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Abstract

Entering an era where mobile phones equipped with numerous sensors have become an integral part

of our lives and wearable devices such as activity trackers are very popular, studying and analyzing the

data collected by these devices can give insights to the researchers and policy makers about the ongoing

illnesses, outbreaks and public health in general. In this regard, new machine learning techniques can be

utilized for population screening, informing centers of disease control and prevention of potential threats and

outbreaks. Big data streams if not present, will limit investigating the feasibility of such new techniques

in this domain. To overcome this shortcoming, simulation models even if grounded by small-size data can

represent a simple platform of the more complicated systems and then be utilized as safe and still precise

environments for generating synthetic ground truth big data. The objective of this thesis is to use an agent-

based model (ABM) which depicts a city consisting of restaurants, consumers, and an inspector, to investigate

the practicability of using smartphones data in the machine-learning component of Hidden Markov Model

trained by synthetic ground-truth data generated by the ABM model to detect food-borne related outbreaks

and inform the inspector about them. To this end, we also compared the results of such arrangement with

traditional outbreak detection methods. We examine this method in different formations and scenarios. As

another contribution, we analyzed smart phone data collected through a real world experiment where the

participants were using an application Ethica Data on their phones named. This application as the first

platform turning smartphones into micro research labs allows passive sensor monitoring and sending over

context-dependent surveys. The collected data was later analyzed to get insights into the participants’ food

consumption patterns. Our results indicate that Hidden Markov Models supplied with smart phone data

provide accurate systems for foodborne outbreak detection. The results also support the applicability of

smart phone data to obtain information about foodborne diseases. The results also suggest that there are

some limitations in using Hidden Markov Models to detect the exact source of outbreaks.
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Chapter 1

Introduction

Attempts to understand and describe disease outbreaks and their pattern of spread through computer sim-

ulation have become an important and challenging application of computational science in the past decades.

Epidemiological models supply tools to analyze the outbreaks as manifestations of a complex system, and

to examine various scenarios to prevent and improve response to disease outbreaks. Employing computer

software provides the ability to study these “what if” scenarios in a low-risk, low-cost and rapidly executed

simulation environment to support rapid learning. In addition, it provides the ability to perform a large num-

ber of simulated experiments in a timely fashion. These benefits have led to a high and increasing demand

for simulation models. As a result, there are now dozens of software toolkits available for simulation, includ-

ing, but not limited to, IThink, InsightMaker, Vensim, Repast, Anazlytica, NetLogo, Anylogic, etc. Within

this list, Anylogic is notable for supporting mixtures of agent-based, discrete event, and system dynamics

simulation methodologies.

Despite advances in food safety controls, foodborne illness (sometimes informally termed “food poisoning”)

imposes a considerable health burden, causing an estimated one in ten people to fall ill every year, and can

be deadly specially in children less than 5 years old [33]. With foodborne outbreaks constituting a significant

public health concern, the highest priority for most contemporary foodborne illness surveillance systems is

to detect a new source of contaminated food quickly and efficiently. The medical and economic burden of

an ongoing outbreak grows rapidly as it progresses, and hence a timely detection of the disease source is of

critical importance.

This thesis describes the development and evaluation of an agent-based model simulating the occurrence of

foodborne illness in a municipality and its combination with machine learning outbreak detection mechanisms.

The model characterizes the relations among people (as food consumers), restaurants (as a major source of

foodborne outbreaks) and an outbreak surveillance system within a geographic space using GIS elements. To

make the simulation model empirically grounded, ground-truth data collected from clinical documents and

publications were used [35, 8, 27]. To improve the accuracy of outbreak detection, the collected synthetic

datasets of incident illness cases and vendor contamination records from the model were used to study the

efficacy of performing disease outbreak detection using the machine learning approach of Hidden Markov

Models (HMMs). Furthermore, we implemented variants of the predictive HMM model achieved from data

training and applied it for syndromic surveillance monitoring, rapidly predicting the occurrence of ongoing

1



outbreaks.

1.1 Motivation

Each year, about 48 million people suffer from foodborne illness in the U.S., of which 128,000 are hospitalized,

and 3,000 die from the infection [14]. A similar situation also prevails in Canada. The estimates by the

Public Health Agency of Canada (PHAC) suggest that 4 million Canadians annually – or 1 in 8 – become

sick from foodborne illnesses. Of these, there are about 11,600 hospitalizations and 238 deaths [45, 4]. An

estimated 600 million - almost 1 in 10 people - fall ill after eating contaminated food and 420,000 die each

year across the planet [33]. To prevent outbreaks of foodborne disease, local public health administrations

routinely investigate restaurants, recording complaints, and responding accordingly [9]. While the public

health inspection regime of food vendors successfully prevents many potential illnesses, the dynamic nature

of restaurants’ kitchens, the human resource constraints on carrying out consecutive inspections, and the

time-consuming character of the inspection process allow violations to remain undetected and limit the

completeness of foodborne illness prevention. Moreover, most afflicted people never show up at clinics and

health care centers, but are greatly curtailed in their activity. Underreporting is one of the main factors that

complicates effective surveillance of foodborne illness [29]. Although foodborne illnesses can be severe or even

fatal, milder cases are often not detected through routine surveillance. While such cases impose stiff health,

quality of life and economic costs, the absence of reliable data regarding this kind of illness in public health

incidence records makes it very challenging to rapidly identify a potential outbreak occurrence.

An additional complicating factor reflects the fact that outbreak prediction methods rely heavily on

telephone interviews of the clinical registered patients reporting possible foodborne illness, days or weeks

after their illness. This makes the situation even worse in two ways. First, the patient will be subject to

forgetfulness and spurious mentions regarding food vendors visited during a specified time. These issues

makes it hard to effectively prioritize the inspection of possibly contaminated restaurants in an investigation.

Second, and in consequence, because of inaccuracies and incompleteness of the data collected and the conse-

quent prolongation of the investigation process, the adverse health and cost impacts of the outbreak will be

magnified.

With the advent of mobile technologies, and web-based platforms such as Twitter, Facebook and various

mobile-phone applications, a huge amount of data is being harvested from our daily life while those users

interact with the surrounding world. Lately, the potential of collecting and translating online reviews and

complaints about food vendors into useful information to improve foodborne illness surveillance has caught

researchers’ attention. In 2015, the Chicago Department of Public Health (CDPH) launched a project

designed to improve food safety in Chicago by finding and responding to likely incidents of foodborne illness

reported on Twitter [17]. In a similar approach, restaurant reviews from Yelp – a business directory service

and crowd-sourced review forum – were inspected by the New York City Department of Health and Mental
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Hygiene to find foodborne illness complaints [10].

We further investigated in our model how use of reporting of illnesses via smartphones by a population

subgroup equipped with smartphones (referred as sentinels) could improve our inference regarding and re-

sponse to potential outbreaks. To evaluate this, we investigated the impact of two data collection regimes.

In the first – and more traditional – regime, we used clinical data only, reflecting presentation by a small

subset of victims of possible foodborne illness to healthcare centers. The second regime supplements such

traditional data with reports of illnesses provided by a small sentinel population, constituting just 4% of

the total population. It bears noting that the 4% was chosen as the best result of Sara McPhee-Knowles’s

work [35, 8, 27] where she compares the different scenarios of having 1%, 2% and 4% of the population as

sentinels to the baseline and it’s impact on different metrics in her model. While this data collection regime

could be carried out with a number of technologies – for example, via designated social media channels,

call-in lines, and web-based mechanisms – we considered a case in which Ethica Data was utilized, as in the

study above; as a result, some scenarios considered a situation in which information regarding participant

location was considered as being potentially available for the sentinel group.

1.2 Solution

Having a foodborne illness outbreak detection mechanism for more accurate and timely triggering of out-

break control measures would offer notable public health dividends to foodborne disease outbreak surveillance

systems. The classification can be a tool to support switching from a regime of regular restaurant inspec-

tions to a regime based more heavily on targeted inspections. Such a classification may further help to find

contaminated restaurants more rapidly, so as to minimize the cumulative illness burden and limit economic

losses.

The current inspection method most commonly alternates between restaurant checks (in a round-robin

fashion) running in a condition absent a suspected outbreak, and an outbreak inspection regime (running

in outbreak state declared when reported incident cases of foodborne illness within a period exceed a cer-

tain threshold), where recently visited restaurants reported by clinically ill individuals are prioritized for

inspection. Our hypothesis was that the burden of foodborne disease could be lowered by supplementing

traditional reporting data with information from sentinels who report their symptoms of foodborne illness via

their phones, and (further) by designating an outbreak using a time-series based machine learning algorithm

– such as in the form of a Hidden Markov Model (HMMs). Within this document, we sought to evaluate this

hypothesis with our simulation model, using several different HMMs:

1. A binary HMM for classification as to whether we are facing an outbreak situation: Here, we do not

take into account probability of a given restaurant being in contaminated state, and only concentrate

on identification of an overall outbreak state. Recognition of such an outbreak is treated as triggering
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a comprehensive inspection citywide.

(a) We initially focus on the historical number of traditional reports of presenting individuals to feed

our HMM and train it. This trained model later will be used to judge the existence of any

contaminated restaurant on the basis of the number of newly reported presenting clinical cases of

illness.

(b) In a second step, we use both traditional clinical reports and sentinel self-reported illness counts

as our HMM input.

(c) And finally, the HMM outbreak classifier developed in 1b is placed into the simulation model. The

model is then used to evaluate the cumulative cases of infection and cumulative contamination

period (which are hypothesized to shrink).

2. Within this element of the work, we consider a more articulated HMM for classification as to whether

specific restaurants are in contaminated situation. To address that need, we built an HMM with

a single global “no-contaminated” state and distinct “contaminated” states for each restaurant. To

avoid a combinatorial explosion, we do not have separate states involving more than one restaurant

being in contamination, relying on the assumption of a small probability that two restaurants will be

simultaneously contaminated, because of the rarity and short duration of contamination. Within the

current sub-investigation, to understand the relative importance of different types of information, we

will assume that the HMM has no access to highly accurate location information, in the form of either

restaurant-specific traffic or an accurate record where a given person has gone – i.e., no harvested

location data is available via tools such as Ethica Data to give either such traffic or to support better

recollection.

(a) Like 1a, this investigation takes into account only traditional reporting emerging from presentation

to a clinical setting, and relies upon each afflicted individual’s personal memory of locations in

which they might have been poisoned.

(b) In this step, we consider both complaints received through traditional reporting systems from

presenting clinical cases, as well as reports of symptoms received directly from the user. As above,

only afflicted individuals’ personal memory of their visited restaurant locations will be assessed.

(c) Finally, the HMM contamination classifier created in step 2b will be placed into the simulation

model as an outbreak triggering mechanism. We then seek to investigate how much use of that

classifier changes the cumulative cases of infection, compared with the naive classifier noted in the

baseline 1c. We use this HMM in two ways:

i. First, we investigate the impact of using the ABM only to determine if an outbreak occurs

across the restaurants as a whole.
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ii. Next, we consider an HMM that operates both to determine any occurrence of restaurant

contamination and to prioritize visitation of restaurants in such instances, so as to help the

surveillance system rapidly identify them based on the probability that this particular restau-

rant is in the “contaminated” state, as deduced from the HMM.

3. The HMM for this subproject is identical to the one described in 2 above, but in contrast we consider

the effects of highly accurate visitation counts for each restaurant .

1.3 Contributions

The main contributions of this thesis to the literature are the following:

1. Evaluation of new technologies in harvesting foodborne illness data and using them as an information

stream employable in the inference structure of syndromic surveillance systems. Broad-brush picture of

such applications is already given in a work by McPhee-Knowles et al. [28]. Results of this thesis achieved

by running a project on food consumption behaviour of 96 university students using a smartphone-based

epidemiological data collection system called Ethica Data [1] revealed that use of smartphones that can

record locations and offer channels for reporting foodborne illness cases where the individual does not

seek medical help could improve our inference about the potential outbreaks.

2. Simulation-based evaluation of several HMMs as outbreak identification systems. We found that such a

system offers an excellent potential for detecting foodborne illness outbreak when informed by reporting

by even a very small (e.g., 4% of population) sentinel group.

3. Utilization of HMMs in a goal-oriented scheme to identify the source of outbreaks and reduce the

duration of an outbreak, resulting in fewer incident cases of illness. While the evaluation of such

schemes did not reveal big gains, the creation of such models suggests opportunities for improvements

of the models – such as with improved data – that could strengthen results.

1.4 Thesis Outline

In this section, we offer an overview of the balance of the thesis. The current chapter, Chapter 1, described

the main motivation for this work, and problems that should be addressed. Furthermore, lines of investigation

and main contributions of this thesis were explained. Notes on the remaining chapters are given below:

• Chapter 2 presents background information on topics important for understanding the following chap-

ters of this thesis. This includes description of the simulation mode, an overview of similar work in

using data streams via new technologies and descriptions of foundational technologies and formalisms.
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• Chapter 3 is designated to cover the problem mentioned in 1.2, which has been published the proceedings

of the Conference on Social Computing, Behavioral-Cultural Modeling & Prediction and Behavior

Representation in Modeling and Simulation 2017.

• Chapter 4 addresses the problems 2, 3 raised in the Section 1.2.

• Chapter 5 describes the 2016 data collection project run using the smartphone-based Ethica Data

system, with a focus on food eating habits (including time and location of eating), and foodborne

illness reports collected from a group of students recruited for this purpose. In this chapter, we used

some tools and methods to study the harvested data and reveal some interesting results.

• Chapter 6 reports the work described in the paper Cough Detection Using Hidden Markov Models

presented at the 2019 International Conference on Social Computing, Behavioral-Cultural Modeling

and Prediction and Behavior Representation in Modeling and Simulation. Although the focus of the

paper is not in the domain of foodborne illness, it deals with temporally explicit syndromic surveillance

technologies supported by big data and shows how – contrary to the chapter 4 where a bottom-up

application of HMMs brings up some limitations due to lack of profile distinction among classes (states)

– here we are effectively able to group the identified hidden states of a cough sound into binary groups

of cough/non-cough and coughing/non-coughing.

• Chapter 7 provides a summary of the thesis. It notes important limitations of the investigations

conducted, and directions for future work that can improve or build on the results of this thesis.

1.5 Publications

• Chapter 3 includes a manuscript entitled “Prospective Detection of Foodborne Illness Outbreaks Us-

ing Machine Learning Approaches” by Aydin Teyhouee (AT), Sara McPhee-Knowles (SMK), Cheryl

Waldner (CW) and Nathaniel D. Osgood (NDO), published in Proceedings of the 2017 International

Conference on Social Computing, Behavioral-Cultural Modeling & Prediction and Behavior Represen-

tation in Modeling and Simulation [44]. Authors’ contributions are as follows:

AT drafted the manuscript, contributed in redesigning the simulation model, obtaining synthetic em-

pirical data from the model, implementing the HMM component, and data analysis. NDO supervised

the study, provided the skeletal HMM structure, supervised in adapting it to the foodborne illness

context and redesigning the simulation model and modified the manuscript. SMK and CW contributed

to development of the initial simulation model. CW further advised on some elements of the modeling

work and its description.

