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IMPROVING dbNSFP 

Mingyao Lu, B.S. 

Advisory Professor: Xiaoming Liu, Ph.D. 

The analysis and interpretation of DNA variation are very important for the Whole 

Exome studies (WES). Genome research has focused on single nucleotide variants 

(SNVs). Since indels are as important as SNVs, especially indels in coding regions are 

often candidates of disease-causing variants, thus, it is necessary to expand the focus to 

include indel mutations. 

The goal of my project is to provide an automatic annotation pipeline to the WES based 

disease studies project by extending the dbNSFP with a tool for automated indel 

annotation and deleteriousness prediction. The current sequencing results typically 

include both SNVs and indels. Although there have been many available tools to 

integrate functional prediction/annotations for SNV effects, there are no such tools for 

indels to my knowledge. Therefore, the aim of this thesis was to add deleteriousness 

prediction scores to indel annotation based on gene models, including CADD, SIFT, and 

PROVEAN. All those scores can be calculated on-the-fly after installing resources 

locally. A Docker implementing the indel annotation and deleteriousness prediction has 

been developed and ready to be deployed from the cloud.  

Keywords: Indels Annotation, Functional Annotation, Whole Exome Sequencing, 

Deleterious Prediction Scores 
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1 Introduction 

1.1 Context: Literature review about annotation 

DNA sequencing is the process of determining the order of DNA nucleotides, or 

bases, in an individual’s genome. Two large-scale DNA sequencing technologies, are 

whole genome sequencing (WGS) and whole exome sequencing (WES). They have been 

mainly used as a research tool to identify genetic variations and are currently being 

introduced into clinics. 

Advancements in DNA sequencing technologies in throughput and quality have 

driven an ever-growing body of genomic sequencing data to a new level. In the 

meantime, reductions of the cost of DNA sequencing makes it possible to generate 

sequence data rapidly and with high throughput. It not only opens the door to the 

affordable sequencing of patients and the development of precision medicine but also 

democratizes the ability to collect information of a great number of genetic variations in 

individual laboratories. However, it remains a challenge to extract meaningful biological 

information from raw sequence data. Genome sequencing can only figure out the 

complete DNA sequence of an organism’s genome but cannot directly provide the 

biological functions of DNA. Therefore, the genomic variant annotation is an 

increasingly crucial and complex step in the analysis of genome sequencing data. On one 

hand, functional annotation helps analysts filter a subset of elements of interest (e.g., cell 

type-specific enhancers), and on the other hand, annotation helps researchers improve 

their ability to identify phenotype-related loci (e.g., use functional prediction scores as 

weights for association tests) and interpret potentially interesting discoveries. 
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Functional annotation database dbNSFP was developed in 2011 to facilitate 

filtering and prioritizing SNVs observed in WES (Liu et al. 2011). Since then 32 content 

updates have been released including two major updates to version 2.0 and 3.0 (Liu et al. 

2013, 2016b). Currently, dbNSFP only supports SNV annotation. However, in practice 

indels are as important as SNV, especially indels in coding regions are often candidates 

of disease-causing variants. 

Historically, genome research has focused on single nucleotide variants (SNVs), 

because of their high prevalence and relatively simple detection. However, recent 

advances in sequencing techniques and computational methods have expanded the focus 

to include insertion and deletion (indel) mutations (Fang et al. 2016). 

Indel mutations are defined by adding or missing of one or more nucleotides 

(less than 1000 base pairs) of a DNA sequence. Recent studies have shown that insertions 

and deletions (indels) are the second most common variant in the human genome. 

Researches have shown that they have a crucial impact on genetic variation by altering 

human characteristics and can lead to a variety of human diseases. There are two types of 

coding insertions/deletions (indels), frameshifting indels and non-frameshifting indels. 

