2,353 research outputs found

    Occlusion Handling using Semantic Segmentation and Visibility-Based Rendering for Mixed Reality

    Full text link
    Real-time occlusion handling is a major problem in outdoor mixed reality system because it requires great computational cost mainly due to the complexity of the scene. Using only segmentation, it is difficult to accurately render a virtual object occluded by complex objects such as trees, bushes etc. In this paper, we propose a novel occlusion handling method for real-time, outdoor, and omni-directional mixed reality system using only the information from a monocular image sequence. We first present a semantic segmentation scheme for predicting the amount of visibility for different type of objects in the scene. We also simultaneously calculate a foreground probability map using depth estimation derived from optical flow. Finally, we combine the segmentation result and the probability map to render the computer generated object and the real scene using a visibility-based rendering method. Our results show great improvement in handling occlusions compared to existing blending based methods

    Intrinsic Dynamic Shape Prior for Fast, Sequential and Dense Non-Rigid Structure from Motion with Detection of Temporally-Disjoint Rigidity

    No full text
    While dense non-rigid structure from motion (NRSfM) has been extensively studied from the perspective of the reconstructability problem over the recent years, almost no attempts have been undertaken to bring it into the practical realm. The reasons for the slow dissemination are the severe ill-posedness, high sensitivity to motion and deformation cues and the difficulty to obtain reliable point tracks in the vast majority of practical scenarios. To fill this gap, we propose a hybrid approach that extracts prior shape knowledge from an input sequence with NRSfM and uses it as a dynamic shape prior for sequential surface recovery in scenarios with recurrence. Our Dynamic Shape Prior Reconstruction (DSPR) method can be combined with existing dense NRSfM techniques while its energy functional is optimised with stochastic gradient descent at real-time rates for new incoming point tracks. The proposed versatile framework with a new core NRSfM approach outperforms several other methods in the ability to handle inaccurate and noisy point tracks, provided we have access to a representative (in terms of the deformation variety) image sequence. Comprehensive experiments highlight convergence properties and the accuracy of DSPR under different disturbing effects. We also perform a joint study of tracking and reconstruction and show applications to shape compression and heart reconstruction under occlusions. We achieve state-of-the-art metrics (accuracy and compression ratios) in different scenarios

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Real-Time Occlusion Handling in Augmented Reality Based on an Object Tracking Approach

    Get PDF
    To produce a realistic augmentation in Augmented Reality, the correct relative positions of real objects and virtual objects are very important. In this paper, we propose a novel real-time occlusion handling method based on an object tracking approach. Our method is divided into three steps: selection of the occluding object, object tracking and occlusion handling. The user selects the occluding object using an interactive segmentation method. The contour of the selected object is then tracked in the subsequent frames in real-time. In the occlusion handling step, all the pixels on the tracked object are redrawn on the unprocessed augmented image to produce a new synthesized image in which the relative position between the real and virtual object is correct. The proposed method has several advantages. First, it is robust and stable, since it remains effective when the camera is moved through large changes of viewing angles and volumes or when the object and the background have similar colors. Second, it is fast, since the real object can be tracked in real-time. Last, a smoothing technique provides seamless merging between the augmented and virtual object. Several experiments are provided to validate the performance of the proposed method

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Tracking and Retexturing Cloth for RealTime Virtual Clothing Applications

    Get PDF
    Abstract. In this paper, we describe a dynamic texture overlay method from monocular images for real-time visualization of garments in a virtual mirror environment. Similar to looking into a mirror when trying on clothes, we create the same impression but for virtually textured garments. The mirror is replaced by a large display that shows the mirrored image of a camera capturing e.g. the upper body part of a person. By estimating the elastic deformations of the cloth from a single camera in the 2D image plane and recovering the illumination of the textured surface of a shirt in real time, an arbitrary virtual texture can be realistically augmented onto the moving garment such that the person seems to wear the virtual clothing. The result is a combination of the real video and the new augmented model yielding a realistic impression of the virtual piece of cloth

