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Abstract

Background: The location and modular structure of eukaryotic protein-coding genes in genomic sequences can be
automatically predicted by gene annotation algorithms. These predictions are often used for comparative studies
on gene structure, gene repertoires, and genome evolution. However, automatic annotation algorithms do not yet
correctly identify all genes within a genome, and manual annotation is often necessary to obtain accurate gene
models and gene sets. As manual annotation is time-consuming, only a fraction of the gene models in a genome is
typically manually annotated, and this fraction often differs between species. To assess the impact of manual
annotation efforts on genome-wide analyses of gene structural properties, we compared the structural properties of
protein-coding genes in seven diverse insect species sequenced by the i5k initiative.

Results: Our results show that the subset of genes chosen for manual annotation by a research community
(3.5–7% of gene models) may have structural properties (e.g., lengths and exon counts) that are not necessarily
representative for a species’ gene set as a whole. Nonetheless, the structural properties of automatically generated
gene models are only altered marginally (if at all) through manual annotation. Major correlative trends, for example
a negative correlation between genome size and exonic proportion, can be inferred from either the automatically
predicted or manually annotated gene models alike. Vice versa, some previously reported trends did not appear in
either the automatic or manually annotated gene sets, pointing towards insect-specific gene structural peculiarities.

Conclusions: In our analysis of gene structural properties, automatically predicted gene models proved to be
sufficiently reliable to recover the same gene-repertoire-wide correlative trends that we found when focusing on
manually annotated gene models only. We acknowledge that analyses on the individual gene level clearly benefit from
manual curation. However, as genome sequencing and annotation projects often differ in the extent of their manual
annotation and curation efforts, our results indicate that comparative studies analyzing gene structural properties in
these genomes can nonetheless be justifiable and informative.
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Background
Eukaryotic protein-coding gene structure is character-
ized by a modular organization of introns and exons (the
latter being composed of coding sequence [CDS] and/or
untranslated regions [UTRs]; [1]), which are commonly
identified (with the notable exception of UTRs) in gen-
ome sequences using automated in silico gene annota-
tion procedures [2]. The configuration of exons and
introns — GC content, length, and number — varies
among species, as well as by gene type. A major goal in
the field of comparative genomics is to elucidate the fac-
tors that explain the variance of gene structures within
and between species. It has been hypothesized, for ex-
ample, that differential GC content of exons and introns
within regions of low GC content in the genomes of
mammals constitutes a marker for exon recognition
during splicing and is thus a factor that stabilizes exon-
intron boundaries [3, 4]. As further examples, hypoth-
eses on the evolution of gene structure organization
state that introns are generated by the insertion of non-
autonomous DNA-transposons [5] or, in birds, that
selection on intron size is driven by the evolution of
powered flight [6]. Such hypotheses and observations are
based on the structural description of protein-coding
gene repertoires. These repertoires are typically derived
from automated annotations, with only a fraction of the
gene models having been refined by manual annotation
and curation.
Since the 1980s, procedures for automated gene struc-

ture prediction have been developed and continuously im-
proved (reviewed by, for example, [7–9]), but they are still
not error free [10–12]. The most commonly encountered
errors are false positive and false negative identifications
of protein-coding nucleotide sequences [13, 14], non-
coding nucleotide sequence retention in coding exons
[15], wrong exon and gene boundaries [14, 16], and frag-
mented or merged gene models [15, 17, 18]. With increas-
ing size and structural complexity (i.e., increasing exon
count) of genes, annotation errors are increasingly likely
to occur and thus impair the accuracy of automated
annotations [16, 19, 20]. Furthermore, gene density
can influence annotation results [21]. For example,
during the automated annotation of the large, ‘gene-
sparse’ genome of the bug Oncopeltus fasciatus, many
genes were wrongly split across multiple models (“the
number of genes resulting from a merged CDS action
is far greater than the number of gene models result-
ing from split CDS actions” [19], Supplement p. 27,
and references therein]). In contrast, the ‘gene-dense’
genome of the centipede Strigamia maritima showed
“in a significant number of cases, [that] the auto-
mated annotation [...] fused adjacent genes, largely on
the basis of confounding RNASeq [sic] evidence” [22],
Supplement p. 3].

The severity of the aforementioned annotation errors
is influenced by assembly quality [2, 20, 23], which in
turn is influenced by genome size and repeat content
[24, 25]. The results of automated annotation addition-
ally depend on whether or not extrinsic evidence (i.e.,
alignments of homologous or orthologous sequences
from other species) is used for gene sequence delinea-
tion. Algorithms that incorporate extrinsic evidence will
likely more reliably predict genes with conserved coding
sequence [26]. However, genes that do not resemble the
provided extrinsic evidence — being, for example,
taxon-specific — could be missed during automatic an-
notation [27]. Thus, annotation results depend on the
availability and quality of evidence to support the anno-
tation procedure [28, 29]. Despite these caveats, advan-
tages of automated gene annotation include the speed
and ease of application to (multiple) genome assemblies
as well as reproducibility due to the application of
explicit algorithms. With an expected average of 21,500
protein-coding genes in a eukaryotic genome [30], the
automated approach is the method of choice to compre-
hensively annotate genes in a given genome, despite the
risk of erroneous models. In comparative analyses,
erroneous models have been held responsible for (i) false
positive and false negative detection of clade-specific
genes [31, 32], (ii) inference of incorrect gene copy num-
bers [13], (iii) biased correlations between biological
traits [32], and (iv) misleading functional annotations
[33]. Errors in the annotation of protein-coding genes
have been shown to mislead the analysis of gene family
evolution [13], protein innovation rates [31], and the
interpretation of gene function [33].
Automatically generated gene models can be reviewed

