11 research outputs found

    Neural Field Representations of Articulated Objects for Robotic Manipulation Planning

    Full text link
    Traditional approaches for manipulation planning rely on an explicit geometric model of the environment to formulate a given task as an optimization problem. However, inferring an accurate model from raw sensor input is a hard problem in itself, in particular for articulated objects (e.g., closets, drawers). In this paper, we propose a Neural Field Representation (NFR) of articulated objects that enables manipulation planning directly from images. Specifically, after taking a few pictures of a new articulated object, we can forward simulate its possible movements, and, therefore, use this neural model directly for planning with trajectory optimization. Additionally, this representation can be used for shape reconstruction, semantic segmentation and image rendering, which provides a strong supervision signal during training and generalization. We show that our model, which was trained only on synthetic images, is able to extract a meaningful representation for unseen objects of the same class, both in simulation and with real images. Furthermore, we demonstrate that the representation enables robotic manipulation of an articulated object in the real world directly from images

    Self-Supervised Learning of Action Affordances as Interaction Modes

    Full text link
    When humans perform a task with an articulated object, they interact with the object only in a handful of ways, while the space of all possible interactions is nearly endless. This is because humans have prior knowledge about what interactions are likely to be successful, i.e., to open a new door we first try the handle. While learning such priors without supervision is easy for humans, it is notoriously hard for machines. In this work, we tackle unsupervised learning of priors of useful interactions with articulated objects, which we call interaction modes. In contrast to the prior art, we use no supervision or privileged information; we only assume access to the depth sensor in the simulator to learn the interaction modes. More precisely, we define a successful interaction as the one changing the visual environment substantially and learn a generative model of such interactions, that can be conditioned on the desired goal state of the object. In our experiments, we show that our model covers most of the human interaction modes, outperforms existing state-of-the-art methods for affordance learning, and can generalize to objects never seen during training. Additionally, we show promising results in the goal-conditional setup, where our model can be quickly fine-tuned to perform a given task. We show in the experiments that such affordance learning predicts interaction which covers most modes of interaction for the querying articulated object and can be fine-tuned to a goal-conditional model. For supplementary: https://actaim.github.io

    New product development resource forecasting

    Get PDF
    Forecasting resource requirements for new product development (NPD) projects is essential for both strategic and tactical planning. Sophisticated, elegant planning tools to present data and inform decision-making do exist. However, in NPD, such tools run on unreliable, estimation-based resource information derived through undefined processes. This paper establishes that existing methods do not provide transparent, consistent, timely or accurate resource planning information, highlighting the need for a new approach to resource forecasting, specifically in the field of NPD. The gap between the practical issues and available methods highlights the possibility of developing a novel design of experiments approach to create resource forecasting models

    Hierarchical reinforcement learning for efficient and effective automated penetration testing of large networks

    Get PDF
    Penetration testing (PT) is a method for assessing and evaluating the security of digital assets by planning, generating, and executing possible attacks that aim to discover and exploit vulnerabilities. In large networks, penetration testing becomes repetitive, complex and resource consuming despite the use of automated tools. This paper investigates reinforcement learning (RL) to make penetration testing more intelligent, targeted, and efficient. The proposed approach called Intelligent Automated Penetration Testing Framework (IAPTF) utilizes model-based RL to automate sequential decision making. Penetration testing tasks are treated as a partially observed Markov decision process (POMDP) which is solved with an external POMDP-solver using different algorithms to identify the most efficient options. A major difficulty encountered was solving large POMDPs resulting from large networks. This was overcome by representing networks hierarchically as a group of clusters and treating each cluster separately. This approach is tested through simulations of networks of various sizes. The results show that IAPTF with hierarchical network modeling outperforms previous approaches as well as human performance in terms of time, number of tested vectors and accuracy, and the advantage increases with the network size. Another advantage of IAPTF is the ease of repetition for retesting similar networks, which is often encountered in real PT. The results suggest that IAPTF is a promising approach to offload work from and ultimately replace human pen testing