• Chapter 6 includes a manuscript entitled “Cough Detection Using Hidden Markov Models” by AT and

NDO, accepted in Proceedings of the 2019 International Conference on Social Computing, Behavioral-
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Cultural Modeling & Prediction and Behavior Representation in Modeling and Simulation [43]. Au-

thors’ contributions are as follows:

AT drafted the manuscript, contributed in data preparation, data labeling, implementing the HMM

component. NDO supervised the study, provided the skeletal HMM structure, supervised in adapting

HMM to cough detection context and modified the manuscript. AT and NDO contributed in obtaining

empirical data.
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Chapter 2

Background

This chapter primarily focuses on a review of the models which have applied machine learning techniques

for detection of disease outbreaks. It also provides a brief introduction to AnyLogic®, the tool we used for

creating our model and performing all the scenarios, and also agent-based modelling. A brief section is also

allocated to Ethica Data [1], a smartphone-based epidemiological data collection system that was utilised in

data acquisition for our foodborne study discussed in Chapter 5. The chapter further offers an overview of

the machine learning algorithms that we have employed. We additionally provide a background review on

Cassandra, a highly scalable distributed database and also Apache Spark, an open source big data processing

framework. Both Cassandra and Apache Spark are used for analyzing and investigating foodborne disease

related data discussed in detail in Chapter 5.

Section 2.1 covers foundational background on foodborne illness. Sections 2.4 and 2.5 provide an overview

of Hidden Markov Modeling and its great performance when dealing with sequential data, and Support

Vector Machine classifiers, respectively. These two techniques are used as a means of comparison in outbreak

detection, and their performance is discussed in Chapter 3. The Cassandra and Apache spark are covered in

Sections 2.6 and 2.7 respectively.

2.1 Literature Review

Within recent years, prospective detection of disease outbreaks in general using machine learning approaches

has attracted the attention of researchers [49], [24], [11]. For example, Xia Jiang and Garrick L. Wallstrom

in [49] present a Bayesian Network model which not only predicts an outbreak, but can further estimate

its size, duration and time of occurrence. The challenge in this new field is to diagnose occurrence of an

impending outbreak in a timely enough fashion to aid policy makers and public health agents in taking quick

outbreak controlling measurements. However, the applications of such work to foodborne illness outbreaks

have thus far been very limited [19].

Machine learning provides a set of tools and methods which can be applied in different problem domains

for data analysis. Given that the challenge of detecting foodborne illness outbreaks consists of identifying

the evolution of the categorical latent state (outbreak vs. non-outbreak) of a system (municipality) over time

in the light of noisy observations (incident cases) strongly influenced by the state, Hidden Markov Models

8



(HMMs) offer a particularly attractive analysis lens. Here we seek to distinguish between outbreak and

non-outbreak states based on our observation of the number of reported illnesses. In this work, we compare

the findings of the HMM with the results of a Support Vector Machine (SVM) model, which fails to take into

account the temporal context of data. To achieve this end, we will employ synthetic ground truth data from

a previously contributed [36] empirically-grounded agent-based model (ABM) of foodborne illness.

2.2 Agent-based Modeling

This section introduces Agent-based modeling as a common tool in modeling complicated systems and how

this approach has been utilized to create the foodborne-illness model presented in this thesis.

2.2.1 Anylogic

We used AnyLogic® in our project. It is equipped with a variety of tools to build projects using System

Dynamics, Agent Based and Discrete Event modeling concepts. It further provides the flexibility to build up

a model with combinations of those three mentioned schemas. This is the case in hybrid models where, for

example we wish to model the agent behavior continuous in time we use System Dynamics fragments (i.e.,

systems of equations) inside the agent; however most frequently we use statecharts as a clear and intuitive

way of representing human decision logic.

AnyLogic uses a graphical interface for declaratively characterizing many aspects of a model, but is also

based on – and compiles models to – Java, which makes it possible for a modeller to extend the declarative

characterization of simulation models with coding in Java. In fact, Anylogic extends the Eclipse IDE

Platform. The Java base of AnyLogic provides a high degree of flexibility in extending the simulation

models and also in building Java applets executable by any standard web browser, subject to security

settings.

Models can benefit from maps as layouts. AnyLogic supports both GIS shapefile maps and tile maps from

free online providers such as OpenCycleMap, LandMap, and OpenStreetMap. Using the tile maps, geospatial

mode-specific routes for agents are derived by AnyLogic from the map data.

2.2.2 Agent-based Modelling Overview

In highly dynamic and complex ecosystems (hospitals, workplaces, cities, etc) disease outbreaks such as

foodborne outbreaks depend on a number of individual characteristics of the food vendors and consumers

and network of contacts. These constitute external impacts that may be best picked up within the agent

based modeling tradition, given the fact that surveillance and outbreak investigation for foodborne disease

takes place at an individual level.

To map a system from the realm of real world to the models domain, ABM takes an approach working

upwards from the level of individual characteristics. In agent-based modeling methodology, properties and
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actions of individual agents of the system are taken into account and the overall behaviour of the model

appears as these agents integrate and interact with each other. This is in contrast to the most traditional

type of health modeling in System Dynamics and compartmental methodologies, where an aggregate view

is taken on the system. For example, Tian and Osgood [47] compare these two approaches in the context

of Tuberculosis (TB) transmission, considering smoking as a risk factor. Their results suggest that at the

practical application level, greater accuracy and easier extension are what agent based model was offering.

They also show a significant difference between agent based modeling and system dynamics when the impact

of network structure on TB diffusion was studied, giving more insights into the difference between them in

the context of practical decision-making in healthcare [47].

When the system is so complicated that it is almost impossible to understand how it behaves, the ABM

approach helps the modeler individualize the key role players in the system (agents) and define their behaviors.

Then these building blocks are connected to each other or are put in an environment to communicate and

the global behaviour of the modeled system emerges from these interactions. As a result, ABMs can support

learning that leads to deeper understanding of the dynamics of complex systems. By examining the emergent

patterns arising from representing and running counter-factual “what if" strategies in the model, policy

makers can arrive at improved understanding of the tradeoff between policy options.

Each agent has its own variables, parameters and behaviors; an individual for instance who is female

(i.e., has a sex parameter), gets sick (as a natural behaviour), and gets older as the model runs (i.e., an

age variable). There may be a network of contacts between agents which is used to model the exchange of

relevant information. There also can be an environment affecting the agents and being affected by them.

A central part of model development lies in the characterization of the agents playing key roles in the

system with a requisite level of details. Technically, an agent has state, parameters and behaviour. By

parameters we mean values mostly constant during a simulation run, such as gender or martial status and

by variables – changing values, such as current age, or health level. Behaviour not necessarily but often

involves decision making logic, which is typically triggered by certain events and conditions. Random factors

play an important role in many AB models, reflecting the fact that – among other factors – most decisions

are probabilistic. Factors influencing the agent behavior can be external and internal. The external ones

typically are same for all agents and are originated by the environment, by service providers. Internal factors

are consumer individual preferences and needs, knowledge, history, etc.

Figure 2.1 shows a demo model with three agents: Agent1, Home and Factory. Agent1 has three pa-

rameters which might hold characteristic values about its being, two variables holding varying values while

the model is running. Two functions describe the behavior of the agent when triggered by an internal event

like event1 or an external one like a specific global value from the main environment. This agent owns a

statechart. Statecharts materialize an agent’s interaction logic. The second agent, the Home has a very basic

structure having a location in terms of two horizontally and vertically pixel-based distances from the origin

of the pane sitting in the main class or (if a GIS map is presented) two geographical values as the latitude
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Figure 2.1: An ABM representing three agents. Normally a population of agents live inside the
main class which is the environment where all the agents interact with each other.

and longitude of the location. Like the Home agent, the Factory agent is holding a simple logic in terms of

a state chart and two parameters and a variable.

The main class, our model’s environment is where the population of the agents live; in other words, the

Main class holds populations of one or more instances of other classes such as Home, and Factory. Here,

we might assign (randomly or with a logic) a group of 2 or 3 Person agents to a single Home agent. There

might be also some underlying networks among these agents living in a home, such as a parent-ship network,

children network, husband-wife network or among neighbour homes as neighbourhood network and so on. A

class diagram of this model is shown in Figure 2.2, using the Unified Modeling Language (UML).

2.3 Ethica

Developed by Ethica Data, Inc., this system originally emerged from the iEpi project at the University of

Saskatchewan that in 2009 was used to track the spread of the H1N1 virus in central Canada by means of a

mobile sensor system, and subsequently developed to support smartphones. Ethica is the first of its kind in

turning smartphones into small-scale research labs. Researchers can use this application to design their studies

without needing to have programming skills. Although missing at the time of using this application for our

food behavior and foodborne illness research project, eligibility screening, informed consent, and enrolment

now can all be performed through the phone and thus requiring physical meetings with participants becomes

unnecessary, With Ethica a researchers can evaluate symptoms, and behaviors of the participants through

sensors on smartphones/wearables and surveys. They can either get advantage of the web-based access to

real-time analytics or have their own analysis over the collected data by accessing database directly or through
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Figure 2.2: A class diagram representing the structure of a model in Anylogic which uses java
programming language behind the scenes.

other frameworks and applications such as Spark, R, or Tableau. Due to end-to-end encryption, from app

data capture up until back-end storage, it is well equipped to be utilised in the public health domain where

researchers are dealing with sensitive data.

Ethica collects data from most of the data sources without a user’s interaction. After participants’

enrollment in an Ethica study, given that the study designed by the researchers group requires automated

data collection from any of the sensor sources on the phone, and subject to continued approval being granted

by the users, their phones’ sensors data are captured by Ethica in a fine-grained fashion. After being

encrypted, such data is uploaded to a table under the name of that specific sensor located in a database

designed for the study and sitting on a secure server. Apart from a wide range of capabilities in collecting

sensor data, Ethica also offers great flexibility in designing customized surveys. User-initiated surveys and

time-based ones are two of the common survey types, and were used in our study. Similar to the sensor

data, responses to the surveys are uploaded into their corresponding table. These responses are saved with

a record time specifying the time they are filled out after being popped up on the phone or called up by the

participant. This record time for expired and actively canceled surveys is being registered with the values of

“-1” and “-2” respectively.

2.4 Hidden Markov Models

Hidden Markov Models (or HMMs) are widely used in speech detection, pattern recognition and classification

problems. Given a time horizon, they infer the evolution of the system among a finite set of latent and
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non-observable categorical states over that horizon, with each of these states being associated with a specific

distribution of observables; it bears emphasis that, as applied here, this procedure is not inferring the structure

of the model but instead the value of the parameters governing the evolution of the system [15].

A hidden Markov Model algorithm is trying to model a system producing a sequence of typically noisy

external events (observations) generated from its finite and countable internal states, where the internal

state changes are hidden to a viewer outside the system, and the current state is always dependent on

the immediately previous state only, satisfying the Markov property. This property guarantees that the

probability distribution of the immediately subsequent state of the system depends only upon the current

state and not past states; in other words, the current state encloses all of the history of the system up to

present, enough to probabilistically dictate the future state of the system. The distribution of observables is

further treated as depending only on the current state (and are thus treated as independent, conditional on

on remaining in that state).

To briefly provide a more structured characterization of HMMs, consider a random variable o. Denote

the value of o at time t as ot that as indicating observations at discrete time chunks. As mentioned before,

the observation at time t (that is, ot) is dependent on an evolving, non-observable (“hidden") and categorical

discrete state st. Moreover, there is an underlying (and hidden) process governing changes in state: the

probability distribution for the current state st depends only on the value of the state of the system at t− 1,

st−1, i.e., P (st|st−1) = P (st|st−1, ..., s1). Also, given st, ot is independent of any other state and observation,

i.e., P (ot|st) = P (ot|st, ot−1, st−1, ..., o1, s1).

Figure 2.3: A Trellis Diagram representing a Hidden Markov Model.

Figure 2.3 demonstrates the configuration of an HMM in a Trellis Diagram format. In terms of a joint
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distribution of a sequence of states and observations, this configuration can be factored as in Equation 2.1.

P (s1:T , o1:T ) = P (s1)P (o1|s1)

T∏
t=2

P (st|st−1)P (ot|st) (2.1)

Within this framework, we can specify a HMM consisting of N states by the following parameters:

• State Transition Matrix

A matrix containing the probabilities of transition from each state si(t) to state sj(t + 1), 1 ≤ t ≤ T ,

1 ≤ i, j ≤ N can be defined as:

A =


a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...

aN1 aN2 . . . aNN

, where aij = P (sj(t+ 1)|si(t)) and
T∑

j=1

aij = 1 ∀1 ≤ i ≤ N

• Observation Emission Matrix

For those cases where the set of observations consists of only M discrete values, a matrix containing

the probabilities of emitting each observation oj(t) from state si(t) is given as follows:

B =


b11 b12 . . . b1M

b21 b22 . . . b2M
...

...
. . .

...

bM1 bM2 . . . bNM

, where
M∑
k=1

bik = 1 ∀1 ≤ i ≤ N

For a continuous set of observations, the probability density of emitting observation ot while in state

si is P (ot|si) where, as required by a probability density,
∫
O

P (o|s)do = 1.

• State Initialization Probability

The probability of the HMM starting in state si is given by πi

Having defined the structural parameters of a HMM, several different kinds of problems can be addressed;

two of the most important for our interests are as follows:

1. Given a set of such models Θh = (Ah, Bh, πh), what which model H∗ maximizes that probability, such

that H∗ = argmaxh[P (O|Θh)]?

2. Given a model Θ = (A,B, π) and a sequence of observations O = (o1, o2, ..., oT ), what is the most likely

sequence of hidden states S∗ emerging from this observation sequence, where S∗ = argmaxS P (O,S|Θ)?

2.5 SVM

In contrast to an explicit probabilistic model present in an HMM, a Support Vector Machine (SVM) estimates

the decision surfaces directly. In a binary linear SVM problem, for example, the goal is to separate data
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points using a decision region. This is achieved with separating hyperplanes in the space of the data points,

or in a non-linear transformation of that space.