Frameshifting indels that have lengths that are not divisible by three and subsequently 

result in frameshifts. The frameshift mutation is a highly destructive type of indel 

mutations that alter the reading framework of protein-coding sequences and are closely 

related to neurodevelopmental disorders, cardiovascular diseases, cancer, and many other 

human diseases. Indels, which is divisible by three, will cause amino acid 

insertion/deletion or block substitution called non-frameshifting indels.  
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Although indels are the second most common variant in human genomes, it 

remains challenging to accurately call indels from short-read sequencing data. Unlike 

SNVs, due to the length variability, we cannot list all potential coding indels in the 

human genome in dbNSFP. Therefore, we plan to annotate indel on-the-fly. WGS 

annotator (WGSA) pipeline already supports indel annotation on-the-fly using three 

annotation tools ANNOVAR, SnpEff and VEP for Gencode and RefSeq gene models 

(Liu et al. 2016a). Those programs in the pipeline can be easily ported to the dbNSFP to 

support quick indel annotation based on gene models. Adding indel annotations will 

make the dbNSFP a truly one-stop-shop annotation tool for WES based disease studies. 

The aim of this study is to add deleteriousness prediction scores to indel annotation, 

including CADD (Kircher et al. 2014), SIFT (Vaser et al. 2016) and PROVEAN (Choi et 

al. 2012). All those scores can be calculated on-the-fly after installing resources locally. 

A Docker implementing the indel annotation and deleteriousness prediction will be 

developed and ready to be deployed from the cloud. 

1.2 Aim and Motivation 

The main goal of this thesis is to provide an automatic annotation pipeline to the 

WES based disease studies project by extending the dbNSFP with a tool for automated 

indel annotation and deleteriousness prediction. The current sequencing results typically 

include both SNVs and indels. Although there have been many available tools to 

integrate functional prediction/annotations for SNV effects, there are no such tools for 

indels to my knowledge. The ideal tool will have the ability to search several annotation 

resources in batch and produce an integrated report in return. Such a tool will be very 

useful and appreciated by the sequencing community. 
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1.3 Layout of this Thesis 

The layout of this thesis is as follows. In Chapter 1, we present a brief 

description of the context and motivations of our work. Chapter 2 introduces the genome 

annotation. A set of genome sequencing and annotation methods are described. Chapter 3 

describes the main work developed in this project. The new annotation module is detailed 

as to how to run the scripts. Chapter 4 includes a test case that validates the automatic 

annotation module. Conclusions and future work are presented in Chapter 5.  
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2 Methodology 

2.1 Genome Annotation  

In the study of a particular organism, the complete genome sequence provides 

only partial and raw information. After obtaining DNA sequences, scientists need to find 

out where the genes are, what the functions of the various DNA elements are, how they 

interact, with each other and with environmental factors, etc. This is where the annotation 

process intervenes to link this information to the genome sequence. Genome annotation is 

thus the process of extracting important biological information from the genome 

sequences. Genome annotation has two interrelated types: structural annotation and 

functional annotation. Genome annotation starts by identifying the positions of structural 

genomic elements, like genes, exons, introns, repeated regions, promoters, etc. This 

process can be defined as structural annotation. After identifying genes and other 

structural sequence elements in a genome, a secondary annotation providing biochemical 

and biological function information to these elements is necessary and this process is 

called functional annotation. Function annotation is an important part of genome 

sequencing studies.  

2.2 dbNSFP Introduction  

With the developments in sequencing technologies, whole exome and whole 

genome sequencing has enabled fast and high-throughput generation of sequence data 

and has been used to discover genomic variations that cause human diseases. Functional 

prediction is a crucial step in genomic sequencing analyses and can filter or prioritize 

nonsynonymous SNV as well as insertions/deletions (indels) for further analysis. In 
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recent years, functional prediction algorithms for genomic variants continue to make 

progress with the developments of computational biology, structure biology, 

bioinformatics, and population genetics. In general, the functional prediction tools output 

a score to qualify the degree of how likely a mutation will affect the protein function. 

