Unit (FPU); a Memory Management Unit (MMU); and a Level 1

cache memory (in two sections for instructions and data). The APU also contains a

Level 2 cache memory, and a further On Chip Memory (OCM). Finally, a Snoop

Control Unit (SCU) forms a bridge between the ARM cores and the Level 2 cache

and OCM memories; this unit also has some responsibility for interfacing with the PL.

From a programming perspective, support for ARM instructions is provided

via the Xilinx Software Development Kit (SDK) which includes all necessary

components to develop software for deployment on the ARM processor. The

compiler supports the ARM and Thumb instruction sets (16-bit or 32-bit), along with

17

8-bit Java bytecodes (used for Java Virtual Machines) when in the appropriate state.

For further information about instruction set options and details can be found in [11].

Figure 3.1: Zynq processing system [1]

The ARM Model

ARM’s business model is to license Original Equipment Manufacturers

(OEMs), such as Xilinx, to utilise ARM processor IP within the devices they develop

(in this case, Zynq). The Zynq includes the Cortex-A9, which is one of a range of

available processors, and this is based on a specific profile (A) of a specific

architecture (ARM v7). For the helpful overview of this structure and methodology

can be referred in [12].

18

Processing System External Interfaces

Communication between the PS and external interfaces is achieved primarily

via the Multiplexed Input/Output (MIO). Certain connections can also be made via

the Extended MIO (EMIO), which is not a direct path from the PS to external

connections, but instead passes through and shares the I/O resources of the PL.

The available I/O includes standard communications interfaces, and General

Purpose Input/Output (GPIO) which can be used for a variety of purposes including

simple buttons, switches, and LEDs. Extensive further information about each of

these interfaces is available in the Zynq-7000 Technical Reference Manual [10].

3.2.2 Programmable Logic [1]

The second principal part of the Zynq architecture is the programmable logic.

This is based on the Artix-7 and Kintex-7 FPGA fabric. The PL part of the Zynq

device is shown in Figure 3.2, with various features highlighted. The PL is

predominantly composed of general purpose FPGA logic fabric, which is composed

of slices and Configurable Logic Blocks (CLBs), and there are also Input/Output

Blocks (IOBs) for interfacing.

Features of the PL (shown in Figure 3.2) can be summarised as follows:

 Configurable Logic Block (CLB) ; CLBs are small, regular groupings of

logic elements that are laid out in a two-dimensional array on the PL, and

connected to other similar resources via programmable interconnects. Each

CLB is positioned next to a switch matrix and contains two logic slices.

 Slice ; A sub-unit within the CLB, which contains resources for implementing

combinatorial and sequential logic circuits. Zynq slices are composed of 4

Lookup Tables, 8 Flip-Flops, and other logic.

 Lookup Table (LUT) ; A flexible resource capable of implementing a logic

function of up to six inputs; a small Read Only Memory (ROM); a small

Random Access Memory (RAM); or a shift register. LUTs can be combined

19

together to form larger logic functions, memories, or shift registers, as

required.

Figure 3.2: The logic fabric and its constituent elements [1]

 Flip-flop (FF) ; A sequential circuit element implementing a 1-bit register,

with reset functionality. One of the FFs can optionally be used to implement a

latch.

 Switch Matrix ; A switch matrix sits next to each CLB, and provides a

flexible routing facility for making connections between elements within a

CLB; and from one CLB to other resources on the PL.

20

 Carry logic; Arithmetic circuits require intermediate signals to be propagated

between adjacent slices, and this is achieved via carry logic. The carry logic

comprises a chain of routes and multiplexers to link slices in a vertical column.

 Input / Output Blocks (IOBs); IOBs are resources that provide interfacing

between the PL logic resources, and the physical device ‘pads’ used to

connect to external circuitry. Each IOB can handle a 1-bit input or output

signal. IOBs are usually located around the perimeter of the device.

Although it is useful for the designer to have a knowledge of the underlying

structure of the logic fabric, in most cases there is no need to specifically target these

resources. The Xilinx tools will automatically infer the required LUTs, FFs, IOBs etc.

from the design, and map them accordingly.

3.2.3 Processing System – Programmable Logic Interfaces

As mentioned in the previous section, the appeal of Zynq lies not just in the

properties of its constituent parts, the PS and the PL, but in the ability to use them in

tandem to form complete, integrated systems. The key enabler in this regard is the set

of highly specified AXI interconnects and interfaces forming the bridge between the

two parts. There are also some other types of connections between the PS and PL, in

particular EMIO. Extended information can be found in [10].

3.2.4 Comparison: Zynq vs Standard Processor

A wide variety of processors are available and their performances can be

evaluated and compared using a standard benchmark. It is particularly convenient that

the website of the Embedded Microprocessor Benchmark Consortium (EEMBC)

provides a database of submitted CoreMark scores [6]. Through this, it may be

confirmed that Zynq compares favourably with other implementations of the ARM

Cortex-A9 architecture.

21

3.3 Zynq System-on-Chip Development

In this section we will describe the Zynq design flow that concentrate on

software development in general. This section explore the important concept of

hardware/software partitioning, Zynq software development, and profiling.

3.3.1 Hardware/Software Partitioning [1]

Hardware/software partitioning, also known as hardware/software co-design,

is an important stage in the design of embedded systems and, if well executed, can

result in a significant improvement in system performance. The process of

hardware/software partitioning involves deciding which system components should

be implemented in hardware and which should be implemented in software. The

reason behind the partitioning process is that hardware components, FPGA

programmable logic fabric, are typically much faster due to the parallel processing

nature of FPGA devices. Software components, on the other hand, implemented on a

GPP or a microprocessor, are both to create and maintain, but are also slower due to

the inherent sequential processing. The design flow for hardware/software

partitioning in Zynq SoC is shown in Figure 3.3.

Traditionally to decide which of the design modules would be implemented in

hardware and which would be realised as software was carried out manually by

systems designer. More recently, a number of algorithms and techniques have been

developed which enable the automation of the partitioning decision process for a

variety of different design environments. Another factor to consider when deciding

whether a process should be implemented in hardware or software, is the number

format which will be used. For further information about hardware/software

partitioning can be referred in [1], [13].

22

Requirements

Specifications

System Design

Software/Hardware
Partitioning

Hardware Development
(VIVADO)

System design
IP Integration
Constraints
Interfacing

Floorplanning
Implementation

Testing...

Software Development
(SDK)

Board support
Software design

Debugging
OS Integration
HW Interfacing

System booting

System integration and final testing

Embedded co-debug
(hardware/software co-trigger)

iteration

Sources of IP:
VHDL/Verilog

Vivado HLS
IP Catalogue

…..

Sources of
software:

Drivers/Libraries
Custom code
Standard OS

…...

Figure 3.3: The design flow for Zynq SoC

3.3.2 Profiling [1]

Profiling is a form of program analysis that is used to aid the optimisation of a

software application. It is used to measure a number of properties of application code,

including:

 Memory usage

 Execution time of function calls

 Frequency of function calls

 Instruction usage

23

Profiling can be performed statically (without executing the software program) or

dynamically (performed while the software application is running on a physical or

virtual processor). Static profiling generally performed by analysing the source code,

or sometimes the object code, whereas dynamic profiling is an intrusive process

whereby the execution of a program on a processor is interrupted to gather

information.

The use of profiling allows us to identify bottlenecks in the code execution

that may be a result of inefficient code, or poor communication between function

interactions with a module in the PL or another function within software. It could also

be the case that the algorithm may more suitable for implementation in hardware.