Source: Wikipedia
Figure 2.4: Maximum-margin hyper-plane and margins for a binary SVM classification.[3]

Figure 2.4 shows a hyperplane in a space of two-components datapoints x defined as a plane H. Such a

plane can be presented with a normal vector ω and a scaling parameter b in the form of ωTx−b = 0. The data

points nearest to the hyperplane the points that if removed, would change the position of the H, are called

Support vectors. If we define two parallel hyperplanes H1 and H2 so that they pass through the support

vectors and separate the two classes of data The two other hyperplanes shown, H1 and H2, are parallel to H

and the distance between them is called the margin. The closest positive and negative class datapoints lying

on H1 and H2 are defined as support vectors. It is an easy exercise to show that the width of the margin is

equal to 2
||ω||2 . The goal is to find the optimal hyperplane H which maximizes the margin or minimizes ||ω||

2

2

over the weight vector, ω and the scaling parameter b, subject to constraints. Formally, we seek to minimize

L(ω)

L(ω) =
1

2
||ω||2

subject to:

yi(ω
Tx− b) >= 1;∀i

To address this problem, Lagrangian optimization can be used using the Lagrange multipliers to achieve

the optimal hyper-plane parameters. For many problems, the separation can only be achieved using nonlinear

surfaces. The key point here is to project the dataset from nonlinear space to a high dimensional eigenspace

using kernel functions. A key class of kernel functions used with SVMs map datapoints (e.g., feature vectors

for each of a training example and a vector to be classified) into a higher dimension and then calculate a

function of the inner product for those mapped vectors in that higher dimensional space. As a result, the
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nonlinear problem can become linearly separable, without the need to explicitly represent the separating

boundary within the higher-dimensional space.

The approach of increasing dimensionality described above is effective but has a huge computational

burden. It can easily proven that the training step in finding a SVM model by solving the optimization

problem only needs the training samples to compute pair-wise dot products 〈~xi, ~xj〉 where ~xi, ~xj ∈ RN [18].

It turns out there are functions that given two vectors u and v in RN , compute the dot product between

them in a higher-dimensional RM without requiring us to explicitly transform them to RM . Such functions

are called kernel functions, K(~xi, ~xj) and can be used to learn nonlinear decision boundaries for SVMs by

replacing the pair-wise dot products in a higher-dimensional RM space while remaining in RN .

2.6 Cassandra

Cassandra is a highly scalable distributed database designed to manage large amounts of structured data.

It is a masterless cluster, ensuring full service with no single point of failure. It also provides a Cassandra

query language shell (cqlsh) command-line interface allowing users to communicate with it. Using this shell,

one can execute the Cassandra Query Language (CQL).

2.7 Data Analysis Framework: Apache Spark

Apache Spark is an open source big data processing framework which provides speed and ease of use in

extracting complicated analytics from data. Spark makes it quick to write applications in Java, Scala, Python

or even R. In addition to the MapReduce operation – a programming paradigm which enables scalability over

Hadoop clusters [6] – it supports SQL queries, streaming data, machine learning and graph data processing.

One can combine all these powerful capabilities to come up with a single pipeline for accessing data and

processing it in a fast, distributed and fault-tolerant environment.

Figure 2.5 shows a flow diagram of a Spark setup and how data enters the Spark Streaming library from

multiple static or streaming data sources, and Spark Core along with other libraries such as Spark SQL and

MLlib used for analytical purposes.
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Figure 2.5: Spark Framework Ecosystem - Spark core along with different libraries.
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Chapter 3

Simple HMM incorporated ABM

This chapter includes text drawn from a manuscript entitled “Prospective Detection of Foodborne Illness

Outbreaks Using Machine Learning Approaches" by Aydin Teyhouee, Sarah McPhee-Knowles, Cheryl Wald-

ner and Nathaniel Osgood, published in Proceedings of the 2017 Social, Cultural, and Behavioral Modeling

(SBP-BRiMS) Conference [44]. The author’s contributions are described in Chapter 1. The agent-based

simulation model in this chapter is an extension of the earlier work by Sarah McPhee-Knowles and the pa-

rameter values and assumptions about the interaction among different model agents are derived from her

work. All parts of the model associated with the HMM has been added to this previous work [27].

3.1 Introduction

Each year, a large population worldwide suffer from foodborne illness. While the public health inspection

regime of food vendors successfully prevents many potential illnesses, the dynamic nature of restaurants’

kitchens, the human resource constraints on carrying out consecutive inspections and the time-consuming

character of the inspection process allow violations to remain undetected and limit the completeness of food

illness prevention. Moreover, numerous food poisoned people who show mild to moderate symptoms of illness

never show up at clinics and health care centers, but are greatly curtailed and inconvenienced in their activity.

While such cases impose stiff health, quality of life and economic costs, the absence of such data regarding

these kind of illness occurrence in public health incidence records makes it challenging to identify a potential

outbreak occurrence in a timely fashion.

Once an outbreak is declared, and outbreak investigation is generally launched. Outbreak investigation

methods mostly rely on telephone interviews of the clinical registered patients classified as suffering from

possible food poisoning, days or weeks after their illness. This phase of work also involves notable challenges.

First, a given patient will be subject to forgetfulness about food vendors visited during a specified time period,

making it harder to prioritize the most probable contaminated restaurants in an investigation. Second, and

as a consequence, because of inaccuracies in the data collected and the prolonged investigation process, the

adverse health and cost impacts of the outbreak will be magnified.

The general problem of prospective detection of disease outbreaks using machine learning approaches has

attracted the attention of researchers. A central challenge in this new field is to diagnose the occurrence
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of an outbreak in a fashion timely enough to help public health authorities in undertaking rapid outbreak

control mechanisms. However, the applications of such work to foodborne illness outbreaks has been very

limited [19].

Machine learning provides a set of tools which can be applied in different problem domains for data

analysis. Given that the challenge of detecting foodborne illness outbreaks consists of identifying the evolution

of the categorical latent state (outbreak vs. non-outbreak) of a system (municipality) over time in the light

of noisy observations (incident cases) strongly influenced by state, Hidden Markov Models (HMMs) offer a

particularly attractive analysis lens. Here we seek to distinguish between these outbreak and non-outbreak

states based on our observations of the number of reported illnesses. Although this is not the main goal

of our presented work, we compare the findings of the HMM with the results of a Support Vector Machine

(SVM) model, which fails to take into account the temporal context of data. In order to assess the accuracy

of the machine learning models, we will use synthetic ground truth data from a previously contributed

empirically-grounded agent-based model (ABM) of foodborne illness [27] .

As McPhee-Knowles shows in her model [27], and reflecting more recent successes in fieldwork by the

authors, we particularly investigate how sentinel-based reporting of illnesses via smartphones where the

affected individual does not show up in clinics could improve our inference about the potential outbreaks.

To evaluate this, we will simulate two data collection regimes. The first regime complements traditional data

with reports of subclinical illnesses provided by a small sentinel population, constituting just 4% of the total

population. While this first data collection regime could be carried out with a number of technologies such

as designated social media channels, call-in lines, and web-based mechanisms, we note that such a system

has been successfully utilized over many months by the authors, employing the Ethica [1] smartphone-based

epidemiological data collection system [40, 41]. In the second regime, we will use clinical data only, reflecting

presentation by victims of possible foodborne illness to healthcare centers.

3.2 Foodborne Illness Model

Details of the first version of the foodborne illness ABM that serves to generate the synthetic time series is

described in a previous contribution [27]. However, because of notable differences between that version and

the one contributed in this thesis, we are going to make some general comments about the new version. Both

models offer a stylistic depiction of a municipality that includes three main agents (the second model has an

extra static Home agent): Consumers, Restaurants and Inspectors as actors. In the scenarios examined here,

the municipality included a population of 5000 persons, 100 restaurants and one inspector.

Restaurants as shown in Figure 3.1 can be either in a non-contaminated or contaminated state, with

a transition hazard from the former to the latter such that on average, one restaurant per year becomes

contaminated.

The inspector can be in one of two modes: Routine inspection and outbreak response. In routine inspection
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Figure 3.1: Statechart and variables for Restaurant agent

mode, the inspector transitions between restaurants in a round-robin fashion, with contaminated restaurants

being subject to a probability of 50% of being diagnosed and rectified (thus transitioning back to a non-

contaminated state). An outbreak is assumed to be declared if at least two (as specified in the original

McPhee-Knowles model) clinically-presented cases occur. In an outbreak response mode, the inspector makes

prioritized visits to restaurants according to the number of times that they have been identified (via faulty

individual memory or via the geo-stamped records of sentinels) by those presented at clinics or (for the

sentinel scenario) those who have reported their illness via phones. In outbreak response mode, an inspector

who visits a contaminated restaurant is assumed to detect that restaurant with complete accuracy, and to

eliminate the source of contamination.

Individual persons are associated with certain static and dichotomous degree of care in food handling

and storage, and are at any time in one of three health states: Healthy, clinically-presenting ill, and not-

clinically-presenting ill. Such a person is treated as requiring to eat one time per day, with each such meal

taking place either at home or in a restaurant. 6.7% of this population eat at a restaurant daily, 30.9% three

times a week, and 23% eat out once a week; the remaining 39.4% visit a restaurant once every two weeks [5].

Visits to restaurants are remembered by an individual. Absent the app carried by sentinel individuals, recall

is imperfect, with a probability-per-week of forgetting a given restaurant of 5% to 20% (Ref [5], appendix

A). Both home and restaurant meals are associated with empirically estimated probabilities of triggering

foodborne illness, with the probability of a given person becoming ill from a home-cooked meal depending on

that person’s care in food handling. Within the model, 20% of the population is associated with good food

handling skills, while the balance are associated with poor food handling skills [35], [8]. Independent of their

source, foodborne illnesses developed in the model are classified clinical and lead to presentation for care with
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Figure 3.2: A snapshot of Foodborne Illness model

a small probability (0.005), with the remainder remaining not presenting at clinics. Following a fixed period

of time (2 days), individuals experiencing foodborne illness symptoms are treated as recovering, and return

to a healthy state. For analysis, each week, the model reports the incident case counts of clinically-presenting

and not-clinically-presenting illness and the count of contaminated restaurants.

3.3 HMM and SVM Configurations

In this problem, we focus on discrete time characterization, with each time point representing a single week.

The system transitions between two states st: a state in which the municipality includes a contaminated

restaurant (henceforth termed the “outbreak” state) and st = 1, and one in which no contaminated restaurant

is present and st = 0. Each such state is associated with a distribution for the observables yt(t = 1, ..., n):

clinically-presenting cases and (for the sentinel scenario) not-clinically-presenting cases, where n is the n’th

week. That is, for a given state st, yt|st ∼ fk(yt; θk), where k ∈ {0, 1}, fk is a pre-specified density (e.g.,

univariate or multivariate Gaussian or Poisson) and θk are parameters to be estimated. The unobserved state

space, st(t = 1, ..., n) is modelled by a two-state homogeneous Markov chain of order one with stationary

transition probabilities:

pkl = P (st+1 = l|st = k),

where k, l ∈ {0, 1} denote the two states of st (0: non-outbreak; 1: outbreak). For example, p01 is the

probability of switching from the non-outbreak to the outbreak state. Note that in this Markov-dependent

mixture model, yt is conditionally independent of all the remaining variables, given st. In Figure 3.3 a binary
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HMM classifier is presented.

Figure 3.3: A binary HMM

As we are working with counted data in this experiment (number of reported illnesses), the above men-

tioned fk is a Poisson density. A Poisson distribution can be used on counts of events where: (1) These events

are independent of each other and have no effect on increasing or decreasing the occurrence probability of the

other events. (2) The average frequency of the events can be calculated over the analysis time horizon; and

finally (3) While asking about the number of the occurred events is meaningful, asking about the number

of events that have not happened is senseless. This latter one, highlights the inherent difference between

Poisson and Binomial distributions, where in the latter one we know the probability of win (p) as well as the

probability of loss (q). So, to make it short, the expected frequency profile for the events of any dataset is

definable in the format of a Poisson where all the mentioned conditions are true.

An attraction of HMMs is the fact that it is possible to estimate their parameters using a variety of

parameter estimation methods – including the iterative Expectation Maximization (EM) algorithm. A key

idea in EM algorithm is to obtain the maximum likelihood estimate of the unknown parameters given the

complete set of data (the combination of the expected value of the unknown data given their distribution

and the known data) and then iterating the procedure until the estimate converges.

A sample of datapoints (the weekly number of clinically-presenting and not-clinically-presenting illness

reports) is shown in Figure 3.5. A preinvestigation over the dataset and by plotting the histograms corre-

sponding to each of the two datapoint clusters, Figure 3.4, one can observe:

1. A low level of illness occurrence, where the weekly incident case count can be modeled as a Poisson

distribution with parameter λ1.

2. And a high level of illness occurrence, where the weekly incident case count can be modeled as a Poisson
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Figure 3.4: Histograms corresponding to each of the two clusters of datapoints

distribution with parameter λ2.

The iterating process of converging the Poisson distributions’ lambda parameter is performed by assigning

the two above mentioned observed Poisson distribution parameters to specify a starting model for the EM

algorithm: Ω0 = (π0, P0, b0), where π0 is the initial matrix, P0 is the (2× 2) transition matrix and b0 is the

(1× 2) emission matrix containing the first guessed lambda parameters for each of the Poisson distributions.

In this study, a package named mhsmm [32] in the R statistical computing framework(RDevelopment Core

Team 2010) was used for parameter estimation. This package performs inference in HMMs as well as hidden

semi-Markov models. Input of the HMM consisted of the weekly results from the ABM, including just

clinically-presenting illness for the first scenario, and the sum of both the clinically-presenting and not-

clinically-presenting instances of illness for the second scenario. For training and cross-validation – a technique

used in the training phase to define a data set to test the model in order to limit problems like overfitting,

underfitting and get an insight on how the model will generalize to an independent data set – the number

of contaminated restaurants in successive weeks was rendered into a dichotomous variable serving as ground

truth, assuming that any contaminated restaurant number greater than 1 corresponded to the state of an

outbreak (whether declared or not).

To solve the problem with a SVM, we used a package in R named (e1071) [12] for the classification, and

– as in the case of the HMM – the results extracted from the ABM were used in two scenarios. In the second

scenario, both the clinically-presenting and sentinel not-clinically-presenting reports are considered, while in

the first scenario, only the clinically-presenting reports are considered as observations.
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Figure 3.5: A sample of datapoints form week #45 to week #70 - “0” and “1” correspond to
No-outbreak and Outbreak states, respectively

3.4 Results

The simulated 10,000-day (almost 27 year) dataset captured from the agent-based model was split up into

training dataset (75%) and testing dataset (25%). As is traditional for classification models, the results of

classifying the test dataset are characterized in a confusion matrix. This confusion matrix shows how well

the model behaved in labeling the existing observations corresponding to each of the classes. The following

table shows how the confusion matrix is calculated. Moreover, sensitivity or recall and specificity are two

other parameters showing the True Positive Rate (which in our experiment is the percentage of sick people

correctly identified as sick) and True Negative Rate (the percentage of healthy people correctly identified as

healthy) respectively, and are calculated as follows:

Sensitivity =
TruePositive

TruePositive+ FalseNegative

and

Specificity =
TrueNegative

TrueNegative+ FalsePositive

It bears emphasis, the positive condition and negative condition encode a state of outbreak as “1” and

non-outbreak as “0”, respectively.
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Table 3.1: Confusion Matrix

Total Population Predicted Condition Positive Predicted Condition Negative

Condition Positive #True Positive #False Negative

Condition Negative #False Positive #True Negative

3.4.1 Results of the Hidden Markov Model (Using both clinically-presenting

and not-clinically-presenting case counts)

For the HMM approach, the model was initialized with the following values:

Ω = (π0, P0, b0)

where the initial matrix , π0 is:

π0 =
[
0.5 0.5

]
the initial transition matrix , P0 is:

P0 =

0.5 0.5

0.5 0.5


and finally, the initial emission matrix , b0 is:

b0 =
[
1 4

]
These parameters are used by the EM algorithm to produce a maximum likelihood estimate Hidden Markov

Model to describe the data.