They used deleterious prediction scores to measure different variants to provide a more 

accurate result for identifying gene influencing a trait. However, different prediction tools 

used different methods, every prediction algorithm has its own weakness and strength. In 

addition, even there are lots of prediction algorithms for sequencing studies, it is still 

necessary to use multiple predictions tools to make a more accurate prediction for a 

variation instead of only relying on a single one. (Agajanian et al. 2018). 

dbNSFP is a functional annotation database and was developed in 2011 to 

provide a comprehensive resource for functional predictions and annotations for 

variations studies including nonsynonymous single-nucleotide variants (nsSNVs) and 

splice site variants (ssSNVs). The aim of dbNSFP is to accelerate the steps of filtering 

and prioritizing SNVs from a great number list of SNVs discovered in an exome-

sequencing study (Liu et al. 2011). Since then 32 content updates have been released 

including two major updates to version 2.0 and 3.0 (Liu et al. 2013, 2016b). The database 

compiled a list of all potential nsSNVs and ssSNVs based on the human reference 

sequence. Functional predictions and annotations were curated and compiled for each 

SNV. The current version was released in 2016 and was based on the Gencode release 

22/ Ensembl version 79, including a total of 83,422,341 nsSNVs and ssSNVs (splicing-

site SNVs). It does not need to connect the internet because it was designed to work 

locally and independently for users. Even if the users do not have good bioinformatics 
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training, they still can use it easily. They can use the companion Java program to search 

the database and the step can be done by a single command line call which is convenient. 

It is the first integrated database of functional annotation predictions from multiple 

methods for the comprehensive collection of human nsSNVs. However, till now, dbNSFP 

only supports SNV annotation.   

2.3 WGS Annotator (WGSA) 

WGS annotator (WGSA) is designed as an annotation pipeline for human 

genome re-sequencing studies, to facilitate the functional annotation step of whole 

genome sequencing. It already supports indel annotation on-the-fly using three annotation 

tools ANNOVAR, SnpEff and VEP for Gencode and RefSeq gene models and provides a 

summary of variant consequences from the six annotation results (Liu el at. 2016a). 

Those programs in the pipeline can be easily ported to the dbNSFP to support quick indel 

annotation based on gene models.  

Currently, WGSA supports SNV annotations and indels annotations locally 

without remote database requests, which can be extended for large WGS studies. An 

overview of the WGSA pipeline is shown in Figure 1. It was used with permission from 
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Dr. Xiaoming Liu.

 

Figure 1. WGSA pipeline 

2.4 Deleterious Prediction Scores 

In recent years, with the development of genetic sequencing technologies, many 

sequence-based disease types of research have been helped. Next-generation sequencing 

helped researchers get more accurate and effective results. The application of whole 

exome sequencing has been increased in the field of human disease studies. Predicting 

whether mutations are deleterious or neutral remains a challenge in interpreting all exome 

sequence data. Throughout exome sequencing (WES) studies, the deleterious prediction 

of genomic variations is critical to predicting whether mutations affect protein function 

and may lead to genetic diseases. With the rapid development of high-throughput 

experimental technologies, annotations on functional elements of the human genome 

have been widely used; therefore, various information can be used to study the effects of 

nsSNVs. Many methods have been proposed to predict deleterious nsSNVs, as well as 
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friendly web-based interactive software, to facilitate researchers’ studies. However, most 

prediction algorithms only focus on SNVs but cannot deal with sequence changes such as 

indels and multiple amino acid substitutions. At the same time, although researchers 

already have many different algorithms to conduct the deleterious prediction, those 

methods may not have a consensus. Even when they are used to analyze the same 

sequence data, different prediction tools may get different results and their relative 

advantages in practical application are still unclear. Even when the same gene structure is 

implemented, predicted consequences of a given variant from different prediction tools 

may not be the same (Kim et al. 2016). 