Once identified, the bottlenecks can be optimised by rewriting the original software

function or by moving it to the PL for acceleration.

3.3.3 Software Development Tools

Software application development flows for the Zynq-7000 AP SoC devices

allow the user to create software applications using a set of Xilinx tools, as well as

utilising a wide range of tools from third-party vendors which target the ARM

Cortex-A9 processors [14].

Xilinx provides design tools for the development and debugging of software

applications for Zynq-7000 AP SoC devices. Provided software includes: software

IDE, GNU-based compiler toolchain, JTAG debugger, and various other associated

utilities.

Xilinx provides two hardware configurations tool which provide support for the

Zynq-7000 AP SoC devices. These are: Vivado IDE design suite IP integrator and

ISE design suite embedded development kit (EDK) Xilinx platform studio (XPS).

Another software development tools that was provided by Xilinx is Software

Development Kit (SDK). Xilinx SDK provides an environment where fully

functioning software application can be created, compiled, and debugged all within

one tool. SDK includes GNU-based compiler toolchain (GCC compiler, GDB

24

debugger, utilities, and libraries), JTAG debugger, flash programmer, driver for

Xilinx’s IP, etc. All of the features that have been mentioned are accessible from

within the Eclipse-based IDE, which incorporates the C/C++ Development Kit

(CDK). For further and complete information can be referred in [14].

3.4 IP Block Design

IP block or IP core is a hardware specification that can be used to configure the

logic resources of an FPGA or for other silicon devices, physically manufacture an

integrated circuit [15]. In term of IP cores, there are two types: hard IP cores and soft

IP cores. Further information can be found in [1].

3.4.1 IP Core Design Methods

Xilinx provide a number of tools which enable the creation of custom IP blocks

for use in our own embedded system designs. There are HDL, System generator,

HDL coder, and Vivado High Level Synthesis. For this project, we use Vivado High

Level Synthesis for designing the IP core. Figure 3.4 show an overview of Vivado

HLS design flow. Vivado HLS is a tool provided by Xilinx, as a part of the Vivado

Design Suite, which is capable of converting C-based design (C, C++ or SystemC)

into RTL design files (VHDL/Verilog or System C) for implementation of Xilinx All

Programmable devices. Vivado HLS will be described in detail in the next section.

3.5 High-Level Synthesis

Before proceeding to the description of Vivado HLS tool, it is important to

establish some information about high level synthesis.

Back in the early 1990s started the idea of changing the hardware design

methods, looking for another programming language that can substitute to the tedious

Hardware Description Languages (HDL). The principal limitation of handwritten

Register Transfer Level (RTL) was and continues being the time the designers spend

writing code, and because of this, High Level Synthesis (HLS) is becoming more

25

relevant and has emerged as a possible substitution of the RTL description, to shorten

the development time of new hardware devices.

Figure 3.4: Vivado HLS flow [1]

HLS is a process that transforms an algorithmic description of a desired

behavior into a hardware implementation. The input code is analyzed, architecturally

constrained and scheduled to generate RTL. This means that the designer can use a

higher level functional description, avoiding some hardware details, to get the same

design with the same architecture. The HLS flow uses a serie of steps which are

allocation, scheduling, binding and RTL generation. Allocation is the step deciding

how much resources are needed; scheduling divides the software behavior into the

steps that define the finite state machine (FSM); binding maps the variables and

instructions to hardware components; and finally the RTL generation creates HDL

code that can be synthesized. These steps make debugging of HLS tools complicated.

For example a small change in the schedule produces a significant impact on the

generated RTL.

26

The languages uses for HLS are predominantly C-based, including C, C++,

and SystemC as supported in Vivado HLS.

3.5.1 Vivado HLS

Vivado HLS transforms a C, C++ or SystemC design into an RTL implemen-

tation, which can then be synthesised and implemented onto the programmable logic

of a Xilinx FPGA or Zynq device [17].

In performing HLS, the two primary aspects of the design are analysed:

 The interface of the design, i.e. its top-level connections, and

 The functionality of the design, i.e. the algorithm that it implements.

In Vivado HLS design, the functionality is synthesised from the input code

via the process of Algorithm Synthesis. The interface is created using one of two

alternatives: it can either be manually specified, or inferred from the code (Interface

Synthesis). For brief description about Algorithm Synthesis and Interface Synthesis

can be referred in [17]. The full design flow of Vivado HLS is shown in Figure 3.5.

The stages used in the design flow includes inputs to the HLS process, functional

verification, High-level synthesis, C/RTL cosimulation, evaluation of implementation,

design iterations, and RTL export, which each descriptions can be found in [17].

27

Figure 3.5: Vivado HLS design flow [1]

Vivado HLS tool provides both Graphical User Interface (GUI) and a

Command Line Interface (CLI), which may be used separately or in conjunction with

each other. Figure 3.6 provides an overview of Vivado HLS GUI. The GUI actually

provides three different perspectives: Debug, Synthesis, and Analysis.

28

Figure 3.6: Vivado HLS GUI perspectives

When using traditional design methods for FPGAs, it is necessary to specify

data types carefully. This aspect is equally important in Vivado HLS as compared to

other methods such as HDL development or block-based design, even if the data

types at the point of design entry are different. Understanding the available C, C++

and SystemC data types, and their synthesis, is fundamental to developing effective

and efficient designs.

29

Chapter 4

IMPLEMENTATION

In this chapter we are going to explain the implementation of HEVC codec

on Zynq development platform. The explanations start with the implementation of

HEVC codec to Zynq PS, then the implementation as hardware/software co-

design, and the implementation to Zynq PL. Those three implementations is our

effort to make hardware encoder for HEVC. Although some of implementation

can not be finished yet, but in this chapter I try to give all the explanation for all

the experiments that I have tried during the work. The problems and the solutions

are also written in each designs step.

4.1 Design Tools

To start designing for Zynq, we need to obtain the appropriate design tools

from Xilinx. These can be ordered on DVD, or downloaded from Xilinx website.

There are a number of design tools available, but we need only these:

 Vivado Design Suite (version 2014.1 or later)

 License Management Tools (2014.1 Utilities or later)

We need also to install some properties from the Xilinx Tools depending on our

requirements.

4.2 System Setup and Requirements

As general statement from Xilinx, recent versions of Windows and selected

versions of Linux are supported. For this project, we use Ubuntu 14.04 LTS as

operating system. When using Vivado, it is important that the operating system

grants the user write permissions for all directories containing design files.

For the hardware specification of the development computer, it is

particularly notable that 32-bit operating systems are not suitable for targeting the

two largest Zynq devices. At least 4GB of RAM is recommended for the three

smaller devices, while the largest may require up to 12GB of RAM. So we use

30

CPU Intel core i7 with 4GB RAM (64-bit system). The computer hardware

configuration also requires a USB port for programming the Zynq over JTAG,

and ideally another for PC-Zynq communication via the UART and Terminal

application for debugging designs.

For prototyping and testing the design, we use the Xilinx ZC702 Rev 1.0

evaluation board. A development board hosts a Zynq device, together with

various other resources such as power circuitry, external memory, interfaces for

programming and communication, simple user I/O such as buttons, LEDs,

switches, and usually a number of other peripheral interfaces and connectors.

During the debugging stage, designs developed on the computer using the Vivado

design suite can be downloaded onto the development board using a Joint Test

Action Group (JTAG) or ethernet connection, then tested in hardware using

peripherals and external interfaces if required. Debugging may include, for

instance: using a debugger to interact with the processor and monitor its

behaviour; user interaction with the design running on the chip via a USB-UART

connection and the Terminal interface on the PC; and by executing hardware-in-

the-loop simulations with the aid of an ethernet connection.

