
Solving large stochastic planning problems

multiple dynamic abstractions

by

Kurt Alan Steinkraus

using

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2005

o Massachusetts Institute of Technology 2005. All rights reserved.

A u th or
Department of Electrical Engineering and Computer Science

April 25, 2005

Certified by
Leslie Pack Kaelbling

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith

Chair, EECS Committee on Graduate Students
MASSACHUSETTS INS EOF TECHNOLOGY

OCT 2 12005

LIBRARIES

2

Solving large stochastic planning problems using multiple

dynamic abstractions

by

Kurt Alan Steinkraus

Submitted to the Department of Electrical Engineering and Computer Science
on April 25, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

One of the goals of Al is to produce a computer system that can plan and act intelli-
gently in the real world. It is difficult to do so, in part because real-world domains are
very large. Existing research generally deals with the large domain size using a static
representation and exploiting a single type of domain structure. This leads either
to an inability to complete planning on larger domains or to poor solution quality
because pertinent information is discarded.

This thesis creates a framework that encapsulates existing and new abstraction
and approximation methods into modules and combines arbitrary modules into a
hierarchy that allows for dynamic representation changes. The combination of differ-
ent abstraction methods allows many qualitatively different types of structure in the
domain to be exploited simultaneously. The ability to change the representation dy-
namically allows the framework to take advantage of how different domain subparts
are relevant in different ways at different times. Since the current plan tracks the
current representation, choosing to simplify (or omit) distant or improbable areas of
the domain sacrifices little in the way of solution quality while making the planning
problem considerably easier.

The module hierarchy approach leads to greater abstraction that is tailored to
the domain and therefore need not give up hope of creating reasonable solutions.
While there are no optimality guarantees, experimental results show that suitable
module choices gain computational tractability at little cost to behavioral optimality
and allow the module hierarchy to solve larger and more interesting domains than
previously possible.

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

I would first like to thank my thesis advisor, Leslie Pack Kaelbling. I am very grateful

for the six years we have had to work together at MIT, and I have learned a lot not only

about artificial intelligence but also about reading papers and distilling their essence

quickly, writing clear and clean prose, and figuring out the important questions to

ask. Leslie has supported me in discovering what I am interested in, never insisting

on her own agenda, and she always has found time to discuss my latest results no

matter how busy she might be. I am thankful for her broad artificial intelligence

knowledge, infectious optimism, and thoughtfulness. I don't think I could have had

a better thesis advisor.

Many thanks also to the other members of my thesis committee, Bruce Blumberg,

Tom Dietterich, and Pete Szolovits. Their comments were very helpful in suggesting

new areas of exploration, overcoming difficulties I was facing, and sharpening the

presentation of my research.

Thanks to the members of my lab, including Bill, Selim, Jeremy, Terran, Kevin,

Georgios, Hanna, Bruno, Leon, Mike, Yu-han, Natalia, Luke, Sarah, James, Meg,
Sam, Ryan, and Teresa. I am thankful for the time we spent together comparing

notes on artificial intelligence algorithms and for all the encouragement I received.

Our statistical AI reading group was always a source of new and interesting ideas and

thought-provoking discussion.

Thanks to John Laird and the SOAR group at the University of Michigan, where

I completed my undergraduate degree. My time as a undergraduate research pro-

grammer there piqued my interest in artificial intelligence and provided me with

understanding and experience that proved very valuable in my doctoral work.

Finally, I would like to thank my family. I am grateful to my parents, for their

unconditional support and for instilling in me a love of learning from a very early

age. I am especially grateful to my wife, Karen. She has been exceedingly patient

and understanding during the long hours and late-night programming sessions that

5

completing my research required, helping me keep perspective and not forget about

living life. I am indebted to her for her kindness and love.

This thesis was supported in part by NASA award #NCC2-1237 and in part by

DARPA contract #DABT63-99-1-0012.

6

Contents

1 Introduction 15

1.1 Markov decision processes . 20

1.2 M DP structure . 23

1.3 W hy M D Ps? . 26

2 Previous work 29

2.1 Baseline MDP methods . 29

2.1.1 Value and policy iteration . 30

2.2 Prior abstraction methods . 31

2.2.1 Pure structure exploitation approaches 31

2.2.2 Divide and conquer approaches 37

2.2.3 State aggregation approaches 43

2.2.4 Temporally extended action approaches 50

2.2.5 Control hierarchy approaches 57

2.3 Comparison of previous MDP methods 62

2.3.1 Discussion of previous methods 69

2.3.2 Optimality vs. tractability . 74

3 Motivation 75

3.1 Desirable features for domain solvers 76

3.1.1 Complete policies vs. plans 76

7

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

Planning at different granularities

Dynamic representation changes

Other reasons to change representation dynamically

Learning .

Combining multiple approaches

Sum m ary .

4 Module hierarchy framework design

4.1 Gridworld example .

4.2 Module hierarchy .

4.2.1 Intermediate models

4.2.2 Linear vs. branching hierarchy

4.3 Abstraction module interface

4.4 Planning and execution

4.4.1 Planning .

4.4.2 Execution .

4.4.3 State representation

4.4.4 Re-planning and dynamic representation changes

4.4.5 Advantages of planning/execution system

4.5 O ptim ality .

5 Abstraction modules

5.1 Modules needing parameterization

5.1.1 Subgoal-options module

5.1.2 State-aggregation module

5.1.3 Ignore-state-variables module

5.1.4 Split-on-state and join-on-state modules

5.1.5 Reward-shaping module

5.2 Modules attempting auto-parameterization . . .

8

78

79

80

81

82

83

85

85

87

88

92

94

97

97

99

101

102

108

110

115

. 115

. 115

. 117

. 118

. 120

. 125

. 127

5.2.1

5.2.2

5.2.3

5.2.4

Auto-subgoal-options module

Auto-state-aggregation module

ADD-reordering module

Policy-iteration module

6 Experimental results

6.1 Example domain: nethack

6.1.1 Implemented module hierarchy

6.2 Comparison with individual methods

6.3 ADDs: with and without and reordering

7 Conclusions

7.1 Comparison with previous approaches .

7.2 Future work

7.2.1 Contributions

7.3 Final thoughts

. 128

. 130

. 133

. 137

139

. 139

. 143

. 143

. 146

149

. 150

. 152

. 157

. 159

161A Programming details

9

10

List of Figures

2-1 Relating prior methods . 70

4-1 Package and charger gridworld example 86

4-2 Hierarchy nomenclature . 87

4-3 Action time consistency with multiple actions 90

4-4 Solutions to abstracting domain parts 93

4-5 Module hierarchy example . 97

4-6 Module hierarchy example . 104

4-7 Module hierarchy for optimality discussion 111

5-1 State aggregation experiment results 132

5-2 Discovering independence while building an ADD 134

6-1 Nethack screenshot . 140

6-2 Example dungeon . 142

6-3 Nethack module hierarchy . 144

6-4 Experimental results . 145

6-5 Experimental results for table- vs. ADD-based functions 146

6-6 Experimental results for ADD choice reordering 147

11

12

List of Tables

2.1 Input characteristics of previous methods 63

2.2 Output characteristics of previous methods 65

2.3 Algorithms of previous methods . 68

13

14

Chapter 1

Introduction

One of the goals of Al is to produce a computer system that can act intelligently. Such

a computer system would be able to gather data about the world, reason about how

to achieve certain goals, and act so as to achieve those goals. The sorts of situations

in which such a computer system would be useful include mobile robot and vehicle

control, manufacturing plant operation, resource scheduling and distribution, and so

on. These scenarios involve sensing the current conditions of the world, planning the

best course of action given the stated goals, and ensuring the proper execution of that

plan. There are many challenges to be met in producing such an intelligent computer

system, at all stages of its operation.

In many cases, it is difficult to ascertain the current conditions of the world.

Sometimes this is due to the current conditions being inherently unobservable, as

would be true of the opponents' cards in a card game. Most often, though, this is

due to the system being equipped with only a limited number of sensors or perhaps

a type of sensor ill-equipped for the task at hand. That the world is only partially

observable requires a computer system to deal with uncertainty by estimating (or

at least compensating for) what it cannot see. Describing and modeling absolutely

everything that a computer system cannot sense is often an intractable task, and

approximations and heuristics must be used with care to ensure that vital information

15

is not ignored or discarded.

Along with the ability to take sensor readings, it is often advantageous for a

computer system to have a model of how the world changes, where the changes are

due both to actions that the agent takes and to the dynamics of the world that are

not agent-based. This model may be held implicitly in the way that the system

converts stimuli into responses, or it may be explicitly stored and manipulated. A

common way of representing the state and dynamics of the system's domain is as a

Markov decision process (MDP) [36]. MDPs model domains where the current state

of the world is always visible, and they allow for stochasticity and uncertainty in the

domain's dynamics. MDPs are models that satisfy the Markov condition, meaning

that the state of the world evolves based only on the immediate past, and not on the

distant past. This property is desirable because it alleviates the need for the system

to remember things that happened more than one time-step ago; all the relevant

information about the world is encapsulated in the current state for MDPs.

Given an MDP model, is theoretically easy to figure out how to act so as to

maximize expected reward. A solution to an MDP is a policy, which is a function

that says what action to take given the domain's current conditions. Infinite-horizon

discounted MDPs are guaranteed to have an optimal policy that is stationary, i.e., that

can be written down once and doesn't change over time. There are common MDP-

solving algorithms, such as value iteration and policy iteration, that start with an

approximate solution and reach an optimal one through iteration. These algorithms

perform the planning step, deriving the best possible course of action, and then there

is no need to think any more. Since the domain's dynamics are known and accounted

for in the calculated policy, the system can act optimally in the domain simply by

looking up the best action for the current state in the policy table mapping states to

actions.

A major drawback to representing domains as MDPs is that there will be one

state for every possible configuration that the domain can be in, and likewise there

16

will be one MDP action for every possible combination of domain actions that can

be taken simultaneously. This has several consequences.

The first consequence is that most interesting domains have huge numbers of states

and actions. An intuitive idea of the potential enormous size of state and action spaces

comes from viewing them as being composed of independent entities that each can

have one or more configurations or choices. For instance, if a mobile robot can be at

ten locations, and its left and right gripper arms can have ten configurations each,

then the total size of this state space is the product of the individual spaces, i.e., a

thousand states. This exponential blowup of the size of the space also occurs with

the action space. It is apparent that, for real world domains, the state and action

spaces are not even tractably enumerable, let alone amenable to policy calculations.

Any algorithm that relies on examining each state, such as value or policy iteration,

is doomed to fail after the domain size increases past a few hundreds of thousands of

states.

One approach to dealing with large Markov models has been to manipulate the

model with the state space being factored into state variables (and likewise with action

space); the whole state space then is the cross product of the possible state variable

values, as discussed above. This allows the dynamics of the system to be specified

in a similarly factored fashion, as in Bayesian networks [59]. If there is conditional

independence structure in the domain, the factored dynamics allow for more efficient

computation involving large uniform areas of state and action space, and therefore

they potentially allow more efficient policy computation.

A second consequence of representing domains as MDPs is that reasoning will not

necessarily be shared between similar states and actions. If a mobile robot is carrying

a red package to deliver, then that will be a different state than if it were carrying

a blue package to deliver, and it will not automatically be able to share information

between the two situations about the best routes to take and so forth. There are other

types of spatial and temporal structure present in domains but not made explicit in

17

the standard MDP representation, it is crucial to recognize and take advantage of

these similarities if huge domains are to be rendered tractable.

The factored MDP representation somewhat alleviates this problem, and other re-

searchers have attempted to exploit structure in parts of the model description with

explicit structural representations, like using decision diagrams to specify transition

probabilities. (See the discussion in chapter 2 for examples.) Other researchers have

tried integrating extra domain-specific information, where the extra information is

specified by a human expert, derived from the model, or learned through trial runs.

Yet other researchers have devised methods to speed up algorithms by approximating

or distributing different steps; for instance, an area of state space that behaves uni-

formly (or approximately uniformly) may have its states' differences abstracted away

and be operated on as one state.

Despite much effort, most very large domains remain intractable. One reason for

this is that most existing algorithms to solve large MDPs take just one simplification

step in attacking the problem, using one kind of abstraction or approximation. To see

why this will not work, imagine trying to solve a huge domain by subdividing the task

into two subproblems: creating an abstraction, and solving the abstraction. If the

abstraction is very close in content to the original domain, then it is likely to be just

as huge and just as intractable. On the other hand, the abstraction may be relatively

small and tractable, perhaps because the algorithm that created it has mandated a

maximum size for it. Such an approximation of the original domain is only tractable

because all but a small pre-determined amount of information has been discarded.

Clearly, unless the algorithm is enormously clever in deciding what information to

discard, the policy obtained from solving the abstraction will be unable to navigate

the complexities and nuances of the original domain and is likely to fail to achieve

good performance.

A second downside of taking just one simplification step is that only one kind

of structure is exploited, and this does not match well with the varying kinds of

18

complexity that most large real-world domains exhibit. Granted, some very large

problems are inherently difficult and cannot be approximated or distributed to make

them easier. An example might be a stochastic traveling salesman problem with

some large number of cities, where the problem is known to be NP-complete. It is

unsurprising that these domains cannot be tractably solved optimally. Other large

real-world problems are highly structured, perhaps containing many repeated slight

variations of some simple task. The extremely structured nature of such problems

renders them solvable despite their size. The vast majority of interesting problems,

though, lie in between these two extremes: they contain a low proportion of inherent

difficulty, yet they are not so structured that they are embarrassingly easy to solve.

Most existing algorithms not only use just one simplification step, but they also

use just one domain representation, where the domain representation here includes

not only the input but also any additional abstraction and approximation data that

are calculated in the process of planning and executing. This domain representation

is usually calculated during the planning phase, before execution has begun, and once

calculated, it is never revisited. Indeed, were it to be revisited, it would not change

at all, since most methods operate on the whole domain at once and have no notion

of, e.g., the current relevancy (or lack thereof) of part of it. Calculating a policy for

the whole domain all up front means that the system is required to plan for the whole

domain all at once, and even with the more compact representations like factored

MDPs, this can be an intractably large task.

This thesis addresses solving very large factored MDPs by alleviating the prob-

lems of one simplification step and one domain representation. It proposes a dynamic

system called a module hierarchy that combines multiple different abstraction algo-

rithms and changes the domain representation during execution to suit the current

state. The module hierarchy packages abstraction methods into modules that share

a common interface, making them easily combinable in whatever way best suits the

domain to be solved. During execution, the module hierarchy maintains a series of

19

progressively more abstract models of the domain and cascades opportune dynamic

representation changes from one model to the next.

The module hierarchy framework provides a principled way of successively ab-

stracting and approximating a domain until an easily solvable core remains, then

planning and executing using the exploited structure. It does not guarantee hard

optimality in the policy that it derives (except in very special cases), but this is to

be expected since no tractable algorithm guarantees hard optimality. The module

hierarchy instead aims for tractability while still acting in a reasonably good man-

ner. It focuses on achieving this for domains that are arranged as the real world is:

containing an array of different types of exploitable structure.

Before surveying existing abstraction methods in more detail and then seeing how

the module hierarchy framework can improve on them in dealing with very large

models, it is necessary to define MDPs of different kinds more precisely and to talk

about their advantages and disadvantages.

1.1 Markov decision processes

A Markov decision process (MDP) [36] is a Markov model with actions. An MDP is

composed of several parts:

" A set of states S = {si, s2,. .. , sn}, where S is the possible configurations of

the world. The world will always be in some state in S.

" A set of actions A = {ai, a2,. . . , am}, where A is the possible things that an

agent can do at any time-step. The allowable action set could potentially vary

from state to state, but, without loss of generality, assume that it is constant;

if an action is inapplicable in some state, then perhaps it performs a no-op.

* A transition probability distribution T : S x A x S -+ R, which gives a prob-

ability distribution over possible next states that is conditioned on the current

20

state and the currently chosen action. Note that, for all s E S and a E A,

" A reward function R : S x A --+ R, which gives the reward that the agent receives

conditioned on the current state and the agent's currently selected action.

" A starting state probability distribution start : S -+ R, which gives the possible

states that the agent can start at along with their probabilities.

" A discount factor -y, where 0 < -y < 1.

The MDP is a decision process in that it represents a process in the world in

which an agent participates by making sequential decisions. A Markov decision pro-

cess is one where the Markov property holds: the probability distribution of states

at the next time-step is only dependent on the current state and the agent's cur-

rently selected action; in particular, the probability distribution over next states is

conditionally independent of all past states and actions given the current state and

action. More formally, given a sequence si, a,, s2, a 2,..., si, ai of alternating states

and actions,

p(sj+1 = s*1si a,1 , 2, a 2, .. ., si, aj) = p(si+I = s*si, at).

There are many different classes of MDPs; this thesis focuses on completely ob-

servable infinite-horizon discounted finite state and action space discrete time MDPs.

In particular:

" The current state is assumed to be completely observable. This is a big as-

sumption and does not hold for many real-world domains, but the complexities

that this thesis attempts to unravel are orthogonal to the observable/partially-

observable distinction.

" The agent gets an overall reward for acting in the domain, and the overall

reward is generated from the individual instantaneous rewards that the agent

21

receives by summation, discounting future reward:

Total reward = R(si, a)
i=1

Other common formulations of the reward term to be maximized are the finite

and infinite horizon average reward:

n

Finite horizon average reward = R(si, a2)
i=1

n

Infinite horizon average reward = lim R(si, a2)

This work applies to both of these total reward formulations with the obvious

caveat that the abstraction modules used in the abstraction hierarchy must be

compatible with whichever total reward formulation is chosen.

" The state and action spaces are finite (and therefore discrete). It would be

useful to be able to act on continuous or hybrid state and action spaces, and

there is no clear reason why this work should not extend to these cases.

" Time advances in discrete unit steps rather than continuously. Certain simu-

lations involving fluid dynamics or similar phenomena are described using con-

tinuous partial differential equations and are very difficult to solve. The sorts

of very large, complex, and heterogenously structured domains that a mobile

robot or software agent are likely to act in, though, are either inherently discrete

or can be normally be discretized without losing the essential domain qualities.

Given a domain expressed as an MDP, the goal is to act in that domain so as to

maximize the discounted long-term expected reward. Solving a deterministic domain

involves creating a plan, a step-by-step list of what to do at each step. MDPs, however,

cannot be solved by creating a plan, because the stochastic nature of actions almost

22

certainly means that actions need to be selected in an on-line fashion, i.e., based on

the results of previous actions. Solving an MDP involves creating a policy, a mapping

from states to actions telling what to do at each state. Plans or policies may be

represented as tables or trees or any other data structure, and they may also be

constructed in a just-in-time manner by some algorithm; the only important thing is

that they dictate what action to take next.

1.2 MDP structure

An MDP as defined in the previous section has components (a state space, an action

space, a transition probability function, a reward function) that have no specified

structure. Thus, the state and action spaces could be represented by simple lists

of states and actions, and the transition probability and reward functions could be

stored as big tables.

Storing everything in this flat way is frequently undesirable. It is time- and space-

consuming to store even medium-sized MDPs in this way; very large MDPs are com-

pletely intractable. Most domains have some sort of structure, though, and if an

MDP is being specified by a human or is being learned by an agent, then whatever

structure the human or agent knows of should be captured in the domain description.

As much of this structural meta-data as possible should be retained, because it is

easy to throw away structure if it is not useful, but it can be difficult to discover it

from unstructured data.

There are several common types of structure used in specifying MDPs: structured

state/action spaces, structured functions, and temporal extension.

Factored MDPs One type of structure involves the state and action spaces be-

ing factored into variables, so that the range of values for the whole space is the

cross-product of the variables' values. This is similar to a dynamic Bayesian net-

work (DBN) [15], except that there are also actions instead of just states. The transi-

23

tion probability and reward functions are defined over state and action variables. The

transition probability function can be factored just like the state space, so that there

are several component transition probability functions, one for each state variable,

and the probability of making the transition from one state to another is given by

the product of the component transition probability functions. Since it will not be

the case that all state variables affect the next time-step value of all state variables,

each component transition probability function will generally restrict its domain to a

small number of state variables and will be explicitly independent of the rest. This

explicit conditional independence is what allows for the majority of the space savings

in specifying an MDP in a factored way.

Formally, a factored MDP is composed of several parts:

" A set of state variables S {S , . .. , SN} where each Si is a state variable taking

values {sai,. . . , si }; the state space as a whole is given by Si x ... x SN-

" A set of action variables A {A 1,. . . , AM} where each Ai is an action variable

taking values {ail, . .. , ais}; the action space as a whole is given by A1 x ... x

Am.

" A set of component transition probability functions T = {t1 , ... ,tN} where

each ti is a conditional probability function that gives the probability of states

at timeT + 1 given the state and action at time r; the range of state and action

variables for ti are given by Si C S and Ai C A respectively, and

ti : f S x J A x S - R;
SE Si Ac As

since ti is a conditional probability distribution, for any state s and action a,

stsi ti-(s, a, s) = 1.

* A reward function r where r : fss S X HA,-A A -- R.

* A discount factor -y, where 0 < y < 1.

24

Structured component transition probability functions Factored MDPs al-

low for some structure of the state and action spaces and the dynamics of an MDP to

be exposed, but each component transition probability function might still be written

down in table format; if the component transition probability function is conditioned

on a large number of state variables, then this table will necessarily be very large.

The same is true for the reward function.

Researchers have proposed structuring component transition probability and re-

ward functions in different ways. One promising way is as decision trees [8], where

each choice point in the tree is labeled with a state variable, each branch is labeled

with a possible value for that state variable, and each leaf has a real value giving a

probability or a reward. The benefit of a decision tree is that it can compactly rep-

resent identical values or identical patterns of values for whole areas of state and/or

action space.

Algebraic decision diagrams [34] build on decision trees. Decision diagrams are like

decision trees except that a node may have more than one parent; in other words, two

routes from root to leaf may branch and then join back up further down the diagram.

In a decision diagram, no subpart may be repeated; if a subpart would appear in two

places, then those copies are merged, and all parents point to the merged version.

Decision diagrams carry the advantage over decision trees of possibly being more

compact and of there being one canonical decision diagram for any given function to

represent and any ordering of choices from root to leaves. However, decision diagrams

are also more computationally expensive to maintain due to the no-repeated-subparts

requirement.

Semi-MDPs MDPs as described so far have actions that take exactly one time

step. It is often advantageous, though, to be able to represent that different actions

take different lengths of time to complete, and indeed, a single action may take

probabilistically varying lengths of time to complete. A semi-MDP is an extension of

25

an MDP that allows actions to take differing amounts of execution time.

Formally, a semi-MDP is composed of the same things as a normal MDP (state

space, action space, transition function, reward function), except that the transition

function T gives transition probabilities not only for the new state but also for the

time that the transition will take:

T: S x A x S x N - R,

and

For all s E S and a EA, T(s, a, s', t) = 1.
s' ES,tEN

Other types of MDP structure There are many additional types of MDP struc-

ture, involving techniques like logic [62] and first-order representations [9]. The mod-

ule hierarchy described here does not operate on these other types of MDP (or rather,

it doesn't exploit their special nature; of course it could always operate on them after

grounding all terminals and flattening the state and action spaces). See section 7.2

for discussion of how it might be extended to these additional representations.

1.3 Why MDPs?

The question arises, why use a Markov decision process to model the world and to

plan in?

One possible alternative would be to model the world using a deterministic rather

than a stochastic model. In the artificial intelligence community, planning started

out in deterministic worlds, and indeed this made planning considerably easier. In

deterministic worlds, it is possible to come up with a straight-line plan, as opposed to

a policy, because there will never be an unanticipated event. In deterministic worlds,

it is much easier to look ahead because there is not the branching factor at each time

step that gives rise to exponential growth in the search tree size.

26

Despite their advantages, deterministic models are lacking in other areas. The first

and most obvious is that deterministic models cannot model uncertainty or stochastic-

ity in the world. It is an interesting philosophical question to ponder whether saying,

"the probability of event X is one in two" means that event X is a probabilistic event

or if it meants that not enough is known about the current state of the world to be

able to determine whether event X will occur, even though the process may be deter-

ministic. Luckily, stochastic models do not force committal to a specific metaphysical

interpretation of probability and can be used to model either uncertainty about the

world or true stochasticity in the world.

(Using stochastic models for modeling uncertainty about the world is one reason

that assuming completely observability in an MDP is not always an unrealistically

simplifying assumption. The partial observability in the world can always be modeled

as stochasticity, but then the model may no longer satisfy the Markov condition, and

it is not always the case that this is a helpful way to model the domain.)

It will also turn out that deterministic models are lacking because they cannot

represent certain types of approximations very well. For instance, suppose an agent

is building a large plan, and part of its plan will involve the completion of some

subtask. If the agent knows that the subtask can be completed, then it can defer the

step-by-step planning until later. A deterministic model will need to estimate a single

time-length for how long the subtask will take to complete; a stochastic model, on

the other hand, can use a bimodal distribution, or any sort of distribution it wants.

As another example, an agent may want to aggregate states together, giving the

aggregate state probabilistic dynamics according to the outcomes from each included

state (see section 5.1.2); this would not be possible in a deterministic model. Certain

models and planning strategies such as conformant planning [77, 5] work with models

and assumptions that lie somewhere between full deterministic and full stochastic

models and show promise of combining the advantages of both.

One limitation of using an MDP is its reward structure: it assumes that the

27

rewards are gained independently, that they sum, and that they are discounted over

time. Some work is currently being done with non-additive rewards (e.g., [20]), and

this limitation can also be worked around since a stochastic domain with non-additive

rewards can be turned into a discounted MDP by artificially augmenting the state

with some or all of the reward history.

Another limitation of using an MDP to plan in is that it is necessary to have the

full-blown model before planning occurs, and the model is assumed to be correct, i.e.,

to reflect the dynamics of the domain being modeled accurately. For some domains,

it is simply tedious to write down the whole model; for others, the dynamics may

even be unknown. The module hierarchy described here uses MDPs because in order

to concentrate on the planning aspects (rather than learning aspects) of working

with stochastic models of very large domains. Other work has been done on learning

Markov models of a domain (e.g., [41]). Later sections contain details on how this

learning can occur concurrently with planning and execution, and how the system

can efficiently incorporate newly learned dynamics into the current execution path.

28

Chapter 2

Previous work

There are very many approaches to planning and acting in very large MDPs. These

methods try to take advantage of the structure of the problem to help find good

solutions. Sometimes the structure is gleaned from the model itself, and sometimes

a description of the structure is supplied on the side. In either case, this extra

information is normally used to compress or abstract away details of the domain, to

make it more tractable.

Methods can be divided into several categories based on the main method that

they use to attack the problem. These categories are based on algorithm charac-

teristics like the particular input data they operate on, the goal of the abstraction,

etc. This section discusses baseline methods for solving MDPs and then outlines a

variety of abstraction and approximation algorithms. While these algorithms may

not be able to solve extremely large planning problems on their own, they can still

be viewed as candidate components for a larger system.

2.1 Baseline MDP methods

There are several methods for directly finding optimal policies for MDPs. These

methods are have simple algorithms and are therefore easy to implement, but their

29

running time is quadratic or worse in the size of the state and action spaces. This

makes them suitable for doing baseline comparisons and for checking the correctness

of other methods on small domains, but they're not fast enough for real-world use in

very large domains.

2.1.1 Value and policy iteration

The simplest way of finding an optimal policy for an MDP is called value iteration [36].

Letting v*(s) be the optimal expected value of being at state s C S, the Bellman

equation [3] describing the optimal value function is

V*(s) = max R(s,a) + - LT(s,a, s')v*(s') for all s E S.

The algorithm starts with some initial value function, say, vo(s) = 0 for all s E S,

and uses an iterative form of the Bellman equation,

vi+±(s) max R(s,a) +-YZT(s,a,s')vi(s') for all s E S.
aEAa LA s' CS J

The sequence of value functions vi is guaranteed to converge to the optimal value

function v*, and then the optimal policy wr* is obtained by following a greedy one-step

lookahead policy,

7r*(s)=argmax R(s,a)+-YZT(s,a, s')v*(s')1

Policy iteration for MDPs, like value iteration, involves iteration and use of the

Bellman equation to find the best action at states. However, policy iteration contin-

ually updates a policy 7 rather than a value function over successive iterations. The

two steps it alternates between are:

30

1. Calculate v,, the value function for policy Ti, where

vo (s) = R(s, 7i(s)) + Ey T(s, 7i(s), s')v,1 (s').
s' c S

2. Update r by calculating

wi+ (s) = arg max R(s, a) + YZT(s, a, s')v, (s')

In the first step, the value function is calculated in much the same way as the

value iteration algorithm, except that the absence of a maximization over actions

means that this value function calculation converges much more quickly. (The value

function can also be calculated using matrix inversion.) In general, policy iteration

converges more quickly than value iteration.

