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The automatic collection and increasing availability of health data provides a new 

opportunity for techniques to monitor this information.  By monitoring pre-diagnostic 

data sources, such as over-the-counter cough medicine sales or emergency room chief 

complaints of cough, there exists the potential to detect disease outbreaks earlier than 

traditional laboratory disease confirmation results.  This research is particularly 

important for a modern, highly-connected society, where the onset of disease 

outbreak can be swift and deadly, whether caused by a naturally occurring global 

pandemic such as swine flu or a targeted act of bioterrorism.  In this dissertation, we 

first describe the problem and current state of research in disease outbreak detection, 

then provide four main additions to the field. 

 



  

First, we formalize a framework for analyzing health series data and detecting 

anomalies: using forecasting methods to predict the next day's value, subtracting the 

forecast to create residuals, and finally using detection algorithms on the residuals.  

The formalized framework indicates the link between the forecast accuracy of the 

forecast method and the performance of the detector, and can be used to quantify and 

analyze the performance of a variety of heuristic methods. 

 

Second, we describe improvements for the forecasting of health data series.  The 

application of weather as a predictor, cross-series covariates, and ensemble 

forecasting each provide improvements to forecasting health data. 

 

Third, we describe improvements for detection.  This includes the use of multivariate 

statistics for anomaly detection and additional day-of-week preprocessing to aid 

detection.  Most significantly, we also provide a new method, based on the CuScore, 

for optimizing detection when the impact of the disease outbreak is known.  This 

method can provide an optimal detector for rapid detection, or for probability of 

detection within a certain timeframe. 

 

Finally, we describe a method for improved comparison of detection methods.  We 

provide tools to evaluate how well a simulated data set captures the characteristics of 

the authentic series and time-lag heatmaps, a new way of visualizing daily detection 

rates or displaying the comparison between two methods in a more informative way. 
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Chapter 1 : Introduction to Biosurveillance 

1.1. Biosurveillance 

1.1.1. Introduction 

In modern biosurveillance, time series of diagnostic and pre-diagnostic health data are 

monitored for the purpose of detecting disease outbreaks.  In general, the data tend to 

be indirect measures of a disease (as opposed to more traditional diagnostic or clinical 

data).  Examples of pre-diagnostic biosurveillance health data include daily counts of 

emergency room visits, over-the-counter (OTC) or prescription medication sales, 

school absences, doctors' office visits, veterinary reports, web searches for disease-

related terms, or other data streams that could contain an indication of a disease 

outbreak.  These data are usually collected for a specific region of interest, such as 

that covered by a public health department.  Outbreaks of interest include terrorist-

driven attacks, such as a bioterrorist anthrax release, or naturally occurring epidemics, 

such as an avian or porcine influenza outbreak. In either setting, the goal is to alert 

public officials and create an opportunity for them to respond in a timely manner. 

To effectively provide this opportunity, alerts must occur quickly after the outbreak 

begins, should detect most outbreaks, and have a low false alert rate.  There are a host 

of statistical difficulties in achieving such performance (as described in (Fienberg & 

Shmueli, 2005, Shmueli & Burkom, 2009)), foremost among them the seasonal, 

nonstationary, and autocorrelated nature of the health data being monitored. There are 

also data collection issues such as delayed data transmission or unexpected increases 

in the number of reporting hospitals.  Although current biosurveillance data are 
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typically monitored at a daily frequency, the methods and results in this dissertation 

are general and apply to data at other time scales as well. 

 

Our ultimate purpose is to provide early notice of an outbreak based on finding an 

outbreak signature in the data.  We will refer to the outbreak signature as an 

"outbreak signal" or sometimes simply the "outbreak". However, it should be clear 

that there is a distinction between the outbreak itself and its manifestation or signature 

in the monitored data series. For evaluation purposes, algorithms must be evaluated 

on their ability to detect these outbreak signatures.  In this chapter, we first describe 

the metrics used to evaluate the performance of a biosurveillance algorithm.  We then 

discuss current systems being used in practice, describe the authentic data sets which 

will be used for algorithm testing throughout this dissertation, and then review the 

research which has been done on statistical methods for biosurveillance. 

1.1.2. A Brief History of Biosurveillance 

The purpose of biosurveillance is to understand the health of a population, and in 

particular to understand the health problems present in the population and how they 

are progressing through the population.  This understanding often leads to 

investigation of the underlying causes of illness and estimation of the future 

progression of illness.  Thus, biosurveillance is closely related to epidemiology and is 

sometimes thought of as a sub-field.  However, biosurveillance is distinguished by its 

focus on continual monitoring, using information technology to provide up-to-date 

quantitative reports, and resulting in timely intervention rather than retrospective 

analyses. 
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While epidemiology can trace its origins to Hippocrates' study of the relationships 

between environmental factors and disease, it only truly developed with the germ 

theory of disease.  John Snow's famous investigation of the 1854 Birmingham cholera 

epidemic is an early example of epidemiology; by plotting the cholera deaths, he was 

able to determine the source of the cholera, a contaminated water pump, and 

intervene (by removing the handle) to stop the outbreak.   
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Figure 1-1: John Snow's Map of Cholera Deaths 

John Snow's map showing deaths from cholera (each marked with a dot) and 
locations of water pumps (each marked with an X) indicates the link between the 
Broad Street pump and the cholera epidemic. 
 
Epidemiology is characterized by the use of investigation to determine the link 

between the root cause of the disease and its appearance in the human population 

(Green et al., 2000).    Epidemiology through the 19th and mid-20th centuries was 

usually directed at proving the existence or disease-causing role of infectious or 

environmental agents; a more recent canonical example is the epidemiological studies 

of lung cancer, such as (Doll & Hill, 1956), leading eventually to the establishment of 
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tobacco smoke as a contributing factor.  As the science of bioinformatics developed 

and more information on public health became readily available, epidemiology came 

to use these tools to perform its causal studies. 

 

As these data became more prevalent, it became possible to use them not merely for 

designed studies, as in an epidemiologic case study, but to regularly record such 

information and use it for monitoring public health.  One can think of biosurveillance 

as the development of epidemiologic methods for continual health monitoring, rather 

than post-hoc analyses.  Traditional data sources for biosurveillance include 

laboratory tests, such as those looking for antibodies to specific diseases (such as 

influenza variants).  Such data can be used both for monitoring (biosurveillance) or 

cause analysis and investigation (epidemiology).  Biosurveillance is a natural partner 

to epidemiology; the ability to find outbreaks is not useful without the ability to track 

down their cause and determine an appropriate intervention.   

 

Biosurveillance has developed particular prominence in the past ten years mainly due 

to fears of two scenarios: first, the threat of bioterrorist attacks, where a terrorist 

group obtains and releases a biological disease agent such as anthrax; and second, the 

threat of naturally-occurring pandemics with the potential to spread rapidly due to 

modern transportation and greater human mobility, such as SARS or swine flu.  

Because of this, the focus shifted to early alerts of disease outbreaks.   
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As data availability has increased, biosurveillance has become a possible source of 

situational awareness, with the ability to provide alerts of outbreaks as they happen.  

This is further enhanced by the inclusion of pre-diagnostic data, data which indicate 

increases in syndromes for specific diseases or simply more general disease 

symptoms.  Rather than waiting days after the start of infection for laboratory 

confirmation, pre-diagnostic sources can provide indications of disease which allow 

public health officials to respond earlier, potentially reducing the impact of the 

disease and saving lives.  While early health indicators such as over-the-counter 

(OTC) drug sales, emergency department chief complaints, and absentee records do 

not provide direct indication of disease, but instead simply give an indicator of 

symptom effect or care-seeking behavior, they are less specific than traditional 

laboratory reports.  However, their ability to give an earlier signal makes their 

analysis an important tool for public health monitoring.  It is in this context that 

biosurveillance has developed, seeking methods to analyze and report potential 

disease outbreaks using this challenging but rewarding data source. 

1.1.3. Intervention Effects 

The principle behind biosurveillance is that by providing early notification of disease 

outbreaks, public health officials can respond to reduce the severity of the disease 

impact.  However, because we do not know what would have happened without the 

intervention, it is difficult to measure the effect of any action.  Some recent studies 

attempt to measure that impact on school closures in Hong Kong (Cowling et al., 

2008), on influenza immunization (Davis et al., 2008), on measles inoculation (Grais 

et al., 2007), and on heat wave-related mortality (Josseran et al., 2009).  There has 
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been strong evidence that when intervention is performed in a timely manner, the 

effect is meaningful. 

1.1.4. Performance Evaluation Metrics 

Consider a time series of health data, collected periodically.  Daily is the most 

common collection interval, and we use the convention of assuming daily collection 

throughout the dissertation; however, our theoretical results apply equally well for 

different intervals.  Now consider that we have many such series of the same type; 

some contain outbreaks, and some do not.  What we are looking for in biosurveillance 

are methods which perform well on many different series.  The assumption is that in 

the future, if the method is used on similar series, it will perform well. 

 

The main metrics used in biosurveillance to evaluate an outbreak detection method 

are sensitivity, specificity, and timeliness.  The first two metrics are widely used in 

public health.  Sensitivity measures how effective a method is at detecting an 

outbreak, assuming one exists; specificity measures how many false alerts will be 

generated by that same method; and timeliness measures how quickly, after the start 

of the outbreak, the method detects.  Specificity and sensitivity are closely related to 

the probability of type I and type II error, respectively; if the probability of type I 

error is , then specificity is  and if the probability of type II error is , then 

the sensitivity is . 

 

In biosurveillance we are considering not simply a single decision on whether the 

disease outbreak is present, but an alert decision made repeatedly over each day.  
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Because the decision process is repeated each day, one must consider the specificity 

as a rate over time during which there is no outbreak.  Because outbreaks can last 

multiple days, an alert can be generated on several potential days and be valid; it is 

therefore useful to think of the sensitivity as an overall probability of alert during the 

outbreak.  For this reason, to measure these characteristics we use the measures 

described in (Fricker et al., 2008b), which are closer to those used in statistical 

process control.  For the specific definitions below, consider that we take  series, 

each with an outbreak, and  series without an outbreak. 

 
Detection Rate: the proportion of outbreaks detected, out of the  series with 

outbreaks.  As  is made arbitrarily large, this measures the per-outbreak 

probability that there will be an alert sometime during the outbreak.  This is also 

sometimes referred to as True Alert rate (TA). 

 

ATFS: the Average Time to False Signal, this is the average number of days until 

an alert, over the  series without outbreaks.  As  is made arbitrarily large, 

this measures the expected time until a false alert.  For implementations which 

reset after any alert, 1/ATFS will be the average proportion of days with false 

alerts, given that there is no outbreak.  We will sometimes use the term False 

Alert rate (FA) as 1/ATFS. 

 

ATFOS: the Average Time to First Outbreak Signal, this is the expected number 

of days until an alert is generated, given that the method does eventually alert 
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during the outbreak signal.  We will also sometimes use the term Delay for 

ATFOS, or describe a method's ATFOS performance as its timeliness. 

 
The ATFS and Detection Rate are often shown graphically using Receiver Operating 

Characteristic (ROC) curves.   ROC curves plot the Detection Rate on the -axis for 

different False Alert levels on the -axis.  Figure 1-2 is an example.   An Activity 

Monitoring Operating Characteristic (AMOC) curve is similar, but measures delay on 

the y-axis instead of Detection Rate.  The area under the ROC curve (AUC) is a 

common measure of performance, as it sums the algorithms performance over all 

possible false alert levels.  This measure is often restricted to a range of practically 

useful False Alert levels, in order to compare performance over false alert levels 

which can be managed by the available resources.  Figure 1-3 shows an example over 

False Alert rates between 1/28 and 1/7. 
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Figure 1-2: ROC Curve Example 

A basic ROC curve, showing the Detection Probability of an algorithm, for varying 
False Alert Rates.  Any reasonable algorithm will have a monotonically increasing 
ROC curve, which reflects the fact that a higher rate of false alerts should allow the 
algorithm to detect an increased number of actual outbreaks.  The diagonal line shows 
the performance of an algorithm which generates alerts by chance. 
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Figure 1-3: AUC Example 

An illustration of the AUC for a section of the ROC curve, corresponding to false 
alert rates of one every 7 days and one every 28 days.  An algorithm with a higher 
AUC will have a higher average Detection Rate over the range of false alert levels. 
 
We note here that the detection performance depends on the outbreak signal itself, as 

well as on the underlying health data series. In biosurveillance the variety of data 

sources leads to a variety of baseline behaviors; emergency room respiratory chief 

complaints may look very different than elementary school absences, even over the 

same time period and in the absence of a disease outbreak.  Furthermore, the exact 

outbreak signal is unknown. Therefore, it is generally important to consider a variety 

of baseline time series as well as a variety of outbreak signal shapes and sizes for 

evaluating algorithm performance.  Given the wide array of possibilities, simulation 

methods, and metrics, it is difficult to make overall claims about the performance of 

one method versus another.  We will discuss how to evaluate simulations in Section 
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5.2, and discuss the theory for comparing methods using a theoretical framework in 

Chapter 2. 

1.2. Existing Biosurveillance Systems in the United States 

We next briefly review the major existing biosurveillance systems in the United 

States.  While other countries have increasingly been developing biosurveillance 

systems with substantial capabilities and effectiveness, the U.S. systems remain the 

most prominent.  We do not mean to indicate that other systems are not worth 

consideration, only that focusing on the U.S. systems allows for a salient overview. 

1.2.1. RODS 

RODS (Real-Time Outbreak and Disease Surveillance) is a program developed by the 

University of Pittsburgh in 1999 as a monitoring system to detect anthrax outbreaks 

(Wagner et al., 2003, Tsui et al., 2003).  It is now an open source (Espino et al., 2004) 

general outbreak detection software package, implemented in Java.  RODS is now 

used by hundreds of public health departments, both within the US and 

internationally.  It is still used as a development testbed for further algorithm 

development by the University of Pittsburgh.  Although this research has tapered off 

in recent years, the open source nature of the project ensures that it will not be lost 

and can continue to support development. 
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Figure 1-4: RODS Main Visualization 

Main visualization screen for the RODS system. 
 

 
Figure 1-5: RODS Drill-down Screen 

A drill-down screen from an earlier version of RODS. 
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1.2.2. BioSense 

BioSense is a project by the Centers for Disease Control and Prevention (CDC), 

which was initiated in 2003 as a project to "enhance the nation's capability to rapidly 

detect, quantify, and localize public health emergencies, particularly biologic 

terrorism, by accessing and analyzing diagnostic and pre-diagnostic health data" 

(Loonsk, 2004).  It collects and monitors LabCorp lab tests as well as Department of 

Defense and Department of Veterans Affairs diagnoses and procedures.  It then 

provides some statistical analysis and visualization capabilities for public health 

officials to see and understand the data form their area.  It currently supports 86 

geographic regions (50 states, two territories, and 34 major metropolitan areas) 

(Sokolow et al., 2005).  Its current mission is to "advance early detection by 

providing the standards, infrastructure, and data acquisition for near real-time 

reporting, analytic evaluation and implementation, and early event detection support 

for state and local public health officials."(Bradley et al., 2005) by attempting to 

provide a best-of-breed system for public health officials monitoring biosurveillance 

health series.  In theory, its national scope and common interface could allow national 

collaboration and comparison across jurisdictions.  But in 2006, CDC recognized that 

BioSense had not achieved the success that would be hoped for and began an analysis 

of performance to identify areas of improvement.  Many practitioners use the system 

for data exploration rather than for the purpose of detecting outbreaks, due to the 

system's inflexibility and other limitations (Buehler et al., 2007).  The CDC has since 

started an analysis and redesign of the system. 
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BioSense also incorporates EARS (Early Aberration Reporting System), which is an 

earlier CDC project designed to "provide national, state, and local health departments 

with several alternative aberration detection methods" (Hutwagner et al., 2003).  It 

defines three aberration detection algorithms, which are often used as baseline 

algorithms for comparing new algorithms.  These algorithms provide BioSense (and 

any other systems which care to use them) with basic aberration detection methods. 

 

 
Figure 1-6: BioSense Screen Shot 

BioSense example image, using demonstration data (from (Loonsk, 2004)]). 
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In general, the CDC is a main source of encouragement and support for 

biosurveillance research.  It maintains a central website (CDC, 2006), a free online e-

journal, and provides both tools and methodologies (such as BioSense and EARS) as 

well as funding for biosurveillance research.  Its public implementations tend to be a 

few steps back from the cutting edge, but it provides invaluable support for 

biosurveillance research. 

1.2.3. ESSENCE 

ESSENCE (Electronic Surveillance System for the Early Notification of Community-

Based Epidemics) is a collaboration between the Department of Defense Global 

Emerging Infections System and the Johns Hopkins University Applied Physics 

Laboratory (Lombardo et al., 2004).  It uses data from military hospital visits, 

specifically diagnoses categorized into one of the International Classification of 

Diseases categories (ICD-9 codes), hospital site (identifying the hospital where the 

visit originated), patient's disposition (whether the record is for initial chief 

complaint, working diagnosis, or final diagnosis), and other data (age and gender of 

patient, clinic utilized, health care provider seen).  It also includes "anonymized" 

consumer data, specifically hospital emergency room visits, physician office visits 

and over-the-counter drug sales.  It then provides visualization and analysis of those 

data.  This is mainly done for DoD use, but several of the methods developed for 

ESSENCE have been published in the scientific literature and it is also used by 

epidemiologists in the Washington, D.C. area. 
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Figure 1-7: ESSENCE Screen Shot 

An ESSENCE screen shot showing incidence of respiratory counts in the National 
Capital Area based on military and civilian physician visits. 

1.2.4. Other Systems and Systems Proposals 

While the three systems described above (BioSense, RODS, and ESSENCE) are the 

largest and most significant, many other city and state public health departments have 

developed their own systems.  Most of these areas use similar methods taken from 

current research or larger systems, but two deserve special attention: the Olympics 

monitoring systems and New York City's public health monitoring. 

 

The Olympics are an excellent test case for biosurveillance systems.  The Olympic 

city has a diverse population, tightly packed, with peak athletic performances on the 

line.  Recent Olympics have developed biosurveillance systems to detect any disease 

spread, either using unique systems (Dafni et al., 2004) or based on existing 

technology such as RODS (Gesteland et al., 2003). 
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New York City is both the largest city in the U.S. and one of the most visible targets 

for terrorists.  It is only natural that it would also have the largest public health 

monitoring system.  A history of the system is given by (Heffernan et al., 2004); in 

1995 it began to monitor diarrheal illness at nursing homes, surveillance of stool 

submissions at clinical laboratories, and over-the- counter (OTC) pharmacy sales for 

diarrheal illness.  It later grew to include prescription drug sales, ER visits, and 

worker absenteeism.  Recent presentations have shown the evolving NYC system, 

growing to include spatial scan statistics (Mostashari, 2002) as well as multivariate 

combinations and visualization techniques (Paladini, 2006). 

 

Any new system requires a number of components.  A number of researchers and 

public health officials have attempted to define what would be necessary components 

of a biosurveillance system (Bean & Martin, 2001, Wagner et al., 2003, Pavlin et al., 

2003).  While most of these definitions have been supplanted by analyses of and 

reactions to actual systems (such as (Buehler et al., 2007)), they still provide a fairly 

comprehensive view of what is involved in creating a new biosurveillance system.  

When considering the creation of a new system, one cannot consider only the 

algorithms used (which we analyze in this dissertation) but must also consider larger 

issues such as data collection and privacy concerns.  While the algorithms we present 

should improve such systems, we reiterate that a real system involves much more 

than the detection component we focus on here. 
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1.3. Data Sets Used in this Dissertation 

In examining and testing the ideas in this dissertation, we use four main sources of 

biosurveillance data.  These were used to compare the effectiveness of different 

methods, to test the validity of assumptions, and to find appropriate parameters.  By 

using authentic biosurveillance data, we can be more confident that the ideas 

presented here are valid and practical in real-life scenarios. 

1.3.1. BioALIRT 

Our first authentic data set comes from the BioALIRT program conducted by the U.S. 

Defense Advanced Research Projects Agency (DARPA), described in (Siegrist & 

Pavlin, 2004).  Permission to use the data was obtained through data use agreement 

#189 from TRICARE Management Activity.  The data set includes three types of 

daily counts: military clinic visit diagnoses, filled military prescriptions, and civilian 

physician office visits. The BioALIRT program categorized the records from each 

data type as respiratory (Resp), gastrointestinal (GI), or other.  The data were 

gathered from 10 U.S. metropolitan areas with substantial representation of each data 

type. The data consist of counts from 700 days, from July 1, 2001 to May 31, 2003.  

As an example, we use the daily count of respiratory symptoms from civilian 

physician office visits, all within a particular U.S. city (cities are not identified, due to 

privacy concerns), which can be seen in Figure 1-8.  The same series is displayed in 

Figure 1-9, which shows the data split by day-of-week.  In this, you can see the 

weekend/weekday difference much more clearly. 
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Figure 1-8: BioALIRT Respiratory Data Example 

Daily counts for reported respiratory symptoms among civilians, from the BioALIRT 
data set.  The first 1/3 of the data (233 days) will generally be used for training, and 
the last 2/3 (467 days) for evaluation. 
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Figure 1-9: Seasonal Subseries Plot for BioALIRT Respiratory Data 

Daily counts for respiratory symptoms among civilians, from the BioALIRT data set, 
split by day-of-week. 

1.3.2. Over-the-counter (OTC) medication sales 

The second data set comes from a grocery chain in the Pittsburgh area.  It includes 

daily sales for eight categories of medications, from August 1999 to January 2001 

(Goldenberg et al., 2002a).  The eight data streams are  

Asthmatic remedies (Asthmatic.Remedies),  

Allergy medicine (Allergies.Caps),  

Cough syrups/liquid decongestants (Cough.Syr.Liquid.Decongest),  

Nasal sprays (Nasal.spray.drops.inhalar),  

Non-liquid decongestants (room.decongest),  

Pills (tabs.caps),  
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Time release pills (tabs.caps.time.release), and  

Throat lozenges/cough drops (throat.loz.cough.drops).   

A set of charts that include a timeplot, zoomed time plot, autocorrelation function 

(acf) plot, and quantile-quantile (Q-Q) normal plot is shown for three of the series in 

Figure 1-10. 

 

 
Figure 1-10: OTC Series Summary Visualizations 

Summary graphs for three OTC categories.  Average daily counts vary largely across 
different categories, with varying degrees of weekly and annual dependence. 
 

1.3.3. Chief complaints at emergency departments 

The third data set, from ESSENCE (Electronic Surveillance System for the Early 

Notification of Community-Based Epidemics), is composed of 35 time series 

representing daily counts of ICD-9 codes.  ICD-9 is the 9th edition of the 
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International Statistical Classification of Disease and Related Health Problems, 

published by the World Health Organization (WHO) and used worldwide.  It 

describes a set of ICD-9 codes in order to standardize classification of a wide variety 

of health conditions, mainly symptoms and diseases.  Our data set consists of ICD-9 

codes generated by patient arrivals at emergency departments (ED) in an unspecified 

metropolitan region from Feb-28-1994 to Dec-30-1997. The 35 series were then 

grouped into 13 series, using the CDC's syndrome groupings. 

 

These syndrome groups show the diversity across the different syndrome subgroups 

in the level of daily counts and in weekly and annual dependence.  We removed the 

counts for the 38 holidays contained in the data set, as their values are significantly 

different from non-holidays, and holidays will occur on predictable dates in the 

future.  In the following we use three series for display (Gastrointestinal (GI)-related, 

Respiratory (Resp), and Unexplained Death (Unexpl Death) ED visits).  These are 

shown in Figure 1-11. 
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Figure 1-11: ED Series Summary Visualizations 

Summary graphs for three ED categories.  Low-count series like UnexplDth bring 
additional challenges to biosurveillance monitoring. 

1.3.4. ISDS contest data 

In 2007, the International Society for Disease Surveillance (ISDS) organized a 

technical contest.  Participants were "encouraged to develop novel techniques or test 

state-of-the-art alerting algorithms for prospective disease outbreak detection on 

realistic data."  In order to do this, surveillance data sets were provided by the 

Canadian Network for Public Health Intelligence (CNPHI), which agreed to make 

them permanently available for academic use after the contest.  The contest used three 

types of data: 

1. Patient emergency room visits (ED) with gastrointestinal symptoms 

2. Aggregated over-the-counter (OTC) anti-diarrheal and anti-nauseant sales 
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3. Nurse advice hotline calls (TH) with respiratory symptoms  

These data were based on a three-year historical data set from Winnipeg, Manitoba, 

Canada with a population size just over 700,000. This data set was used to model the 

characteristics and trends present in the contest baseline data.  In addition, three types 

of outbreaks were simulated and inserted.  The contest outbreak profiles were 

modeled after data effects of three historical outbreaks, each affecting a single data 

type.  From the contest description: 

 
1. In the spring of 2000, the community of Walkerton, Ontario experienced one of 

the worst outbreaks of waterborne E.coli 0157:H7 in Canadian history. ED 

data for gastrointestinal (GI) symptoms retrospectively collected from the local 

hospital clearly showed the outbreak profile. 

2. A similarly large waterborne outbreak of Cryptosporidium occurred in the 

Battleford area of Saskatchewan during the spring of 2001. Due to the 

prolonged, less severe nature of Cryptosporidium, many infected residents self-

medicated, evidenced by an increase of OTC anti-diarrheal and anti-nauseant 

product sales during the outbreak. 

3. Large-scale, seasonal influenza epidemics (such as bird flu) have not been 

widely characterized through syndromic surveillance systems. Because nurse 

hotlines are commonly used by residents to report symptoms of influenza like 

illness in the Winnipeg region, this data stream was chosen for this outbreak. 

The profile is a combination of the few historical examples available in 

publication. 