    Hierarchical reinforcement learning for efficient and effective automated penetration testing of large networks

    Get PDF
    Penetration testing (PT) is a method for assessing and evaluating the security of digital assets by planning, generating, and executing possible attacks that aim to discover and exploit vulnerabilities. In large networks, penetration testing becomes repetitive, complex and resource consuming despite the use of automated tools. This paper investigates reinforcement learning (RL) to make penetration testing more intelligent, targeted, and efficient. The proposed approach called Intelligent Automated Penetration Testing Framework (IAPTF) utilizes model-based RL to automate sequential decision making. Penetration testing tasks are treated as a partially observed Markov decision process (POMDP) which is solved with an external POMDP-solver using different algorithms to identify the most efficient options. A major difficulty encountered was solving large POMDPs resulting from large networks. This was overcome by representing networks hierarchically as a group of clusters and treating each cluster separately. This approach is tested through simulations of networks of various sizes. The results show that IAPTF with hierarchical network modeling outperforms previous approaches as well as human performance in terms of time, number of tested vectors and accuracy, and the advantage increases with the network size. Another advantage of IAPTF is the ease of repetition for retesting similar networks, which is often encountered in real PT. The results suggest that IAPTF is a promising approach to offload work from and ultimately replace human pen testing

    Hierarchical reinforcement learning for efficient and effective automated penetration testing of large networks

    Get PDF
    Penetration testing (PT) is a method for assessing and evaluating the security of digital assets by planning, generating, and executing possible attacks that aim to discover and exploit vulnerabilities. In large networks, penetration testing becomes repetitive, complex and resource consuming despite the use of automated tools. This paper investigates reinforcement learning (RL) to make penetration testing more intelligent, targeted, and efficient. The proposed approach called Intelligent Automated Penetration Testing Framework (IAPTF) utilizes model-based RL to automate sequential decision making. Penetration testing tasks are treated as a partially observed Markov decision process (POMDP) which is solved with an external POMDP-solver using different algorithms to identify the most efficient options. A major difficulty encountered was solving large POMDPs resulting from large networks. This was overcome by representing networks hierarchically as a group of clusters and treating each cluster separately. This approach is tested through simulations of networks of various sizes. The results show that IAPTF with hierarchical network modeling outperforms previous approaches as well as human performance in terms of time, number of tested vectors and accuracy, and the advantage increases with the network size. Another advantage of IAPTF is the ease of repetition for retesting similar networks, which is often encountered in real PT. The results suggest that IAPTF is a promising approach to offload work from and ultimately replace human pen testing

    Solving large stochastic planning problems using multiple dynamic abstractions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 165-172).One of the goals of AI is to produce a computer system that can plan and act intelligently in the real world. It is difficult to do so, in part because real-world domains are very large. Existing research generally deals with the large domain size using a static representation and exploiting a single type of domain structure. This leads either to an inability to complete planning on larger domains or to poor solution quality because pertinent information is discarded. This thesis creates a framework that encapsulates existing and new abstraction and approximation methods into modules and combines arbitrary modules into a 'hierarchy that allows for dynamic representation changes. The combination of different abstraction methods allows many qualitatively different types of structure in the domain to be exploited simultaneously. The ability to change the representation dynamically allows the framework to take advantage of how different domain subparts are relevant in different ways at different times. Since the current plan tracks the current representation, choosing to simplify (or omit) distant or improbable areas of the domain sacrifices little in the way of solution quality while making the planning problem considerably easier.(cont.) The module hierarchy approach leads to greater abstraction that is tailored to the domain and therefore need not give up hope of creating reasonable solutions. While there are no optimality guarantees, experimental results show that suitable module choices gain computational tractability at little cost to behavioral optimality and allow the module hierarchy to solve larger and more interesting domains than previously possible.by Kurt Alan Steinkraus.Ph.D
    corecore