Puterman and Shin noted that the first step doesn't need to produce a very precise

value function, but rather it just needs to get close enough for the policy update step

to be valid. This led them to create the modified policy iteration algorithm [67, 66],

which is just like policy iteration except that the value function calculations are

stopped early before they converge, according to some criterion which guarantees

that the overall policy iteration still converges to the correct value.

Aside from being used iteratively, the Bellman equation can be expressed as a

linear program and solved using a linear program solver.

2.2 Prior abstraction methods

2.2.1 Pure structure exploitation approaches

Some of the prior work has not so much focused on coming up with new algorithms

to solve MDPs as it has coming up with ways to represent MDPs and to exploit the

explicit structure in the representation while executing existing algorithms like value

31

and policy iteration.

Explanation-based reinforcement learning Explanation-based reinforcement

learning (EBRL) was created by Dietterich and Flann [19] in an attempt to com-

bine explanation-based learning (EBL) and reinforcement learning (RL). EBL allows

an agent to learn how to act in large swaths of state space at once, by working

backward from gained reward and figuring out where to assign credit (and what to

ignore). It can do this working backward efficiently since the domain is represented

in a probabilistic STRIPS format. RL, on the other hand, allows an agent to gradu-

ally form a policy, learning from experience and correcting earlier mistakes in policy

construction. EBRL combines these two.

The EBRL algorithm consists of several trials. In each trial, a random starting

state is selected, and the agent follows the current best policy until it reaches the

goal. Once the goal is reached, a series of value function backups is performed from

the goal back to the starting state. These value function backups are region-based,

i.e., they are like normal point-based RL Bellman backups, except that only a certain

path is followed (instead of the whole state space being backed up), and whole regions

of state space are backed up simultaneously. This region backing up works because

the value function is stored as a collection of hyper-rectangles in state space, each

with the associated value. When backing up some regions, certain rectangles in the

value function may need to be split.

EBRL is essentially EBL that updates a value function at each time-step rather

than a policy. Mixing in RL's value function in this way allows it to avoid being

sensitive to (and possibly misled by) the path it took the first time it visited each

state, which is a common flaw of standard EBL algorithms. If just a policy were to

be constructed, there would be no good way to resolve conflicts about what action to

take in certain regions; by using a value function, the policy is only stored implicitly,

and the policy will change as needed as that value function is updated.

32

Structured policy iteration Boutilier et al. developed a variant of modified

policy iteration called structured policy iteration (SPI) [8]. The structured policy

iteration algorithm maintains a current best policy and a current best value function,

both represented as decision trees. Beginning with some randomly selected initial

policy, the algorithm alternates between the policy iteration steps of (a) updating

the current best value function by estimating the value function associated with the

current best policy, and (b) updating the current best policy to be equal to the the

best one-step lookahead policy for the current best value function.

The first update step, which estimates the value function for a given policy, is

called structured successive approximation. This step performs structured value iter-

ation, starting with some initial guess at the value function (the instantaneous reward

function) and successively refining its estimate until the difference between successive

iterations is below some threshold. Each Bellman backup is performed on the tree-

structured value function in a structured way, which is possible because two states

with the same current value will have different values in the next iteration only if

some action taken at those two states has differing effects and those differing effects

are relevant to the current value function. This allows the Bellman backup to be done

for each leaf of the tree rather than each state in state space.

The second update step, which builds a new policy from a value function, is called

structured policy improvement. This step incrementally improves the current best

policy to create a new best policy. It uses the same sort of reasoning as the first step

to perform this incremental policy improvement in a structured way, on leaves of the

policy tree rather than at every state in state space.

SPI takes advantage of not only factored MDP structure but also tree structure in

the transition and reward probability functions. It thus improves on modified policy

iteration by allowing it to exploit the structure exposed in the domain description.

33

Factored value functions The factored value function method of Koller and

Parr [42, 43] takes advantage of the structure in factored MDPs to represent the

value function in a similarly factored way. It combines policy iteration with its fac-

tored value function representation by projecting back into the factored value function

space after each step of policy iteration.

This method requires not only that the domain be a factored MDP but also that it

have fairly uniform action dynamics: most state variables have some default dynamics

for most actions and non-default dynamics for only a few actions. This method has a

special factored representation for value functions and for policies. It represents the

former as a linear combination of basis functions, where each basis function takes as

arguments only on a small number of state variables. A policy is represented as a

decision list consisting of tuples, where each tuple contains a partial assignment to

state variables and an action to take if the partial assignment matches the current

state.

The size of a policy thus naturally depends on the domain complexity, as mani-

fested by the type of factored structure present in the MDP, rather than on the state

and action space sizes. Also, representing only policies whose value function lies in

the factored value function space is good for efficiency, both because it is a smaller

space to search than the whole of policy space, and because it allows structured policy

iteration operations. Koller and Parr give the steps for doing policy iteration using

these factored representations so that it is not necessary to enumerate state space

explicitly.

SPUDD and APRICODD Structured policy iteration using decision diagrams

(SPUDD) [34, 35] and approximate policy construction using decision diagrams (APRI-

CODD) [78] are extensions of structured policy iteration. Instead of representing the

domain's transition and reward functions as decision trees, though, these algorithms

represent them using algebraic decision diagrams (ADDs).

34

(Recall that decision diagrams are like decision trees, except that branches can

and do merge back together. Given a particular function to represent and a particular

ordering of variables from top to bottom in the decision diagram, there is exactly one

corresponding ADD that represents the function.)

SPUDD is a straightforward extension of SPI; it takes advantage of the extra struc-

ture in ADDs, and by using ADDs rather than decision diagrams, the representation

is potentially orders of magnitude smaller.

APRICODD takes SPUDD a step further by introducing approximations. Each

function represented as an ADD has, at its leaves, not a single value but rather a range

of values. At each iteration in policy iteration, APRICODD tries to merge ADD leaves

while making sure that the size of the range of values that each leaf represents remains

below some bound. Using these approximate ADD functions makes policy iteration

take fewer iterations to converge and dramatically reduces the size of the ADDs.

Logical Q-learning Kersting and De Raedt added a different type of structure to

MDPs and created logical Markov decision programs (LOMDPs) [40]. In an LOMDP,

the states and actions are given by logical formulas that are conjunctions of facts about

the domain, and the transition and reward functions are given by logical probabilistic

STRIPS-like rules.

Kersting and De Raedt demonstrate how to create a policy for a LOMDP using

a Q-learning variant called LQ-learning. The policy is a list of state-action rules and

is executed by taking the first action whose corresponding state matches the current

world state. These states in the policy list are abstract, in the sense that they are

composed of conjunctions of facts about the domain, and these abstract states are

said to match any fully ground state given by a conjunction of facts that extends it.

Given a set of abstract states that covers state space, LQ-learning performs Q-
learning to determine the correct action to take at each abstract state. LQ-learning

forms an abstract policy that works well for the domain in which it was trained;

35

however, since the policy is abstract, it will (ideally) work well in any domain that

has the same predicates as the training domain but different constants.

RMDP plan generalization The algorithm for plan generalization in relational

MDPs of Guestrin et al. [26] adds yet another type of structure to MDPs. In a rela-

tional MDP (RMDP), the domain is defined using a schema, much like a relational

database. The schema specifies classes of objects, and each class has state and ac-

tion variables associated with it. The schema also specifies the types and parameters

of possible relations between objects, and it gives general transition and reward dy-

namics parameterized by object relations. A particular domain is an instantiation

of a schema, containing instances of objects and instances of relations between those

objects.

Given one or more RMDP domains, the RMDP plan generalization method learns

to act in the domain in such a way that the information it learns will easily generalize

to other RMDPs with the same schema. The method approximates the value function

for the whole domain as the sum of the value functions for the objects in the domain.

It then assumes that objects of the same type will contribute to the overall reward in

the same way, so their component value functions do not need to be learned separately.

To create a plan, the method first operates on some small example domains with

the same schema. It uses linear programming to find the overall value function for-

mulated as a sum of component value functions for objects. It then applies this value

function to one or more large domains simply by adding or removing component value

functions based on the specific objects in the large domains. Guestrin et al. show

that the value function is close to the optimal one in that class (sum of component

value functions) with high probability given a polynomial number of worlds to learn

from.

36

2.2.2 Divide and conquer approaches

The second general technique for solving MDPs is divide-and-conquer. Methods

falling into this category work very well when the domain can be taken apart into

pieces that only weakly interact. There are many different ways that the domain can

be subdivided (over the state space, over state variables, over the action space, etc.),

and these methods run the gamut. The difficult part in all of these algorithms comes

when it is time to join the separately solved parts; the joining is always smoother or

quicker if the initial partition didn't divide up strongly interacting subparts.

Hierarchical policy construction Dean and Lin propose several decomposition

techniques [16]. The algorithm takes as input a factored MDP and a division of

that MDP's state space into regions where only a small number of state variables are

relevant to any subpart.

The algorithm alternates between local and global computations. In the first

step, it creates a set of policies for each region separately, where policies are created

for various costs associated with making a transition out of that region. The set of

policies ends up containing all policies necessary to get from one boundary state to

another, given some "urgency" cost. In the second step, after solving each region

by itself, the algorithm constructs an abstract MDP whose abstract states are the

regions and whose abstract actions are the policies calculated to go from region to

region. This abstract MDP is solved, and then a thresholding process determines

whether to continue iterating (this time using different costs for region transitions)

or whether the current overall policy is close enough to optimality.

Prioritized goal decomposition Boutilier et al. [6] propose an algorithm, called

prioritized goal decomposition, that breaks an MDP's reward function into sum-

mands. For each additive component of the reward function, a plan is found that

optimizes that reward component, and then the algorithm merges these component

37

plans into one. (The reward function is assumed to be additive with terms referring

to different state variables.)

The idea behind the algorithm is to create least commitment plans (LCPs) for

maximizing each reward function component. These LCPs are not full-blown policies

but rather are plan pieces; they are composed of a set of actions, a set of causal links

dictating what actions produce the preconditions required by other actions, and a set

of ordering constraints on the actions. Each LCP can be linearized to form a policy

that optimizes a particular reward function component, but each LCP is more general

than any specific policy.

Once LCPs have been created for each reward function component, the LCPs

are merged. This merging works by using the sum of the value functions for each

component as an admissible heuristic for A*. To make the A* search tractable, the

merging is done pairwise starting with the policy of potentially highest value, and at

each merge the merged policy is constrained to obey the causal structure of the LCP

for the prior merged policy. This commitment to the LCP for components already

merged may cause the resulting policy to be non-optimal, but it causes a big reduction

in computation time.

Cached policy sets The cached policy sets algorithm by Parr [56] divides up an

MDP's state space into regions and creates a cache of policies for each region. Parr

notes that state space can often be divided into subparts that are weakly connected,

i.e., there are few states where actions can be taken to transition from one subpart

to another.

In contrast to previous methods that pass messages back and forth between regions

and continually update each region's policy, a set of policies is created for each region,

where the set is guaranteed to contain at least one policy that performs within a

constant of optimal regardless of the structure of other regions. The insight that allows

this is that the value at each state in the region is a linear function of the regional

38

policy and of the long-term expected values of states outside the region, assuming the

latter two are fixed. The caches are therefore built iteratively by continually adding

policies that handle the values of states outside the region for which the policy set as

a whole performs worst.

The cached policy sets algorithm creates an abstract semi-MDP whose abstract

states are the regions' border states. The abstract actions needed to solve the abstract

semi-MDP (i.e., the ones in its optimal policy) are mapped into goals for the regions,

and the regions build policy caches as discussed above. Finally, the regions' caches

of policies are combined to create dynamics for the abstract semi-MDP actions, and

a global policy is calculated that performs within some constant of optimal.

Parr notes that the policy caches for some regions may need to be very large if

they are to provide policies within some factor of optimal no matter how the other

regions are structured. He thus gives a variant of this algorithm that builds a small

cache for each region and then calculates (and caches) a new policy when it is deemed

advantageous enough to do so rather than to use one of the existing cached policies.

Dynamic MDP merging The dynamic MDP merging method of Singh and Cohn [76]

attacks the problem of what to do if you have multiple MDPs to act in simultaneously,

the total reward is the sum of each MDP's reward, and choosing an action in one

MDP constrains the actions you can take in another (e.g., you have a limited number

of resources to spend at each time-step).

The algorithm starts with a set of MDPs and, for each MDP, bounds on the value

function at each state. The algorithm performs a variant of value iteration in the

combined space of all the MDPs. Instead of updating the value for each combined

state, though, the algorithm computes upper and lower bounds on the value at each

state.

The algorithm avoids updating the combined value function for the entire com-

bined state and action spaces in two ways. First, for each combined state, it maintains

39

a list of combined actions that have been discovered to be suboptimal and need no

longer be considered. Second, it updates combined states only along trial runs, where

it starts at a start state and wanders randomly until it reaches a goal. In this way, the

dynamic MDP merging is able to converge on the optimal policy much more quickly

and efficiently than normal value iteration in the combined MDP space.

Hierarchical SMART The hierarchical SMART algorithm of Wang and Mahade-

van [83, 84] performs hierarchical Q-learning for SMDPs. The inputs are several

SMDPs that are loosely coupled, and the policy chosen in one SMDP may affect the

transition dynamics or reward function at states in other SMDPs. For example, each

SMDP may represent a machine in a factory, and the SMDPs are coupled by the

output of one machine being fed into the input of another.

Flat Q-learning for the combined space of the SMDPs is intractable if there are

many SMDPs. Hierarchical Q-learning is also relatively unsuccessful when learning Q
values for each SMDP as it operates interacting with the other SMDPs. Hierarchical

SMART, on the other hand, derives Q values for each SMDP in isolation, and it in

fact calculates Q functions for many different values of the coupling variables. This

creates a set of Q functions and therefore policies for each SMDP.

Once the SMDP policy sets have been created, an abstract SMDP can be build

whose abstract states are the states of the coupling variables and whose abstract

actions choose which policy to execute in each SMDP. Hierarchical SMART then

does the second level of Q-learning, this time for the abstract SMDP, and combining

the Q function at the abstract level with the policies in each SMDP gives a policy for

the overall set of SMDPs.

The benefit of this algorithm as opposed to some previous ones that took similar

approaches is that it does not rely on the coupling between SMDPs being due to a

shared resource, or shared boundary states, or shared action constraints. Rather, it

will work for any general coupling between the SMDPs.

40

Markov task decomposition The Markov task decomposition of Meuleau et

al. [51] solves an MDP that is decomposed into a number of concurrent MDPs, where

the total reward is the sum of each subpart's reward, and where subparts' actions

constrain the allowable actions in other subparts.

The setup is very similar to that of dynamic MDP merging (section 2.2.2) except

that Meuleau et al. concentrate on the case where there are so many MDPs that the

explicit state and action space enumeration of dynamic MDP merging is intractable.

Markov task decomposition avoids enumerating the spaces and gains tractability at

the cost of guaranteed optimality.

The algorithm first considers each subpart separately, calculating a value function

for each combination of start state, horizon length, and constraints on the subpart's

actions. Once these individual value functions are calculated, the algorithm does not

compute a global policy but rather chooses an action and then executes it at each

time-step. When choosing an action for each subpart, the algorithm takes a two-step

approach: it uses a domain-specific heuristic to assign resources to each subpart (i.e.,

to constrain the allowable actions in each subpart), and then it uses each subpart's

pre-calculated value functions to figure out what action to take at that time-step.

Markov task decomposition may end up executing suboptimal actions even if the

domain-specific heuristic optimally assigns constraints to each subtask, because the

subtasks do riot consider the probabilistic outcomes of other subtasks. Nevertheless,

it tractably solves and provides a reasonably good policy for large decomposable

domains where other algorithms cannot.

Castafion [10] and Yost and Washburn [85] solve domains in a similar way to the

Markov task decomposition described above, except that they operate on POMDPs,

not MDPs. Their methods use linear program to constrain the action for each subpart

and to improve the resource constraints given best policies for each subpart.

41

Distributed hierarchical planning A somewhat different method is the dis-

tributed hierarchical planning done by Guestrin and Gordon [25]. The planning is

done in a factored MDP by dividing it into subsystems; in particular, the state vari-

ables, not the state space, are divided into subsystems. Each subsystem is a set of

strongly interacting state variables; subsystems may share variables and are arranged

into a tree hierarchy according to the variables they share. (This algorithm is actually

an extension of the factorized planning algorithm of Guestrin et al. [27], where both

the planning and the execution are now distributed instead of just the execution.)

Each subsystem is composed of internal and external variables, with the intuition

that the subsystem is in control of its internal variables and depends on but does not

control the values of it external variables. The subsystems are solved individually but

simultaneously and in interaction with other subsystems, as follows.

The MDP is represented as a linear program and is transformed into a compact

approximate representation, one where the value function is assumed to be a linear

combination of basis functions. The basis functions are chosen so as to allow com-

plete flexibility in representing each subsystem's value function (over the subsystem's

internal variables) separately.

The transformed linear program is then decomposed using a variant of Dantzig-

Wolfe decomposition. Each subsystem has its own linear program that depend on

other subsystems; in particular, each linear program has a set of inputs that can be

interpreted as a reward adjustment. The subsystems participate in a message-passing

phase, separately solving their linear programs and passing reward adjustment mes-

sages. These messages can be interpreted as a kind of reward sharing: each subsystem

notifies its neighbors about how the neighbors' policies affect its own reward. When

the message-passing phase converges, the resulting linear programs are combined into

a global policy.

42

2.2.3 State aggregation approaches

A third category of abstraction methods has to do with state aggregation. The idea

is to reduce the state space by grouping together certain states, either regularly or

irregularly, according to some criteria. The algorithms that operate on factored input

domains often cluster states by ignoring the values of certain state variables; this

clusters together states that are the same except for their values over those ignored

variables.

In general, the state abstractions are good because they don't require any extra

input beyond the input model (though that input model may have to be specified in

a special format, e.g., STRIPS notation for state space approximation). The state

abstractions don't do any temporal abstraction, however, which limits the sorts of

domain structure that they can take advantage of.

UTree The UTree algorithm of McCallum [47] (and the continuous state-space vari-

ation of Uther and Veloso [81]) progressively refine a tree-based aggregation of states

by considering the state transitions encountered on trial trajectories and ensuring

that the individual states inside aggregates have similar dynamics.

UTree is slightly different than most state aggregation approaches in that it doesn't

simply partition the state space or the state variables. Instead, it assigns the current

state to an aggregate based not only on the current state but also possibly on the

recent history of states and actions as well.

The algorithm starts by grouping all states into one aggregate, and it then alter-

nates between data gathering and refinement. In the data gathering phase, the agent

uses the current aggregation to build an abstract model, and it performs Q-learning

on the model, acting greedily. During this phase, it records the state, action, post-

state, and reward for transitions that it makes. In the refinement phase, the recorded

transition dynamics are used to calculate the Q values for each abstract state. If

the Q values vary significantly over a state, it is split in two, where there are several

43

possible criteria used to determine significant variance and to determine which state

should be split.

The TTree algorithm of Uther and Veloso [82] is similar to their extension of UTree

to continuous state spaces, except that it exploits user-supplied temporally extended

actions. These sub-policies are used to guide the data gathering phase in exploring

areas of state space that are more likely to occur on good trajectories.

Multigrid value iteration The multigrid value iteration algorithm of Heckendorn

and Anderson [32] applies the multigrid approach to reinforcement learning in MDPs.

Multigrid algorithms generally work by creating solutions for successively finer repre-

sentations of a problem, starting with a very coarse abstraction or discretization, and

ending when the representation is close enough to the initial problem to guarantee

some sort of optimality.

Heckendorn and Anderson show how to do value iteration while varying the dis-

cretization from coarse to fine, stepping to the next finer discretization when value

iteration almost stabilizes. They demonstrate that this algorithm converges faster in

this varying discretization than value iteration does in a static fine discretization, and

that the result is within a constant factor of optimal.

Model minimization The model minimization method of Dean and Givan [12, 13]

creates a new model that is equivalent to the input model but that attempts to ignore

all meaningless differences in state dynamics. It has two variants: one only ignores

differences that are guaranteed not to make a difference, and the other approximates

by additionally ignoring differences among states that are almost the same.

The algorithm constructs the abstract aggregations of states not by starting with

all states separate and then grouping some together but rather by starting with all

states grouped together into the same aggregate and then successively separating

clusters until they meet a stability criterion. This stability criterion states that,

given two aggregates S and S', and given an action a, every state s C S has the same

44

transition probability to S' (i.e., to some any in S') under action a, and every s E S

also gains the same reward under a. This refinement algorithm produces the coarsest

refinement (i.e., with the fewest number of states) possible for which the abstract

dynamics match the original dynamics.

The partition that the exact algorithm comes up with is often complicated and

space-consuming to represent, since the partitions can have arbitrary shapes. Model

minimization can be turned into an approximate but more tractable algorithm by

choosing to limit allowed clusters to those that are easily or compactly representable,

say, by conjunctions of literals. Dean and Givan show that model minimization is a

generalization of state-space approximation (section 2.2.3) and of structured policy

iteration (section 2.2.1), where these other spatial approximation methods change the

refinement step to yield partitions with nice descriptions or partitions that are easier

to find, rather than the fewest strictly optimal partitions possible.

Ravindran and Barto [68, 70] and Givan et al. [23] extend model minimization

slightly to create the concepts of MDP homomorphisms and stochastic bisimilarity.

These allow for the creation of more compact abstract models by allowing the mapping

between the original and abstract actions to be arbitrary rather than the identity

mapping.

HEXQ The HEXQ algorithm of Hengst [33] attempts to exploit the factored struc-

ture of an MDP to find repeated sub-structures and to share calculated policy in-

formation among them. In particular, it exploits how some state variables change

less often than others, and how these frequently changing state variables often have

the same transition dynamics for many values of the less frequently-changing state

variables.

HEXQ creates a linear hierarchy of models that successively better approximate

the input domain. The nth level up aggregates states based on the n most frequently

changing state variables, combining the abstraction mapping determined by the next

45

lower level with the nth most frequently changing state variable, and then creating

its own abstraction. The abstraction at each level is based on the idea of entries

and exits: HEXQ finds strongly connected components of state space and calculates

policies, exported as abstract actions, to go from entries to exits.

HEXQ first uses sample trajectory data to order the state variables by how often

they tend to change. It then creates the model for each level, starting at the bottom

and working up. The model for level n in the hierarchy is initialized by taking the

cross-product of model n - 1 with the nth most frequently changing state variable

(the lowest model is initialized just with the most frequently changing state vari-

able). HEXQ calculates dynamics for the level n model using transition frequency

counts from the sample trajectory data. Some actions at some states in this model

cause transitions in less frequently changing state variables (which have not yet been

incorporated in the model); these state-action pairs define entries and exits. Other

actions at states do not cause transitions in less frequently changing state variables,

and these are used to define strongly connected components of the state space. HEXQ

then creates an abstraction whose states are the connected components and whose

actions are policies that go to exit states and then transition to a different connected

component. This abstraction is exported up to the next level of the hierarchy. At the

very top of the hierarchy, the resulting abstract model is solved using Q-learning.

The intuition behind HEXQ is that it is easiest to find abstractions when working

with a smaller (more aggregated) state space, and that a good strategy is to exploit

isomorphically behaving regions of state space. The result is a hierarchy of models,

where each model takes successively more of the domain into account and throws

away as much irrelevant information as possible.

Envelope The envelope method of Dean et al. [14] is a dynamic state aggregation

method that creates a policy over the part of the domain that currently matters,

while ignoring the rest. The part currently planned for is called the envelope, and

46

the envelope is extended (and contracted) as necessary and expedient.

The envelope method starts by finding a straight-line plan from the starting state

to the goal state, using depth-first search among the most probable action outcomes.

The set, of states traversed in this initial plan becomes the initial envelope of states; all

other states are aggregated into a distinguished out state, which is configured to have

absorbing dynamics. The MDP consisting of the envelope and the out state is solved

using policy iteration, and the agent starts executing. The envelope is subsequently

modified in two situations: when the agent has extra time to think before needing to

act, and when the agent reaches the out aggregate. When extending the envelope,

a state is chosen from the out aggregate to add to the envelope; this is usually the

likeliest state to be visited, which will be the current state if the agent has fallen

out of the envelope. Policy iteration is performed on the new domain model, and it

converges fairly quickly since the policy and value function can be bootstrapped with

the corresponding values from the last round of policy iteration.

Nicholson and Kaelbling propose a variant of the envelope method [55] that also

dynamically changes the currently considered state space, but does so for factored

MDPs. Instead of ignoring several states at a time, it creates an abstract model by

ignoring several state variables that it concludes are not relevant to the current portion

of state space. All state variables are ranked using sensitivity analysis according to

how they affect the state variables specifying the goal. The most affecting state

variables are included in the factored envelope (i.e., in the abstract model), and the

least affecting are excluded. The excluded state variables may be added later if

there is extra time to think or if it is impossible to reach the goal in the current

abstraction. The dynamics of each abstract state in the abstract model are assigned

to be the uniform average of the aggregated states, and the abstract model is solved,

as with the non-factored envelope method, using policy iteration.

47

State-space approximation The state-space approximation method of Boutilier

and Dearden [7, 17] is similar to the factored envelope method of Nicholson and

Kaelbling, in that both methods attempt to determine state variables that can be

ignored by working backward from the goal state and figuring out what state variables

are relevant to achieving it.

The difference is that state-space approximation requires the given model dy-

namics to be represented in a probabilistic STRIPS format. This more compact,

structured representation allows it to deduce more quickly which state variables af-

fect the goal most. Boutilier and Dearden also give a bound on the difference in

expected reward between the optimal abstract policy and the optimal policy in the

original domain.

Dynamic non-uniform abstractions The dynamic non-uniform abstraction method

of Baum and Nicholson [2] is also similar to the factored envelope method. However,

instead of uniformly including or discarding state variables, this method locally calcu-

lates state variable relevance and then creates the abstract domain by locally including

or discarding state variables based on that information.

The dynamic non-uniform abstraction method creates the initial abstract domain

aggregate states as with the factored envelope method, by aggregating only across

state variables that are relevant to the goal. However, it also uses the decision tree-

based representation of transition dynamics to ensure that states with different out-

comes under some action are distinct and not aggregated; this causes some local

disaggregation.

After the initial abstract domain is created and solved, the agent begins execut-

ing the computed policy. The dynamic non-uniform abstraction method gives some

heuristics for dynamically modifying the aggregation. One test is based on the cur-

rent policy and local differences in which state variables are aggregated, and this test

is designed to prevent local mismatches in the aggregation coarseness from causing

48

the agent, to fail to reach the goal. Another test is based on the likelihood of reaching

states, and is used both to make the aggregation finer in newly relevant parts of state

space and to coarsen the aggregation in the parts left behind.

Sparse sampling The sparse sampling method of Kearns et al. [39] is a state

aggregation method that is interesting in that its running time has no dependence

on the size of the state space; instead, its running time depends on the horizon time

(i.e., on the discount factor). The idea is to plan around the current state in a bubble

of states large enough to guarantee being within a constant factor of optimality.

The sparse sampling method uses a generative model of the MDP. Given the task

of choosing an action to take at a state, it constructs a sparse lookahead tree. This

is essentially a tree of trajectories where the nodes are labeled with states, and the

edges are labeled with actions and rewards; the current state is the root of the tree.

The tree has a constant branching factor and is constructed by starting at a node and

using the generative model to sample some number of transitions for each possible

action. (The same state can appear more than once as a child of some node.) After

expanding the tree to some depth, a long-term value of zero is assigned to leaves, and

the values are backed up the tree to derive an estimate of taking each possible action

at the current state.

Kearns et al. prove that, given the original model's discount factor, it is possible

to choose some expansion depth and branching factor for the lookahead tree so that

using the sparse sampling method will cause the agent to behave within a constnat

factor of optimal. Even though this method's running time is independent of the

state space size, it is still rather inefficient if the discount factor is close to one, and

so various methods are proposed for making it more efficient, e.g., decreasing the

branching factor further down the tree.