In order to add deleteriousness prediction scores to indel annotation, it was 

necessary to decide which deleteriousness prediction score should be used in the 

annotation. The software should fulfill certain requirements, such as, to be open source, 

to integrate diverse genome annotations and score the deleteriousness of 

insertion/deletions variants in the human genome, to be well documented and to present 

good results. During the process of choosing the deleteriousness prediction score, several 

tools were tested. Special attention was given to CADD, SIFT and PROVEAN.  

2.4.1 Combined Annotation–Dependent Depletion (CADD) 

CADD is an algorithm designed to provide a generalized approach to estimate 

the effect of genomic variants and predict the pathogenicity of human variants including 

single nucleotide variants (SNVs) and insertion/deletions (indels) variants in the human 

genome. It integrates diverse genome annotations and provides the deleteriousness of 

SNVs and indels in the human genome. Currently, it supported builds: GRCh37/hg19 and 

GRch38/hg38 (Kicher et al. 2012).  
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        CADD compares the annotation of fixed or almost fixed alleles with simulated 

variants in humans. It uses an empirical model of sequence evolution with CpG 

dinucleotide specific rates and mutation rates in a megabase window.  

The installation of CADD requires a computer running Linux or Mac OS X. 

Users run CADD via the script CADD.sh which technically only requires either a VCF or 

VCF.gz input file within 2MB file size as last argument. In general, only the first 5 

columns of a VCF file without header are needed for analysis, includes CHROM, ID, 

POS, REF, ALT. All other information will be ignored. Users can further specify the 

genome build via -g, request a fully annotated output (-a flag) and specify a separate 

output file via -o (else input file name.tsv.gz is used). i.e.: 

./CADD.sh test/input.vcf 

./CADD.sh -a -g GRCh37 -o output_inclAnno_GRCh37.tsv.gz test/input.vcf 

In the output files, two distinct forms of scores are provided, namely “raw” and 

“scaled”. Since the scale of the combined SVM score (" C-. ") is actually arbitrary due to 

the use of annotations, the CADD score ranges from 1 to 99 with a cutoff of 15 based on 

each variable relative to all possible 8.6 billion alternative sequences in human 

reconstruction. If the score is greater than 15, then it is predicted to be deleterious. 

CADD can provide quantitative priority to functional, harmful, and causal 

variants of disease across a wide range of functional categories, effect sizes, and genetic 

structures, and can give priority to causal variants in research and clinical settings. 

2.4.2 Sorting Intolerant From Tolerant (SIFT)  
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SIFT is a widely used prediction tool based on sequence homology and amino 

acid physical properties to predict whether an amino acid substitution affects protein 

function. Users can prioritize substitutions for further genomic studies. SIFT can also 

predict coding indels that cause insertion/deletion of amino acids.  

Since frameshifting indels and non-frameshifting indels are two different types 

of variations and reflect different biological function, the methods for the prediction of 

frameshifting indels and non-frameshifting indels are different. SIFT INDEL constructs a 

classifier based on decision tree algorithm to predict whether a non-frameshifting indel 

will affect the function of the gene. If it affects the function, then it is “gene-damaging”, 

if not then it is “neutral”. The SIFT indel classifier is trained to indel disease sets and 

neutral indel sets. In the training data, the disease-causing indels are from the Human 

Gene Mutation Database (HGMD) and the neutral indels are from comparative genomics 

and large sequencing projects such as Exome Sequencing Project (ESP). If a non-

frameshifting indel causes an early stop or code shift, the indel will be discarded from the 

training and testing set (Hu et al. 2013).  

SIFT INDEL accepts only space-based coordinates for insertion/deletion 

variants. To run SIFT via the script SIFT_exome_indels.pl which technically only space-

based coordinates as input and generates a result shows whether the coding indel will 

affect the gene function with a confidence score. Typically, SIFT prediction scores range 

from 0 to 1. The amino acid substitution is predicted damaging when the score is lower 

than 0.05, and it is tolerated if the score is higher than 0.05. However, for SIFT INDEL, 

the result only shows neutral or damaging with a confidence.  