 



 

 26 
 

Each data type had thirty 'scenarios', which consisted of the same baseline data with a 

different stochastically generated outbreak inserted.  Each data type had five years of 

data, and the outbreak was inserted somewhere in the last four years.  An example of 

stochastic outbreaks is seen in Figure 1-12, which shows an exemplar outbreak (for 

the influenza outbreak injected into the nurse hotline/TH series) as well as thirty 

stochastic instances of actual outbreak counts (seen as thinner colored lines). 

 

 
Figure 1-12: ISDS Contest Exemplar and Simulated Stochastic Outbreaks 

Exemplar influenza outbreak inserted into nurse hotline calls (thick black line) and 
stochastic instances of the same (thin colored lines). 
 

1.4. Existing Research on Statistical Methods for Biosurveillance 

1.4.1. Control Chart Methods 

Statistical control charts, invented by Walter Shewhart and used as the basis of 

Statistical Process Control (SPC), were first used in the 1920s to monitor factory 

outputs to discover abnormally high rates of product defects. An alarm indicated 

variance beyond the normal operating conditions and the presence of a "special 

cause", which was usually a faulty process that could then be corrected.  Control 
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charts are statistical tools for monitoring process parameters and alerting when there 

is an indication that those parameters have changed.  They are now widely used in 

health-related fields, particularly in biosurveillance (as seen in  (Benneyan, 1998b, 

Woodall, 2006)).  There are some difficulties in directly applying control charts to 

daily pre-diagnostic data, since classical control charts assume that observations are 

independent, identically distributed, and typically normally distributed (or with a 

known parametric distribution).  However, as described in Section 1.4.2, such 

assumptions generally do not hold for the pre-diagnostic data being considered. 

 

Control charts are usually two-sided, monitoring for an increase or decrease in the 

parameter of interest.  Monitoring is done using an upper control limit (UCL) and 

lower control limit (LCL), respectively. In biosurveillance, we are usually only 

concerned with a significant increase in the underlying behavior indicative of a 

disease outbreak, and therefore only a UCL is used.  The control chart is applied to a 

sample statistic (often the individual daily count), and alerts when that statistic 

exceeds the UCL.  This UCL is a constant, set to achieve a certain false alert level; 

the true alert rate can then be computed. 

 

The three main types of control charts are the Shewhart, Cumulative Sum (CuSum), 

and Exponentially Weighted Moving Average (EWMA).  These are covered in detail 

in (Montgomery, 2001), but we provide a basic description here: 

 
Shewhart. The Shewhart chart is the most basic control chart. A daily sample 

statistic (such as a mean, proportion, or count) is compared against upper and/or 
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lower control limits (UCL and LCL), and if the limit(s) are exceeded, an alarm 

is raised. The control limits are typically set as a multiple of standard deviations 

of the statistic from the target value (Montgomery, 2001). It is most efficient at 

detecting medium to large spike-type outbreaks. 

 

CuSum. Cumulative-Sum (CuSum) control charts monitor cumulative sums of the 

deviations of the sample statistic from the target value. CuSum is known to be 

efficient in detecting small step-function type changes in the target value (Box 

& Luceno, 1997). 

 

EWMA. The Exponentially Weighted Moving Average (EWMA) chart monitors a 

weighted average of the sample statistics with exponentially decaying weights 

(NIST, 2004). It is most efficient at detecting exponential changes in the target 

value and is widely used for detecting small sustainable changes in the target 

value. 

 
The classic Shewhart chart for monitoring the process mean relies on drawing a 

sample from the process at some frequency (e.g., weekly), and plotting the sample 

mean on the chart.  CuSum and EWMA are similar, except that the plotted value is a 

more complex function of the current and previous samples.  Parameter limits are 

defined such that if the process remains in control, nearly all of the sample means will 

fall within the control limits.  If a sample mean exceeds the control limits, it indicates 

that the process mean has shifted, or in other words, the process has gone out of 

control; an alarm is triggered and an investigation follows to find its cause(s) (Page, 
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1954, Reinke, 1991). Figure 1-13 shows an example of a one-sided Shewhart control 

chart on simulated random data, for detecting increases in the process mean.  The 

dotted line indicates the control limit; red stars show points exceeding the limit. 

 
Figure 1-13: Shewhart Control Chart 

Sample Shewhart Control Chart.  The dashed blue line is the control limit; red stars 
are points exceeding the control limit. 
 
Table 1-1 summarizes for each of the three charts the monitoring statistic (denoted 

Shewhartt, EWMAt and CuSumt), the upper control limit (UCL) for alerting, the 

parameter value that yields a theoretical 5% false alert rate, and a binary output 

indicator that indicates whether an alert was triggered on day t (1) or not (0). Let Yt 

denote the raw daily count on day t.  We consider one-sided control charts where an 

alert is triggered only when there is indication of an increase in mean (i.e., when the 
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monitoring statistic exceeds the UCL).  This is because only increases are meaningful 

in the context of health care seeking counts. 

 
  Shewhart EWMA CuSum 

Monitored 

Statistic 

Shewhartt=Yt EWMAt= 
λYt+ (1-λ)EWMAt-1 

CuSumt=max(0, 
CuSumt-1+Yt- σ/2) 

UCL UCL=µ+kσ UCL=EWMA0+kσ 
s2=λ/(2-λ)σ2 

UCL= µ+hσ 

Output  St= if 
[Shewhartt>UCL] 

Et=if [EWMAt>UCL] Ct=if [CuSumt>UCL] 

Table 1-1: Features of three main control charts 

 
One point to remember is that in biosurveillance, the CuSum and EWMA are "reset" 

after an alert.  In other words, after an alert, the statistic is re-initialized (usually to 0, 

though variants include setting the statistic to the mean observed value or the last 

observed value before the alert).  This is done because the false alert rate determines 

the amount of resources which must be devoted to a system.  Resetting ensures that 

the ATFS is both the average time to first false signal and the average time between 

false signals; thus the overall false alert rate will be 1/ATFS, even though the rate will 

not be constant for each day. 

 

(Reinke, 1991) was one of the first to suggest the use of industrial SPC techniques for 

prospective epidemiologic investigations; he describes both a regression method for 

normalization and a negative binomial Shewhart chart for detecting outbreaks.  Soon 

after, (Hutwagner et al., 1997) used a slight modification of the CuSum for detecting 

Salmonella outbreaks.  In subsequent years, others such as (Radaelli, 1992) have used 

such techniques as the CuSum for detecting rare events, as it can provide increased 

sensitivity for small outbreaks occurring over a period of time (a position recently 

supported by (Fricker et al., 2008b)).  With the growth of biosurveillance in the late 
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1990's, SPC methods became increasingly used in hospitals  (Benneyan, 1998a, 

Benneyan, 1998b) as well as for epidemiologic disease surveillance (Farrington et al., 

1996).  Most of the systems in practice use SPC as the main detection component.  

BioSense uses CuSum at the state level (Bradley et al., 2005), EARS provides three 

Shewhart-based methods (with different sliding windows for the estimated baseline) 

(Hutwagner et al., 2003).  RODS (Tsui et al., 2003) and ESSENCE (Marsden-Haug 

et al., 2007) also use SPC methods.  Some research (and systems such as ESSENCE) 

use distributions other than normal, such as Poisson (Rogerson & Yamada, 2004) or 

negative binomial (Reinke, 1991).  Over the last several years, SPC has become the 

standard method rather than an exception (Woodall, 2006). 

1.4.2. Biosurveillance Surveys and Challenges with Biosurveillance data 

A number of articles have described the various problems with analyzing 

biosurveillance data.  These include  (Burkom, 2003b, Fienberg & Shmueli, 2005, 

Fricker & Rolka, 2006, Shmueli & Burkom, 2009) and several others, usually in 

conjunction with a review of the approaches used to tackle those problems.  The 

problems include inherent noise in pre-diagnostic data, which provides no firm 

conclusion of a specific disease but provides total counts of symptoms which can 

come from a variety of diseases; the fact that a variety of diseases or even non-

diseases such as holidays, celebrity diseases, or weather can influence the counts; the 

non-stationarity of the time series, which vary both over the long term and in the 

shorter terms of annual or weekly patterns; the autocorrelation inherent in the health 

series; the non-normality of the data; and the lack of standards for identifying 

outbreaks and testing algorithms.  These problems cause particular issues for control 
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chart detection methods which assume well behaved normal iid data.  There have also 

been a host of reviews of biosurveillance research.  Buckeridge (Buckeridge et al., 

2004, Buckeridge et al., 2005, Buckeridge, 2007, Buckeridge et al., 2008) continues 

to periodically analyze the state of the art, but many others also provide surveys of 

existing methods (Bravata et al., 2004, Farrington & Andrews, 2004, Reingold, 2003, 

Rolka, 2006, Sonesson & Bock, 2003, Wagner et al., 2001). 

1.4.3. Preprocessing Methods 

As in the industrial setting, control charts are used to monitor time series data to 

detect "special causes" or abnormalities; in this case, such abnormalities are 

potentially indicative of an outbreak. However, currently collected biosurveillance 

data violate most of the assumptions required of data monitored by control charts.  

Underlying all of the SPC methods is the assumption that the monitoring statistics are 

independent and identically distributed (iid), with the distribution generally assumed 

normal (although modifications can be made for statistics with known, non-normal 

distribution). While control charts are very effective for monitoring processes that 

meet the independence and known distribution assumptions, they are not robust when 

these assumptions are violated (Shmueli & Fienberg, 2006).  Thus, alarms triggered 

by control charts applied directly to raw syndromic data can arise not from actual 

outbreaks but due to explainable patterns in the data.  Reports of very high false alarm 

rates from users of current syndromic systems lend evidence to this claim. 

 

The explainable patterns are caused by factors unrelated to a disease. As an example, 

it is quite common for doctors' offices to have reduced staffing on weekends.  
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Therefore, data on daily doctor visits will see an explainable and predictable drop on 

Sundays and a corresponding increase on Monday. Many syndromic data streams 

demonstrate a marked day-of-week (DOW) effect, dropping or increasing in counts 

over the weekends, with an early work-week resurgence or drop.  Holidays and other 

external factors can cause a similar phenomenon.  Even the release of Harry Potter 

books has a measurable effect on hospital admissions (Gwilym et al., 2005). 

 

If the control chart assumptions do not hold, the charts will fail to detect special cause 

variations and/or they will alert frequently even in the absence of special cause 

variations.  Therefore, much research has attempted to preprocess the health data by 

forecasting the expected level and monitoring the residuals.  Many different 

techniques have been proposed to forecast the health data, with varying degrees of 

success.  In the following we describe the main methods used for predicting next-day 

counts. We denote by  the count on day , and by  the forecasted count for day . 

 
Regression models are the most popular method for forecasting daily health series 

counts.  In this case, several time-variant predictors are assumed to combine 

linearly to produce the expected level of health activity on a given day.  More 

formally, the daily counts are modeled as:  

 
  (Eq. 1-1) 

 
where each  is an independent identically distributed normal variable, 

 and the model parameters  are estimated by least squares.  

Predicted counts are then calculated using  
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  (Eq. 1-2) 
 

A number of variations on the basic regression model have also been used.  In 

particular, the choice of predictors varies.  Serfling (Serfling, 1963) proposed a 

way of incorporating annual seasonal patterns by using sine and cosine predictors 

with a period of 365.25 days, e.g., .  While this was proposed for 

retrospective analysis of pneumonia incidence, it can be used for prospective 

modeling as well, for any series which follows a roughly sinusoidal annual pattern.  

Day-of-week dummy variables ( ) are common, as is a linear trend 

term (t) (as in (Brillman et al., 2005)).  A dummy variable for holidays and day-

after-holidays is also sometimes used, although the holiday effect does not always 

follow official holidays (as seen in (Kikuchi et al., 2007)).  Non-linear regressions 

such as Poisson regression, or linear regression of  rather than  are also 

used, under the assumption that the predictors used have a multiplicative rather 

than additive effect on counts (such as in (Kleinman et al., 2004)).  Regression 

forecasting is used in some variant by nearly all existing biosurveillance systems; 

for example, BioSense uses SMART scores (a type of Poisson regression) at the 

zip code level. 

 

7-day differencing, as proposed in (Muscatello, 2004), is perhaps the simplest 

forecasting model.  It models the next day's expected count as the count from the 

same day of week, one week earlier: . 
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Exponential Smoothing is a method, originally developed in the 1950's by Brown 

(Brown, 1959) and others, which uses a weighted sum of past observations to 

predict the next observation, where the weights are exponentially decaying over 

time.  The forecast is given by 

  (Eq. 1-3) 

where  is a smoothing parameter between 0 and 1, that determines the weight 

given to recent observations.  The forecast is easily computed as  

 
  (Eq. 1-4) 

   
Its statistical properties are discussed further in (Chatfield et al., 2001). 

 

ARIMA (AutoRegressive Integrated Moving Average) models are statistical time 

series models for analyzing and forecasting time series data.  While they have not 

often been used in biosurveillance (an exception is (Reis & Mandl, 2003) and 

more recently, (Shtatland et al., 2009)) due to their complexity of implementation 

and difficulty of automation, they seem to be a reasonable method when 

employed. 

 

Holt-Winters multiplicative exponential smoothing  (Chatfield, 1978) is a 

recently adopted method which captures level, trend, and day-of-week effect and 

smoothly changes its parameters over time.  In addition to being easy to 

understand and implement for a large class of data types, it has been shown 

(Burkom et al., 2007) that this method is very effective in the context of 

biosurveillance.  Little data history is needed, and due to its highly adaptive nature, 
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it reduces the need for individual modifications for specific data sources and 

syndrome groupings.  The Holt-Winters method is discussed further in Section 

3.2.3. 

1.4.4. Other Detection Methods 

There have also been a variety of more unusual methods proposed for detection of 

disease outbreaks.  These include methods adopted from machine learning, such as 

the neural network approach in (Adams et al., 2006).  A review of biosurveillance 

ideas from data mining was presented in (Moore et al., 2002).  Some techniques come 

from other disciplines, such as the use of wavelets for describing a time series in 

chemical process control (Shmueli, 2005, Stacey et al., 2005). 

 

Some approaches consider monitoring deviations other than an increase above the 

expected level.  (Nobre & Stroup, 1994) use exponential smoothing to forecast the 

next-day count, but monitor the differences in the first derivative to see if the rate of 

increase is larger than expected.  The moving-F statistic proposed by (Riffenburgh & 

Cummins, 2006) looks for a change in variance.  (Naus & Wallenstein, 2006) look at 

adapting the spatio-temporal scan statistic to a purely temporal detection method. 

 

Bayesian approaches are also gaining prominence.  Wong (Wong et al., 2002, Wong 

et al., 2003a, Wong et al., 2003b, Wong, 2004) suggests using a Bayesian analysis 

over multiple subsets of data (both temporal and geographical) to detect recent events 

of interest, a method which has been incorporated into RODS.  One of the most 

promising new approaches (described in (Ozonoff & Sebastiani, 2006, Martinez-
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Beneito et al., 2008)) uses a Bayesian model with two different settings: zero when 

there is no outbreak, and one when there is an outbreak.  This allows the estimation of 

the likelihood of an outbreak, as well as a sense of its posterior distribution for the 

current day. 

1.4.5. Data Sources and Multivariate Detection 

The question of which data sources to use is also a recurring one.  Most early studies 

use correlation between health data sources and the disease of interest as a way of 

indicating the usefulness of a data source.  This includes over-the-counter electrolyte 

sales (Hogan et al., 2003); over-the-counter medications (Goldenberg et al., 2002a); 

blood donor screenings (Kaplan et al., 2003);  preliminary laboratory tests (Najmi & 

Magruder, 2004, Widdowson et al., 2003); and using influenza-related Internet search 

terms (Polgreen et al., 2008).  A recent study investigates the predictive value of 

various case definitions (Guasticchi et al., 2008) and attempts to compare the 

performance of various data sources for detecting specific diseases.  Similarly, the 

recently announced Google approach (Ginsberg et al., 2009) attempts to 

automatically find a good combination of search terms which leads to maximum 

predictive value. 

 

Recently, the issue of multivariate data streams has been the target of growing 

attention from the CDC and other researchers (Shmueli & Fienberg, 2006).  The 

challenges of biosurveillance are too significant to not take advantage of all available 

information, and the fact that there are generally multiple health data streams which 

can be monitored within a specific geographical area means that they have the 
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potential to gain more information about the indicators of an outbreak.  Some 

research has shown that monitoring multiple data streams can result in a detection 

improvement over univariate monitoring (Lau et al., 2008).  This research includes 

the process of selecting which data sources to use (Mandl et al., 2004) as well as 

determining what the circumstances are for performing different types of multivariate 

alerting combinations (Burkom et al., 2005).  Others have performed research into 

directionally sensitive versions of multivariate detection algorithms (Fricker, 2006, 

Yahav & Shmueli, 2007).  When the multivariate reports are hierarchical, the 

consideration of this hierarchy and its aggregation or disaggregation can also have an 

effect on performance (Burkom et al., 2004).  Special consideration is also given 

when the multivariate time series come from different locations, rather than being 

measures of different syndromes within the same location (Hong & Hardin, 2005).  

Finally, multivariate data can be used to improve forecasting methods; Najmi and 

Magruder (Najmi & Magruder, 2005) used multichannel least-mean-squares (LMS) 

and Finite Impulse Response (FIR) filters, with a recursive fitting algorithm, to 

improve forecasting performance. 

1.4.6. Performance Comparison 

In order to determine which algorithm is most effective at detecting disease 

outbreaks, one must compare the detection algorithms in a reasonable way.  Most 

individual studies use personal data sets and often do not provide comparisons against 

other algorithms.  In evaluating, most authors use a system of inserting simulated 

outbreaks into authentic historical health data and use metrics analogous to those 

described in Section 1.1.2 (Hutwagner et al., 2005b, Kleinman & Abrams, 2006, 
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Stoto et al., 2006, Wallstrom et al., 2005).  Some researchers (such as (Reis et al., 

2003)) evaluate performance slightly differently, by judging detection on a per-day 

basis rather than a per-outbreak basis.  Instead of determining how many outbreaks 

were detected, they measure the proportion of outbreak days on which the algorithm 

alerted.  However, we believe that the purpose of a biosurveillance system is more 

directly measured by how many outbreaks it detects; providing an extra alert during 

one outbreak is less useful than detecting an additional outbreak. 

 

Only recently have there been evaluations attempting to determine what causes 

different algorithms to perform better.  (Burkom & Murphy, 2007b) analyzed the 

effect of different types of data series on different algorithm performance.  (Fricker 

et al., 2008b) conducted a study comparing CUSUM methods against EARS, then 

delved further into comparing CUSUM and Shewhart detection methods on different 

outbreak types.  (Buckeridge et al., 2008) went even further, analyzing the EARS 

methods on the basis of their underlying algorithm qualities (inclusion of a guard 

band and use of previous days' data) to discern the effects on detection performance.  

This sort of analysis represents a growing sophistication in algorithm comparison, 

determining not only which algorithms perform better, but why. 

 

Two competitions have been held in an attempt to compare algorithms' performance 

against each other.  The first was the BioALIRT challenge in 2004, which compared 

different teams' performance in detecting fifteen outbreaks identified by experts over 

data from five American cities (Siegrist & Pavlin, 2004, Siegrist et al., 2005).  Some 
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competitors questioned the accuracy of the labeling of those outbreaks, but the 

competition was very successful in bringing together numerous different 

biosurveillance research teams and comparing their performance on a common 

problem.  More recently, the ISDS (International Society for Disease Surveillance) 

hosted a competition (Burkom, 2010), using data based on Canadian health disease 

outbreaks.  As more data sets become publicly available (either authentic data or 

realistic simulated data as described in Section 1.4.7), such comparisons between 

algorithms will become easier to perform.  By comparing algorithms on the same 

data, over a wider variety of data, the relative performance of algorithms on different 

types of data and outbreaks will become clearer. 

 

Some studies have also been done to test the effectiveness of actual detection systems 

at providing early detection of outbreaks; these studies can be especially valuable, as 

they can provide 'gold standard' data, with days labeled as outbreaks by actual health 

professionals.  (Hope et al., 2008a) performed such an evaluation with an Australian 

biosurveillance system and with the biosurveillance detection after natural disasters 

(Hope et al., 2008b).  Effectiveness tests have also been performed by others on 

influenza (Lee et al., 2002) and an overseas U.S. armed forces system (Meynard 

et al., 2008).  Still, biosurveillance has thus far also failed to live up to the promise of 

a strong detection system with few false alerts, and this failure has been mentioned in 

reviews by (Stoto et al., 2004) and others, as well as by (Sullivan, 2003).   Sullivan 

also suggested that combining pre-diagnostic data with biosensors for disease agents 

would be more effective.  Over the last five years, research has improved the 
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sensitivity and specificity of biosurveillance methods, but there is still progress which 

needs to be made in order for biosurveillance systems to show value for early 

detection. 

1.4.7. Simulating Health Series 

A major barrier to evaluating surveillance algorithms has been data accessibility: 

typically researchers do not have access to biosurveillance data unless they are part of 

a biosurveillance group.  This means that a very limited community of academic 

researchers works in the field, with a nearly impenetrable barrier to entering it 

(especially for statisticians or other non-medical academics).  Furthermore, different 

research groups use different privately held data to test their detection algorithms, 

often based on existing agreements with associated local organizations.  For example, 

Pittsburgh-based researchers at Carnegie Mellon University and the University of 

Pittsburgh use Emergency Department and over-the-counter drug sales data for 

Allegheny County, Pennsylvania (Neill et al., 2005), but the Australian Centre for 

Epidemiology and Research uses influenza cases in New South Wales (NSW), 

Australia (Zheng et al., 2007).  The confinement of each research group to a small 

and limited set of data and the lack of data sharing across groups "leaves opportunity 

for scientific confounding" (Rolka, 2006).  In other words, it makes it uncertain 

whether the difference in results is due to the difference in algorithm or the difference 

in data. 

 

One way to address this problem is to generate simulated data sets which can be 

freely used by different groups of researchers.  While simulated data have their own 
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difficulties, they seem to be a necessity for modern biosurveillance research.  

(Buckeridge et al., 2005) explain that "[they] are appealing for algorithm evaluation 

because they allow exact specification of the outbreak signal, perfect knowledge of 

the outbreak onset, and evaluators can create large amounts of test data."  In order to 

be useful, of course, they must have the same characteristics as authentic data.  In 

Section 5.2, we describe a method for evaluating simulated data on its similarity to 

authentic health data.  Here, we describe the simulation methods which have been 

proposed for use in biosurveillance. 

 

The first implementation of wholly simulated biosurveillance data in the form of daily 

counts is the publicly available simulated background and outbreak data sets by 

(Hutwagner et al., 2005a). The background series are generated from a Negative-

Binomial distribution with parameters set such that "Means and standard deviations 

were based on observed values from national and local public health systems and 

biosurveillance surveillance systems. Adjustments were made for days of the week, 

holidays, post-holiday periods, seasonality, and trend."  Other research, such as 

(Fricker et al., 2008b), has simulated background data using an additive combination 

of terms representing level, seasonal and day-of-week effects, and random noise. 

 

In previous work we developed a multivariate simulation method which includes not 

only seasonal variation and day-of-week effects, but also allows for autocorrelation 

and cross-correlation structure in the data (Lotze et al., 2010).  This allows for testing 

of multivariate methods which take advantage of the relationship between multiple 
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data streams, as well as creating data sets with realistic autocorrelation.  This work, 

including R code and ten simulated data sets, is freely available at projectmimic.com. 

 

(Siddiqi et al., 2007) developed a novel simulation method based on linear dynamical 

systems, also known as Kalman filters.  They model the observed series as a linear 

transformation from a series of latent variables, find a stable linear transformation for 

those latent variables, and use this transformation to recreate similar data and to 

extend it into the future.  They modify standard Kalman filter methods, incrementally 

adding constraints to create a system whose linear transformation remains stable 

(with eigenvalues less than 1).  Most recently, (Maciejewski et al., 2009) developed a 

method which uses locally weighted regression (loess) to establish the total number of 

patients on each day (modeled by day-of-week effects, within-year components, long-

term trend, and noise) and a multinomial model to determine symptoms.  In addition, 

they add location, gender, and age to each simulated case, which allows testing of 

methods which take advantage of this additional information. 

1.4.8. Outbreak Modeling 

Being able to model outbreaks is important both for performing better algorithm 

comparison as well as for creating better detection algorithms. By creating more 

realistic models for the effect of an outbreak over time, one can inject more accurate 

simulated outbreaks; by incorporating these models into the detection algorithm, one 

could potentially have a more sensitive detection method. 
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There are few good recorded examples of actual outbreaks, aside from the yearly 

influenza outbreak (this is perhaps a likely reason for the increased attention to 

influenza detection in recent years).  The classic example of an unexpected outbreak, 

studied retrospectively, comes from the limited data available from an anthrax 

outbreak in Russia (Meselson et al., 1994).  Most research in this direction looks at 

modeling anthrax outbreaks (Brookmeyer et al., 2003, Brookmeyer et al., 2005), 

sometimes looking at its incubation period (Wilkening, 2008) or impact on grocery 

sales (Goldenberg et al., 2002b).   

 

Other modeling research takes a more general approach. One direction is generating 

geographically based outbreaks and modeling spatial transmission (Watkins et al., 

2007).  Another very relevant approach is modeling the impact of actual disease 

occurrence and transmission on emergency department visits (Brillman et al., 2005).  

Similarly (Zhang et al., 2008) suggested a multivariate outbreak simulation method 

which derives multivariate aggregate data from simulated spatiotemporal cases, then 

estimating probabilities of seeking care along various indicators.  A third approach is 

to combine outbreak and non-outbreak periods into a single model (Held et al., 2005).  

In determining the impact and evidence of a disease, the modeling of each step is 

important and can provide improved understanding of disease occurrence and 

detection effectiveness. 