49

2.2.4 Temporally extended action approaches

A fourth category of abstraction methods consists of those that use temporally ab-

stract actions to represent the domain. The advantage of using these abstract action

methods is that they abstract temporally, and so it is possible to plan using "actions"

that take a long time and traverse a large area of state space. Unfortunately, it is

generally difficult to come up with useful abstract actions automatically, requiring a

domain expert's intervention or a lot of training data.

Compositional Q-learning The compositional Q-learning (CQ-learning) method

of Singh [75] is presented as a way of transferring knowledge between problems by

packaging pieces of the solution into subtasks. The information gained from solving

these subtasks can be used to bootstrap the solving process in any number of different

domains.

In addition to the input domain, the CQ-learning algorithm starts out with a

set of elemental tasks and a compositional task. The elemental tasks are specified

as reward functions over the input domain, and the compositional tasks consists of

a sequence of elemental tasks to be completed. To solve the compositional tasks,

the algorithm exploits the way in which the Q functions for the compositional and

elemental tasks relate. In particular, the Q function for a compositional task executing

some elemental task is related to the Q function for that elemental task through

addition of a term dependent only on the compositional task executing and on the

position of the elemental task in the compositional task's sequence. This makes it

relatively simple to solve the compositional task by first deriving the Q functions

for elementary tasks and then using those to bootstrap learning the Q function of

the compositional task. This especially works well when an elemental task must be

executed several times in a compositional task sequence, allowing the sharing of effort

within the solution of a single problem and not just across different problems.

50

Macro-actions The macro-action framework developed by Hauskrecht et al. [31]

is similar to Dean and Lin's hierarchical policy construction and Parr's cached policy

sets. The scenario that the macro-action framework targets is one where there are

multiple related problems to be solved and so it will be advantageous to create macro-

actions that help solve the domain.

As with cached policy sets, state space is broken into regions joined at boundary

states, each region has some temporally extended actions calculated to go between

boundary states, and an abstract model is created. (The macro-action framework

creates a multi-time MDP, equivalent to a semi-MDP; see section 2.2.4.) The tempo-

rally extended actions for each region are policies created by considering the region

to be a standalone MDP with boundary states being absorbing and having fixed val-

ues. Hauskrecht et al. describe several heuristics for building macro-actions, some

that are quicker but potentially forfeit expected reward, others that need to produce

more macro-actions and are therefore slower but guarantee optimality of the overall

solution within some constant factor. In order to create macro-actions for the correct

boundary state values, they also describe a technique that iterates between creating

macro-actions and estimating boundary state values, using one to update the other.

The macro-action framework is targeted at speeding the solution of multiple re-

lated problems, not just a single problem, otherwise the time spent creating macros

may not amortize over enough actual problem solving to be worth the effort. When

the problem description is changed slightly, perhaps locally adjusting dynamics or

switching the location of the goal, most macro-actions can be reused; generally, only

the macro-actions nearby to the change in state space need to be redone.

Options The options framework of Precup et al. [65] uses temporally abstract ac-

tions to make value iteration be more efficient and converge in fewer time-steps.

In addition to an MDP to solve, the framework takes options as input, where

options are closed-loop possibly non-Markovian policies. An option is composed of

51

three parts: a set of states where it can act, a decision rule that says how to act, and a

completion function that calculates the probability of the option terminating. Options

are executed like ordinary actions from the input domain; they can be thought of as

having subroutine-like semantics.

These options are added to the set of available actions in the input domain, and

then the combined domain is solved using value iteration. Options may execute for

more than one time-step, and this causes the normal Bellman equations to discount

the action temporally in an incorrect way. In order to cause each action to be dis-

counted according to the actual number of timesteps it is expected to execute, the

combined domain is represented as a multi-time model [64]. A multi-time model rep-

resents the discounting of future rewards by scaling the transition probability function

appropriately. Multi-time models are essentially equivalent to semi-MDPs.

The idea behind the options framework is to speed up the convergence of value

iteration. Precup et al. and also McGovern et al. [50, 49] show that indeed Q-
learning with options is considerably faster than without. This speedup comes from

the way that options are faster than the original actions at propagating estimated

long-term value between different parts of state space, due to the relatively large

possible distance in state space between an option's invocation and termination states.

(Hauskrecht notes that speedier convergence of value iteration is dependent on using

an appropriate initial value function estimate [30].) Despite quicker convergence, the

options framework still assures optimality since all the original actions from the input

domain are still available to the agent.

Rohanimanesh and Mahadevan [71] extend the options framework to work with

factored MDPs. Assuming that the MDP's state variables can be divided into subsets

and that each original action or option only affects one subset of state variables, multi-

options can be built by simultaneously executing several options. Rohanimanesh and

Mahadevan demonstrate that, as with the original options framework, the multi-

options framework gives rise to a semi-MDP, and they explore different termination

52

conditions for multi-options.

Relativized options The relativized options framework of Ravindran and Barto [69]

combines the options framework with model minimization. The idea is to exploit sym-

netries in the domain by using options to expedite the computation of results once,

and then mapping those results to dynamically similar areas of state space.

The relativized options framework builds on Ravindran and Barto's earlier work

on MDP homomorphisms (see section 2.2.3), extending it to SMDP homomorphisms.

These homomorphisms exploit the way that different parts of state space may have

the same dynamics. They map each of those parts of state-action space onto the same

abstract model, making the correspondence explicit and giving an abstract model to

work in such that any results can be unmapped back into the original parts of state

space.

Given a partial MDP homomorphism ("partial" meaning that it operates on some

but not all of the state space), the relativized options framework performs Q-learning

in the input model. However, when in some part of state space that is mapped to

the abstract model by the partial MDP homomorphism, the Q-learning (and action

selection) happens in the abstract model, not in the input model. This allows the Q
function information being learned in one part of state space to be used and built on

in homomorphic parts of state space. Since the options are being used to speed up

learning in the abstract model, Q-learning for the whole model speeds up as well.

Ravindran and Barto also briefly discuss the possibilities of using relativized op-

tions with approximate MDP homomorphisms, formalizing the results using bounded-

parameter MDPs [24].

Local controllers The local controller method of Guestrin and Ormoneit [29] ex-

tends the temporally extended action methods like macro-actions and options to

continuous space MDPs.

The algorithm takes as input not only some domain to solve but also local con-

53

trollers. These controllers take parameters specifying exactly how they should act,

e.g., what goal they should aim for. These controllers are also associated with land-

marks, locations in state space near which the controllers are likely to perform well.

State space is divided up into the Voronoi diagram calculated from the landmarks,

with each controller being active in its landmark's subpart.

Given the domain and local controllers, the algorithm uses trial runs to estimate

the transition probabilities and rewards when executing controllers in each subpart.

These dynamics then allow the construction of an abstract domain with a discrete

state space, where there is one state per subpart, and the allowed actions for a subpart

are the various parameterizations of its local controller. Guestrin and Ormoneit

demonstrate how the local controller method can be applied not only to general

discounted MDPs but also to motion planning problems. In the latter case, the

algorithm finds a path whose probability of failure falls below a specified threshold.

Hierarchical DG learning The hierarchical DG (HDG) learning algorithm of

Kaelbling [37] is a hierarchical version of the distance-to-goal (DG) learning [38]

algorithm that trades away guaranteed optimality for much better performance. DG

and HDG learning operate domains where the object is to reach some goal state as

soon as possible.

DG learning is similar to Q-learning, except that instead of building a Q function

mapping state-action pairs to expected reward, it builds a DG function mapping state-

action-goal tuples to expected reward. The DG function is learned by executing trial

runs and using an analog of the Q function update equation. Since a single step from

the trial run could theoretically be a single step towards any goal, the DG function

can be updated for all goals at each step. This allows for efficient knowledge transfer

when choosing a different goal and is the selling point of DG learning.

HDG learning does DG learning locally, but it first builds an abstract model called

a landmark network. The abstract model's state space is composed of certain states

54

from the input domain that are designated as landmarks, and abstract actions go

from each landmark to its neighbors. The input domain state space is divided into

subparts, one for each landmark, with each state belonging to the same subpart as

its nearest landmark. HDG learns two different policy structures: first, it learns how

to get from any state to any other within a subpart, and second, it learns policies to

get from each landmark to adjacent landmarks. The latter data structure is all that

is needed to get from one state to another if the states are in the same subpart; if the

states are in different subparts, then the agent takes an action that propels it towards

the adjacent landmark closest to the goal.

Due to allowing an arbitrary choice of landmarks, the HDG algorithm makes

no guarantees about the optimality of the path taken from any state to the goal.

However, partitioning the state space into subparts does cause the algorithm to learn

faster, since common routes from landmark to landmark will be learned and reused

quickly. The HDG data structures are also more compact, since the DG function only

needs to be maintained for reaching local goals.

Airport hierarchy The airport hierarchy method of Moore et al. [52] builds on

HDG, extending it in a couple of ways: the landmarks are found automatically, rather

than needing to be given as inputs; and many levels of hierarchy are constructed,

rather than just two. The aim of this method is still though to build multi-policies,

i.e., a data structure that allows easy policy knowledge transfer to problems in the

same domain but with different goals.

The airport hierarchy built by this method is an arrangement of the input domain's

states into a network of airports. Airports have a designated seniority level, and there

are exponentially fewer airports allowed at increasing levels of seniority. The network

is built by successively adding airports, each time choosing the state that is farthest

(in terms of expected cost) from existing airports. For a chosen state, the method

designates it as an airport in the most senior level in which there is still room, and

55

calculates policy information for reaching that state. There are two types of policy

information stored in the airport hierarchy. First, for each state s, the hierarchy knows

how directly to step optimally towards s from some number of states nearby. This

information is calculated by using policy iteration in a gradually expanded envelope

around s, bounding the expected reward results for leaving the envelope. Second, the

hierarchy knows how to travel from a state to a goal if it knows how to step directly

through some sequence of successively junior airports.

To act at a state, the agent uses direct policy step information if such exists for

its goal. If the goal is too far away for such information to be pre-calculated, then

the agent searches for the most junior airport possible such that it knows how to step

towards the airport and the airport knows how to get to the goal. This process works

for getting from any state to any goal and transfers knowledge efficiently between

problems with different goals without being wildly suboptimal. Also, due to the

exponential construction of the airport network and policy information, the space

required for representing the policy is only approximately 0(n log n).

Bottleneck subgoaling The bottleneck subgoaling algorithm of McGovern and

Barto [48] automatically creates abstract actions by identifying bottlenecks in the

state space. These bottlenecks are used to create options to speed up learning.

The bottleneck subgoaling algorithm simultaneously executes and updates its cur-

rent best policy. Using the trial run data gathered so far, the algorithm identifies

bottlenecks by looking for states usually visited on successful trajectories but not

visited on unsuccessful ones. Using the concept of diverse density, it rates regions of

state space based on how often they are visited during successful trajectories and not

visited during unsuccessful trajectories. During the execution and updating, if any

region shows up as consistently rated higher than its neighbors (i.e., more likely to be

visited only on successful trajectories), then that region of state space is turned into

a subgoal by creating a new option that is a sub-policy that attempts to reach the

56

subgoal. The set of states over which the option can be executed are the subgoal's

predecessors from the successful trial runs whose path went through the subgoal.

As with the options framework, the subgoal-achieving options created by this

method speed up learning by focusing on the paths and areas of state space likely to

be used in good policies.

2.2.5 Control hierarchy approaches

A fifth large category of abstraction methods has to do with controlling the domain

in a hierarchical manner. There are actually several different approaches that all fall

under the label of control hierarchies. For instance, some algorithms decompose the

control task into subtasks, whereas others decompose the state space into subparts

to be controlled separately. Also, some algorithms create a control hierarchy that

sits alongside the domain, whereas others use the control hierarchy to create explicit

abstract models.

Control hierarchies work well for a lot of problems because they create several

levels of abstraction, so that planning can be done on a large scale, both spatially

and temporally. One potential downside of control hierarchies though is that it is

possible to get trapped executing in the middle of the hierarchy when the situation

has changed; to combat this, several of these algorithms deliberately start at the

hierarchy root and go down the hierarchy at each time-step.

Feudal RL Feudal reinforcement learning, created by Dayan and Hinton [11], uses a

control hierarchy to learn how to accomplish subtasks at different temporal resolutions

and in different areas of state space. This multi-resolution knowledge takes slightly

longer than pure Q-learning to gain initially, but it promotes easy knowledge transfer

to other tasks in the same domain.

The control hierarchy used by the feudal RL system is a tree structure successively

subdividing state space, so that each node corresponds to certain states, and a node's

57

children's states form a partition of its own states. At the top of the hierarchy, the

root node corresponds to the entire state space; at the bottom, nodes correspond

to just a few states. During execution, one node from each level of the hierarchy is

active, and this node is the one whose corresponding set of states contains the current

state.

Each node is given a set of tasks that it can request of its children. Children

are given a Q-learning reward signal based on how well they accomplish the tasks

that their parent gives them. This reward signal is used to learn Q functions at each

node; this allows the lower level nodes to learn the correct solutions to tasks even

if those tasks turn out not to be useful to the parents who asked for them. This

method of distributing reward causes feudal RL to be slower in learning to solve the

domain initially than regular Q-learning. However, the Q functions (and derivative

policies) being learned are general and cause the feudal RL system to adjust much

more quickly to a changed goal than learning to act from scratch again.

Hierarchies of abstract machines The hierarchies of abstract machines frame-

work of Parr and Russell [57] supplements the input domain with a set of finite-state

machines that constrain the agent's action choices at certain states. These machines

can be combined with the input domain to form an abstract domain representing the

action choices remaining to the agent.

A hierarchy of abstract machines (HAM) is composed of a set of non-deterministic

finite state machines (NDFSMs); the whole hierarchy combined acts like one giant

NDFSM, where only one machine is active at a time. Each machine may be in

one of several states: an action-taking state, a transitioning state (where it makes a

subroutine call or return to another machine), or a non-deterministic choice state. The

machines are arranged in a hierarchy according to which machine makes subroutine

calls to which other machines. The interpretation of the hierarchy is that its NDFSMs

keep executing until they reach non-deterministic choice states, where the agent gets

58

to choose actions. Each machine's transition function to the next machine state

is a stochastic function of the current machine state and the current state of the

environment. Overall, the HAM forms a set of constraints on the policy executed,

but it itself is not a complete policy because of the choice states.

The HAM is combined with the input MDP model to form an abstract MDP whose

states are the choice points and whose actions make choices at those choice points.

The abstract MDP is solved using any normal MDP solver such as policy iteration,

and any optimal solution to the abstract MDP is guaranteed to be optimal among

all solutions to the input MDP that are consistent with the constraints specified by

the HAM. Since the abstract MDP is non-trivial to construct explicitly (though its

construction is often still advantageous), Parr and Russell also discuss a Q-learning

variant that essentially learns to take actions in the reduced abstract MDP without

needing to build it in full.

MAXQ The MAXQ hierarchy method of Dietterich [18] is similar to feudal RL

(see section 2.2.5) except that the domain is decomposed into subtasks in such a way

that no subtask ever becomes non-Markovian.

The input model is supplemented with a MAXQ hierarchy, a data structure that

estimates both the context-independent and the context-dependent values of abstract

actions. A MAXQ hierarchy contains alternating layers of Max nodes, which represent

primitive actions or subtasks, and Q nodes, which represent actions that can be

performed to achieve their parent subtasks. The difference between the two node types

is that the Max nodes learn the context independent long-term estimated reward for

performing their associated subtask, while the Q nodes learn the context dependent

reward (i.e., how valuable is this action in achieving the parent subtask). The same

Max can be used by multiple parents in the MAXQ hierarchy, allowing the value

function and Q function to consolidate calculations for similar parts of the domain.

The MAXQ method uses a MAXQ hierarchy to build a hierarchical policy, which is

59

composed of one policy for each Max node. This hierarchical policy is learned using a

hierarchical Q-learning algorithm, MAXQ-Q, and the policy is executed hierarchically

by Max nodes making subroutine calls to their child Max nodes.

There are two different optimality criteria that hierarchical algorithms such as

MAXQ could meet. If an algorithm is hierarchically optimal, then it chooses the best

policy that is consistent with the constraints that the hierarchical structure enforce.

If an algorithm is recursively optimal, then each node of the hierarchy chooses the

best policy given the choices of its child nodes; this gives a potentially worse solution

than a hierarchically optimal algorithm with the same constraints.

Ditterich shows that MAXQ-Q converges to a recursively optimal solution and

discusses the conditions under which the state representations (abstractions) chosen

for the Max nodes allow for an overall representation of the optimal solution. He also

shows how to execute the policy non-hierarchically for increased performance where

the recursively optimal solution is not the overall optimal one.

ALisp The ALisp framework of Andre and Russell [1] defines a Lisp-like language

for specifying constraints on agent action choices. ALisp is similar to the HAM

framework (see section 2.2.5) in that it enumerates actions to take at certain states,

choices for the agent to take at others, and subroutine calls. The ALisp constraints

are used to create a hierarchical structure representing an abstract semi-MDP whose

actions and states are the choices an agent can make and the locations at which those

choices occur. The abstract model is solved using an ALisp-specific variant of MAXQ

learning called ALispQ.

Andre and Russell show how ALisp allows a three-part decomposition of the do-

main's value function that improves upon MAXQ's two-part decomposition, in that

it permits a certain type of abstract state representation without sacrificing hierarchi-

cal optimality. This improved allowance for abstract state representation at various

points in the algorithm greatly improves its performance over regular Q-learning due

60

to the sharing of learned Q function information between different parts of the domain

that call the same subroutine.

Task hierarchy The task hierarchy method developed by Pineau et al. [60, 61]

uses a set of' hierarchical control constraints to derive state abstractions. Each task

performs policy-contingent abstraction, examining its subtasks' policies to figure out

how best to abstract the domain.

In addition to an input domain, the task hierarchy method requires a task-based

hierarchical decomposition. Each task, starting with the task at the top of the hier-

archy to solve the domain, is decomposed into the subtasks (which can be shared)

and primitive actions that might be necessary to complete the task. Each subtask

is considered to be an abstract action available to its supertask(s). In addition to

having a set of available abstract and primitive actions, each task has a set of goal

states along with a function giving their relative desirability.

Given a domain and task decomposition, the algorithm creates an abstract version

of the domain for each task, from the bottom up. This abstract version is calculated

using model minimization, where the model to be minimized is the input domain

where the original actions are replaced by this task's allowed actions and where the

original reward function is augmented with the task's goal-oriented reward function.

The calculated abstract domain for a task is solved, and the resulting policy's esti-

mated dynamics are noted by any supertasks. After an abstract domain and policy

are created for each task, the hierarchy is executed by tracing from the root to a leaf

at each time-step, choosing at each level whichever action promises to be best.

The task hierarchy method improves upon normal model minimization in that it

performs model minimization for different tasks, and presumably different areas of

state space, separately. This allows it to exploit how certain aspects of the domain

may be irrelevant for some task though they are very relevant later. This method

also weeds out irrelevant domain features by creating the abstract domains from the

61

bottom up: the abstract domains at higher levels need only represent features relevant

to the actual policies that will be executed at lower levels, rather than any features

that could possibly be relevant.

2.3 Comparison of previous MDP methods

The abstraction methods are grouped above into one possible categorization, but

there are many other possible categories and many similarities between individual

methods. For instance, cached policy sets uses abstract actions despite being in the

decomposition and recombination category, and several algorithms like the airport

hierarchy and bottleneck subgoaling automatically create subgoals.

To get a better idea of what each method is like than just its main strategy, tables

2.1, 2.2, and 2.3 summarize different characteristics of each.

Table 2.1 gives information about the sort of inputs each algorithm needs. Some

methods just need a simple MDP; other methods need or can take advantage of the

model being structured in some way; others need additional domain-specific informa-

tion.

" The column factored input indicates whether the method can take advantage of

an input model expressed as a factored MDP (as opposed to an MDP without

state and action spaces as variables), and/or whether such a factored input

model is actually required.

" The column discrete/continuous input indicates whether the method operates

on discrete or continuous state and action spaces. A method may have variants

that allow it to operate on both discrete MDPs and on continuous MDPs; it

may also operate on hybrid MDPs, which contain both continuous and discrete

state and action variables.

" The column full or generative model indicates whether the method needs to be

62

Method name

0
0.
C

0
0.)

Uj

W

-d
0
S
0

0
0
0

0

0

S

-d

0.)
-e
0
S

C

0
0.

0
S

0
0.
0

0
0

0

Airport hierarchy not req. discrete generative unstructured single none
ALisp not req. discrete generative properties single control constraints
Bottleneck subgoaling not req. discrete generative unstructured single none
Cached policy sets not req. discrete full unstructured single state space partition
Compositional Q-learning not req. discrete generative unstructured multiple subgoals
Distributed hierarchical planning required discrete full unstructured single state variable partition
Dynamic MDP merging not req. discrete full unstructured multiple none
Dynamic non-uniform abstractions required discrete full decision tree single none
Explanation-based RL required discrete full PSTRIPS single none
Envelope used discrete full unstructured single none
Factored value functions required discrete full additive reward fn. single basis functions
Feudal RL not req. discrete generative unstructured single control constraints
Hierarchical decomposition of goals not req. discrete generative unstructured single subgoals
HEXQ required discrete generative unstructured single none
Hierarchical policy construction required discrete full unstructured single state space partition
Hierarchical SMART not req. discrete full unstructured multiple none
Hierarchies of abstract machines not req. discrete generative unstructured single control constraints
Local controllers not req. continuous full unstructured single abstract actions
Logical Q-learning required discrete full PSTRIPS single none
Macro actions not req. discrete full unstructured single abstract actions
Markov task decomposition required discrete full unstructured multiple heuristic
MAXQ not req. discrete generative unstructured single control constraints
Model minimization used discrete full unstructured single none
Multigrid value iteration required continuous full unstructured single none
Options not req. discrete full unstructured single abstract actions
Prioritized goal decomposition required discrete full additive reward fn. single none
Relativized options required discrete full unstructured single mappingabstract actions
Sparse sampling not req. discrete generative unstructured single none
SPUDD, APRICODD required discrete full ADD single none
State-space approximation required discrete full PSTRIPS single none
Structured policy iteration required discrete full decision tree single none
Task hierarchy (PolCA) required discrete full unstructured single control constraints
UTree and TTree required both full unstructured single none

Table 2.1: Input characteristics of previous methods.

fed the full MDP with dynamics and reward functions as input, or whether it

simply uses some sort of generative model to sample the dynamics and reward

functions.

" The column structured input dynamics indicates whether the method requires

the input dynamics to be structured in some way. For example, the structuring

may involve representing functions using algebraic decision diagrams or prob-

abilistic STRIPS-like rules. Generally, if a method requires structured input

dynamics, then it also must require an input domain with factored state and

action spaces.

* The column multiple input models indicates whether the method actually op-

erates on multiple separate MDPs with separate dynamics. (The MDPs are

linked somehow else, perhaps through the agent trying to maximize the sum of

all rewards.)

" The column type of additional input indicates whether the method takes any

additional input beyond the (possibly structured) input model, and, if so, what

form that input takes. This category only contains model-dependent inputs and

specifically excludes parameters that would be the same for every model, e.g.,

a learning rate.

Table 2.2 gives information about the sort of output each algorithm gives. The

methods give output ranging from a new, hopefully simpler, abstract domain to a

complete policy, and everything in between. Table 2.2 also gives information about

the running characteristics of methods (like being anytime, or planning offline vs.

online) and the optimality they can or must guarantee.

e The column end goal indicates whether the method is attempting to solve the

input domain (e.g., by creating a policy for it), or whether it creates an ab-

stracted version of the domain. Some of the methods are listed as abstraction

64

Method name

7C

0

C
bQ

Ua
-C
0
C-

S

2
a

a

a

41

Airport hierarchy solve goal Q fn. convergent none

ALisp abstract continuous SMDP convergent hierarchical
Bottleneck subgoaling abstract continuous MDP convergent exact
Cached policy sets abstract continuous SMDP static 0 within epsilon
Compositional Q-learning solve goal Q fn. convergent recursive
Distributed hierarchical planning solve continuous policy static other
Dynamic MDP merging solve continuous value fn. static exact

Dynamic non-uniform abstractions solve goal policy dynamic 0 none
Explanation-based RL solve goal value fn. convergent exact
Envelope solve goal policy dynamic * within epsilon
Factored value functions solve continuous policy static within epsilon
Feudal RL solve continuous Q fn. static recursive
Hierarchical decomposition of goals solve goal Q fn. convergent recursive
HEXQ solve continuous Q fn. convergent recursive
Hierarchical policy construction abstract continuous MDP static * exact
Hierarchical SMART solve continuous Q fn. convergent none
Hierarchies of abstract machines abstract continuous MDP static hierarchical
Local controllers abstract continuous SMDP static none
Logical Q-learning solve continuous Q fn. convergent exact
Macro actions solve goal SMDP static * recursive
Markov task decomposition solve goal value fn. dynamic none
MAXQ solve continuous Q fn. convergent recursive
Model minimization abstract continuous MDP static * exact
Multigrid value iteration solve continuous value fn. convergent within epsilon
Options solve continuous value fn. static exact
Prioritized goal decomposition solve goal policy static none
Relativized options solve continuous Q fn. static exact
Sparse sampling solve continuous policy dynamic * within epsilon
SPUDD, APRICODD solve continuous value fn. static * exact
State-space approximation solve goal policy convergent 0 within epsilon
Structured policy iteration solve continuous policy,value fn. static exact
Task hierarchy (PolCA) solve continuous value fn. static recursive
UTree and TTree solve continuous policy static * exact

Table 2.2: Output characteristics of previous methods.

CQI

methods, even though in published papers they always appeared in combination

with some MDP solution method like value/policy iteration or Q-learning. If

the method creates one new MDP, though, and if that MDP is clearly an ab-

stract version that could be abstracted further, then it is categorized as creating

an abstract version of the domain. This classification is useful for identifying

existing methods that can easily be combined with each other.

" The column end product indicates what sort of result the method produces. In

the case of methods whose end goal is to solve the input domain, then this can

be a complete policy, a Q function, or a value function. A method may come up

with more than one of these, and they are obviously reconstructible one from

another; this column simply describes the immediate end product of a method.

In the case of methods whose end goal is to create an abstracted version of the

domain, this column describes the format of the output model.

" The column dynamism indicates how the abstraction method behaves while the

agent is executing in the domain. A method may be static and completely

formulate its policy/abstraction before execution begins. A method may use

information gained during execution to refine its policy/abstraction, converging

on some solution. (Static methods may also converge to a solution, but methods

labeled convergent have no specified stopping criteria given by the authors or

may never actually reach a final iteration.) Finally, a method may continually

change its policy/abstraction during the course of execution, never approaching

any fixed solution.

* The column approximation control indicates whether there is a separate pa-

rameter that can adjust the level of approximation that this method uses. This

must be a separate parameter, i.e., it is not enough that changing the param-

eters that a method is given changes how approximate the result is, nor is it

enough that a convergent method can be stopped early.

66

* The column level of optimality indicates what type of optimality a method can

guarantee, if any. The types of optimality are exact, hierarchical, and recur-

sive. In exact optimality, the method guarantees that the expected long-term

discounted reward is the same as solving the input domain optimally. Hierar-

chical and recursive optimality are defined by Dietterich [18] and have to do

with methods that decompose a domain hierarchically: hierarchical optimality

guarantees optimality among all policies consistent with the hierarchical do-

main decomposition, while recursive optimality guarantees optimality within

each subtask viewed individually.

Table 2.3 gives information about the primary approach that each algorithm takes

and how it operates on the domain.

" The column abstraction type indicates which of the five broad abstraction types

described above the method appears in.

" The column state abstraction indicates whether the method performs some sort

of abstraction on state space during planning or execution.

* The column temporal abstraction indicates whether the method performs some

sort of temporal abstraction during planning or execution. This involves explic-

itly creating a model or actions or something that is temporally extended.

" The column dynamics abstraction indicates whether the method creates ab-

stract dynamics during planning or execution. The dynamics are an abstract

version of some input dynamics, not just simple things like absorbing states.

" The column abstract actions indicates whether the method uses abstract actions

during planning or execution.

