95,064 research outputs found

    A biophysical approach to large-scale protein-DNA binding data

    Get PDF
    About this book * Cutting-edge genome analysis methods from leading bioinformaticians An accurate description of current scientific developments in the field of bioinformatics and computational implementation is presented by research of the BioSapiens Network of Excellence. Bioinformatics is essential for annotating the structure and function of genes, proteins and the analysis of complete genomes and to molecular biology and biochemistry. Included is an overview of bioinformatics, the full spectrum of genome annotation approaches including; genome analysis and gene prediction, gene regulation analysis and expression, genome variation and QTL analysis, large scale protein annotation of function and structure, annotation and prediction of protein interactions, and the organization and annotation of molecular networks and biochemical pathways. Also covered is a technical framework to organize and represent genome data using the DAS technology and work in the annotation of two large genomic sets: HIV/HCV viral genomes and splicing alternatives potentially encoded in 1% of the human genome

    Genome annotation for clinical genomic diagnostics: strengths and weaknesses

    Get PDF
    The Human Genome Project and advances in DNA sequencing technologies have revolutionized the identification of genetic disorders through the use of clinical exome sequencing. However, in a considerable number of patients, the genetic basis remains unclear. As clinicians begin to consider whole-genome sequencing, an understanding of the processes and tools involved and the factors to consider in the annotation of the structure and function of genomic elements that might influence variant identification is crucial. Here, we discuss and illustrate the strengths and weaknesses of approaches for the annotation and classification of important elements of protein-coding genes, other genomic elements such as pseudogenes and the non-coding genome, comparative-genomic approaches for inferring gene function, and new technologies for aiding genome annotation, as a practical guide for clinicians when considering pathogenic sequence variation. Complete and accurate annotation of structure and function of genome features has the potential to reduce both false-negative (from missing annotation) and false-positive (from incorrect annotation) errors in causal variant identification in exome and genome sequences. Re-analysis of unsolved cases will be necessary as newer technology improves genome annotation, potentially improving the rate of diagnosis

    Open access to sequence: Browsing the Pichia pastoris genome

    Get PDF
    The first genome sequences of the important yeast protein production host Pichia pastoris have been released into the public domain this spring. In order to provide the scientific community easy and versatile access to the sequence, two web-sites have been installed as a resource for genomic sequence, gene and protein information for P. pastoris: A GBrowse based genome browser was set up at and a genome portal with gene annotation and browsing functionality at . Both websites are offering information on gene annotation and function, regulation and structure

    Structural Annotation of Mycobacterium tuberculosis Proteome

    Get PDF
    Of the ∼4000 ORFs identified through the genome sequence of Mycobacterium tuberculosis (TB) H37Rv, experimentally determined structures are available for 312. Since knowledge of protein structures is essential to obtain a high-resolution understanding of the underlying biology, we seek to obtain a structural annotation for the genome, using computational methods. Structural models were obtained and validated for ∼2877 ORFs, covering ∼70% of the genome. Functional annotation of each protein was based on fold-based functional assignments and a novel binding site based ligand association. New algorithms for binding site detection and genome scale binding site comparison at the structural level, recently reported from the laboratory, were utilized. Besides these, the annotation covers detection of various sequence and sub-structural motifs and quaternary structure predictions based on the corresponding templates. The study provides an opportunity to obtain a global perspective of the fold distribution in the genome. The annotation indicates that cellular metabolism can be achieved with only 219 folds. New insights about the folds that predominate in the genome, as well as the fold-combinations that make up multi-domain proteins are also obtained. 1728 binding pockets have been associated with ligands through binding site identification and sub-structure similarity analyses. The resource (http://proline.physics.iisc.ernet.in/Tbstructuralannotation), being one of the first to be based on structure-derived functional annotations at a genome scale, is expected to be useful for better understanding of TB and for application in drug discovery. The reported annotation pipeline is fairly generic and can be applied to other genomes as well

    Repertoire-wide gene structure analyses : a case study comparing automatically predicted and manually annotated gene models