1.4.9. Spatial Detection Methods 

In addition to methods which concentrate on the time series themselves, there has also 

been research into the use of geographic information.  When the information 
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available is not simply a total count, but individual records from each patient 

(including geographical information such as home and/or work zip codes), one can 

attempt to determine not only whether or not there is an outbreak, but also where that 

outbreak might be within the monitored area.  This can also allow more effective 

monitoring; by assuming that outbreak cases will have some geographic 

commonality, one can reduce false alerts from cases with no geographic consistency.  

This methodology seems very promising; however, while we will briefly review the 

literature in this area, this dissertation focuses on statistical detection using temporal 

pre-diagnostic data. 

 

Kulldorff's scan statistic (Kulldorff, 1997, Kulldorff, 2001) is the basis for a majority 

of the research on spatio-temporal disease outbreak detection.  Since its original 

proposal, it has been commented on (Lawson, 2001) and extended in various ways, 

such as multi-level spatial cluster analysis (Wallenstein & Naus, 2004, Que & Tsui, 

2008), elliptical patterns (Kulldorff et al., 2003), irregularly shaped clusters (Duczmal 

et al., 2006), use on ordinal data (Jung et al., 2006), and use under a Bayesian 

framework (Neill et al., 2005, Neill et al., 2007).  The spatial scan statistic has been 

applied to a number of biosurveillance problems including not only ICD-9 codes 

(Lazarus et al., 2002) but also West Nile detection via dead bird cluster analysis 

(Mostashari et al., 2003). 

1.4.10. Other Biosurveillance-related Research 

Other research has focused on other aspects of the biosurveillance process.  For 

example, being able to automatically match patient names against possible near-
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matches in a database (Bilenko et al., 2003, Jaro, 1995, Monge & Elkan, 1996), or 

automatically classifying hand-entered chief complaints into an ICD-9 category 

(Ivanov et al., 2003).  Other areas of research include preserving privacy of health-

related information while still being able to monitor it for epidemiological research.  

The general problem of confidentiality of data is dealt with by (Boyens, 2004, Dobra 

& Fienberg, 2001, Dobra et al., 2003, Domingo-Ferrer, 2002, Duncan et al., 2001), 

with applications more directly related to biosurveillance in (Fienberg, 2001).  Much 

research is also in progress to improve physical disease detectors, either for hospital 

diagnosis or the creation of a city-wide array of aerosol detectors (Casman, 2004).  

While these last areas of research are clearly useful and contribute significantly to the 

success or failure of an actual biosurveillance implementation, they are beyond the 

scope of this dissertation. 

1.5. Contributions of this Dissertation 

The main contribution of this dissertation is threefold: 

(1) to bring together many of the disparate approaches to biosurveillance,  

(2) to introduce new improvements to algorithm development and evaluation, and  

(3) to create a unified statistical framework. 

In Chapter 2 we tie together forecasting and detection into a unified theoretical 

framework.  In Chapter 3, improved forecasting methods are proposed and evaluated.  

Improved detection methods are proposed and evaluated in Chapter 4.  Finally, in 

Chapter 5, we propose a method for evaluating how well simulated data captures the 

traits of the modeled series and also propose an improved visualization for daily 
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detection probability, thereby providing an improved framework for algorithm 

evaluation. 
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Chapter 2 : Forecast Accuracy and Detection Performance 

2.1. Theoretical Framework 

2.1.1. Problem Description 

While many methods have been proposed for detecting disease outbreaks from pre-

diagnostic data, their performance is usually not well understood.  There is no 

theoretical framework for understanding why one method outperforms another, or 

why it works well on one type of data but not another.  In this chapter, we describe a 

framework for providing this understanding, and show that it can effectively predict 

actual performance.  The work in this chapter is based on previously published work 

in (Lotze & Shmueli, 2008b). 

 

We begin to create such a framework by describing each detection algorithm as a 

combination of two components: a forecasting component coupled with a 

monitoring/detection component.  In the forecasting component, the purpose is to 

provide an accurate forecast of the normal underlying health series behavior, which 

would be observed if there is no outbreak.  The detection stage then takes the 

deviations from the forecast (or residuals), and applies a detection method, such as a 

Shewhart or CuSum statistic, in order to determine if the day is significantly higher 

than predicted.  If the statistic is large enough, the system generates an alert for a 

health practitioner. 
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This decomposition into forecasting and monitoring describes nearly all 

biosurveillance detection methods described in Chapter 1.  It clearly describes the 

standard methods of applying a detector directly to the data, where the forecaster is 

simply taken to be a constant.  It also describes any method which pre-processes the 

data in an additive way.  For example, the 7-day difference preprocessor can be seen 

as a forecasting method which takes as its forecast the value from 7 days ago.  The 

detection algorithm is then applied to the residuals from this process, which are 

identical to the results of applying a 7-day differencing normalization to the baseline 

data.  In several cases this sequence of "forecast, then monitor" is not done explicitly. 

Instead, a control chart is altered and then applied to the raw data.  Even in such 

cases, the algorithm can be represented as a combination of forecasting and control 

chart monitoring.  For example, in EARS or BioSense (programs initiated by the 

Centers for Disease Control and Prevention, see Section 1.2.2), a control chart is 

applied to the raw data, but a "sliding window" of recent data is used to set the control 

limits (as suggested in (Hutwagner et al., 2003)).  This combination is equivalent to 

using a moving-average to forecast the next point and then applying a simple 

Shewhart control chart to the forecast errors.  ESSENCE (a Department of Defense 

monitoring system, see Section 1.2.3) uses regression to forecast the next day's value, 

and then explicitly monitors the residuals in a control chart (described in (Lombardo 

et al., 2004)). 

 

By examining the relationship between forecast accuracy and detection performance, 

we can put biosurveillance detection methods in a more general framework for 
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evaluation.  Quantifying the effect of forecast precision on detection performance 

allows one to measure the benefits of improved forecasting and to determine when it 

is worth improving a forecast method's precision at a cost of robustness or simplicity.  

The effect of forecasting precision on Detection Rate is therefore applicable to 

biosurveillance, since it is important to know how much benefit improved forecasting 

will provide.  Forecast methods are characterized by several important properties 

other than precision, such as robustness to non-normality, to outliers, or to outbreaks 

in the training data, as well as generating uncorrelated residuals (as discussed later in 

Section 2.5.2).  When faced with a new forecast method which is more precise but is 

worse in, for example, robustness, the improvement must be quantified to understand 

the practical tradeoff. 

 

Moreover, when residuals violate assumptions, e.g., when they are not independent or 

identically distributed, there are cases when a better overall forecaster will actually 

have worse detection performance for some kinds of outbreaks.  By examining the 

effect of the residual properties on the detection performance, we can delineate these 

circumstances and better understand how to avoid them.  If we can generate general 

rules about the effect of forecast precision on detection effectiveness, it will allow us 

to rank methods based on their actual forecast effectiveness, independent of the 

outbreak type or monitoring method. More importantly, quantifying this effect allows 

us to determine how much more effective the better forecast method will be, specific 

to the type of monitoring being applied and the type and size of the outbreak to be 
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detected.  In addition, by examining properties of the residuals, we can identify those 

cases where a better forecast method will not necessarily produce better detection. 

 

Although central to many applications, the effect of forecast precision on detection 

performance has not been directly studied.  Monitoring and forecasting have been 

discussed as being similar in purpose and approach (by (Atienza et al., 1997)).  The 

two also have been used together for the opposite purpose; rather than using 

forecasting to improve control chart detection, control charts have been used to 

identify issues in the forecast method, starting with (Van Dobben De Bruyn, 1967).  

In this chapter, we examine the quantitative effect of forecasting improvement on 

control chart detection, both in the standard case of independent identically 

distributed normal residuals as well as under various violations of assumptions which 

occur in practice. 

2.1.2. Problem Formalization 

We first consider a series with no outbreak signals; we call such a series the 

underlying background or baseline series, denoted as  ( =1,2,…).  It is this 

underlying background that a forecast method is attempting to forecast.  The 

predictions from the forecast method are ; if we examine the forecast errors, 

, we can estimate the Mean Squared Error (MSE) or Root Mean Squared 

Error (RMSE) and bias of those errors.  This will be useful in evaluating detection 

effectiveness. 
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Since we do not actually know a priori whether or not the data contain an outbreak, 

we denote the actual values in the series as .  When there is no outbreak signal, 

.  Let  be the outbreak signal at time .  In general, , which 

assumes an additive number of cases due to the outbreak signal.  For most days, 

, whereas  only on days where there is an outbreak.  This reflects the 

epidemiological model commonly used in biosurveillance.  If a multiplicative 

outbreak effect is assumed ( , where  only on days where there is an 

outbreak), we can use a log transform and model  instead of , thereby 

converting to an additive outbreak form. 

 

Since we do not know if an outbreak is present in a given series, we will refer to the 

difference  simply as a residual, rather than a pure forecast error.  In the 

absence of an outbreak signal,  will be a pure forecast error and the residuals will 

have variance equal to the forecast method's MSE (assuming unbiased forecasts). 

However, in the presence of an outbreak signal,  will contain an additional term; 

since the forecast method is forecasting only the underlying background, we will not 

call this a forecast error.  The residual can thus be separated into two components, 

.  The first component is the forecast error ( ) and the 

second is the outbreak signal ( ). 

 

An illustration of these components can be seen in Figure 2-1. It shows the original 

series and forecasts in the left panel; the residuals obtained from subtracting the 

forecasts from the original series are shown in the right panel. 
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Figure 2-1: Illustration of Forecasting and Detection 

The left panel shows an original series (black solid line, ) and its forecasts (blue 
dashed line, ).  The right panel shows the residuals from subtracting forecasts from 
the series, in a one-sided Shewhart control chart.  The red dotted line is the addition 
of an outbreak signal ( ). 

2.2. The Idealized Case 

2.2.1. Gaussian iid Residuals with Mean 0 

In our analysis, we first assume that the forecast method generates forecast errors 

with a given MSE.  Initially, we assume that these errors are independent, normally 

distributed, with mean 0 and constant variance. We later relax these assumptions and 

re-evaluate performance. 

 

We now consider an additive outbreak signal that is injected into the monitored 

series.  This outbreak signal is considered to be independent of the background or 

residuals.  Thus, we are in the realm of standard control charts: we are seeking a 
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change in the process mean, given a series of independent identically distributed (iid) 

normal observations.  Let us first consider a single-day 'spike' outbreak signal. 

 

Note that when converting a time series to a series of residuals, if the residuals have 0 

mean, then the residuals' variance is equal to the forecast method's MSE. 

2.2.2. Detection 

First, consider a one-sided Shewhart chart being applied to residuals that are iid, 

.  Setting the upper control limit at UCL means that a false alert will 

occur with ATFS 

  

  (Eq. 2-1) 

 
In the simplest case, the outbreak signal is of constant size, .  In this case, the 

algorithm will detect if .  By using the same transformation as 

above, the control chart will correctly alert on the day of the outbreak if 

, which translates into a Detection Probability equal 

to 

  (Eq. 2-2) 
 
Note that we obtain Equation 2-1 by setting . 

 

Now consider two forecast methods,  and  with RMSEs equal to  and , 

respectively, and where  (i.e., forecast method  provides more precise 

forecasts).  If detectors on each of  and  are set to have the same false alert rate 

( ) we can write .  Denote this level as a: 
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.  Since , then clearly . Thus the 

corresponding probabilities of detection will be  and 

.  Because  and  is monotonically increasing, we 

get , and thus .  Therefore the more 

precise forecast method ( ) will also provide a higher Detection Rate. 

 

The effects are shown in Figure 2-2, where the Detection Rate of five forecast 

methods are compared, all normalized to have the same ATFS.  We see that as the 

forecasting becomes more precise (i.e., the RMSE decreases), the Detection Rate 

increases.  While this relationship is monotonic (a lower RMSE always results in 

improved detection), the amount of improvement depends on the size of the outbreak 

signal ( ). Since  (see Equation 2-1), the improvement 

in Detection Rate from using  over  can be expressed as 

  
 (Eq. 2-3) 
 
Due to the nature of the normal cumulative distribution function , this quantity must 

be computed numerically. 
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Figure 2-2: RMSE Effect on Shewhart Detection 

Comparison of Shewhart chart performance for forecast methods with different 

RMSEs, as a function of outbreak size ( , where  is the RMSE of the 
best forecast method). 
 
We compute similar probabilities for EWMA charts in Section 2.6.1. 

2.2.3. Timeliness 

When outbreak signals last more than one day, there are more chances to detect them. 

This allows consideration not only of the probability of detection, but also the 

distribution of when the outbreak is detected. 

 

We first consider a fixed step increase of size  that starts at time i and continues 

indefinitely ( ). Such an outbreak signal could be the result of an 

environmental contamination (biological or chemical) resulting in a constant increase 
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in the number of illness cases.  Since any control chart method will eventually alert, 

we focus on timeliness over true alert probabilities.  In control chart terminology, this 

is usually referred to as the Average Run Length (ARL), which is the expected 

number of days until an alert is generated. 

 

For the Shewhart chart, each day is essentially a Bernoulli trial in terms of detection, 

with probability of success .  Thus, the number of days 

until detection is a geometric random variable with expected value 

.  (If the alerting day is considered to be included, then 

.) 

 

The relationships between outbreak size and expected delay (i.e., the number of days 

until detection), for forecast methods of varying precision, can be seen in Figure 2-3.  

Results for EWMA  and CuSum charts are in Section 2.6.1 and Section 2.6.2, 

respectively.  Note that the quantity of the performance difference varies significantly 

based on the outbreak size and the amount of forecast improvement; the amount of 

improvement is crucial in determining the practical benefits from using an improved 

forecast method. 
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Figure 2-3: RMSE Effect on Shewhart Timeliness 

Comparison of Shewhart chart timeliness for forecast methods with different RMSEs, 

as a function of outbreak size ( , where  is the RMSE of the best 
forecast method). 
 
We caution that in practice the expected value (ATFOS) may not be the most useful 

metric, since it will incorporate alerts that were generated many days after the 

outbreak signal first appeared in the data. In other words, it averages over the entire 

distribution of possible delays. If a detection must occur within the first  days of an 

outbreak signal in order to be useful to the user, then more effective metrics of model 

performance and comparison are the probability of alert within the first k days and the 

conditional expected timeliness, given that an alert occurred within the first  days.  

This same issue comes up when recognizing the finite duration of outbreaks; if an 

outbreak only lasts  days, then a detection must certainly occur within k days to be 
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useful.  In essence, one must make sure to examine detection probability as the 

probability of practically useful detection, and timeliness as the expectation of delay, 

conditional on a practically useful detection. 

 

An important condition of our results regarding improved forecasting leading to 

improved detection is that the forecast method does not include the outbreak in the 

background data and thereby forecast the combination of background plus outbreak (a 

problem described in (Burkom et al., 2007)).  This can be achieved in practice by 

using a 'guardband window' which means that forecasts are generated for more than 

one day ahead. Forecasting farther into the future generally results in reduced 

precision, which in turn leads to deteriorated detection probabilities and timeliness.  It 

is, in fact, precisely when considering tradeoffs of this kind that one must quantify the 

loss from decreased forecast precision. 

2.3. Unknown Residual Distribution 

2.3.1. Bounds for Residuals with Unknown Distribution 

If the residuals have mean 0 and variance , but their distribution is unknown, then 

we can use a Chebyshev inequality to bound the detection probability.  We will also 

here sometimes use the terms False Alert (FA), where FA=1/ATFS and True Alert 

(TA), where TA=Detection Probability.  We know that at least  of the values 

are within k standard deviations from the mean.  This means that we can guarantee a 

false alert rate FA by setting: 
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  (Eq. 2-4) 

Note that already this is conservative: if the distribution is symmetric, then half of the 

values outside k standard deviations will be low, and so the false alarm rate will only 

be FA/2.  In practice, the UCL should be set by empirical estimation of the 

distribution (using past residuals to determine a UCL that obtains a specified FA). 

 

The condition for alerting is .  Given a distribution for 

, we can compute TA by integrating the distribution of  over the area 

above the control limit, and the actual FA by integrating the distribution of  above 

the control limit.  However, when the distribution is unknown, the Chebyshev bound 

on detection means that  must be strictly larger than the UCL to guarantee detection, 

as the bound gives no guarantee on the probability of occurrence above the mean.  

Thus, the probability of detection is bounded by 

  

  (Eq. 2-5) 

 
Figure 2-4 shows the relationship between reduced RMSE and improved detection, 

even with very conservative bounds. 
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Figure 2-4: Chebyshev Bounds for Detection 

Comparison of lower bounds on Shewhart chart performance for forecast methods 
with different RMSEs, where the residual distribution is unknown. 
 
Obviously, this bound is not a very good one, nor very tight in reality (although using 

the one-sided Chebyshev inequality could be used to tighten this bound, for most 

distributions, the detection probability will approach 1 much faster than seen here).  

However, it does again show that regardless of the distribution of residuals, improved 

forecasting leads to improved detection. 

2.4. Extension to Stochastic Outbreaks 

2.4.1. Importance of Stochastic Outbreak Analysis 

In a real-life disease surveillance scenario, an outbreak will not be of fixed size and 

location.  Instead, it will have a variable impact, infecting more or fewer people 
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depending on uncontrollable factors like traffic, social interactions, or work intensity.  

In addition, a variable number of people will report their symptoms, purchase over-

the-counter remedies, or contact a health advisor.  It is thus more appropriate to think 

of an outbreak as a stochastic realization of a random process, and recognize that the 

outbreak signal will likewise be stochastic. 

 

Research in comparing biosurveillance techniques generally does not take this 

stochastic outbreak signal into account (exceptions include work by Burkom 

simulating stochastic lognormal outbreaks (Burkom & Murphy, 2007a) and WARE's 

CityBN simulator (Wong et al., 2005)), but as we show below, the stochastic nature 

of an outbreak can have a significant impact on the performance of different methods.   

2.4.2. Gaussian Stochastic Outbreak 

We examine and quantify the impact of a stochastic outbreak signal on detection 

performance.  Departing from normal control chart assumptions, we assume that the 

outbreak is not of fixed size, but is instead stochastic, e.g., .  In this 

case, a Shewhart chart has probability of detection equal to 

 

  (Eq. 2-6)  
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Figure 2-5: Stochastic Outbreak Performance 

Detection rate if the outbreak is a stochastic Gaussian spike outbreak with mean 
 and variance .  Each line indicates a forecaster with different 

accuracy. 
 
Figure 2-5 shows the relationship between expected outbreak size ( ) and Detection 

Rate for a stochastic outbreak signal, applying a Shewhart control chart to five 

forecast methods with varying RMSEs.  Compared to the fixed-size spike (as seen in 

Figure 2-2), the increased variance in the outbreak signal reduces the Detection Rate 

for larger spikes, but increases it for smaller ones; this can be clearly seen in Figure 

2-6, which shows directly the change in Detection Rate if the outbreak is stochastic 

rather than fixed.   
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Figure 2-6: Performance Change due to Stochastic Outbreak 

Change in Detection Rate if the outbreak is stochastic rather than fixed, for a 
Gaussian spike outbreak with variance .  Each line indicates the effect on a 
forecaster with different accuracy. 
 
The effect is proportional to the amount of outbreak-size variance, .  In comparing 

two methods, this distortion can drastically affect the relative performance of the two 

forecast methods.  A large advantage of one forecast method over another under 

constant variance may be almost trivial under a different outbreak-size variance. 

2.5. Extensions to Day-of-week Seasonal Variance and Autocorrelation 

2.5.1. Day-of-week Seasonal Variance 

When the forecast precision is non-constant, even if the forecast method produces 

unbiased forecasts, the theoretical analysis in Section 2.2 does not hold.  This can 

occur, for example, when the series of daily counts follows a Poisson distribution 
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with different  parameters for each day of the week.  In this case, even if the mean 

value is correctly forecasted, the variance of the residual will depend on the day's  

parameter.  A similar effect can occur when an additive forecast method is applied to 

a series with multiplicative background behavior.  Although a preliminary log 

transformation of the series may be a reasonable solution, such a transformation will 

also have a significant impact on the outbreak signal. 

 

Seasonal variance can also be induced by deseasonalizing methods which normalize 

values by multiplication. An example is deseasonalizing a series from a day-of-week 

effect using the ratio-to-moving-average method (as described in (Lotze et al., 2008)).   

But if such methods are used appropriately, they may help reduce seasonal variance 

by normalizing the variance of residuals across seasons. However, here too there is 

the danger that a transformation that affects the variance of the residuals will also 

impact the size of the outbreak signal. 

 

If there is periodic variance in the residual series with period , we can represent the 

variance as a set of variances, .  Then the overall variance of the series 

(assuming that the mean residual=0 for each season) is .  If the seasonal 

pattern is such that some days have equal variance, we can represent this as 

, where  is the proportion of days with variance .  Given this mixture 

model for seasonal variance, we can compute the probability of detection.  For a step 

outbreak signal using a Shewhart control chart, we can compute separate probabilities 
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of detection by season; thus, the probability of detection for an outbreak signal of size 

 is 

  

  (Eq. 2-7) 

   
Using Equation 2-2, this quantity is equal to , 

where the UCL is derived from the overall variance of the series. 

 

As an example relevant to biosurveillance, consider the case of a forecaster which has 

high variance on weekdays, but lower variance on weekends, as in Figure 2-7. 
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Figure 2-7: Box-and-whiskers Plot of Seasonal Variance 

A typical example of seasonal variance in biosurveillance residuals.  The box-and-
whiskers plots show the median, 25% and 75% percentiles as a box, the range of the 
(non-outlier) remaining data as whiskers, and further outliers as individual points.  It 
can be seen that the residual variance is much lower on weekends than on weekdays 
(due largely to lower counts on weekends). 
 
For this scenario, the detection probability is: 

 

If the overall variance is kept constant at 100, but the difference between weekend 

and weekday variance is increased, the performance becomes more markedly 

different from the constant variance case.  We can see this difference in performance 

in Figure 2-8; as weekday and weekend variances become more distinct, Detection 

Rates deteriorate for small outbreak sizes, but actually improve for some intermediate 
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outbreak sizes.  At these intermediate outbreak sizes, the increased probability of 

detection when the outbreak occurs on low-variance weekends outweighs the 

decrease in performance on higher-variance weekdays.  As the overall variance is 

increased, this "kink" pattern of deviation from the constant variance case is 

increased. 

 

 
Figure 2-8: Seasonal Variance Effect on Shewhart Detection 

Shewhart chart performance for forecast methods with identical overall variance 

( ), but different residual seasonal variances (diff=difference between 
weekday and weekend residual variance). 
 
If variance is strongly differentiated by season, an improved RMSE will not always 

give better detection performance, depending on the size of the outbreak.  For some 

outbreak sizes, a forecast method with a larger overall RMSE but low weekend 

RMSE can outperform a forecast method with a smaller overall RMSE.  When there 
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is significant seasonal variance, the performance can be evaluated more accurately 

using Equation 2-7 and estimates for the different seasonal variances.  This suggests 

that improved monitoring can be achieved by using different UCLs and/or different 

forecast methods for each season. 

2.5.2. Autocorrelation 

Autocorrelation in a series of residuals means that the residuals on consecutive days 

are linearly correlated.  Autocorrelated residuals indicate that the forecast method did 

not capture part of the dependence structure in the raw data (such as a seasonal 

component). In biosurveillance data, the most pronounced autocorrelation in series of 

residuals is that of lag 1 (the correlation between  and ) and it is typically 

positive.  This can arise in practice because the yearly seasonality has not been 

completely accounted for (and so still has a residual effect on neighboring residuals) 

or because the data arise from an ARMA process which has not been correctly 

modeled by the forecast method.  When we refer to autocorrelation hereafter, we are 

referring to positive autocorrelation. 

 

When data are autocorrelated, the series will have increased variance due to the 

autocorrelation.  In the case of an autoregressive model of order 1 (AR(1)), given by 

 
 , (Eq. 2-8) 
  
the resulting variance is  (Maragah & Woodall, 1992).  The effect of 

autocorrelation on detection performance has been examined in the control chart 

literature. Several papers that look at Shewhart, CuSum, and EWMA charts applied to 
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autocorrelated series indicate that autocorrelation leads to a greater number of false 

alarms, due to the greater variance in the series (Maragah & Woodall, 1992, Woodall 

& Faltin, 1993, Padgett et al., 1992, Noorossana & Vagjefi, 2005) . However, for 

Shewhart charts, if the control chart limits are adjusted to account for the variance of 

the actual autocorrelated series (rather than the variance which would exist without 

any autocorrelation), then the overall probability of detection will remain the same for 

a spike outbreak. We do caution that while this is true unconditionally, the 

probabilities of detection, conditional on the value for the previous day, are not 

identical for each day.  The probability of alert will be larger on days following large 

values, and smaller on days following small values.  As we discuss below, this 

implies that methods taking this conditional probability into account should provide 

improved detection performance. 

 

Although the performance of a Shewhart chart is unaffected by autocorrelation on 

single-day spike outbreaks, there will be a longer average delay in detection when 

considering a multi-day outbreak signal, both for Shewhart and other control charts. 

When the outbreak begins on a day with a small residual, which is too low to trigger 

an alert (even after the outbreak signal addition), the subsequent residuals will likely 

also be too low for the outbreak to be detected.  Thus, average delay will increase for 

higher values of autocorrelation.  These effects are shown in Section 2.7.1. 

 

To determine whether or not a residual series contains autocorrelation, an 

autocorrelation (ACF) plot may be used (with -level bounds ).  When 
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autocorrelation is present, as mentioned above, the conditional probability of 

detection varies by day; this implies that one might use an ARMA-type or other 

model as an additional forecasting step on the residuals from the original forecast 

method (such models are described in (Box & Luceno, 1997, Montgomery & 

Mastrangelo, 1991)).  However, note that in the case of multi-day outbreaks, such 

models will incorporate the outbreak signal into the forecasting, and thus the 

assumption of independence of outbreak and forecast error will be violated. The 

results of such incorporation on the performance of detection algorithms is discussed 

in (Hong & Hardin, 2005).  The decrease in performance from incorporating an 

outbreak must be measured against the gain achieved by reducing the autocorrelation, 

as mentioned at the end of Section 2.2.3; it is precisely these kinds of tradeoffs for 

which this theoretical quantification is useful. 