" The column subgoals indicates whether the method creates subgoals during

planning or execution. The subgoals are explicit in that there are actions or

sub-policies created for the agent to execute in order to reach the subgoal.

67

Method name

C
C

C.)
ce

Cd)
-o

Ce

41

41

-0

C

-o
Ce

C
C.
S
C
Cd)

C

C
0.

C
C

C.)
Ce

-o
Ce

C.)

Ce
C

-u

C

C

Ce C

-o
C

C

C

C

C.)

C.)

Ce

C

C-)

Ce
U)

C

Ce

C

C
Ce

C

C

C
C

C
C
C

C

C.)

-o
S
U)

C

C

Airport hierarchy temporally extended actions . _ -

ALisp control hierarchy . -

Bottleneck subgoaling temporally extended actions
Cached policy sets divide and conquer
Compositional Q-learning temporally extended actions
Distributed hierarchical planning divide and conquer
Dynamic MDP merging divide and conquer
Dynamic non-uniform abstractions state aggregation
Explanation-based RL structure S S

Envelope state aggregation .
Factored value functions structure
Feudal RL control hierarchy . . .
Hierarchical decomposition of goals temporally extended actions * * . 1 .
HEXQ state aggregation . . .
Hierarchical policy construction divide and conquer
Hierarchical SMART divide and conquer
Hierarchies of abstract machines control hierarchy
Local controllers temporally extended actions * .
Logical Q-learning structure
Macro actions temporally extended actions * * . .

Markov task decomposition divide and conquer
MAXQ control hierarchy . .
Model minimization state aggregation
Multigrid value iteration state aggregation
Options temporally extended actions . . .
Prioritized goal decomposition divide and conquer .
Relativized options temporally extended actions
Sparse sampling state aggregation _

SPUDD, APRICODD structure 0
State-space approximation state aggregation 0 .
Structured policy iteration structure 0
Task hierarchy (PolCA) control hierarchy 9 . * * * *
UTree and TTree state aggregation t_0 1

Table 2.3: Information about the strategies employed by previous methods.

00

" The column control hierarchy indicates whether the method creates or uses a

control hierarchy of at least two levels in the course of solving or abstracting the

input MDP. A control hierarchy is considered any structure where the respon-

sibility for choosing agent actions passes up and down some hierarchy, whether

that hierarchy is linear, tree-based, or something else.

" The column joins pieces indicates whether the method involves taking multiple

domains or multiple pieces of a single domain and joining them together.

" The column ignores features indicates whether the method ignores features

of the domain's state and/or action spaces in order to expedite planning or

execution.

" The column symbolic reasoning indicates whether the method performs any

symbolic reasoning.

Figure 2-1 lays out the prior methods, grouped by their major type, but it also

connects methods that are related in some other way-perhaps they end up using

similar strategies even though they approach a domain in different ways, or one uses

the other as a subroutine, or one improves on the other.

The module hierarchy system created in this thesis is compared to these previous

methods in detail in section 7.1.

2.3.1 Discussion of previous methods

Despite the large quantity of previous methods that attempt to solve large MDPs, all

are based on one or more of just a few simple ideas about how to make the domain

simpler to solve.

Divide-and-conquer In the divide-and-conquer idea, the domain is divided into

smaller pieces, each piece is solved separately (whatever "solved" means), and then the

69

MAXQ. SPUDD,APRICODD
HAM logical Q-learning

EBRL RMDP plan
generalization

feudal RL ~ ALisp structured

task hierarchy policy iteration factored value
functions

multigrid
value iteration state space

model approximation
minimization

UTree,TTree dynamic
non-uniform

envelope abstractions

CQ-learning airport sparse sampling HEXQ

hierarchy distributed
relativized hierarchical hierarchical

HDG options planning
policy construction

options
cached policy sets

macro actionsg

local controllers p
decomposition d

hierarchical SMART

larkov taskI

ecoposition '-, dynamic MDP
merging

Figure 2-1: Prior methods grouped by major strategy and with closely related methods connected by lines.

bottleneck
subgoaling

pieces are reassembled, perhaps requiring some more solving. The variation between

previous methods involves exactly how the division and then reassembling is done.

Some methods straightforwardly subdivide the state and/or action spaces into clusters

of states and/or actions. Other methods subdivide the state and/or action spaces

by partitioning the state and action variables rather than the states and actions

themselves. Sometimes the pieces overlap, and sometimes they don't.

The divide-and-conquer approach is successful at allowing methods to solve larger

domains than would otherwise be possible because the difficulty of solving a domain

increases more than linearly with its size. (In particular, creating an optimal policy

for an MDP takes work polynomial in the size of the domain, as can be seen from

the linear programming representation of MDPs. The policy iteration method used

in practice is exponential in worst case but generally has better execution character-

istics.) Since it is more difficult to solve a domain of size kN than k domains of size

N, it makes sense to try to break the domain into as many small pieces as feasible.

The tricky part of divide-and-conquer is not so much dividing the domain up as it

is putting it back together again. The several pieces that the method creates usually

relate to each other using some sort of hierarchy. In some methods, the hierarchy

is only two levels (inside each piece, and how the pieces are connected), and these

approaches create something that feels like a topological map or set of connections

between the pieces. Other methods create a many-leveled hierarchy, where each level

appears like a successively more abstract version of the domain. In either case, the

higher levels of the hierarchy tend to be some MDP-like models in their own right, and

these MDPs need solving after the individual pieces are solved. Generally, having a lot

of pieces tends to make the model one step up the hierarchy be large; if there are only

two levels to the hierarchy, then this necessitates tradeoffs and possible compromises

about the size of pieces.

71

Aggregation In the aggregation idea, the domain is divided as above into pieces;

however, instead of giving each piece MDP-like structure in its own right, the pieces

are considered more as indivisible units, where all members are treated the same. Ag-

gregation is generally performed on the state space, either choosing individual states

to cluster together, or by exploiting the state-variable structure of the state space to

perform wholesale clustering across the entire space. The cluster is given dynamics

that are some sort of combination of the dynamics of the individual components of

the cluster.

The aggregation idea is successful at allowing larger domains to be solved, ob-

viously, because it reduces the size of those domains. However, what is interesting

is the reasoning behind why aggregation should produce an abstract domain that is

a faithful representation of the original domain. In particular, the reasoning is that

the differences between certain states are irrelevant as far as constructing a policy

and acting in the domain go. The differences may just be currently irrelevant (i.e.,

the states are in a wholly different part of state space than the current state and are

unlikely to be reached in the near future), or the differences may be intrinsic and due

to similar transition and reward dynamics.

The tricky part of aggregation is knowing how to cluster, i.e., knowing which

differences matter and which don't. This is certainly not as easy as it sounds: aggre-

gating just two states together, for instance, may cause catastrophic loss of expected

reward, even if the aggregated states are distant from any non-zero reward.

Temporally extended actions The idea of temporally extended actions is that

there are often sub-policies that might be worth following one or more times over the

course of solving a domain. These sub-policies might be as simple as a linear sequence

of actions specified from a particular starting state, or they could be as complicated

as a full-blown Markovian policy that can be active over a large area of state space.

Though the sub-policies theoretically could take any form, they are generally specified

72

in some compact form, e.g., the attainment of a particular goal state or the execution

of a simple finite state machine.

These temporally extended actions have the benefit of reducing the effective size

of the decision space that an agent has to search: the agent only has to make choices

when temporally extended actions end. (Or, if it can interrupt temporally extended

actions, then it at least has a presumably not-too-bad default action at each time-

step.) A domain can be solved well using temporally extended actions if its best

policy can be covered (or almost covered) by several compactly specified sub-policies.

Such abstraction methods exploit that this is true of most real-world domains that

are interesting to solve.

The tricky part of temporally extended action methods is what sub-policies to

choose. Though the space of compactly-specified sub-policies is much smaller than the

whole policy space, it is still much too large to search exhaustively, and so abstraction

methods currently use simple heuristics or human-provided input in the selection of

temporally extended actions.

Constraints The idea of using constraints to help abstract and solve an MDP is

exactly what it sounds like: policies are only considered subject to certain constraints

on the allowable actions. Of course, any abstraction method can be viewed as simply

imposing constraints on the allowable policies, some more easily than others. These

methods take an MDP and use a set of constraints to search through just a small

part of policy space.

Like temporally extended actions, the use of constraints reduces the decision space

that the agent needs to search. In particular, it is supposed to reduce the search space

to a space that (a) contains an optimal or near-optimal policy, and (b) is relatively

efficient to search through. Requirement (b) is important, because it makes no sense

to specify a search space without having a corresponding algorithm that can search

it easily.

73

The tricky part of using constraints is deriving good constraints. Since constraints

cut out portions of policy space from consideration, those removed portions had better

not contain all optimal policies. The constraint language also needs to be general

enough to apply to any domain yet specific enough to have a good algorithm for

searching constrained policy space.

2.3.2 Optimality vs. tractability

These previous methods have two ways that they can approach the issue of optimal-

ity. One way insists that, no matter what parameters are given, the solution in the

abstract space should be within some factor of optimal. For such a method to be

able to solve a very large domain, that domain must contain the particular type of

structure that the method wishes to exploit. If it does not, then the method will

operate very slowly, most likely sitting at the initial policy computation step for an

unreasonably long time.

The second way of approaching optimality focuses more on tractability. Such

methods may provide optimality within the supplied search parameters, but their

focus is more on avoiding being stuck on the initial policy computation step: they

willingly return a poor solution faced with the alternative of returning no solution at

all. Methods based on heuristics and human-supplied parameters tend to fall in this

latter category.

74

Chapter 3

Motivation

Each previous attempt at solving large domains has some good features. Some guar-

antee optimality, while others garner large reductions in model size by sacrificing opti-

mality. Some require no extra input beyond the input domain, while others use extra

input to take advantage of domain structure that might otherwise remain hidden.

Some might require trial runs through the domain, while others do all calculations

up front.

For each previous approximation and abstraction method, there are certain do-

main characteristics that the method works best with, and each method explicitly

or implicitly makes certain assumptions about the domain structure available to be

exploited. For instance, abstract action methods work best when the domain has rela-

tively few meaningful choice points and when there are relatively easy ways of getting

from one choice point to the next. These abstract action methods also assume either

that the domain is small enough to have a domain expert create the abstract actions

by hand, or that the domain is simple enough for the abstract actions to be found

automatically.

The problem with very large domains is that, unless they happen to be the sort

of uniform and inherently difficult domains like the stochastic traveling salesman

problem, these very large domains rarely exhibit the same structural characteristics

75

everywhere. Therefore, approximation and abstraction methods are unlikely to find

their desired characteristics present in more than a fraction of the domain.

3.1 Desirable features for domain solvers

The abstraction methods presented above are a big step beyond the simple brute

force approaches of value and policy iteration. They are not perfect, however, and

there are some common threads that combine to make them unsuitable for use with

very large domains.

Note that the deficiencies that are discussed here don't have to do with the pre-

vious methods achieving sub-optimal performance on certain domains. Generally,

these methods will analyze a domain and act in a way superior to what a human

could do; the only problem is that they never stop analyzing the domain and start

acting, because the pre-processing step takes far too long on very large domains.

3.1.1 Complete policies vs. plans

One reason previous methods fail to scale up is that they generally create complete

policies; i.e., they create state-to-action mappings whose domain is the whole of the

state or belief space. In most MDPs, however, the states actually visited are a tiny

fraction of all possible states. It seems wasteful to create policies that cover vast areas

of state or belief space that will never be visited.

The usual reason that a complete policy gets created seems to be that it is deemed

necessary to think about what happens when any possible sequence of events occurs,

no matter how unlikely and no matter how unrewarding the possible path may be. It

really is impossible to avoid thinking about every part of the state space at least once

(assuming a long enough horizon), to make sure that all possible reward or cost gets

taken into account. But it should be possible to take shortcuts, make approximations,

and use information built into the model to avoid having a plan on hand for every

76

single state or belief.

One way that some previous methods avoid part of the tedium of creating a

complete policy is by creating it implicitly. That is, they create some sort of structure

that encodes the complete policy in compressed form and can be queried as needed.

For instance, the abstract action methods that create one or more levels of abstract

semi-MDPs all store their complete policy abstractly. To find the action to take at

some state, they first find the abstract action to take at that state, then ask the

abstract action what concrete action it recommends.

(Note, however, that this isn't quite a complete policy, since only certain states can

be represented in the abstract semi-MDP, and it is only at those states that you can

start following the policy. On the other hand, the task hierarchy method represents

all states in its top level abstract model, and it can therefore give an action for any

state; from the way that the top level abstract model is built, though, it seems that it

will have the same state space as the original domain for most non-trivial domains.)

Why not just create an implicit policy for the entire state or belief space and

be done with it? The problem is that even the implicit complete policy may be

too difficult and time-consuming to calculate, because all of state space needs to be

checked. Consider, for instance, an intelligent agent guiding a vehicle through enemy

terrain. It may be expecting to encounter up to ten of several different types of enemy

vehicle or installations, in any combination. Clearly all these combinations are too

much to plan for, and only a few will actually be encountered.

The envelope methods take a different approach to avoiding complete policies.

They don't create implicit complete policies; instead, they assert that only the most

probable parts of state space near the current estimated path need to be considered

and planned for. When the current state wanders outside the envelope or when the

current policy can be seen to be unable to attain the goal, the envelope is extended

to encompass new information. This sort of approach, creating a plan and repairing

it as needed, seems to be the only one that will work on very large domains.

77

3.1.2 Planning at different granularities

The existing envelope methods have some room for improvement. For instance, the

envelope methods consider and create a plan for each atomic state from the starting

state all the way through the goal state, rather than thinking about the future ap-

proximately and leaving its planning for the future. But it is worth thinking some

more about the idea that the envelope algorithm has when it tries to use computation

time on the domain parts that matter.

It seems like it should be possible to cut out policy parts that are no longer

needed, and to avoid fine-grained pre-planning from start to finish. This comes from

the general observation that most of the domain is irrelevant at any one time, and

the particular part that is relevant is situation-dependent. For instance, when going

grocery shopping, the shopping list is irrelevant while driving to and from the store,

but driving skills are irrelevant while in the store.

Prior methods don't seem to take advantage of this locality of relevancy. They

require that a plan be formulated for purchasing items in the store before even be-

ginning the trip to the store. As an example, some previous methods (e.g., abstract

actions) may dynamically ignore parts of the abstraction that they have created, fo-

cusing attention on what matters. But this involves pre-calculating the dynamics

and then ignoring them at run-time until they are needed. In the shopping example,

both a driving and a purchasing policy would be created before setting out, and then

whichever is currently irrelevant would be ignored.

Not only would the purchasing plan be created needlessly early, but it might actu-

ally turn out to be wasted effort if the situation at the store is different than expected.

For instance, the store could be closed because of a holiday, or the taco sauce could

be in the ethnic foods section instead of with the condiments. (It is possible to make

a policy that can handle all these variations, but, as already discussed, plans are

preferable to policies wherever possible. It is also of course possible to make a plan

that handles all the likeliest expected situations. If there is a lot of uncertainty in the

78

domain, however, then a significant fraction of the domain will fall into the category

of likely situations; if the domain is large, creating a plan that covers a significant

fraction of the domain will be just as intractable as creating a policy.)

In order to take advantage of different parts of the domain mattering in different

situations, it makes sense to model different parts of the domain with more or less

granularity based on whether they are currently more or less relevant. The dynamics

and plan for less relevant parts should be estimated only in as much detail as is

necessary for the near future to be properly handled. The irrelevant parts should

be temporally and spatially abstracted so that they can be properly handled with as

little consideration as possible. This allows the system to begin acting sooner, and it

avoids the wasted effort that would go into planning for the uncertain far future.

3.1.3 Dynamic representation changes

If the system will sometimes represent a part of the model approximately and some-

times in much detail, then it must be able to change the representation on the fly. As

mentioned above, there are several different ways that this could be done. It could

be done simply by having the abstraction structure remain the same but by paying

attention to different parts of the domain at different times (giving computation time

to certain parts as opposed to others). Alternately, dynamically changing the ab-

straction could mean actually refactoring the abstraction structure, using a different

representation of the domain than before.

The attention-focusing interpretation of dynamically changing the representation

is what some previous methods can be thought of as doing. For instance, using local

controllers as abstract actions allows for the creation of an abstract semi-MDP. Then,

when an abstract action is chosen, the corresponding controller might only consider

the part of the state relevant to achieving that particular subgoal. Of course, this

is dependent on the human domain modeler crafting the local controller in a certain

way, but it is certainly possible.

79

Recall, though, that just resorting to attention-focusing is problematic because

it insists on pre-planning everything. If the system is not going to pre-calculate all

possible representations, then it must calculate some appropriate representations dy-

namically, while the system is running. Unfortunately, none of the previous methods

does dynamic refactoring of its abstraction. The processing model they use is that

information about how to abstract the domain is either given as input (e.g., abstract

actions) or calculated in a pre-processing phase (e.g., model minimization); in either

case, the abstraction structure is calculated and then left unchanged while being used.

The envelope methods are the one exception, doing dynamic refactoring in that they

only add additional states to and remove irrelevant states from the current envelope.

Of course, in a sense, dynamic re-abstraction can be done with any method: the

method just needs to be run again from the beginning but with the new data. This

isn't so desirable, though, because it would discard all of the previous abstracting

work. This is sometimes necessary, but sometimes the data may have changed just

slightly in such a way that use could be made of most of the previous abstraction.

However, no previous method is able to do this.

3.1.4 Other reasons to change representation dynamically

Besides supporting changing the granularity to allow focusing attention on relevant

domain parts, there are several other reasons that it would be nice to be able to

change the abstraction dynamically.

One such reason is that the current plan should be reconsiderable at any time,

even when the current state isn't abstractly representable. With the abstract action

methods that create an abstract semi-MDP, the system can't re-plan in the middle

of executing an abstract action, because there is no way for the abstract model to

represent the current state. It seems like changing the representation should be

possible, and it should even be relatively fast, since most or all of the dynamics that

the abstract model represents would still be valid after the re-planning.

80

Another reason to have dynamic representation changes is that it would let you

change properties of the domain for any reason you wanted. For instance, you might

decide that your goal is now different, or you have better estimates of the domain

dynamics. It would be better just to slightly modify the existing representation rather

than to discard the calculations already done and start from scratch.

A third reason to dynamically change the representation is that the available com-

putational resources have changed. If some equipment fails, or if other equipment is

brought, online, then it would be advantageous to be able to change the representa-

tion, perhaps in order to maintain real-time guarantees, or to plan at a finer resolution

than was possible before.

3.1.5 Learning

A final reason to be able to change the abstraction dynamically is that it would al-

low for learning. If a model of the domain is not available, then the system must

learn one while it is acting. This could involve only parameter learning, where things

like the transition and observation probabilities are updated according to the cur-

rently guessed domain structure, or it could involve structure learning, where state

variables and transition dependencies are added and removed. In either case, any

abstraction built on top of the ever-changing domain should be able to salvage parts

of its representation when unrelated changes occur.

Not only might the domain be learned at run-time, but the abstraction may also

be learned at run-time. For instance, a new abstract action or a new subgoal may

be deemed useful. This new way to abstract could be noticed either due to a change

in the domain model (as discussed above) or simply due to having collected more

sample-run data through acting in the domain. In either case, a new abstract action

or subgoal should be easily added to the existing bunch without requiring recalculation

from scratch.

Being able to learn the parameters of previous methods would be very advan-

81

tageous. Some previous methods don't actually require extra input aside from the

domain model (e.g., model minimization), but the more powerful ones do. Being

able to find good parameters automatically would allow those abstractions to be used

without needing a human to sit down, analyze the domain, and come up with a list

of parameters that he thinks will work well. The process of coming up with these

parameters (for action hierarchies or abstract actions, for instance) is a somewhat

trial-and-error process: the system is run with a set of parameters, the output is

examined, the parameters are adjusted as needed, and the cycle repeats. Trial and

error is the sort of thing that computers are good at, since they never get bored and

have a great memory for what worked and what didn't, so it makes sense to let the

computer do at least part if not all of this work.

3.1.6 Combining multiple approaches

When trying to figure out which pre-existing abstraction method to use for a given

domain, often different approaches work for different parts. For instance, it could be

that one part is abstracted very well using options, but there aren't really any good

options for the rest of the domain; the rest might divide up nicely, though, to be

solved easily by distributed hierarchical planning. It would be nice to be able to mix

and match abstraction methods as desired.

This can be currently done by patching together different methods by hand, but

the interaction between the different abstractions might cause some difficulties. For

instance, when creating a plan rather than a policy or when using an envelope method,

the domain model exported from one abstraction module to another might change,

and so the other modules must know how to deal with dynamic representation changes

(as addressed in above). In other cases, it is not clear how to use an abstraction

method to process just part of a domain, since it is used to operating on all of it.

Even if all the implementational difficulties were overcome, it would also be nice,

when combining abstraction methods, to know what can be said about the combined

82

structure's characteristics like optimality and running time. Unfortunately, there is

currently no theory about combining different abstraction methods.

Being able to combine multiple abstraction methods can allow the weaknesses of

certain methods to be offset by the strengths of others. For instance, the mixture of

options and distributed hierarchical planning allows the options to perform temporal

abstraction while the distributed hierarchical planner spatially abstracts the domain

into segments that are mostly solvable separately.

Being able to combine multiple abstraction methods also allows for the creation

of certain "abstraction methods" that wouldn't normally stand on their own but

would be considered add-ons to other "real" methods. For instance, a certain state

variable might be irrelevant for most of the time that the system operates, or perhaps

a certain state is unlikely to occur. If abstraction methods could be combined, then

it would be possible to have an abstraction method that removes the offending item

until it is actually relevant. (This would rely on the subsequent abstraction methods

supporting dynamic refactoring, of course.)

To make all abstraction methods work together, they would have to support things

like dynamic re-abstraction and operating only on part of a domain. By doing this,

the "silver bullet" abstraction methods could be replaced with a sort of component

architecture.

3.1.7 Summary

There are several ways that previous abstraction methods could be made better in

order to handle large domains. For instance, rather than creating an explicit or

implicit complete policy, the system could create a plan and repair it as needed, like

the envelope methods do. Also, since only a subset of the domain is relevant at

any one time, it makes sense to abstract different parts of the domain to different

granularities based on relevance.

The strategies of creating plans and abstracting to different granularities are only

83

possible if the abstraction can be changed on-line. This ability to change the rep-

resentation dynamically, when implemented as actual online refactoring rather than

switching between pre-manufactured abstractions, enables some other desirable be-

haviors. For example, it allows the domain's parameters to be changed while the

system is running.

It also enables learning, in two ways: it allows the system to adapt as the domain's

structure and parameters are learned, and it allows the system to find good parameters

to the abstraction that it uses. In fact, it even allows the system to change the type

of abstraction it is doing, but in order to know when to change the abstraction, there

must be some way of measuring how effective an abstraction is.

Finally, since different parts of domains are often structured differently, it would be

nice to use multiple abstractions together on the same problem. Turning them into

components, and perhaps adding learning and dynamic re-abstraction capabilities,

would help create an easy-to-use, powerful system for solving large MDPs.

84

Chapter 4

Module hierarchy framework

design

Various abstraction and approximation methods for MDPs, explored by prior re-

searchers, have made advances and work well in certain situations, but not one is

able to deal with all types of structure or all types of domain. In order to have a sys-

tem that can work well in all situations, something different is needed that combines

different abstraction and approximation methods and dynamically changes the ab-

stract domain representation to focus on the currently relevant portions. This section

describes one possible such system, a module hierarchy framework.

4.1 Gridworld example

To understand the module hierarchy framework, it will be useful to have a running

example. Consider a trivial example of a robot that lives in a 10 x 10 gridworld (see

figure 4-1(a)). The robot can carry packages, and its goal is to pick them up at one

location and drop them off at another. The robot's movement is stochastic, so that

with some small probability it fails to execute the action it attempts, or it moves

in the wrong direction. The robot has a battery whose charge gradually runs down

85

C

P D

0 1 2 3 4 5 6 7 8 9 battery batter

(a) (b)

Figure 4-1: (a) The package and charger gridworld example. (b) An abstract version
of the gridworld example.

from 1000 to 0 and needs to be charged to full periodically at a charger. Finally,

the robot gets a reward, discounted over time, for successfully transferring packages.

This domain has 10 x 10 x 2 x 1000 = 200, 000 states and seven action values (north,

south, east, west, get, put, and charge) in one action variable.

In this example, there are two different kinds of domain structure that a planner

could exploit. First, a robot executing optimally will only ever want to go back

and forth between three locations: the pickup, drop-off, and charger points, so the

robot's view of the map can be abstracted into a smaller, topological version. Second,

the battery sensor is more fine-grained than needed, so similar battery levels can be

clustered together, say, in groups of 100 (see figure 4-1(b)).

Were the robot to attempt to find a policy for this domain using a single previous

abstraction method such as state aggregation or temporally extended actions, it would

miss the chance to exploit both types of structure. The module hierarchy framework,

however, allows multiple abstraction methods to be used together, each focusing on

the domain structure it is able to simplify.

86

9

8 1000 1000

7

6

5

4

3

2P

1 O O
0 0 0

ry

i-model I

"parent I
module" Module M 3

I "abstract
-model P imodel

Module A4 2

i-model 12
"concrete

i-model""child ,,Module Al'
module"

i-model I ".atomic
i-model

Figure 4-2: Module hierarchy nomenclature, with labels given relative to module M 2 .

4.2 Module hierarchy

The module hierarchy begins with what the agent is given: a domain model expressed

as a factored MDP and a reward function over the variables in the factored model.

In addition, the agent is supplied with a hierarchy of abstraction methods that

dynamically create a hierarchy of abstracted versions of the base-level (given) domain

model. In the framework, each abstraction method is packaged into an abstraction

module, and individual modules are instantiated and combined in a module hierarchy,

which is used to plan and act in a domain. The modules in the module hierarchy

induce the successively more abstract versions of the base-level domain, called i-

models. The module hierarchy thus ends up being an alternation of i-models and

abstraction modules (see figure 4-2).

The top-level i-model is a trivial MDP with one state and one action (the action

means "act in the domain"), while the bottom-level i-model, P, is identical to the

input model.

87

4.2.1 Intermediate models

Given that the output of one module will be piped into another, and given that the

two modules can be arbitrary and not specially designed to interface with each other,

some intermediate language format is needed, some intermediate model that can store

the results of one module output for feeding into another module. The modules listed

in table 2.1 take, as an input format, an MDP, a semi-MDP, or a factored MDP. For

all prior methods whose output is an abstract domain (rather than some execution

system), the output format is one of the same three choices.

If it were necessary to feed a semi-MDP output into a module that takes factored

MDPs as input or vice versa, there are three choices. The first and easiest choice is

not to attempt the conversion, but it would be better to allow arbitrary abstraction

modules to connect if at all feasible, since otherwise the module hierarchy may be

severely limited in the kinds of domain structure it can deal with effectively.

The second choice is to convert the intermediate model into the correct format as

needed. It is easy to convert from a factored MDP to a non-factored semi-MDP; all

that needs to be done is to multiply out the factors and make all actions take one time-

step. The reverse (non-factored semi-MDP to factored MDP) is also easy, because it

just involves introducing time as a second state variable. But while these conversions

are fairly easy, they hide or lose a lot of the model's structural information, and while

it could theoretically be recovered, it is too time-consuming in practice to do so.

The final choice for making module inputs and outputs compatible is to have them

be the same intermediate model format, and have that format be some generalization

of both semi-MDPs and factored MDPs. This model type might be called a factored

semi-MDP, giving it both the "factored" aspect to expose the domain structure and

the "semi-" aspect to allow for temporal abstraction. Unfortunately, while semi-

MDPs and factored MDPs both have fairly easy well-defined semantics, factored

semi-MDPs are a different, more difficult case. The problem arises because of the

interaction between the temporal aspect and the factored state and action spaces.

88

Factored semi-MDP issues One issue with factored semi-MDPs is how to repre-

sent the temporal extent of an action. Recall that each state variable has its dynamics

expressed as a probability distribution over possible values and transition times. The

probability distribution for temporal extent therefore has to be duplicated across

the dynamics of all state variables affected by an action. Additionally, in order for

the model to be consistent, each dynamics function must agree on the probability

distribution for how long each action might take.