2.4.3 Protein Variation Effect Analyzer (PROVEAN)   
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PROVEAN (Protein Variation Effect Analyzer) is an effective tool designed to 

predict the functional effects of protein sequence variations, including single or multiple 

amino acid substitutions, as well as non-frameshift insertions and deletions. PROVEAN 

is very useful for filtering sequence variants to identify functionally important 

nonsynonymous or indel variants (Choi et al. 2012). 

PROVEAN predicts the effects of non-frameshift indels by measuring changes 

in the similarity scores of the target protein to its homologous protein sequence. Human 

indels extracted from UniProt's "Human Polymorphism and Disease Mutation" dataset 

had a deletion accuracy of 82% and an insertion accuracy of 87%. 

PROVEAN used the delta alignment scale to measure the effect of amino acid 

variations on protein function. Delta alignment score is based not only on amino acid 

residues at the location of interest but also on the alignment quality of neighborhood 

flanking sequences. Due to the unique characteristics of scoring schemes, the new 

method can provide the functional prediction to assess the impact of changes in protein 

sequences in all categories except single amino acid substitution, including intra-frame 

indentation and multiple amino acid substitutions. The low delta value is interpreted as 

the harmful effect of amino acid variation on protein function, while high delta value is 

interpreted as the variation of neutral effect on protein function (Choi et al. 2012). 

Its main function is to predict protein sequences from any organism. In order to 

annotate a sequence, PROVEAN needs some minimal inputs: a genomic sequence, of any 

length, in FASTA format; and amino acid variations. Run PROVEAN through script.sh 

technology to generate proof scores. 
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PROVEAN scores range from -14 to 14 with a cutoff of -2.5, a lower score 

indicating a higher likelihood to be deleterious. If the score is lower than -2.5, then it is 

predicted to be deleterious.  

Since three prediction tools have three different input files, there is a need to 

convert user’s input file to different prediction software’s input file format. This 

procedure is finished by running Java program SIFT1, PROVEAN1 and PROVEAN2. 

Especially for PROVEAN, the input files are amino acid variations and protein sequence. 

Therefore, it is necessary to run ANNOVAR first to get the ENST ID and amino acid 

variants. Then running java program PROVEAN2 to get protein sequences, which is in 

FASTA format for PROVEAN input. 

2.4.3.1 ANNOVAR Annotation 

ANNOVAR is an efficient command-line driven software tool written by Kai 

Wang to functionally annotate single nucleotide variants (SNVs) and insertions/deletions 

detected from diverse genomes and filter mutations. ANNOVAR can analyze the genetic 

variation in various genomes by using the latest gene models. It can detect their 

functional consequences on genes, infer cellular genetic bands, report mutations in 

conserved regions or identify functional importance scores of mutations reported in the 

1000 Genome Project and dbSNP (Wang et al. 2010). There are three different annotation 

methods: gene-based annotation, region-based annotation, and filter-based annotation. 

Gene-based annotations can identify whether SNVs or CNVs cause changes in protein-

coding and affected amino acids, region-based annotations can identify variants in 

specific genome regions, filter-based annotations can identify variants recorded in 

specific databases, and other functions. 
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After running the ANNOVAR command, three files will be generated. 

Ex1.variant_function annotates the locations of variations as to genes. 

Ex1.exonic_variant_function detailed notes on the functions, types and amino acids 

changes of exons. Ex1.ann.log log file, which contains the running command line and 

running hint, the database file used. In ex1.exonic_variant_function file, we get ENST ID 

and amino acid variants. Then searching the sequences by using ENST ID to get the 

protein sequences. These steps can be down by running Java program PROVEAN1 and 

PROVEAN2.  
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3 New Module 

In order to study the indel annotations, it is necessary to annotate the regions of 

interest. For an easy and fast way to annotate the sequences stored in the Indelanno, an 

annotation module was created. The Indelanno pipeline is presented in Figure 2. 