2.6. Extension to CuSum and EWMA Charts 

2.6.1. EWMA Chart 

We can measure the effect of improved forecasting on EWMA chart detection, as in 

Equation 2-3 for Shewhart charts, by noting that  is a normal random 

variable, with mean 0 and variance as in (Montgomery, 2001): 

 

 , (Eq. 2-9)  

  
where  is the number of time points since the EWMA was started.  After an initial 

startup period, the variance converges to .  The one-sided EWMA 

chart has been shown to have very similar performance to the EWMA approximated 
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by this steady-state normal distribution (Shu et al., 2007).  By an argument similar to 

the Shewhart case (in Section 2.2), we can show that the improvement in detection 

probability from using forecaster  over  can be expressed as 

 

   

  
Note that if =1, this simplifies to Equation 2-3. 

 

Figure 2-9 shows the relationship between outbreak size ( ) and Detection Rate for 

EWMA detectors when applied to five different forecast methods, each with a 

different RMSE. 

 

 
Figure 2-9: RMSE Effect on EWMA Detection 
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Comparison of EWMA chart performance for forecast methods with different 

RMSEs, as a function of outbreak size ( , where  is the RMSE of the 
best forecast method.). 
 
Comparing Figure 2-2 and Figure 2-9 shows that an EWMA chart has a lower chance 

of detecting a spike outbreak compared to a Shewhart chart with the same ATFS, 

when both are applied to residuals with the same RMSE.  The reason is that by giving 

the maximum weight to the most recent observation, the Shewhart chart is more tuned 

to detect spike outbreak signals.  A much larger spike is necessary to achieve the 

same Detection Rate with an EWMA chart.  However, we also note that as a 

weighted sum of observations, the EWMA statistic is more robust to deviations from 

normality, and so may be more effective when the residual distribution is further from 

normal. 

 

We can also examine the impact of detection on the timeliness of the EWMA chart. 

For the EWMA chart, the ARL is computed numerically; we use the method 

described in (Crowder, 1987), numerically integrating the Fredholm equation using 

Gaussian quadrature. 

 

The relationships between outbreak size and expected delay (i.e., the number of days 

until detection), for forecast methods of varying precision, can be seen in  Figure 

2-10. 



 

 74 
 

 
Figure 2-10: RMSE Effect on EWMA Timeliness 

Comparison of EWMA chart timeliness for forecast methods with different RMSEs, 

as a function of outbreak size ( , where  is the RMSE of the best 
forecast method.)  As with Shewhart charts, more precise forecasts result in faster 
detection. 

2.6.2. CuSum Chart 

In a CuSum chart, unlike the Shewhart chart, the monitoring statistics on different 

days are no longer independent, and therefore the number of days until an alert is no 

longer follows the geometric distribution.  However, the ATFS can still be accurately 

determined using numerical methods or approximations. One such approximation is 

found in (Siegmund, 1985), which approximates the ATFS by 

 
  (Eq. 2-10) 
  
This same approximation can provide the ATFOS: 
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  (Eq. 2-11) 

  
where  and . 

 

The relationships between outbreak size and expected delay (i.e., the number of days 

until detection), for forecast methods of varying precision, can be seen in Figure 2-11.  

As with Shewhart and EWMA, more precise forecasts result in faster detection. 

 

 
Figure 2-11: RMSE Effect on CuSum Timeliness 

Comparison of CuSum chart timeliness for forecast methods with different RMSEs, 

as a function of outbreak size ( , where  is the RMSE of the best 
forecast method.)     
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2.6.3. Comparison of CuSum and Shewhart Charts 

One surprising result, as seen in Figure 2-12, is that although the CuSum chart has 

improved timeliness over the Shewhart chart for small outbreak signals (as expected), 

the Shewhart chart quickly catches up and outperforms the CuSum as the outbreak 

size increases.  In addition, this timeliness improvement appears to be bounded 

below, and to hold only for a certain range of outbreak sizes. 

 

 
Figure 2-12: Timeliness Differences Between Shewhart and CuSum 

Expected difference in delay resulting from using a Shewhart instead of a CuSum 
chart, on the same forecast residuals.  When the value is negative, the Shewhart chart 
provides faster expected detection than CuSum. 
 
We can see that at this false alert level, for step outbreaks, there is little reason to use 

a CuSum chart over a Shewhart chart.  This appears to conflict with the result from 

(Fricker et al., 2008b), in which the CuSum is shown to be significantly more 
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powerful at detecting outbreaks than Shewhart.  However, this will be resolved in 

Section 5.3.3, by examining the false alert levels using heatmaps derived from the 

quantitative detection analysis from this chapter. 

 

2.7. Empirical Confirmation of Theoretical Results 

2.7.1. Autocorrelation Simulations 

To study the impact of autocorrelation on detection and timeliness performance, 

residuals were simulated using different levels of autocorrelation, but again 

maintaining the same overall variance.  In the Shewhart charts using spike outbreaks, 

no significant deviation was seen from the theoretical performance, when the control 

limit was set according to the final resulting variance.  Figure 2-13 shows that the 

detection performance is not affected by autocorrelation. 
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Figure 2-13: Autocorrelation Effect on Shewhart Detection 

Shewhart chart performance for forecast methods with different residual 

autocorrelation levels (ACF) but identical overall variance  ). 
 
Figure 2-14 shows a significant deterioration in timeliness for small outbreak sizes 

and high autocorrelation. This is in agreement with (Wheeler, 1991, Wheeler, 1992) 

regarding the relatively small impact of most autocorrelation levels on Shewhart chart 

performance. 
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Figure 2-14: Autocorrelation Effect on Timeliness 

Shewhart chart timeliness for forecast methods with different residual autocorrelation 

levels (ACF) but identical overall variance ). 
 
Results using CuSum charts on autocorrelated data are similar to those for Shewhart 

charts. Detection may be slightly affected for small spike outbreaks (as seen in Figure 

2-15), and timeliness is more strongly affected than in Shewhart charts (as seen in 

Figure 2-16). 
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Figure 2-15: Autocorrelation Effect On CuSum Detection 

Empirical Detection Rate of CuSum charts applied to residuals with the same overall 
variance, but different levels of autocorrelation. The x-axis shows the size of a spike 
outbreak signal, and the y-axis shows the probability of detection. 
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Figure 2-16: Autocorrelation Effect on CuSum Timeliness 

Empirical timeliness of CuSum charts applied to residuals with the same overall 
variance, but different levels of autocorrelation. The x-axis shows the size of step 
outbreak signal, and the y-axis shows the probability of detection. 

2.7.2. Application to Authentic Data 

An authentic health data set is now used to determine the effectiveness of theory 

when estimating performance of currently-used forecast methods.  These tests show 

the applicability of the theory to the evaluation of forecast methods on actual health 

data for detecting disease outbreaks.  If the predicted performance and actual 

performance match well, then the theoretical analysis can be used to accurately 

estimate the detection performance of actual systems; thus, the forecast metrics can 

be a useful comparison metric, without requiring computationally intensive 

simulation studies. 
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To examine the forecast methods' effectiveness, authentic health series data are used, 

with a simulated outbreak signal inserted at various possible dates of outbreak.  This 

methodology is now commonly used in biosurveillance to estimate the effectiveness 

of detection (Goldenberg et al., 2002a, Reis & Mandl, 2003, Stoto et al., 2006).   The 

technique involves using an authentic health data set from a health provider, 

simulating a potential outbreak signal and inserting the simulated additional counts in 

the authentic data.  Then, the detection algorithm is run to determine whether it alerts 

during the simulated outbreak, and if so, how quickly.  By repeating this routine 

multiple times and inserting the simulated outbreak at multiple points, one can 

estimate how the detection algorithm would perform during an actual outbreak. 

 

For this validation, we use data from the BioALIRT program conducted by the U.S. 

Defense Advanced Research Projects Agency (DARPA), described in Section 1.3.1.  

For this study, we use the daily count of respiratory symptoms from civilian physician 

office visits, all within a particular U.S. city.  The first 1/3 of the data (233 days) was 

used for training, and the last 2/3 (467 days) for evaluation.   
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Figure 2-17: BioALIRT Civilian Respiratory Data 

Original data series, split into sections for training and evaluation. 
 
Simulated spike outbreak signals of various sizes (0-300 additional cases) were 

generated and inserted into every day in the evaluation set, creating 467 trial data sets 

for each outbreak signal size.  For each outbreak size, the Detection Rate was 

calculated as the average over all 467 insertions.  An illustration of the process can be 

seen in Figure 2-18. 
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Figure 2-18: Outbreak Injection Example 

Illustration of taking raw, authentic health data series and injecting a spike outbreak 
into three different days, resulting in three test data series.  These evaluation series are 
then used as outbreak-labeled time series for estimating the method's Detection Rate.  
In our implementation, 467 such data series were created for each outbreak size. 
 
Three forecast methods for forecasting next-day daily counts were compared: Holt-

Winters exponential smoothing, 7-day differencing, and linear regression.  For a more 

detailed description of these methods, see Section 3.2.  For each method, the first 1/3 

of the data (233 days) was used for training, and the last 2/3 (467 days) for 

evaluation.  Note, however, that the 7-day differencing has no real "training" to speak 

of, and that both the Regression and Holt-Winters method incorporate all previous 

days when generating a forecast. 
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The RMSE for each forecast method was computed in the training data.  This RMSE 

was used to generate a theoretical performance curve for each forecast method as 

described in Section 2.2.  Actual performance was computed using the method 

described in Section 2.1, using the forecast method for prospective forecasting, 

subtracting the forecast to generate residuals, and applying a Shewhart control chart 

to those residuals. 

 

Results can be seen in Figure 2-19, which compares the actual performance from a 

forecasting method's residuals to the performance which would be expected from the 

theoretical performance for residuals of the same overall RMSE.  When a constant 

UCL was used, the actual performance was somewhat similar to that predicted by 

theory, but seemed to underdetect small outbreaks and overdetect midsized outbreaks.  

This result is similar to that seen under seasonal variance (see Section 2.5.1), which 

reflects the seasonal variance of the residuals (seen in Figure 2-20). 
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Figure 2-19: Empirical Shewhart Detection Performance 

Actual (thin) and theoretical (thick) Shewhart chart performance for forecast methods 
with different RMSEs, assuming constant variance, as a function of outbreak size ( ).  
Solid/black=Holt-Winters, Dashed/red=7-day Diff, Dotted/green=Regression.  Each 
forecasting method has the  for its residuals measured, and is matched with a plot of 
theoretical performance for residuals of the same . 
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Figure 2-20: Residual Means and Seasonal Variance 

Residual variance of the three forecast methods, and variance by day-of-week. 
Seasonal day-of-week variance affects detection performance, and can be accounted 
for by using the formulas in Section 2.5.1. 
 
A further examination was done, with variance computed for each day-of-week and 

performance predicted using seasonal variance computations.  The results are shown 

in Figure 2-21, where an improved fit is seen, especially for the Holt-Winters 

residuals, although there is still some difference on the larger outbreaks. 
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Figure 2-21: Empirical Shewhart Detection Performance With Seasonal Variance 

Actual (thin) and theoretical (thick) Shewhart chart performance for forecast methods 
with different RMSEs, assuming day-of-week variance, as a function of outbreak size 
( ).  Solid/black=Holt-Winters, Dashed/red=7-day Diff, Dotted/green=Regression.  
Each forecasting method has the  for its residuals measured, and is matched with a 
plot of theoretical performance for residuals of the same , with the same day-of-
week residual variance. 
 
This improvement is quantified in Table 2-1, which presents, for each method, the 

average percentage error when using the constant variance assumption versus using 

the seasonal variance correction. 

Method Nonseasonal Seasonal 

Holt-Winters 4.10% 2.70% 

7 day Diff 4.89% 4.41% 
Regression 6.36% 4.07% 

Table 2-1: Average Percentage Error With or Without Seasonal Correction 

The average percentage error in predicted detection rate for each method using the 
theoretical framework, over outbreak sizes from 0 to 300.  For each method, using the 
day-of-week seasonality adjustment results in a more accurate estimate of detection 
probability. 
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In order to compare timeliness, the experiment was repeated using step outbreaks 

instead of spike outbreaks.  Step outbreaks have an additional count which begins on 

a certain day, and lasts indefinitely.  Figure 2-22 compares the timeliness 

performance of real forecast methods to theoretical performance predicted by a 7-day 

seasonal variance model.  The timeliness is worse for small outbreaks, particularly for 

the regression and 7-day differencing.  

 

 
Figure 2-22: Empirical Shewhart Timeliness Comparison 

Actual (thin) and theoretical (thick) Shewhart chart timeliness for forecast methods 
with different RMSEs, assuming constant variance, as a function of outbreak size ( ).  
Solid/black=Holt-Winters, Dashed/red=7-day Diff, Dotted/green=Regression.  Each 
forecasting method has the  for its residuals measured, and is matched with a plot of 
theoretical performance for residuals of the same , with the same day-of-week 
residual variance. 
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The extra delay for regression and 7-day differencing seems to be due to 

autocorrelation: as seen in Figure 2-23, the regression and 7-day differencing 

residuals have larger autocorrelation than Holt-Winters. Alternatively, the overall 

differences may be due to the bias of the residuals (none has mean 0) or their non-

normal distribution.  In spite of these, we see that the forecast methods' performance 

ranking is related to their RMSE ranking, as expected. 

 

 
Figure 2-23: Residual Autocorrelation 

Residual autocorrelation of the three forecast methods.  Y-axes are the same for all 
graphs. The plots show the overall residuals for each forecasting method and a 
zoomed-in portion to show daily detail. 
 
In short, the effect of forecast precision on detection performance for these health 

data is close to expected performance; more precise forecast methods result in 

improved detection, accounting for seasonal variance improves performance 
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estimation, and the amount of difference between forecast methods depends on 

outbreak size. 

2.8. Conclusions 

In this chapter, we have shown that improved forecasting results in improved 

detection, both in terms of probabilities of true alert and in timeliness.  We examined 

the effect of forecast precision on detection performance theoretically and quantified 

the effects under standard control chart assumptions.  We have also examined the 

effects of assumption violation on this relationship, showing that improved 

forecasting does not always result in improved detection, as in the case of seasonal 

variance. And in some scenarios although improved forecasting does result in 

improved detection, the improvement is marginal and might be considered practically 

marginal (especially when considering the cost of using a more precise forecaster). 

We conclude that forecasting should be tuned to best capture the background non-

outbreak behavior, while detection should be tuned to the outbreak signal. However, 

the level of investment in more precise forecasts should be weighed against factors 

such as the required outbreak size, amount of residual autocorrelation, and risks of the 

forecast method capturing the outbreak. 

 

Several questions arise for practical consideration.  First, while we have explored the 

effects of autocorrelation and seasonal variance, we have not explored the effects of 

biased or non-normal residuals aside from providing Chebyshev bounds.  As we have 

seen in the authentic data, biases can arise in actual residuals and can affect 

performance.  Second, one additional bias which has not been considered is the effect 



 

 92 
 

of holidays, days with extremely low values that are not predicted by the forecaster.  

One method for dealing with such cases is described in Section 4.3, but it is also 

important to have a theoretical understanding for its effect.  In addition, while we 

have examined the detection performance for spike outbreaks and timeliness 

performance for step outbreaks, a complete delay distribution would include both 

metrics and give a more complete picture; it would also be relevant to consider 

average and complete delay distributions for other outbreak shapes, such as 

exponential or lognormal rise. Some work on this more complete delay picture can be 

found in Section 5.3.2.  Lastly, we have not considered the quality of the training data 

used for prediction.  Not only should it be possible to apply previous work to give 

expected performance based on the amount of training data (such as the multiplicative 

Holt-Winters accuracy bound given by (Chatfield & Yar, 1991)), but the impact of 

outbreaks contaminating the training data or different guardband widths should also 

be considered. 

 

In conclusion, given the forecasting precision needed for useful detection, the 

question is whether that level of precision is achievable.  This raises the question of 

whether there is enough quality of signal in pre-diagnostic data.  The random 

elements in the data impose a limit on how well we can forecast, how low an RMSE 

we can achieve, and ultimately on how well we can detect.  It may be that, due to the 

high noise in most pre-diagnostic data, relatively high false alert rates are required in 

order to detect outbreaks in a timely manner. For example, if the desired performance 

is to have a false alert once every two weeks, and have a 95% chance of detecting a 
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spike outbreak impacting 100 people, to achieve this one would need normal 

residuals with a forecast RMSE < 32. In contrast, the best forecast method used here 

has RMSE = 59 on actual data.  If we cannot accept a higher false alert rate, then we 

must either find a way to further improve our forecast methods (e.g., by incorporating 

other sources of information or by using ensembles), or tailor our detectors to specific 

outbreak signals. 
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Chapter 3 : Improved Forecasting Methods 

3.1. Introduction 

Modern biosurveillance relies on multiple sources of both pre-diagnostic and 

diagnostic data, updated daily, to discover disease outbreaks.  Intrinsic to this effort is 

the assumption that the data being analyzed contain early indicators of a disease 

outbreak. However, in addition to outbreak indicators, biosurveillance data streams 

include factors such as day-of-week effects, seasonal effects, autocorrelation, and 

global trends. These explainable factors obscure outbreak events, and their presence 

in the data violates standard control chart assumptions.  Monitoring tools such as 

Shewhart charts, Cumulative Sum charts, and Exponentially Weighted Moving 

Average control charts will alert largely based on these explainable factors instead of 

on outbreaks. A popular solution is therefore to remove explainable factors from a 

series, thereby obtaining a series of residuals which do not contain explainable 

factors.  Obtaining such residuals is typically done by forecasting the expected level 

based on the explainable factors. The forecast residuals should then be composed of 

outbreak signals (if they exist) and a smaller degree of variation, making outbreak 

signals easier to detect.   

 

By evaluating the residuals from a forecaster in terms of their RMSE, ACF, and Day-

of-Week Seasonal Variance, we can estimate their performance using the methods 

presented in Chapter 2.  In this chapter, we first describe some common existing 

forecasting methods and compare them on these metrics, then present, develop, and 

evaluate new methods for forecasting. 
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As discussed in Chapter 2, these residual patterns can negatively affect the 

performance of anomaly detection from forecast residuals.  This can affect the results 

even to the point of making a less accurate but more well-behaved forecaster be better 

than a more accurate forecaster with less well-behaved residuals.  Because they can 

have such a dramatic impact on the quality of the resulting control chart performance, 

determining the most effective method for removing these patterns from a given data 

set is very important. The tools used in this section show quantitative and qualitative 

methods for comparing methods' applicability to a syndromic data series and 

effectiveness at generating residuals with low RMSE, ACF, and Day-of-Week 

Seasonal Variance. 

 

We use those same tools to evaluate ways of improving forecasting methods, 

including using cross-series covariates; using additional temperature information; and 

combining multiple forecasters into an ensemble forecast. 

 

While we consider only forecast methods here, more general preconditioning 

methods can also be used to remove some of these explainable effects by more 

advanced methods.  Graphical methods to analyze a data set, such as those used in 

Section 1.3, can also examine the resulting preconditioned data set for its adherence 

to the detection assumptions (Lotze et al., 2008).  Such methods may also be 

incorporated into the detection; one such method is described in Section 4.3. 
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3.2. Current Forecasting Methods 

There are a number of forecasting methods which are in use in modern 

biosurveillance.  These include model-based methods, which assume a particular 

model and estimate the parameters in that model, and data-driven methods, which fit 

the data non-parametrically rather than attempting to model the causes. The methods 

can also differ in their global versus local nature.  Here, we discuss the most common 

methods. 

3.2.1. Linear regression models 

 
Regression models are a popular method for capturing recurring patterns such as day-

of-week, seasonality, and trends (Rice, 1995). The classic assumption is that these 

patterns do not change over time, and therefore the entire series can be used to 

estimate them. To model the different patterns, suitable predictors are created: 

Day-of-week effects can be captured by six dummy variables, each representing 

one day of the week (relative to the remaining baseline day).  If there is only a 

weekday/weekend effect, a single dummy variable can be used. 

A global linear trend can be modeled using a predictor  that is a running index 

( =1,2,3,…).  Other types of trends such as exponential and quadratic trends can 

also be captured via a linear model by transforming the response and/or index 

predictor, or by adding transformations of the index predictor (such as adding  

to capture a quadratic trend). 

Seasonality is most frequently modeled by a sinusoidal trend. The CDC uses a 

regression model that includes sine and cosine functions to capture a cyclical 
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trend of mortality rates due to influenza (Serfling, 1963, CDC, 2006), although 

these terms will not be significant in series without pronounced seasonality. 

Another regression-based method for dealing with seasonality is to fit local 

regression models, using past data from the same time of year (Farrington et al., 

1996). Note  that explicit modeling of seasonal variation assumes that the 

seasonal pattern remains constant from year to year. 

Holidays can be captured by constructing a dummy variable for holidays or by 

treating holiday days as missing values. 

 
From our experience as well as other reports in the literature (Brillman et al., 2005, 

Burkom et al., 2007), we find that seasonality effects tend to be multiplicative rather 

than additive with respect to the response variable.  Thus, a linear model where the 

response is transformed into a natural log ( ) is often appropriate.  The regression 

estimate for a day is transformed back to the original scale to create the forecast.  For 

our data series, we fit a linear regression and a multiplicative regression, and found 

that the multiplicative version better captured the day-of-week effect. Both are 

reported below. 

 

Currently, several biosurveillance systems implement some variation of a regression 

model. ESSENCE uses a linear regression model that includes day-of-week, holiday, 

and post-holiday indicators (Marsden-Haug et al., 2007) and BioSense uses a Poisson 

regression with predictors that include a linear trend, sine and cosine effects for 

seasonality, month indicators, DOW indicators and holiday and day-after holiday 

indicators (Bradley et al., 2005). 
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The regression model for our data includes daily dummy variables (Monday, 

Tuesday, Thursday, Friday, Saturday, Sunday) to account for the DOW effect, a 

holiday indicator (Holiday), an index variable (index) to capture a linear trend,  daily 

average temperatures (Tavg, a method described in Section 3.5) and monthly dummy 

variables (Jan, Feb, Mar, Apr, May, Jul, Aug, Sep, Oct, Nov, Dec) to remove 

seasonality.  

 

The main advantage of regression modeling is that it provides a general yet powerful 

method to remove variation due to factors unrelated to outbreaks.  It is relatively 

effective at removing both yearly seasonality and day-of-week variation. However, it 

requires a fairly large amount of data for obtaining accurate estimates, especially for 

long-term patterns.  Regression is most effective when its assumptions are met: in this 

case, when the relationship between the predictors (such as day-of-week or year) are 

consistent over time.  While the day-of-week patterns are fairly stable (outside of 

holidays), some annual patterns can significantly fluctuate over time.  In particular, if 

influenza is not intended to be detected by the system, the timing of influenza's initial 

growth and its scale of impact are not consistent from year to year, and so its 

significant impact is difficult to model using regression. 

3.2.2. Differencing 

 
Differencing is the operation of subtracting a previous value from a current one. The 

order of differencing gives the vicinity between the two values: an order 1 
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differencing means that we take differences between consecutive days ( ), 

whereas an order 7 differencing means subtracting the value of the same day last 

week ( ). This is a popular method in time series analysis, where the goal is 

to bring a non-stationary time series closer to stationarity (Brockwell & Davis, 1987). 

Differencing has an effect both on removing linear trends as well as removing 

recurring cyclic components. In the context of syndromic data, the first instance 

where differencing was suggested is in (Muscatello, 2004). 

 

In biosurveillance data, the DOW effect can be best accounted for by using an order 7 

difference.  The forecast is simply the value from 7 days ago, and the residual is 

simply the difference between the value on the current day and the value 7 days ago. 

In addition, we explored accounting for holidays by removing the values on holidays, 

and then obtaining differenced values for the 7th day following a holiday by 

differencing at lag 14 (i.e., subtracting the value from two weeks prior). This 

improves the method by removing outliers from known (holiday) causes. 

 

The main advantage of differencing is that it is easy and computationally cheap to 

perform, and so provides an excellent basis for comparison.  It is very effective at 

removing both weekly and monthly patterns but can result in abnormally high results 

after abnormally low points in the original data (called "negative singularities" by 

(Zhang et al., 2003)). Another side-effect of seven-day differencing is that it creates 

strong weekly partial autocorrelation effects and can increase the variance in the data 

if there is little or no existing DOW effect. 
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3.2.3. Holt-Winters exponential smoothing 

 
The Holt-Winters exponential smoothing technique is a form of smoothing in which a 

time series at time t is assumed to consist of four components: a level term , a trend 

term , a seasonality term  and noise. The k-step ahead forecast is given by 

  (Eq. 3-1) 

where M is the number of seasons in a cycle (e.g., for a weekly periodicity M=7). The 

three components , , and  are updated, as new data arrive, as follows: 

  (Eq. 3-2) 

where  and  are smoothing constants that take values in [0,1].  Each component 

is updated at every time step, based on the actual value at time .  The components are 

initialized as , , and . 

 

For our data we use the multiplicative seasonality version because the seasonal effects 

in our syndromic time series are generally proportional to the level . An additive 

formulation is also available (Chatfield, 1978, Holt, 1957). 