and corrected individually in a subsequent process
termed manual annotation or manual curation. Al-
though often used interchangeably, here we use “manual
annotation” to refer to adding or correcting gene model
structures, and “manual curation” to imply additionally
associating gene models with names, symbols, descrip-
tions, or putative functions through examining experi-
mental data and by considering information from the
literature. Note that there are alternative understandings
of these terms (e.g., within the i5k community [37]), with
“annotation” considered the de novo creation of a model
and “curation” encompassing review and editing of an
existing model, considering all available structural and
functional information. Annotation and curation efforts
have proven to be most rewarding. For example, manual
annotation helped to annotate nested and overlapping
genes in the fruit fly [10], doubled the number of identi-
fied ionotropic receptors in two mosquitoes [34], and led
to the discovery of elevated non-canonical splice site usage
in a copepod [35]. To some extent, these examples repre-
sent ‘special cases’ that required manual annotation: the
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failure of the automated annotation strategies could be
explained by gene structural complexity, high levels of
gene sequence divergence, or rare deviations from canon-
ical gene features. Beyond such cases, and beyond individ-
ual genes, it remains unclear whether manual annotation
impacts genome-wide distributions of gene model struc-
tural properties, and if so, how and how much? If manual
annotation does have a substantial effect, then comparing
genome-wide trends in gene structural properties among
different species or lineages would need to control for
these effects. On the other hand, if the genome-wide
effects of manual annotation are negligible, then compara-
tive analyses can confidently employ automatically
inferred gene models to characterize true biological/evolu-
tionary differences in gene structural properties. Our thor-
ough search for published assessments of the extent to
which manual annotation affects genome-wide trends of
gene structural properties in comparatives analyses
revealed only one highly relevant but outdated article [10].
Results of such studies are, however, likely of broader
interest, given that gene structural properties of both auto-
matically inferred and manually annotated gene models
are frequently compared across species.
To address this issue, here we compare automatically

inferred and manually annotated gene models with re-
spect to five structural properties, namely transcript,
protein, intron, and exon lengths as well as exon count.
Our data for these comparisons comprises the protein-
coding gene sets of seven insect species that represent
taxonomically distant clades (last common ancestor ca.
370 million years ago [36]) and whose genomes differ in
size and assembly quality from each other (Table 1,
Additional file 1: Table ST1; Anoplophora glabripennis
and Leptinotarsa decemlineata [Coleoptera], Cimex
lectularius and Oncopeltus fasciatus [Hemiptera], Atha-
lia rosae and Orussus abietinus [Hymenoptera], and
Frankliniella occidentalis [Thysanoptera]). These ge-
nomes were processed in the context of the i5K pilot
project for insect and arthropod genome sequencing
[37] with an identical set of methodologies [39] (i.e., se-
quenced, assembled, and protein-coding genes annotated
with the MAKER2 pipeline [38]). Additionally, substan-
tial subsets of the automatically annotated gene models,
hereafter referred to as ‘predecessors’, were manually an-
notated in all seven species (3.5–6.9% of the original gene
models, > 650 models per species, Table 1). Manual anno-
tation also yielded de novo gene models without predeces-
sors (0.4–2.2% of the OGS, 30–381 models, Table 1).
Using the above data, we assessed to what extent the

previously mentioned five gene structural properties
changed due to manual annotation (relative to the auto-
matically inferred predecessor models). We furthermore
studied whether previously reported correlative trends of
structural features are detectable when analyzing

automatic predictions and manual annotations. Specific-
ally, we tested whether genome size correlates negatively
with (i) the coding proportion of the genome (i.e., here
total length of all exons relative to genome size; see
Methods) [30], and whether genome size correlated
positively with (ii) the intronic proportion of the genome
[20, 30] and (iii) gene count [30]. We also examined
whether we are able to confirm a negative correlation
between exon/intron count per gene and (iv) exon/in-
tron length and [40] (v) the GC content of the exons/in-
trons [40].