We evaluated models in the terms of confusion matrix, sensitivity and specificity resulting from a cross-

validation procedure over the test data. The model parameters Ω = (π, P, b) and its performance for scenario

2 (the case where our observation includes both clinically-presenting and not-clinically-presenting instances)

are described as follows:

π =
[
1 0

]

P =

0.990 0.010

0.055 0.945


b =

[
7.869088 15.860456

]
and the performance is as per Table 3.2:
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Sensitivity = 0.9318182

and

Specificity = 0.9840764

3.4.2 Results of the Support Vector Machine Model (Using both not-clinically-

presenting and clinically-presenting case counts)

The predictive performance of the SVM was measured through a “cross-validation” process over “cost” of

constraints violation with 10-fold sampling method and then a model with lowest misclassification error rate

with the following parameters was chosen,

1. SVM-Type: C-classification

2. SVM-Kernel: linear

3. cost: 1

4. gamma: 1

The performance of the model over the testing dataset is shown in Table 3.3 and in terms of sensitivity and

specificity:

Sensitivity = 0.6590909

and

Specificity = 0.977707

3.4.3 Results of the HMM and SVM (Using clinically-presenting case counts)

In this scenario where only the clinically-presenting incidences were considered, both the HMM and SVM

approaches failed in labeling the outbreak state. In this case, the number of reported clinically-presenting

cases were very rare, and all incidences were labeled as non-outbreak state. Table 3.4, shows the confusion

matrix for this scenario.

3.5 HMM-aided Outbreak Triggering System

To investigate whether the HMM could improve syndromic surveillance monitoring and linked disease out-

break detection systems, the ordinary illness triggering method (which is applied once at least two clinically-

presenting cases happen) as mentioned in detail in Section 3.2 was replaced with the resulted HMM in

Section 3.4.
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To carry out this HMM-based outbreak detection mechanism, the ABM uses the HMM parameters calcu-

lated in Section 3.4.1 (i.e., the probability distribution for each of the “outbreak” and "non-outbreak" states

and the transition probabilities between states) to calculate the updated probability of being in an outbreak

state in light of the previous value and the reported not-clinically-presenting and clinically-presenting case

counts. If the calculated probability at the beginning of any given week is greater than a threshold (which in

this experiment was set to 0.6), a message is sent to the inspector to trigger the transition to the outbreak

state investigation. The recorded cumulative count of clinically-presenting and not-clinically-presenting ill-

nesses over 10 years for 12 realizations in two different outbreak declaration regime (HMM outbreak triggering

method and the ordinary method) is shown in the Figure 3.6. Results represent a quite significant decrease

in the number of illness reports due to the fast detection of contaminated restaurants by applying the HMM

outbreak declaration approach. As demonstrated by Figure 3.7, this approach reflects a similar reduction in

the time period a given contaminated restaurants remains contaminated before being identified and cleared.

Figure 3.6: Regular and HMM-based outbreak declaration comparison over 12 realizations for each
(Number of illness incidences [person/10-years])

3.6 Conclusion

Performing disease outbreak detection based on reported illness cases is an important function for syndromic

surveillance systems. We treated the existence of a foodborne illness outbreak as a latent element of state and

developed a Hidden Markov model for syndromic surveillance. We evaluated our disease outbreak detection

approach using an empirically grounded previously contributed ABM of foodborne illness, comparing the

results from HMM to those secured using an SVM approach. Finally, in light of the highly favourable results

from the HMM, we further used the foodborne illness ABM to evaluate the public health gains secured

through use of a HMM-based outbreak detection trigger, as compared with a traditional one based on case
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Figure 3.7: Regular and HMM-based outbreak declaration comparison over 12 realizations for each
(Contamination period per contaminated restaurants [day/10-years])

counts. Despite the highly noisy data present, and overlapping distributions of incident case counts between

the outbreak and non-outbreak states, the results reported in this paper suggest a promising future for the

use of hidden state variables to model the changing dynamics of observed surveillance time series, and for

HMMs in general in outbreak signal detection. Moreover, the results from the first and second scenarios

(considering both clinically-presenting and not-clinically-presenting reports vs. considering only clinically-

presenting reports) reveal that use of smartphones that can record locations and offer channels for reporting

foodborne illness could improve our inference about the potential outbreaks. Finally, evaluation of HMM-

based outbreak triggering mechanisms using ABMs suggest that significant public health gains may be secured

when combining new technologies for syndromic surveillance with machine-learning based outbreak signal

detection mechanisms. This work suggests promising lines of future work, including in extending our outbreak

detection approach with multiple data streams obtained from mobile applications, such as restaurant-specific

traffic and illness counts.
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Table 3.2: Confusion Matrix for HMM - First Scenario

Total Population Predicted Condition Positive Predicted Condition Negative

Condition Positive 41 3

Condition Negative 5 309

Table 3.3: Confusion Matrix for SVM - First Scenario

Total Population Predicted Condition Positive Predicted Condition Negative

Condition Positive 29 15

Condition Negative 7 307

Table 3.4: Confusion Matrix for SVM and HMM- Second Scenario

Total Population Predicted Condition Positive Predicted Condition Negative

Condition Positive 0 44

Condition Negative 0 314
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Chapter 4

Targeted HMM

We begin this chapter with a top down view into our simulation model, with later sections continuing the

investigation with regards to the goals defined in Chapter 1.

4.1 Model Architecture

The individual-level character of food consumption and associated variable preferences and risks, the de-

pendence of outbreak response on individual history, and the non-contagious character of many foodborne

illnesses suggests that an agent based approach is attractive for this model. People have their own specific

preference for eating home-made food or restaurant food. They further possess different levels of skills in

food handling, differing attitudes with respect to presenting for care given symptoms, and additional personal

characteristics such as frequency and vendor preferences with respect to eating out, motivating an exami-

nation at the individual level. While some large scale effects can be observed in aggregate models (such as

those defined using System Dynamics tools), most of the interesting phenomena depend on the individual

interactions captured most readily in Agent Based and Hybrid Models. As such, all of the modelling here

is undertaken within the ABM modelling approach – despite the fact that very visibly higher processing

demands of ABM models emerge when the number of agents scales up to the population of a city [27].

4.2 Model Formulation

Guided broadly by the ODD (Overview, Design concepts, and Details) protocol for the specification of

agent-based models [16], we offer here the details of our Agent Based Model (ABM).

4.2.1 Overview

Purpose

As mentioned in Chapter 2, the purpose of the ABM presented here is to investigate a series of scenarios

examining distinct approaches to triggering foodborne disease outbreaks in a municipal surveillance system,

and to use such scenarios to evaluate the outcomes of such scenarios in terms of outbreak duration and

cumulative incidence of disease.

30



State variables

This simulation incorporates four broad types of computational processes: Environment initialization, agent

initialization, agent behavior simulation, and agent-agent interaction. Although model logic does not depend

on spatial and GIS elements, to improve understanding and visualization, the environment characterizes the

mid-western Canadian city of Saskatoon using the GIS component in Anylogic. Because we did not seek a

model scope that would make model dynamics dependent on details of agent routes to resources (e.g., for

location-based resource selection), to enhance model performance, and to make the routing among agents

independent of availability of online resources such as routing databases, straight lines were selected as the

routes.

The model contains four different types of entities, each captured in distinct agent populations: Con-

sumers, homes, restaurants, and a (singleton) inspector. The restaurants and homes each exhibit time-

invariant latitude and longitude properties (parameters); the values of such parameters are randomly selected

during model initialization in such as way as to scatter them over the map of the city; each consumer then

resides in exactly one home. Consumers are initialized with parameters that select a random collection of

their favorite restaurants (which is of equal size for all agents). Consumers further draw their sequence of

possible restaurants to visit with uniform probability; they are also initialized with parameters that select

how frequently they eat restaurant food, and whether they posses good food handling habits (a dichotomous

attribute) when cooking at home. Specifically, with respect to the frequency of eating at restaurants, con-

sumers are categorized into one of four groups: 6.7% of consumers eat out daily, 30.9% thrice weekly, 23%

weekly, and 39.4% of them visit a restaurant once every two weeks [5]. With respect to the riskiness of food

handling habits, with 20% probability, consumers are assumed to practice good food handling habits and

80% do not [35, 8].

Consumers are additionally characterized by two state variables: Whether or not they are ill, and – if so

– whether they are presenting for care or not. Consumers are further associated with a fixed parameter as to

whether or not they represent a sentinel – i.e., whether they are equipped with smartphones enabling them to

report their illness. In our model, the value of this parameter was set to 0.04 – indicating that approximately

4% of the total population serves as sentinels [27].

Restaurants have a single, dichotomous, state variable, indicating whether they are in a contaminated

or uncontaminated state. To characterize the ongoing risk of restaurant contamination, there is a global

hazard rate by which a safe restaurant probabilistically becomes contaminated. A contaminated restaurant

is then assumed to return to an uncontaminated state with certainty only if they are investigated by the

inspector agent in outbreak investigation mode. Otherwise, the restaurant’s contamination in the model may

be resolved probabilistically during routine inspection. Following such a routine investigation, the outbreak

is assumed to be resolved with a probability of 50% – reflecting the fact that the inspection is not as thorough

as it is in an outbreak mode investigation.

The singleton Inspector agent is also associated with a single dichotomous state variable: The inspector is
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either in a routine inspection mode visiting restaurants daily in a round robin fashion according to a random

ordering set at model initialization, or is – following a triggering indicator – in an outbreak investigation

mode, focusing on restaurants most frequently reported as having been visited by ill consumers.

In the model the probability of getting sick from a restaurant is taken to be three times the per day chance

of illness from eating a home meal prepared with good safety measures (i.e., approximately 3 × 1.5E − 4, a

value derived from empirical data for formulation of the model extended by this chapter [27]).

Process overview and scheduling

For consumer agent behavior simulation, we have implemented a food consumption scenario in which agents

decide every day whether to eat at home or in a restaurant according to their frequency parameter value

of eating out (which turns into a dichotomous daily decision of eating at home or a at a restaurant using a

uniform distribution). An agent might get ill if they don’t adhere to good food handling at home or if they

eat at a contaminated restaurant. A statechart representing the consumer’s behavior before and after getting

sick is shown in Figure 4.1.

Figure 4.1: Illness Statechart for Consumer Agent

As indicated by this statechart, ill consumers might elect to present at clinics/hospitals, or might decide to

remain at home. In the model, 80% of the consumers use poor food handling practices and 20% use safe food

handling practices when cooking at home. It is assumed that consumers who use poor food handling practices

are twice as likely to contract an illness as those who use safe food handling practices [35, 8]. If they present

for medical care or if they are members of the sentinel group, their illness and their visited restaurants during
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the last past week are reported and subsequently available to the inspector. When reporting restaurants at

the point of care, consumers who are not sentinels are assumed to exhibit a probability of forgetting a visited

restaurant a given amount of time ago; that probability rises over the time since visiting that vendor. By

contrast, for scenarios positing recording and reporting of data by sentinels, such reporting takes place via

smartphone-based location tracking; for simplicity, I follow [27] in assuming that the app-based recording of

locations for sentinel perfectly identifies the sets of restaurants that were visited by that sentinel.

In the baseline model, two cases of clinical presentation trigger an outbreak alert, causing the inspector to

change mode from routine inspection to an outbreak inspection regime where that inspector makes prioritized

visit to the restaurants reported most commonly. If the restaurant visited by the inspector is contaminated,

the inspector resolves the contamination and returns to the ordinary inspection regime; otherwise, the inspec-

tor begins the targeted visit process anew by removing the name of the visited restaurant from the sorted list

and continuing on to visit the next most highly reported restaurant until finding the contaminated restaurant

or no reported restaurants remain on that list. In the latter case, the situation is assumed to be interpreted

as a circumstance in which the alarm has been based on clinically presenting cases with home food sources.

In both of these latter cases, the inspector is assumed to resume routine inspection.

In our previous work [44] discussed in detail at Chapter 3 of this thesis, a Hidden Markov Model (HMM),

trained on a collection of synthetic datasets of incident illness cases and vendor contamination records from

the empirically grounded simulation model [27] (extended here) was incorporated into an augmented version

of that model to replace the triggering mechanism used to provoke outbreak investigations. The baseline

experiment of that augmented model from Chapter 3 also supports the baseline experiment here for syndromic

surveillance monitoring and disease outbreak detection under two data collection regimes: One involving

traditional clinical reporting alone, and the other involving a sentinel population using a smartphone-based

app for tracing location of food consumption and illness reporting. Findings of Chapter 3 and [44] suggested

that while reliance on clinical presentation data offers poor potential for automatic outbreak detection, it can

be highly effective to trigger outbreak response measures based on HMM-based classification even when such

HMMs are informed by smartphone-based reporting by even just a very small (4% of population) sentinel

group. To avoid repetition, we refer the readers to Chapter 3 and the published paper [44]. These scenarios

offer a baseline set of – already competitive – results against which we compare the results of the investigation

undertaken here.

4.2.2 Design

When the simulation starts – and after the GIS region is defined on the map – the initial population of

restaurants, homes, consumers and an inspector are scattered over the map region. Upon initialization, a

global parameter referencing a map from the designated unique name of each restaurants to the corresponding

number of reports – initially zero – is further created. The map referenced by this parameter is updated

by restaurant food consumers throughout the simulation as they get sick and report their suspected food
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sources. All the parameters for the incorporated HMM derived by a model training procedure performed

external to the Anylogic environment (as discussed in detail at Appendix B.1) are being deployed into the

simulation model environment at the initialization phase.

Once per day for each consumer, an event goes off and lets a consumer decide where to eat. Based on the

consumer’s restaurant visitation frequency, the consumer might decide to visit a restaurant or eat at home, as

realized according to the Movement Statechart in Figure 4.2. According to this statechart, if the decision is

to eat out, the consumer leaves the state from being at home and transits to a randomly selected restaurant

(“atRestaurant”); upon arrival, that consumer is assumed to immediately order and eat. The contamination

state of a restaurant and the parameter indicating whether good food handling practices have been followed

are the factors affecting the evolution of the health condition of the consumer for for meals eaten at a vendor

or at home, respectively.