    Tracking an elastic object with an RGB-D sensor for a pizza chef robot

    Get PDF
    This paper presents a method to track in real-time a 3D object which undergoes large deformations such as elastic ones, and fast rigid motions, using the point cloud data provided by a RGB-D sensor. This solution would contribute to robotic humanoid manipulation purposes. Our framework relies on a prior visual segmentation of the object in the image. The segmented point cloud is then registered first in a rigid manner and then by non-rigidly fitting the mesh, based on the Finite Element Method to model elasticity and on geometrical point-to-point correspondences to compute external forces exerted on the mesh. The real-time performance of the system is demonstrated on real data involving challenging deformations and motions, for a pizza dough to be ideally manipulated by a chef robot

    Augmented Reality Markerless Multi-Image Outdoor Tracking System for the Historical Buildings on Parliament Hill

    Get PDF
    [EN] Augmented Reality (AR) applications have experienced extraordinary growth recently, evolving into a well-established method for the dissemination and communication of content related to cultural heritage¿including education. AR applications have been used in museums and gallery exhibitions and virtual reconstructions of historic interiors. However, the circumstances of an outdoor environment can be problematic. This paper presents a methodology to develop immersive AR applications based on the recognition of outdoor buildings. To demonstrate this methodology, a case study focused on the Parliament Buildings National Historic Site in Ottawa, Canada has been conducted. The site is currently undergoing a multiyear rehabilitation program that will make access to parts of this national monument inaccessible to the public. AR experiences, including simulated photo merging of historic and present content, are proposed as one tool that can enrich the Parliament Hill visit during the rehabilitation. Outdoor AR experiences are limited by factors, such as variable lighting (and shadows) conditions, caused by changes in the environment (objects height and orientation, obstructions, occlusions), the weather, and the time of day. This paper proposes a workflow to solve some of these issues from a multi-image tracking approach.This work has been developed under the framework of the New Paradigms/New Tools for Heritage Conservation in Canada, a project funded through the Social Sciences and Humanities Research Council of Canada (SSHRC).Blanco-Pons, S.; Carrión-Ruiz, B.; Duong, M.; Chartrand, J.; Fai, S.; Lerma, JL. (2019). Augmented Reality Markerless Multi-Image Outdoor Tracking System for the Historical Buildings on Parliament Hill. Sustainability. 11(16):1-15. https://doi.org/10.3390/su11164268S1151116Bekele, M. K., Pierdicca, R., Frontoni, E., Malinverni, E. S., & Gain, J. (2018). A Survey of Augmented, Virtual, and Mixed Reality for Cultural Heritage. Journal on Computing and Cultural Heritage, 11(2), 1-36. doi:10.1145/3145534Gimeno, J., Portalés, C., Coma, I., Fernández, M., & Martínez, B. (2017). Combining traditional and indirect augmented reality for indoor crowded environments. A case study on the Casa Batlló museum. Computers & Graphics, 69, 92-103. doi:10.1016/j.cag.2017.09.001Kolivand, H., El Rhalibi, A., Shahrizal Sunar, M., & Saba, T. (2018). ReVitAge: Realistic virtual heritage taking shadows and sky illumination into account. Journal of Cultural Heritage, 32, 166-175. doi:10.1016/j.culher.2018.01.020Amakawa, J., & Westin, J. (2017). New Philadelphia: using augmented reality to interpret slavery and reconstruction era historical sites. International Journal of Heritage Studies, 24(3), 315-331. doi:10.1080/13527258.2017.1378909Kim, J.