Results
Structural properties of manually annotated gene models
and their predecessors
We assessed five structural properties of protein-coding
genes when comparing automatically generated and
manually annotated gene models: (i) unspliced transcript
(pre-mRNA) length, (ii) protein length, (iii) exon count
per transcript, as well as (iv) median exon and (v) me-
dian intron length per transcript. These properties were
analyzed in two gene sets: (1) the full set of automatic-
ally generated gene models (AUTO) and (2) the full
official gene set (OGS; non-redundant merge of gene
models that were manually annotated or added and
automatically generated models). We additionally stud-
ied these gene structural properties in three subsets of
gene models: (3) all manually annotated gene models
(MAN-SUB), (4) all automatically generated predeces-
sors of the manually annotated gene models (AUTO-
SUB), and (5) all manually added de novo gene models
(MAN-ADD) (counts of gene models per set and species
are given in Table 1).
We first asked how well the subsets reflect the

structural properties of the full sets. Thus, we com-
pared the gene set AUTO-SUB with the gene set
AUTO and the gene set MAN-SUB with the gene set
OGS (Additional file 2: Figure SF1). Most distribu-
tions and central tendencies of structural properties
differ between subsets and full sets (p adj. ≤ 0.05 in
57.1% of AUTO vs. AUTO-SUB comparisons and in
71.4% of OGS vs. MAN-SUB comparisons with
Bonferroni-corrected two-sample Kolmogorov-Smirnov
[KS-test] and/or two-sample Wilcoxon [W-test] tests,
Additional file 1: Table ST3). Furthermore, we employed a
jackknife resampling approach to establish confidence in-
tervals of correlation coefficients to assess how well trends
observed in our subsets represent those found in the full
sets across a total of 28 comparisons (seven species, four
correlations: median exon GC content vs. exon count, me-
dian exon length vs. exon count, median intron GC con-
tent vs. intron count, and median intron length vs. intron
count). We found that the correlation coefficient of the
AUTO-SUB subset lay outside of the interval established
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by resampling from the AUTO set in 20 of the 28 ana-
lyzed correlations. Likewise, we found that the correlation
coefficient of the MAN-SUB subset lay outside the inter-
val established by resampling from the OGS set in 18 of
the 28 analyzed correlations (Additional file 2: Figure SF5,
Additional File 1: Table ST4). These deviations can be
interpreted as instances in which the subset does not re-
flect the respective full set regarding a certain combination
of parameters. For example, in A. rosae, the interval estab-
lished for the correlation coefficient of exon count com-
pared to GC content drawn from the OGS is r = − 0.04–
0.18, with the value of the OGS itself meeting the median
(r = 0.06), while the value of the MAN-SUB set (r = − 0.15)
is lower than the interval minimum (i.e., r = − 0.04)
(Additional file 1: Table ST4). This suggests that
models chosen for manual annotation are not in
themselves a representative subset of all protein-coding
gene models (models are not selected randomly, as re-
searchers usually focus on particular gene families of inter-
est, discussed below). Nonetheless, our primary concern

was whether the act of manual annotation appreciably
alters the structural properties of the chosen models.
In fact, in comparing the subset-wide distributions of

structural properties of AUTO-SUB and MAN-SUB with
each other (comprising 3.5–6.9% of AUTO/OGS in each
species), we find significant differences in the analyzed
gene structural parameters for only four parameters in
three species (out of 35 assessments): (i) A. glabripennis:
protein length (KS-test: p adj. = 0.007), (ii) A. rosae: tran-
script length (KS-test: p adj. = 0.031, W-test: p adj. =
0.008), and (iii) O. fasciatus: protein length (KS-test: p adj.
= 0.011, W-test: p adj. = 0.003) and transcript length (KS-
test: p adj. = 0.021) (Fig. 1; Additional file 1: Table ST3).
Complementing these statistical tests, when regarding

the subset-wide medians of AUTO-SUB and MAN-SUB
(Fig. 2a), we distinguish three species groups by assem-
bly size and overall effect direction in terms of how
median transcript length and median protein length are
affected by manual annotation (Fig. 2a, Table 1;
Additional file 1: Table ST3). These are: (i) two species

Table 1 Summary statistics of the genomes, automatically annotated and manually annotated gene sets, and gene model
properties for the seven analyzed species

Holometabolous Hemimetabolous

Coleoptera Hymenoptera Hemiptera Thysanoptera

Anoplohora
glabripennis

Leptinotarsa
decemlineata

Athalia
rosae

Orussus
abietinus

Cimex
lectularius

Oncopeltus
fasciatus

Frankliniella
occidentalis

Assembly size [Mbp] (%
determined nucleotides)

707.7 (85.1) 1170.2 (58.0) 163.8
(95.7)

201.2
(92.7)

650.5
(79.0)

1098.7
(70.4)

415.8 (63.4)

AUTO 22,253 24,732 11,956 10,966 14,085 19,587 18,021

OGS 22,035 24,671 11,894 10,959 13,953 19,615 17,553

AUTO- 749 972 805 659 795 1013 1118

SUB

AUTO-SUB % of AUTO 3.4 3.9 6.7 6.0 5.6 5.2 6.2

MAN-SUB 770 933 825 670 778 945 1127

MAN-SUB % of OGS 3.5 3.8 6.9 6.1 5.6 4.8 6.4

MAN-ADD 216 98 50 30 221 161 381

MAN-ADD % of OGS 1.0 0.4 0.4 0.3 1.6 0.8 2.2

Median transcript
length [bp]

AUTO-SUB 6183 8562.5 4340 5200 4362 9324 5001.5

MAN-SUB 5789.5 9280 3208 3996 4360 11,244 4064

Median protein length
[aa]

AUTO-SUB 358 255 445 430 358 257 419.5

MAN-SUB 389 300 423 419 372.5 320 419

Median exon count
p.t.