If the consumer is sickened by food consumption, that consumer will immediately transition in the illness

statechart from the healthy state to one of the two states of resting at home or presenting at a medical

center. Regardless of the illness source, and in accordance with literature indicating that only a small

fraction of foodborne illness cases are reported, the foodborne illnesses developed in the model are classified

as precipitating clinical presentation with a small probability (0.005), with most cases not leading to clinical

presentation. Following a period of time fixed at two days regardless as to whether care-seeking was involved,

individuals experiencing illness are treated as recovering, and return to a healthy state.

Figure 4.2: Movement Statechart for Consumer Agent
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We ran the model for a small population size of 100 people and 5 restaurants over a period of 10 years

to evaluate the performance of our new HMM model with a global state of no_outbreak and 5 restaurant-

specific states of contamination. At the end of the model run, collected information – including the number

of daily reports and the daily visitation count (intended for use in the binomial distribution scenario) for each

restaurant and the enumeration of truly contaminated restaurants were exported out of the model through

AnyLogic’s database functionality.

The exported data was analyzed with the statistical package R, so as to derive the Transition Matrix

values and identify the density functions corresponding to any of the states. Later, these matrix tables were

imported into the database module inside the simulation model to allow them to be used in setting up the

incorporated HMM. To give a better idea to the reader of how these values were obtained, the principle steps

of this process are described in detail at Appendix B.1.

4.2.3 Details

An “HMM” event which lives in the Inspector agent class goes off daily, iterates over the restaurants, and

calculates the HMM-calculated probability for each restaurant being in one of the underlying states, given

the number of daily reports for that restaurant. In accordance with standard theory for HMMs as discussed

in detail in Chapter 2 and Section 2.4, the calculated (posterior) probability of being in each hidden state is

consists of the product of two values – a likelihood and a prior. The likelihood for a given restaurant-specific

state depends heavily on the restaurant-specific observation, and constitutes the likelihood of observing the

current observation vector (an observation of the count of illnesses for that restaurant) given that the such

a state obtains – i.e., given that this restaurant is in fact contaminated or not. The value of the prior for a

given state is derived from the vector of probabilities for the previous time step and the transition matrix;

specifically, it represents the probability of being in that state in light of the probability of being in each

possible state during the previous time step and the sum of the probability of having transitioned from each

such previous state to the current state in the transition from the previous time step to the current time

step, where such transition probabilities are specified in the transition matrix. The pseudo-code presented

in Appendix B.2 shows how each of these two values are calculated during the model run.

In the following sections, each of the solutions defined in Section 1.2 of Chapter 1 will be discussed, and

the performance of the obtained HMM will be evaluated. The results of incorporating that specific HMM

into the simulation model are then presented and compared.

4.3 Results: Reports Count Driven HMM

In our first approach only the number of reports by presenting individuals were considered for training the

HMM. Since presentation of those health care seeking individuals in clinics and hospitals is a Poisson process

where only the average time between events is known, but the exact timing of events is random and also
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the events are independent of each other, Poisson distributions were applied to obtain the emission matrix

values.

4.3.1 Considering Reports Limited to Clinical Presentation Cases

In this scenario where only the clinical presentation reports were considered. Since only a small fraction

of foodborne illnesses result in clinical presentation, within the model time horizon, it was not feasible to

collect enough data reporting restaurant-specific counts in the model; while very long runs could be used

to collect more such reports, a challenge blocking use of such information for operational decision-making is

that the contaminated restaurants would be cleared by the time that analysis is complete. As a result, the

HMM components – the transition matrix and the density functions corresponding to low and high number

of complaints for each restaurant – were not viable to gather from the collected synthetic ground-truth data.

By contrast, in Chapter 3, the clinical presentation data was dense enough for the transition and emission

matrices to be inferred because the data was collected for the restaurants as a whole. Having no HMM

configured for this – clinical presentation specific – scenario, there was no model to be incorporated into the

simulation model and examined.

4.3.2 Considering Reports Not Limited to Clinical Presentation Cases

In this scenario, not only does the HMM consider reports of restaurants visited based on clinically presenting

cases, but further considers reports by those reporting illness via their mobile phone application, but not

presenting for care. If all the classes other than GNO (Global No-Outbreak) are categorized as a single

contaminated state (GNO_NOT), then an ROC curve can be used for evaluation of this binary configuration

of the results. Figure 4.3 depicts the ROC curve for this scenario, with the associated AUC (Area Under

Curve) quantifying the performance.

ROC curves are insensitive to class balance, so although the occurrence of the restaurants to be con-

taminated (as our outbreak classes) are rare in comparison to the number of global non-outbreak class, the

ROC curve and area under that curve can summarize the performance based on all thresholds, and remain

informative.

Having trained the resulting HMM, it was incorporated into the simulation model.

4.3.3 HMM Incorporation into the ABM

HMM Used As Global Outbreak Alerting System (HMM-GOAS) As we mentioned earlier, in the

baseline simulation experiment, with the occurrence of two clinically presenting incident cases, the inspector’s

investigation regime switches from a round-robin mode to outbreak response regime, where the inspector

prioritizes visits to restaurants based on the number of times that a restaurant has been reported as being

visited by individuals who reported being ill. Here, we seek to replace this triggering mechanism with the
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Figure 4.3: HMM Performance considering Clinical and Pseudo-Clinical Cases: ROC Curve and
Associated AUC

implemented HMM as defined in the previous section, in which the inspector can switch to an outbreak

investigation mode when the HMM detects a case of contamination and sends a global outbreak alert. This

application of the HMM will be referred as HMM as Global Outbreak Alerting System (HMM-GOAS) from

now on.

HMM Used As Contamination Source Detector (HMM-CSD) Instead of alerting the inspector of

a likely outbreak, it would be ideal if the HMM could immediately direct that inspector to the contaminated

restaurant, thereby reducing the time until contamination is eliminated. This HMM application will be

referred to as HMM as Contamination Source Detector (HMM-CSD) hereafter. This approach would better

exploit the potential of the HMM. For this purpose, the HMM-event which goes off daily was modified to

iterate over the restaurants; if for any of them the HMM-calculated probability of contamination exceeds

a global threshold, the event adds them to a collection of detected restaurants. This collection is provided

to the inspector. If it is not empty, the inspector will switch into an outbreak inspection regime, and will

investigate – and potentially resolve contamination in – any of those restaurants which have been correctly

detected by the HMM as contaminated. Figure 4.4 depicts the change in the inspector’s statechart for the

realization of this method.

Figure 4.5 shows a box-plot of contamination duration resulting from the traditional outbreak triggering

system as compared with the HMM-based systems in form of HMM-GOAS and HMM-CSD, respectively.

The average and standard deviation of the presenting/non-presenting illness count temporal density (as

characterized by the number of underlying illness per day) is also compared for these the three outbreak
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Figure 4.4: Inspector’s Statechart - Targeted Inspection

Figure 4.5: Contamination Duration

detection systems, as shown in Table 4.1.

In this scenario, the traditional method performs slightly better than the both of the two HMM-based

methods; these two latter methods exhibit very similar performance.

4.4 Results: Reports and Visitations Count Driven HMM

In a second approach (as defined in Problem 3, Chapter 1.2), we investigated the benefit conferred by use

of HMMs considering restaurants’ daily visitation counts. The motivation lies in the fact that the extra

information provided by such counts might aid identification of the risks associated with a given restaurant.

The likelihood function is based on assumption that number of complaints from known visitors to each

restaurant (as gathered by restaurant visitation count data, such as could be provided by the restaurant’s

point of sale [e.g., cash register] system) follows a binomial distribution. By running the ABM and harvesting

both daily report counts and visitation counts for each restaurant, and knowing from the synthetic ground
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truth ABM, for any given day, what restaurant is in a contaminated status, we are able to extract the

Transition Matrix values – i.e., the probability of transition from or remaining in the contaminated and

non-contaminated states, and also the Emission Matrix values – i.e., the binomial distribution parameters

corresponding to each of those two hidden states.

4.4.1 Considering Reports Limited to Clinical Presentation Cases

Similar to what is discussed in section 4.3.1, when limited to considering clinical cases, HMM parameters were

not feasible to estimate from the synthetic ground-truth data collected from the ABM due to the scarcity of

clinical presentation cases. As a result, no further investigation was undertaken in this scenario.

4.4.2 Considering Reports Not Limited to Clinical Presentation Cases

The evaluation results of employing a Binomial instead of a Poisson distribution is shown in Figure 4.6 in

form of a ROC curve and the AUC value.

Figure 4.6: ROC Curve and AUC - HMM Performance considering Clinical and Pseudo-Clinical
Cases and Visitation Counts

4.4.3 HMM Incorporation into the ABM

In this section, the ordinary outbreak triggering system was replaced with the HMM, so as to use that HMM

to trigger the outbreak. Figure 4.7 shows a box-plot of contamination duration for the traditional outbreak

triggering system as compared with the HMM-based systems (in form of the HMM-GOAS and HMM-CSD)

based on binomial distributions inferred from observations, respectively.
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Figure 4.7: Contamination Duration considering Clinical and Pseudo-Clinical Cases and Visitation
Counts
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For this scenario, the average and standard deviation of the clinically-presenting and no-clinically-presenting

cases counts are also compared as depicted in Table 4.2.

4.5 Conclusion

In this chapter, we used synthetic ground-truth data from a foodborne illness simulation model to come

up with different configurations of HMMs. Later we incorporated these HMMs into the model to see how

they change the effectiveness of outbreak control. Contrary to Chapter 3, where we conducted a top-down

assessment depicting the ongoing outbreaks by considering the food-borne illness reports for all the restaurants

as a whole, here the investigation focused on a bottom-up, restaurant-specific view. We considered the

complaints – whether registered by clinics or sent over the phones – for each restaurant, and sought to extract

HMM parameters with the observation values for any single restaurant. Later we used the predicted results in

two ways: one considering its used only in alerting to occurrence of a new outbreak (and so making it similar

to the HMM configuration on Chapter 3), and the second considering the HMM as a means of identifying

the source of outbreaks by predicting the identity of the contaminated restaurant. Both of the approaches

showed limitations. Such limitations reflect in part the fact that the statistical signatures associated with

contamination for the restaurants were not distinctive enough to enable the HMM to effectively deduce the

underlying hidden state based on the observation vector; since the simulation model lacks any distinctive

feature for the restaurants (such as proximity to downtown/university, type of restaurants, etc.), the achieved

distributions for the restaurants (based on the report counts assigned to them) are very similar.
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Table 4.1: Mean and Standard Deviation of presenting/non-presenting illness counts for the Three
Methods

Mean Std.

No-HMM 0.4965 14.38083

HMM-GOAS 0.5017 14.40924

HMM-CSD 0.5045 14.42962

Table 4.2: Mean and Std. of illness counts with clinical-presentation and no-clinical-presentation for
Three Methods - Considering Visitation Counts

Mean Std.

No-HMM 0.496 14.380

HMM-GOAS 0.503 14.388

HMM-CSD 0.499 14.305
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Chapter 5

Data Analysis with Spark

5.1 Introduction

In January 2016, an innovative study in the University of Saskatchewan under supervision and guidance of Dr.

Cheryl Waldner and with support by Dr. Nathaniel Osgood was conducted to evaluate a new technology for

gathering data on food consumption and occurrence of gastrointestinal illness, and to use that technology to

assess recall and bias associated with recollection of food consumed [39]. This study employed the smartphone

app Ethica – details of which were presented in Chapter 2 under Section 2.3).

University students were recruited to install and utilize the app over a multi-month period, and to provide

feedback on its usability. The selection of students were chosen as the study population was shaped by the

fact that many are learning to cook or eat out frequently, elevating their risk for foodborne illness. Moreover,

most have smartphones and frequently use them for data sharing and communication.

For ease of enrollment and management, the initial larger group of participants were divided into two

staggered groups, and for each group a separate study was assigned (ethica_study_84 and ethica_study_85).

The first group consisted of 40 participants that completed data collection between January 15 and March

27, 2016. The second group consisted of 39 participants that completed the study between January 22 and

April 4, 2016. Over a period of 10 weeks, participants of each group were asked to report any gastrointestinal

symptoms using the app. During the first 10 days, they were further asked to take photos of their meals

and to give a short description of them (either by writing or recording their voice) at their convenience. In

a daily and weekly manner, and at specific times of the day, micro surveys containing a few questions about

participant’s food intake were sent out to the participants through the app. Completion of such surveys had

been encouraged at study intake. Reflecting the interest in the accuracy of recollection of food consumption,

participants completed an online survey 2 weeks later asking them to recall their food consumption history

for days 4 to 10.

The main objective of the project was to measure the extent of participant recall bias and the resulting

limitation of current investigation strategies [39]. However, the abundance and value of the collected data

over the 10 weeks participation period invite closer and multiperspective investigation. In this chapter, we

demonstrated how the core of the data using tools such as the Spark framework can be accessed to derive

findings by running analysis procedures over the data. Primary data giving information regarding human
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behaviour often provides opportunities to either derive the value of parameters within a simulation model

or to estimate – via calibration or machine learning techniques such as Particle Markov Chain Monte Carlo

(PMCMC) – values for parameters that allow the model to best match such data. Investigating high volume

data (big data) such as the data collected in the project can open new horizons to a researcher and reveal

some information regarding the surrounding environments which might be hard to detect directly by visual

and intuitional observations. This kind of information can be directly provided to ground the simulation

models in a more explicit and accurate way.

The study contained two types of survey-based data collecting regimes: User triggered surveys and time

triggered ones:

• User Triggered Surveys

– Food Consumption

– Illness Reporting

• Time Triggered Micro-surveys

Figure 5.1 and Figure 5.2 show how users could submit a report of their illness and food consumption

behavior, respectively.

Figure 5.1: Illness Survey used in ethica_study_84 and ethica_study_85.

For the first 10 days of the study, the participants were also asked to answer a set of questions on surveys

appearing on their phones around their meal time, a construct termed triggered micro-surveys. These survey
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Figure 5.2: Food consumption Survey used in EthicaStudy84 and EthicaStudy85

triggering times were designed so as to correspond to typical breakfast, lunch and dinner times. There were

a large number of different micro-surveys included in the study. Figure 5.3 shows a sample micro-survey.

5.2 Data Structure

Since studies in Ethica usually involve collecting one or more automated data sources – such as step counts,

screen state, accelerometer and GPS – and given that a large group of participants might be enrolled in the

study, researchers will generally be dealing with a large amounts of data, often making it challenging to access

and analyze it with traditional instruments. Ethica provides two methods of accessing the raw data: Either

by downloading study data for a particular data source as a comma-separated values (CSV) or JavaScript

Object Notation (JSON) through a Web—based access, or connecting directly to a study database. More

recently, Ethica has also added support for a data access and visualization tool based around Apache Kibana;

this Ethica extension is not covered here.

