21,334 research outputs found

    Dimethylsulphide, clouds, and phytoplankton: Insights from a simple plankton ecosystem feedback model

    Get PDF
    The hypothesis that marine plankton ecosystems may effectively regulate climate by the production of dimethylsulphide (DMS) has attracted substantial research effort over recent years. This hypothesis suggests that DMS produced by marine ecosystems can affect cloud properties and hence the averaged irradiance experienced by the phytoplankton that produce DMS’s precursor dimethylsulphoniopropionate (DMSP). This paper describes the use of a simple model to examine the effects of such a biogenic feedback on the ecosystem that initiates it. We compare the responses to perturbation of a simple marine nitrogen-phytoplankton-zooplankton (NPZ) ecosystem model with and without biogenic feedback. Our analysis of this heuristic model reveals that the addition of the feedback can increase the model’s resilience to perturbation and hence stabilize the model ecosystem. This result suggests the hypothesis that DMS may play a role in stabilizing marine plankton ecosystem dynamics through its effect on the atmosphere

    Seasonal modulation of mesoscale processes alters nutrient availability and plankton communities in the Red Sea

    Get PDF
    Hydrographic and atmospheric forcing set fundamental constraints on the biogeochemistry of aquatic ecosystems and manifest in the patterns of nutrient availability and recycling, species composition of communities, trophic dynamics, and ecosystem metabolism. In the Red Sea, latitudinal gradients in environmental conditions and primary production have been ascribed to fluctuations in Gulf of Aden Water inflow, upwelling/mixing, and regenerated nutrient utilization i.e. rapidly recycled nitrogen in upper layers. However, our understanding of upper layer dynamics and related changes in plankton communities, metabolism and carbon and nitrogen export is limited. We surmised that stratification and mesoscale eddies modulate the nutrient availability and taxonomic identity of plankton communities in the Red Sea. Based on remote-sensing data of sea level anomalies and high resolution in situ measurements (ScanFish) we selected stations for hydrographic CTD profiles, water sampling (nutrients, seawater oxygen stable isotopes [δ18OSW]), phytoplankton and zooplankton collections. In fall 2014, strong stratification subjected the plankton community to an overall nitrogen and phosphorus shortage. The nutrient deficiency increased numbers of heterotrophic dinoflagellates, microzooplankton, and diazotrophs (Trichodesmium, diatom-diazotroph associations [DDAs]), albeit largely decreased phytoplankton and mesozooplankton abundances. In spring 2015, mesoscale eddies increased the nutrient availability, and the thermohaline characteristics and low δ18OSW point to the interaction of eddies with Gulf of Aden Surface Water (GASW). Cyclonic eddies and, most likely, the availability of nutrients associated with the GASW, increased the abundances of autotrophs (diatoms, Prasinophytes) and supported larger numbers of zooplankton and their larvae. We demonstrate that the interplay of stratification, advection of Gulf of Aden water and mesoscale eddies are key elements to better understand changes in plankton community composition, ecosystem metabolism, and macronutrient export in the Red Sea in space and time

    A view from above : changing seas, seabirds and food sources

    Get PDF
    In this review we summarize what is known about mechanisms by which climate change may be affecting the populations of seabirds around the UK. Breeding success and adult survival are the key factors affecting changes in seabird populations, and food intake is implicated as a major determinant of both. The diet of most UK seabird species is almost exclusively sandeels, small clupeoid fish or zooplankton and it is clear that the marine pelagic food web is the key ecological system determining food supply. Hence, we develop the review by first considering how climate changes may affect primary production, and then examine how this propagates through the food web to zooplankton and fish culminating in fluctuations in seabird numbers. A trend of increasing numbers of many seabird species since 1970, particularly puffins, guillemots and razorbills, appears to have been reversed since 2000. The proximate cause of the recent declines seems to be a succession of 5 years of low breeding success for a range of species due to a shortage of food, especially sandeels. However, the connection with climate change remains uncertain, though there are indications that declines in the productivity of sandeel populations may be linked in some complex way to warming sea temperatures. The main conclusion is that no part of the marine food web, including fisheries, can be considered in isolation when trying to understand and predict the consequences of climate change for seabirds. Impacts can be expected in all parts of the system, and all parts of the system are interconnected