AUTO-SUB 4 4 6 5 5 4 6

MAN-SUB 4 4 5 5.5 5 4 6

Median median exon
length p.t. [bp]

AUTO-SUB 1210 984 2220 2151 1200 1086 1807.5

MAN-SUB 1345.5 1127 1786 1828 1194.5 1347 1755

Median median intron
length p.t. [bp]

AUTO-SUB 354.75 1192 107.5 1278.25 75 126.75 108

MAN-SUB 359 1363 100.5 1434 74 123 100.75

Summary statistics on assemblies and manual annotation actions for each species and selected set-wide property values of MAN-SUB and AUTO-SUB
aa amino acids, bp base pairs, det. Nucs. determined nucleotides (i.e., not N), Mbp mega base pairs, OGS official gene set, p.t.: per transcript
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with large genomes and increased transcript and protein
length after manual annotation (i.e., L. decemlineata and
O. fasciatus, with genome sizes of ca. 1.1 Gbp), (ii) three
species with small genomes and decreasing tendencies
(the hymenopteran and thysanopteran species, with

genomes ranging 164–416 Mbp), and (iii) two species
with intermediate-sized genomes and mixed tendencies
of minor transcript reduction yet slightly increased pro-
tein lengths after manual annotation (A. glabripennis,
707.7 Mbp; C. lectularius, 650.5 Mbp). To some extent,

Fig. 1 Comparison of property distributions: AUTO-SUB vs. MAN-SUB. Distributions (violin plots) of five gene structure properties per genome
(semi-logarithmic) comparing AUTO-SUB (top, red) and MAN-SUB (bottom, blue): unspliced transcript length [bp], protein length [aa], exon count
p.t., median exon length p.t. [bp], median intron length p.t. [bp] in facet columns. Additionally, box plots indicate the quartiles of the data
distributions; lower and upper hinges correspond to the first and third quartiles. Samples sizes are given (n, AUTO-SUB: red, MAN-SUB: blue).
Values are derived from the longest predicted transcript per gene. Adjusted p-values of Bonferroni-corrected two-sample Kolmogorov-Smirnov
(KS) tests (black) and two-sample Wilcoxon (W) tests (gray) are indicated for each combination of AUTO-SUB vs. MAN-SUB (per species and
property) and displayed with gray background if one of these is significant. ns: not significant. Facet rows contain seven species (Anoplophora
glabripennis [Coleoptera], Athalia rosae [Hymenoptera], Cimex lectularius [Hemiptera], Frankliniella occidentalis [Thysanoptera], Leptinotarsa
decemlineata [Coleoptera], Oncopeltus fasciatus [Hemiptera], Orussus abietinus [Hymenoptera]). Taxonomic orders are color-coded, color codes
represent the insect orders Coleoptera (yellow), Hymenoptera (orange), Hemiptera (burgundy), and Thysanoptera (brown). The left side tree
illustrates the order-level phylogenetic relationships (after [36])

Wilbrandt et al. BMC Genomics          (2019) 20:753 Page 5 of 12



these tendencies with respect to genome size corrobor-
ate the reported species-specific assessments noted
above on the effect of gene density on automatic model
correctness [19, 22].
Lastly, we evaluate the de novo models in the minor

MAN-ADD subsets, which contain 30–381 gene models

per species. Strikingly, more than 80% of the gene struc-
ture property distributions of MAN-ADD gene models
differ significantly (KS-tests and/or W-tests: p adj. ≤ 0.05)
from the property distributions of the gene models in the
gene sets AUTO, AUTO-SUB, OGS, and MAN-SUB
(Additional file 1: Table ST3, Additional file 2: Figures SF1

Fig. 2 Comparison of AUTO-SUB and MAN-SUB subsets regarding correlations of... a) ... structural property medians (in rows from top to bottom):
median unspliced transcript length [bp], median protein length [aa], median exon count p.t., median median exon length p.t. [bp], and median
median intron length p.t. [bp] of AUTO-SUB (circles) and MAN-SUB (triangles) (semi-logarithmic). Notably, manual annotation of genes in two
genomes with the largest assemblies (L. decemlineata, 1170 Mbp and O. fasciatus, 1099 Mbp) led to an increase (from AUTO-SUB to MAN-SUB,
W-test) of the median transcript length (L. decemlineata: + 717.5 bp, p adj. = 1; O. fasciatus: + 1920 bp, p adj. = 0.07) and of the median protein
length (L. decemlineata: + 45 aa, p adj. = 0.28; O. fasciatus: + 63 aa, p adj. = 0.003). In the three species with the smallest genome sizes in our
sample (A. rosae, 163.8 Mbp; O. abietinus, 201.2 Mbp; F. occidentalis, 415.8 Mbp), manual annotation resulted in slight decreases of median
transcript length (A. rosae: − 1132 bp, p adj. = 0.008; O. abietinus: − 1204 bp, p adj. = 1; F. occidentalis: − 937.5 bp, p adj. = 1) and median protein
length (A. rosae: − 21 aa, p adj. = 1; O. abietinus: − 11 aa, p adj. = 1; F. occidentalis: − 0.5 aa, p adj. = 1). The two species with intermediate
assembly sizes (A. glabripennis, 707.7 Mbp; C. lectularius, 650.5 Mbp), manual annotation resulted in a negligible decrease in median transcript
length (A. glabripennis: − 393.5, p adj. = 1; C. lectularius: − 2 bp, p adj. = 1) and a slight increase in median protein length (A. glabripennis: + 31,
p adj. = 1; C. lectularius: + 14.5 aa, p adj. = 1). b) … summary metrics (in rows from top to bottom): coding proportion [%] (i.e., the summed
lengths of all exonic sequences in the annotation in relation to genome size), intronic proportion [%], total gene count, total exon count, and
assembly GC content without ambiguity [%] of AUTO-SUB (circles) and MAN-SUB (triangles) (semi-logarithmic). Values are derived from the
longest predicted transcript per gene. Line types indicate the smoothed conditional mean for AUTO-SUB (solid) and MAN-SUB (dashed).
aa: amino acids; bp: base pairs; Mbp: mega base pairs; p.t.: per transcript; W-test: Bonferroni-corrected two-sample Wilcoxon test