 

The principal advantage of this technique is that it is data-driven and highly 

automatable. The user need only specify the cycle of the seasonal pattern (e.g., 

weekly), and the three smoothing parameters. The choice of smoothing parameters 

depends on the nature of the data and the degree to which the patterns are local versus 
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global. A study by (Burkom et al., 2007) considered a variety of city-level time series, 

both with and without seasonal effects.  They recommend using the smoothing 

coefficients  and  for seasonal series and 

 for series without yearly seasonality. Following this 

guideline, we used the first settings for each series that exhibited a one-year 

autocorrelation higher than 0.15 (since a series with yearly seasonality will 

significantly correlate with itself at one year intervals), and the second setting 

otherwise.  In addition, we applied the modification suggested in (Burkom et al., 

2007), which does not update the parameters if the actual value deviates from the 

prediction by more than 50% (to avoid the influence of outliers). 

 

The Holt-Winters method is very effective at capturing yearly seasonality and weekly 

patterns. Although it is not straightforward to tune the smoothing parameters, the 

settings provided here proved generally effective for our syndromic data. One point 

of caution should be made. As in any method that produces one-step-ahead 

predictions, a gradually increasing outbreak is likely to get incorporated into the 

background noise, thereby masking the outbreak signal. One solution is to generate 

and monitor -day ahead predictions ( ) in addition to one-day-ahead 

predictions. 

3.3. Evaluation of Current Forecasting Methods 

 

In this section, we compare the current forecasting methods described in Section 3.2.  

We use the mathematical foundation from Chapter 2 to perform the analysis.  Since 
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we are using a forecasting method, we can predict its performance using three 

metrics: the root mean squared error (RMSE), autocorrelation, and seasonal variance.  

The first two are easily measured.  For the third, we determine the residual standard 

deviation for each day-of-week, and then take the standard deviation of those 

individual values.  While not directly applicable to assessing detection performance, 

this metric can be used to compare different forecasting methods.  Thus, we can 

create a simple table showing the performance of each method on the various health 

data.  Table 3-1 shows the performance of each method on sales of throat lozenges. 

 

  regression log_regress 
holt-
winters 7dayDiff 7dayDiff_holi 

RMSE 171.04 176.26 125.53 198.54 171.69 
ACF 0.55 0.55 0.14 0.48 0.59 
Weekly 23.17 25.23 32.41 37.63 19.09 

Table 3-1: Throat Lozenge Forecast Performance Metrics 

Forecast performance metrics for throat lozenge sales, comparing five current 
forecasting methods applied to biosurveillance data. 
 
To show information on multiple series at once, we can also create small-multiples 

histograms.  In these graphs, each histogram shows the distribution of one statistic for 

one method, over the different series in a data set, as well as printing the mean.  For 

example, Figure 3-2 shows this for the OTC medication sales described in Section 

1.3.2.  The first column contains the histograms of the method's RMSE over each of 

the 8 OTC series.  Each row has the results for one method.  Over the 8 series, the 

residuals from using a regression forecaster had a mean of 77.64, while regression on 

the log values had a mean RMSE of 84.30. 

 

Figure 3-1, Figure 3-2, Figure 3-3, and Figure 3-4 show the methods' performance 

over the different data sets (all 3 authentic data sets combined, OTC medication sales, 
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ED visits, and BioALIRT, respectively).  From these comparisons, it is clear that 

Holt-Winters consistently outperforms regression and differencing not only in having 

low RMSE, but also in terms of low autocorrelation and low day-of-week seasonal 

variance. 

 

Figure 3-1: Forecasting Comparison Overall 

Comparison of different forecasting methods on the OTC, ED, and BioALIRT data 
sets combined.  Each histogram shows the distribution of the residuals for one 
method, for one metric, across all the data series in the data set.  The mean value 
(over all data series) is also printed above each histogram. 
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Figure 3-2: Forecasting Comparison for OTC 

Comparison of different forecasting methods on the OTC medication sales data set.  
Each histogram shows the distribution of the residuals for one method, for one metric, 
across all the data series in the data set.  The mean value (over all data series) is also 
printed above each histogram. 
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Figure 3-3: Forecasting Comparison for ED 

Comparison of different forecasting methods on the ED syndromes data set.  Each 
histogram shows the distribution of the residuals for one method, for one metric, 
across all the data series in the data set.  The mean value (over all data series) is also 
printed above each histogram. 
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Figure 3-4: Forecasting Comparison for BioALIRT 

Comparison of different forecasting methods on the BioALIRT data set.  Each 
histogram shows the distribution of the residuals for one method, for one metric, 
across all the data series in the data set.  The mean value (over all data series) is also 
printed above each histogram. 

3.4. Cross-Series Covariates 

In most biosurveillance data, there are a number of indicators which are tracked at the 

same time.  By using this additional data, we can improve the forecasts of the health 

series we are interested in (presumably the one we expect to be impacted by an 

outbreak).  In over-the-counter purchase data, there are multiple data categories such 

as throat lozenge sales, headache medicine sales, and liquid decongestant sales.  In 

emergency room counts, there are counts of multiple symptoms.  These data will be 

impacted by many of the same explainable effects which impact the series of interest.  

In particular, they will both be impacted by effects which are not related to the 
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outbreak, but which may not be recorded in the other predictor variables.  For 

example, if there is a storewide three-day sale, then during those three days, there will 

be an increase in OTC sales across all types.  This also applies to more consistent and 

subtle factors, such as the fact that one on-duty nurse may be more efficient at 

admitting patients than others, resulting in an increased number of patients overall 

during their shift.  Because of this joint influence by explained factors, using other 

associated health series as predictors can be used to remove underlying factors which 

are not measured, but which will have an impact on the series of interest. 

 

The main method used here for incorporating information from other relevant series 

is standard linear regression.  Although many other methods are possible, linear 

regression is a standard first option and should demonstrate whether or not cross-

series information can be used to improve prediction.  For this reason, a multiple 

regression prediction method, to be used as the baseline (excluding cross-series 

information), is performed with the following predictors: 

 
• six dummy variables, each representing one day of the week 

• a predictor t that is a running index ( ) 

• yearly sine term 

• yearly cosine term 

 
The prediction model is applied such that for each day, coefficients are estimated 

using all previous days, and then a prediction is made for the next day using those 

estimated coefficients.  To determine the improvement due to using information from 
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other series (hereafter referred to as cross-series covariates), a separate regression 

model is fit using the same predictors plus additional predictors for each related series 

from the previous day.  For example, when forecasting civilian gastrointestinal visits, 

two additional predictors are added: 

• military gastrointestinal visits from the previous day 

• gastrointestinal prescriptions from the previous day 

A comparison of cross-series and univariate regression models, and Holt-Winters 

exponential smoothing is given in Figure 3-5. 

 

 
Figure 3-5: Forecast Comparison for Cross-Series Regression 

Comparison of forecasts from using cross-series predictors (rather than univariate 
predictors), on the combined authentic data sets. 
 
The use of cross-series covariates (other series used as predictors) to improve the 

forecast gives a significant improvement in terms of RMSE, and a striking 
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improvement in autocorrelation.  When using such a technique, one must take care 

that the outbreak of interest will not occur over all monitored series--in such a case, 

this could result in diminished performance by effectively filtering out the outbreak.  

In general, however, by improving the regression techniques, or adapting other 

methods to utilize covariate series, biosurveillance methods should see an 

improvement in forecasts and a corresponding improvement in detection. 

3.5. Using Temperature as a Predictor 

Regression models can also be used to integrate external information that can assist in 

removing explainable patterns. For example, seasonal patterns tend to be highly 

correlated with temperature.  Figure 3-6, which shows counts of daily respiratory 

complaints and the average daily temperature, demonstrates this relationship. There is 

a strong negative relationship between temperature and sales: as the weather gets 

colder, more cough remedy drugs are sold.  

 

In many cases, daily temperature has a significant relationship with disease.  While 

the link between weather and disease has long been known (the relationship is clear in 

Figure 3-6), it has only recently been modeled biologically; for example, it has been 

recently shown (Lowen et al., 2007) that the lower temperatures in winter contribute 

to increased flu transmission  by increasing the amount of time the flu virus can 
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survive. 

 

Figure 3-6: Temperature and Respiratory Visits 

Timeplot showing counts of daily counts of military respiratory complaints (in black) 
and the average daily temperature (in dotted red).  Both series have been 
standardized, in order to be plotted on the same graph. 
 
Temperature and other weather data can be extracted from NOAA records, available 

online from the NOAA National Climate Data Center, 

http://www.ncdc.noaa.gov/oa/ncdc.html.  The comparisons below use NOAA station 

records as the source of weather data.  The use of temperature as a predictor is not 

found elsewhere in biosurveillance literature, but promises to be useful and relevant 

in forecasting health series levels.  We show a comparison, using a regression 

forecaster without temperature (using daily dummies, trend index, and yearly sine and 
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cosine terms) as compared to one which has the average temperature added as an 

additional predictor.  Figure 3-7 shows the results. 

 

 
Figure 3-7: Forecast Comparison for Temperature Regression 

Comparison of regression with temperature (top), regression without temperature 
(middle), and Holt-Winters (bottom) forecasters, as applied to the combined authentic 
data sets. 
 
Temperature clearly has a significant impact on reducing RMSE, autocorrelation, and 

day-of-week seasonal variance.  This is impressive, given that it occurs even when 

the original regression has sine and cosine terms for seasonality.  This shows that 

temperature is a more tightly correlated predictor with disease than simply an annual 

pattern.  It is worth noting that the addition of temperature alone is not sufficient to 

make vanilla regression competitive with Holt-Winters for forecasting biosurveillance 
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data.  However, the strength of its improvement indicates that temperature can be 

used to significantly improve other methods' results as well. 

3.6. Ensemble Forecasting for Biosurveillance Data 

3.6.1. Ensemble Method 

There are many different forecasters available for use with biosurveillance data. None 

is perfect for all types of biosurveillance data or on all days throughout the year.  

Because of this, we should be able to take advantage of each individual forecaster's 

strengths and create a combined forecaster which is better than any of the individual 

forecasting methods.  It is this concept which we explore as we develop an ensemble 

forecaster for biosurveillance data.  The work in this section is based on previously 

published work in (Lotze & Shmueli, 2008a). 

 

Multiple forecasters are generated for each time series.  For each day, the linear 

combination of forecasters which has the minimum squared error on past days is 

determined; this can be found by running a simple linear regression using the past 

time series values, with the past forecasts as predictors.  The resulting linear 

combination is used to combine the forecasts, creating an ensemble forecast value for 

the next day.  Residuals are then generated by subtracting the forecast from the 

observed value for each day. 

 

Specifically, if we have  forecasters, , each making forecasts on days , 

where forecaster  makes forecasts , then the ensemble forecaster, for day t, 
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provides the forecast , where the  

values are chosen to minimize the squared error on past days, .  The 

residual value for day t is then . 

 

As the nature of the series changes over time, each of the forecasters has a different 

forecast accuracy level.  By changing the linear coefficients to reflect this, the 

ensemble forecaster adapts to take advantage of the local accuracy of different 

individual forecasters. 

3.6.2. Results 

For these results, we used three methods: a 7-day difference, a Holt-Winters 

Exponential Smoother, and a linear regression.  The linear regression used as 

predictors day-of-week dummy variables, cosine and sine seasonality terms, and a 

linear index term.  The analysis was run on three data streams from the ISDS contest 

(described in Section 1.3.4): 

1. Patient emergency room visits (ED) with gastrointestinal symptoms  

2. Aggregated over-the-counter (OTC) anti-diarrheal and anti-nauseant sales  

3. Nurse advice hotline calls (TH) with respiratory symptoms  

Recall that each of these series had five years of non-outbreak data.  Forecasting 

methods were trained on two years of data, and their RMSE tested on the last three.  

The ensemble method had the lowest RMSE on each series.  Results are in Table 3-2.  
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  ED OTC TH 
Regression 20.18 113.47 6.08 
7-day Diff 23.62 135.01 8.12 
Holt-Winters 18.20 110.12 6.38 
Ensemble 18.05 103.66 5.94 

Table 3-2: Ensemble RMSE Comparison 

RMSE for regression, 7-day Diff, Holt-Winters, and ensemble forecasters, on ISDS 
contest data.  Ensemble has the lowest RMSE in all cases. 
 
Figure 3-8 shows the distribution comparison for the ensemble method over the 

BioALIRT data set.  Its results are approximately the same as the best method, Holt-

Winters.  When there are more methods with comparable performance, the ensemble 

method should be able to gain further improvement by combining them. 

 

 
Figure 3-8: Forecast Comparison for Ensemble Forecast 

Comparing RMSE, autocorrelation, and weekly variance for ensemble, regression, 7-
day diff, and Holt-Winters on the combined authentic data sets.   
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3.7. Conclusions and Future Work 

We have proposed and examined several new methods and improvements to existing 

methods for forecasting biosurveillance data.  All of these methods can be used to 

improve the forecasting of biosurveillance data, and thus to improve detection.  In 

addition, we have presented a way to display the forecasting results and compare 

them on forecast accuracy, autocorrelation and day-of-week seasonal variance. 

 

Although we present visualization tools to improve the performance of different 

forecasters, we also caution that domain expertise will also be necessary to create 

improved forecasters.  For example, the day-of-week effect can often be explained by 

the fact that many hospitals dramatically reduce staffing on weekends (Tarnow-Mordi 

et al., 2000, Czaplinski & Diers, 1998, Kovner & Gergen, 1998, Blegen MA, 1998, 

Strzalka & Havens, 1996, McCloskey, 1998, Archibald et al., 1997), and so counts 

are generally much lower on weekends.  Marketing knowledge can tell us that 

grocery shopping is more popular on weekends than on weekdays.  And for both 

types, holidays always have exceedingly low counts (except for some areas such as 

those with high-risk sports); domain expertise can often distinguish between an 

official holiday and an observed holiday impact.  Domain expertise is an invaluable 

tool for explaining and accounting for explainable patterns in biosurveillance data.  

Although it is tempting to completely automate the analysis and preprocessing of 

syndromic data series, human intervention is still a critical part of the solution. 
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Although we focus here on data that are used in temporal monitoring using control 

charts, such preprocessing can also be helpful in spatial and spatio-temporal 

monitoring, when an underlying iid assumption exists, such as in the widely-used 

spatio-temporal scan statistic (Kulldorff, 2001). 

 

There are still a number of forecasting improvements which we have not considered 

here, but which could be quite promising.  For example, robust forecasting methods 

(which reduce the influence of outliers in the training data) may also be helpful, 

particularly in dealing with unmarked holidays, past outbreaks in the training data, or 

other unexpected changes in behavior, such as special sales or otherwise busy 

shopping days.  In addition, while we have evaluated other models such as the COM-

Poisson (Shmueli et al., 2005) on health data, but found their performance lacking, 

further modification of these methods could provide an effective forecaster.  In 

addition, our earlier work on wavelets (Lotze et al., 2006) indicates that their 

performance is competitive, providing a good potential starting point for 

improvement.  Similarly, we have only briefly touched on the topic of sliding window 

methods, which can be used to improve forecasting when the data structure changes 

over time, such as in the case of seasonal covariance.   

 

We are also concerned with the ability of cross-series forecasters to respond to 

seasonal covariance, since these methods assume a constant relationship between the 

series.  Analysis to determine the robustness of different forecasters to seasonal 

covariance should be undertaken. 
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One future direction is to create an automated application that uses these forecasting 

methods to explore and categorize each data series, providing recommendations and 

rationales for various methods to the end user. This automated expert system could 

help practitioners determine the methods which would best forecast their data, while 

allowing them to include domain knowledge.  Such a system could perform this 

function by analyzing the statistics above, selecting appropriate forecasting methods, 

and then displaying graphical plots to illustrate the reasons for the each suggested 

method. The user would then be able to assess which patterns are reasonable in a 

particular data set, and based on the system's output, to choose the preferred 

forecasting operation(s). 

 

In our analysis, we assumed that there were no known outbreaks in the baseline data. 

However, it is obvious that the data contain seasons of influenza which affect both 

ED visits and OTC sales. The problem of unlabeled data, in the sense that we do not 

know exactly when a disease outbreak is present and when there is no disease, is a 

serious one for both modeling and performance evaluation.  A related issue that arises 

in monitoring daily data is that of gradual outbreaks.  Autocorrelation between days 

(in particular, 1-day autocorrelation) should also be examined and controlled for, in 

order to approach the statistical independence assumption required for standard 

control charts.  However, a gradual outbreak will also increase the autocorrelation 

between days (as a rising number of people will show symptoms).  It is therefore 

important to remember the danger of embedding the outbreak signal into the 
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background data.  As proposed earlier, one solution is to examine predictions that are 

farther into the future, and also to use a "guard band" that avoids the use of the last 

few days in the detection algorithm (Burkom et al., 2004). 
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Chapter 4 : Improved Detection Methods 

4.1. Introduction 

In Chapter 1, we described the purpose of biosurveillance as detecting disease 

outbreaks in a timely manner with few false alerts. We also defined the metrics for 

evaluating detection.  In Chapter 2, we showed how improved forecasting could result 

in improved detection, and in Chapter 3, we described some methods to improve 

forecasting of baseline biosurveillance health data. In this chapter we describe 

methods that are aimed at improving the detection step that follows the forecasting 

step.  We present three categories of methods for improved detection.  The first 

category (in Section 4.2) consists of three related methods for improving detection 

when one has access to multiple series of health data; the outbreak signal may appear 

in either individual or multiple series.  The second category (in Section 4.3) considers 

post-processing techniques to deal with the day-of-week seasonal variance issues 

presented in Chapter 2.  Finally, Section 4.4 examines a fourth category of methods, 

which are based on optimizing detection of specific outbreak patterns; this is useful 

when the type of outbreak of interest and its signature in the data are specified. 

4.2. Multivariate Outbreak Methods 

4.2.1. Combination Methods 

When a disease outbreak appears in multiple series, combination methods can provide 

an improved way to detect such outbreaks.  Combination methods are used to 

combine multivariate series measuring the same syndrome into a single univariate 

series to measure that syndrome.  This is done in order to reduce the variance of the 
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series and improve the strength of the syndromic signal component relative to the 

variance due to noise. 

 

As a simple example of this idea, consider the case where there are  series . 

Each is an independent noisy measure of the underlying signal  with identical 

independent variance, according to the model , where 

.  Then by taking the mean of these series, we can reduce the 

variance.  If , then this is an unbiased estimator of the 

underlying syndromic signal  with lower variance than any of the individual 

univariate series (each univariate series has variance , but the combined series has 

variance  and standard deviation ). 

 

One can see that different methods of combining these series will have different 

effects depending on the expected outbreak signal.  While the variance of the 

combined series will be reduced, if the outbreak appears in only one of the J data 

series, then the resulting increase in  will be only  times its size in the single 

series.  Thus, we will have only a slight increase in our chance to detect it. (Although 

the outbreak signal is reduced to  its size, this must be compared to the standard 

deviation .  The formulas in Chapter 2 can be used to calculate the 

improvement, which depends on the false alert level as well as the size of the 

outbreak relative to the square root of the number of series.)   
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If the outbreak occurs in all series, then its appearance relative to the standard 

deviation will be  times its size in any individual series, so we will have a much 

improved chance of detection.  In order to determine the effectiveness of a method, 

we compare its performance to other methods on the same data; we will do this when 

the outbreak occurs in single series as well as in all series.  A natural comparison for 

any multivariate combination method is against multiple univariate tests, where each 

series is tested separately. 

 

There has been some scattered work done on multivariate methods in biosurveillance, 

but the area is largely incomplete.  (Burkom et al., 2004) analyzes several 

multivariate and multiple univariate methods on the DARPA BioALIRT data 

described in Section 1.3.1.  However, it stops short of comparing the performance 

over multiple types of outbreaks, to determine when one method would be preferred 

over another.  A working paper (Yahav & Shmueli, 2007) compares Hotelling's  

with directionally sensitive multivariate EWMA (MEWMA) and multivariate CuSum 

(MCUSUM) methods in terms of their robustness to assumption violations.  While it 

shows the change in alert rate due to increasing the number of monitored series, it 

does not provide direct comparisons when the actual false alert rate is held the same 

between methods.  Finally, (Fricker et al., 2008a) compared the directionally sensitive 

MCUSUM and MEWMA over several forms of baseline data and outbreaks, but did 

not compare them to multiple univariate methods or identify the performance in terms 

of the number of series where the outbreak occurs.  The work in this section is similar 

to these past efforts, but directly compares combined multivariate detection with 
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multiple univariate detection over a variety of factors, controlling for false alert rate.  

It also introduces some new methods for analyzing multivariate series and compares 

their effectiveness.  Finally, it compares the effectiveness of preconditioning at two 

different possible points in the multivariate combination. 

 

We consider three different methods of combining multivariate measures into a single 

measure: standardized mean, principal components analysis, and Mahalanobis 

distance. We describe each of these next. 

 
4.2.1.1. Standardized Mean 

 
To create the standardized mean, one takes each individual series and standardizes it 

by subtracting the sample mean and dividing by the sample standard deviation (for 

that series).  In other words, 

  (Eq. 4-1) 
 
To do this in an adaptive way, one subtracts the moving average from the past  days 

and divides by the sample standard deviation from the last  days.  We use  as 

a reasonable length of recent data (2 months) which is also a multiple of 7, and so 

includes the same number of days-of-the-week. 

  (Eq. 4-2) 
 
Then the combined series equals the simple mean of the  standardized series, 

  (Eq. 4-3) 

 
In the tabled results, we refer to this method as 'Normsum', the sum of normalized 
variables. 
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4.2.1.2. PCA 
 
Principal Components Analysis (PCA) is a common method for reducing the 

dimension of multivariate data to a smaller number of variables (Jobson, 1992).  It 

converts the multivariate data into a new basis, in which the first component has the 

greatest variance of any linear combination, the second has the greatest variance of 

any linear combination which is orthogonal to the first; and all remaining components 

have the greatest variance of any combination which is orthogonal to all previous 

combinations.  By ignoring later combinations (those with low variance), one can find 

orthogonal linear combinations of the variables which capture most of the variance of 

the original data, but often in far fewer variables. 

 

In general, and in our analysis, the correlation method is used.  The sample 

correlation matrix, R, is found from the sample data.  Then the principal components 

are simply the eigenvectors of R.  As a combination method, one can take the first 

principal component as , i.e.,  

  (Eq. 4-4) 
where  is the eigenvector of R with the largest eigenvalue. 

 

To do this in an adaptive way, one simply uses the correlation matrix from the 

previous 56 days, using  instead of R. 

 
4.2.1.3. Mahalanobis Distance ( ) 

 
The Mahalanobis distance is the standard method for computing distance in a 

multivariate space, while accounting for the covariance structure of multivariate data; 
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it is also the basis for the multivariate  test.  In the following we first describe how 

the Mahalanobis distance is used to standardize multivariate observations, and then 

we show how we use this standardization for combining a multivariate series into a 

single series. 

 

To normalize multivariate data using the Mahalanobis distance, the mean vector is 

subtracted from the data vector, and then the result is multiplied by the square root of 

the inverse of the covariance matrix, . Therefore, if  is a multivariate set of 

observations on day , mean  and covariance , then the standardized data, given by 

, have covariance . This standardization is therefore a way to 

create uncorrelated random variables with mean 0 and standard deviation 1 from 

multivariate data (Rencher, 2002).  If the data are multivariate normal, then the 

resulting variables  in the normalized vector  are uncorrelated standard normal 

variables.   

 

Therefore, their squared sum,  follows a  

distribution.  In the multivariate normal case where the means and standard deviations 

are unknown, but estimated from the data, we must instead compute an estimated 

normalized vector, .  Because in this sum, the mean and 

variances are estimated, the sum  follows a  

distribution. 
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To use the Mahalanobis distance as a combination method, we estimate the 

covariance matrix  and mean  from the multivariate data using standard estimates 

 and .  Then for a single day's multivariate observation vector , one computes 

the vector   and then sums the elements of the vector to obtain a 

univariate series 

  (Eq. 4-5) 
 
One could also use the sum of squares,  to get the  

statistic, and use it to test whether the multivariate vector for day  lies in an 

appropriate region of the vector space (where the original series are greater than 

expected). We do not examine this testing approach here, but it is described and 

analyzed in (Yahav & Shmueli, 2007). 

 

To compute the Mahalanobis-based combination series in an adaptive way, one 

simply uses the covariance matrix from the previous 56 days, using  instead 

of S: . 

 

4.2.2. Empirical Performance Comparison 

In order to determine which combination method to use, we must compare their 

ability to detect outbreaks.  However, the detection performance may depend 

significantly on whether the outbreak shows up in only one of the monitored series, or 

in all.  In other words, performance may depend on how well the series have been 

chosen to reflect the disease impact.  We perform this test by analyzing the results of 
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simulated outbreaks inserted into the authentic BioALIRT data described in Section 

1.3.1. 

 

The detection performance is estimated by comparing performance on two types of 

single-day ("spike") outbreaks.  In one, the outbreak signal appears in each series for 

the given syndrome simultaneously (where a syndrome is either gastrointestinal or 

respiratory).  In the other, it appears only in one series.  Thus, there are 8 possible 

signal types (6 for the individual series and 2 for the two types of simultaneous 

syndrome outbreak).  Although in practice the outbreak could occur in a subset of 

some series rather than one or all (even with different sizes), this comparison will 

serve to illustrate the difference between univariate and cross-series detectors. 

 

To compare detection performance for a specific outbreak type, simulated outbreaks 

are created for each possible day after the first 56 days (to provide ramp-up time).  

The size of the outbreak is set equal to one standard deviation of the baseline health 

series.  Each method is run on each outbreak injection, and a ROC curve is generated.  

Four metrics are then generated: Detection Rate at a fixed false alarm rate of once 

every 28 days; Detection Rate at a fixed false alarm rate of once every 56 days; 

Detection Rate at a fixed false alarm rate of once every 72 days; and integrated 

Detection Rate (area under the ROC curve) for false alarm rates between every 14 to 

112 days. 
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For each combination method, we also consider the addition of a preconditioning step 

to remove explainable patterns.  One can consider preconditioning each univariate 

series separately first, then combining the preconditioned series; or one could 

combine the raw data first, then apply a preconditioning method to the combined 

series.  While both options were tested, it turns out that preconditioning the already-

combined series is not effective; therefore, we only report results from 

preconditioning, then combining the preconditioned series in our performance 

comparison. 