 
 

 

Figure 2. Indelanno Pipeline 

      3.1 Input 

The input provided to the annotation pipeline is expected to be a VCF file. VCF 

is a text file format that contains meta-information lines, a header line and the data lines 

each containing information about a position in the genome. The header line includes 8 

mandatory columns, which are #CHROM, POS, ID, REF, ALT, QUAL, FILTER, and 

INFO. All data lines are tab-delimited. If there is a missing value, it will be specified with 

a dot (“.”). The CHROM presents chromosome that is an identifier from the reference 
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genome. POS means the reference position with the 1st base as position 1. REF and ALT 

present the reference and alternative alleles respectively.  

      3.2 Pipeline Realization 

To facilitate community access, we built an Amazon Machine Image (AMI) to 

run Indelanno in the cloud through Amazon Web Services (AWS). The user has access to 

the pipeline through an instance of the AMI. All depended software and programs, such 

as ANNOVAR, CADD, SIFT INDEL and PROVEAN, have already been installed in the 

AMI. Five java programs for this pipeline (Indelanno, Indelanno2, SIFT1, PROVEAN1, 

and PROVEAN2) are also in the AMI and ready to run. 

      3.3 Running Pipeline 

To run Indelanno, users only need to upload a VCF file. The annotation pipeline 

can be run with only two command line calls. The first call specifies the input/output files 

and score options and produce a shell script. The second call runs the shell script and 

produces the annotation results. Since Indelanno is written in Java, so most of its 

annotation modules can run easily across different platforms. 

The users choose which prediction software they want to use in the first 

command line. After running the first command, two output files are generated. One 

output file is the input.txt file including four columns, with header CHROM, POS, REF, 

and ALT. Another output file is scripts.sh shell script file, include prediction score 

software commands. Then the user runs the second command line to add the prediction 

score to the genome information table to get the last output file. 
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The first Command format is java Indelanno Customer’s input file (VCF file) 

input.txt scripts.sh Predictionscoretools 

The first Command format is  

Java Indelanno [Customer’s input file (VCF file)] input.txt script.sh 

Predictionscoretools. 

The input.txt is the name of the output variant list file including four columns 

(CHROM, POS, REF, and ALT) and scripts.sh is the name of the shell script to be run in 

the next step. Predictionscoretools are CADD, SIFT, PROVEAN or their combinations. 

For example, if the user wants to run CADD and PROVEAN with input file my.vcf, the 

command is java Indelanno my.vcf input1.txt scripts.sh CADDPROVEAN. The order of 

these words CADD, SIFT, PROVEAN in the last parameter does not matter.  

The second Command format is  

bash scripts.sh. 

         3.4 Outputs 

If the user runs one prediction score tool, the output file is input.txt0. If the user 

runs two prediction score tools, the output file is input.txt01. If the user runs two 

prediction score tools, the output file is input.txt02.  
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4 Case Study 

In this chapter, we report on the results of our case study by using the 

implemented annotation pipeline on the human genome.  

4.1 Pipeline Configuration 

The input file provided to the annotation pipeline was inputsample.vcf (Figure 

3), which consisted of the human genome information, including frameshift 

deletion/insertion and non-frameshift deletion/insertion, in VCF format. Since the user 

can choose three deleterious prediction scores in the first command line, in this case, we 

chose CADD, SIFT, and PROVEAN. All steps were accomplished by two single 

command line calls. The first command line was java Indelanno CosmicCodingMuts.vcf 

input.txt script.sh CADDSIFTPROVEAN. The second command line is bash script.sh.  