Figure 4.1 provide a graphical summary of a typical setup for getting started

with Zynq.

Figure 4.1: Zynq development setup [1]

31

4.3 Reference Software

Reference software take an important role as source code for this project.

Up to this date, several HEVC encoders have been released but most of them are

commercial products whose features and operating principles are kept confidential.

Therefore, we use open-source encoders for this project.

 Among the existing open-source HEVC encoders, only HEVC test model

(HM), x265, f265, and Kvazaar HEVC encoder are under active development.

HM as an HEVC reference codec is able to achieve the best coding efficiency

among the existing HEVC encoders, but its object-based C++ implementation

results in poor performance. Hence, it is targeted for research and conformance

testing rather than practical encoding. The commercially funded x265 is the most

well-known practical open-source HEVC encoder. It is based on HM C++ source

code which has been enhanced by extensive assembly optimizations,

multithreading, and techniques from the open-source x264 encoder. f265 is

another industrial HEVC encoder. It is implemented in C with assembly

optimizations. Although the source codes for these two commercially led projects

are under open-source licenses, contributors to these projects must sign an

agreement giving the companies copyright to their work. Requiring such

agreements leaves room for non-commercial projects, like Kvazaar, that do not

require signing separate agreements to participate. Kvazaar is an academic open-

source HEVC encoder initiated and coordinated by Ultra Video Group [27]. It is

licensed under GNU GPLv2 license [24].

Considering the usage of all open-source HEVC encoders, I initiate to use

HM and Kvazaar as reference software for this project.

4.3.1 HEVC Test Model (HM)

We use HM software encoder version 16.06 to encode and decode a video

file. This reference software is useful to establish and demonstrate the capabilities

of the standard. The code is made in C++ language. Before we can use this

reference software, we have to install and compile the project files. Various

project files are provided for the development environments. There are also a lot

of sample configuration files provided by the reference software. For this project,

32

we use encoder_intra_main.cfg as the configuration. HM is used in

implementation to Zynq PS and Zynq PL, independently.

4.3.2 Kvazaar

Kvazaar uses a reverse design approach compared with x265. It has been

developed from HM primarily as a reference for its encoding scheme and

individual algorithm implementations, but it adopts completely new data and

function call tree structures. Kvazaar is developed in C. This more hardware-

oriented approach eases source code acceleration, portability, and parallelization

[24]. The source codes and issue tracker for Kvazaar can be found on its GitHub

page [26]. Kvazaar version 0.72 is used in this experiments.

4.4 System Designs

In this section we are going to explain the system designs we have used in

the project. We have three system designs because we try to experiment the close

possibility of HEVC which can be implemented and work properly on Zynq

ZC702. Each of designs gives the explanation about the trials and errors during

the work. The following section will discuss how I implement open-source HEVC

to Zynq PS and Zynq PL, independently, and as hardware/software co-design.

4.4.1 HM on Zynq SoC Processing System

We will begin using Xilinx Vivado Design Suite to develop an embedded

system (codec) using the Zynq 7000 AP SoC Processing System (PS). As we

mentioned before, Zynq SoC consists of ARM Cortex-A9 hard intellectual

property (IP) and programmable logic (PL). This offering can be used in two

ways:

 The Zynq SoC PS can be used in a standalone mode, without attaching any

additional fabric IP.

 IP cores can be instantiated in fabric and attached to the Zynq PS as a PS

+PL combination.

33

In this design, I implement HM to Zynq PS as a standalone application. Vivado

Design Suite is used to create a project with an embedded processor system as the

top level. Figure 4.2 ilustrate the SDK software development flow for this design.

Hardware platform exported from
Vivado to SDK

Create an SDK workspace

Create a BSP

Create a software project

Develop the software application
(HM)

Generate a linker script

Download the hardware bitstream
to the FPGA device

Profile software applicationDebug software application Run software application

Figure 4.2: SDK software development flow

From Figure 4.2 I have knowledge that I won’t be able to import the open-source

HM directly into a Xilinx SDK workspace unless I developed the existing project

in Xilinx SDK. So first, I create a fresh workspace and create a Xilinx SDK

Makefile project from our existing source code. Then I can edit the resulting

makefile as I need to build the hierarchies. Also, I need to include the hardware

platform project, created in Vivado, that describes the hardware the embedded

software will run on (the available resources and peripherals on the Zynq ZC702).

We can summarise the step for making this design as follow:

34

Step 1: Create a new project

To create a new project in Vivado design tool, we need to make selections

in each of the wizard screen. Table 4.1 show informations to create a new project

using this design.

Tabel 4.1: Parameter to create a new project

Wizard Screen System Property Setting or Command to Use

Project name Project name edt_tutorial

Project location /opt/Xilinx/Vivado/……/bin

Create project

subdirectory

Leave this checked

Project type Specify the type of

sources for the design.

RTL Project

Do not specify sources at

this time

Leave this unchecked

Add Sources Do not make any changes to this screen

Add existing IP Do not make any changes to this screen

Add constraints Do not make any changes to this screen

Default part Select Boards

 Board Zynq-7 ZC702 Evaluation

Board

New project

summary

Project summary Review the project summary

before clicking Finish to create

the project

Step 2: Create an Embedded Processor Project

We will now use the Add Sources wizard to create an embedded processor

project. We can use the information in the Table 4.2 to make selections in the

Create Block Design wizard. The Diagram window view should automatically

appear with a message that states that this design is empty. To get started, add

some IP from the catalog. In the search box, we can type "zynq" to find the Zynq

35

device IP options, and double-click the ZYNQ7 Processing System IP to add it to

the Block Design. Then the Zynq SoC processing system IP block appears in the

Diagram view.

Table 4.2: Parameter to create block design wizard

Wizard Screen System Property Setting or Command to Use

Create Block Design Design name tutorial_bd

 Directory <Local to Project>

 Specify source set Design Sources

Step 3: Managing the Zynq7 Processing System in Vivado

We have added the processor system to the design, then we can begin by

managing the various options available for the Zynq7 Processing System.

When we double-click the ZYNQ7 Processing System block in the Block

Diagram window, the Re-customize IP dialog box opens. By default, the

processor system does not have any peripherals connected. Connections are

symbolized with check marks. We use a preset template created for the ZC702

board. This configuration wizard enables many peripherals in the Processing

System with some MIO pins assigned to them as per the board layout of the

ZC702 board. For example, UART1 is enabled and UART0 is disabled. This is

because UART1 is connected to the USB-UART connector through UART to the

USB converter chip on the ZC702 board. The check marks that appear next to

each peripheral name in the Zynq device block diagram signify the I/O

Peripherals that are active. After Vivado implements the changes that we made to

apply to ZC702 board presets, the message stating that Designer assistance is

available. We can use Run Block Automation link to accept the default processor

system options and make default pin connections.

Step 4: Validating the Design and Connecting Ports

To validate the design, alternatively, we can press the F6 key. When a

critical error message appears, it indicates that M_AXI_GP0_ACLK must be

36

connected. From Block Diagram view of the ZYNQ7 Processing System, we can

hover our mouse over the connecter port until the pencil icon appears. Click the

M_AXI_GP0_ACLK port and drag to the FCLK_CLK0 input port to make a

connection between the two ports. Then validate the design again to ensure there

are no other errors. Figure 4.3 show the ZYNQ7 Processing System with

Connection.