-B., & Park, C. (2011). Development of Mobile AR Tour Application for the National Palace Museum of Korea. Lecture Notes in Computer Science, 55-60. doi:10.1007/978-3-642-22021-0_7Barrile, V., Fotia, A., Bilotta, G., & De Carlo, D. (2019). Integration of geomatics methodologies and creation of a cultural heritage app using augmented reality. Virtual Archaeology Review, 10(20), 40. doi:10.4995/var.2019.10361Analysis of Tracking Accuracy for Single-Camera Square-Marker-Based Tracking. In Third Workshop on Virtual and Augmented Reality of the GI-Fachgruppe VR/AR, Koblenz, Germany, 2006http://campar.in.tum.de/Chair/PublicationDetail?pub=pentenrieder2006giCirulis, A., & Brigmanis, K. B. (2013). 3D Outdoor Augmented Reality for Architecture and Urban Planning. Procedia Computer Science, 25, 71-79. doi:10.1016/j.procs.2013.11.009You, S., Neumann, U., & Azuma, R. (1999). Orientation tracking for outdoor augmented reality registration. IEEE Computer Graphics and Applications, 19(6), 36-42. doi:10.1109/38.799738Wither, J., Tsai, Y.-T., & Azuma, R. (2011). Indirect augmented reality. Computers & Graphics, 35(4), 810-822. doi:10.1016/j.cag.2011.04.010Radkowski, R., & Oliver, J. (2013). Natural Feature Tracking Augmented Reality for On-Site Assembly Assistance Systems. Lecture Notes in Computer Science, 281-290. doi:10.1007/978-3-642-39420-1_30Rao, J., Qiao, Y., Ren, F., Wang, J., & Du, Q. (2017). A Mobile Outdoor Augmented Reality Method Combining Deep Learning Object Detection and Spatial Relationships for Geovisualization. Sensors, 17(9), 1951. doi:10.3390/s17091951Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1993). Mesh optimization. Proceedings of the 20th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’93. doi:10.1145/166117.166119Rossignac, J., & Borrel, P. (1993). Multi-resolution 3D approximations for rendering complex scenes. Modeling in Computer Graphics, 455-465. doi:10.1007/978-3-642-78114-8_29Gross, M. H., Staadt, O. G., & Gatti, R. (1996). Efficient triangular surface approximations using wavelets and quadtree data structures. IEEE Transactions on Visualization and Computer Graphics, 2(2), 130-143. doi:10.1109/2945.506225Botsch, M., Pauly, M., Rossl, C., Bischoff, S., & Kobbelt, L. (2006). Geometric modeling based on triangle meshes. ACM SIGGRAPH 2006 Courses on - SIGGRAPH ’06. doi:10.1145/1185657.1185839Pietroni, N., Tarini, M., & Cignoni, P. (2010). Almost Isometric Mesh Parameterization through Abstract Domains. IEEE Transactions on Visualization and Computer Graphics, 16(4), 621-635. doi:10.1109/tvcg.2009.96Khan, D., Yan, D.-M., Ding, F., Zhuang, Y., & Zhang, X. (2018). Surface remeshing with robust user-guided segmentation. Computational Visual Media, 4(2), 113-122. doi:10.1007/s41095-018-0107-yGuidi, G., Russo, M., Ercoli, S., Remondino, F., Rizzi, A., & Menna, F. (2009). A Multi-Resolution Methodology for the 3D Modeling of Large and Complex Archeological Areas. International Journal of Architectural Computing, 7(1), 39-55. doi:10.1260/147807709788549439Remondino, F., & El-Hakim, S. (2006). Image-based 3D Modelling: A Review. The Photogrammetric Record, 21(115), 269-291. doi:10.1111/j.1477-9730.2006.00383.xBruno, F., Bruno, S., De Sensi, G., Luchi, M.-L., Mancuso, S., & Muzzupappa, M. (2010). From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. Journal of Cultural Heritage, 11(1), 42-49. doi:10.1016/j.culher.2009.02.006Unity, The Photogrammetry Workflowhttps://unity.com/solutions/photogrammetry.Blanco, S., Carrión, B., & Lerma, J. L. (2016). REVIEW OF AUGMENTED REALITY AND VIRTUAL REALITY TECHNIQUES IN ROCK ART. Proceedings of the ARQUEOLÓGICA 2.0 8th International Congress on Archaeology, Computer Graphics, Cultural Heritage and Innovation. doi:10.4995/arqueologica8.2016.3561Behzadan, A. H., & Kamat, V. R. (2010). Scalable Algorithm for Resolving Incorrect Occlusion in Dynamic Augmented Reality Engineering Environments. Computer-Aided Civil and Infrastructure Engineering, 25(1), 3-19. doi:10.1111/j.1467-8667.2009.00601.xTian, Y., Long, Y., Xia, D., Yao, H., & Zhang, J. (2015). Handling occlusions in augmented reality based on 3D reconstruction method. Neurocomputing, 156, 96-104. doi:10.1016/j.neucom.2014.12.081Tian, Y., Guan, T., & Wang, C. (2010). Real-Time Occlusion Handling in Augmented Reality Based on an Object Tracking Approach. Sensors, 10(4), 2885-2900. doi:10.3390/s10040288
    • …
    corecore