Since our analysis includes a broad set of available data – and potentially cross-linking different types

of data – downloading the raw data was not a good fit for our needs. The data cultivated under the study

“Exploring New Technologies to Support Investigation of Foodborne Disease” [2] by means of Ethica Data

app was saved into a Cassandra Database 2.6. It is saved into two separate databases, each of them covering

one of the two cohorts of the study that – as mentioned earlier in this chapter – were enrolled a week apart

for ease of managing enrollment process.

Figure 5.4 shows the tables for this study holding the data collected from users’ phones.

Following is an example of a single data entry stored in survey_resp table using the Cassandra Query
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Figure 5.3: A micro-survey used in the study.

Figure 5.4: A snapshot of the tables in the ethica_study_84, each corresponding to a Sensory
dataset.

Language (CQL). Please note that the “resps” column consists of three separate questions stored along with

the participant-specific answers in JSON format.

user_id | survey_id | subsurvey_id | record_time | rev_no | device_id | \\

duration | resps

---------+-----------+--------------+---------------------------------+--

000 | 111 | 1 | 201*-**-** **:**:**| ****053225741 | 83b7044351f9b19e

| 14 | {1: 'Q/A Set 1', 2: 'Q/A Set 2', 3: 'Q/A Set 3'}

The JSON format of these Q/A sets have been extracted and are shown in a readable fashion at Appendix A.1.

This example which is a single data entry of the illness reporting survey shows how it is structured within the

Cassandra database. The column ‘resps’ contains information by the participant in response to questions. For

the sake of the analysis considered here, notable answers include those reporting illness symptoms, whether

the illness might be rooted in alcohol consumption (for excluding it from foodborne illness dataset), and

whether the user has consulted with a health-care professional (as a sign of the illness severity).
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5.3 Problem Definition

The areas of focus to be pursued in this section are as follows:

1. Food Source Diversity

2. Clinical Presentation Frequency

3. Novelty and breadth in food seeking

4. Capacity to recall

(a) To avoid eating out

(b) To avoid going to recent restaurants

In Appendix A.2 the steps of setting a Spark environment and connecting to the data repository via a

Cassandra connector package is described. As mentioned above, the survey data were stored in the database in

the form of JSON encoding. According to the study design – which involved two distinct waves of enrollment,

separated by a week – the data of interest for this analysis were located on two separate databases with the

name format of ethica_study_xx. For ease of calculation, the tables containing eating and illness report

surveys from these two separate databases were aggregated. Please note that – as mentioned in Chapter 5

and Section 5.1 – Ethica’s optional expiration time for surveys and capacity for such surveys to be cancelled

had resulted in some responses to be filter out before any further inspection. The steps of aggregation and

filtration is presented at Appendix A.3 in greater detail.

5.3.1 Food Source Diversity

One of the questions asked of participants through the food reporting survey within Ethica concerned the

source of the reported food. The user was allowed to provide one of four options: “Food purchased on

campus”, “Restaurant Food”, “Ready-to-eat food purchased off campus” or “Home food”. Such the categories

were chosen as to be identical to the categories in the PHAC outbreak investigation surveys. Here, we present

our findings on the per-participant portions of such food types reported. Moreover, the daily consumption

frequency of each of these food types per user are shown. Hereafter, the following acronyms are used to refer

to the food source types:

• “Food purchased on campus” 99K “CampusF”

• “Eating at restaurant” 99K “RestaurantF”

• “Ready-to-eat food purchased off campus” 99K ‘‘R2EF_PurchOffCamp’’

• “Eating food prepared at home” 99K “HomeF”
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The following table shows a few records of the dataframe achieved from decoding all the required informa-

tion from the food reporting survey. The step-by-step description of acquiring such a dataframe is presented

in Appendix A.4.

+-------+---------+-----------------------+--------+--------

|user\_id|survey_id|record_time |foodType |

+-------+---------+-----------------------+--------+--------

|XXX |*** |2016-01-17 11:53:45.741|HomeF |

|YYY |*** |2016-01-19 17:29:22.321|R2EF_PurchOffCamp|

|YYY |*** |2016-01-19 21:31:17.284|CampusF |

+-------+---------+-----------------------+--------+--------|

Figure 5.5 show the fraction of food categories consumed by each participant where each radius points

to a user’s data. It clearly shows that for most of the participants have had more tendency to consume

home cooked food. The snippet of code for extracting the data for plotting these graphs is presented at

Appendix A.4.1.

Figure 5.5: Food type consumption fraction per user for total participants

48



5.3.2 Clinical Presentation Frequency

Given that someone is sick, what is the frequency of clinical presentation? Participants who had reported

cases of illness were also asked to specify whether or not they had consulted any health-care professional

regarding their illness. A high level review of the collected illness reports by extracting participants’ answers

to this question revealed that only 3.5% of the reported cases of illness had led to a clinical presentation.

Before taking any further steps, we had to make sure that only reports relating to gastrointestinal disease

were considered. The analysis therefore excluded any report where the participant had reported "Other"

(selected from among a set of foodborne illness symptoms) as the single symptom of illness, or claimed that

the illness might be due to alcohol consumption. A high level preview of illness reporting survey data is

shown in Figure 5.6.

Figure 5.6: Illness Reporting Statistics

This chart shows the information on the reports of clinical presentation of participants against the back-

ground of their total illness reports where each of the columns belong to a single participant. As shown a

minor fraction of the cases had resulted in clinical presentation.

Down the road, we also sought to find cases of illness reports for each user that have been sent out

consecutively in a time window of 24 hours (and in another attempt, 48 hours) and presumably suggesting

a common case of illness which had entailed a care-seeking.

The mechanism to find the time lag between each report of illness and the preceding instance of report

is given in detail at Appendix A.5.1. It should be noted that all of the records being sent out a few seconds

after a previous report (which most likely were related to participants’ mistake in data entry) were excluded

from the results.

Findings showed that given an illness incidence reported by any of the participants, all other reports in
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the next 24 or even 48 hours (hypothetically pointing to a common case of illness) have not resulted in any

clinical presentation afterwards.

5.3.3 Novelty in food seeking

To what degree are the participants returning to the same restaurants vs. going to others? Since participants

had never been required to report the name of the restaurants at which they had dined, we had to find a

way to extract geo-location data out of their food consumption surveys. Unfortunately, in this study, the

surveys were not geo-tagged i.e., no GPS location measurement was automatically captured with the survey

submission; newer versions of Ethica offer a capacity to tag the surveys with the geo-location information of

the phone at the time of survey submission.

Building on the provisional assumption that the food consumption reports regarding restaurant foods had

been submitted at the scene, we set up a procedure for cross-linking submitted reports with contemporaneous

records from GPS table – which logs the location and time information – based on the extracted record time

from the reports.

There were several major issues in applying this method. The first reflected the fact that there might be

several cases where, for a report record time, there exist no GPS record; this is mostly because location data

collection in Ethica app is occurring with a specific sample rate, which might not lead to a sampling interval

overlapping with the survey record time; in other words, there might be cases where for a survey there is no

corresponding GPS data at that specific record time. Within this context, it bears noting that record time

resolution is in milliseconds.

A second major concern was that there are moments in which no GPS signal is present at the scene. To

overcome this problem, instead of looking into one single GPS record time, we could look up all the GPS

records within a window corresponding to the food survey report, and then get the average of the latitude

and longitude of those selected datapoints. A time window of one minute length was selected for capturing

the location information.

By intersecting food consumption reporting and GPS tables, each report became marked with the latitude

and longitude of the phone at the time of submission; of them, only those relating to reported consumption

of restaurant food were selected.

It is worth bearing in mind that, due to noise, the GPS sensors on cellular phones might record location

coordinates a bit off from the exact location of the phone (participant). To address this, a binning process

for grouping pairs of locations based on their distance from one another was performed. Square bins and

hexagonal bins are the most common for spatial binning and in our case, we used the first method.

Uniqueness fraction is the number of restaurant-sourced eating reports in unique places (unique restau-

rants) to the total number of eating reports at any restaurant. A scatter plot of such a data is also presented

in Figure 5.7.
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Figure 5.7: Unique restaurant food report counts vs. total restaurant food report counts

5.3.4 Capacity to recall

What are the potential impacts of foodborne illness on eating behavior of affected individuals? The study of

change in participants’ food consumption behavior when they had a recent foodborne illness experience was

the point of focus in this section. I hypothesized that this behaviour change may manifest itself in several

ways. Given occurrence of foodborne illness on the part of a participant, a short term impact of might

precipitate avoidance in consuming foods prepared at campus vendors or restaurant foods.

A medium- or long- term impact might be observed in the participant’s avoidance of eating food in recent

restaurants. The following subsections describe my investigation and findings with respect to the validity of

these hypotheses.

Post-Illness Avoidance of Eating Out

It is possible that, in many cases, a person who has suffered a foodborne illness will lack a sense as to be

where they got sick.

Question: Is there a statistically significant decrease in the per-day probability of eating out (vs. eating

elsewhere) in the day following an illness report?

To answer this question, we investigated the record times of illness reports and inspected any food con-

sumption behaviour on the part of the participant in a 24-hour span following each such report. Combining

records of foodborne illness reports derived in work characterized in Section 5.3.2 and food consumption

reports whose derivation was described in Section 5.3.1, the food consumption dataframe was intersected

with the illness report dataframe to find instances of food consumption reports that fell into a defined time
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span likely to be characterized by illness recovery. This span extended from the record time of the illness

report until 24 hours after it. The data preparation and process of intersecting data frames are explained in

detail at Appendix A.6.1.

To assess whether occurrence of illness reduced the tendency of eating food prepared by vendors, we

sought to find the fraction of total reported food eaten in the period of 24 hours after an illness report that

consisted of restaurant food and food purchased on campus. Subsequently we sought to compare these values

to the total risky food consumption during the study period for that participant. The pseudo-code of such

an operation is explained in detail at Appendix A.6.2

Figure 5.8: Risky Food Consumption: (Top) Average fraction of risky food consumption
throughout study. (Middle) Average fraction of risky food consumption within 24 hours after illness

report. (Bottom) Difference of the top charts – Bars in green show decrease in risky food
consumption. All data is shown on a per-participant basis

Among all those cases who had submitted a minimum of one food consumption survey within a 24-hour

time slot, the change in their vendor-prepared food consumption fraction during this period to their total

risky food consumption fraction is shown in Figure 5.8. It is worth noting that the decrease in reporting

might come not from a deliberate avoidance of vendor-related food consumption, but instead from a tendency

to stay home while recovering.
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Post-Illness Avoidance of Recent Restaurants

To assess whether the dataset suggests a reduction in behaviour of participants in showing up in recently

visited restaurants after an illness report, a length of time before that incidence and after it, and to then

compare the representation of food vendors in each of the corresponding windows of time was considered.

Since the study had not asked the participants to provide names of food vendors at which they had dined,

it was necessary to compare geographic information derived for the food-consumption reports during those

time windows. Specifically, eating behaviour for vendor-prepared food across one-week windows before and

after illness reports was selected.

Similar to the mechanism described earlier at Section 5.3.3 and also previous subsection, the eating survey

dataframe was first joined with the GPS dataframe in a one-minute window fashion to provide geographic

context to the vendor-related food eating surveys.

Following the step of lending geographic context to the food consumption reports, the obtained geo-

tagged food data was linked with illness report data in order to find locations at which food consumption was

reported within the a week before and after any illness incidence reported by each participant. The details

of such operations are expressed at Appendix A.6.2.

The results show that there are only 5 participants having reports of restaurant food eating in a time

length of one week before and after a case of illness report. Table 5.9 shows the order of eating and illness

reports for these 5 participants.

Figure 5.9: Food reporting locations before and after an illness report for different participants

As shown in this table, participant with user_id=1 is the only one who has dined in the same location

before and after her illness report. For all others, the location before and after the illness report are different.

Figure 5.10 shows the distance between each of the assumed restaurant locations before illness report

with the ones after this report.

5.3.5 Conclusion

The findings presented confirm that Apache Spark can be an effective manipulation and analysis tool for

large amounts of data in a cluster computing platform. In addition, Ethica and similar tools demonstrate a
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Figure 5.10: Distance between restaurant locations before and after illness report

promise in collecting information, given the great majority of foodborne illness cases that remain clinically

unrevealed. This collected information can be used by public health organizations and centers in planning

health protection plans in a timely fashion without imposing huge economic burden. The results also suggest

that a considerable number of the participants appear to engage in a pattern of novelty seeking in their

food seeking behaviour rather than returning to same restaurants. The data also suggest that a majority

of affected individuals’ consumption of risky foods declined in a 24-hour time span after an illness incident.

The fact that the participant population of this project is limited to university students shapes the observed

patterns in central ways, including in terms of their limited access to diverse food vendors, avoidance of

revisits to recent restaurants after illness was not statistically (in terms of distance) significant. Given the

role of places like food courts on the university campus that host multiple restaurants, distance is not likely

to represent a robust way of assessing the degree of participants’ avoidance from recently visited restaurants.
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Chapter 6

Cough Detection

Respiratory infections and chronic respiratory diseases impose a heavy health burden worldwide. Cough-

ing is one of the most common symptoms of many such infections, and can be indicative of flare-ups of chronic

respiratory diseases. Whether at a clinical or public health level, the capacity to identify bouts of coughing

can aid understanding of population and individual health status. Developing health monitoring models in

the context of respiratory diseases and also seasonal diseases with symptoms such as cough has the potential

to improve quality of life, help clinicians and public health authorities with their decisions and decrease the

cost of health services. In this paper, we investigated the ability to which a simple machine learning approach

in the form of Hidden Markov Models (HMMs) could be used to classify different states of coughing using

univariate (with a single energy band as the input feature) and multivariate (with a multiple energy band as

the input features) binned time series using both of cough data. We further used the model to distinguish

cough events from other events and environmental noise. Our Hidden Markov algorithm achieved 92% AUR

(Area Under Receiver Operating Characteristic Curve) in classifying coughing events in noisy environments.

Moreover, comparison of univariate with multivariate HMMs suggest a high accuracy of multivariate HMMs

for cough event classifications.

6.1 Introduction

Symptoms such as cough are important clinical signs. Coughing is the most common symptom in respiratory

diseases, and awareness of the occurrence or persistent presence of a cough can provide valuable information to

physicians. Detailed awareness of coughing can aid physicians with their treatment on the basis of quantitative

assessments such as frequency or intensity as well as qualitative assessments such as dry or wet coughs

[42]. Moreover, cough detection analysis has the potential to reduce the cost of health services by – for

example – detecting the early signs of diseases and making preemptive diagnosis possible and prescribing

basic treatments while they are still effective [22]. However, the benefits of securing reliable, and timely

quantification of coughing behavior can also offer benefits beyond the physician’s office. Collecting cough

data using monitoring devices such as mobile sensors or other devices and analyzing the audio signals of coughs

can support remote monitoring of patients with chronic respiratory illnesses or restricted mobility. For such

diseases, awareness of flare-ups of coughing can motivate the need to present for care, and can inspire changes
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Figure 6.1: A spectrogram of a sample cough

to treatment recommendations. A final and important advantage of cough recognition resides in its potential

to provide health authorities with timely surveillance information about emergence of high-burden respiratory

conditions, thereby supporting earlier outbreak identification in particular geographic areas, thereby better

supporting public health decision making, including the design of public health interventions.