Figure 4.3: ZYNQ7 processing system with connection

In the Block Design view, under the Sources tab, we can create HDL

wrapper file for the processor subsystem. We can select Let Vivado manage

wrapper and auto-update, then select Generate Output Products. This step builds

all required output products for the selected source. For example, constraints do

not need to be manually created for the IP processor system. Vivado automatically

generates the .XDC file for the processor sub-system when Generate Output

Products is selected. We can find the output products that we just generated in IP

Source directory.

Step 5: Synthesizing the Design, Running Implementation, and Generating

the Bitstream

We can now synthesize the design. In the Flow Navigator pane, under

Synthesis, we can click Run Synthesis, Run Implementation, and Generate

Bitstreams. After the Bitstream generation completes, export the hardware and

launch the Software Development Kit (SDK).

37

Step 6: Exporting to SDK

We can launch SDK from Vivado with the Export Hardware command.

Make sure that the Include bitstream check box is checked only when design has

PL design and bitstream generated, and that the Export to field is set to the default

option of <Local to Project>. Notice that when SDK launches, the hardware

description file is automatically loaded. The system.hdf tab shows the address

map for the entire Processing System.

So far, Vivado has exported the hardware specifications to the selected

workspace where software development will take place. If <Local to Project> was

selected, then Vivado created a new workspace in the Vivado project folder. The

name of the workspace is <project_name>.sdk. In this project, the workspace

created is /opt/Xilinx/Vivado/…/bin/edt_tutorial/edt_tutorial.sdk.

The Vivado design tool exported the Hardware Platform Specification for

the design (system.hdf) to SDK. In addition to system.hdf, the following

additional files are exported to SDK:

 design_1_bd.tcl

 ps7_init.c

 ps7_init.h

 ps7_init.html

 ps7_init.tcl

 ps7_init_gpl.c

 ps7_init_gpl.h

 system.hdf

The system.hdf file opens by default when SDK launches. The address map of

the system read from this file is shown by default in the SDK window. The

ps7_init.c, ps7_init.h, ps7_init_gpl.c, and ps7_init_gpl.h files

contain the initialization code for the Zynq SoC Processing System and

initialization settings for DDR, clocks, phase-locked loops (PLLs), and MIOs.

SDK uses these settings when initializing the processing system so that

applications can be run on top of the processing system. Some settings in the

processing system are fixed for the ZC702 evaluation board. Next we can start

developing the software for this project using SDK.

38

Step 7: Running the HM Application

We will learn how to manage the board settings, make cable connections,

connect to the board through PC, and run a HM software application in SDK.

We can connect the power cable to the board using digilent cable with the

following SW10 switch setting: bit-1 is 0 (switch open), bit-2 is 1 (switch closed).

Then connect USB cable to connector J17 on the target board with the Linux host

machine for USB to serial transfer. And the ZC702 board is ready to switch on. In

the SDK, we can ensure the workspace path to the project file, which is

/opt/Xilinx/Vivado/…/bin/edt_tutorial/edt_tutorial.sdk.

Figure 4.4: ZC702 board power switch

Now we can make serial connection. First we have to know which port is used to

connect with board. For checking the active port, we can type dmesg in terminal

Linux. A lot of active port will be shown. We can see the name of port that used

to connect to the board. Then we can make serial connection through SDK. In

terminal SDK, we can modify the setting to make the connection.

 We need to create a new application project in the SDK. We can use the

information in the Table 4.3 to make selections in the wizard screens. Then SDK

creates the HM_encoder application project and HM_encoder_bsp board

support package (BSP) project under the project explorer. It automatically

compiles both and creates the ELF file.

39

Table 4.3: Parameter to create a new application in SDK

Wizard Screen System Properties Setting or Command to Use

Application

Project

Project name HM_encoder

 Use default location Select this option

Hardware platform tutorial_bd_wrapper_hw_platform_0

Processor PS7_cortexa9_0

OS platform standalone

Language C++

Board Support

Package

Select Create New and provide the

name of HM_encoder_bsp

Templates Available templates Empty Application

The board support package (BSP) is the support code for a given hardware

platform or board that helps in basic initialization at power up and helps software

applications to be run on top of it. It can be specific to some operating systems

with bootloader and device drivers [30].

Standalone is a simple, low-level software layer. It provides access to basic

processor features such as caches, interrupts, and exceptions, as well as the basic

processor features of a hosted environment. These basic features include standard

input/output, profiling, abort, and exit. It is a single threaded semi-hosted

environment. The application we ran in this section was created on top of the

Standalone OS. The BSP, software application targets, is selected during the New

Application Project creation process. If we would like to change the target BSP

after project creation, we can manage the target BSP by right-clicking the

software application and selecting Change Referenced BSP [30].

After the application project has been created, we can import the open-

source HM to the existing application project. Open-source HM consist of so

many libraries. In the linux, we can easily build the HM using the makefile that

already available in there. Makefile is used to link all the libraries in the code. In

40

the SDK, we need to create our own makefile. So we can import the makefile from

open-source HM to SDK.

Figure 4.5: Import existing code to SDK

We can then select Run Configurations. While doing this step I face some errors

in linker and library path. There were some missing libraries in error notification.

The solution is to make the right path and linking it to our project. It took some

times to solve this problems. Another problem is compiler. The compiler seems

did not work when I try to run the program. After checking the development

environment of the system design, I found that I forgot to install Xilinx Toolchain

which is Sourcery CodeBench Lite Edition for Xilinx Cortex-A9 Compiler

Toolchain. Next we can run the project application. A message appears asking if

we want to launch the application even though configuration of the FPGA is not

done. We can click OK. HM_encoder software application appears on the serial

communication utility in Terminal 1 with 8 binary as HEVC codec. Those binary

can then be run with video file to test the ability of HM encoder as HEVC

standard.

41

4.4.2 Kvazaar on Hardware/Software co-design

In this section, I try to implement open source Kvazaar HEVC encoder to

Zynq 7000 AP SoC as hardware/software co-design using Vivado HLS. The

source code I use for this design is Kvazaar because its less complex than HM and

Kvazaar use C language that make it more hardware-friendly. In this experiment, I

focus on all-intra coding configuration of Kvazaar. Figure 4.6 show a state

machine model of Kvazaar HEVC intra encoder to illustrate its computational

complexity. This design is intended to focus on a rapid implementation of the

HEVC encoder through a HLS flow.

Figure 4.6: Kvazaar HEVC intra encoder modeled as a state machine

42

Kvazaar intra encoder supports HEVC all-intra coding of 8-bit video with 4:2:0

chroma sampling. The parameter listed in Table 4.4 is used in this design. We use

Kvazaar version 0.72 for this experiment.

Table 4.4: Kvazaar HEVC coding parameters used in this design

Features Kvazaar HEVC intra encoder

Profile Main

Internal bit depth, color format 8, 4:2:0

Coding modes Intra

Sizes of luma coding blocks 64x64, 32x32, 16x16, 8x8

Sizes of luma transform blocks 32x32, 16x16, 8x8, 4x4

Sizes of luma prediction blocks 64x64, 32x32, 16x16, 8x8, 4x4

Intra prediction modes DC, planar, 33 angular

Mode decision metric SAD

RDO Disabled

RDOQ Disabled

Transform Integer DCT (integer DST for luma

4x4)

4x4 transform skip Enabled

Loop filtering DF, SAO

The design step can be shown in Figure 4.7. Before we start create a new

project, the first phase, functional verification, is done on PC using ready-made

make for Linux GCC compiler. The next step is profiling for early performance

estimation, in which I use Gprof, gprof2dot, and Graphviz. Potential functions for

hardware acceleration are selected by examining the Gprof results.