Wilbrandt et al. BMC Genomics          (2019) 20:753 Page 6 of 12



and SF3). Additionally, the correlation coefficient of the
MAN-ADD subset lay outside of the interval established
by resampling from the OGS set in 22 of the 28 analyzed
correlations (Additional file 1: Table ST4, Additional file
2: Figure SF4). To further explore these differences, we ex-
emplarily analyzed MAN-ADD of O. fasciatus, where
70.2% of the subset’s gene models specifically code for cu-
ticle proteins and chemoreceptors (primarily gustatory re-
ceptors). Thus, property distributions of MAN-ADD are
mainly governed by the specific properties of these gene
families; however, we do not go into detail here due to
small sample sizes (Additional file 3: Note S2, Additional
file 1: Table ST7, Additional file 2: Figure SF5).

Sets of predecessors and manually annotated gene
models agree when analyzing reported correlations
Having established that manual annotation does not
greatly affect gene structural properties in themselves,
we next assessed how the AUTO-SUB and MAN-SUB
gene subsets compare for correlations of genome size
and GC content with various structural properties. In
only 2 of 28 comparisons (seven species and four prop-
erty combinations, as above) did we observe a directional
change in correlation coefficients from AUTO-SUB to
MAN-SUB, with absolute differences of 0.05 and 0.08,
respectively (Additional file 1: Table ST4b). Thus, we
find almost no differences between correlational trends
when comparing structural parameters of genes in the
gene subset AUTO-SUB (Fig. 3, left columns) with those
of genes in the subset MAN-SUB (Fig. 3, right columns).
Our datasets also provide the opportunity to assess

insect species for previously reported correlations of
genome size with coding proportion, gene count, and in-
tronic proportion, as described by [20, 30]. Note that
due to the low sample size of seven species (a necessary
constraint for ensuring common methodology across
species and a reasonably high proportion of manually
annotated gene models), we subsequently present only
descriptive statistics when assessing correlative trends.
Our results are in agreement with the finding [30] that

the coding proportion of the genomes is negatively
correlated with the genome size and that the total gene
count increases with genome size (Fig. 2b, Table 1). In
contrast, reports for other correlations [20, 30] are not
borne out by our insect data. Specifically, we see no or only
a weakly negative correlation between the intronic propor-
tion of a genome and genome size (Fig. 2b, Table 1). We
found these trends irrespective of whether we compared
the gene set AUTO with the gene set OGS or whether we
compare the gene subset MAN-SUB with the gene subset
AUTO-SUB (Additional file 2: Figure SF2).
In line with previous results [40], we do find a negative

correlation between exon/intron count and median GC
content of exons/introns in 21 of 28 comparisons (the

seven species and four gene sets: AUTO, AUTO-SUB,
OGS, and MAN-SUB; Additional file 1: Table ST4b).
Notably, complex gene models (> 50 exons) are less vari-
able in the GC content of their introns (ca. 20–45%)
than less complex models (ca. 10–60%, Fig. 3a, c); this
relationship does not seem to be influenced by genomic
transcript length (data not shown). F. occidentalis con-
spicuously has two classes of complex gene models with
low (as in the other species, ca. 20–40%) and high (ca.
0–60%) GC content variability in introns (Fig. 3c). Gene
models with more than ten exons appear to be restricted
to a certain median exon length class (ca 190 bp); this
coincides with a negative correlation of exon count and
median exon length (28 of 28 comparisons; Fig. 3b,
Additional file 1: Table ST4b), as was also reported by
[19, 40]. In contrast to the report by Zhu et al. [40], we
observe mixed trends (among species, not among sets
except within A. glabripennis) regarding the correlation
of intron count and median intron length (Fig. 3d): some
species exhibit a positive correlation (A. rosae, L. decem-
lineata, O. fasciatus) while others show a negative
correlation (C. lectularius, F. occidentalis, O. abietinus)
in the four (sub)sets (Additional file 1: Table ST4). Thus,
while certain correlations among genome and gene
structural properties appear to also apply in insects,
other correlations vary across taxa.