This redundant storage of temporal information causes extra dependencies. Given

a particular action, a state variable might stay the same value no matter how long

the action takes, but even so, its probability distribution over values and times would

have to depend on whichever state variables affect the time distribution. For exam-

ple, suppose that a robot takes more time to charge the lower its battery level is, and

suppose that the robot's location never changes while it is charging. The probability

distribution for the robot's location must depend on the robot's battery level, because

it needs to know how long to take not to change in order to be consistent with how

long the battery state will take to charge. The way around this unwanted situation

is to separate the probability distribution over action times from the probability dis-

tributions for state variables; the latter become conditional probability distributions,

conditional on the time that the action takes.

A second issue with factored semi-MDPs is whether to allow a single action to

cause different state variables to transition at different times. Allowing this would

violate the intuitive meaning of choosing and applying an action, and it would cause

so many other semantic problems that it is really a non-issue. All state variables

whose dynamics depend on the same action variable must transition simultaneously.

(At least, they must be modeled as such. Given a domain where actions cause unsyn-

chronized state variable transitions, it is sometimes possible to split such an action

in two and rework the domain dynamics to achieve roughly the same effect as unsyn-

chronized transitions.)

89

A1 A

Figure 4-3: The transitions for states si and s3 are conditioned on synchronized
actions.

A third issue with factored semi-MDPs is how to handle multiple action variables.

Normally, multiple action variables would be thought of as being independent (as

with multiple state variables). If two or more were to affect the dynamics of same

state variable, however, then the reasonable thing to do seems to be to require the

actions to terminate simultaneously. Otherwise, the same sort of unsolvable problems

happen as with the case of multiple state variables transitioning separately when

affected by the same action variable. While this solution takes care of the problem,

it causes undesirable dependencies, as in figure 4-3, where the transition probability

distributions for states s, and S3 need to be synchronized at all times. An area

of future research will be to come up with better representations for the probability

distributions involved in specifying the factored semi-MDP. The goal will be to specify

more explicitly whatever independence exists and take advantage of situations where,

for instance, two actions affect the same variable in only some but not all situations.

A final issue with factored semi-MDPs is how to express the reward function.

In factored MDPs and in semi-MDPs, the reward function gives the instantaneous

reward based on the current state and the current action. In factored semi-MDPs

with multiple unsynchronized action variables, though, there will be no current state

for the entire system at times when some action is in the middle of executing. This

problem can be solved easily by forbidding reward functions from using the values

of state variables influenced by unsynchronized actions, or perhaps making additive

reward functions, with one part for each synchronized part. If this solution is not

possible because the reward really does depend on multiple parts, then the reward

90

function might be able to use the last known value for those state variables that are

in the middle of transitioning.

Since a lot of these issues only occur when there are multiple simultaneous ac-

tion variables, the i-models are constrained so that only one action variable can be

executing at any time. The representation and semantics for factored semi-MDPs

with multiple unsynchronized action variables is an area that is being investigated by

others [71] and may be ready for inclusion in the module hierarchy framework in the

future.

i-models Each i-model Ii is an intermediate representation for the domain and is

created by module Mi- 1 looking at I-1 and applying some abstraction. The i-models

are factored semi-MDPs as described above, since they need to be able to represent

both the input model, which is a factored MDP, and also any temporal abstraction

information generated by abstraction modules. These i-models may have multiple

action variables, but only one action variable may be executing at any time.

Formally, an i-model I is defined as a tuple (5, A, T, T, r,

" A set of state variables S {S1, . .. , SN} where each Si is a state variable taking

values {si1 , .. , sin}; the state space as a whole is given by Si x ... x SN.

" A set of action variables A = {A 1 ,. . . , Am} where each Ai is an action variable

taking values {ail, . .. , ai,}; the action space as a whole is given by A 1 U. . .UAM.

" A time probability distribution T, where T: HjsC3S x UAGT A x N -* R gives

the probability distribution over lengths of time that each action will take in

each state.

" A set of component transition probability functions T ={t, ... , tN} where each

ti is a conditional probability function that gives the probability of states given

the current state, the chosen action, and the action duration; the range of state

91

and action variables for ti are given by S C S and A- C A respectively, and

ti :fSx fJAxNxS,->R
SeSi AEA.

since ti is a conditional probability distribution, for any state s, action a, and

action duration ni, E Esi ti(s, a , s') = 1.

" A reward function r, where r : Hs13 S x UAKA A - R.

" A discount factor 'y, where 0 < -y < 1.

the action values in different action variables A are assumed to be unique. There-

fore, UAc-A A gives the set of all possible action choices (remember, only one action

variable is active at any one time).

In each i-model, the distributions T and {tk} as well as the reward function r are

represented as algebraic decision diagrams (see section 5.2.3). This allows for a much

more compact representation than, say, using tables or even using normal decision

trees.

4.2.2 Linear vs. branching hierarchy

A linear hierarchy like the one in figure 4-2 is not the only way one could imagine

modules successively abstracting different parts of an MDP. It is clear that the mod-

ules need to operate in an acyclic manner, and there should be one input model and

one most-abstract model at the top (see section 4.4 for execution details on why).

One could imagine some sort of system, though, where abstraction modules did

not operate on the whole domain but rather just one small part. In such a system,

several such modules might operate in parallel and then have the results of their

abstraction joined back together. Such a module hierarchy would have perhaps some

sort of directed acyclic graph (DAG) structure (see figure 4-4 for a comparison).

92

goto have get
goto have get
bc put

join module/

location module

location module

pu Km K> K> put(

(a) (b)

Figure 4-4: (a) Abstract the domain parts and merge them as needed with a join
module. (b) Always abstract the whole model, even if changing only one part.

Such a DAG module hierarchy would be attractive because it would allow ab-

straction modules to operate in parallel; this would probably mean less work when

changing the representation and re-abstracting, since the changes would have fewer

abstraction modules to propagate through (see section 4.4.4). It is also attractive be-

cause it means that a single abstraction module does not have to consider the entire

domain when it only wants to operate on a small part of it; i.e., it wouldn't have to

copy an only slightly modified version of the entire domain from its concrete i-model

to its abstract i-model.

The major problem with such a DAG module hierarchy is how to hook the modules

together. It is unclear what format the output of a module (and the input of the next

module) should be. Clearly, it has to be some sort of MDP fragment, perhaps some

state and action variables along with transition and reward functions for them. Subtle

problems arise, though, due to these MDP fragments not containing dynamics for the

whole domain. For instance, suppose that some module creates a new action or a

whole new action variable. What are the effects of that action variable on the states

outside of that MDP fragment? This gets especially tricky when the states outside

of that MDP fragment are themselves being abstracted or otherwise changed. One

93

possible rule might be that an abstraction module has to operate on domain fragments

that contain all state variables affected by the contained action variables, but, given

that action variables tend to have wide-spread effects, this ends up making the module

hierarchy linear, as formulated above.

In summary, while a DAG module hierarchy promises some nice benefits, it causes

intractable problems and will not be pursued further. The linear module hierarchy

does put more burden on the individual abstraction modules, forcing them to update

transition and reward dynamics for state and action variables not of interest and

not being directly operated on. This burden does require slightly modifying some

previous abstraction methods in order to package them into modules, but it ensures

that the i-models are consistent and well-formed.

4.3 Abstraction module interface

The other element of the module hierarchy aside from i-models is the abstraction

modules. Thankfully, it isn't necessary to come up with a lot of new abstraction

types to fit into this framework-all existing abstraction and approximation methods

for MDPs described in the section on previous methods will work with it. The only

caveat is that certain changes need to be made to these prior abstractions in order

to make them fit the interface that the framework requires. Usually, this involves

making sure that they operate smoothly on just part of a model, and making sure

that they re-abstract properly when changes happen.

The abstraction modules M4 are the heart of the module hierarchy. Each module

must conform to the following interface:

o Each module M4 must create an abstract i-model J+1 from i-model PJ. j+l

should contain approximately the same information as I, except that some

structure or redundancy will have been factored out in an attempt to make the

domain simpler.

94

M must be able to create I+1 so that a specified atomic state is representable

in Ij+1 , given that it is representable in I. (See section 4.4.3 for details on

representability.) During initial planning, this will be the starting state, but it

may change over the course of execution.

" Each module M3 must respond to requests for re-abstraction, so that I+1

changes appropriately when I changes. Ideally, the new lj+1 will be only

slightly different than the old one, and this allows modules to reuse a lot of the

information from the old Ij+1 when computing the new one.

The actual approach that each module takes to re-abstraction needs to be lazy;

that is, it should create Ij+1 not when notified that Ji has changed, but rather

when the new I+1 is first needed by module Mj+l.

* Each module M' must be able to translate a state from its concrete i-model i

to its abstract i-model I+1. There will not always be an abstract state corre-

sponding to every concrete state, but there are only a couple of times where this

translation is necessary, and the planning and execution framework guarantees

that this translation is only requested when it is possible (see section 4.4.3).

An abstraction module is not required to be able to do the reverse (map ab-

stract to concrete states), because there may be multiple concrete states that

correspond to a single abstract state.

* Each module M' must provide the proper hooks for the execution framework,

which involves expanding actions from i+1 into actions in P and storing in-

termediate execution information. The interface for execution is approximately

given by the following pseudocode functions:

void setAbstractAction(Action a);

void makeAtomicgbservation(State s);

boolean isExecutingAbstractActiono;

95

Action getNextAtomicActiono;

These four functions are used by higher level modules to communicate with

lower level modules during the course of execution. Briefly,

- The setAbstractAction function allows module M' to execute an action

exported by module M"-.

- The makeAtomicObservation function allows module M' to notify module

M'-' of the current state.

- The isExecutingAbstractAction function allows module M' to ask mod-

ule M'-1 if, based on the current state, it has finished executing the action

previously requested by M'.

- The getNextAtomicAction function allows module M' to ask module

M'-' for the next lowest level action corresponding to the abstract ac-

tion that is currently executing in Mi-.

Full details on execution are given in section 4.4.2.

All existing MDP abstraction and approximation methods that are described in

this thesis can be made to fit this interface.

To solve the gridworld example domain, two existing abstraction methods are

packaged into abstraction modules. The first module, a subgoal-options module, ab-

stracts the robot's x-y coordinates into the three pertinent locations and abstracts

the normal compass-direction actions into actions that go between the pertinent loca-

tions. The second module clusters together states that differ only by having slightly

different similar battery levels. These modules are described in detail below in sec-

tions 5.1.1 and 5.1.2.

96

dummy-state: s 14

policy iteration module M0

location: at-start, at-pickup, at-dropoff, at-charger'3

coarse-battery-level: 0, 1-100, . 901-1000 J

state aggregation module M 2

location: at-start, at-pickup, at-dropoff, at-charger 2
battery-level: 0, 1, 2, . 1000

subgoal options module M'

x: 0, 1, 2, 9

y: 0, l, 2, 9 I
battery-level: 0, 1, 2, . .. ,1000

Figure 4-5: A module hierarchy for the gridworld example.

4.4 Planning and execution

Given a module hierarchy that a domain expert has created, the module hierarchy

framework creates various plan or policy pieces and then executes actions while mon-

itoring its execution.

4.4.1 Planning

A module hierarchy for the example gridworld domain is given in figure 4-5. In the

figure's i-models, the state variables are listed to demonstrate how the input model

is successively abstracted.

The topmost module is always a special module that creates an abstract i-model

with only one state and one action. This "abstraction" involves solving the model

using policy iteration [67], so that the single abstract action is a temporally abstract

action meaning "execute the optimal policy that was calculated using policy itera-

tion."

Planning is implicit in the module hierarchy as part of the process of creating the

97

i-models. The i-models are created in order from the bottom to the top, where each

module Mi creates Ij+1 from Ii. Some obvious planning is done by module M3 as it

uses policy iteration to solve the abstract model I, but implicit planning also occurs

in the subgoal-options module M', because creating each option requires creating a

plan or policy to get from one location to another. In most module hierarchies, the

majority of the planning will happen this latter way, i.e., as part of the process of

creating an abstract i-model, rather than in the topmost module.

The overall plan is therefore composed of pieces that are created by and stored

(or even generated on the fly as needed) in the individual modules. Notice that each

piece of planning is done in a much smaller domain than the whole 200,000 state

domain: the subgoal-options module creates options on a 1100 state domain, and the

policy iteration module creates a policy in an 88 state domain.

An important thing to note is that Ij+1 is created so that a specified state is

representable. When doing initial planning, the state specified to be representable is

the starting state. This lets the subgoal-options module, for instance, know that it

will have to create a location other than the pickup, drop-off, and charger locations

if the initial state is elsewhere.

Another thing to note is that the planning is done in a lazy fashion, where i-

model Ij+1 is created only when it is first needed. This will be important to prevent

unnecessary plan change propagation during re-planning.

Thus, when receiving a message to create i-model Ij+1, each module Mi follows

these steps:

1. Pass the message about representing the world dynamics for a particular state

to the child module (if any).

2. Note the particular state to represent.

3. Mark that Ij+1 is out of date.

When receiving a request for Ij+1 , each module Mi follows these steps:

98

1. If j+1 is up to date, return it.

2. Ask Mi-' for I. If there is no child module, then this module's concrete i-model

i is sinply the input model.

3. Based on I., figure out what I+1 should be. What this step actually does is

specific to the type of abstraction being performed by Mi.

4. Mark that Ij+1 is up to date.

5. Return the newly created Ij+1 .

Since both of these lists of steps begin by asking something of the child module, a

request to model a certain starting state or a request for the top i-model will result in

a chain of messages being passed from the top to the bottom of the module hierarchy,

and then the abstraction work is done in order from the bottom up to the top.

As can be seen from the above steps, the abstraction modules take a lazy approach

to creating and updating world dynamics. This prevents several successive changes

from propagating all the way up the module hierarchy, causing information to be

calculated and then immediately replaced without being used. In the lazy approach,

the modules store whatever information they need to about the abstract i-model that

should be created, and they delay actually creating the abstract i-model until its

information is requested.

4.4.2 Execution

After the i-models (and the relevant plan pieces) have been created, the module

hierarchy begins to execute. This starts by executing the single action in the top

i-model.

When an action is executed in any i+1, module Mi makes observations and

chooses concrete actions in P to execute until the abstract action from jI+1 is done

executing. Each time Mi executes an action in IN, module Mi-1 makes observations

99

and chooses concrete actions, etc. The actions are translated further and further

down the module hierarchy, and eventually they end up in P as atomic actions that

can be executed directly in original domain model. Each abstract action executes to

completion, as determined by whichever module created it (except that all actions

are interrupted when re-planning; see section 4.4.4).

This description makes it sound like the system expands the policy into a sequence

of actions before executing any of them, but at the same time as the distributed policy

is executing, the system is receiving observations about the current state. These are

passed to the modules in the hierarchy, so that the distributed policy can be closed-

loop.

The execution loop consists of two steps: informing all modules of the current

state, and then asking the topmost module for the next atomic action to execute.

When receiving a request for the next atomic action to execute, each module Mi

follows these steps:

1. From Mj 1 , get the next atomic action to execute.

2. If Mj 1 returns a terminated action,

(a) Choose the next action in I to execute, according to the current action

that is executing in J+i1 .

(b) If there is no such action, then the action in [j+1 is finished, so return a

terminated action to Mj+l.

(c) Tell Mj- 1 to execute the action chosen in I.

(d) From Mi 1 , get the next atomic action to execute.

3. Return the atomic action specified by module M-- 1 .

From these steps, it can be seen that each module stores the currently executing

action in its abstract i-model as part of the current system state. This recording

100

of the currently executing action is the full extent of state update that the module

hierarchy does.

Suppose the module hierarchy given in figure 4-5 is used to solve the example

gridworld domain, starting as shown in figure 4-1(a). When the single top action is

executed, M3 gains control and executes the optimal policy that it has found (i.e., the

top-level action never terminates). The goto-pickup action is executed, and control

passes to M2 . M2 passes the action on to M', which determines that the current

concrete action corresponding to goto-pickup is north. This is in Il and atomic,

so the robot takes this action. Suppose this action fails to move the robot; M1

determines that north is again what should be done. This time, the action succeeds,

and M1 determines that goto-pickup has terminated. It therefore returns control to

M 2 , telling it that goto-pickup has terminated, and M 2 similarly returns control to

M3 . Since location is now at-pickup, the optimal policy indicates that pickup should

be executed. Execution continues in a similar manner.

4.4.3 State representation

When the module hierarchy is executing, it is not always the case that every i-

model can represent the current state. For instance, some abstract actions may

be temporally extended and in the middle of executing. But note that state update

and state representation is only important for selecting actions, which means that the

module hierarchy only needs to update each i-model's state when the current action

for that i-model ends and a new action needs to be chosen.

This is good because it means that it is not necessary to continue to tell the

module hierarchy to change in order to represent the dynamics for the current state;

it only has to represent the dynamics at the initial state.

Of course., if someone asks what the current state is in some i-model that is in

the middle of executing an abstract action, then there is no good answer. But there

doesn't need to be, as long as the correct sequence of concrete actions keeps being

101

generated, and indeed the correct actions do get generated. The transition dynamics

of the model were correct (by assumption) when the plan was formulated. Those

dynamics will still be correct, and therefore the plan will still be valid. It is just no

longer the case that every i-model can model the current state.

Suppose that, as part of execution, a module M' needs to determine the current

state in P when choosing a new action. The current state is determined by having

each module successively translate the observed (atomic) state up from I'.

Not all atomic states are always representable at all i-models; for instance, only

four of the hundred combinations of x and y correspond to values of the location state

variable. This is not a problem, though, because the only time that the current state

needs to be representable in I is when a new action is being selected in I, and this

happens in only two situations. The first is when beginning to execute, and recall

that the initial i-models are built so that the initial state is representable. The second

is when some action in I has just finished, and the current state will necessarily be

representable since I is assumed to be a valid factored semi-MDP.

A state can therefore be generally represented as a combination of the most recent

state at each i-model, plus the length of time (if any) that each i-model's action has

been executing. This state representation does not cause problems, because the only

points at which the current state needs to be represented are when the next action

must be chosen, and the module hierarchy is constructed so that it is exactly those

points that are representable.

4.4.4 Re-planning and dynamic representation changes

The module hierarchy so far is a static entity: the decomposition and the modules

are chosen, then the framework executes. What makes the module hierarchy dif-

ferent from similar previous methods is that the module hierarchy can change the

representation dynamically and update the plan accordingly.

Each module must respond to requests for re-abstraction. These requests come

102

about from several different sources. One source could be execution monitoring,

described below, where a module realizes that the abstraction it has created doesn't

adequately represent how the world is acting; the module re-abstracts in order to

allow higher modules to know about the abstraction breaking down. Another source

of changes is other modules, which may decide that the world's current state might

be best represented differently.

In the gridworld example, the robot can make several deliveries on one charge, and

so the robot's battery level isn't important until it gets low. Suppose a new module

is inserted right below the policy iteration module and have it selectively remove or

not remove the coarse-battery-level state from the abstract i-model that it creates

(see figure 4-6(b)), say, removing coarse-battery-level when its value is above 1-100.

Removing coarse-battery-level gives the policy iteration module a much smaller model

to find a policy for.

When the battery level gets low enough, the selective removal module should

notice this and change J4 to include coarse-battery-level, causing the policy iteration

module to update the optimal policy it has found to take account of the new coarse-

battery-level state variable.

In general, when a module M" changes i+1, this will cause a cascade of updates

up the hierarchy as each module propagates the change by updating its abstract

i-model. These updates happen in the same way that initial planning happened:

modules are notified that their abstract i-models are out of date, modules are told to

create i-models so that the current state is representable, and when the new i-models

are requested, each i+1 is created based on I.

It is desirable to be able to re-plan at any atomic state, but it is likely that

a request for re-planning will occur when abstract actions in several I are in the

middle of executing. This is why all new i-models must ensure that the current state

is representable when adjusting to changes. Since abstract actions may not be optimal

or may not even exist any more, all currently executing actions are terminated before

103

dummy-state: s 15

policy iteration module M0

(location: at-start, at-pickup, at-dropoff, at-charger@ 0

selective removal module M 3

location: at-start, at-pickup, at-dropoff, at-charger 13
coarse-battery-level: 0, 1-100, . 901-1000

state aggregation module M 2

location: at-start, at-pickup, at-dropoff, at-charger 12
battery-level: 0, 1, 2, . 1000

subgoal options module M'

x: 0, , 1, 2,..., 9

y: 0, 1, 2, . . ., 9 1]

battery-lev el: 0, 1, 2, . . ., 1000)

Figure 4-6: The same module hierarchy as in figure 4-5 but with a selective removal
module added.

104

the re-representation takes place. To continue execution after re-planning, the top

i-model's single action must be executed again, just like the initial execution step.

Note that changes do not have to be propagated down the hierarchy towards I,

but rather only from the point of the change up to the top of the hierarchy. It

could be that the new requirement that the i-models be able to represent the current

state is not met by some lower i-models, if they were in the middle of executing

a temporally abstract action that was terminated. To ensure that this does not

happen, each module MA may only make changes to 1i+1 when an action has just

finished executing in I.

It would be possible to allow a module Mi to make changes to IJ+1 in the middle

of an action executing in i; this would necessitate halting the currently executing

actions in lower i-models and asking modules to make the current state representable.

It is unclear, though, that this would be beneficial. Module Mi decides how to

construct P" given the model it sees in I. If an abstract action in P is continuing

to execute, why would module Mi suddenly decide that the representation of P+1

should be changed? It seems that only new information about P, i.e., a cascading

representation change or a new state, should cause M to ponder updating Ij+1.

As each module Mi updates j+1 to take account of changes, it could recalculate

1j+1 from scratch, but in many cases, it can reuse most of the solution from the

previous version of Ij+. This causes the change of representation to happen much

faster than the creation of the initial representation.

For instance, suppose the robot is periodically instructed to change its drop-

off location to one of nine other possible sites. Instead of representing all possible

drop-off locations and having nine of them be useless, the drop-off location can be

approximated as fixed in one place. When its location changes, the options module

only has to create a new goto-dropoff option; it can reuse the options to reach other

locations. Even better, changes to location cause the state aggregation module no new

work, since it just copies information about location from I2 to 3. This representation

105

strategy gives up the ability to model and plan for changes in the drop-off location,

but it gains an order of magnitude decrease in state space size. For a large domain,

tractability depends on making such tradeoffs, giving up some optimality in exchange

for domain simplification.

Re-abstraction done carefully can therefore occur fairly frequently in this frame-

work without being a burden. For large domains, this ability to keep the current repre-

sentation small will likely mean the difference between tractability and intractability.

The ability to adapt the representation dynamically can be used in other ways

as well. For instance, if more processing power is suddenly available, it may be

advantageous to reduce the amount of approximating, in the hopes of getting a better

policy. Or, if a better atomic model of the domain's dynamics becomes available (say,

because it is being learned online), then that better model can replace the old model

without needing to plan from scratch.

Sensitivity analysis When transition probabilities or rewards change and there is

some current policy being executed, then that policy's value may change, and there

also may be a new policy that the module hierarchy would calculate to be best.

If the old best policy is not expected to gain reward that is very different than the

reward a new best policy would gain, then it would likely be to the module hierarchy's

advantage not to re-plan. Any changes in dynamics and reward that are determined

actually to be significant would still be propagated up, so that more abstract levels

can adjust their dynamics accordingly. Since dynamics changes may be frequent,

this selective suppression of insignificant changes allows re-planning effort to be spent

only on changes that really make a difference. The effort saved will not only be for a

module that decides not to re-plan, but also for all modules above it in the hierarchy

that subsequently have no cascading changes to adapt to.

In order to figure out whether a dynamics change is important, a module needs to

combine information about the type and magnitude of the change with information

106

about the type of abstraction it creates, performing some sort of sensitivity analysis.

Much research has been done on sensitivity analysis in linear programs (which is

what the optimal policy problems are), but it is currently unclear how to apply linear

program sensitivity analysis results (or any other results) to the task of figuring out

how much expected reward is lost. This is because a module would need to know not

just how some dynamics change affected itself, but also how that dynamics change

affected all modules above it in the hierarchy. In certain cases, it is conceivable that

some seemingly insignificant change in dynamics at a lower level of the hierarchy

results in a radical change in higher levels. Also, multiple modules could suppress

dynamics changes that are insignificant separately but significant when combined.

At this time, therefore, modules always propagate changes and never suppress

them. How to incorporate sensitivity analysis so as to avoid unnecessary re-planning

is an area of on-going research.

Execution monitoring There are two types of execution monitoring that the mod-

ule hierarchy could conceivably do. In one type, each module monitors its concrete

i-model for large changes that would affect the abstraction it has produced for its

abstract i-model. For instance, a robot might normally ignore its battery when it is

charged enough, but when the battery gets low, suddenly the movement dynamics

might include the information that a dead battery means no movement. Alternately,

if a robot unexpectedly sees a pile of money in the distance, it may re-plan its move-

ment to drive by the money and pick it up. Such large changes in the dynamics or

reward need to be propagated up if they might affect policies' optimality at higher

levels.

The second type of execution monitoring is where some module is in the middle

of executing an abstract action, and it monitors the actual execution of the abstract

action in order to compare with the dynamics that it exported to the abstract i-

model. If the actual and expected dynamics differ significantly, then the difference is

107

assumed to be due to a low probability occurrence and not due to the model being

wrong. (If the model could be wrong, then the information about the difference could

be used to learn the input domain model a little better, and then the changes could

be propagated through the module hierarchy. It is less clear how such learning could

occur in the middle of the module hierarchy and the information be pushed down to

the base model.) In any case, the agent may be stuck in the middle of an inappropriate

abstract action and wish to reconsider its choice of action in that model.

These types of execution monitoring can happen throughout the module hierar-

chy, even in the middle of abstract action execution, where it doesn't happen with

normal semi-MDPs. The reason is that a normal semi-MDP doesn't have any way

to stop in the middle of a temporally extended action and reconsider that action.

There is not necessarily a state representation for being part-way through that ac-

tion. In the module hierarchy, on the other hand, there is always lowest-level state

corresponding to the current state, and every module can be told to re-abstract in

order to represent this current state. It makes sense to take advantage of this ability

to interrupt temporally extended actions that are having low-probability effects or

when a new representation suddenly becomes more desirable.

There are several possible update policies when monitoring the execution and

expected versus actual dynamics. One updates every i-model after every change,

propagating any changes up the hierarchy to the top. The other updates the changed

low level i-model but only propagates changes up to parent i-models if they are

significant. It would be better to do the latter when possible, but, as discussed above,

it is not yet possible to apply sensitivity analysis to separate significant changes from

insignificant ones.

4.4.5 Advantages of planning/execution system

One advantage of using this planning and execution system is that re-planning can

occur at any time, and when it does occur, it only occurs at the necessary level(s) of

108

abstraction. That is, if a module needs to re-plan, but the lower level modules still

validly represent their sub-domain's dynamics, then those lower levels don't have to

re-plan.

This ties in with the advantage that the plans created are partial; that is, the

agent doesn't plan in excruciating detail its next 10, 000 time-steps, but rather its

plans are more vague (i.e., abstract) the further they are in the future. This isn't

something that has to be carefully arranged, but it is a product of using the module

hierarchy. For instance, suppose an agent is given several successive tasks to do,

where each one involves using some state variables that are particular to that task.

While executing each task, the agent can partially or completely ignore the state

variables belonging to other tasks. It only needs enough knowledge of other tasks'

state variables to know that the tasks are solvable and that its overall plan will work.

As the agent addresses each task, that task's state variables will be represented at a

more detailed level, allowing for a detailed local plan.

This multi-resolution approach means that near-future parts of the plan can

change without needing to re-plan far-future parts of the plan. For instance, in

the same example, if a future task's dynamics change, then the agent will have little

or no wasted effort because it has only thought about the task in enough detail to

know that it is doable.

Another advantage (which is essentially of an advantage of using the module

hierarchy to model the whole domain) is that the planning problem is carved up into

separate subproblems, each of which can be solved separately. Since planners usually

take time at least polynomial in the size of the domain, this division of the planning

problem is good for efficiency.

The module hierarchy is also good for efficiency because the plans or other calcu-

lations created in the i-models can be reused. Each i-model applies to possibly many

different situations in the world; therefore, each policy that there is space to cache

can be reused for each and every situation in the world that is "equivalent" as far as

109

the i-model's perspective is concerned.