The duration of a cough sound typically varies between 0.2 and 1 second [20], and exhibits a sequence

of distinct acoustic patterns. The origin of these patterns is airway narrowing and bifurcation. The air-

way narrowing is due to a change in the thickness of the airflow walls (inflammation, mucus collection,

bronchoconstriction and fibrosis). A typical cough sound usually is composed of three stages: an explosive

expiration due to the abrupt opening of glottis, the intermediate stage in which cough sounds are reduced,

and the voiced stage due to the closing of the vocal cord. There are a variety of patterns of coughing based

on the presence or absence of each of these stages [30].

A visual representation of the spectrum of frequencies of a cough signal as it varies over time is shown in

the spectrogram of Figure 6.1, which is depicted as a heat map, with the lowest and highest intensities being

represented by dark and light green, respectively.

Several studies have described methods to analyze cough characteristics, considering the subjective in-

terpretation of cough sound recordings and the analysis of spectrograms [21, 7, 13, 31, 46, 48]. There are

two main research streams for cough recognition. One stream investigates audio signals frame-by-frame and

combines consecutive cough frames as a cough event [26]. The second stream consists of event detection and
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cough classification steps. Event detection identifies cough event candidates; each candidate is then classified

as a cough or non-cough event [25]. Our work follows the first stream, by seeking to detect cough signals in

continuous audio recording using a Hidden Markov Model (HMM).

This paper investigated the performance of an HMM, where each state of that model corresponds to a

portion of a typical cough, and where observables represent summaries of information from sound profiles.

We further investigated the performance of the model in detecting each state and thus distinguishing a period

of time in which a cough was occurring from when it was not. The HMM could further be used to distinguish

coughing from non–coughing behaviour when considering a longer period of time, and when the main focus

is to identify bouts of cough present in an sound recording events. To achieve this, the acoustic energy was

selected as the observable and measurable feature to feed into a univariate HMM. In another attempt, using

the frequency or pitch of the sound, the energy spectrum as the observation input was split into a vector of

three sub-features as low, mid and high energy bands. Finally, we compared the performance of these two

scenarios.

6.2 Materials and Methods

6.2.1 Data Collection and Labeling

The cough data used in this article is collected from recordings of cough sounds from different individuals

associated with the Computational Epidemiology and Public Health Informatics Laboratory in the Depart-

ment of Computer Science at the University of Saskatchewan in relatively noisy environments. A duration

of 20 minutes of such cough sounds were manually annotated by the authors.

We divided each audio signal into 25 millisecond time slots (bins) and extracted the following information

from each bin: the time corresponding to the mid–point of each bin, the sum of the energy density of

frequencies under 2 KHz (low-band energy), the sum of the energy density of frequencies between 2 KHz and

4 KHz (mid-band energy) and – finally – the sum of the energy density of frequencies between 4 KHz and

22 KHz (high-band energy). In light of the limited span of the audio frequency range, no frequencies above

22 KHz were considered. We considered the sum of energy densities as our training features for the Hidden

Markov model. In this work, each cough recording was divided into five distinct states/stages, and each 25

millisecond time bin was labeled as to the state with which it was associated. Specifically, we considered

three states inside a single cough (states A, B and C), a brief state of silence between each cough inside a

bout of coughs (D) and a longer state of silence between bouts of coughs for cough-prone cases (E). Bouts

of coughing were considered to trigger additional coughing (thus returning from state D to state A) with

higher probability than in a general non-coughing state (state E); alternatively, a bout of coughing could

then end, via a transition to state E. Figure 6.2 depicts different coughing states in the time domain. B

contrast, a schematic diagram showing posited transitions between different coughing states is demonstrated

in Figure 6.3.
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Figure 6.2: Different states of coughing in an acoustic signal of four cough epochs

The length of the cough sounds vary from cough-to-cough, and the distinctions between the successive

stages are not always clear – leading to imprecision in human classification of such stages. The beginning of

the cough sound was used as the starting point of state A, the start of state B was selected when the sound

amplitude was significantly lower than the initial peak and the start of state C was chosen when there was a

rise in the sound amplitude after state B.

This work sought to investigate the effectiveness of an HMM in predicting the underlying state of a given

time interval of a cough–recording by feeding our model with low, mid and high band energy-density values.

Given the characteristics of a single 25 millisecond bin and the energy density values, we investigated the

capacity of that model to predict with which state of coughing this bin was associated.

6.2.2 Model Training

The calculated probability for each hidden state is obtained by multiplying two values; one inferred from the

observation i.e., the likelihood of observing that hidden state given the current observation vector and the

other one derived from the transition matrix – i.e., the probability of being in that specific state according

to the probability of having been in different states in the previous time bin. The initial states’ values, i.e.,

the probability of being in any of the hidden states in the initialization step was set assuming that the model

starts in state A with the probability of 1.
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Figure 6.3: Cough transitions captured in the HMM

6.2.3 Model evaluation

We employed a two-fold cross validation approach in a repeated manner for training our model and and used

the average AUC – Area Under the Receiver Operating Characteristic [ROC] Curve – of the cross validation

steps as the primary evaluation metrics. The confusion matrix, sensitivity, and specificity were considered to

further evaluate model performance.

Since the ultimate goal is of this work to classify Cough from Non-Cough (correctly identifying an epoch

of cough in a bout of coughs) or Coughing from Non-Coughing (correctly identifying a bout of coughs), we

further investigated the capacity to classify audio signals according to two dichotomous categories: Cough vs.

Non-Cough, and Coughing vs. Non-Coughing. To accomplish this, we grouped the states in binary format

as follows:

• Cough vs. Non-Cough: states A, B and C were grouped in a single state of Cough and states D

and E as a single state of Non-Cough

• Coughing vs. Non-Coughing: States A, B, C and D were grouped as sate of Coughing and E as

the state of Non-Coughing.

The details of the preferred classifier will differ depending on our goals. Here, we applied the Youden’s

index [50] (by applying the “best“ argument of the “coords“ method from pROC package [37]) to maximize the

sum of sensitivity and specificity. The Confusion matrix and the optimal accuracy, sensitivity and specificity

are demonstrated in Section 6.3.
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Transition and Emission Matrices

Table 6.1 shows a sample of data points extracted from cough signals. The HMM states and transitions

captured the posited structure of transition ins between cough stages as shown in Figure 6.3.

Table 6.1: Training data sample

Ground Truth La-

bel

Low–band energy Mid–band energy High–band energy

A 31855.85 1155.99 678.39

B 5630.51 895.47 1704.09

B 9672.26 1891.19 1126.83

C 371.24 8.47 2.07

D 189.62 6.65 1.22

E 3.12 0.39 0.06

E 2.16 0.15 0.05

E 1.13 0.10 0.02

At any given time bin, the HMM can be in one of the five (hidden) states of A, B, C, D or E, resulting in

the transition matrix shown as Table 6.2. It bears emphasis that there are no transitions between some pairs

of states – for example, from A to C, or A to D); the probability of such transitions was treated as zero.

Table 6.2: Transition table for sample data

A B C D E

A PA|A PA|B 0.0 0.0 0.0

B 0.0 PB|B PB|C 0.0 0.0

C 0.0 0.0 PC|C PC|D 0.0

D PD|A 0.0 0.0 PD|D PD|E

E PE|A 0.0 0.0 0.0 PE|E

To calculate the probability Pxy of transition from a current state x to any of the probable states y, we

first found the probability of leaving a given state to any destination. Based on the HMM assumption of

memoryless transition processes, this is given by the reciprocal of the mean residence time (in time bins)

within that state. For states exhibiting a single outgoing transition (states A, B, C and E), that probability

was employed directly. For state D (which can be followed by either state A and state E), to arrive at the

probability of making the transition to each of states A and E, we further multiplied the probability of leaving

the state by the empirically observed proportion of transitions from state D to states A and E, respectively.

Since the model in this work makes use of continuous observations, instead of having an emission matrix,
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we used density functions extracted from and fitted to empirical observations, where the observations are as-

sumed to be independent from each other, conditional on being in a given state. As a simplifying assumption,

the joint likelihood of observing a given vector of low-band, mid-band and high-band energy quantities was

approximated as the product of independent likelihood functions (each associated with a univariate probabil-

ity density function). For a case of univariate HMM where a single observation (i.e., the total energy inside

each bin), for any given state, only one empirical density function was defined.

6.3 Results

Two experiments were conducted using the HMM. Experiment A trained and evaluated a univariate HMM

considering just a single feature: the total energy in a time-binned audio signal. By contrast, in Experiment

B, all the three band of energies were considered as a vector of observations, and a multivariate HMM

was trained. Both experiments used the “mhsmm” package in the statistical software R. Both Experiments

evaluated the HMMs according to ability to classify, for a given time bin, the particular coughing state as

well as dichotomous classification regarding the presence of absence of coughing.

6.3.1 Results of the univariate HMM: Experiment A

Using the total energy in bins as the single feature, an AUC value of 0.751 and 0.744 was obtained for training

and testing sets, respectively. The performance statistics of the model over the testing set – including a

confusion matrix, sensitivity, specificity, and accuracy – is shown in Table 6.3. Performance statistics of the

testing set for the univariate HMM in cough/nocough and cough-ing/nocoughing classification mode is shown

in Table 6.4.

Table 6.3: Performance statistics of the testing set for univariate HMM

Observed

Class: A Class: B Class: C Class: D Class: E

Predicted

Class: A 31 6 1 1 7

Class: B 3 45 19 6 25

Class: C 3 17 29 4 5

Class: D 3 2 31 21 19

Class: E 13 9 65 84 714

Sensitivity 0.585 0.570 0.200 0.181 0.927

Specificity 0.986 0.951 0.971 0.947 0.565

Accuracy 0.722
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Table 6.4: Performance statistics of the testing set for the univariate HMM in cough/no_cough and
coughing/no_coughing classification mode

Identifying a cough epoch in bout of coughs Identifying a bout of coughs

Observed Observed

cough no–cough coughing no–coughing

Predicted cough(ing) 247 230 371 214

Predicted no-cough(ing) 30 656 22 556

Accuracy: 78% Accuracy: 80%

Sensitivity: 89% Sensitivity: 94%

Specificity: 74% Specificity: 72%

(a) Cough/Non_cough; AUC 0.844 (b) Coughing/Non_coughing; AUC 0.865

Figure 6.4: ROC curve for uni-variate HMM after grouping

To investigate the obtained models performance in classifying Cough from Non-Cough or Coughing from

Non-Coughing, the identified states were grouped as per the process discussed in Section 6.2.3 resulting in the

following ROC curves shown in Figure 6.4 for Cough/Non-Cough and Coughing/Non-Coughing classifications.

6.3.2 Multivariate HMM Results: Experiment B

The multivariate HMM trained with a vector of three features containing the acoustic energy in low, medium

and high bands improved by 6% the performance of the AUC for the testing set, increasing it from 0.744

to 0.789. The AUC for training set was almost the same as for the univariate case, reaching 0.752. The

performance statistics of the chosen by Youden’s-index-selected multivariate model over the testing set is

demonstrated at Table 6.5. Also, the results of the Cough/Non-Cough and Coughing/Non-Coughing classi-

fications as the results of dichotomously grouping the cough states are depicted in Figure 6.5. The AUC for

the cases of Cough/Non-Cough and Coughing/Non-Coughing classification were increased by 4.5% and 6.4%

when compared to their univariate HMM counterparts.

Using the curves demonstrated in Figure 6.5 and to maximize both the sensitivity and specificity, the

best cut-off point was calculated on which the confusion matrix and the optimal accuracy, sensitivity and

specificity were obtained, according to Youden’s index. Results of using the best threshold in terms of

balancing the sensitivity and specificity are shown in Table 6.6.
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Table 6.5: Performance statistics of the testing set for multivariate HMM

Observed

Class: A Class: B Class: C Class: D Class: E

Predicted

Class: A 41 12 0 1 5

Class: B 4 41 6 0 8

Class: C 0 21 33 2 10

Class: D 2 4 43 26 3

Class: E 6 1 63 87 744

Sensitivity 0.774 0.519 0.223 0.224 0.966

Specificity 0.984 0.984 0.968 0.950 0.600

Accuracy 0.761

(a) Cough/Non_cough; AUC 0.882 (b) Coughing/Non_coughing; AUC 0.920

Figure 6.5: ROC curve for multivariate HMM after grouping

6.4 Conclusion

The HMMs evaluated here demonstrated favorable results, especially when the obtained results were inter-

preted in terms of the dichotomously problem of distinguishing Coughs from Non_Coughs, or Coughing

from Non_Coughing periods. Unsurprisingly, the results presented in this work further suggest that the

multivariate HMM demonstrates classification and detection of cough events with higher accuracy than does

a univariate HMM. Splitting the energy of cough sounds into three separate bands lead to density functions

corresponding to each band which can provide more detailed information to the HMM. The results offer

intriguing potential for early-warning outbreak detection in public areas. The prospects for applying such

surveillance methods can further be boosted using mobile sensor data – such as from wearable devices and

smartphones using platforms such as Ethica, particularly when coupled with transmission modeling and tools

such as particle filtering [38, 23, 34]. The approach demonstrated here for cough analysis can provide a foun-
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Table 6.6: Performance statistics of the testing set for multi-variate HMM in cough/no_cough and
coughing/no_coughing classification mode

Identifying a cough epoch in bout of coughs Identifying a bout of coughs

Observed Observed

cough no–cough coughing no–coughing

Predicted cough(ing) 243 181 342 82

Predicted no-cough(ing) 34 705 51 668

Accuracy: 82% Accuracy: 89%

Sensitivity: 88% Sensitivity: 87%

Specificity: 80% Specificity: 90%

dation towards support for both clinical research on pulmonary distress at a clinical level and for capturing

patient outcomes. The expansion of the HMM model using more detailed training over diverse types of

coughs can help physicians with qualitative assessment, such as in distinguishing dry or wet coughs, and

inferring diseases associated with such symptoms. Another potential application of this study can be helping

to identify the need for symptomatically-triggered treatment of patients suffering from respiratory diseases,

particularly in patients that lack ready capacity to communicate their distress, such as in infants and young

children, and among adults suffering from dementia or verbal limitations. The technique also offers potential

for recognizing animal vocalization and diagnosing animal health status.