    Observing and modelling phytoplankton community structure in the North Sea

    Get PDF
    © Author(s) 2017. CC Attribution 3.0 License. Phytoplankton form the base of the marine food chain, and knowledge of phytoplankton community structure is fundamental when assessing marine biodiversity. Policy makers and other users require information on marine biodiversity and other aspects of the marine environment for the North Sea, a highly productive European shelf sea. This information must come from a combination of observations and models, but currently the coastal ocean is greatly under-sampled for phytoplankton data, and outputs of phytoplankton community structure from models are therefore not yet frequently validated. This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea using accessory pigment analysis. The observations allow a good understanding of the patterns of surface phytoplankton biomass and community structure in the North Sea for the observed months of August 2010 and 2011. Two physical-biogeochemical ocean models, the biogeochemical components of which are different variants of the widely used European Regional Seas Ecosystem Model (ERSEM), were then validated against these and other observations. Both models were a good match for sea surface temperature observations, and a reasonable match for remotely sensed ocean colour observations. However, the two models displayed very different phytoplankton community structures, with one better matching the in situ observations than the other. Nonetheless, both models shared some similarities with the observations in terms of spatial features and inter-annual variability. An initial comparison of the formulations and parameterizations of the two models suggests that diversity between the parameter settings of model phytoplankton functional types, along with formulations which promote a greater sensitivity to changes in light and nutrients, is key to capturing the observed phytoplankton community structure. These findings will help inform future model development, which should be coupled with detailed validation studies, in order to help facilitate the wider application of marine biogeochemical modelling to user and policy needs

    Report of the 2005 Workshop on Ocean Ecodynamics Comparison in the Subarctic Pacific

    Get PDF
    I. Scientific Issues Posed by OECOS II. Participant Contributions to the OECOS Workshop A. ASPECTS OF PHYTOPLANKTON ECOLOGY IN THE SUBARCTIC PACIFIC Microbial community compositions by Karen E. Selph Subarctic Pacific lower trophic interactions: Production-based grazing rates and grazing-corrected production rates by Nicholas Welschmeyer Phytoplankton bloom dynamics and their physiological status in the western subarctic Pacific by Ken Furuya Temporal and spatial variability of phytoplankton biomass and productivity in the northwestern Pacific by Sei-ichi Saitoh, Suguru Okamoto, Hiroki Takemura and Kosei Sasaoka The use of molecular indicators of phytoplankton iron limitation by Deana Erdner B. IRON CONCENTRATION AND CHEMICAL SPECIATION Iron measurements during OECOS by Zanna Chase and Jay Cullen 25 The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma The measurement of iron, nutrients and other chemical components in the northwestern North Pacific Ocean by Kenshi Kuma C. PHYSICAL OCEANOGRAPHY, FINE-SCALE DISTRIBUTION PATTERNS AND AUTONOMOUS DRIFTERS The use of drifters in Lagrangian experiments: Positives, negatives and what can really be measured by Peter Strutton The interaction between plankton distribution patterns and vertical and horizontal physical processes in the eastern subarctic North Pacific by Timothy J. Cowles D. MICROZOOPLANKTON Microzooplankton processes in oceanic waters of the eastern subarctic Pacific: Project OECOS by Suzanne Strom Functional role of microzooplankton in the pelagic marine ecosystem during phytoplankton blooms in the western subarctic Pacific by Takashi Ota and Akiyoshi Shinada E. MESOZOOPLANKTON Vertical zonation of mesozooplankton, and its variability in response to food availability, density stratification, and turbulence by David L. Mackas and Moira Galbraith Marine ecosystem characteristics and seasonal abundance of dominant calanoid copepods in the Oyashio region by Atsushi Yamaguchi, Tsutomu Ikeda and Naonobu Shiga OECOS: Proposed mesozooplankton research in the Oyashio region, western subarctic Pacific by Tsutomu Ikeda Some background on Neocalanus feeding by Michael Dagg Size and growth of interzonally migrating copepods by Charles B. Miller Growth of large interzonal migrating copepods by Toru Kobari F. MODELING Ecosystem and population dynamics modeling by Harold P. Batchelder III. Reports from Workshop Breakout Groups A. PHYSICAL AND CHEMICAL ASPECTS WITH EMPHASIS ON IRON AND IRON SPECIATION B. PHYTOPLANKTON/MICROZOOPLANKTON STUDIES C. MESOZOOPLANKTON STUDIES IV. Issues arising during the workshop A. PHYTOPLANKTON STOCK VARIATIONS IN HNLC SYSTEMS AND TROPHIC CASCADES IN THE NANO AND MICRO REGIMES B. DIFFERENCES BETWEEN EAST AND WEST IN SITE SELECTION FOR OECOS TIME SERIES C. TIMING OF OECOS EXPEDITIONS D. CHARACTERIZATION OF PHYSICAL OCEANOGRAPHY V. Concluding Remarks VI. References (109 page document