4.2 Results 

After running the first command, there are two output files, input.txt, and 

scripts.sh. They are shown in Table 1 and Figure 4 respectively. And there are multiple 

command lines in scripts.sh for the further analysis. First, since the ANNOVAR database 

have already been downloaded and so it runs ANNOVAR annotation to get three output 

files (Ex1.variant_function, Ex1.exonic_variant_function and Ex1.ann.log log file). From 

ex1.exonic_variant_function file, we got ENST IDs and amino acid variants lists from the 

third column. Running Java program PROVEAN1 will search protein sequences by using 

ENST IDs and generate a Proveanoutput.sh shell script, which includes the command to 

run PROVEAN, the Proveanoutput.sh is presented in Figure 5. Since PROVEAN output 
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files only include the amino acid variant names and the PROVEAN scores. Thus, there is 

a need to connect the PROVEAN scores and VCF file table by running Java program 

PROVEAN2. Proveanresult.txt was then generated including five columns shows the 

chromosome, position, ref, alt, and the PROVEAN scores. Next, run Java Program 

Indelanno2 to add the PROVEAN scores to the last output table and get input.txt0 file 

(Table 2). 

Running CADD by using CADD.sh command, and then run Java program 

Indelanno2 to add the CADD scores to the last output table and get input.txt01 (Table 3). 

 
 

Figure 3. inputsample.vcf 

Table 1. input.txt 

#CHROM POS REF ALT 

X 2828729 TG T 

X 36162684 C CTG 

X 114425181 A AGAGGCCGCTCGCCCAACGCCCACAGCG 

X 119070327 CGAT C 
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Figure 4. Script.sh 

 

 
 

Figure 5. Proveanoutput.sh 

 

Table 2. input.txt0 

#CHROM POS REF ALT PROVEAN 

X 2828729 TG T N/A 

X 36162684 C CTG N/A 

X 114425181 A AGAGGCCGCTCGCCCAACGCCCACAGCG 3.427 

X 119070327 CGAT C -1.629 
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Table 3. input.txt01 

#CHROM POS REF ALT PROVEAN CADD 

X 2828729 TG T N/A 6.200 

X 36162684 C CTG N/A 1.943 

X 114425181 A AGAGGCCGCTCGCCCAACGCCCACAGCG 3.427 1 

X 119070327 CGAT C -1.629 0.625 

 

For SIFT, since SIFT only accepts space-based coordinates for insertion/deletion 

variants. It is necessary to convert the VCF file to SIFT input file format by running Java 

program SIFT1 and get siftinout.txt, which was presented in Table 4. After running SIFT 

Indel predictions, run Java Program Indelanno2 to add the SIFT result to the last output 

table and get input.txt012 (Table 5), which is the last output table showed three indel 

prediction results. 

 

Table 4. siftinput.txt 

X,2828729,2828730,1,G/ 

X,36162684,36162684,1,TG 

X,114425181,114425181,1,GAGGCCGCTCGCCCAACGCCCACAGCG 

X,119070327,119070330,1,GAT/ 
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Table 5. input.txt012 

#CHROM POS REL ALT PROVEAN CADD SIFT SIFT 

Confidence 

Score 

X 2828729 TG T N/A 6.200 damaging 0.858 

X 36162684 C CTG N/A 1.943 neutral 0.918 

X 114425181 A AGAGGCCGCTCGCCCAACGCCCACAGCG 3.427 1 neutral 0.696 

X 119070327 CGAT C -1.629 0.625 neutral 0.961 
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5 Conclusion and Future Work 

Currently, researchers already have many different algorithms to do the 

deleterious prediction, however, those methods may not have a consensus. Even when 

they are used to analyze the same sequence data, different prediction tools may get 

different results and their relative advantages in practical application are still unclear. 

Therefore, collecting prediction scores from multiple algorithms can contribute to more 

accurate SNVs and indels functional prediction. The goal of this thesis is to extend the 

functional annotation database, dbNSFP, which have already supported SNV annotations. 

In this project, we have written five Java program codes and added three deleterious 

prediction scores (CADD, SIFT, and PROVEAN) to indel annotation and integrated them 

to an automatic annotation pipeline called Indelanno. We built an Amazon Machine 

Image (AMI) to run Indelanno in the cloud through Amazon Web Services (AWS). Users 

can upload a VCF file and run Indelanno with two command line calls. Since Indelanno 

can search several annotation resources in batch and produce an integrated report in 

return, it will be a useful tool for the researcher of sequencing-based studies. 
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