 

In the following, results are reported for detection performance of the various 

methods.  The performance statistics are the Detection Rate at a three fixed false 

alarm rates (once per 28 days, once per 56 days, and once per 72 days) as well as the 

proportion (from 0 to 1) of the possible detection area between false alarm rates of 

once every 14 days to once every 112 days. We compared the different combination 

methods to three alternatives in terms of detection:  

• Simple univariate Shewhart detection, applied to single series' residuals from 

Holt-Winters (HW) forecasting (described in 3.1.2.4).  Results are displayed in 

columns labeled uniHW or uniHW_(series name) 

• Simple univariate Shewhart detection, applied to single series' residuals from 

univariate regression forecasting (described in 3.1.2.1).  Results are displayed in 

columns labeled uniReg_(series name). 

• Simple univariate Shewhart detection, applied to single series' residuals from 

multivariate regression forecasting on a single target series (described in 3.3.2). 
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Results are displayed in columns labeled multiReg_(series name)). 

 

We also examined a version of all regression models and combination methods where 

a univariate HW was initially applied to each individual series before applying the 

method, for purposes of preconditioning. Results for this version are denoted with the 

suffix "HW". 

 
4.2.2.1. Single Series Outbreak 

 
In this section, we report the detection results from inserting an outbreak signal into 

one series at a time.   

 

respPrescrip 

  uniHW uniReg multiReg mahalanobisHW normsumHW PCAHW 
at28 0.026 0.034 0.030 0.040 0.039 0.037 

at56 0.009 0.017 0.017 0.022 0.022 0.019 
at72 0.009 0.014 0.014 0.014 0.020 0.014 

in14_112 0.031 0.035 0.039 0.044 0.046 0.040 
       

respMilVisit 

  uniHW uniReg multiReg mahalanobisHW normsumHW PCAHW 
at28 0.031 0.034 0.043 0.042 0.039 0.037 
at56 0.012 0.019 0.017 0.022 0.022 0.019 

at72 0.011 0.016 0.016 0.016 0.020 0.014 
in14_112 0.036 0.039 0.043 0.045 0.046 0.040 

       
respCivVisit 

  uniHW uniReg multiReg mahalanobisHW normsumHW PCAHW 

at28 0.031 0.034 0.039 0.042 0.039 0.036 
at56 0.011 0.017 0.016 0.022 0.022 0.019 

at72 0.006 0.011 0.011 0.016 0.020 0.014 
in14_112 0.034 0.040 0.044 0.045 0.046 0.040 
       

Table 4-1: Individual Series Outbreak Detection Rates (Resp) 

Detection rate for an outbreak inserted into each individual series.  Recall that the 
metrics for evaluation are Detection Rate at a fixed false alarm rate of once every 28 
days; Detection Rate at a fixed false alarm rate of once every 56 days; Detection Rate 
at a fixed false alarm rate of once every 72 days; and integrated Detection Rate (area 
under the ROC curve) for false alarm rates between every 14 to 112 days.  Normsum 
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refers to the Standardized Mean described in 4.2.1.1.  The best performance in each 
row is shaded. 
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giPrescrip 

  uniHW uniReg multiReg mahalanobisHW normsumHW PCAHW 

at28 0.028 0.039 0.039 0.040 0.043 0.028 
at56 0.009 0.019 0.022 0.019 0.016 0.012 
at72 0.006 0.012 0.017 0.016 0.012 0.008 

in14_112 0.036 0.043 0.041 0.043 0.040 0.036 
       

giMilVisit 

  uniHW uniReg multiReg mahalanobisHW normsumHW PCAHW 
at28 0.026 0.037 0.040 0.047 0.043 0.028 

at56 0.020 0.020 0.025 0.023 0.016 0.012 
at72 0.011 0.014 0.016 0.017 0.012 0.008 

in14_112 0.038 0.047 0.046 0.048 0.042 0.036 
       

giCivVisit 

  uniHW uniReg multiReg mahalanobisHW normsumHW PCAHW 
at28 0.040 0.047 0.045 0.043 0.043 0.028 

at56 0.011 0.020 0.023 0.020 0.016 0.012 
at72 0.009 0.019 0.017 0.017 0.012 0.006 
in14_112 0.039 0.046 0.049 0.045 0.041 0.035 

Table 4-2: Individual Series Outbreak Detection Rates (GI) 

Detection rate for an outbreak inserted into each individual series.  Recall that the 
metrics for evaluation are Detection Rate at a fixed false alarm rate of once every 28 
days; Detection Rate at a fixed false alarm rate of once every 56 days; Detection Rate 
at a fixed false alarm rate of once every 72 days; and integrated Detection Rate (area 
under the ROC curve) for false alarm rates between every 14 to 112 days.  Normsum 
refers to the Standardized Mean described in 4.2.1.1.  The best performance in each 
row is shaded. 
 
From the ROC curve statistics in Table 4-1 and Table 4-2, it seems clear that 

Mahalanobis and Normsum are providing improved performance.  It is particularly 

striking that even when the outbreak is inserted into only one series, the multivariate 

methods use the extra information well enough to provide comparable performance to 

the univariate methods, and often improved performance. 

 
4.2.2.2. All-series Outbreak 

 
In this section, the detection results are for an insertion of an outbreak signal into 

three series at the same time (either all three GI series or all three Resp series). 
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GI 

  uniHW uniReg multiReg mahalanobisHW normsumHW PCAHW 

at28 0.040 0.047 0.045 0.053 0.047 0.034 
at56 0.020 0.020 0.025 0.023 0.016 0.014 
at72 0.011 0.019 0.017 0.019 0.012 0.008 

in14_112 0.039 0.047 0.049 0.050 0.044 0.037 
       

Resp 

  uniHW uniReg multiReg mahalanobisHW normsumHW PCAHW 
at28 0.031 0.034 0.043 0.043 0.039 0.039 

at56 0.012 0.019 0.017 0.022 0.022 0.019 
at72 0.011 0.016 0.016 0.016 0.022 0.014 

in14_112 0.036 0.040 0.044 0.046 0.047 0.041 
Table 4-3: All Series Outbreak Detection Rates  

Detection performance on an outbreak inserted into all series of a particular syndrome 
type.  Recall that the metrics for evaluation are Detection Rate at a fixed false alarm 
rate of once every 28 days; Detection Rate at a fixed false alarm rate of once every 56 
days; Detection Rate at a fixed false alarm rate of once every 72 days; and integrated 
Detection Rate (area under the ROC curve) for false alarm rates between every 14 to 
112 days.  Normsum refers to the Standardized Mean described in 4.2.1.1.  The best 
performance in each row is shaded. 
 
A few observations are clear from the results in Table 4-3.  First, attempting to detect 

purely from a single normalization on a single series is not very effective compared to 

other methods.  Second, multivariate regression provides some improvement when 

the series it uses are related, even when the outbreak occurs only in one of those 

series.  Third, the Mahalanobis combination seems to be a distinct improvement for 

detecting multivariate outbreaks. 

4.2.3. Conclusions and Future Work 

Using multivariate data streams is clearly valuable tool improving detection.  The 

experiments here show how using multiple data streams can provide this 

improvement, especially when the outbreak may cause a signal in more than one of 

them.  However, little is currently known about the appearance of different diseases 

in specific health data series; in particular, given the fact that the outbreak signal is 
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likely to be different in different series, the study could be expanded to consider 

different patterns or ranges of patterns.  In addition, given that we know the size of 

the outbreak will change the performance difference between algorithms, studying a 

broader range of outbreak signal sizes would provide understanding of the impact of 

multivariate methods for different sizes.  As this is investigated further, the methods 

presented here can be tuned specifically for distinct types of diseases and health 

series. 

 

Other combination and assistance methods can also be considered, such as an 

ARIMA model as a predictive method (such that lagged factors might be considered) 

or the use of burst detection methods from text analysis (Kleinberg, 2003).  In these 

results, PCA performance was shown to be relatively poor; however, only the first 

principal component was used, and so a PCA method which uses more components 

might be more effective.  Another direction of multivariate work would be to directly 

monitor the covariances in a sliding covariance window, in a fashion similar to the 

moving-F test (Riffenburgh & Cummins, 2006).  In addition, a comparison method of 

alerting if any of the univariate series alerts might be useful for comparing outbreaks 

which occur across multiple series.  Finally, these methods should be directly 

compared to the MCUSUM and MEWMA methods, as well as the directional  

method, on a larger variety of outbreak types (especially smaller outbreaks) in order 

to provide a better understanding of their relative performances. 
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4.3. Additional Day-of-week Preprocessing for Detection Improvement 

4.3.1. Method Description 

In Chapter 2, we discussed the relationship between forecasting accuracy and 

detection performance.  However, we also discussed a number of forecast residual 

attributes which can negatively impact the detection performance.  One of these was 

seasonal variance, particularly day-of-week seasonal variance.  In this case, the 

variance of the residuals differs by day-of-week (usually with lower variance on 

weekends).  One way to come closer to the standard iid normal paradigm is to scale 

all residuals by a day-of-week factor, in order to have a common variance.  This does 

not fit into the forecasting paradigm in Chapter 2, but is a post-forecasting method for 

improving detection. 

 

Here, we investigate a method for rescaling residuals by day-of-week variance.  

Specifically, we consider estimating the variance of each day-of-week using residuals 

from the past.  We assume that the forecasting process creates residuals with seven 

different standard deviations, such that , i=t mod 7 +1.  Then, using the 

past residuals, create estimates .  Finally, for the current day, instead of using 

the residual , use the scaled residual .  The idea is to (approximately) 

standardize the variance of each day, such that residuals on different days will have 

equal variance (approximately equal to 1).  This should improve the detection by 

reducing the day-of-week seasonal variance described in Chapter 2.   
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We also consider using only positive residuals. The motivation for using only the 

positive aberrations has two reasons.  First, it gives a better estimate of the variance in 

the aberrations to be detected: those where the count is higher than expected; due to 

the imperfect nature of the forecaster, this can be different for over-predictions versus 

under-predictions.  Second, it implicitly avoids including negative singularities, 

points where the actual count is much lower than expected, often zero or nearly zero 

(due to holidays or other factors); when such negative singularities are included, they 

significantly increase the estimated standard deviation (thus reducing the scaling of 

any outbreak occurring on those days-of-week, usually Mondays). 

4.3.2. Empirical Test Results 

In order to determine whether or not this day-of-week preprocessing method is useful, 

we want to see if it improves outbreak detection.  To do this, we compare Detection 

Rates over a variety of false alert levels, either with or without the various day-of-

week variance preprocessing.  By doing this, we can measure the impact of using the 

preprocessing technique. 

 

To evaluate the effectiveness of this technique, we take the BioALIRT data set 

described in Section 1.3.1 and examine each of the six series.  For each series, we use 

a Holt-Winters forecaster (described in 3.2.3) to generate residuals.  Next, we 

compare three post-forecasting methods:  

Standard: Using the unchanged residuals (standard Holt-Winters); 

DOW-SD: Using all past days to estimate day-of-week seasonal variances and 

dividing by the estimated standard deviation for the current day;  
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Positive DOW-SD: Using only past days with positive residuals to estimate the 

day-of-week seasonal variances and dividing by the estimated standard 

deviation for the current day. 

We then use a Shewhart chart to monitor each series and to generate alerts. 

 
We generate lognormal outbreak signals and insert them into each possible day in the 

data series (after day 250, in order to allow sufficient data to estimate the day-of-

week standard deviations and positive standard deviations).  Table 4-4 shows the 

Detection Rates for the three variants on the six series, for a variety of outbreak sizes 

and false alert rates.  Figure 4-1 through Figure 4-3 show selected ROC curves for 

different series and outbreak sizes. 
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Average Detection 

Rate method 

cases 
FA 
rate standard dowSD positiveDOWSD 

20 1/112 0.04 0.04 0.04 

  1/56 0.08 0.08 0.07 
  1/28 0.15 0.15 0.16 

  1/14 0.3 0.29 0.28 

20 Total   0.14 0.14 0.14 

50 1/112 0.04 0.04 0.05 

  1/56 0.08 0.09 0.09 
  1/28 0.14 0.16 0.18 

  1/14 0.29 0.3 0.32 

50 Total   0.14 0.15 0.16 

100 1/112 0.07 0.09 0.12 

  1/56 0.12 0.15 0.18 
  1/28 0.19 0.25 0.28 

  1/14 0.36 0.4 0.44 

100 Total   0.18 0.22 0.25 

200 1/112 0.18 0.22 0.28 
  1/56 0.24 0.31 0.34 

  1/28 0.34 0.42 0.44 

  1/14 0.53 0.59 0.62 

200 Total   0.32 0.38 0.42 

400 1/112 0.35 0.38 0.46 

  1/56 0.38 0.52 0.5 
  1/28 0.51 0.67 0.64 

  1/14 0.71 0.82 0.8 

400 Total   0.48 0.6 0.6 

Table 4-4: Day-of-Week Normalization Detection Rates  

Average detection probabilities for each method, over the six BioALIRT data series, 
for a variety of false alert rates and outbreak sizes.  Each entry is the average 
detection probability, over all six series, for a particular method, on a particular 
outbreak size and false alert rate.  The totals give the average probability of detection 
over all false alert rates for that outbreak size.  For example, monitoring standard 
Holt-Winters residuals, in an outbreak size of 400 and false alerts every 14 days (FA 
Rate= 1/14), has a Detection Rate of 0.71 (detects 71% of outbreaks) . Across all four 
false alert rates (1/112, 1/56, 1/28, and 1/14), for outbreaks of size 400, it has an 
average Detection Rate of 0.48.  If the process including normalizing by day-of-week 
standard deviation is used, the Detection Rates are 0.82 and 0.60, respectively. 
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Figure 4-1: ROC Curves for Day-of-week Residual Normalization on Resp/400 

ROC curves for the standard HW residuals (solid black), residuals normalized by 
day-of-week standard deviation (dashed grey), and residuals normalized by positive 
day-of-week (dotted blue).   This figure shows results for Respiratory Military Visits, 
with an outbreak of total size 400. 
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Figure 4-2: ROC Curves for Day-of-week Residual Normalization on GI/50 

ROC curves for the standard HW residuals (solid black), residuals normalized by 
day-of-week standard deviation (dashed grey), and residuals normalized by positive 
day-of-week (dotted blue).    This figure shows results for GI Civilian Visits, with an 
outbreak of total size 50. 
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Figure 4-3: ROC Curves for Day-of-week Residual Normalization on GI/100 

ROC curves for the standard HW residuals (solid black), residuals normalized by 
day-of-week standard deviation (dashed grey), and residuals normalized by positive 
day-of-week (dotted blue).  This figure shows results for GI Civilian Visits, with an 
outbreak of total size 100. 
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Figure 4-4: ROC Curves for Day-of-week Residual Normalization on GI/200 

ROC curves for the standard HW residuals (solid black), residuals normalized by 
day-of-week standard deviation (dashed grey), and residuals normalized by positive 
day-of-week (dotted blue).  This figure shows results for Gastrointestinal 
Prescriptions, with an outbreak of total size 200. 
 

From the figures and table, we can see that there is substantial improvement from 

using the day-of-week standardization; this is particularly pronounced for low false 

alert rates and large outbreak sizes.  This seems to be due to the fact that on low-

variance days, the outbreak can be much more clearly seen as an aberration, and thus 

much more easily detected.   

 

This effect can be seen in Figure 4-5 and Figure 4-6, which compare a normal Holt-

Winters/Shewhart detection without any post-processing, versus using a positive-

value day-of-week standard deviation normalization.  The difference in effect can be 
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seen to be largely due to weekday/weekend difference.  We can see that the weekdays 

are significantly improved, especially at the low false alert levels.  While the 

Detection Rates actually decrease on weekdays, this is more than made up for by the 

increase in weekend detection 

 
Figure 4-5: ROC by Day-of-week for Holt-Winters 

ROC for Gastrointestinal Military Visits, using a standard Holt-Winters forecast with 
Shewhart detection.  Results are displayed separately by day of week: weekdays are 
solid black lines, weekends in dashed blue lines.  We can see that each day of week is 
approximately the same rate of detection, depending mainly on the size of the 
outbreak and the false alert rate, rather than the size of the outbreak relative to the 
normal size for the day of week. 



 

 142 
 

 
Figure 4-6: ROC by Day-of-week for Holt-Winters with Day-of-week Residual Normalization 

ROC for Gastrointestinal Military Visits, using a standard Holt-Winters forecast with 
Shewhart detection, followed by a day-of-week positive value standard deviation 
normalization.  Results are displayed separately by day of week: weekdays are solid 
black lines, weekends in dashed blue lines. 
 
Using the variance of the positive aberrations is at least as good as using all residuals 

(assuming sufficient data are available), and sometimes gives significant 

improvement.   

4.3.3. Conclusions and Future Work 

It seems that scaling by the estimated standard deviation of the positive residuals is an 

improvement over scaling by the estimated standard deviation of all residuals from 

the same day.  This technique depends on having enough data to estimate the day-of-

week standard deviations, but once this is available, it seems to result in a significant 

and unambiguous improvement for detection. 
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It is not clear from these results how much of the improvement is due to a closer fit to 

the population of interest (days with positive residuals) and how much is due to 

removing negative singularities (outliers with very low negative residuals).  Further 

investigation could reveal this, and suggest the usefulness of a more robust method of 

estimating the standard deviation (such as the median absolute deviation).  But we 

strongly suggest adding this method to existing detection algorithms, as it is likely to 

provide simple but marked improvement in Detection Rates. 

4.4. Efficient Detectors 

4.4.1. Efficient Scores and The CuScore Method 

We now show how we can use efficient statistics and the CuScore method to find an 

improved method for detecting outbreaks.  The idea of the efficient statistic is due to 

Fisher (Fisher, 1922), who recognized that any unbiased statistic can be evaluated in 

terms of how well its variance approaches the Cramer-Rao lower bound.  Since any 

statistic  estimating an unknown parameter  has a certain variance , and the 

lowest variance of any unbiased estimator can be bounded below by the Cramer-Rao 

lower bound, , the efficiency of a statistic can be measured as the ratio of these 

two factors, , with an efficient statistic being one which achieves the 

lower bound and thus an efficiency of 1. 

 

A score is a number generated for a timeseries, which is then checked to determine if 

the timeseries is in control.  Efficient scores are simply statistics which are efficient 
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for testing a null hypothesis versus an alternative.  This is particularly relevant to 

anomaly detection, as we are attempting to test when an anomaly has occurred (the 

alternative) versus normal background variability (the null hypothesis).  Thus, in 

process monitoring, the CuScore is a method for determining the efficient statistic 

testing whether a process has gone out of control in a specific way (Box & Luceno, 

1997).  A CuScore statistic can be constructed for testing any fixed deviation from the 

standard normal white noise assumptions, and standard control charts are efficient 

score statistics for various kinds of deviations.  The Shewhart chart is optimized for 

detecting a single-day spike outbreak.  The CuSum efficiently detects a continuing 

step increase.  The EWMA detects an exponential increase.  Finally, a moving 

average of the last  days efficiently detects a temporary step increase lasting  days.  

These can be seen in Figure 4-7. 
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Figure 4-7: Daily Scores for Various Detection Methods 

The scores resulting from using various detection methods on various signals, shown 
without noise.  Shewhart is black, EWMA (with ) is dotted green, CuSum is 
dashed red, and a 3-day moving average is dot-dashed blue.  In order to indicate the 
strength of different detection methods on different signals, all scores are normalized 
to have a threshold of 1 and a false alert level of 1/20 under standard normal data. 
 
The CuScore is a method for determining the efficient score for a known type of 

signal in a time series of white noise.  Its effectiveness lies in the fact that when the 

signal of interest occurs, the residuals will contain a component which correlates with 

the CuScore detector.  Described in (Box & Ramirez, 1992), it proceeds as follows: 

1. Formulate the null model as , where  is the estimated or 

forecasted value for  and  is white noise error. 

2. Define the signal of interest,  and form the discrepancy 

model, , where  is white noise error. 

3. Compute the CuScore as . 
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4.4.2. CuScore for a Lognormal Outbreak 

A lognormal progression is a reasonable model for an outbreak signal, because as 

(Burkom, 2003a) describes, the incubation period distribution of many infectious 

diseases can be approximated well by a lognormal distribution, with parameters 

dependent on the disease agent and route of infection.  Thus, it is reasonable to 

assume that outbreaks of such diseases will result in the addition of a lognormal 

number of cases to the normal background cases in the health series.  In this case, we 

take as our target signal a lognormal outbreak with shape parameter  and scale 

parameter  (note that this can also be reparameterized using  as the mean 

of the log, and  as the standard deviation of the log).  The lognormal density is then 

multiplied by , the total number of infected cases, to give a distribution of the total 

number of people expected to be symptomatic at each point.  This multiplied curve is 

then binned by day and rounded, to provide a daily count for the number of people 

who would be symptomatic and added to the observed health series daily count.  For 

an illustration of the process, see Figure 4-8. 
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Figure 4-8: Binned Lognormal Outbreak 

Lognormal outbreak (in dashed blue), binned into daily additional counts.  The 
maximum occurs on day 4. 
 
This use of the lognormal distribution to model disease outbreaks is known in the 

biosurveillance literature, and many recent biosurveillance evaluations have used 

lognormal curves to approximate the disease outbreak signal (Burkom, 2003b, 

Burkom et al., 2007).  However, none have attempted to directly build an optimal 

detector for lognormal outbreaks.  Here, we use the CuScore method to build such an 

optimal detector. 

 

In the case of early detection, it is only relevant to detect up to the point of maximum 

infection; intervention up to this point can have a significant impact on the public 

health effect, but later intervention has minimal effect, as the infected population is 
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already naturally recovering.  Thus, we only consider the days up to the day 

containing the mode for the outbreak signal lognormal distribution, which for a 

lognormal can be found at .  Our CuScore detector will therefore be a weighted 

sum of the past  days' residuals, where  and each residual 

. 

  (Eq. 4-6) 

 
This set of weights will have the maximum correlation with a binned lognormal 

signal over the past  days, as it uses the expected values for the lognormal signal as 

daily weights.  Under normality assumptions, its variance can be calculated as a linear 

combination of normal variables, , where  is the covariance matrix 

of  days of residuals (  if they are independent and more complex if there is 

autocorrelation) and w is the weight vector, 

. 

4.4.3. Optimizing CuScore for Timeliness 

However, the CuScore alone is not an optimal detector for a signal.  We can see this 

in Figure 4-9, which compares the ROC curves for a Shewhart, CuSum, and 

Lognormal CuScore detector for a Lognormal outbreak. 
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Figure 4-9: ROC for CuScore, Shewhart, and CuSum on Lognormal Outbreak 

ROC curves for CuScore (in black), Shewhart (in grey), and CuSum (in dashed blue), 
for a lognormal outbreak of total size 200 (peak size of 34).  Only the portion up to 
false alert rate 1/14 is shown. 
 
Although it is an efficient detector, the CuScore detector is unexpectedly dominated 

by the Shewhart.  This is because it does not address the issue of detection over time.  

As can be seen in the earlier signals (in Figure 4-7) and in Figure 4-10, the CuScore 

method maximizes the score at the end of the signal it is optimized for.  We can see 

the Shewhart maximized at the spike, CuSum continues to increase after the step, and 

the lognormal CuScore maximizes the score at the end of the lognormal. 
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Figure 4-10: Daily Scores on Lognormal Outbreak 

A lognormal signal and the corresponding scores for detection for a Shewhart (solid 
black), CuSum (dashed red), and CuScore (dotted green). 
 
For a fixed-length outbreak, the efficient score detector is optimizing for a detection 

on the last day of the observed signal.  We can see this result in Figure 4-11, which 

compares the ROC curves, using only the fourth day (the day of the outbreak peak, 

the end of our detection curve) to detect. 
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Figure 4-11: Day-4 Only ROC for CuScore, Shewhart, and CuSum on Lognormal Outbreak 

ROC curves for CuScore (in black), Shewhart (in grey), and CuSum (in dashed blue), 
for a lognormal outbreak of total size 200 (peak size of 34).  Only the portion up to 
false alert rate 1/14 is shown.  In this case, only the fourth day is used for detection, at 
the peak of the outbreak.  When only the fourth day is considered, the CuScore is 
indeed the most effective at detecting the outbreak. 
 
While in a single-day comparison on the final day, the CuScore method will be 

efficient, this is not the most effective way of detecting an outbreak.  The CuScore 

analysis fails to account for the fact that each day is a separate test, and so there are 

multiple chances to detect the outbreak and (ideally) detect it even earlier.   If we only 

detect at the end of the outbreak, then we have failed to provide timely warning so 

that action can be taken.  Figure 4-9, showing the ROC curves for a CuScore method 

versus Shewhart and CuSum, illustrates this.  Even though the CuScore method is 

designed to detect this specific type of outbreak, because it is only optimized for the 
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last day of detection, it reduces the chances to detect it before the last day, and thus 

results in a lower Detection Rate than Shewhart over the course of several days. 

 

An optimization approach is thus suggested: one wishes to minimize the average day 

of detection, for a given false alert rate, given a specific expected outbreak signal.  

For any type of outbreak, we can consider the maximum useful day of detection as 

the last day at which action will still be useful, or the first day at which lab reports 

will confirm the disease.  This can then be used as the maximum delay, for 

determining the cost of not alerting earlier (effectively missing the disease outbreak).  

This can be formulated as an optimization problem, where the objective function is to 

minimize the expected time of detection.  The expected time of detection can be 

computed as the weighted sum of delays, using the probability of detection on each 

day as weight, using  when the method fails to detect the outbreak: 

  (Eq. 4-7) 

In this equation,  is the probability of detection on day d, conditional on not having 

detected on an earlier day. 