    Integrating functional diversity, food web processes, and biogeochemical carbon fluxes into a conceptual approach for modeling the upper ocean in a high-CO2 world

    Get PDF
    Marine food webs influence climate by channeling carbon below the permanent pycnocline, where it can be sequestered. Because most of the organic matter exported from the euphotic zone is remineralized within the "upper ocean" (i.e., the water column above the depth of sequestration), the resulting CO2 would potentially return to the atmosphere on decadal timescales. Thus ocean-climate models must consider the cycling of carbon within and from the upper ocean down to the depth of sequestration, instead of only to the base of the euphotic zone. Climate-related changes in the upper ocean will influence the diversity and functioning of plankton functional types. In order to predict the interactions between the changing climate and the ocean's biology, relevant models must take into account the roles of functional biodiversity and pelagic ecosystem functioning in determining the biogeochemical fluxes of carbon. We propose the development of a class of models that consider the interactions, in the upper ocean, of functional types of plankton organisms (e.g., phytoplankton, heterotrophic bacteria, microzooplankton, large zooplankton, and microphagous macrozooplankton), food web processes that affect organic matter (e.g., synthesis, transformation, and remineralization), and biogeochemical carbon fluxes (e.g., photosynthesis, calcification, respiration, and deep transfer). Herein we develop a framework for this class of models, and we use it to make preliminary predictions for the upper ocean in a high-CO2 world, without and with iron fertilization. Finally, we suggest a general approach for implementing our proposed class of models

    PICES Press, Vol. 12, No. 1, January 2004

    Get PDF
    The state of PICES science - 2003 (pdf 281 KB) 2003 Wooster Award (pdf 764 KB) The state of the eastern North Pacific through summer 2003 (pdf 448 KB) The Bering Sea: Current status and recent events (pdf 951 KB) The state of the western North Pacific in the first half of 2003 (pdf 684 KB) The status of oceanic zooplankton in the eastern North Pacific (pdf 390 KB) The precautionary approach to the PDO (pdf 976 KB) Photo highlights of PICES XII (pdf 2.79 MB) William G. Pearcy: Renaissance oceanographer (pdf 2.86 MB) KORDI/PICES/CoML Workshop on "Variability and status of the Yellow Sea and East China Sea ecosystems (pdf 785 KB) PICES/IOC Workshop on "Harmful algal blooms - Harmonization of data" (pdf 330 KB) From physics to predators: Monitoring North Pacific ecosystem dynamics (pdf 270 KB) Toward a coast-wide network of Northeast Pacific coastal-ocean monitoring programs - a brief workshop report (pdf 640) PICES publications (pdf 103 KB) PICES calendar (pdf 45 KB

    Report of the 2004 Workshop on In Situ Iron Enrichment Experiments in the Eastern and Western Subarctic Pacific