According to our profiling with Kimono 1080p 240 frame test sequence,

the most time-consuming encoding functions are intra prediction, quantization,

dst/dct, inverse dst/dct, and dequantization. Furthermore in Kvazaar intra

prediction (search_intra_rough) the most time consuming function is

intra_get_angular with 35.75% of whole encoding process.

43

Search_intra_rough function calls intra_get_pred function to calculate the

prediction for all 35 modes, then calculates the Sum of Absolute Difference (SAD)

for all these modes, and finally returns the costs for all modes through a pointer

passed to the function (Figure 4.6). These functions are the most potential

candidates for hardware acceleration. Based on Gprof profiling results, a new

project in Vivado HLS is created for design space exploration and

hardware/software partitioning.

Create a new project

in Vivado HLS

C validation

Interface synthesis

Design analysis

Design optimization

RTL verification

Load and run HEVC on
Zynq 7000 AP SoC

Figure 4.7: The design step of Vivado HLS

Step 1: Create new project

A Vivado HLS project arranges data in a hierarchical form. The project

holds information on the design source, test bench, and solutions. In this design,

the design source is Kvazaar, the location of the project is located in open-source

Kvazaar folder, I set encmain.c as the top level design that signify the design

specification, and the rest C code for test bench files for design test. Any header

files that exist in the local directory open-source Kvazaar are automatically

included in the project. We can specify the solution according to the specification

44

of ZC702 board. The solution holds information on the target technology, design

directives, and results.

Step 2: Validate the C source code

The first step in an HLS project is to confirm that the C code is correct.

This process is called C Validation or C Simulation. In this design, the test bench

compares the output data from the encmain function with known good values.

Figure 4.8: Reviewing the testbench code

The test bench file, contains the top-level C function main(), which in turn calls

the function to be synthesized (encmain). Then we can Run C Simulation to

compile and execute the C design.

Up to this step, I face a lot of problems. When I run C simulation there

were a lot of errors. Some of them can be solved and some can not be solved yet.

So for this design, my work is stop until this step. Here are those errors and the

solutions.

45

Problems :

 Can not find header file

For this problem we can solve it by using Edit CFLAGS button to add the

standard gcc/g++ search path information. For example, -

I<path_to_header_file_dir>

 Integer data type

In the encmain.c there are a lot of looping. And each looping in C language

declare the data type in its inner loop while Vivado HLS require to declare the

data type in its outer loop. So I manage to declare the data type in its outer loop.

Again, standard C compilers such as gcc compile the attributes used in the header

file to define the bit sizes, but they do know what they means. The final

executable created by standard C compiler will issue messages such as the

following

$VIVADO_HLS_ROOT/include/etc/autopilot_dt.def:1036: warning:
bit-width attribute directive ignored

and proceed to use native C data types for the simulation and producing results

which do not reflect the bit-accurate behavior of the code. Those can be solved by

enabling apcc compiler in the project setting using menu Project > Project

Settings > Simulation and select Use APCC for Compiling C Files. Apcc will

overcomes this limitation and allows the function to be compiled and verified in a

bit-accurate manner.

 Unsupported C language construct

While High-Level Synthesis is able to synthesize a large subset of all three C

modeling standards (C, C++ and SystemC) there are some constructs which

cannot be synthesized such as pointer casting. Pointer casting is not supported in

the general case but is supported between native C types. The following is not

synthesizable and must be transformed, and I do not know how to transform these

pointer casting type yet.
typedef struct kvz_data_chunk {
 /// \brief Buffer for the data.
 uint8_t data[KVZ_DATA_CHUNK_SIZE];

46

 /// \brief Number of bytes filled in this chunk.
 uint32_t len;

 /// \brief Next chunk in the list.
 struct kvz_data_chunk *next;
} kvz_data_chunk;

4.4.3 HM on Zynq Programmable Logic

Because I can not continue working with hardware/software partitioning, I

try to implement HEVC on Zynq Programmable Logic independently. I use HM

as the source code because I want to know the performance of HM when

implemented on Zynq PL. And also, the system design before this has been

implemented HM on Zynq PS. After studying the coding, unfortunately, I can not

use the full HM as a source code. There will be another problem like in the design

before while try to run C simulation. So I decide to take a part of HM which is

IDCT to implement on Zynq PL.

4.4.3.1 HEVC Inverse DCT Using Vivado HLS

Since HEVC 2D IDCT performs matrix multiplication operations, it is

suitable for HLS implementation. HEVC IDCT algorithm is one of the most

computationally complex algorithms compared to other HLS implementation for

both image processing and video compression. IDCT inputs are selected

depending on size of the IDCT operation (4x4, 8x8, 16x16 or 32x32). First, 1D

column IDCT is performed, and the resulting coefficients are clipped. Then, 1D

row IDCT is performed using transpose of the resulting matrix as input, and the

resulting coefficients are clipped.

Like in the Figure 4.7, this design use the same design step for Vivado

HLS. Vivado HLS has several optimization options such as pipelining, loop

unrolling, and loop merging. It allows adding specific DSP blocks such as

multiplier, divider, or square unit. It also has an option to select I/O port as bus,

memory, FIFO or acknowledge type. It also allows adding high speed AXI-4

busses for data transfer.

47

A part of C codes developed as input to Vivado HLS is shown in Figure

4.9. Because HEVC 2D IDCT perform matrix multiplication operations, many for

loops are used in the C codes. Therefore, loop unrolling directive is used in the C

codes to increase performance. Pipelining directives is also used in the C codes to

increase performance.

void COL_partialButterflyInverse8(
int15 resid[DCT_8], int7 coeff[31], int7 coef8[16],
int16 *Y1, int16 *Y2, int16 *Y3, int16 *Y4,
int16 *Y5, int16 *Y6, int16 *Y7, int16 *Y8)
{
char j,l,k = 0;
int26 E[4], O[4], EE[2], EO[2];
for(l=0; l<4; l++)

#pragma HLS unroll factor=2
{O[l] = coef8[l*4]*resid[1] + coef8[l*4+1]*resid[3] +
coef8[l*4+2]*resid[5] + coef8[l*4+3]*resid[7];
};
EO[0] = coeff[1]*resid[2] + coeff[2]*resid[6];
EO[1] = coeff[2]*resid[2] - coeff[1]*resid[6];
EE[0] = coeff[0]*resid[0] + coeff[0]*resid[4];
EE[1] = coeff[0]*resid[0] - coeff[0]*resid[4];

#pragma HLS pipeline
E[0] = EE[0] + EO[0];
E[1] = EE[0] - EO[0];
E[2] = EE[1] + EO[1];
E[3] = EE[1] - EO[1];
*Y1 = Clip3(-32768, 32767, (E[0] + O[0] + 64) >> 7);
*Y2 = Clip3(-32768, 32767, (E[1] + O[1] + 64) >> 7);
*Y3 = Clip3(-32768, 32767, (E[2] - O[2] + 64) >> 7);
*Y4 = Clip3(-32768, 32767, (E[3] - O[3] + 64) >> 7);
*Y5 = Clip3(-32768, 32767, (E[3] + O[3] + 64) >> 7);
*Y6 = Clip3(-32768, 32767, (E[2] + O[2] + 64) >> 7);
*Y7 = Clip3(-32768, 32767, (E[1] - O[1] + 64) >> 7);
*Y8 = Clip3(-32768, 32767, (E[0] - O[0] + 64) >> 7);
}

Figure 4.9: Xilinx Vivado C code

48

 49

Chapter 5

Results

This chapter shows the result of implementation open-source HEVC on

Zynq 7000 AP SoC. Unfortunately, we can not obtain the result from

hardware/software co-design because of the coding complexity. Still, we have the

results from the implementation of HEVC to Zynq PS and Zynq PL

independently.