 

Alternatively, one may wish to maximize the overall Detection Rate in the first  

days.  This can be done by using a slightly modified function to optimize,  

4.4.4. Direct Solutions using the Multivariate Normal Distribution 

We now consider again, under this optimization framework, the class of weighted 

sums of (residual) observations from the past  days.  We wish to optimize over this 

class, resulting in a set of weights.  The weighted sum over the past  days will then 
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be a detector with the smallest mean time of detection (for a given outbreak shape and 

false alert rate). 

 

In order to find a closed form solution for optimizing the detector, we make the 

following simplifying assumptions: that the daily (residual) baseline health value is 

an iid normal variable, with mean 0 and common standard deviation .  We 

can then use the fact that each day's alert value comes from a multivariate normal 

distribution.  If  is the set of weights over the past  days, and 

 are the set of residual values from the health series, then the alert values 

over the past  days will be the application of the weights over the sliding window of 

daily values, .  Since  

 

, if the underlying health data residuals are approximately normal, 

with common variance, then each  is normally distributed, and collectively both  

and  have a multivariate normal distribution.  More specifically, the means and 

variances will depend on whether or not there is an outbreak.  If there is no outbreak, 

then.   will have 0 mean and covariance matrix 

, where, assuming no correlation in ,  is the identity matrix 

,  
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and 

 

 
Using this, we could determine the probabilities of various run lengths under the no-

outbreak state.  For the most part, since we are not using runs rules, we will only be 

concerned with the individual-day variance ( ) to control the 

FA rate.   

 

However, if there is an outbreak during the past  days, then the distribution changes 

due to the additional outbreak cases.  In particular, let the outbreak .  

The covariance matrix remains the same, but the mean of  is now 

.  Given this, we can determine 

the probability of at least one day's alert value  being sufficient to alert, by 

considering only the marginal distribution of c, which will also be multivariate 

normal, .  While the cumulative distribution function for the 

multivariate normal distribution is intractable to solve for exactly, it can be 

numerically calculated.  We use R's mvtnorm package (Genz et al., 2009) to 

determine the probability that at least one of the days provides an alert during the 

outbreak and also to find the expected probability of detection on each day of the 

outbreak (thus providing the mean delay before detection). 
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To determine the optimal detector for a given outbreak signal and false alert level, the 

optimization problem is to maximize the probability that at least one day's weighted 

detection value is high enough to alert.  More formally: given false alert rate , 

residual variance , and outbreak shape , 

maximize  

s.t.  and 

 

where ,  

,  and 

.  

 is the cumulative density function for the multivariate normal distribution, 

. 

4.4.5. An Optimized Lognormal CuScore 

As an example of this method, we present a detection ensemble which is optimized to 

provide the maximum probability of detection for a lognormal outbreak.  In this case, 

as in Section 4.4.2, we take as our target signal a lognormal outbreak with shape 

parameter  and scale parameter m, binned and rounded appropriately.  Since the 

objective function to be minimized is nonlinear, we use the limited-memory BFGS 

quasi-Newton method described by (Byrd et al., 1995), constraining each weight to 
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be between 0 and 1.  We then normalize to have all weights sum to 1.  This was done 

for several false alert levels and several sizes of lognormal outbreak.  Some 

weightings determined by this approximation-maximization method are shown in 

Table 4-5. 

FA Rate ncases weight1 weight2 weight3 weight4 
Improvement 
vs.Shewhart 

1/14 10 0.00 0.00 0.00 1.00  
1/14 100 0.00 0.00 0.02 0.98 0.02% 

1/14 1000 0.00 0.00 0.00 1.00  
1/14 10000 0.00 0.00 0.00 1.00  
1/28 10 0.00 0.00 0.00 1.00  

1/28 100 0.00 0.00 0.17 0.83 1.24% 
1/28 1000 0.00 0.15 0.37 0.48  

1/28 10000 0.00 0.00 0.00 1.00  
1/56 10 0.00 0.00 0.00 1.00  
1/56 100 0.00 0.05 0.18 0.76 3.76% 

1/56 1000 0.00 0.15 0.37 0.48 0.03% 
1/56 10000 0.00 0.00 0.00 1.00  

1/112 10 0.00 0.00 0.00 1.00  
1/112 100 0.01 0.10 0.21 0.68 6.96% 

1/112 1000 0.00 0.17 0.38 0.45 0.11% 
1/112 10000 0.00 0.00 0.00 1.00  

Table 4-5: Optimal Detection Weightings for Lognormal 

The optimal weightings (over the past four days) found for optimizing detection of a 
lognormal outbreak which peaks on the fourth day.  The number of total additional 
cases due to the outbreak is indicated in the ncases column.  Rows which improve 
over Shewhart are highlighted. 
 
Interestingly, the optimal weighting combination depends on both the size of the 

lognormal outbreak and the false alert level allowed.  For large outbreaks or a high 

false alert rate, a Shewhart actually becomes most timely, as it has a reasonable 

chance of detection on several days.  But for smaller outbreaks of the same shape, or 

in situations requiring a lower false alert level, the optimal weights tend towards the 

lognormal CuScore weights.  In order to have a chance of detecting a small outbreak, 

with low false alert rate, greater sensitivity to the outbreak is needed.  This is best 
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achieved by maximizing the Detection Rate on the last day of the outbreak (when 

there is full information). 

 

The shape of the outbreak also plays a role; for outbreaks which peak later, the 

optimization method can result in an even more dramatic improvement over the 

standard Shewhart detection.  For example, for a lognormal outbreak which peaks 14 

days after starting, improvement can be nearly 50% in some cases.  Table 4-6 shows 

detection results for a longer outbreak. 

FA Rate ncases Optimized Shewhart 
Improvement 
vs. Shewhart 

1/14 200 0.798 0.798 0.00% 
1/14 400 0.846 0.845 0.04% 
1/14 1000 0.972 0.963 0.98% 

1/14 2000 1.000 1.000 0.02% 
1/28 200 0.556 0.555 0.08% 

1/28 400 0.638 0.624 2.26% 
1/28 1000 0.912 0.853 6.89% 
1/28 2000 1.000 0.997 0.31% 

1/56 200 0.346 0.339 1.92% 
1/56 400 0.440 0.404 9.04% 

1/56 1000 0.821 0.675 21.51% 
1/56 2000 0.999 0.980 1.98% 

1/112 200 0.203 0.191 6.05% 
1/112 400 0.288 0.240 20.00% 
1/112 1000 0.712 0.484 47.04% 

1/112 2000 0.998 0.932 7.15% 
Table 4-6: Optimal Detection Weightings for Late-peak Lognormal 

The improvement found when optimizing detection of a lognormal outbreak which 
peaks on the fourteenth day.  The number of total additional cases due to the outbreak 
is indicated in the ncases column. 
 
Even when optimizing for a specific false alert rate, the optimized weighting often 

shows improvements over a range of false alert rates.  This is shown in Figure 4-12.  

For this outbreak of 1000 cases, optimizing for a false alert rate of 1 per 28 days 

results in improvement over nearly all false alert rates.  This can be seen in the table, 
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noting that the optimized weighting for the 1000-case outbreak is fairly constant (the 

improvement for a 1/28 FA rate is less than 0.00 percent, thus is not highlighted). 

 
Figure 4-12: ROC for Optimized Detection on Lognormal Outbreak 

The corresponding ROC curve (showing only the portion up to false alert level 1/14) 
for optimizing detection of a 1000-case lognormal outbreak which peaks on day 4.  
The optimized method is in black, the Shewhart in grey, and the CuSum in dashed 
blue. 
 
Now that we have optimized for detection, we can apply the technique to optimize for 

timeliness.  We can use the same direct solution methodology to calculate the 

expected delay for a given set of weights.  Using this, we can optimize to find the 

weighting which provides the earliest mean detection day.  Table 4-7 displays the 

results for some sets of false alert rate and outbreak size.  We can see that the 

percentage improvement is generally lower than when comparing overall detection; 

when the Shewhart detects an outbreak, it has a good chance of detecting early.  More 
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importantly, we can see that when optimizing for timeliness, the tendency towards the 

CuScore weightings is much weaker.  As compared to the detection optimization, the 

weightings are closer to the Shewhart, reflecting the CuScore's focus on last-day 

detection.  Similar to the detection scenario, the tendency towards multi-day 

weightings comes in regions of low false alert levels, for weaker outbreak signals (the 

10-case outbreak is too small to reflect the lognormal shape very strongly).  In these 

cases, detecting on the last day can make a significant improvement to timeliness.  

This supports the conclusion that having multiple days to detect results in non-

CuScore methods being optimal for detection and for timely detection. 

 

FA Rate ncases weight1 weight2 weight3 
Improvement 
vs.Shewhart 

1/14 10 0.00 0.00 1.00  
1/14 100 0.00 0.00 1.00  
1/14 1000 0.00 0.00 1.00  

1/14 10000 0.00 0.00 1.00  
1/28 10 0.00 0.00 1.00  

1/28 100 0.00 0.08 0.92 0.03% 
1/28 1000 0.00 0.04 0.96 0.03% 

1/28 10000 0.00 0.00 1.00  
1/56 10 0.00 0.00 1.00  
1/56 100 0.00 0.16 0.84 0.09% 

1/56 1000 0.00 0.08 0.91 0.16% 
1/56 10000 0.00 0.00 1.00  

1/112 10 0.00 0.00 1.00  
1/112 100 0.04 0.19 0.77 0.11% 
1/112 1000 0.00 0.12 0.88 0.42% 

1/112 10000 0.00 0.00 1.00  
Table 4-7: Optimal Timeliness Weightings for Lognormal  

This table shows weights for optimization of the earliest mean day of detection.  
Rows with an improvement over Shewhart are highlighted. 

4.4.6. Empirical Results 

To confirm that these results apply to real health data sets, we used the same 

technique to determine the optimal weighting, but applied it to residuals from a Holt-

Winters forecast on respiratory health series data (described in Section 1.3.1).  The 
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results are contrasted with a standard Shewhart applied to the Holt-Winters residuals.  

Because the residual standard deviation is higher than in the previous example 

(approximately 65, compared to the 40 used for simulation), the optimized weights 

are slightly different.  However, we can see that the pattern of improvement is 

virtually identical to that found in simulated data.  For larger outbreak sizes, 

particularly for lower false alert levels, the optimized-weighting detector results in a 

marked improvement over Shewhart in overall detection, and a slight improvement in 

timeliness.  This can be seen in Table 4-8 and Table 4-9.  Although it is expected, it 

should also be noted that the optimization method, even though it is optimizing over 

an idealized case, never results in a weighting which performs worse than the 

Shewhart.  Tests on later-peaking outbreaks show significantly improved 

performance, in line with performance predicted by the analysis in Section 4.4.5. 
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FA Rate ncases weight1 weight2 weight3 % improvement 

1/14 20 0.000 0.000 1.000   

1/14 50 0.000 0.000 1.000   
1/14 100 0.000 0.000 1.000   

1/14 200 0.000 0.000 1.000   
1/14 400 0.000 0.104 0.896 0.18% 
1/28 20 0.000 0.000 1.000   

1/28 50 0.000 0.000 1.000   
1/28 100 0.000 0.000 1.000   

1/28 200 0.000 0.106 0.894 0.08% 
1/28 400 0.002 0.207 0.791 0.72% 

1/56 20 0.000 0.000 1.000   
1/56 50 0.000 0.000 1.000   
1/56 100 0.000 0.096 0.904 0.02% 

1/56 200 0.000 0.182 0.818 0.16% 
1/56 400 0.034 0.248 0.718 1.04% 

1/112 20 0.000 0.000 1.000   
1/112 50 0.000 0.064 0.936 0.00% 
1/112 100 0.011 0.156 0.833 0.03% 

1/112 200 0.034 0.227 0.740 0.17% 
1/112 400 0.085 0.267 0.647 1.10% 

Table 4-8: Optimal Timeliness Weightings on Authentic Data 

This table shows, on authentic health respiratory data, the optimized weightings 
found for detection timeliness, using the method described in Section 4.4.4.  
Combinations of false alert rate and outbreak size which resulted in an improvement 
over the Shewhart are highlighted. 
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FA Rate ncases weight1 weight2 weight3 weight4 % improvement 

1/14 20 0.000 0.000 0.000 1.000   

1/14 50 0.000 0.000 0.000 1.000   
1/14 100 0.000 0.000 0.000 1.000   

1/14 200 0.000 0.000 0.072 0.928 0.19% 
1/14 400 0.000 0.000 0.214 0.786 2.09% 
1/28 20 0.000 0.000 0.000 1.000   

1/28 50 0.000 0.000 0.000 1.000   
1/28 100 0.000 0.000 0.086 0.914 0.13% 

1/28 200 0.000 0.012 0.174 0.813 2.12% 
1/28 400 0.000 0.056 0.268 0.677 7.10% 

1/56 20 0.000 0.000 0.000 1.000   
1/56 50 0.000 0.000 0.038 0.962 0.05% 
1/56 100 0.000 0.000 0.153 0.847 1.28% 

1/56 200 0.000 0.042 0.231 0.727 5.57% 
1/56 400 0.000 0.063 0.288 0.649 14.69% 

1/112 20 0.000 0.000 0.031 0.969 0.01% 
1/112 50 0.000 0.018 0.136 0.846 0.47% 
1/112 100 0.032 0.008 0.201 0.760 2.79% 

1/112 200 0.080 0.084 0.365 0.471 4.06% 
1/112 400 0.004 0.133 0.318 0.545 24.24% 

Table 4-9: Optimal Detection Weightings on Authentic Data  

This table shows, on authentic health respiratory data, the optimized weightings 
found for overall detection, using the method described in Section 4.4.4.  
Combinations of false alert rate and outbreak size which resulted in an improvement 
over the Shewhart are highlighted. 
 
We can also see the effect in the ROC curves for optimized Detection Rates.  The 

optimization's improved performance holds not only for the specific false alert rate, 

but for a variety of different potential false alert rates.  Indeed, if one looks across the 

optimized false alert rates with significant improvement (for example, with an 

outbreak effect size of 400) then one can see that the weightings are quite similar. 
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Figure 4-13: ROC for Optimized Detection on Multiple FA Levels 

The corresponding ROC curve (showing only the portion up to false alert level 1/14) 
for optimizing detection of a 400-case lognormal outbreak.  The optimized method is 
in black, the Shewhart in grey. 

4.4.7. Conclusions and Future Work 

The issues which have come up in the use of unmodified CuScore techniques show 

serious problems with using this technique for timely detection of multi-day 

anomalies.  Because they do not consider the multiple opportunities for detection, 

they will not, on their own, provide improved detection.  However, the optimization 

technique based on the CuScore weighting method is an effective method for 

detecting outbreaks with known shapes.  Further, this should point the way for future 

work using a foundation of statistical theory to create a real improvement for practical 

outbreak detection.   
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In terms of future work, the optimization technique described in Section 4.4.4 could 

also be used to solve more general problems.  For example, the technique could be 

used to maximize the probability of detection by a given day before the peak, in case 

of a response which needs to occur earlier in the progression of the disease to be 

effective.  More generally, it could use an overall cost function for missed outbreaks, 

outbreaks detected on each day of the outbreak, and false alerts.  This could impact 

the policy decisions of public health officials in deciding what diseases to focus on, 

and how many resources are required for various detection capabilities. 

 

If the health series residuals significantly deviate from normality, one could modify 

the optimization method to use an alternative distribution (such as Poisson).  If no 

parametric distribution is a good fit, then one could estimate probabilities from an 

empirical distribution, use Monte Carlo methods, or set up a Markov chain 

computation for estimating the probability of exceeding the control limit. 

 

Finally, the analysis presented here assumes a fixed outbreak signal; as we showed in 

Chapter 2, having a stochastic outbreak signal can actually have a significant effect 

on performance.  While the fixed outbreak is useful, it is ultimately an approximation.  

One easy and very useful extension to this work would be to consider a stochastic 

outbreak and make the corresponding changes to the daily detection analysis. 
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Chapter 5 : Improved Evaluation Methods 

5.1. Introduction 

Although the field of biosurveillance has grown in importance and emphasis in the 

last several years, the research community involved in designing and evaluating 

monitoring algorithms has not grown as expected.   One reason for this lack of 

sufficient growth is the lack of publicly available data which researchers can use for 

developing and evaluating algorithms. Another reason is that the evaluation of 

different surveillance algorithms is done internally by each research group, thereby 

hindering open scientific evaluation of newly developed algorithms.  One solution to 

this is to use simulated data, as described in Section 1.4.7.  However, in order to be 

confident in the results form such simulation, one must be confident that the 

simulated data is similar to authentic data.  For this reason, we present a way to apply 

statistical tests to evaluate simulated data. 

 

In addition, when evaluating a detection algorithm or comparing two detection 

algorithms, an evaluator often has a variety of concerns.  They are not simply 

concerned with the overall detection rate--they may be concerned with detection 

within the first 3 days and detection within the first 7.  They are likely to be 

considering the benefits and costs from a variety of false alert rates as well.  Because 

this information is not traditionally conveyed in a form which allows the health 

practitioner to consider multiple possible scenarios, we present a new visualization to 

display this information in an effective way. 
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5.2. Evaluating Simulation Effectiveness 

A crucial component of using simulation to mimic authentic data is verifying that the 

simulated data retain the key characteristics of the original data. This is done by 

testing whether the simulated data come from the same distribution as the original 

authentic data.  If they come from the same distribution, then the simulation method 

should be trustworthy and provide valid results; if not, then the differences between 

the original and simulated data can provide distorted and unrealistic results.  To 

determine if this is the case, we present distribution tests specifically tailored for use 

in evaluating simulated biosurveillance data.  These tests will also be published as 

part of (Lotze et al., 2010). 

 

Of course, given a finite amount of original data, there exist an infinite number of 

distributions which could generate those data.  The distribution tests presented here 

merely attempt to confirm that the simulation method is within that space of possible 

models, specifically those which have a reasonable chance of generating the data.  

We must use domain knowledge (such as our awareness of which characteristics are 

relevant) to further constrain the possible simulation models. Goodness-of-fit tests of 

the simulated data should be considered as relative measures of consistency; it is 

known that distributional tests become extremely sensitive with large amounts of 

data, and so may reject even the most useful simulations. 

 

Finally, a mimic method will only be useful if it accurately captures the randomness 

of the underlying distribution.  If a mimic is simply a duplicate of the original data, it 
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is clearly not a good additional test, nor does it avoid any privacy concerns.  

Similarly, a mimic which merely adds random noise to the original is not providing a 

new authentic set of possible data--it is simply providing the original data with extra 

variation. 

5.2.1. Univariate  Testing 

The first method for evaluating the closeness between the distribution of authentic 

and mimic data is a series of simple  tests.  To test a simulated data set against its 

original data set, we take each univariate data series and split it by day of week.  The 

values for a single day of week are then grouped into bins; an example of the binning 

process is given in Figure 5-1.  The width of the bin varies by density, such that there 

are at least 10 observations in each bin.  The original data are split and binned in the 

same fashion, and these two sets of counts (mimicked and original) are tested for 

distributional equality using a  test (with degrees of freedom equal to k-1, where 

k=the number of bins).  An FDR (Benjamini & Hochberg, 1995) significance 

correction is used to account for multiple testing across multiple series.  The  tests 

can also be repeated for each day-of-week separately with FDR correction, to inform 

us not only whether there are issues with our simulation, but also to point us towards 

the reasons for those issues. 
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Figure 5-1: Binning of Simulated Time Series 

A portion of a single time series being binned. 

5.2.2. Multivariate Testing 

The above  tests can only uncover univariate disparities between the original and 

mimicked data.  To also consider the covariance between the series, we consider 

multivariate goodness-of-fit tests.  While it is not obvious that such a test can be 

performed in a distribution-free manner, several methods have been developed to do 

so, notably (Bickel, 1969, Friedman & Rafsky, 1979, Schilling, 1986, Kim & Foutz, 

1987, Henze, 1988, Hall & Tajvidi, 2002). 

 

We use the nearest-neighbors test described in (Schilling, 1986), because of its 

asymptotic normality and computational tractability.  Under this test, the nearest  
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neighbors are computed for the combined sample.  Each of the nearest neighbors is 

then used to determine an indicator variable, whether or not it shares the same class as 

the neighboring point.  The statistic , the proportion of -nearest neighbors sharing 

the same class, is used to test equality of distributions.  If both samples have the same 

size and come from the same distribution,  will approach 0.5 as the sample size 

increases.  If the two samples differ in distribution, then  will tend to be larger than 

0.5.  With an appropriate correction,  has an approximate standard normal 

distribution. For an example, see Figure 5-2. 
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Figure 5-2: KNN Test 

A simple example of the KNN test for multivariate distribution equality, using only 
two series and 5 time points from authentic and mimic series.  Each point is labeled 
as authentic or mimic; the 3 nearest neighbors are computed, and an arrow is drawn 
connecting each point to its 3 neighbors.  The line is black if the neighbors have the 
same label, grey if different.  The number of neighbor links which are the same is 
summed, then normalized, and finally tested.  Here, there is insufficient evidence to 
reject the null hypothesis, so we conclude that the authentic and mimic distributions 
may be the same. 
 

5.2.3. Distribution Testing Example 

 
We now consider the tests of distributional equivalence on the simulation method 

presented in (Shmueli et al., 2007).  Simulated data was created to mimic the 

statistical properties of a city from the BioALIRT data set, providing 700 days of 6 

time series.  The multivariate nearest-neighbor test gives a Z-score of 3.62, with a p-
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value of 0.000293.  These p-values should be viewed cautiously, because due to the 

large sample size of n=1400 (700 for the authentic data and 700 for the simulated 

data), it will be very sensitive to any differences in distribution.  Still, the value is 

quite low, leading us to consider the univariate  tests. 

 

When individual day-of-week scores are considered for each series, we find 

significant deviations in four categories: giMilVisit on Sun (p-val=0.000915); 

giMilVisit on Sat (p-val=0.000225); giPrescrip on Sun (p-val=0.000045); and 

giCivVisit on Sun (p-val=0.000060). 

 

Examining individual bin comparisons, we see that the mimics have less variance on 

weekends than the original, suggesting that a negative binomial with increased 

variance might improve the simulation method.  Figure 5-3 shows differences in 

Sundays for GI Civilian visits. 



 

 172 
 

 
Figure 5-3: Chi-Squared Bin Test 

An indication of a difference between authentic and mimicked data: the mimicked 
series tend to have lower variance than the authentic data. 
 
This example shows how one might use these tests to find an issue with a simulation 

method, which could then be corrected to create an improved simulated data set.  In 

addition, one could use these tests to compare multiple simulation methods against 

the same authentic data series, in order to rank them according to how well they 

capture the qualities of the authentic data. 

5.3. Visualization 

5.3.1. Problem Description 

Aside from ensuring that results from different algorithms are numerically 

comparable and practically significant, it is important to convey that difference to a 
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researcher or to a practitioner who is evaluating different algorithms for use.  In order 

to do this, one must be able to show the probability of detecting an outbreak within a 

certain number of days.  This number of days will depend on the type of outbreak; 

one will be more concerned with early response to more virulent diseases, or ones for 

which earlier action is significantly more effective.  It will also depend on the 

resources which it is being compared against, such as the speed with which lab results 

will show definitive signs of a disease outbreak.  Being able to see this would provide 

researchers an effective way to judge algorithms against each other, and to provide 

practitioners a way of evaluating the practical usefulness of an algorithm. 

5.3.2. Time-Lag Heatmaps 

Rather than using ROC and AMOC curves to show detection probability and 

conditional timeliness for a given outbreak shape and size, we have developed a 

method to display the cumulative probability of detection on each day.  We refer to 

this visualization as a time-lag heatmap.  A time-lag heatmap displays, for each day, 

the probability that the algorithm will alert on that day or earlier during the outbreak.  

In this visualization, each row is interpreted as the series of days after the beginning 

of the outbreak (or, more accurately, after the beginning of the outbreak signal in the 

health series data).  When the number of entries is small enough, the value of the 

actual probability is shown within each cell. An example is shown in Figure 5-4. In 

this example, the probability of detection by days 1 through 20 is shown.  The 

probability in each cell is shown both by the darkness of the cell and by the numerical 

value. 
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Figure 5-4: Cumulative Detection Probability Strip 

This visualization shows the cumulative detection probabilities for a Shewhart 
detection algorithm on a 1-sigma step outbreak, with a false alert rate of 1 every 14 
days.  As should be expected, the detection probability goes to 1 as time progresses.  
The change in cell shading and numerical values show the cumulative probability of 
detection for each day. 
 
In order to show the performance over a range of false alert levels, we generate a 

series of daily strips, one for each false alert level.  By doing so, we can see how 

performance changes with different false alert rate requirements. An example is 

shown in Figure 5-5, which shows the probability of detection by day 1 through 20 

for a given false alert rate as a horizontal strip.  For example, the probability of 

detection by day 3 is 0.25 if we allow a 1/100 False Alert rate, but 0.35 if we allow a 

1/56 False Alert rate.  When color is available, the information can be even more 

effectively displayed, as in Figure 5-6. 
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Figure 5-5: Time Lag Heatmap for Shewhart 

This time-lag heatmap shows the probability of detection delay (for detection within 
the first 20 days) as the false alert rate decreases.  The cumulative probability of 
detection for each day is on the x-axis, with different false alert levels on the y-axis, 
using a Shewhart chart on a 1-sigma step outbreak. 
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Figure 5-6: Time Lag Heatmap (color) 

This time-lag heatmap shows the probability of detection delay (for detection within 
the first 20 days) as the false alert rate decreases.  The cumulative probability of 
detection for each day is on the x-axis, with different false alert levels on the y-axis, 
using a Shewhart chart on a 1-sigma step outbreak. 
 