    Get PDF
    Foreword 1. BACKGROUND AND OBJECTIVES (pdf, 0.1 Mb) 2. 2004 WORKSHOP SUMMARY (pdf, < 0.1 Mb) 2.1. What have we learned from the enrichment experiments? 2.2 What are the outstanding questions? 2.3 Recommendations for SEEDS-II 3. EXTENDED ABSTRACTS OF THE 2004 WORKSHOP 3.1 Synthesis of the Iron Enrichment Experiments: SEEDS and SERIES (pdf, 0.5 Mb) Iron fertilization experiment in the western subarctic Pacific (SEEDS) by Atsushi Tsuda The response of N and Si to iron enrichment in the Northeast Pacific Ocean: Results from SERIES by David Timothy, C.S. Wong, Yukihiro Nojiri, Frank A. Whitney, W. Keith Johnson and Janet Barwell-Clarke 3.2 Biological and Physiological Responses (pdf, 0.2 Mb) Zooplankton responses during SEEDS by Hiroaki Saito Phytoplankton community response to iron and temperature gradient in the NW and NE subarctic Pacific Ocean by Isao Kudo, Yoshifumi Noiri, Jun Nishioka, Hiroshi Kiyosawa and Atsushi Tsuda SERIES: Copepod grazing on diatoms by Frank A. Whitney, Moira Galbraith, Janet Barwell-Clarke and Akash Sastri The Southern Ocean Iron Enrichment Experiment: The nitrogen uptake response by William P. Cochlan and Raphael M. Kudela 3.3 Biogeochemical Responses (pdf, 0.5 Mb) What have we learned regarding iron biogeochemistry from iron enrichment experiments? by Jun Nishioka, Shigenobu Takeda and W. Keith Johnson Iron dynamics and temporal changes of iron speciation in SERIES by W. Keith Johnson, C.S. Wong, Nes Sutherland and Jun Nishioka Dissolved organic matter dynamics during SEEDS and SERIES experiments by Takeshi Yoshimura and Hiroshi Ogawa Formation of transparent exopolymer particles during the in-situ iron enrichment experiment in the western subarctic Pacific (SEEDS) by Shigenobu Takeda, Neelam Ramaiah, Ken Furuya and Takeshi Yoshimura Atmospheric measurement by Mitsuo Uematsu 3.4 Prediction from Models (pdf, 0.3 Mb) Modelling iron limitation in the North Pacific by Kenneth L. Denman and M. Angelica Peña A proposed model of the SERIES iron fertilization patch by Debby Ianson, Christoph Voelker and Kenneth L. Denman 4. LIST OF PARTICIPANTS FOR THE 2004 WORKSHOP (pdf, < 0.1 Mb) APPENDIX 1 Report of the 2000 Planning Workshop on Designing the Iron Fertilization Experiment in the Subarctic Pacific (pdf, 1 Mb) APPENDIX 2 Terms of Reference for the Advisory Panel on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 3 Historical List of Advisory Panel Members on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 4 IFEP-AP Annual Reports (pdf, 0.1 Mb) APPENDIX 5 PICES Press Articles (pdf, 0.6 Mb) (194 page document

    Predicting plankton net community production in the Atlantic Ocean

    Get PDF
    We present, test and implement two contrasting models to predict euphotic zone net community production (NCP), which are based on 14C primary production (PO14CP) to NCP relationships over two latitudinal (ca. 30°S–45°N) transects traversing highly productive and oligotrophic provinces of the Atlantic Ocean (NADR, CNRY, BENG, NAST-E, ETRA and SATL, Longhurst et al., 1995 [An estimation of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research 17, 1245–1271]). The two models include similar ranges of PO14CP and community structure, but differ in the relative influence of allochthonous organic matter in the oligotrophic provinces. Both models were used to predict NCP from PO14CP measurements obtained during 11 local and three seasonal studies in the Atlantic, Pacific and Indian Oceans, and from satellite-derived estimates of PO14CP. Comparison of these NCP predictions with concurrent in situ measurements and geochemical estimates of NCP showed that geographic and annual patterns of NCP can only be predicted when the relative trophic importance of local vs. distant processes is similar in both modeled and predicted ecosystems. The system-dependent ability of our models to predict NCP seasonality suggests that trophic-level dynamics are stronger than differences in hydrodynamic regime, taxonomic composition and phytoplankton growth. The regional differences in the predictive power of both models confirm the existence of biogeographic differences in the scale of trophic dynamics, which impede the use of a single generalized equation to estimate global marine plankton NCP. This paper shows the potential of a systematic empirical approach to predict plankton NCP from local and satellite-derived P estimates
    corecore