Discussion
Limitations of the present study
The quality of automatic and manual annotations is
strongly impacted by genome assembly quality and by
the availability of extrinsic evidence such as orthologous
sequences from closely related species, and RNA-seq
data [6, 20]. The impact of these factors on the correct-
ness of gene models is beyond the scope of our study.
Assessing the biological correctness of gene models
remains difficult without a validated benchmark set
[16, 41] or appropriate quality metrics. The BUSCO
quality metric [42] indeed makes a distinction
between complete and partial orthologs, but this ap-
proach is limited to the subset of highly conserved
protein-coding genes. However, we ensured compar-
ability between genome assemblies and annotations by
a conservative selection of species. The genomes and
gene sets of the selected species have been inferred
with the same wet lab and bioinformatic approaches
[39]. Extending the taxonomic sampling at the time
of data collection would have resulted in jeopardizing
this methodological consistency and comparability.
Thus, we analyzed the largest possible set of i5K spe-
cies in terms of availability of gene sets before and
after manual annotation at the time of data collection.
All annotations and the derived statistics are based
on de novo assemblies resulting from short-read
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sequencing paired and mate pair libraries, which are in-
herently fragmented. It remains to be tested whether the
same conclusions can be drawn regarding the suitability of
automatically inferred genes sets for comparing gene
structural parameters when analyzing the gene sets of ge-
nomes assembled to higher quality (as reviewed by [20]).
Similarly, our study based on 3.5–7% of protein-coding
genes being manually annotated represents an assumed
extrapolation whose conclusions could change once all
genes would be manually annotated.

Repertoire-wide gene structure assessments can rely on
automatically predicted gene models
The finding that the analyzed subsets (i.e., AUTO-SUB
and MAN-SUB) do not fully reflect the property distri-
butions of the respective full sets (AUTO, OGS) may

give rise to concern whether generalizations are justified.
However, we did not find a bias in either subset towards
a certain combination of structural properties. Thus, at
least the diversity of gene structures of the full sets
appears to be reflected in the subsets.
We find that the distributions, gene set-wide medians,

and correlative trends of gene structure properties of
AUTO-SUB are very similar to that of MAN-SUB
(Figs. 1, 2 and 3). The analyses comparing AUTO-SUB
and MAN-SUB with the respective full sets were con-
ducted excluding MAN-ADD models, since these are
added by curators in the absence of an automatically
predicted predecessor. However, the hypothesis that
automatically predicted gene models suffice as the basis
for comparative analyses of large-scale gene structural
properties can only be substantiated if the fraction of

Fig. 3 Selected gene structure property correlations in all sets. a) Exon GC vs. count: Logarithmic display of median exon GC content [%] vs. exon
count per transcript. b) Exon length vs. count: Semi-logarithmic display of median exon length [bp] vs. exon count per transcript. c) Intron GC
vs. count Logarithmic display of median intron GC content [%] vs. intron count per transcript per transcript. d) Intron length vs. count:
Semi-logarithmic display of median intron length [bp] vs. intron count per transcript. Facet columns show the two automatically generated sets
(AUTO & AUTO-SUB; left) and three OGS-based sets (OGS & MAN-SUB & MAN-ADD; right). Values are given for the longest transcript per gene.
Spearman’s rank correlation coefficients (r) of each property combination are given above each pair of plots (AUTO: orange, AUTO-SUB: red,
MAN-ADD: dark green, MAN-SUB: dark blue, OGS: light blue). Facet rows show the seven species (Anoplophora glabripennis [Coleoptera], Athalia
rosae [Hymenoptera], Frankliniella occidentalis [Thysanoptera], Leptinotarsa decemlineata [Coleoptera], Oncopeltus fasciatus [Hemiptera], Orussus
abietinus [Hymenoptera]) with color coding according to Fig. 1
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missing models is comparatively small. In each of seven
species analyzed by us, 2.1% or fewer of the OGS gene
models had been added manually (Table 1). However, de
novo genes models make up a larger fraction of genes han-
dled by curators (4.3–25.3%; i.e., MAN-ADD as fraction of
MAN-SUB +MAN-ADD; Additional file 1: Table ST2).
MAN-ADD structural properties differ strongly from the
remaining four (sub)sets of gene models. These differences
likely reflect the highly biased selection of gene classes for
manual annotation based on the research interests of the
curators, which we address here for cuticle structural
proteins and chemoreceptors as exemplar classes. In
particular, chemoreceptor genes are notoriously difficult to
automatically predict (rapidly evolving genes with low
expression levels of transcripts, (e.g., [19]). Thus, they are
frequently added de novo, as found in the annotation of
the O. fasciatus genome [19] (Additional file 3: Note S2),
and gene structural property distributions may be
strongly governed by distinct gene families (Additional
file 2: Figure SF5). Although de novo gene models ap-
pear to be heavily biased in terms of their structure
(Additional file 2: Figures SF1 and SF3), we expect that
overall trends and distributions are only negligibly
affected by them due to their small overall count.