We could also consider displaying this same information as a table of probabilities, 

without coloring the cells in the table as a heatmap.  However. by coloring the 

individual cells for their cumulative detection probability, the visualization can be 

rapidly assessed and intuitively understood.  While for smaller tables (ones with 

fewer days of interest or false alert levels), the shading is less beneficial, for tables 

comparing larger numbers of days or false alert levels, shading makes it possible to 

display and interpret what would otherwise be an unreadable table of dozens or 

hundreds of probabilities.   Performance studies on visualization have shown effects 

on comprehension and speed from the method of visualization as well as its 
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organization (Henry & Fekete, 2006); while we have not performed a user study of 

the effect, we expect that this visualization method should improve the speed of 

comprehending the performance of different detection algorithms. 

 

The time-lag heatmap visualization allows the display of both the detection 

performance and timeliness in one graph.  For finite-time outbreaks, one can see not 

only the probability of detection (by reading the column for the maximum day of 

detection value), but also the probabilities of detection for any days prior. Thus, the 

time-lag heatmap includes the information from both the ROC and AMOC in a single 

graph. 

 
5.3.2.1. Distribution over days 

 
The time-lag heatmap method can also be used to show individual probabilities of 

detecting an outbreak on each day; thus, instead of showing the cumulative 

probability of having detected the outbreak, darkness represents the probability of 

detection on that specific day, highlighting days during which there is a higher 

probability of detection.  This type of visualization can be used to show the detection 

probability distribution over days, which will often be more useful than simply 

reporting the mean or median day of detection. 
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Figure 5-7: Individual Daily Detection Probability Heatmap 

Individual daily detection probabilities for a CuSum chart, with differing false alert 
levels on the y-axis, for a 1-sigma step outbreak. 
 
Using shading to denote the probability of detection on each day (not cumulative) we 

clearly see the shifting weight of the probable days of detection in Figure 5-7.  By 

showing the distribution, we see both an increasing delay and an increased variance in 

the days of detection.  This figure is also displayed more distinctly when color is 

available, as in Figure 5-8. 
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Figure 5-8: Individual Daily Detection Probability Heatmap (color) 

Individual daily detection probabilities for a CuSum chart, with differing false alert 
levels on the y-axis, for a 1-sigma step outbreak. 
 

5.3.3. Use in Evaluating Shewhart versus CuSum performance 

 
The time-lag heatmap visualization depends on several components: the false alert 

rate, the nature of the underlying health data, and the outbreak type.  Given these 

constraints, however, it can be used to illuminate some interesting and useful results.  

One such result involves the comparison of Shewhart versus CuSum control charts 

for detecting outbreaks.   
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We can compute the cumulative detection probability for each day for a Shewhart 

chart.  Assuming a constant ATFS (False Alert Rate), we can compute the UCL (as 

described in Section 1.4.1) to be used as 

  Let  be the cumulative probability of detection on day 

i (i.e., the probability of detection on day i or earlier).  For a Shewhart chart, the 

detection probability on day i is the right tail of the normal distribution, as it is simply 

the probability that the random variable is above the UCL.  With an outbreak size for 

day i, given by , the probability of detection is given by: 

 

 

 

Therefore P(detection on day 1)  and P(detection on day i) 

.  Thus, the cumulative probability of detection 

on day i is given by 

 . (Eq. 5-2) 

 

This quantity can be easily computed for any outbreak shape, using incremental 

computation for the  values.  Recall Figure 5-5, which shows the time-lag heatmap 

for a Shewhart chart applied to a series with a step-increase outbreak shape. 

 

For a CuSum chart, the probability of detection on each day can be calculated using 

Markov chain methods (Brook & Evans, 1972). However, using the same principles, 
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one can determine the cumulative or individual probability of detection.  The results 

are shown in Figure 5-9. 

 

 
Figure 5-9: Time-Lag Heatmap for CuSum 

This time-lag heatmap shows the cumulative probability of detection for each day on 
the x-axis, with different false alert levels on the y-axis, using a CuSum chart on a 1-
sigma step outbreak. 
 
To compare the performance of the Shewhart and CuSum charts, we can also 

generate a time-lag heatmap of their differences in cumulative detection probability, 

as seen in Figure 5-10.  This is useful for examining the performance of a single 

algorithm under different false alert levels, or outbreak sizes, or for comparing two 

algorithms (e.g., Shewhart vs. CuSum).  From this figure, we can see that while 

CuSum is better than Shewhart when the FA level is low (1/100, as used by 

(Kleinman & Abrams, 2006)), the differences are much smaller when the FA rate is 
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higher (e.g., 1/14).  This resolves the apparent discrepancy between the theoretical 

analysis in Chapter 2 and reported results by (Kleinman & Abrams, 2006).  When 

color is available, we can use a divergent HCL color scheme (Zeileis et al., 2009) to 

show different colors when the Shewhart or the CuSum is performing better.  This 

version is shown in Figure 5-11. 

 
Figure 5-10: Time-Lag Heatmap for Difference Between Shewhart and CuSum 

This shows the difference in cumulative probability of detection between CuSum and 
Shewhart detection methods.  When the area is white (and the number negative), the 
Shewhart is performing better.  The darker the area, the better improvement CuSum 
has over Shewhart, in terms of cumulative probability of detection. 
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Figure 5-11: Time-Lag Heatmap for Difference Between Shewhart and CuSum (color) 

This shows the difference in cumulative probability of detection between CuSum and 
Shewhart detection methods.  When the area is more blue (and the number negative), 
the Shewhart is performing better.  When the area is more red (and the number 
positive), the CuSum is performing better.  The stronger the color, the stronger the 
difference; grey values indicate small differences. 
 

5.4. Conclusions and Future Work 

5.4.1. Simulation 

An R package for mimicking multivariate time series and simulating outbreak 

functions is freely available at http://projectmimic.com, along with ten simulated data 

sets mimicked from an authentic biosurveillance data set.  The R package is easily 

installed and contains extensive help for all functions, with example code.  The data 

sets contain two years of data, with six health indicators from a single region.  We 

encourage researchers to freely use the code or data sets provided.  By creating 
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multiple simulated data sets which are "copies" of the same authentic data set, one 

can begin to investigate the sensitivity of an algorithm's performance to small 

variation, using randomization and Monte Carlo testing. The ability to test an 

algorithm on multiple versions of the same data structure helps avoid over-fitting and 

gives more accurate estimates of model performance. 

 

By making the code and algorithms public and freely available, we hope to lower the 

barriers to entry and allow more researchers to become involved in biosurveillance.  

By providing a mechanism for generating mimics, we hope to encourage data holders 

to make mimics freely available.  By providing a mechanism for testing mimics, we 

hope to evaluate methods for mimicking multivariate time series data and to improve 

such methods. 

 

We believe that simulation can be an effective way of generating new, semi-authentic 

data sets for public research, free from privacy, confidentiality, and proprietary 

constraints.  The tests presented here provide checks on the validity of the simulation, 

and allow us to consider further improvements in simulation of health data.  By doing 

this, we hope to enable more researchers to consider the many challenges, and in 

particular statistical challenges, in biosurveillance (see (Shmueli & Burkom, 2009) 

for a survey of such challenges) and to provide an opportunity for rapid advancement 

of both research and practical solutions. 
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The evaluation tests considered here are unable to detect certain types of deviations 

between the authentic and mimicked data sets.  For example, since the temporal 

factor is not considered, they will be unable to find differences in autocorrelation and 

other time-related deviations.  For example, if all Saturday values were randomly 

reordered, the test results would be identical.  Similarly, if the daily observations were 

reordered to have the same marginal distribution, but a different autocorrelation, this 

ordering would not cause a change in the test results.   In addition, these tests will not 

find cases where the simulated data are too close to the original, such as when there is 

simple random variation around the original data points.  As described above, 

however, this is an undesirable property of a mimic simulation.  Tests for such 

scenarios should also be considered. 

 

Ultimately, the best test of the mimicked data will be whether algorithms perform 

equally well on the mimicked data and on authentic data. If detection algorithms 

perform on authentic data as well as on mimicked data, we can be confident that our 

mimicked series are useful for testing and comparing algorithms.  We can test this by 

simulating and injecting outbreak signals, then testing the performance of various 

algorithms on authentic versus simulated data. 

5.4.2. Visualization 

The time-lag heatmaps are an effective way to visualize the information contained in 

ROC and AMOC curves in a single graph.  They provide a new visual representation 

which captures the most useful information for researchers and practitioners, and 

have direct interpretation in terms of detection probabilities.  Time-lag heatmaps can 



 

 186 
 

be modified to show many significant features of an algorithm's performance, or to 

compare two algorithm's performance, by highlighting the key feature of timely 

detection. 

 

Additional modifications can be made to this basic idea in order to generate other 

types of useful graphs.  One way of doing this would be to show a different factor on 

the Y-axis other than false alert rate or outbreak size.  For example, it could vertically 

compare the performance of different algorithms applied to data with an outbreak of 

interest.  The visualization method could also be extended by adding glyphs for 

additional information, such as the median or mean detection day.  Finally, it would 

also be useful to perform a user study on the time-lag heatmap visualizations, to 

quantify the improvement in task completion when using them instead of other 

representations. 

Chapter 6 : Conclusions and Discussion 

6.1. Contributions of this Dissertation 

In this dissertation, we have proposed a number of methods to improve algorithmic 

biosurveillance.  First, we developed the theory for understanding the relationship 

between forecasting and detection.  By doing so, we shed light on factors which affect 

an algorithm's detection performance; with that understanding, we can see where our 

existing algorithms are weak and improve upon them when possible.  We have also 

started to investigate situations where improved forecasting will not result in 

improved detection.  This theory has only started to be developed; but it has already 

explained several aspects of biosurveillance algorithm performance; future 
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developments should provide an even better understanding of the factors behind 

detection performance. 

 

Second, we proposed methods to improve the forecasting of baseline health series.  

When multiple series are available, we can use cross-series covariates to provide 

additional information about the series of interest.  The information can serve as a 

proxy for effects which are not directly measured, but which nonetheless affect the 

baseline behavior of the series.  Similarly, we discussed the use of Temperature as 

one way of improving detection by using additional information which directly 

affects the behavior of the health series.  By finding and incorporating additional 

sources of information such as temperature, we can also improve performance.  

Finally, we proposed an ensemble method for combining forecasters to improve 

forecasting performance.  By combining multiple forecasters, we have the potential to 

create a forecaster which is better than any individual forecaster.  By adding 

additional interaction effects, this could be further improved to allow an ensemble 

which uses different combinations of forecasters depending on how well they perform 

on different days or other aspects of the data.  By improving forecasting, as we saw 

from the theoretical analysis, we can improve detection performance. 

 

We have also proposed several methods to directly improve detection algorithms.  

The first of these is to combine multiple series into a single statistic to monitor, 

thereby providing improved performance by using the information from multiple 

sources.  The second is a general-purpose method for normalizing the residuals 
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according to their estimated day-of-week variance.  After doing this, the residuals are 

closer to having a common variance, and so show an outbreak in a more consistent 

way.  This method can be easily applied to any method after forecasting and before 

applying detection, and has been shown to provide significant improvement over a 

wide range of outbreak sizes and false alert rates.  Finally, we proposed and 

developed a new method, based on the CuScore, for finding optimal weighted 

detectors.  This method allows one to find detectors which have the highest detection 

rate for a certain false alert rate and outbreak size.  By using a normalizing 

approximation, we can find these optimal detectors quickly and easily.  This method 

has been shown to have improved performance on real data, and can provide 

detectors which optimize overall detection, timely detection, or any cost function of 

detection on various days.  These detection methods provide improved detection 

performance; in particular, the day-of-week standardization is an improvement which 

can be applied to a wide variety of detection algorithms, and the optimized detectors 

allow the ability to find the best detector, tuned to a particular outbreak signal. 

 

Finally, we have proposed two ways to improve the evaluation of biosurveillance 

algorithms.  First, we have developed two types of tests for evaluating simulated 

health data sets.  By using these, researchers can find weaknesses in simulated data 

and improve the simulation methods to provide more useful test sets.  These methods 

can also be helpful for improving the modeling of health sets, which should result in 

improved forecasting.  Second, we proposed the use of Time-Lag Heatmaps for 

visualizing the daily detection probabilities of individual algorithms as well as for 
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comparing two algorithms.  These visualizations provide an intuitive understanding 

of how well an algorithm performs, or where one algorithm outperforms another, as 

well as allowing for a quantitative comparison on individual days.  This should allow 

researchers and practitioners to better understand the performance of different 

algorithms. 

 

These improvements comprise a broad set of related improvements, working within 

the framework of improving biosurveillance by understanding the problem of 

anomalies in time series.  By understanding the nature of this problem and comparing 

different methods, we can improve performance of the algorithms and so provide 

better tools to real public health practitioners. 

6.2. Beyond Binary Detection 

We define each day's problem as a binary detection question: is there an outbreak on 

this day?  But while this formalization makes it possible for algorithms to solve the 

problem, there are two issues to consider.  First, the binary setup provides a very 

coarse signal.  Instead of simply indicating "outbreak" or "no outbreak", we should 

consider providing a measure of confidence along with the indications of outbreak.  

Because there is a range of possible strengths for outbreak indicators, this can help 

practitioners decide on the appropriate response.  Some systems, such as ESSENCE, 

already rank potential outbreaks (Babin et al., 2008) or directly indicate the 

confidence in the alert as significant or mild (Burkom et al., 2008).  Including 

confidence measures in the formal problem definition would make the systems more 

reliable for users. 
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A second weakness of the binary setup is that it is divorced from the question of 

action: what is the best response?  In order to determine an appropriate course of 

action, one can think about two further questions: "What is the eventual size and 

shape of this outbreak going to be?" and "What type of disease and disease spread is 

being detected?"  Currently, epidemiologists and other public health practitioners are 

responsible for determining the answers to these questions.  If algorithmic approaches 

could provide additional insights, it could make them much more useful tools.  It is 

possible that daily detection will not be sensitive enough to provide this kind of 

specific information.  As information technology becomes increasingly integrated 

into health data providers and sentinel systems, information can be collected at an 

hourly level and eventually in real-time.  Some organizations have already begun 

collecting health data in more frequent intervals (Wagner et al., 2006).  But just as 

there were additional challenges when moving from weekly data, which are more 

consistent but also slower, so are there challenges in moving to more frequent data 

(Shmueli & Fienberg, 2006); algorithms will have to be adapted to high-frequency 

data and monitoring. 

6.3. Confidence Intervals in Evaluation 

In evaluating future biosurveillance algorithm results and comparing algorithm 

performance, we must consider confidence intervals and variance of the evaluation 

metrics.  Point estimates and empirical averages alone cannot be relied upon to 

distinguish between methods' performance.  If we do not provide an estimate of the 

variance of an algorithm's performance, then we cannot reliably say that it has 
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improved performance over another method.  The issue can be mollified to some 

extent by simulation of additional data sets (thereby increasing the sample size for 

detection performance) or by a preponderance of evidence over multiple authentic 

data sets or outbreak simulations; but in order to claim a significant difference 

between performances, we should provide confidence intervals for that difference.  

While we are guilty of not including them in this dissertation, we recognize that in 

moving forward, this will be crucial to the future of biosurveillance research. 

 

Because the statistical distribution of the evaluation metrics is not always known, 

research into these distributions could provide valuable understanding of when one 

method is significantly outperforming another.  Even without a theoretical 

distribution, simulation to estimate the empirical distribution would be useful.  In 

addition, for many of the methods described here, one can also provide confidence 

intervals; for example, treating the detection rate as the probability of a binomial 

distribution, and each simulated outbreak as a trial, one could provide binomial 

confidence intervals for the true detection rate or for the difference between two 

detection rates (including a multiple testing correction).  Similarly, the methods 

described in Chapter 2 could also provide confidence intervals for the detection rate 

of an algorithm simply by recognizing that the detection will come from a binomial 

distribution.  Finally, research into the effect of using the empirical false alert rate to 

set the upper control limit (rather than setting it in advance based on theoretical 

assumptions) would be quite useful for providing more accurate confidence intervals. 
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6.4. The Larger Context 

The methods proposed here are mainly described in terms of early detection and 

automated alerts.  The theory described can provide a better understanding of the 

factors related to performance, and the improved methods presented can provide 

better detection performance.  However, it is important to recognize that these 

automated algorithms are a single tool in the toolbox.  An automated alerting 

algorithm will not be the only indicator of a disease outbreak; but especially in 

combination with epidemiologist investigation, it can provide valuable insights into 

the current health situation and also give crucial corroborating evidence.   

 

Early detection is a mechanism which can provide notification of a possible outbreak 

before it would otherwise have been noticed, so that an investigation can begin.  But 

in practice, algorithm-assisted biosurveillance is both more and less than this.  

Automated algorithms are not reliable enough (partly due to the issues described at 

the end of Section 2.8) to be the sole determinant of a response: they provide too 

many false alerts and not enough true detections to justify a school closing or even a 

warning to all hospitals without further investigation.  In addition, they are generally 

coarse tools which can detect several different indicators of outbreaks without 

identifying the specific disease or subpopulation which is affected.  However, by 

searching through different possibilities and attempting to find areas of statistical 

significance, they can be a significant aid to professionals who want to find potential 

outbreaks, but cannot spend the hours needed to look at every possibility.  They can 

provide good indications for broader and deeper investigation, investigation which 
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can result in a more specific and useful understanding of the cause of the outbreak 

and an effective response.  Second, when there is already clinical suspicion, these 

tools can be used to provide quantitative validation of that suspicion, providing 

evidence that something is significantly different.  By doing so, they give the 

practitioner a more convincing case and help them make a better decision on the 

correct response.  Hence, detection algorithms serve as a decision support system 

rather than an independent alerting mechanism. 

 

In real situations, algorithm detection systems have provided important indicators for 

further investigation as well as quantitative evidence of significantly increased cases 

due to outbreaks (CDC, 2007); but understanding and responding to the situation still 

requires trained professionals and expert analysis.  These detection algorithms are 

valuable, and improving their performance is important, but neither the algorithms 

nor clinical knowledge is as effective alone as when the two reinforce and support 

each other.  We must remember the larger context to improve public health response 

for real outbreaks. 



 

 194 
 

Appendix A: Mathematical Notation 

•  is the forecast error on day t, considering only the baseline (non-outbreak) 

health series:  

•  is the forecasted value for day t 

•  is the natural logarithm of x:  

•  describes a vector  

•  is the outbreak signal for day t; it is 0 if there is no outbreak occurring on 

day t 

•  is the Gaussian cdf with mean , standard deviation : 

 

•  is the residual value on day t:  

•  is the standard deviation of a random variable 

•  is the underlying baseline health data series count for day  

•  is the observed health data series count for day :  

• Z is a standard Gaussian random variable with mean  and standard 

deviation , Z~N(0,1) 

•  indicates the one-sided upper Gaussian alpha quantile:  

(equivalently, ) 
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Glossary 

ACF: AutoCorrelation Function; see Autocorrelation. 

AMOC: Activity Monitoring Operating Characteristic; an AMOC curve plots 

1/ATFS (false alert rate) on the X-axis and ATFOS (average delay before 

detection) on the Y-axis.  It displays a detection algorithm's timeliness over a 

range of false alert levels.  See Section 5.1.   

ARL: Average Run Length; this is a general term for a detection process' average 

time until it generates an alert.  When the system is in control (or there is no 

outbreak), this is the ATFS.  When the system is out of control (or there is an 

outbreak), this is the ATFOS.  See Section 2.2.3.   

ATFOS: Average Time to First Outbreak Signal; this is the average time after an 

outbreak begins until the detection algorithm provides an alert.  It may also be 

called Delay, Timeliness, or Average Delay.  See Section 1.1.4. 

ATFS: Average Time to False Signal; when there is no outbreak, this is the 

average time until a detection algorithm generates an alert.  1/ATFS will often 

be referred to as the False Alert rate.  See Section 1.1.4. 

AUC: Area Under the Curve; this refers to the area under a ROC curve, and 

measures a detection algorithm's performance over a range of false alert levels.  

See Section 5.1. 

Autocorrelation: A time series is autocorrelated if successive values (i.e.,  and 

) are correlated.  This generally indicates that there is some common factor 

influencing nearby values, or that effects on the series have lasting impact.  See 

Section 2.5.2. 
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Bernoulli: A Bernoulli trial is a trial with two outcomes, usually defined as 

success (1) or failure (0).  It is essentially a weighted coin flip.  See Section 

2.2.3. 

BioALIRT: Bio-Event Advanced Leading Indicator Recognition Technology; a 

project sponsored by DARPA to provide data and evaluate biosurveillance 

algorithms' ability to detect outbreaks in that data.  See Section 1.3.1. 

BioSense: A CDC biosurveillance program.  See Section 1.2.2. 

Chebyshev: Chebyshev's Inequality is a bound on the number of values in a 

sample or distribution which are far from the mean.  It states that if the mean is 

 and standard deviation is , then for any number k, at least  of the 

values are within .  See Section 2.3. 

Covariance: The covariance of two random variables measures their linear 

relationship.  .  Higher covariance 

indicates that the two are more related: when one is high, so is the other.  A 

covariance of 0 indicates no linear correlation.  A negative covariance indicates 

variables which move in opposite directions (when one is high, the other is 

low).  Because covariance is strongly affected by the variance of the individual 

variables, correlation is often used instead. 

CuScore: A CuScore is a score designed to have maximum correlation with a 

particular signal.  Monitoring a CuScore is a detection method used for 

detecting occurrences of a specific signal type.  See Section 4.4. 

CuSum: A common control chart method, which measures Cumulative Sums of 

deviations from an expected mean.  See Section 1.4.1. 
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Delay: The amount of time after an outbreak begins until it is detected.  See 

ATFOS. 

Detection Probability: The probability a detection method has of detecting an 

outbreak.  See Section 1.1.4. 

EARS: Early Aberration Reporting System; a CDC biosurveillance project now 

included in BioSense.  It defines several algorithms which are commonly used 

in practice or for comparison with new algorithms.  See Section 1.2.2. 

ED: Emergency Department.  The number of people, each day, indicating a 

specific type of chief complaint (such as a respiratory problem) is a common 

source of biosurveillance data. 

Efficient statistic: An efficient statistic is one which has minimum variance over 

all comparable statistics measuring the same underlying value on the same set 

of data.  See Section 4.4.1. 

ER: Emergency Room.  See ED. 

ESSENCE: Electronic Surveillance System for the Early Notification of 

Community-Based Epidemics; a biosurveillance program run by the 

Department of Defense and Johns Hopkins university Applied Physics 

Laboratory.  See Section 1.2.3. 

EWMA: Exponentially Weighted Moving Average; a common control chart 

method for monitoring a series.  See Section 1.4.1. 

FA: False Alert Rate; see ATFS. 

Gaussian: The Gaussian distribution (often called the Normal distribution) is the 

familiar bell curve distribution.  It is often used to approximate a random 
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variable's distribution, due to mathematical tractability and theoretical 

justification (many distributions will tend towards a Gaussian as larger amounts 

of data are observed). 

Geometric: A geometric distribution describes the number of Bernoulli trials 

needed before the first success.  See Section 2.2.3. 

GI: Gastrointestinal.  Relating to the stomach and/or small and large intestines.  A 

category of chief complaint in ED data. 

Heatmap: A visualization method in which the values are displayed as colors 

rather than numbers.  See Section 5.3.2. 

Holt-Winters: An adaptive forecasting method which uses a level, linear trend, 

and seasonal component.  Sometimes referred to as HW or Holt-Winters 

Exponential Smoothing.  See Section 3.2.3. 

HW: See Holt-Winters. 

ISDS: International Society for Disease Surveillance; a society which aims to 

advance the field of disease surveillance.  It provides a forum for researchers 

and practitioners to work together, publishes a journal (Advances in Disease 

Surveillance), and hosts an annual conference. 

MSE: Mean Squared Error; the average squared error.  

.  See Section 2.1.2. 

Normal: See Gaussian. 

OTC: Over-the-Counter; the total sales, per day, of over-the-counter medication 

such as pain relievers or cough syrup is a common source of biosurveillance 

data. 
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Outbreak Signal: An outbreak signal is the expected number of additional cases 

due to a disease outbreak; it may also be generated by the expected delay from 

infection to display of symptoms.  An outbreak signal is frequently added to a 

baseline data set to test whether an algorithm can detect it. 

Poisson: The Poisson distribution is a common distribution of count data.  It arises 

when one is measuring total number of events within a period of time, when 

there is an underlying common average probability of an event occurring, and 

events occur independently. 

Regression: A method of relating an outcome variable to predictor values.  It is 

commonly used in biosurveillance to forecast the value of a health series.  

While regression is commonly used as shorthand for linear least-squares 

regression, there are actually a variety of methods which are also called 

regression.  See Section 3.2.1. 

Resp: Respiratory.  Relating to the lungs and/or airway.  A category of chief 

complaint in ED data. 

RMSE: Root Mean Squared Error; the square root of the average squared error.  

.  See Section 2.2.2. 

ROC: Receiver Operating Characteristic; a ROC curve plots 1/ATFS (false alert 

rate) on the X-axis and Detection Rate (true alert rate) on the Y-axis.  It displays 

a detection algorithm's detection rate over a range of false alert levels.  See 

Section 5.1. 

RODS: Real-Time Outbreak and Disease Surveillance; a biosurveillance program 

created by the University of Pittsburgh.  See Section 1.2.1. 
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Shewhart: A common control chart method which monitors the series directly.  

See Section 1.4.1. 

SPC: Statistical Process Control, a field interested in monitoring processes for 

defects by using control charts. 

TA: True Alert Rate; see Detection Probability. 

Timeliness: See ATFOS. 

Time series: A time series is a sequence of measurements or observations over 

time: .  In biosurveillance, there is usually one value each day.  An 

example time series might be the total number of cough syrup remedies sold, 

each day, in a particular geographic region.  See Section 1.1.1. 

UCL: Upper Control Limit; for a detection process, this is a value used as the 

upper bound for normal behavior.  Any value above this limit is considered to 

be an anomaly (or out of control) and generates an alert. 
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