4.5 Optimality

In order to deal with very large domains, the module hierarchy gives up hope of hard

optimality (or at least of provable hard optimality). There are times, though, when it

would be nice to have at least an estimate of how much expected reward will be lost

for a particular module hierarchy. This turns out to be a difficult problem because

it is so dependent on the types of modules and their arrangement in a hierarchy, and

because individual modules make different sorts of optimality claims if they make

them at all.

Certain optimality bounds are immediately apparent. For instance, if each module

in the hierarchy guarantees that a solution to its abstract i-model is as good as a

solution to its concrete i-model, then the overall module hierarchy can guarantee

hard optimality. Model minimization and the options framework, for instance, are

two abstraction methods that make this guarantee. However, it turns out to be

difficult to go beyond this.

To make this discussion concrete, consider the small module hierarchy as given

in figure 4-7. The i-models are i, 12, and I, listed from most concrete to most

abstract, and the abstraction modules are M' and M2 . Let 7r* be the optimal policy

for i-model I, and let VI'(s) be the long-term expected value of starting at state s in

i-model I and taking actions according to policy 7r.

Suppose that each module in the hierarchy gives a bound on expected reward loss.

The best possible scenario would be where it is possible to sum these bounds to find

the overall expected reward loss of the module hierarchy, but it is not that simple.

Normally, if an abstraction module M 2 gives an expected reward loss bound, it will

110

i-model 13

Module M 2

i-model 12

Module M I

i-model I

Figure 4-7: An example module hierarchy for the optimality discussion.

give the following difference:

Vi7l(s) - V72(s)

(This is a slight abuse of notation, because I2 and Il may not have the same state

and action spaces, and so the policy wr* may not be executable in IP. The meaning

of V (s) is the long-term expected value of starting in state s and following a policy

in I that is 7r* as translated during execution by module M 2.)

This difference only gives information about the loss incurred when executing 12's

optimal policy in I. In particular, it does not say anything about the loss incurred

when executing some policy that is only approximately optimal for I2. Unfortunately,

this is exactly the case when calculating the estimated reward loss for the whole

module hierarchy. In particular, the following difference is what is needed:

V i"(s) - V177(s)

It is unclear exactly what relation -r* will have to ?r*, and so it seems that normal

estimates of expected reward loss cannot be combined for successive abstractions in

a meaningful way.

111

A different and actually successful approach involves value functions. The triangle

inequality gives the following bound:

Vi(s) - Vi'(s) V "(s) - Vi'i11(s) + Vi"+1(s) -Vri+1(s) +1Vi+ 1(s) -V (s)-

In words, this says that the difference in expected value at some state between the

following optimal policy and following some other policy is bounded by the sum of

three terms: first, the difference in value between following an optimal policy in the

original domain and following an optimal policy in the abstract domain; second, the

difference in value between following an optimal policy in the abstract domain and

following the other policy in the abstract domain; and third, the difference in value

between following the other policy in the abstract domain and following the other

policy in the original domain.

This inequality can be used to expand the middle term on the right-hand side

into three terms involving value functions for i-models Ii+1 and Pi+2. Applied to the

example module hierarchy, this gives

V1i(s) - V7"(s) < VjT* (s) - V2;(s) +

V2'7 (s) - V3 I(s) + Va(s) - V(8(s) + V3" (s) -- V2 I(s) +

=0

V" (s) - Vi7' (s)

The central term is always zero since the optimal policy is always chosen in the

topmost i-model. For a module hierarchy with k i-models, this equation generalizes

to
k-1 k-1

V'T*(s) - V1'T*(S) < ViIs - iV 1 f(S) ++1()- iIs

Munos and Moore [53] give some techniques for calculating the absolute values on

the right-hand side of the equation.

112

Unfortunately, the above bound is rather loose, but loose loss bounds such as one

above are all that can be derived in general, if the system allows modules powerful

enough to drastically reduce the complexity of the original domain.

113

114

Chapter 5

Abstraction modules

As discussed above, abstraction modules conform to a standard interface, allowing

the modules to be connected together in any way that makes sense for the domain

to be solved. This section discusses a collection of modules created to explore the

possibilities of the module hierarchy framework, as well as exploring some issues in

the creation and parameterization of modules. The discussion of example applications

of these modules references an example domain that is a simplified version of the

computer game nethack. In this text-based adventure game, the player tries to

maintain his health and avoid hunger while battling monsters in an attempt to escape

from a multi-level dungeon; see section 6.1 for more details.

All abstraction methods (i.e., not MDP-solving methods) mentioned in the previ-

ous work section can be packaged into an abstraction module.

5.1 Modules needing parameterization

5.1.1 Subgoal-options module

The first abstraction discussed in the gridworld example above, having abstract ac-

tions that move the robot between the pertinent locations, is similar to the options

framework [65] and to nearly deterministic abstractions [45]. The idea of the options

115

framework is to create temporally extended actions, in order to speed up value/policy

iteration, or in order to create a temporally abstract model that skips past most states

by only executing the options (rather than the atomic actions that the options uti-

lize). In this module, the options that it creates are all sub-policies to go from one

salient location to another. Applied to the gridworld example, the resulting abstract

i-model is a semi-MDP that has 3 locations instead of 100 x-y combinations.

The inputs to a subgoal-options module Mi are

" SG, a set of goal states, where each goal state o- C SG specifies values over some

subset Sgoai C Si of P's state variables; and

* {agoal} C A*, a set of action values, drawn from an action variable A* E Ai

of I, that the options are permitted to use when attempting to reach a goal.

These actions will be replaced by the options when the abstract model Ij+1 is

created.

In the example, Sgoai = {X, y}, SG = {(2, 2), (8, 2), (5, 9)}, and {agoal} {north, south, east, west}.

This module creates a set 0 of options, one for each goal g C SG. An option

og gives a sub-policy that terminates when the restriction of the current state o- to

Sgoal is g. Each option is built by using policy iteration on a modified version of

the domain, where the option's corresponding goal g has absorbing dynamics and a

slightly positive pseudo-reward. The purpose of this fake reward is to entice an agent

acting in the domain towards the goal without changing what the agent would do

along the way, and so it is chosen to be several orders of magnitude smaller than any

positive reward otherwise obtainable in the domain. For each option, the probabilistic

expected time transition, state transition, and reward functions (pett, pest, and per,

respectively) are calculated for moving from goal state to goal state.

The abstract state and action variable sets that this module creates for Ij+1 are

* Sj+1 = Si \ Sgoa U {SG}; and

" Aj+1 = Ai \ {A*} U {A'}, where A' is an action variable with values {a*} \ {agoal} U 0.

116

In the gridworld example, the robot's x and y state variables are replaced with a state

variable whose values are the three salient goal locations, and the robot's choices to

move in the four compass directions are replaced by actions to move from one goal

location to another.

Let u : fa S - se- S be a mapping that unpacks the goal part of a state

in 1j+1 into its constituent state variables, giving a state in I. In other words, i

is the obvious mapping from SG to Sgoai extended to be the identity on other state

variables. The subgoal-options module maps P -4 1j+1 and defines Tj+1, Tj+1, and

rj+1 in terms of their i counterparts as follows:

" Tj+ l(&± a, n) f pett(u(ij+), a, n) if a E Q

Tj(u(ouj+'), a, n) if a O

* t+l(oiJ+1, a, r, +1)

pCstk(u(c3± a n uu(i))j+1 if a EO

t(u(oi 1), a, n, u(o-J+l)) if a V O

f per(u(a 13 a) if a E Q

rj(u(Oj+ I), a) if a V 0

5.1.2 State-aggregation module

The second abstraction discussed in the gridworld example above, clustering together

states that have similar battery levels, is a simple state aggregation [4]. Using the

mapping between original and abstract states, transition and reward dynamics for

the new states can be formed by taking the average (mean) of the dynamics for the

corresponding original states.

The inputs to a state-aggregation module Mi are

* Snonaggr E 5, the state variable being transformed;

" Saggr, the replacement state variable; and

117

0 f : Snonaggr --- Saggr, the aggregation function.

In the gridworld example, Snonaggr = battery-level, Saggr = coarse-battery-level, and

f(x) = [x/100].

The abstract state and action variable sets that this module creates for P+1 are

* Sj+1 = Sj\{Snonaggr} U {Saggr}

" Aj+ 1 = A]

For any state or - HiscT S, let f(o) be the same state but with the value v of

Snonaggr in Ur3 replaced by f(v). Also, let c(aj+') be the number of states that f maps

to oU+1, i.e., c(Ou+1) +} f(&) = 1. The state aggregation module maps

IP -> j+1 as follows:

" Tj+l(o&+l, a, n) =f ± T(o&, a, n)

* t(+1 j+1, a, n0,7/-j+1

c(Oj+1) E a)-1(+1) Zuacf-1(,+1 t(ou, a),n,-'j)

" rj+1 (Od+, ae) =j rj I a)

This module takes the uniform average of the dynamics and reward over the states

being aggregated. This is clearly an approximation, since the transition probability

distribution at an aggregated state depends very much on the underlying distribution

over the states that were aggregated, which in turn depends on the agent's actions

to this point. Since the goal is to work in huge domains, the large reduction in state

space size outweighs the risk of abstracting out pertinent information.

5.1.3 Ignore-state-variables module

The ignore-state-variables module selectively hides or reveals certain state variables

and actions based on the current state. In the nethack example, this module was

used to ignore the food aspect of the domain (the player's hunger level, whether the

118

player was carrying food, and what food was on the ground) when the player was not

hungry. This module was similarly used to ignore the health aspect of the domain as

appropriate, and it was used to ignore items in the domain when they were no longer

there (e.g., killed monsters or eaten food).

The idea behind this module is to take advantage of the locality of relevancy in

MDPs; that is, certain parts of the state space are interesting at different times, and

certain state space variables are interesting at different times. The module's input

parameters are a list of state variables and action values possibly to ignore, along

with a function that says when to ignore them.

This module might be classified as a sort of state aggregation module, since it

clusters together states that have the same values over all state variables except the

ignored ones. The abstract i-model created by this module is like the concrete i-

model except that certain state variables and action values may be missing. If the

transitions for some not-removed state variables condition on the values of removed

state variables, then those inputs to the probability distribution are fixed at their

current value. For instance, if health is currently 21 and is being ignored, then if the

transition probabilities for the x coordinate depend on health, the abstract transition

probability distribution is created by choosing the part of the concrete distribution

where health is 21. The reward is similarly abstracted.

Currently, the abstract dynamics created by this module are not updated while the

state and action items continue to be ignored; for instance, if health decreases from

21 to 20 but should still be ignored, then the abstract dynamics are not updated to

reflect what happens when health is 20 rather than 21. This design choice stemmed

from the desire to avoid unnecessary updates to the dynamics in the rest of the

module hierarchy. Obviously, the module could be changed to see if the dynamics

have changed or not when, say, health drops from 21 to 20, and the module could

propagate a dynamics update if a change did occur.

Better yet (but still an area of future research) would be to apply sensitivity anal-

119

ysis to understand when changes are significant enough to warrant changed dynamics.

TODO: better yet is to give an example of a sensitivity cliff that it's easy to wander

off of, or maybe refer to the section below on automatically aggregating states.

5.1.4 Split-on-state and join-on-state modules

These two modules allow subparts of the state space to be solved separately and

recombined, in a way similar to the macro-action framework [31].

These modules are not as simple as they first appear. The issue has to do with

the model being a factored model, with state variables rather than atomic states.

In the work of Hauskrecht et al. on regular MDPs, boundary states were added to

each region's set of states, where the boundary states represented those states one

step outside of a region. For instance, in the nethack example, each region would

be composed of the states for a whole level plus one single state for each of the top

of the ascending staircase and the bottom of the descending staircase. These single

out-of-level states are the goals to be reached by macro-actions. In regular MDPs, it

was easy to add the new goal states to the model; in a factored MDP, however, single

new states cannot be added, only single state variables.

This would not be an issue if the split-on-state and join-on-state modules would

always occur one after another in the module hierarchy. However, the idea behind

splitting up the domain is to allow each part to be processed separately, by different

modules in different ways. Each region's state variables therefore contain information

about whatever boundary states exist. Also, the join-on-state module is able to handle

each region of state space being abstracted differently, by requesting information from

the split-on-state module and by utilizing specially created actions that cause the state

to jump from one subpart to another.

Split-on-state module The split-on-state module divides up the state space into

subparts. Each state is assigned to a subpart based on the state value that it contains

120

for a particular indicator state variable. In the nethack domain, for instance, the

dungeon was divided up based on the floor state variable, so that an escape path

could be found separately through each floor. Copies of all the rest of the state

variables are created for each subpart, as well as copies of all the action variables.

The transition dynamics for each subpart are simply the original dynamics but

with the indicator state variable fixed, if the active action variable is from that sub-

part. If it the active action variable is from another subpart, then the state for

this subpart does not change no matter what action is chosen. The abstract reward

function is based on what happens in the active subpart only.

Since there will be other modules between the split-on-state and join-on-state

modules that will want to abstract each subpart separately, it would be good to have

each subpart be as independent as possible. Unfortunately, because some actions can

cause the state to switch into other subparts, the subparts will have to be linked

somehow (i.e., transition probability distributions for state variables in a subpart will

be dependent on some state or action variables not in that subpart). This interde-

pendence is made as small as possible by creating a new action variable Aswitch to

encapsulate all dynamics that switch subparts, removing such dynamics from each

subpart's normal action variable.

Aswitch contains action values for each combination of state and action that can

cause the subpart to switch, and those action values execute the switching action

when at states where the subpart could switch but execute a no-op elsewhere. For

instance, in the nethack domain, the player can go from floor to floor using stairways.

So, Aswitch contains an action value meaning "go up this stairway" for each stairway;

this action value causes the player to ascend when at the bottom of the stairway

and to stay put elsewhere. In the split action variable corresponding to the floor at

the bottom of the stairway, the corresponding dynamics (i.e., the result of taking an

up action at the bottom of the stairway) are changed to staying put. By moving

all switching behavior to Aswitch, each subpart's dynamics are virtually independent,

121

which is a huge boon for modules operating between the split-on-state and join-on-

state modules.

The single input to a split-on-state module Mi is Sspt E Si, the state variable

that indicates the current subpart. In the nethack domain, Sspit = floor.

The abstract state and action variable sets that the split-on-state module creates

for j+1 are

I S1 {Se Pt} U UsubpartEs.pit USES Ssubpart

*Aj+1 = {Aswitch} u UsubpartCspit U Asubpart, where Aswitch is as described

above.

For any action value ai+l c UACAj+l\Aswitch A, let sp(ai+l) C Ssplit be the subpart

that the action value is drawn from. For any state oj+1 E Usearr S, let Lu+l] be

the corresponding state in I, where the subpart of oj+1 that is mapped into Si is

given by the value of Split in oj+ 1 . Also let Lau+l], be the same except that the

selected subpart of oj+l is given by SSP E Sspit.

For action values a E Aswitch, let aps(o&, a) E {true, false} indicate whether o& is

an appropriate pre-state for a, and let u(a) be the corresponding normal action value

that is executed when a is at an appropriate pre-state.

The split-on-state module maps i -+ IP+1 as follows:

* 7j+1(Ji+l, a, n) ={ j (Lorj+1]sp(u(a)), u(a), n) if a E Aswitch

Ti(L0+1jsp(a), an) if a Aswitch

* For each subpart ssp, tj +I (& +1, a, n, o-j'1)

122

if a E Aswitclh

+3 sp(u(o)), u(a), n,

if aps(Lo& jsp(U(a)), a)

1.0 if -aps(Loij+ ISPW(() a) and Lorj+ 1
- rj+1

0.0 if -aps(ouiljs8P(U()) a) and Lo'j+] LU'i 1J

else :

t(Lji1jsp(), a,n, nLor+] S(a)) if sp(a)

1.0 if sp(a) 4 ss, and Los] [iJ+iIsi
k k

0.0 if sp(a) # 8sp and Lo-iI # Lor o+ 11
(Recall that ti gives the post-state for the state variable Sk from Ii.)

*- ri' 1 (+ 1 ,aO) =

ri (LoJ+1]SP(U(O)) ,u(a)) if a C Aswitch

ri(L(i+ 1sP(a), a) if a V Aswitch

Join-on-state module The join-on-state module merges back together the sub-

parts that the split-on-state module created. As with the macro-action framework,

the abstract states created by this module are the boundary states, where it is pos-

sible to go from one subpart to another, and the abstract actions are sub-policies to

travel from one boundary state to another.

Even though the join-on-state module simply undoes the partitioning of the split-

on-state module, it cannot get away with only using the same parameters as split-

on-state module. This is because there may have been other modules, in between

the split- and join-on-state modules, that reworked various parts of the state and

action space until it is not recognizable as belonging to a particular subpart. So, the

join-on-state module needs parameters that tell it what state and action variables

correspond to which subpart.

The inputs to a join-on-state module Mi are

e Ssplt, the state variable that indicates the current subpart;

123

* Aswitch, the action variable that switches subparts;

" sp, : Si -+ Ssplit, a mapping that indicates which subpart each state variable

belongs to (if any; Ssplit doesn't belong to a subpart); and

" spa : A -+ Ssplit, a mapping that indicates which subpart each action variable

belongs to.

These inputs are used in the construction of the abstract state and action spaces.

The abstract state and action variable sets that the join-on-state module creates for

Ij+1 are

* Sj+l = {Sbdry}, where Sbdry is a state variable whose values are all states that

can be reached by taking an action in Aswitch and attempting to go from one

subpart to another. (More precisely, the state values are the restriction of such

states to the post-subpart, along with the value of Ssplit.)

" Aj+I = {Agotobdry }, where Agotobdry is an action variable whose values consist

of all sub-policies agotobdry of the following form: given the current subpart and

some aswitch E Aswith that switches from this subpart to another, attempt to go

and execute aswitch in an optimal way. These policies are built in the same was

as the options in the subgoal-options module, by running policy iteration on a

domain with a slightly positive reward at the goal. There are roughly two parts

to each policy; the first part attempts to reach a state where aswitch could be

effective at switching to a different subpart, and the second part executes aswitch

once. The optimality requirement is with respect to reward gathered along the

way.

As with the subgoal-options module, the probabilistic expected time transition,

state transition, and reward functions (pett, pest, and per, respectively) are defined for

each aswitch C Aswitch. Similarly, let u : Sbdry -+ HsGi S be a mapping that unpacks

124

the state in Ij+1 into Ssplit and the appropriate subpart's state variables in I', filling

in the rest of Si randomly.

The join--on-state module maps P - j+1 as follows:

0 Fj+*(.j+1, a, n) = pett(u(oJ+1), a, n)

'0 tj+ (o .j+1, a, n, o-'j+')
pbdry (~~+ j1

pCStbdry(U(J±i)I a, n, n(Ocr/j+l)

* rj+l(cj+1, a) = per(u(Uj+), a)

Intervening modules The point of breaking the macro-action framework into two

modules is that there can be other modules in between the division into subparts and

the creation of the boundary state semi-MDP. Intervening modules can manipulate,

abstract, approximate, and solve different subparts separately, before they get merged

back together.

Each intervening module should be careful only to modify state and action vari-

ables corresponding to a single subpart. They should never modify values of the

state variable Ssplit or the action variable Aswitch, and they should only modify the

transition/reward dynamics associated with these in order to reflect the changes that

happened in some subpart's state space. For instance, consider the case of using a

subgoal-options module Mi to abstract a particular level 1 of the nethack domain,

in between the split-on-state and join-on-state modules. The dynamics of the action

values in Ajwitch that switch into and out of level 1 refer to x-y coordinates, but the

dynamics of comparable Ai+t action values need to refer to locations.

5.1.5 Reward-shaping module

In the field of reinforcement learning, the distance that an agent needs to travel be-

tween successive positive rewards is often great enough that forward search for reward

125

fails or that assigning credit to certain actions for achieving the reward is very diffi-

cult. To alleviate this problem, the concept of reward-shaping suggests introducing a

fake reward, a pseudo-reward, that can act like cookie crumbs along the way to the

agent's actual reward. This pseudo-reward can be a lot easier to specify than other

kinds of advice because it suggests to the agent what it should try to achieve but

does not need to say what specific actions to take to achieve it. Ng et al. [54] give

conditions under which a reward shaping function is guaranteed not to change the

optimal policy.

The module hierarchy framework ostensibly performs planning, not reinforcement

learning, but even so, the same sort of reward-shaping process can be useful to assist

various modules in planning certain sub-tasks or in deciding how to parameterize

themselves (see section 5.2).

The single input to a reward-shaping module Mi is a reward-shaping function

rshape : Sa x A --+ R. This function may satisfy the potential function criterion

of Ng et al., in which case guarantees can be made about the loss incurred by this

module, but the function may also be some arbitrary function.

There are a few different reward-shaping functions that would be of assistance in

the gridworld example. One could give a small negative reward for decreasing the

battery charge and a small positive reward for increasing it; this would encourage

the robot to make sure that it doesn't run out of battery charge and would help

compensate for the times during which the battery state variable is ignored. Another

reward-shaping function could give a small positive pseudo-reward for picking up a

package and a small negative pseudo-reward for dropping the package off; this would

give the robot a subgoal of picking up a package. Both of these reward-shaping

functions satisfy the potential function criterion in [54] and therefore do not change

the optimal policy.

The abstract state and action variable sets that this module creates for Ij+1 are:

* Sj+1 = Sj

126

" Aj+1 = Ai

STJ+1(o., a, n) = r(Qa, n)

* t"(+,a, n, a') = tj((,a, n, ,')

* rj+l(, a) = ri(Or, a) + rshape(O, a)

This slightly abuses notation by treating a state a and an action a as in both P+1

and in Ij, but this is fine because they have the same state and action spaces.

This reward-shaping module can be viewed in the more general context of giving

advice to a system, i.e., not giving it a solution, but pointing out something that is

likely to be advantageous. Actually, the whole of the module hierarchy currently is

built on a lot of advice: the choice and placement of abstraction modules and module

parameters are all forms of advice. The next section discusses how to lessen the

dependence on human advice.

5.2 Modules attempting auto-parameterization

The above modules require user-entered parameters in order to be customized for

abstracting a specific domain. It would be useful to have every module automatically

set its own parameters, and indeed some abstraction types already do this and can be

thought of as being parameterless. For others, however, even if they cannot function

completely without human input, it would be nice to reduce the number of parameters

to the fewest possible.

A module can customize itself to the domain at hand in two ways: it can work

from the MDP model that it is given, or it can use the execution paths gathered

from trial runs. Both kinds of data are used by existing abstraction methods, but

it is easier for the former type to integrate into the module hierarchy. A module is

guaranteed that it will be given an i-model to abstract, but while it may be simple

for it to gain trial run data by recording the states visited and actions chosen in

127

that i-model, it is not possible for the module to control the overall behavior of the

system so as to explore specific areas of the i-model. Theoretically, the modules could

be given turns at controlling exploratory behavior, e.g., from the bottom up so that

lower abstract actions would stabilize before being used by upper modules. Even so,

it seems that the frequent dynamic changes of representation would hamper efforts to

learn parameters this way. The modules in this section therefore solely use the given

MDP model.

5.2.1 Auto-subgoal-options module

This module is an extension of the subgoal-options module that automatically deter-

mines what the subgoals should be. It takes a set of state variables to find goals in,

and it creates goals wherever the transition or reward dynamics are "interesting."

The inputs to an auto-subgoal-options module Mi are

" Ssubsume C Si, a set of state variables to create goals in and then subsume; and

" {agoal} C A*, a set of action values drawn from an action variable A* C Ai of

IP; this is the same set of action values as is given as input to a subgoal-options

module.

The cross product of the state variables in Ssubsume gives a smaller state space to

find subgoals in. Each state o- in this cross product can be thought of as corresponding

to many states in the i-model's whole state space. When considering these many

corresponding states, if the transition and reward dynamics are mostly the same but

are different at a few, then o is considered interesting and is selected as a subgoal.

More formally, the algorithm to find subgoals is as follows:

1. Vary the transition distribution tk over all transition distributions for non-

subsumed state variables Si\Ssubsume. Recall that Sk is the set of state variables

that are relevant to the transition distribution.

128

2. Vary the action a over all non-subsumed action values [UAE-A- A] \{agoai}.

3. Vary the partial state ssub over the relevant subsumed state variables Ssubsume n

Sk.

4. For each combination of tk, a, and Ssub,

(a) Vary the partial state Snonsub over the relevant non-subsumed state vari-

ables.

(b) Notice how the conditional probability distribution over post-states, given

by cpd(n, s') = tk(ssub U Snonsub, a, n, s'), varies as Snonsub is changed.

(c) If there is more than one cpd as Snonsub is varied, and if one is more than

twice as frequent as all the rest, then add all non-zero state outcomes in

the infrequent cpds as goals.

The algorithm to find interesting subgoals based on reward is analogous to this algo-

rithm that is based on transition dynamics.

As an example from the nethack domain, this module would note that, for most

x-y coordinates, when a player chooses the up action the level state variable doesn't

change. When the player happens to be standing at an up staircase, however, the

level changes. This indicates that the stairway's x-y coordinates should be thought

of as an interesting subgoal.

This process seems as though it could potentially iterate over many transition

functions, partial states, and action values, and indeed it would if the representation

of the tk were flat. However, since the tk are given by ADDs, this algorithm takes time

proportional to the size of the ADD. In particular, the execution time is dependent on

the number of paths from root to leaves in the tk. This dependency on the ADD size

rather than the state and action space sizes produces substantial savings in execution

time.

129

5.2.2 Auto-state-aggregation module

The state aggregation module discussed in section 5.1.2 takes, as input, a state vari-

able to operate on and a set of clusters for that state variable. Whether these param-

eters will work well for the domain at hand is clearly dependent both on the domain

and on the parameters selected.

It is difficult to tell a priori what parameters are suited to a domain, i.e., what pa-

rameters will not cause the eventual solution to be unacceptably sub-optimal. It turns

out that this is a difficult problem that can only be solved in general by determining

the optimal value function for the domain before aggregating states.

Consider the gridworld example from section 4.1, and suppose that the goal is

to aggregate states by battery level, as described above. If a set of clusters is not

pre-specified, it would be good to find clusters automatically and ensure that they do

not unreasonably decrease the expected reward.

Suppose that the auto-state-aggregation module pursues some policy for choosing

states to aggregate into clusters, and suppose that the goal is to aggregate as much as

possible while only having the expected reward decrease by less than a certain frac-

tion. It is difficult to figure out this point of best aggregation precisely, but perhaps

aggregating slightly too coarsely or slightly too finely still would give approximately

the same expected reward. This would give the module a margin of error in figuring

out which states to aggregate.

Whether such a margin of error exists was tested over several experiments. In each

experiment, a certain policy was chosen to cluster states according to battery level,

and the number of clusters was varied from the number of original states (i.e,. no

clustering) to one (i.e., everything in the same cluster). The four clustering methods

used are:

e TopCluster: a number of battery levels from the maximum down are clustered

together, and all other battery levels are in their own cluster.

130

" BottomCluster: a number of battery levels from zero up are clustered together,

and all other battery levels are in their own cluster.

* EvenCluster: battery levels are divided into clusters of equal size (within one,

due to discretization).

" Random Cluster: battery levels are clustered together randomly to make the

desired number of clusters.

These clustering methods were used to provide parameters to the state-aggregation

module. A module hierarchy using this state-aggregation module and a policy-

iteration module was used to solve the domain.

Figure 5-1 shows the results of the experiments. Unfortunately, it does not seem

that expected reward slowly decreases as clustering is increased. Rather, expected

reward remains relatively constant until the aggregation crosses a threshold, becomes

too much, and pushes the reward down sharply and severely.