5.1 Performance in Linux vs Zynq PS

In this section, we compare two results from HM 16 which have been run in

Linux and Zynq PS. The implementation results includes the comparison of video

size after being compressed, processing time of encoding and decoding video, and

the video quality of HEVC codec. We use two video file in YUV format for input

of video compression; Kimono.yuv and Sintel.yuv. Both of the video have the

same resolution 1920x1080p and same fps 24 which relevance with minimum fps

for HD video. We use encoder_intra_main.cfg as configuration parameter

with QP = 32.

A. Run in Linux

Table 5.1: HEVC test in Linux
Input
video

Original
size

Number
of frame

Encoding
time (s)

Decoding
time (s)

Encoding
size

Decoding
size

Kimono 746,5
MB

240
frame

2167,291 18,381 8,6 MB 746,5 MB

Sintel 3.9 GB 1253
frame

10151,592 52,21 10,9 MB 3,9 GB

Table 5.2: PSNR Kimono in Linux
Y-PSNR U-PSNR V-PSNR YUV-PSNR
38,9512 41,1150 42,0501 39,5547

From both of the results of implementation, we can say that the processing time of

encoding and decoding video is depend on the number of video frame. The more

 50

frame the video have, the longer time to encode and decode video. HM 16 is

obviously can reduce the video size of video, although the percentage of

decreased size of video is not stable. As stated in the HM guide, this reference

software is not intended to prove the ability of HEVC standard which can reduce

the size of video halve of its predecessor. If we want to reduce the size of video up

to 50%, we need to modify the configuration parameter in HM. The results also

show that HM 16 can work faster on Zynq PS than in Linux.

B. Run on Zynq PS

Table 5.3: HEVC test on Zynq PS
Input
video

Original
size

Number
of frame

Encoding
time (s)

Decoding
time (s)

Encoding
size

Decoding
size

Kimono 746,5
MB

240
frame

1167,211 17,301 8,6 MB 746,5 MB

Sintel 3.9 GB 1253
frame

11151,522 50,12 10,9 MB 3,9 GB

Table 5.4: PSNR Kimono on Zynq PS

Y-PSNR U-PSNR V-PSNR YUV-PSNR
38.8394 41.9582 39.5621 38.4775

From Table 5.1 and Table 5.3, the processing time of Zynq PS is 5% faster than

Linux. HM 16 can not obtain optimal processing time when used in Zynq PS. This

probably because the selection criteria when designing HM 16 is not intended in

fast processing speed. Also, the algorithm in HM 16 is quite complex which can

results in high processing load of encoding video in processor.

For the visual quality comparison, Figure 5.1 show the different of

Sintel.h264 and Sintel.h265. In Figure 5.1, the big display is Sintel H.265 and the

small display is Sintel H.264. Displaying together, there is no significant different

between H.264 format and H.265 format. The video quality of Sintel H.265

appeared to be very close to the one of the original video. The visual quality also

can be compared from the PSNR. Both of the video format almost have the same

PSNR.

 51

Figure 5.1: Display Sintel video in H.264 vs H.265 format

5.2 Profiling

Profiling is used before implementing Kvazaar on hardware/software co-

design. Profiling can define which processing block of the Kvazaar HEVC intra

coding need to optimize. Table 5.5 show the result of profiling Kimono 1080p in

Kvazaar using Gprof.

Table 5.5: Kvazaar profiling

Functions Time consuming for encoding

intra prediction 67,74%

quantization 8,54%

dst/dct 4,69%

inverse dst/dct 3,78%

dequantization 0,95%

From Table 5.5 it is obvious that intra prediction consume the most time in

encoding. In order to optimize the hardware/software co-design, intra prediction

can be run on hardware which is FPGA to reduce the time processing in encoding

process. Unfortunately, the work can not be continued for the next step because

the problem in C validation in Vivado HLS. Using HLS indeed can simplify the

 52

development time and make the design simple, but it requires the knowledge

about the development behaviour of HLS first. The problems and solutions in this

design have been explained in the previous chapter.

5.3 Zynq PL

In this section, a part of HEVC was implemented using Vivado HLS to

Zynq PL. The results from implementing HEVC 2D IDCT using Vivado HLS can

be described as follow. In the hardware, IDCT inputs are selected depending on

size of the IDCT operation (4x4, 8x8, 16x16 or 32x32). The hardware uses an

efficient butterfly structure for column and row transforms. After 1D column

IDCT, the resulting coefficients are stored in a transpose memory, and they are

used as input for 1D row IDCT. The multiplication operations are performed in

the datapaths using only adders and shifters. There are 4 multiplier blocks in 8x8

datapath, 8 multiplier blocks in 16x16 datapath and 16 multiplier blocks in 32x32

datapath.

 Another experiment was adding pipelining directives to the loops and review

for loop optimization. Pipeline is added to the inner-loop and outer-loop of HEVC

1D IDCT and 2D IDCT. Figure 5.2 show the comparison results of pipelining in

inner-loop and pipelining in outer-loop.

Figure 5.2: Comparison of pipelining directives

 53

Figure 5.2 shows the results of comparing solution 1, solution2, and solution3.

Solution 1 is the result of original design without pipelining, Solution 2 is the

results of pipelining the inner-loop of HEVC 1D and 2D IDCT, Solution 3 is the

results of pipelining the outer-loop of HEVC 1D and 2D IDCT. From the the three

solution, pipelining the outer-loop has in fact resulted in performance

improvement. The significant latency benefit is achieved because multiple loops

in the design call the dct_1d function multiple times. Saving latency in this block

is multiplied because this function is used inside many loops. Pipelining loops

transforms the latency from

Latency = iteration latency * (tripcount * interval)

to
Latency = iteration latency + (tripcount * interval)

After reviewing the loop optimization, the design of Solution 3 is used to

run C synthesis. Table 5.6 shows the results of implementation HEVC 2D IDCT

using Vivado HLS.

Table 5.6: Xilinx Vivado HLS implementation results

TU LUTs DFFs Slices BRAMs I/O

4x4 663 373 212 1 134

8x8 2834 2010 919 1 262

16x16 5000 4090 1601 1 518

32x32 40764 28772 12605 13 1030

All 50566 34955 14944 13 1045

Actually there are others results from Vivado HLS that can be analized from this

design. But because of a limited knowledge about Vivado HLS, further analysis

can not be done yet. At least, from this experiment, Vivado HLS can be used for

FPGA implementation of HEVC encoder.

 54

5.4 Processor Operation in Zynq PS

The resources of a processor are fixed, and limited to two processing cores,

which are required to operate at a specific clock frequency. The cost of

implementing a desired software implementation is measured in terms of clock

(execution) cycles, which will of course require some specific amount of time to

execute at the desired clock frequency; the more complex the required processing,

the longer the execution time will be.

Considering the behaviour of a generic processor, it has a finite number of

timeslots (clock cycles) that are occupied — or not — by particular operations

scheduled onto them. As the processor becomes ‘busy’, the level of occupation of

timeslots increases, and therefore its performance in terms of executing software

routines may become slower. It is also true that the timeliness of completing

particular tasks is variable as a result of the sharing of the processor resources

between different tasks.

 55

Chapter 6

Conclusion

At the end of this Master’s Thesis I am glad that I have tried to implement

HEVC codec on Zynq 7000 AP SoC with three system designs. First, I try to

implement HEVC codec to Zynq PS as standalone application. Second, I try to

implement HEVC encoder to Zynq 7000 AP SoC as hardware/software co-design.