Predecessors and manually annotated gene models agree
on correlative trends of gene structure
Given the general agreement of gene structure proper-
ties between AUTO-SUB and MAN-SUB gene models,
we tested whether or not we also find an agreement be-
tween automatic and manual annotation when investi-
gating large-scale trends. Specifically, we investigated
whether we could confirm previously reported gene
structure trends in relation to genome size.
Our results are in line with previous reports [20, 30] re-

garding the negative correlation between coding propor-
tion and genome size (Fig. 2b). This result is in line with
the hypothesis that genome size is mainly driven by repeat
content rather than by gene count [24]. On the other
hand, we do not recover the previously reported [20, 30]
positive correlation between intronic proportion and gen-
ome size. Since previous studies analyzed data from four
[30] and six [20] phyla of Eukaryota with insects being
represented by only few species, we might observe an
insect-specific pattern. However, further studies are neces-
sary to verify that this trend is not caused by small sample
size or genome quality. If a different pattern of intron evo-
lution can be corroborated in insects, assumptions on gen-
eral genome evolution would have to be re-evaluated. It
was indeed recently shown that there is evidence for a
positive correlation of genome size and intron count in in-
sects [19] and for highly dynamic intron evolution in a
phytoseiid predatory mite [43]. On the other hand, short
read sequencing technologies for genome assembly may

limit sensitivity for detecting this correlation, as long in-
trons may fail to be fully assembled.
A negative correlation of exon count and exon length,

as consistently found in our data (Fig. 3b), has been re-
ported not only in the genomes of human and rice [40],
but also in that of insects [19]. Furthermore, we find a
negative correlation of exon/intron count and respective
GC content as well as an apparent constraint of complex
gene models to a medium GC content, especially in in-
trons (Fig. 3a, c), as previously reported [40]. However, we
recover the reported [40] negative correlation of intron
count and length only in three (O. abietinus, C. lectular-
ius, F. occidentalis) of the seven species in all (sub)sets,
while in A. glabripennis we see the trend only in the full
sets (AUTO and OGS) (Fig. 3d, Additional file 2: Figure
SF3). These results could point towards insect-specific
and intron-specific peculiarities in the evolution of gene
structure [19, 43]. The vertebrate-biased taxon sample
used by Zhu et al. [40] (nine vertebrates, two plants, one
worm, and one insect) does not allow one to draw conclu-
sions with respect to insects. While an amniote-specific
positive correlation of intron and genome size has been
shown and discussed in relation to avian powered flight
[6], it has yet to be determined whether introns evolve in
a manner specific to insects and whether it is affected by
other constraints than in amniotes.

Conclusions
Focusing on a diverse sample of insect genomes, we
analyzed whether repertoire-wide distributions of gene
structural properties change when automated annotations
of protein-coding genes are manually revised. Our results
suggest that the influence of manual annotation on the dis-
tribution of those properties studied by us is comparatively
small, even if individual models may have substantially
changed in detail. Thus, our study empirically supports the
generally accepted but to date not extensively tested view
that automated gene prediction yields reliable gene models.
We further conclude that automatically predicted gene
models allow the elucidation of commonalities, differences,
and driving forces of gene structure evolution: we consist-
ently (with few exceptions) find correlative trends in the
analyzed gene structural properties when using either auto-
matically generated or manually annotated models. While
manual annotation is fundamentally important to obtain
accurate gene models, our results suggest that the insect-
specific patterns of gene structure described here can be
addressed without the necessity of prior manual annota-
tion when using assemblies and annotations of high
quality. Establishing that manual annotation does not sub-
stantially impact analyses of genome-wide trends is im-
portant for large-scale studies such as carried out within
the i5K project [39], where manual annotation of the
included species’ gene sets varies from none to extensive.
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Methods
Data sample
We analyzed annotations and assemblies of seven insect
species of four orders (Coleoptera: Anoplophora glabri-
pennis [44], Leptinotarsa decemlineata [45]; Hemiptera:
Cimex lectularius [46], Oncopeltus fasciatus [19];
Hymenoptera: Athalia rosae, Orussus abietinus [47];
Thysanoptera: Frankliniella occidentalis) [48] that were
sequenced and annotated within the i5k initiative [37].
Additional file 1: Table ST1 lists the sources of primary
datasets.

Gene sets
We prepared two sets and three subsets of data from the
available annotations produced by the i5k initiative of
each species. Firstly, we distinguished the set of all auto-
matic predictions (AUTO) and the final official gene set
(OGS) comprising the non-redundant merge of (i) de
novo gene models, (ii) manually annotated genes, and
(iii) remaining purely automatic gene models. Secondly,
we extracted smaller subsets to analyze certain types of
annotation in detail: (i) de novo gene models without
automatic predecessors (MAN-ADD), (ii) manually
annotated gene models that have an automatically
predicted predecessor (MAN-SUB), and (iii) the corre-
sponding automatically predicted predecessors to MAN-
SUB (AUTO-SUB) (Additional file 3: Note S1).