The intuition for these aggregation vs. reward curves has to do with aggregation

violating the Markovian nature of the domain. The problematic part of the do-

main is where the robot's battery is running low and needs to make a beeline to the

charger. Recall that the state-aggregation module creates cluster abstract dynamics

that are the arithmetic average of the dynamics for states in that cluster. Suppose

that some cluster (abstract state) C contains mostly states where the robot can reach

the charger in time to charge but also contains one where it can't. If the robot reaches

abstract state C during execution, then it may reason that it doesn't need to go to

the charger yet because running too low on battery is an unlikely event. This decision

is catastrophic, though, if the robot is on the edge of charger reachability given its

current battery level. This catastrophic decision may be made because the abstract

stochastic dynamics don't really reflect stochastic dynamics in the domain; instead,

they are a substitute for attentiveness to precisely what the current concrete states

are. The abstract domain has become non-Markovian, and that is what causes the

131

-0

Topplustr

o 5 10 15 20 25 30 35 40 45 50
number of clusters

EvenCluster

0 5 10 15 20 25 30 35 40 45 50
number of clusters

'2

4500

4000

3500

3000

2500

2000

1500

1000

500

0

4500

4000

3500

3000

2500

2000

1500

1000

500

0

BottomCluster

0 5 10 15 20 25 30 35 40 45 5
number of clusters

Random;Cluster

4500

4000

3500

3000

2500

2000

1500

1000

500

0

4500

4000

3500

3000

2500

2000

1500

1000

500

0
40 45 50

Figure 5-1: Experimental results for automatic parameterization of the state-
aggregation module.

132

0 5 10 15 20 25 30 35
number of clusters

"2

10
CD

Ca
(M

'2ca

0

sharp decrease in expected reward.

Some prior methods have been used to try to automatically parameterize state

aggregation through the use of heuristics [21], but these generally assume that the

aggregated (abstract) domain is then solved directly and therefore a value function is

being found for it, or they assume that some RL method like Q-learning can be done

efficiently in the aggregated domain. These prior methods do not seem like they can be

extended to operating in the middle of an abstraction hierarchy. Creating heuristics

that function well in the middle of a module hierarchy remains an interesting area of

future research.

5.2.3 ADD-reordering module

Having the transition probability distribution and reward functions expressed as alge-

braic decision diagrams (ADDs) is highly advantageous to the module hierarchy. One

main advantage is that these transition and reward functions have a representation

size that is proportional to the "complexity" of the function being represented (e.g.,

how uniform is it, does it have many special cases, etc.). Using a simple table would

result in representation sizes proportional instead to the state and action space sizes.

The other main advantage is that the ADD representation exposes more structure

in the transition dynamics and reward function. Abstraction modules therefore can

take advantage of this structure and can generally operate on a whole i-model in

time and using space proportional to the complexity of the i-model rather than in

proportion to the size of the state and action spaces. Each one of the modules

described here expects to operate on ADDs and uses the exposed structure in doing

its abstraction.

Though ADDs offer a more compact representation than tables, decision trees, and

other simple data structures, the smaller representation comes at the cost of needing

to maintain the ADD invariant; recall that no subpart may be repeated in an ADD

(identical subparts are merged). The penalty for merging repeated sub-diagrams is

133

A

B B B

0 1 0 1 0 1

(a) (b)

Figure 5-2: (a) An ADD in the middle of construction. (b) The completed ADD.

non-zero but is far outweighed by its benefits. It is precisely in maintaining this

invariant that independences are automatically discovered. For instance, suppose an

abstraction module is constructing a transition function ADD and builds the (non-

reduced) decision diagram in figure 5-2 (a). When converted to an ADD, this decision

diagram becomes the diagram in figure 5-2 (b), and all decision nodes for the state

variable B have disappeared.

While ADDs generally represent functions in a compact way, the exact represen-

tation size is highly dependent on the ADD's choice ordering, the order of choices

from the root to the leaves of the ADD. Varying an ADD's choice ordering may cause

its size to vary by several orders of magnitude. It is therefore important that an ap-

propriate choice ordering be used when representing an MDP's transition and reward

functions as ADDs. Selecting a good choice ordering means that the representation

will be smaller and the abstraction modules in the module hierarchy will have less

work to do.

There will not necessarily be one choice ordering that is good for all i-models in

the module hierarchy simultaneously, because the domain structure may change con-

siderably as the domain is successively abstracted. It will therefore be advantageous

to reorder the ADD choices in the middle of the hierarchy. This capability fits well

into an ADD-reordering module.

There are two decisions to make about ADD choice reordering.

134

What new choice ordering to select The first and biggest question is how to

reorder, i.e., what algorithm to use to determine the best choice ordering. Determining

the optimal ordering is intractable [74], and so various heuristics have been developed

to find an approximately optimal (or just a better) choice ordering.

It is necessary to select the objective function to be minimized. All ADD repre-

sentations of the same function have the same number of terminals, so it really comes

down to minimizing either the number of nodes in the ADD or the number of paths

from root to leaves in the ADD. The abstraction work done by modules seems to be

more proportional to the number of paths in an ADD than the number of nodes, so

the number of paths is what the ADD-reordering abstraction module will attempt to

minimize. Tiere are several ADDs used in representing a domain (one to represent

the reward function and several to represent the transition probability functions), and

all or some subset of these could have the number of ADD paths jointly minimized. In

running experiments, it turns out that the reward function ADD is a good proxy for

the whole family of ADDs, that is, minimizing the reward function ADD's number of

paths will generally cause the transition probability function ADDs' number of paths

to be close to minimal as well. It is obviously advantageous to operate on just the

reward function ADD, since it is less expensive to reorder the choices in one ADD

than in many.

The simplest reordering strategy is to create several random choice orderings and

take the best one. While this often ends up with some reduction in size, it gets

nowhere near the best choice ordering found by Rudell sifting [73]. In Rudell sifting,

each choice is in turn tried at every level from root to leaves (while the remaining

choices stay in a fixed order with respect to each other). After a choice has been tested

at all locations, it is moved to the location that minimized the objective function,

and then the next choice is tested at all locations, and so on.

Random ordering and Rudell sifting are examples of general ADD reordering

heuristics. The reordering occurs in a known context, however, so it may be that

135

the module or modules directly below an ADD-reordering module may give clues as

to a good ordering to use. Suppose that the module hierarchy contains a subgoal-

options module between two ADD-reordering modules. The lower ADD-reordering

module will select a good choice ordering. The subgoal-options module will then

operate on the domain, adding and removing state and action variables, and changing

the transition and reward dynamics accordingly. The upper ADD-reordering module

may be able to use information about the state and action variables worked on by

the subgoal-options module to make a good guess at a good new choice ordering. For

instance, it may be that the reward ADD is more likely to be compact if the state

and action variables that have values changed or that are added anew are at the root

of the ADD rather than at the leaves (or vice versa).

These general and hinted reordering heuristics-random reordering, Rudell sifting,

and bipartite Rudell sifting-were all added to an ADD-reordering module and tested

against each other (see section 6.3).

When to select a new choice ordering The second decision to make about ADD

choice reordering is where to place ADD-reordering modules in a module hierarchy.

They could be sandwiched between every single other module, but that would likely

lead to a lot of unnecessary reordering for little gain. Ideally, the ADDs involved in

representing the domain would be reordered whenever they are significantly larger

than (say, over twice as large as) they could be with an alternate choice ordering.

This is a difficult metric to use, since no good estimate exists for the optimal size

of an ADD, and calculating the optimal size (or an approximation thereof) is just

as difficult as calculating the optimal ADD itself (or an approximation thereof). It

is relatively sure, though, that certain abstraction modules will likely have a large

impact on the advantageousness of choice orderings, and certain abstraction modules

will not. In the former category will be modules like subgoal-options, and in the latter

will be modules like reward-shaping and state-aggregation.

136

Thus, ADD-reordering modules can be placed in the module hierarchy at levels

where the current choice ordering, inherited up the hierarchy, is likely to be sub-

optimal enough that the effort spent in finding a new ordering pays off further up the

hierarchy.

5.2.4 Policy-iteration module

As described in section 4.4.1, the topmost module in any module hierarchy is a module

that creates a complete policy for its concrete i-model. This module might use an

abstraction method that solves the domain in some approximate way, like the envelope

or MAXQ methods, or it might just use policy iteration. The latter is described here.

In order to fit the standard interface for abstraction modules and yet solve the

entire domain, this module creates the following abstract i-model:

" Sj+1 = {onestate}, where onestate = {here} is a state variable with a single

value.

" Aj+1 = {oneaction}, where oneaction = {act} is an action variable with a

single value.

" Tj+l(here, act, n) - .
0 otherwise

* tj+1(here, act, 1, here) = 1.

* rj+l(here,act) = 1.

The transition and reward dynamics of this abstract i-model are obviously con-

trived, but that is not a problem. It would be possible to estimate the long-term

expected reward gained by acting in the domain, and then set the expected reward

of taking the single action act accordingly. There is no need, though, to go through

the extra calculation steps, since that information could never change the system's

actions.

137

This abstraction module performs modified policy iteration as described by Put-

erman and Shin [67].

138

Chapter 6

Experimental results

6.1 Example domain: nethack

In order to test the module hierarchy and many possible abstraction module vari-

ations, a simplified version of the computer game nethack was used (available on

the world wide web at http://www.nethack.org; see figure 6-1). Nethack is a good

domain for testing different approaches to solving real-world problems because it

contains several different types of structure, some simple and some complex. The

varying structure and the interaction between the different parts is representative

of even larger, real-world domains, such a disaster relief robot, a Mars rover, or a

general-purpose battlefield robot.

The nethack domain is a very good test domain for the following reasons:

* The domain has a simple core, consisting of things like movement, hunger, and

health, but there is a large amount of depth and intricacy in a lot of areas; e.g.,

there are weapons whose effects are dependent on your player's class and race,

your current skill level, the monster type, favor with your deity, and the current

phase of the moon.

* The domain has stochastic action effects, stochastic observations, partial observ-

139

You kill the grid bug!

-...... -... --

#1.......... I I.......... I
---.------- I I

##############

I ,......

#.

......... !A # ... 1# 1 I. F I,,I .. # 1............I1

.... >.... I ... I

Kurtas the Plunderer St:18/01 Dx:16 Co:17 In:8 bWi:7 Ch:7 Neutral
Dlvl:1 $:0 HP:15(16) Pw:2(2) AC:7 Exp:1

Figure 6-1: A screenshot from the first level of the computer game nethack.

ability, sequential decisions, and reward (dying or winning). It fits the MDP

framework ideally, taking advantage of the features that differentiate stochastic

models from classical planning problems.

" The domain is so large that normal techniques don't even begin to approach

solving it.

* The domain is not a large unstructured mess of states and actions, where there's

nothing better to do than the baseline methods like policy iteration. The domain

is also not so highly structured that a single specialized solver is the way to go

(as with something like a stochastic traveling salesman problem). The nethack

domain strikes a balance between these two extremes, having many aspects to

the domain each with its own type of structure.

" The domain only allows one action at a time, so there is only one action variable,

and it is not necessary yet to deal with the issues associated with concurrent

actions.

140

Similar computer game domains Nethack is one computer game used as a test

for MDP solvers designed for very large domains. Another such game is Warcraft, or

its freely available version, Freecraft; the latter has been used in the work of Guestrin

in his work on plan generalization in relational MDPs [26]. (Freecraft is now called

Stratagus due to trademark issues with the owners of Warcraft and is available on

the world wide web at http: //stratagus. sourcef orge.net/.) Nethack is similar to

Freecraft in that there are overall goals to achieve, uncertainty in the world, and long-

term consequences to actions. The domains are somewhat different because Freecraft

has multiple agents to control, and each agent exists for a relatively short period of

time; in nethack, on the other hand, there is only one agent to control, but that

agent exists for the entirety of the game. Nethack is also much less forgiving than

Freecraft: it is not uncommon for humans to be unable to advance beyond the first

20% or so of the game no matter how many times they try. The work of Guestrin et

al. on RMDP plan generalization is mostly orthogonal to the work in this thesis

on the module hierarchy and would be interesting to integrate into it in the future.

See section 7.2 for more details on future plans to allow and exploit other types of

structure.

Another computer game used for Al research has been Rogue (available on the

world wide web at http://users.tkk. fi/~-eye/roguelike/rogue.html). Rogue

is a precursor to nethack and lacks its depth of gameplay but still retains many of

its essential features: the goal is to explore the dungeon and retrieve artifacts, there

are monsters to kill, weapons to wield, armor to wear, and so forth. Mauldin et al.

created a system called Rog-o-matic [46] that was rather successful, winning the game

and generally outperforming human experts. Rog-o-matic used hand-coded heuristics

and an expert system architecture to play an early version of Rogue.

Simplified nethack In the simplified completely-observable version of nethack

that was used for the experiments below, the goal is to escape from a dungeon.

141

WWWWWW WWWWWW WWWWWW
W<...W W>...W W W

W... .W W.. .W W ... W

W.... W WWWW.W WWWW.W

W W # #
W..F.W WWWW.W WWWW.W

W... .W W... MW W....W

W....W W.<..W W...<W

W ... >W W W W W

Figure 6-2: A small example dungeon with three levels; the highest level is on the
left, and the lowest level is on the right. < denotes an up staircase, > denotes a down
staircase, F denotes food, and M denotes a monster. The player starts in the top-left
corner of the lowest level.

The dungeon is composed of several levels, where each level consists of some large

rooms connected by narrow hallways. The levels are connected by stairways to the

levels immediately above and immediately below them, and the escape stairway is at

the top. (See figure 6-2 for a small example dungeon.) The player can move north,

south, east, west, up, and down, but not diagonally.

The game is not just a path planning problem, because the player has hunger and

health. The player starts out full but gets progressively more hungry as time goes on.

If he starves, his health decreases, but there is food available to eat lying around the

dungeon, and the player can carry this food with him. The player's health normally

stays constant, but it decreases when starving or when attacked by a monster. The

player can heal himself by using one of the medkits lying around the dungeon, and

the player can pick up and carry medkits with him.

The domain was represented as an infinite-horizon discounted factored MDP with

11 primitive actions (north, south, east, west, up, down, pickup, eat, heal, attack, and

wait) and a varying number of states depending on the exact layout of the dungeon.

Some of the actions, such as movement and attacking a monster, had probabilistic

outcomes (e.g., the monster dies with a high but not certain probability). The reward

was set to be positive for escaping from the dungeon, negative for dying, and zero

elsewhere.

142

6.1.1 Implemented module hierarchy

The module hierarchy that was created to solve the nethack domain is shown in

figure 6-3. This module hierarchy uses eighteen modules instantiated from six module

types. These modules were arranged in the module hierarchy and parameters were

supplied by a domain expert, who tailored the structure and parameters so as to

solve the simplified nethack domain as well as possible. It is important to note that,

although the above module types were created in order to solve this simplified nethack

domain, they are completely general and can be used in other module hierarchies to

solve other problems, given appropriate parameter choices.

6.2 Comparison with individual methods

The running time and solution quality of the module hierarchy were compared both to

policy iteration on the original domain and to several abstraction methods used in its

modules, operating individually. Each method was run on a sequence of progressively

more complicated instances of the nethack domain until it failed to escape from the

dungeon within one hour. In successive domains, the number of items in the domain,

the number of levels, and the x-y size of each level were gradually increased, so that

the state space size ranged from 9,600 to 108,900,000. The number of primitive action

steps required to escape from the dungeon increased sub-logarithmically with the size

of the domain.

The running time results are given in figure 6-4. As expected, the module hierarchy

is the only method that scales up to problems with very large numbers of states.

The most important point of comparison between the different methods is the size

of the domains that each works with after having applied pertinent abstractions. The

previous methods end up attempting to work in models with hundreds of thousands

of states by the fourth or fifth test domain. In contrast, the largest model that the

module hierarchy needs to solve has just 450 states and 15 actions. Granted, quite a

143

solve-domain

(boundaries)

join-on-state

locationO . -) (ocation I . .)

ADD-reordering ADD-reordering

locationO - . - (location I .)

-subgoal-optons(xO,yO) auto-subgoal-options(xl,yl)

(x0 yO - - - Xl 1 - - level)

split-on state(level)

(((food-at- 1,5,2))) ((medkit-at-2,4,0)) (reward-fn')

ignore(item-when-gon

((hunger') (have-food) (food-at-1,5,2))

e) ignore(item-when-gone) reward-shaping

ignore(food-when-not-hungry)

(hunger')

aggregate-states

(hunger have-food food-at-1,5,2 x y level medkit-at-2,4,1 - - - reward-fn)

Figure 6-3: The module hierarchy used to solve the simplified nethack domain.
Though the module hierarchy is a linear alternation of i-models and modules, mod-
ules are drawn showing which part of the domain they change, in order to better and
more compactly illuminate the structure of the changes that each abstraction module
makes.

144

auto

1000

~"IX

100 /

E

10 -~ policy iteration
state aggregation ---------

auto subgoals -

split/join on level
1 ' module hierarchy -

10000 100000 le+06 le+07 le+08
domain size (number of states)

Figure 6-4: Experimental results, with execution times averaged over three runs each.

few 450-state domains are solved during the course of execution, but this is certainly

preferable to intractability.

In the test runs described above, wherever two methods managed to produce

a solution for the same test domain, the reward gained by those methods was the

same (within the margin of error caused by the stochasticity of the domain and

thus needing to average over several trial runs). In other words, all methods that

succeeded in escaping from the dungeon in one CPU hour did so in approximately

the same amount of time.

Of course, that no reward was lost by approximately solving the domains is due

entirely to an appropriate choice of modules and their parameters. If, for instance, the

selective-removal module that operates on the hunger portion of the domain were to

have its threshold parameter set too low, then the player might die from hunger before

being able to reach food. But an appropriate choice of modules is not unreasonable

to assume, because any approximation method is dependent on the quality of its

approximation. In addition, even if the approximation turns out to be wildly sub-

optimal, a system that makes a very large domain tractable is still be better than one

that can't handle the domain at all.

145

using tables 3500 sing tables -
using ADDs ---- ----- using ADDs------

1000 7 3000

2500

100 - - 2000

E E 1500

10 ----- 1000

500

1 r 0
10000 100000 1e+06 1e+07 1e+08 10000 100000 le+06 1e+07 1e+08

domain size (states) domain size (states)

(a) (b)

Figure 6-5: Experimental results for table- vs. ADD-based functions, with execution
times averaged over three runs each, (a) as a log-log plot, and (b) as a semi-log plot.

6.3 ADDs: with and without and reordering

Using algebraic decision diagrams to represent functions in the MDP can be seen from

figure 6-5 to be highly advantageous. Two sets of results are given for executing the

same module hierarchy for the various nethack example domains from the previous

section. In one set of results, the i-models store the transition and reward functions

as tables; in the other set, the i-models store the functions as ADDs. Appropriate

abstraction modules that can operate on the given data structure are used in each

case, but they do not quite use the same algorithms internally, because a module

operating on ADDs can use some shortcuts and exploit some structure that the same

module operating on tables cannot.

The experimental results indicate that ADDs do not simply give a constant factor

improvement over tables, but rather the benefit of using ADDs increases as the domain

gets larger. In other words, the slightly flatter curve of the module hierarchy using

ADDs indicates that ADDs help it to scale better.

As discussed in the section on the ADD-reordering module, different choice or-

derings can make large differences in the size of an ADD, and it is advantageous

to optimize the choice ordering in the middle of a module hierarchy. Section 5.2.3

146

no reordering
random reordering

1000 Rudell sifting -
bipartite Rudell sifting

100

E

10

1
10000 100000 le+06 1e+07 le+08

domain size (states)

Figure 6-6: Experimental results for ADD choice reordering.

discusses several possible methods:

* Random reordering: testing n random choice orderings and choosing the best

one (in the tests below, n = 100).

" Rudell sifting: testing each choice at all possible locations from root to leaves

while holding the other choices fixed.

* Bipartite Rudell sifting: Rudell sifting where the choices corresponding to state

and action variables changed by the abstraction module immediately down the

hierarchy are constrained to lie only at the top (and, alternately, only at the

bottom) of the choice ordering.

The results of the test are given below. Figure 6-6 shows the planning and execu-

tion time taken on the various nethack example domains when using each of these

choice reordering methods, and when using no reordering at all.

Figure 6-6 reveals that Rudell sifting is the best among these algorithms. Random

reordering does not manage to improve on the existing choice ordering, so it takes

strictly longer than no reordering at all because of the time required to test the

fruitless random choice orderings.

147

The perhaps surprising result is that Rudell sifting just barely improves upon doing

no reordering whatsoever, and in fact it takes longer on the domain with around 10

million states. The reason that none of the reordering methods were able to improve

the performance of the system by that much is that the benefit of dealing with smaller

ADDs is offset by the work required to attain those smaller ADDs. Reordering ADD

choices, at least as implemented here, is a process that takes a non-trivial amount of

time; perhaps with further system tuning, its overhead could be reduced.

148

Chapter 7

Conclusions

The module hierarchy trades optimality and high speed on small domains for tractabil-

ity on large domains. Of course, as usual when using this abstract representations,

not only is optimality no longer guaranteed, but even being able to do "well" could

be at risk. The reason that restrictions are not placed on how much expected reward

a module is required to bound its loss by, though, is that it is undesirable to place a

priori restrictions on the types of abstractions that can be used. Refusing a certain

abstraction type because it could be used unwisely in theory means that it is un-

available to use wisely in practice. So, when solving very large domains, it is simply

necessary to live with the possibility that an abstraction applied in an inappropriate

way will of course cause lost opportunity for reward. This possibility allows the sys-

tem to trade any reward necessary and be grossly suboptimal if that is required to

achieve tractability.

Although the module hierarchy makes no guarantees about optimality, the nethack

domain results show that it may not be necessary to sacrifice much optimality in or-

der to gain tractability. Tractability is gained without losing optimality precisely

because modules can be chosen to exploit the specific structure of different parts of

the domain, and because those modules have the ability to re-abstract dynamically,

changing the representation to focus domain solving on the (small) currently relevant

149

portions of state space. It may be possible to give more precise estimates of the

reward conceded given the specific types and parameters of actual abstractions used,

but that is still future work at this point (see section 7.2).

7.1 Comparison with previous approaches

There are several previous approaches to hierarchical planning under uncertainty that

are similar to module hierarchies, but most use a single abstraction method and ex-

ploit only one kind of domain structure. MAXQ [18], for instance, uses parameterized

tasks arranged in a hierarchy to constrain the policy that it searches for, and it works

very well on domains that decompose hierarchically into subtasks, but it does not

support arbitrary other abstractions like state aggregation. Model minimization [12],

on the other hand, performs state aggregation but no temporal abstraction.

The most similar previous work is the hierarchies of abstract machines (HAMs)

framework [57] and its extension ALisp [1]. These methods allow for combining

multiple abstraction types represented as non-deterministic finite state machines and

Lisp programs, respectively. The module hierarchy framework has two advantages

over these methods.

The first advantage is the representation of the domain MDP. The factoring of

state and action spaces into variables, and the representation of functions as ADDs,

allows for a large amount of structure to be stored explicitly with each i-model. This

structure allows abstraction modules to operate on large chunks of state and action

space at once; thus, a simple abstraction such as state approximation can operate on

a domain in time proportional to the domain complexity rather than the domain size.

A lot of the benefit from the structured representation actually comes automati-

cally from using ADDs to represent functions; for instance, ADDs never have redun-

dant choices, so a function's independence of certain state variables manifests itself

in the ADD structure with no special processing. Such independence is noticed and

150

exploited in the split-on-state and join-on-state abstractors, for instance, when they

determine that certain state variables are irrelevant to the workings of particular

subparts and therefore do not need to be added to that subpart's state space.

The second and larger advantage of the module hierarchy comes in the ability to

change the representation dynamically, at any time, and update the plan accordingly.

This allows for partial plans to be created and then amended as needed. As long as

the current representation is accurate enough to show the gist of far-future dynamics,

the details can wait until the present situation has been dealt with and currently

useful information is no longer relevant.

(Not planning the far future in detail has the added bonus that no work is wasted

if the far future turns out differently than currently expected.)

As an example, in nethack, a player rarely has to worry about simultaneous

imminent death from starvation and imminent death from monsters. By removing

and then selectively adding back these aspects of the domain only when necessary, it

is possible to deal with them separately. This effect is even more pronounced in larger,

real-world domains, which have more areas of knowledge that are fairly specialized

and thus do not interact much; such areas of knowledge produce a combinatorial

explosion in the size of the state and action spaces unless dealt with separately.

Our usage of ADDs to represent probability distributions and reward functions is

inspired by SPUDD [34] and APRICODD [78]. These algorithms attempt to improve

value iteration by exploiting the domain structure exposed by ADDs, which is an

orthogonal approach to that of the module hierarchy framework. Though the SPUDD

and APRICODD algorithms could have been used when, say, creating options in the

subgoal-options module, the sub-domains being solved were small enough that this

would have brought no significant improvement.

151

7.2 Future work

The module hierarchy described in the sections above is a good first step towards

being able to solve very large real-world stochastic problems. It can take the ap-

propriate steps to use abstractions that fit well to the domain structure, and it can

change the domain representation dynamically to help avoid considering unnecessary

contingencies. Also, it incorporates features like a standard abstraction module inter-

face and an MDP represented in a factored manner with ADD functions, and shows

how that structure can be maintained and exploited.

There are many possible second and third and following steps that could be taken

from this point. All have in mind the same eventual goal, the holy grail of a black-box

agent that can be dropped into a situation and will act well in the domain without the

need for human input, but they extend the module hierarchy in different interesting

ways.

More structure While the factored semi-MDP model that the i-models use is a

relatively compact way of representing a lot of domains, there are still a lot of rela-

tionships and independences and so forth that it cannot explicitly represent. Other

researchers have devised additional ways of arranging the data in an MDP that does

make these explicit.

These extended representations go by such names as independent choice logic [62],

probabilistic STRIPS [17), first-order MDPs [9], relational MDPs [22], object-oriented

Bayesian networks [44], and logical MDPs [40]. They share the common goal of

thinking about the world in a first-order rather than propositional way. They attempt

to separate the way that the world works (the possible types of object, the possible

relationships between objects) from the actual instances of objects in some particular

problem to be solved. Some of these models additionally express the MDP's dynamics

and reward functions as logical expressions rather than as tables or ADDs or such.

Having a domain represented as some sort of logical relational MDP can be ad-

152

vantageous for several different reasons. One benefit is that the domain can often

be expressed more compactly than even with factored semi-MDPs. Another is that

planning or learning done in specific domain instances can often carry over to do-

mains that are similarly structured but simply have different instances of objects (for

examples, see the work of Guestrin et al. [28], of Kersting and De Raedt [40], and of

Pasula et al. [58]).

Unfortunately, there seem to be no (or very few) abstraction methods that are

designed specifically to exploit first-order and logical representations. If and when

such methods are created, then it would be reasonable to change i-models to such

a representation and be compatible with powerful first-order and logical abstraction

methods.

Partially observable, continuous state space MDPs A big assumption in the

MDP framework is that the current state is known at all times. This assumption does

not hold for a lot of real-world domains; instead, the state space is partially observable,

and adding partial observability dynamics to MDPs results in partially observable

MDPs (POMDPs). POMDPs are generally much more difficult to solve optimally

than MDPs of the same size. There has been some work on solving approximately

solving large POMDPs [61, 72, 79, 80], but most of these methods are not abstraction

methods (creating a new, simpler POMDP from the original POMDP) but instead

solve the domain in some abstract way. There are a few POMDP abstraction methods,

though, like the value-directed compression of Poupart and Boutilier [63] and Dean

and Givan's extension of model minimization to POMDPs [23]. Were there to be more

of these that were effective in simplifying POMDPs, then it would be advantageous

to change the i-models to include partial observability dynamics.

One common way of dealing with discrete state- and action-space POMDPs is

to turn them into continuous state- and action-space MDPs over belief space. The

belief space of a POMDP is part of an n-dimensional hyperplane (n is the number

153

of POMDP states) where all values lie between zero and one, and the sum of the

coordinates for any point on the hyperplane is exactly one. A point in belief space

represents an agent's belief about what probability it has of being in each state and is a

sufficient statistic for all previous observations (thus ensuring the Markov property).

It would thus be nice to allow continuous state and action spaces in the i-model

representation, not only for domains that are continuous MDPs to begin with, but

also to help solve MDPs using techniques that transform POMDPs into continuous

state-space MDPs [72].

Optimizing re-planning One of the goals of the module hierarchy is to have

different abstraction modules operate on precisely the kinds of structure they are

good at abstracting, which will mean that most modules will abstract details away

from only a small part of the domain's state and action spaces. Unfortunately, if

some dynamic change happens near the bottom of the hierarchy, then every module

from there up to the top needs to propagate the results of the change. The dynamic

change may not have affected what a certain module did, but it needs to propagate

the change's results nonetheless.

To assist a module in determining just how a dynamic change has affected its

abstraction calculations, it would be useful to have some sort of structured way of

describing how a dynamic change has caused an i-model to change. Given such a

change language, abstraction modules could better understand what the dynamic

change is all about and how its abstraction calculations are affected (or not affected,

as the case may be).