    Get PDF
    Background The location and modular structure of eukaryotic protein-coding genes in genomic sequences can be automatically predicted by gene annotation algorithms. These predictions are often used for comparative studies on gene structure, gene repertoires, and genome evolution. However, automatic annotation algorithms do not yet correctly identify all genes within a genome, and manual annotation is often necessary to obtain accurate gene models and gene sets. As manual annotation is time-consuming, only a fraction of the gene models in a genome is typically manually annotated, and this fraction often differs between species. To assess the impact of manual annotation efforts on genome-wide analyses of gene structural properties, we compared the structural properties of protein-coding genes in seven diverse insect species sequenced by the i5k initiative. Results Our results show that the subset of genes chosen for manual annotation by a research community (3.5–7% of gene models) may have structural properties (e.g., lengths and exon counts) that are not necessarily representative for a species’ gene set as a whole. Nonetheless, the structural properties of automatically generated gene models are only altered marginally (if at all) through manual annotation. Major correlative trends, for example a negative correlation between genome size and exonic proportion, can be inferred from either the automatically predicted or manually annotated gene models alike. Vice versa, some previously reported trends did not appear in either the automatic or manually annotated gene sets, pointing towards insect-specific gene structural peculiarities. Conclusions In our analysis of gene structural properties, automatically predicted gene models proved to be sufficiently reliable to recover the same gene-repertoire-wide correlative trends that we found when focusing on manually annotated gene models only. We acknowledge that analyses on the individual gene level clearly benefit from manual curation. However, as genome sequencing and annotation projects often differ in the extent of their manual annotation and curation efforts, our results indicate that comparative studies analyzing gene structural properties in these genomes can nonetheless be justifiable and informative

    An improved assembly and annotation of the melon (Cucumis melo L.) reference genome

    Get PDF
    We report an improved assembly (v3.6.1) of the melon (Cucumis melo L.) genome and a new genome annotation (v4.0). The optical mapping approach allowed correcting the order and the orientation of 21 previous scaffolds and permitted to correctly define the gap-size extension along the 12 pseudomolecules. A new comprehensive annotation was also built in order to update the previous annotation v3.5.1, released more than six years ago. Using an integrative annotation pipeline, based on exhaustive RNA-Seq collections and ad-hoc transposable element annotation, we identified 29,980 protein-coding loci. Compared to the previous version, the v4.0 annotation improved gene models in terms of completeness of gene structure, UTR regions definition, intron-exon junctions and reduction of fragmented genes. More than 8,000 new genes were identified, one third of them being well supported by RNA-Seq data. To make all the new resources easily exploitable and completely available for the scientific community, a redesigned Melonomics genomic platform was released at http://melonomics.net. The resources produced in this work considerably increase the reliability of the melon genome assembly and resolution of the gene models paving the way for further studies in melon and related species

    Improving dbNSFP

    Get PDF
    IMPROVING dbNSFP Mingyao Lu, B.S. Advisory Professor: Xiaoming Liu, Ph.D. The analysis and interpretation of DNA variation are very important for the Whole Exome studies (WES). Genome research has focused on single nucleotide variants (SNVs). Since indels are as important as SNVs, especially indels in coding regions are often candidates of disease-causing variants, thus, it is necessary to expand the focus to include indel mutations. The goal of my project is to provide an automatic annotation pipeline to the WES based disease studies project by extending the dbNSFP with a tool for automated indel annotation and deleteriousness prediction. The current sequencing results typically include both SNVs and indels. Although there have been many available tools to integrate functional prediction/annotations for SNV effects, there are no such tools for indels to my knowledge. Therefore, the aim of this thesis was to add deleteriousness prediction scores to indel annotation based on gene models, including CADD, SIFT, and PROVEAN. All those scores can be calculated on-the-fly after installing resources locally. A Docker implementing the indel annotation and deleteriousness prediction has been developed and ready to be deployed from the cloud

    Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    Get PDF
    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ~32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene

    MoKCa database - mutations of kinases in cancer

    Get PDF
    Members of the protein kinase family are amongst the most commonly mutated genes in human cancer, and both mutated and activated protein kinases have proved to be tractable targets for the development of new anticancer therapies The MoKCa database (Mutations of Kinases in Cancer, http://strubiol.icr.ac.uk/extra/mokca) has been developed to structurally and functionally annotate, and where possible predict, the phenotypic consequences of mutations in protein kinases implicated in cancer. Somatic mutation data from tumours and tumour cell lines have been mapped onto the crystal structures of the affected protein domains. Positions of the mutated amino-acids are highlighted on a sequence-based domain pictogram, as well as a 3D-image of the protein structure, and in a molecular graphics package, integrated for interactive viewing. The data associated with each mutation is presented in the Web interface, along with expert annotation of the detailed molecular functional implications of the mutation. Proteins are linked to functional annotation resources and are annotated with structural and functional features such as domains and phosphorylation sites. MoKCa aims to provide assessments available from multiple sources and algorithms for each potential cancer-associated mutation, and present these together in a consistent and coherent fashion to facilitate authoritative annotation by cancer biologists and structural biologists, directly involved in the generation and analysis of new mutational data
    corecore