Although in this design I can not finished the work, I’m glad at least I know the

flow to work with hardware/software co-design. And also, we got the result from

profiling HEVC encoder. Thrid, I try to implement HEVC encoder to Zynq PL.

6.1 Conclusions

From the three experiments that have been done, I can conclude that:

1. HM 16 can be run on Zynq PS and can reduce the size of video up to

50% of the original video format (YUV). From the quality video, HM

16 appeared to be very close to the one of the original video in H.264

format. This design can be used for delivering high quality video while

maintaining the storage.

2. Profiling can be used to analyze HEVC encoder to find the function

that consume a lot of time during encoding process. Intra prediction

consume 67,74% time in encoding process. Those function can then be

optimized in hardware part.

3. HM 16 also can be run on Zynq PL using Vivado HLS. The important

part in this design is optimizing the loop using pipelining. Pipelining

the outer-loop can increase the latency 2x faster than using original

design. In this experiment, I still do not use video file as input. The

results is based on the synthesis of C simulation from HEVC 2D IDCT

using Vivado HLS.

There are also advantages and disadvantages while using Vivado HLS. Some of

the advantages are :

 56

- A programming language as C can be understood and developed by

many users: one of the advantages of using C code is that it does not need

many detailed description of the functionality, for example the user does

not have to generate registers, or implement some operations (for example

the division), therefore it is easier than usual Hardware Description Level

languages, where all the operations not supported by VHDL or Verilog

have to be coded by the user.

- Verification of the code: HLS tools have included in the software a useful

way to verify the code. Only with one test bench the user can verify the

written C code and also the generated RTL description. This is a huge

advantage, because the functionality is tested fast in C and the user only

needs to develop the testbench in C, and the tool is responsible to generate

the necessary files to use it for the RTL simulation.

- The most convenient while using HLS tools is saving time. With HLS the

user can save time if the user knows how to use the tool properly. The user

only has to write a C model, with the HLS rules and describing all the

hardware blocks, check the functionality of C code, and then the user can

generate RTL fast.

Although HLS gives a very important advantage (saves time) it has also some

disadvantages or problems that should be mentioned in this report.

- Very detailed C code: although the user writes in C, it can not be written

like a standard C program. The HLS C code needs many details and also

includes the non-software modules. This means that a normal C model

where only is described the functionality is not always valid for HLS

because there are some missing libraries.

- In complex designs it is difficult to reach same characteristics: each

time the encoder design increases the complexity, HLS has more problems

to reach the same area result.

6.2 Future Work

For future work, I can suggest to continue our work in implementing

HEVC to Zynq 7000 AP SoC as hardware/software co-design. This design will be

 57

useful to optimize system performances and also for making real-time

implementation of UHD / 4K applications. Considering the ever increasing

resolution of video, software based solutions are not capable of encoding video in

real time anymore. One solution would be to make the compression algorithm

parallel and execute everything on GPUs or hardware. Those can be achieved by

using hardware/software co-design.

 58

59

BIBLIOGRAPHY

All the website last accessed in December 2015.

[1] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, R. W. Stewart, The Zynq

Book: Embedded Processing with the ARM Cortex-A9 on the Xilinx Zynq

7000 All Programmable SoC, First Edition, Strathclyde Academic Media,

2014.

[2] www.elementaltechnologies.com

[3] Gary J. Sullivan, J.R. Ohm, W.J. Han, T. Wiegand, “Overview of the High

Efficiency Video Coding (HEVC) Standard,” IEEE Trans. on Circuit and

Systems for Video Technology, vol.22, no.12, December 2012.

[4] M. Wien, High Efficiency Video Coding: Coding Tools and Specification,

Springer, 2015.

[5] K.R. Rao, D.N. Kim, J.J. Hwang, Video Coding Standards: AVS China,

H.264/MPEG-4 PART 10, HEVC, VP6, DIRAC and VC-1, Springer 2014.

[6] http://people.irisa.fr/Olivier.Le_Meur/teaching/HEVC_CAV_ESIR3_2011

_2012.pdf

[7] V.Sze, M.Budagavi, G.J. Sullivan, High Efficiency Video Coding (HEVC):

Algorithms and Architectures, Springer, 2014.

[8] https://hevc.hhi.fraunhofer.de

[9] ARM, “The ARM Cortex-A9 Processor”, White Paper, v2.0, September

2009.

[10] Xilinx, Inc., “Zynq-7000 Technical Reference Manual”, UG585, v1.7,

February 2014.

[11] ARM, “ARM Architecture Reference Manual : ARMv7-A and ARMv7-R

edition”, July 2012.

[12] http://www.arm.com/products/system-ip/amba/amba-open-

specifications.php

[13] M.Lopez-Vallejo and J.C. Lopez,”On the Hardware-Software Partitioning

Problem: System Modelling and Partitioning Techniques” ACM

Transactions on Design Automation of Electronic Systems (TODAES),

http://www.elementaltechnologies.com/
http://people.irisa.fr/Olivier.Le_Meur/teaching/HEVC_CAV_ESIR3_2011_2012.pdf
http://people.irisa.fr/Olivier.Le_Meur/teaching/HEVC_CAV_ESIR3_2011_2012.pdf
https://hevc.hhi.fraunhofer.de/
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

60

vol.8, no.3, pp. 269-297, July 2003.

[14] Xilinx, Inc., “Zynq-7000 All Programmable SoC Software Developers

Guide”, UG821, v8.0, April 2014.

[15] R. Sass and A. G. Schmidt, “Introduction” in Embedded Systems Design

with Platform FPGAs: Principles and Practices, 1st. Ed, Morgan Kaufmann,

2010, pp 1-42.

[16] Xilinx, Inc., “UG871 - Vivado Design Suite Tutorial: High Level

Synthesis”, v2014.1, May 2014.

[17] Xilinx, Inc, “UG902 - Vivado Design Suite User Guide: High-Level

Synthesis”, v2014.1, May 2014.

[18] T. Feist, “Vivado Design Suite”, Xilinx White Paper, WP416, v1.1, June

2012.

[19] Xilinx, Inc., “Xilinx Software Development Kit (SDK)” product webpage.

http://www.xilinx.com/tools/sdk.htm

[20] Xilinx, Inc., “Memory Recommendations: FPGA Memory

Recommendations Using the Vivado Design Suite” webpage.

http://www.xilinx.com/design-tools/vivado/memory.htm

[21] Xilinx, Inc., “Xilinx Zynq-7000 SoC ZC702 Evaluation Kit” webpage.

http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm

[22] Xilinx, Inc., “Zynq-7000 EPP ZC702 Evaluation Kit”, Product Brief.

http://www.xilinx.com/publications/prod_mktg/zynq-7000-kit-product-

brief.pdf

[23] M. Viitanen, A. Koivula, A. Lemmetti, J. Vanne, and T. D. Hämäläinen,

“Kvazaar HEVC encoder for efficient intra coding,” in Proc. IEEE Int.

Symp. Circuits Syst., Lisbon, Portugal, May 2015.

[24] HM reference software

Available : https://hevc.hhi.fraunhofer.de/trac/hevc/browser/trunk

[25] Kvazaar HEVC encoder [Online].