As a further step towards diminishing the overhead related to re-planning caused

by dynamic changes, it would be nice to have a way of telling when some dynamic

change "doesn't matter," i.e., the abstract i-model that a module produces will remain

the same or approximately the same despite certain modifications to the concrete i-

model. This would involve some sort of sensitivity analysis, parsing the domain model

154

to determine just how much effect a small perturbation to the transition dynamics has

on the expected long-term reward. (Note that, while an arbitrarily small perturbation

to transition dynamics can completely change the optimal policy, it will not change

the expected long-term reward of a given policy by very much, giving this research

direction some hope.)

Tighter optimality and goodness estimates In order to make headway on very

large domains, the module hierarchy trades away optimality and even tight bounds

on how approximately optimal solutions are. If such bounds are desired for some

reason, it may be possible to derive them given that only certain types of modules

and certain combinations thereof are used in building the module hierarchy.

One interesting approach would be to derive estimates for how well each module

fits the structure that it is abstracting. The idea would be similar to the optimality

estimates but is on the level of a single module, trying to figure out whether the

module is retaining or throwing away important information, and therefore trying

to figure out if the module is functioning effectively. For modules that re-abstract

dynamically, and perhaps for others, these fit estimates will need to be derived at

runtime. It is unclear whether such a fit estimation algorithm would be changed on

a module-by-module basis, needing to know the inner details of each module, or if it

can just look at the before and after intermediate models, or if it is even feasible at

all. Also, it is unclear whether this fit estimate needs to be measured for each module

individually (and then the estimates can be combined in some way), or whether it

would need to operate on modules as they are arranged in a hierarchy.

Further automation and learning The module hierarchy may be a powerful tool

to solve very large MDPs, but it requires quite a bit of guidance from a human domain

expert to choose, arrange, and parameterize modules. A future goal is to lessen this

dependence on human expertise.

The first step will be to determine automatically the parameters for the approxi-

155

mation and abstraction modules that currently rely on extra input from humans. This

might be made easy given stable and accurate module fit estimates, since a module

might not actually have to be inserted and run in order to tell if some parameters

work well. It is likely that the parameter space for most modules would be large

enough to require some sort of heuristic search. Perhaps the particular part of the

domain on which the module operates, if small enough, would give clues as to good

parameters.

The second and probably most difficult step will be to determine automatically

not only the parameters for modules but also which module should go where, for

any given domain. This would make the system almost totally autonomous, but this

would be very tricky to achieve, since structure learning is known to be very difficult.

The third step would be to come up with new module types automatically, perhaps

using the module fit estimator to do some rough search through approximation space.

This may at first glance seem rather intractable, but if the module hierarchy scales

up to thousands of modules, then it may be possible to solve a very large domain

with lots and lots of very simple modules rather than a few complex ones.

It is unclear at this point whether there are actually that many simple modules

to come up with; the techniques that humans normally use can probably be distilled

to a few tens of modules (with appropriate parameters, of course). In perusing the

space of previous abstraction methods, it is clear that they are all variations on a few

themes (see section 2.3.1). In any case, the benefit of requiring only simple modules

to operate is that the space of simple abstraction types is much smaller than the space

of complex abstraction types. In addition, once a new module type is discovered and

verified to be useful, it is no longer necessary to re-discover it, but it can be used as

a part of the toolbox for all future module hierarchies.

A final step would be to learn the MDP itself, before or concurrently with building

and executing a module hierarchy for it. It would actually be very interesting to try

to combine MDP learning with the module hierarchy, because that might assist in

156

the construction and parameterization of a, module hierarchy. It is certainly easier

to solve a smaller domain model, as an agent would have when just starting out

in a domain, and the dynamic adaptive nature of the module hierarchy would pair

well with a continuously changing model in the process of being learned. It is not

unreasonable to model the insertion (or removal) of new modules in the hierarchy as

dynamic change events, to be dealt with by propagating messages up the hierarchy.

Scaling to the real nethack Several of the steps above would be necessary in

order to scale to the actual computer game nethack rather than a much simplified

version. The most obvious step is that the module hierarchy would need to be able

to deal with POMDPs as well as MDPs, since the nethack dungeon is very partially

observable. The biggest challenge would not be figuring out i-model semantics or

abstraction module interfaces but rather creating abstraction modules to function in

POMDPs.

The other biggest challenge in scaling to the real nethack domain is exploiting all

the structure that exists. This would involve creating a more structured representa-

tion, perhaps a logical one, to describe the dynamics of nethack. After all, the way

that hunger increases and decreases and the way that armor and health interact are

complicated but still very regular. These areas of the domain potentially can create

transition function representations that are exponential in the number of features be-

ing described. Exploiting the structure would also involve creating the language for

describing propagated changes to allow modules to be smarter in re-planning. Given

the incredible size of and possibilities in the nethack universe, the vast majority will

be irrelevant and ignorable at any time.

7.2.1 Contributions

This thesis makes several contributions to the field of artificial intelligence:

e This thesis explores using multiple qualitatively different abstraction methods

157

together to solve the same domain. It shows how these abstraction methods can

be packaged into modules and how those modules can operate together. While

other methods like HAMs could theoretically provide the same functionality,

this thesis describes an interface specifically designed to encapsulate abstraction

methods so that they can be used as black boxes. It also gives convincing

evidence that exploiting different types of structure in this way is necessary and

useful.

" This thesis describes why and how to change the current abstract domain rep-

resentation dynamically. It shows how to maintain a plan for the current repre-

sentation and how to do so efficiently. It explains how a dynamic representation

exploits the local nature of relevancy and provides evidence that this dynamism

allows solving domains that would otherwise be intractable.

" This thesis describes a model for factored semi-MDPs that contains both tem-

porally abstract actions and factored state and action variables. It discusses

how this model is the most general that will fit within certain constraints and

shows that the model is useful for maintaining the structure in information as

it is successively abstracted and approximated.

" This thesis re-creates several existing abstraction methods in versions that take

advantage of the structure of algebraic decision diagrams. Whereas before these

methods would iterate over the entire state or action space in the process of

creating abstract versions, they now need only iterate over the paths in the

ADDs representing transition distribution functions. This makes their execution

time dependent on the complexity of the domain rather than the size of the state

space.

" This thesis implements the module hierarchy framework, combining the ideas of

using multiple abstraction methods and of dynamic representation changes. It

tests the module hierarchy framework implementation on non-trivial domains

158

styled after the computer game nethack and demonstrates that the framework

compares well to the non-multiple-method, non-dynamic alternatives.

7.3 Final thoughts

The module hierarchy described in this thesis is different than other methods of

planning and acting in MDPs because it promises to scale to extremely large models.

It can do so because its focus on being able to act tractably in the domain leads it to

make tradeoffs comparable to humans: navigating only between landmarks, grouping

similar situations together, following known sequences of actions, and so forth.

By following the plan outlined in the future work section above, it will be possible

to improve the efficiency of the module hierarchy and to increase its scope of applica-

bility to many interesting real-world domains. The resulting system promises to make

artificial intelligence easier to deploy in real-world applications by having a library

of components that can operate in a standard framework and are smart enough to

arrange and configure themselves to solve any domain.

159

160

Appendix A

Programming details

The module hierarchy system described in this thesis was implemented and the im-

plementation used to generate the various experimental results. The code consists of

about 40,000 lines of code written in version 1.4 of the java programming language.

The code was compiled and executed on an Apple PowerBook G4 running OS X 10.3.

The heart of the system consists of abstraction modules. Each abstraction module

conforms to the interface given below, allowing it to participate in a complete module

hierarchy.

public interface AbstractionModule {

* <p>Returns the i-model directly above this abstraction module in
* the module hierarchy, which this module keeps in sync with its
* concrete i-model.</p>
*

* @return the abstract <code>Imodel</code>

public Imodel getAbstractImodel();

* <p>Returns the i-model directly below this abstraction module in
* the module hierarchy, which this module monitors for changes and
* uses to keep the abstract i-model in sync.</p>
*

161

* @return the concrete <code>Imodel</code>

public Imodel getConcreteImodel();

* <p>Ensures that the abstract i-model created by this abstraction

* module is in sync with the concrete i-model. An abstraction

* module may be lazy about updating the abstract i-model when

* notified that the concrete i-model has changed; when this method

* is called, it means that the abstract i-model is about to be used

* and must be up to date. This method should always be called

* right before processing the abstract i-model that an abstraction

* module has created.</p>

public void ensureUpToDateo;

* <p>Notifies this abstraction module that the concrete i-model has

* changed. This module should note that the change occurred and

* then notify the abstraction module above it in the module

* hierarchy that that higher module's concrete i-model (this

* module's abstract i-model) has changed. This change may be lazy;

* the abstract i-model need not actually be updated until

* <code>ensureUpToDate</code> is called.</p>

public void notifyConcreteImodelChangedO;

* <p>Sets the atomic state (i.e., the state in the original, given

* model) with respect to which this abstraction module should

* create the current model dynamics. This essentially means that

* the given state should be representable in the abstract i-model,

* i.e., the current state should not only be one that is reached in

* the middle of a temporally-extended action. When this method is

* called, the abstraction module should make sure that modules

* below in the module hierarchy are modeling dynamics for the given

* state and re-create the abstract i-model as necessary. The

* method may be (and probably should be) lazy; the abstract i-model

* need not actually be updated until <code>ensureUpToDate</code> is

* called.</p>
*

* @param stateAtomic the atomic state needing to be representable

162

public void setAtomicStateToModel(State stateAtomic);

* <p>Converts a state in the concrete i-model into one in the

* abstract i-model. This method will only be called for concrete

* states that have a representation in the abstract i-model;

* currently, it is only called to convert the current state when

* the abstract i-model is not in the middle of executing an action,

* i.e., <code>this.isExecutingActiono</code> returns false.</p>

*

* @param stateConc a state in the concrete i-model

* @return a state in the abstract i-model

public State getAbstractFromConcreteState(State stateConc);

* <p>Begins executing the given action in the abstract i-model.

* This abstraction module is responsible for remembering the

* currently executing action and determining when it has

* terminated.</p>

*

* @param actionAbs an action in the abstract i-model

public void setAction(Action actionAbs);

* <p>Notifies this abstraction module of the current atomic state

* (i.e., the current state in the original, given model).

* Normally, a module will want to use the
* <code>getAbstractFromConcreteState</code> methods of lower

* modules to convert the current atomic state into a state in the

* concrete i-model when needed.</p>

public void makeObservation(State stateAtomic);

* <p>Queries whether the action in the abstract i-model that was

* last executed has finished executing yet. A module should use

* the last observed current state to decide whether the currently

* executing action in the abstract i-model has finished.</p>
*

163

* @return whether the abstract action has finished

public boolean isExecutingAction();

* <p>Returns the next atomic action corresponding to the currently

* executing action in the abstract i-model. Generally, a model

* will use the abstract action to choose actions in the concrete

* i-model, will set those actions in the next module down the

* hierarchy, and will ask that lower module for the next atomic

* action.</p>
*

* @return the next atomic action to execute

public Action getNextAtomicActiono;

}

164

Bibliography

[1] D. Andre and S. Russell. State abstraction for programmable reinforcement
learning. Technical Report UCB//CSD-02-1177, University of California at
Berkeley, Computer Science Division, Berkeley, CA, 2002.

[2] J. Baum and A. Nicholson. Dynamic non-uniform abstractions for approximate
planning in large structured stochastic domains. In H. Lee and H. Motoda, edi-
tors, Proceedings of the Fifth Pacific Rim International Conference on Artificial
Intelligence, pages 587-598. Springer, 1998.

[3] R. Bellman. Dynamic programming. Princeton University Press, 1957.

[4] D.B. Bersekas and D.A. Castafion. Adaptive aggregation for infinite horizon
dynamic programming. IEEE Transactions on Automatic Control, 34(6):589-
598, 1989.

[5] B. Bonet and H. Geffner. Planning with incomplete information as heuristic
search in belief space. In S. Chien, S. Kambhampati, and C.A. Knoblock, edi-
tors, Proceedings of the Fifth International Conference on Artificial Intelligence
Planning Systems, pages 52-61. AAAI, 2000.

[6] C. Boutilier, R. Brafman, and C. Geib. Prioritized goal decomposition of Markov
decision processes: towards a synthesis of classical and decision theoretic plan-
ning. In Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence, pages 1156-1163. Morgan Kaufmann, 1997.

[7] C. Boutilier and R. Dearden. Using abstractions for decision-theoretic planning
with time constraints. In Proceedings of the Twelfth National Conference on
Artificial Intelligence, pages 1016-1022. AAAI, 1994.

[8] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy
construction. In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, pages 1104-1111. Morgan Kaufmann, 1995.

[9] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-
order MDPs. In B. Nebel, editor, Proceedings of the Seventeenth International

165

Joint Conference on Artificial Intelligence, pages 690-700. Morgan Kaufmann,
2001.

[10] D. Castafion. Approximate dynamic programming for sensor management. In
Proceedings of the Thirty-Sixth IEEE Conference on Decision and Control, pages
1208-1213. IEEE, 1997.

[11] P. Dayan and G.E. Hinton. Feudal reinforcement learning. In S.J. Hanson,
J.D. Cowan, and C.L. Giles, editors, Advances in Neural Information Processing
Systems 5, pages 271-278. Morgan Kaufmann, 1993.

[12] T. Dean and R. Givan. Model minimization in Markov decision processes. In Pro-
ceedings of the Fourteenth National Conference on Artificial Intelligence, pages
106-111. AAAI/MIT, 1997.

[13] T. Dean, R. Givan, and S. Leach. Model reduction techniques for computing
approximately optimal solutions for Markov decision processes. In D. Geiger and
P.P. Shenoy, editors, Proceedings of the Thirteenth Conference on Uncertainty in
Artificial Intelligence, pages 124-131. Morgan Kaufmann, 1997.

[14] T. Dean, L.P. Kaelbling, J. Kirman, and A. Nicholson. Planning with deadlines
in stochastic domains. In Proceedings of the Eleventh National Conference on
Artificial Intelligence, pages 574-579. AAAI/MIT, 1993.

[15] T. Dean and K. Kanazawa. A model for reasoning about persistence and causa-
tion. Computational Intelligence, 5(3):142-150, 1989.

[16] T. Dean and S. Lin. Decomposition techniques for planning in stochastic do-
mains. In Proceedings of the Fourteenth International Joint Conference on Arti-
ficial Intelligence. Morgan Kaufmann, 1995.

[17] R. Dearden and C. Boutilier. Abstraction and approximate decision-theoretic
planning. Artificial Intelligence, 89(1-2):219-283, 1997.

[18] T. Dietterich. The MAXQ method for hierarchical reinforcement learning. In
J.W. Shavlik, editor, Proceedings of the Fifteenth International Conference on
Machine Learning, pages 118-126. Morgan Kaufmann, 1998.

[19] T. Dietterich and N. Flann. Explanation-based learning and reinforcement learn-
ing: a unified view. In A. Prieditis and S.J. Russell, editors, Proceedings of the
Twelfth International Conference on Machine Learning, pages 176-184. Morgan
Kaufmann, 1995.

[20] D. Dubois, M. Grabisch, F. Modave, and H. Prade. Relating decision under
uncertainty and multicriteria decision making models. International Journal of
Intelligent Systems, 15(10):967-979, 2000.

166

[21] Y. Engel and S. Mannor. Learning embedded maps of Markov processes. In C.E.
Brodlev and A.P. Danyluk, editors, Proceedings of the Eighteenth International
Conference on Machine Learning, pages 138-145. Morgan Kaufmann, 2001.

[22] N. Gardliol and L.P. Kaelbling. Envelope-based planning in relational MDPs. In
S. Thrun, L.K. Saul, and B. Sch6lkopf, editors, Advances in Neural Information
Processing Systems 16. MIT, 2004.

[23] R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization
in Markov decision processes. Artificial Intelligence, 147(1-2):162-223, 2003.

[24] R. Givan, S. Leach, and T. Dean. Bounded-parameter Markov decision processes.
Artificial Intelligence, 122(1-2):71-109, 2000.

[25] C. Guestrin and G. Gordon. Distributed planning in hierarchical factored MDPs.
In A. Darwiche and N. Friedman, editors, Proceedings of the Eighteenth Confer-
ence on Uncertainty in Artificial Intelligence, pages 197-206. Morgan Kaufmann,
2002.

[26] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to new
environments in relational MDPs. In G. Gottlob and T. Walsh, editors, Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence,
pages 1003-1010. Morgan Kaufmann, 2003.

[27] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs.
In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems 14, pages 1523-1530. MIT, 2001.

[28] C. Guestrin, D. Koller, and R. Parr. Solving factored POMDPs with linear value
functions. In Proceedings of the IJCAI workshop on planning under uncertainty
and incomplete information, 2001.

[29] C. Guestrin and D. Ormoneit. Robust combination of local controllers. In J.S.
Breese and D. Koller, editors, Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, pages 178-185. Morgan Kaufmann, 2001.

[30] M. Hauskrecht. Planning with macro-actions: effect of initial value function
estimate on convergence rate of value iteration.

[31] M. Hauskrecht, N. Meuleau, L.P. Kaelbling, T. Dean, and C. Boutilier. Hierar-
chical solution of Markov decision processes using macro-actions. In G.F. Cooper
and S. Moral, editors, Proceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence, pages 220-229. Morgan Kaufmann, 1998.

[32] R. Heckendorn and C. Anderson. A multigrid form of value iteration applied
to a Markov decision problem. Technical Report CS-98-113, Colorado State
University, Department of Computer Science, Fort Collins, CO, 1998.

167

[33] B. Hengst. Discovering hierarchy in reinforcement learning with HEXQ. In
C. Sammut and A.G. Hoffmann, editors, Proceedings of the Nineteenth Inter-
national Conference on Machine Learning, pages 243-250. Morgan Kaufmann,
2002.

[34] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: stochastic planning
using decision diagrams. In K.B. Laskey and H. Prade, editors, Proceedings of
the Fifteenth Conference on Uncertainty in Artificial Intelligence, pages 279-288.
Morgan Kaufmann, 1999.

[35] J. Hoey, R. St.Aubin, A. Hu, and C. Boutilier. Optimal and approximate stochas-
tic planning using decision diagrams. Technical Report TR-2000-05, University
of British Columbia, Department of Computer Science, Vancouver, BC, 2000.

[36] R. Howard. Dynamic programming and Markov processes. MIT, 1960.

[37] L.P. Kaelbling. Hierarchical learning in stochastic domains: preliminary results.
In Proceedings of the Tenth International Conference on Machine Learning, pages
167-173. Morgan Kaufmann, 1993.

[38] L.P. Kaelbling. Learning to achieve goals. In R. Bajcsy, editor, Proceedings of
the Thirteenth International Joint Conference on Artificial Intelligence, pages
1094-1099. Morgan Kaufmann, 1993.

[39] M.J. Kearns, Y. Mansour, and A.Y. Ng. A sparse sampling algorithm for near-
optimal planning in large Markov decision processes. In T. Dean, editor, Pro-
ceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
pages 1324-1231. Morgan Kaufmann, 1999.

[40] K. Kersting and L. De Raedt. Logical Markov decision programs. In Proceedings
of the IJCAI workshop on learning statistical models from relational data, pages
63-70, 2003.

[41] M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian net-
works. Journal of Artificial Intelligence Research, 5(May):549-573, 2004.

[42] D. Koller and R. Parr. Computing factored value functions for policies in struc-
tured MDPs. In T. Dean, editor, Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, pages 1332-1339. Morgan Kaufmann, 1999.

[43] D. Koller and R. Parr. Policy iteration for factored MDPs. In C. Boutilier and
M. Goldszmidt, editors, Proceedings of the Sixteenth Conference on Uncertainty
in Artificial Intelligence, pages 326-334. Morgan Kaufmann, 2000.

[44] D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In D. Geiger and
P.P. Shenoy, editors, Proceedings of the Thirteenth Conference on Uncertainty in
Artifcial Intelligence, pages 302-313. Morgan Kaufmann, 1997.

168

[45] T. Lane and L.P. Kaelbling. Nearly deterministic abstractions of Markov decision
processes. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence., pages 260-266. AAAI, 2002.

[46] M. Mauldin, G. Jacobson, A. Appel, and L. Hamey. ROG-O-MATIC: a belliger-
ent expert system. Technical Report CMU-CS-83-144, Carnegie Mellon Univer-
sity, School of Computer Science, Pittsburgh, PA, 1983.

[47] A. McCallum. Reinforcement learning with selective perception and hidden
state. PhD thesis, University of Rochester, Department of Computer Science,
Rochester, NY, December 1995.

[48] A. McGovern and A.G. Barto. Automatic discovery of subgoals in reinforcement
learning using diverse density. In C.E. Brodley and A.P. Danyluk, editors, Pro-
ceedings of the Eighteenth International Conference on Machine Learning, pages
361-368. Morgan Kaufmann, 2001.

[49] A. McGovern and R.S. Sutton. Macro-actions in reinforcement learning: an em-
pirical analysis. Technical Report 98-70, University of Massachusetts, Amherst,
Department of Computer Science, Amherst, MA, 1998.

[50] A. McGovern, R.S. Sutton, and A.H. Fagg. Roles of macro-actions in accelerating
reinforcement learning. In Proceedings of the 1997 Grace Hopper Celebration of
Women in Computing, pages 13-18, 1997.

[51] N. Meuleau, M. Hauskrecht, K. Kim, L. Peshkin, L.P. Kaelbling, T. Dean, and
C. Boutilier. Solving very large weakly coupled Markov decision processes. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence, pages
165--172. AAAI/MIT, 1998.

[52] A. Moore, L. Baird, and L.P. Kaelbling. Multi-value-functions: efficient auto-
matic action hierarchies for multiple goal MDPs. In T. Dean, editor, Proceedings
of the Sixteenth International Joint Conference on Artificial Intelligence, pages
1316-1323. Morgan Kaufmann, 1999.

[53] R. Munos and A. Moore. Rates of convergence for variable resolution schemes
in optimal control. In P. Langley, editor, Proceedings of the Seventeenth Inter-
national Conference on Machine Learning, pages 647-654. Morgan Kaufmann,
2000.

[54] A. Ng, D. Harada, and S. Russell. Policy invariance under reward transforma-
tions: theory and application to reward shaping. In I. Bratko and S. Dzeroski,
editors, Proceedings of the Sixteenth International Conference on Machine Learn-
ing, pages 278-287. Morgan Kaufmann, 1999.

169

[55] A. Nicholson and L.P. Kaelbling. Toward approximate planning in very large
stochastic domains. In Proceedings of the AAAJ Spring Symposium on Decision
Theoretic Planning, pages 190-196, 1994.

[56] R. Parr. Flexible decomposition algorithms for weakly coupled Markov deci-
sion problems. In G.F. Cooper and S. Moral, editors, Proceedings of the Four-
teenth Conference on Uncertainty in Artificial Intelligence, pages 422-430. Mor-
gan Kaufmann, 1998.

[57] R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. In
M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, Advances in Neural Informa-
tion Processing Systems 10, pages 1043-1049. MIT, 1998.

[58] H. Pasula, L. Zettlemoyer, and L.P. Kaelbling. Learning probabilistic relational
planning rules. In S. Zilberstein, J. Koehler, and S. Koenig, editors, Proceedings
of the Fourteenth International Conference on Automated Planning and Schedul-
ing, pages 73-82. AAAI, 2004.

[59] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann, 1988.

[60] J. Pineau, N. Roy, and S. Thrun. A hierarchical approach to POMDP planning
and execution. In Proceedings of the ICML workshop on hierarchy and memory
in reinforcement learning, 2001.

[61] J. Pineau and S. Thrun. An integrated approach to hierarchy and abstraction
for POMDPs. Technical Report CMU-RI-TR-02-21, Carnegie Mellon University,
School of Computer Science, Pittsburgh, PA, 2001.

[62] D. Poole. The independent choice logic for modelling multiple agents under
uncertainty. Artificial Intelligence, 94(1-2):7-56, 1997.

[63] P. Poupart and C. Boutilier. Value-directed compression of POMDPs. In
S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information
Processing Systems 15, pages 1547-1554. MIT, 2003.

[64] D. Precup and R.S. Sutton. Multi-time models for temporally abstract plan-
ning. In M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, Advances in Neural
Information Processing Systems 10, pages 1050-1056. MIT, 1998.

[65] D. Precup, R.S. Sutton, and S. Singh. Theoretical results on reinforcement
learning with temporally abstract options. In C. Nedellec and C. Rouveirol,
editors, Proceedings of the Tenth European Conference on Machine Learning,
pages 382-393. Springer, 1998.

170

[66] M. Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 1994.

[67] M. Puterman and M. Shin. Modified policy iteration algorithms for discounted
Markov decision problems. Management Science, 24(11):1127-1137, 1978.

[68] B. Ravindran and A.G. Barto. Symmetries and model minimization of Markov
decision processes. Technical Report 01-43, University of Massachusetts,
Amherst, Department of Computer Science, Amherst, MA, 2001.

[69] B. Raviiidran and A.G. Barto. Model minimization in hierarchical reinforcement
learning. In S. Koenig and R.C. Holte, editors, Proceedings of the Fifth Inter-
national Symposium on Abstraction, Reformulation and Approximation, pages
196-211. Springer, 2002.

[70] B. Ravindran and A.G. Barto. SMDP homomorphisms: an algebraic approach to
abstraction in semi-Markov decision processes. In G. Gottlob and T. Walsh, ed-
itors, Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence, pages 1011-1018. Morgan Kaufmann, 2003.

[71] K. Rohanimanesh and S. Mahadevan. Decision-theoretic planning with concur-
rent temporally extended actions. In J.S. Breese and D. Koller, editors, Pro-
ceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence,
pages 472-479. Morgan Kaufmann, 2001.

[72] N. Roy and G. Gordon. Exponential family PCA for belief compression in
POMDPs. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in
Neural Information Processing Systems 15, pages 1635-1642. MIT, 2003.

[73] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, pages 42-47, 1993.

[74] D. Sieling. The nonapproximability of OBDD minimization. Information and
Computation, 172(2):103-138, January 2002.

[75] S. Singh. Transfer of learning by composing solutions of elemental sequential
tasks. Machine Learning, 8:323-339, 1992.

[76] S. Singh and D. Cohn. How to dynamically merge Markov decision processes.
In M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, Advances in Neural Infor-
mation Processing Systems 10, pages 1057-1063. MIT, 1998.

[77] D. Smith and D. Weld. Conformant Graphplan. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, pages 889-896. AAAI/MIT, 1998.

171

[78] R. St-Aubin, J. Hoey, and C. Boutilier. APRICODD: approximate policy con-
struction using decision diagrams. In T.K. Leen, T.G. Dietterich, and V. Tresp,
editors, Advances in Neural Information Processing Systems 13, pages 1089-
1095. MIT, 2001.

[79] G. Theocharous and S. Mahadevan. Approximate planning with hierarchical
partially observable Markov decision processes for robot navigation. In IEEE
International Conference on Robotics and Automation, pages 1347-1352. IEEE,
2002.

[80] S. Thrun. Monte Carlo POMDPs. In S.A. Solla, T.K. Leen, and K. Mller,
editors, Advances in Neural Information Processing Systems 12, pages 1064-
1070. MIT, 2000.

[81] W. Uther and M. Veloso. Tree based discretization for continuous state space
reinforcement learning. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence, pages 769-774. AAAI/MIT, 1998.

[82] W. Uther and M. Veloso. TTree: tree-based state generalization with tempo-
rally abstract actions. In S. Koenig and R.C. Holte, editors, Proceedings of the
Fifth International Symposium on Abstraction, Reformulation and Approxima-
tion, pages 308-315. Springer, 2002.

[83] G. Wang and S. Mahadevan. A greedy divide-and-conquer approach to optimiz-
ing large manufacturing systems using reinforcement learning.

[84] G. Wang and S. Mahadevan. Hierarchical optimization of policy-coupled semi-
Markov decision processes. In I. Bratko and S. Dzeroski, editors, Proceedings
of the Sixteenth International Conference on Machine Learning, pages 464-473.
Morgan Kaufmann, 1999.

[85] K. Yost and A.R. Washburn. The LP/POMDP marriage: optimization with
imperfect information. Naval Research Logistics, 47:607-619, 2000.

172