Structural property and correlative trend analyses
Structural properties of the predicted protein-coding
genes in the respective gene set of each species were in-
ferred with the software COGNATE [49] version 1.01
using the program’s default parameters (COGNATE con-
siders only the longest transcript per gene). Throughout
this study, we considered all exons of the longest tran-
script, also to represent coding sequences. This is due to
the fact that UTRs were not consistently annotated (thus,
exons and CDSs were identical). All COGNATE results
generated for this study (except those of F. occidentalis;
these are available upon request due to the ongoing publi-
cation process) are available from the Dryad repository
(datadryad.org): https://doi.org/10.5061/dryad.v50tm7m.
Statistical analyses and visualizations were performed

in R [50]. Two-sample Kolmogorov-Smirnov test (KS
test, R: ks.test) was used to test for significant differences
in structural property distributions between all sets and
subsets of each species. Results (across all sets and sub-
sets) were corrected for multiple testing (Bonferroni). In
addition, to identify statistical significant differences in
central tendencies, each KS-test was supplemented by a
two-sample (Mann-Whitney-) Wilcoxon test (Wtest, R:
wilcox.test) and results were subjected to multiple test
correction (Bonferroni) as well. Both tests address the
similarity of distributions, but differ in their sensitivity:

the KS test is sensitive to changes in shape, spread, and
median between the distributions, while the W test is
mostly sensitive to changes in the median.
We used a non-parametric approach to test whether

subsets (AUTO-SUB, MAN-SUB, MAN-ADD) can be
considered representative for the species-specific sets
(AUTO, OGS). To overcome the problem of large
size differences between sets and subsets, we used an
adaption of the jackknife method (implemented in a
custom script available at GitHub, see below). For
this, we repeatedly (1000 times) subsampled without
replacement 1000 entries (i.e., properties of 1000 gene
models) of each set (OGS and AUTO) and calculated
Spearman’s rank correlation coefficients of four prop-
erty combinations: (i) exon count vs. exon length, (ii)
exon count vs. exon GC content, (iii) intron count vs.
intron length, and (iv) intron count vs. intron GC
content. Additionally, the correlation coefficients of
the four combinations were calculated for AUTO,
OGS, AUTO-SUB, MAN-SUB, and MAN-ADD
(Additional file 1: Table ST4). For each species,
Spearman’s rank correlation coefficients of the 1000
subsamples are visualized separately for AUTO and
OGS, adding the values of the original (sub)sets with
a specific color (Additional file 2: Figure SF4).

Cuticle proteins and chemoreceptors
Intuitively, we expect that fast evolving genes (possibly
with rare transcripts) make up a large fraction of genes
added de novo during manual annotation. Obvious
candidates for such genes are those coding for cuticle
proteins (CPs) and chemoreceptors (CRs) [e.g., 5]. The
teams of Josh Benoit (Department of Biological Sciences,
University of Cincinnati, USA) and Hugh Robertson
(Department of Entomology, University of Illinois at Ur-
bana-Champaign, USA) thoroughly manually annotated
genes coding for cuticle proteins and chemoreceptors in
(at least) A. glabripennis, L. decemlineata, C. lectularius,
and O. fasciatus. In a small case study, we focused on O.
fasciatus due to time constraints and compared the
manually annotated (i.e., with an automatically predicted
predecessor) to added (i.e., de novo) CPs and CRs.
For both CPs and CRs, gene lists were extracted from

the O. fasciatus OGS v 1.1 according to their annotated
name, including information on transcript ID, curation sta-
tus (manually annotated MAKER model or de novo
model), and, for CRs, the chemoreceptor class (gustatory
[GR], ionotropic [IR], or odorant [OR] receptors)
[Additional file 1: Tables ST5 and ST6]. According to the
transcript IDs, COGNATE measurements were extracted
for the longest transcript per gene (from the COGNATE
output files 07–10). Property distributions are visualized in
Additional file 2: Figure SF5.
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Additional files

Additional file 1: Table ST1. Data sources and used files: list of
publications, download sources, and used files of all seven species;
Table ST2. Auto vs. manual: counts of gene models that were subjected
to manual annotation including non-coding models, as well as of OGS,
MAN-ADD, MAN-SUB, AUTO, and AUTO-SUB; Table ST3. Tests: results of
Bonferroni-corrected two-sample Kolmogorov-Smirnov tests and two-
sample Wilcoxon tests of all combinations of the five (sub)sets given for
each species and each gene structural property; Table ST4. Correlation
coefficients: lists for each species and each set (AUTO, OGS, AUTO-SUB,
MAN-SUB, MAN-ADD, and resampled samples 1–1000) the Spearman’s
rank correlation coefficient of each of the four comparisons; Table ST5.
Cuticle proteins — all v1.1: list of cuticle protein genes manually added
or manually annotated in Oncopeltus fasciatus; Table ST6. Chemorecep-
tors — all v1.1: list of chemoreceptor genes manually added or manually
annotated in Oncopeltus fasciatus; Table ST7. CP and CR KS-tests: results
of (Bonferroni-corrected) two-sample Kolmogorov-Smirnov tests
comparing cuticle protein (CP) and chemoreceptor (CR) gene model
structure properties to OGS, MAN-ADD and each other. (XLSX 933 kb)

Additional file 2: Figure SF1. Extended version of Fig. 1; Figure SF2.
Extended version of Fig. 2; Figure SF3. Empirical cumulative distribution
functions of all sets; Figure SF4. Confidence intervals established by
jackknifing; Figure SF5. Gene structural properties of cuticle proteins
(CPs) and chemoreceptors (CRs) of O. fasciatus. (PDF 2234 kb)

Additional file 3: Note S1. Dataset preparation. Note S2. Cuticle
proteins and chemoreceptors – Additional results. Captions of
supplementary Figures SF1-SF5. (DOCX 27 kb)
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