Available: https://github.com/ultravideo/kvazaar

[26] Ultra video group [Online]. Available: http://ultravideo.cs.tut.fi/

[27] L. Daoud, D. Zydek, and H. Selvaraj, “A survey of high level synthesis

http://www.xilinx.com/tools/sdk.htm
http://www.xilinx.com/design-tools/vivado/memory.htm
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm
http://www.xilinx.com/publications/prod_mktg/zynq-7000-kit-product-brief.pdf
http://www.xilinx.com/publications/prod_mktg/zynq-7000-kit-product-brief.pdf
https://hevc.hhi.fraunhofer.de/trac/hevc/browser/trunk
https://github.com/ultravideo/kvazaar
http://ultravideo.cs.tut.fi/

61

languages, tools, and compilers for reconfigurable high performance

computing,” in Advances in Systems Science, Springer, 2014, pp. 483-492.

[28] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding of the

HEVC standard,” IEEE Trans. Circuits Syst. Video Technol.,vol. 22, no.

12, pp. 1792-1801, Dec. 2012.

[29] Xilinx, Inc., “UG998 - Introduction to FPGA Design with Vivado High

Level Synthesis”, v1.0, July, 2013.

http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-

intro-fpga-design-hls.pdf

[30] Xilinx, Inc., “Vivado Design Suite User Guide : Release Notes, Installation

and Licensing,” UG973, v2014.1, May 2014.

[31] Xilinx, Inc., “Zynq-7000 All Programmable SoC: Embedded Design

Tutorial A Hands-On Guide to Effective Embedded System Design,”

UG1165 , v2015.1, April 2015.

[32] Xilinx, Inc., “Vivado Design Suite User Guide : Embedded Processor

Hardware Design,” UG898, v2014.1, May 2014.

[33] Xilinx, Inc., “Vivado Design Suite Tutorial: Embedded Processor

Hardware Design,” UG940, v2015.2, June 2015.

[34] Xilinx, Inc., “Designing High-Performance Video Systems with the Zynq-

7000 All Programmable SoC Using IP Integrator,” XAPP1205 (v1.0),

March 2014.

[35] Xilinx, Inc., “System Performance Analysis of an All Programmable SoC,”

XAPP1219 (v1.1), November 2015.

[36] P. Sjovall, J. Virtanen, J. Vanne, T. D. Hamalainen, “High-Level Synthesis

Design Flow for HEVC Intra Encoder on SoC-FPGA,” Euromicro

Conference on Digital System Design, 2015.

[37] x265 [Online]. Available: http://x265.org

[38] A. Abramowski and G. Pastuszak, “A double-path intra prediction

architecture for the hardware H.265/HEVC encoder,” in Proc. IEEE Symp.

Des. Diagnost. Electron. Circuits Syst., Warsaw, Poland, Apr. 2014.

[39] Miyazawa, K.; Sakate, H.; Sekiguchi, S.-I.; Motoyama, N.; Sugito, Y.;

http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
http://x265.org/

62

Iguchi, K.; Ichigaya, A.; Sakaida, S.-I., "Real-time hardware

implementation of HEVC video encoder for 1080p HD video," Picture

Coding Symposium (PCS), 2013 , vol., no., pp.225,228, 8-11 Dec. 2013,

[40] Abid, M.; Jerbi, K.; Raulet, M.; Deforges, O.; Abid, M., "System level

synthesis of dataflow programs: HEVC decoder case study," Electronic

System Level Synthesis Conference (ESLsyn), 2013 , vol., no., pp.1,6, May

31 2013-June 1 2013

[41] Calypto's Catapult 8 HLS: C-Based Hardware Design Matures [Online]

http://www.bdti.com/InsideDSP/2014/11/18/Calypto

http://www.bdti.com/InsideDSP/2014/11/18/Calypto

63

APPENDIX A
Comparison of Video Coding Standard

Table A.1: MPEG-2 VS. H.264 VS. HEVC

COMPONENT MPEG-2 H.264 HEVC/H.265
General Motion

compensated
predictive, residual,
tranformed,
entropy coded

Same basics as
MPEG-2

Same basics as
MPEG-2

Intra prediction DC only Multi-direction,
multi-pattern, 9
intra modes fir 4x4,
9 for 8x8, 4 for
16x16

35 modes for intra
prediction, 32x32,
16x16, 8x8, and 4x4
prediction size

Coded image types I, B, P I, B, P, SI, SP I, P, B
Transform 8x8 DCT 8x8 and 4x4 DCT-

like integer
transform

32xx32, 16x16, 8x8
and 4x4 DCT-like
integer transform

Motion estimation
blocks

16x16 16x16, 16x8, 8x16,
8x8, 8x4, 4x8, 4x4

64x64 and
hierarchical quad-
tree partitioning
down to 32x32,
16x16, 8x8
Each size can be
partitioned once
more in up to 8
ways

Entropy coding Multiple VLC tables Context adaptive
binary arithmetic
coding (CABAC) and
context adaptive
VLC tables (CAVLC)

Context adaptive
binary arithmetic
coding (CABAC)

Frame distance for
prediction

1 past and 1 futuure
reference frame

Up to 16 past
and/or future
reference frames,
including longterm
references

Up to 15 past
and/or future
reference frames,
including longterm
references

Fractional motion
estimation

½ pixel bilinear
interpolation

½ pixel 6-tap filter,
¼ pixel linear
interpolation

¼ pixel 8-tap filter

In-loop filter None Adaptive deblocking
filter

Adaptive
deblocking filter
and sample
adaptive offset
filter

64

APPENDIX B
Creating Embedded Project (HEVC codec) Using Zynq SoC Processing

System

Figure B.1: Create Block Design Button

Figure B.2: Zynq SoC Processing System IP Block

65

Figure B.3: Re-customize IP Dialog Box

Figure B.4: I/O Peripherals with Active Peripherals Identified

66

Figure B.5: MIO Configuration Window

Figure B.6: Run Block Automation Link

67

Figure B.7: Critical Message Dialog Box

Figure B.8: Generate Output Products Dialog Box

68

Figure B.9: Outputs Generated Under IP Sources

Figure B.10: Run Synthesis Button

Figure B.11: Status Bar

69

Figure B.12: Export Hardware to SDK

Figure B.13: Launch SDK Dialog Box

70

Figure B.14: Address Map in SDK system.hdf Tab

Figure B.15: Terminal Window Header Bar

71

Figure B.16: Terminal Settings Dialog Box

Figure B.17: Sample running HEVC encoding process

72

Implementation of HEVC 2D IDCT on Zynq PL

Figure B.17: Optimization Directives for DCT Loop Pipelines

` BIOGRAPHY

The background of education of the writer, Oktavia
Ayu Permata, is described below:

1. D3 Telecommunication Engineering at
PENS-ITS, 2008 – 2011.

2. S1 Electrical Engineering, concentration on
Multimedia Telecommunication at ITS,
2011 – 2013.

3. S2 Electrical Engineering, concentration on
Multimedia Telecommunication at ITS,
2013 – 2016.

While studying at Master’s program at ITS, the writer got scholarship to study
aboard at University of Brest, France, during 6 month started in September 2014.
After that, the writer continue to pursue Master degree at Department of Electrical
Engineering of ITS. This book is one of the requirement to obtain the Master
degree. Any advice, comment, or suggestions related to this book are welcome.
Please kindly send it to oktapermata@gmail.com.

mailto:oktapermata@gmail.com

	2213203019-cover
	2213203019-approval_sheet
	2213203019-abstract_id
	2213203019-abstract_en
	2213203019-preface
	2213203019-table_of_content
	2213203019-illustration
	2213203019-tables
	2213203019-chapter 1
	2213203019-chapter 2
	2213203019-chapter 3
	2213203019-chapter 4
	2213203019-chapter 5
	2213203019-conclusion
	2213203019-bibliography
	2213203019-enclosure
	2213203019-biography

