142 research outputs found

    Visual Analytics of Surveillance Data on Foodborne Vibriosis, United States, 1973–2010

    Get PDF
    Foodborne illnesses caused by microbial and chemical contaminants in food are a substantial health burden worldwide. In 2007, human vibriosis (non-cholera Vibrio infections) became a notifiable disease in the United States. In addition, Vibrio species are among the 31 major known pathogens transmitted through food in the United States. Diverse surveillance systems for foodborne pathogens also track outbreaks, illnesses, hospitalization and deaths due to non-cholera vibrios. Considering the recognition of vibriosis as a notifiable disease in the United States and the availability of diverse surveillance systems, there is a need for the development of easily deployed visualization and analysis approaches that can combine diverse data sources in an interactive manner. Current efforts to address this need are still limited. Visual analytics is an iterative process conducted via visual interfaces that involves collecting information, data preprocessing, knowledge representation, interaction, and decision making. We have utilized public domain outbreak and surveillance data sources covering 1973 to 2010, as well as visual analytics software to demonstrate integrated and interactive visualizations of data on foodborne outbreaks and surveillance of Vibrio species. Through the data visualization, we were able to identify unique patterns and/or novel relationships within and across datasets regarding (i) causative agent; (ii) foodborne outbreaks and illness per state; (iii) location of infection; (iv) vehicle (food) of infection; (v) anatomical site of isolation of Vibrio species; (vi) patients and complications of vibriosis; (vii) incidence of laboratory-confirmed vibriosis and V. parahaemolyticus outbreaks. The additional use of emerging visual analytics approaches for interaction with data on vibriosis, including non-foodborne related disease, can guide disease control and prevention as well as ongoing outbreak investigations

    The Case for Visual Analytics of Arsenic Concentrations in Foods

    Get PDF
    Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species

    Anomaly Detection in Time Series: Theoretical and Practical Improvements for Disease Outbreak Detection

    Get PDF
    The automatic collection and increasing availability of health data provides a new opportunity for techniques to monitor this information. By monitoring pre-diagnostic data sources, such as over-the-counter cough medicine sales or emergency room chief complaints of cough, there exists the potential to detect disease outbreaks earlier than traditional laboratory disease confirmation results. This research is particularly important for a modern, highly-connected society, where the onset of disease outbreak can be swift and deadly, whether caused by a naturally occurring global pandemic such as swine flu or a targeted act of bioterrorism. In this dissertation, we first describe the problem and current state of research in disease outbreak detection, then provide four main additions to the field. First, we formalize a framework for analyzing health series data and detecting anomalies: using forecasting methods to predict the next day's value, subtracting the forecast to create residuals, and finally using detection algorithms on the residuals. The formalized framework indicates the link between the forecast accuracy of the forecast method and the performance of the detector, and can be used to quantify and analyze the performance of a variety of heuristic methods. Second, we describe improvements for the forecasting of health data series. The application of weather as a predictor, cross-series covariates, and ensemble forecasting each provide improvements to forecasting health data. Third, we describe improvements for detection. This includes the use of multivariate statistics for anomaly detection and additional day-of-week preprocessing to aid detection. Most significantly, we also provide a new method, based on the CuScore, for optimizing detection when the impact of the disease outbreak is known. This method can provide an optimal detector for rapid detection, or for probability of detection within a certain timeframe. Finally, we describe a method for improved comparison of detection methods. We provide tools to evaluate how well a simulated data set captures the characteristics of the authentic series and time-lag heatmaps, a new way of visualizing daily detection rates or displaying the comparison between two methods in a more informative way

    Mobile Sensing, Simulation and Machine-learning Techniques: Improving Observations in Public Health

    Get PDF
    Entering an era where mobile phones equipped with numerous sensors have become an integral part of our lives and wearable devices such as activity trackers are very popular, studying and analyzing the data collected by these devices can give insights to the researchers and policy makers about the ongoing illnesses, outbreaks and public health in general. In this regard, new machine learning techniques can be utilized for population screening, informing centers of disease control and prevention of potential threats and outbreaks. Big data streams if not present, will limit investigating the feasibility of such new techniques in this domain. To overcome this shortcoming, simulation models even if grounded by small-size data can represent a simple platform of the more complicated systems and then be utilized as safe and still precise environments for generating synthetic ground truth big data. The objective of this thesis is to use an agent-based model (ABM) which depicts a city consisting of restaurants, consumers, and an inspector, to investigate the practicability of using smartphones data in the machine-learning component of Hidden Markov Model trained by synthetic ground-truth data generated by the ABM model to detect food-borne related outbreaks and inform the inspector about them. To this end, we also compared the results of such arrangement with traditional outbreak detection methods. We examine this method in different formations and scenarios. As another contribution, we analyzed smart phone data collected through a real world experiment where the participants were using an application Ethica Data on their phones named. This application as the first platform turning smartphones into micro research labs allows passive sensor monitoring and sending over context-dependent surveys. The collected data was later analyzed to get insights into the participants' food consumption patterns. Our results indicate that Hidden Markov Models supplied with smart phone data provide accurate systems for foodborne outbreak detection. The results also support the applicability of smart phone data to obtain information about foodborne diseases. The results also suggest that there are some limitations in using Hidden Markov Models to detect the exact source of outbreaks

    Proceedings of the Graduate Student Symposium of the 7th International Conference on the Theory and Application of Diagrams, July 5 2012

    Get PDF
    Proceedings of the Graduate Student Symposium held at the 7th International Conference on the Theory and Application of Diagrams, ( Diagrams 2012 ), held at the University of Kent on July 5, 2012. Dr. Nathaniel Miller, professor of in the School of Mathematical Sciences at UNC, served on the symposium organizing committee

    Situating machine intelligence within the cognitive ecology of the Internet

    Get PDF
    The Internet is an important focus of attention for the philosophy of mind and cognitive science communities. This is partly because the Internet serves as an important part of the material environment in which a broad array of human cognitive and epistemic activities are situated. The Internet can thus be seen as an important part of the 'cognitive ecology' that helps to shape, support and (on occasion) realize aspects of human cognizing. Much of the previous philosophical work in this area has sought to analyze the cognitive significance of the Internet from the perspective of human cognition. There has, as such, been little effort to assess the cognitive significance of the Internet from the perspective of 'machine cognition'. This is unfortunate, because the Internet is likely to exert a significant influence on the shape of machine intelligence. The present paper attempts to evaluate the extent to which the Internet serves as a form of cognitive ecology for synthetic (machine-based) forms of intelligence. In particular, the phenomenon of Internet-situated machine intelligence is analyzed from the perspective of a number of approaches that are typically subsumed under the heading of situated cognition. These include extended, embedded, scaffolded and embodied approaches to cognition. For each of these approaches, the Internet is shown to be of potential relevance to the development and operation of machine-based cognitive capabilities. Such insights help us to appreciate the role of the Internet in advancing the current state-of-the-art in machine intelligence
    corecore