While the results presented here demonstrate much promise, the approach applied exhibits significant

limitations and room for improvements. The added accuracy associated with multivariate analysis invites

investigation not only into alternative bands, but also classification according to a larger number of such

bands. The library of cough sounds examined here were greatly limited in their sourcing; results presented

here may differ significantly for alternative coughing etiologies, and according to the pulmonary and upper-

respiratory character and physical shape of the person coughing, and potentially according to cultural norms

involved. Greater variety in sourcing of coughs remains a high priority. Moreover, the classification accuracy

exhibited in this study needs to be considered preliminary in light of the limited library of recordings employed

here; accuracy of these or other HMM may exhibit markedly different accuracy when considered on other

audio recordings containing a variety of background noise or other respiratory-related sounds (e.g., wheezing,

clearing of the throat). Finally, it will be important to consider examining other classifiers that provide

additional avenues for predictive accuracy, including classifiers that are less theory-based, such as recurrent

artificial neural networks or deep learning networks employing recurrent network structures.

64



Chapter 7

Conclusion & Future Work

This thesis described a novel approach for foodborne illness outbreak detection that combines agent-

based simulation modeling with machine learning approaches to investigate whether this combination can

better capture outbreak dynamics. Moreover, the thesis demonstrates how variants of machine learning

approaches using data analysis can be applied for surveillance monitoring, predicting incident cases of ongoing

outbreaks and detecting the source of contamination. Application of Hidden Markov Models (HMMs) were

investigated through various scenarios. HMMs also were applied on a cough detection problem where similar

to foodborne illness problem, the temporal structure of the input signals were well suited to the speciality of

HMMs in reliably capturing those underlying characteristics. This chapter will provide an overview of thesis

contributions and highlight potential directions for future work.

7.1 Summary of Findings

7.1.1 Simple HMM incorporated ABM

We developed a Hidden Markov model for syndromic surveillance systems considering the existence of a

foodborne illness outbreak as a latent state. Comparing the performance of HMM with an context-insensitive

SVM approach, we observed that HMM outperforms SVM in detection of outbreaks. We further evaluated the

public health benefits obtained from the HMM with the traditional case-count-based approach. We learned

that a simple HMM approach significantly improves detecting outbreak signals. Moreover, the results suggest

that using smartphones for recording location and reporting foodborne illness occurrence can help with more

reliable and faster detection of occurrence of an outbreak.

7.1.2 Data Analysis with Spark

We investigated foodborne illness data collected through the Ethica application to obtain information required

for designing model and targeted interventions. We presented how to exploit the scalable programming lan-

guage Scala using the Spark framework and Cassandra connector library to analyze big data in a performant

fashioni. We further detailed the information obtained from the empirical dataset being analyzed, which

captured patterns related to risk and patterns of occurrence of foodborne illness.
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7.1.3 Targeted HMM

We explored application of multivariate HMMs in different scenarios on a GIS version of our municipal

simulation model and we demonstrated limitations of several alternative HMM architectures.

7.1.4 Cough Detection using HMM

We showed that a multi-class HMM – which faced some limitations when applied for finding sources of

contamination in the municipal simulation model – performs effectively for cough identification where the

hidden states of the system have a very distinctive distributions corresponding to the observation vector.

7.2 Contributions

The contributions of this thesis can be summarized into three main areas:

1. by serving as one of the first contributions using a mobile platform such as Ethica Data for collecting

behavioral data from food consumers and securing insights from analysis of such data.

2. by serving as the first study to systematically investigate the applicability of a machine learning ap-

proach for foodborne illness outbreak inference and enhancing the food safety surveillance system.

3. Finally, adapting the methodology successfully applied for foodborne outbreak detection into the res-

piratory disease domain, and helping with cough detection at an individual level.

The first contribution was relatively novel as it was one of the first Ethica Data applications on a human-

subject research to collect data. Analysis of the associated big data was performed with cutting edge tech-

nologies to derive metrics for testing our hypotheses.

The second contribution was innovative in terms of evaluating the advantages and disadvantages between

employing more frequent data samples (not-clinically-presenting foodborne illness reports) and less frequent

(clinically-presenting illness reports) in a binary Hidden Markov Model for outbreak detection. We also

investigated the impact of applying an articulated HMM for more accurate detection of contamination sources.

The third contribution was novel work in terms of applying HMMs for cough detection. To this end, cough

sounds were studied and analyzed carefully, and common patterns were identified, which were later translated

into latent states of a HMM. The obtained HMM demonstrated very favorable results, especially when the

classified latent states of cough were interpreted as a dichotomously problem of distinguishing Coughs from

Non_Coughs, or Coughing from Non_Coughing periods.
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7.3 Future Work

There are multiple possible research directions that could improve the contributions made in this thesis.

In this section, we will discuss a few of the limitations of our approach. Further studies in these areas can

contribute marked enhancement to the work presented here. The limitations of this thesis can be summarized

into three main areas:

1. To improve the accuracy of machine learning models, it will be valuable to expand beyond the sensor and

self-reporting data to leverage the vast amount of data from social media platforms such as Twitter,

Instagram and Facebook. This can lead to more reliable and higher resolution geographic-specific

datasets.

2. To improve the generalizability of this analysis, it would be important to consider demographic groups

other than University of Saskatchewan students, so as to avoid limitations associated collecting data on

students’ food consumption patterns, such as the heavy reliance of students on food court restaurants

in close proximity, and limitations in student access to food sources.

3. It will further be important to combine ABM models with statistical methods such as particle filtering

or particle Markov Chain Monte Carlo to estimate continuous system states and poorly evidenced

parameters, and to predict model trends.

4.

In terms of redesigning the thesis, a key step could be improving the simulation model by characterizing

heterogeneity among the restaurants in the model and having such heterogeneity change the visitation pattern

of those restaurants. These features could include considering an average meal cost per person, categories of

food provided, speed of serving customers, as well as each restaurant’s distance to the consumers’ residence

places (something that the model currently represents, but which does not affect consumer behaviour therein).

To further strengthen the model, as mentioned as one of the limitations of the work, redesigning the Ethica-

based project and obtaining data from more diverse demographic groups other than University students could

be very helpful in more generalizably simulating the food seeking in the ABM.

7.4 Conclusion

Our original hypothesis stated that new technologies in harvesting data in integration with machine learning

approaches can improve the detection accuracy of foodborne outbreaks. In order to investigate this hypoth-

esis, we simulated a municipal system consisting of food consumers, food providers (restaurants) and a food

inspector, where a group of consumers serve as sentinels in terms of being able to report cases of their illnesses

through their mobile phones. We further developed a Hidden Markov model for syndromic surveillance that
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sought to classify whether an outbreak was in progress, and incorporated it into the simulation model. The fa-

vorable results revealed that significant public health gains may be secured when combining new technologies

for syndromic surveillance with machine-learning based outbreak signal detection mechanisms.

We further analyzed the data obtained from a mid-sized real world project which was designed to leverage

smartphones to capture food participant consumption behaviour. Results of such analyses were a seal of ap-

proval on our previous assertion that technologies such as smartphones can offer new channels for surveillance

systems in data collection and better understanding of the ongoing diseases.

Using the same simulation model, we also investigated taking advantage of HMMs in detecting sources

of contamination in ongoing foodborne outbreaks. While such an application, as we showed in Chapter 6

for detecting hidden states of a single cough and then inferring the existence of a cough or bout of cough

in a sound record was very promising, such configuration for targeting contaminated restaurants showed

some limitations. As we discussed earlier in the relevant chapter, these shortcomings may be resolved by

introducing some changes in making the restaurants distinctive.
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Appendix A

A.1 Collected answers from Illness Reporting Survey in JSON for-
mat

Q/A Set 1:

{
"order_id": 1,
"q_type": "single_choice",
"q_content": "Did you consult a health-care professional\\
regarding this illness?",
"resp": [

{
"resp_time": "2016-01-15 21:22:56.073+0000",
"answer_content": "No",
"answer_id": 2

}
]

}

Q/A Set 2:

{
"order_id": 2,
"q_type": "single_choice",
"q_content": "Did you suspect your illness might be related to \\
consumption of alcoholic beverages?",
"resp": [

{
"resp_time": "2016-01-15 21:22:57.907+0000",
"answer_content": "Yes",
"answer_id": 1

}
]

}

Q/A Set 3:

{
"order_id": 3,
"q_type": "multiple_choice",
"q_content": "I've got ...",
"resp": [

{
"resp_time": "2016-01-15 21:23:00.640+0000",
"answer_content": "Nausea",
"answer_id": 1

},
{

"resp_time": "2016-01-15 21:23:01.039+0000",
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"answer_content": "Vomiting",
"answer_id": 2

},
{

"resp_time": "2016-01-15 21:23:01.439+0000",
"answer_content": "Diarrhea",
"answer_id": 3

},
{

"resp_time": "2016-01-15 21:23:01.871+0000",
"answer_content": "Abdominal pain and cramps",
"answer_id": 4

},
{

"resp_time": "2016-01-15 21:23:02.269+0000",
"answer_content": "Fever",
"answer_id": 5

},
{

"resp_time": "2016-01-15 21:23:02.640+0000",
"answer_content": "Other",
"answer_id": 6

}
]

}

A.2 Connecting to Cassandra

Before we start answering the above questions, we first set up our Spark environment and connect to our
database. To do so, we need first to stop the default Spark Context and setup a new one on top a new Spark
Configuration, which requires new elements, such as the Cassandra Connector and its required credentials,
enabling us to connect to the host of our study database.

sc.stop()
val conf = new SparkConf(true).set("spark.cassandra.connection.host"

,"SERVER_ADDRESS").set("spark.cassandra.auth.username", "U_NAME").
set("spark.cassandra.auth.password", "PASS").set("spark.executor.
memory","4g")

val sc = new SparkContext("local", "test", conf)

A.3 Aggregation and Filtration

Food Consumption survey responses from the two databases, corresponding to each of those study cohorts,
were merged into a single dataframe dfEatingSurvey for the ease of computations. Same methodology was
applied for aggregating the Illness Report surveys. By using the term "filter($/"duration" > -1)", survey
responses which has expired (i.e., the participant has not filled the survey in a predefined time window) or
canceled (participant has actively canceled the survey) are being filtered out.
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val dfSurveyResp1 = sqlContext.read.format("org.apache.spark.sql.
cassandra").options(Map("keyspace"-> "ethica_study_xx", "table" ->
"survey_responses")).load()

val dfSurveyResp2 = sqlContext.read.format("org.apache.spark.sql.
cassandra").options(Map("keyspace"-> "ethica_study_yy", "table" ->
"survey_responses")).load()

val dfEatingSurvey = dfSurveyResp1.union(dfSurveyResp2).filter($
"survey_id"===*** || $"survey_id"===***).filter($"duration">-1)

A.4 Food Source Diversity

If we have a look to dfEatingSurvey we will notice that our desired information is in the resp column.

resps
---------+-----------+--------------+---------------------------------+--
[1 -> {"order_id": 1, "q_type": "single_choice", "q_content": "Where is
the source of this food?",
"resp": [{"resp_time": "2016-01-17 17:38:54.321+0000",
"answer_content": "Eating food prepared at home", "answer_id": 4}]},
2 -> {"order_id": 2, "q_type": "image",
"q_content": "Please take a photo of the food you are eating.",
"resp": [{"answer_url": "resp_files/530/image/20160117115302751-
83b7044351f9b19e-378-2.jpg",
"resp_time": "2016-01-17 17:53:02.726+0000"}]},
3 -> {"order_id": 3, "q_type": "audio_text",
"q_content": "Would you like to explain what is this food?", "resp":
[{"resp_time": "2016-01-17 17:53:42.797+0000", "answer_content":
"Sunny side up egg, slice of bread and Indian tea with milk"}]}]

At our first attempt, we need to define a function which takes an integer value (i.e., a question number) as
the key of a map data structure and when applied on resp column, will return the value stored in the map
for any single element in that column. These new values which are in valid JSON format will be appended
to our dataframe as a new column named "q1Info".

val mapValueExtractor = ((Q_N:Int) => udf((m:Map[Int,String])
=> m.getOrElse(Q_N,"")))

We need to dig a bit further to access the answer to the food source question. For this, we need to import
functionalities of a JSON library.

[nobreak=true, nobreak=true]

import net.liftweb.json._
implicit val formats = DefaultFormats

We want to parse the data using these two case classes.

case class Survey_Q_Resp(resp_time: String, answer_content:String,
answer_id:Long)

case class SurveyResp(q_content: String, resp:Array[Survey_Q_Resp],
q_type:String)

and we need to define a function (UDF: User Defined Function) which takes a text in JSON and then, by
means of the above case classes, extracts our desired answer from the text:
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val parseJsonContentUDF = udf((JsonText:String) => {implicit val
formats = DefaultFormats;parse(JsonText).extract[SurveyResp].
resp(0).answer_content})

Using a UDF, we will use abbreviations as follows for the acquired answers: "CampusF" for "Food pur-
chased on campus", "RestaurantF" for "Eating at restaurant", "R2EF_PurchOffCamp" for "Ready-to-eat
food purchased off campus" and "HomeF" for "Eating food prepared at home".

A.4.1 Food Type Fraction Per User
To find the consumption frequency for each of these per-user food categories, we need to count the total
number of reports and number of each food types per user. By applying the following aggregation operation
on our dataframe, we will obtain the result.

val w = Window.partitionBy($"user\_id")
val result = (dfEatingSurveyCategorizedFood.groupBy("user\_id",

"foodType").agg(count($"foodType").as("foodType_cnt")).
withColumn("food_report_cnt", sum($"foodType_cnt").over(w)).
sort(desc("user\_id"))).withColumn("foodDiversity", round((
$"foodType_cnt"/$"food_report_cnt"),2))

A.4.2 Daily Food Type Consumption Frequency Per Participant
The final result will be saved in the foodCategoryFreqDF dataframe.

val reporting_duration = dfEatingSurveyCategorizedFood.withColumn(
"record_time_secs_food",$"record_time".cast("long")).agg(min(
"record_time_secs_food").alias("min"),max("record_time_secs_food")
.alias("max")).withColumn("study_length",round(($"max"-$"min")/
(3600*24))).first().getDouble(2)

val foodCategoryFreqDF = result.withColumn("freqPerDay",
$"foodType_cnt"/reporting_duration).select("user\_id","foodType",
"foodDiversity","freqPerDay")

A.4.3 Food Types Daily Frequency Per User
the following lines of code dumps the food type daily frequency per user for all the participants of the study
in JSON format.

val foodCategoryFreqJSON = foodCategoryFreqDF.withColumn("struct",
struct("foodType","foodDiversity","freqPerDay")).groupBy(
"user\_id").agg(collect_list(col("struct").as("foodInfo")).
orderBy("user\_id").toJSON.collect

sc.parallelize(foodCategoryFreqJSON).saveAsTextFile("/result")

and the following shows the exported results:

{"user\_id":591,"C":{"food_category":"CampusF",
"FoodCategCnt/FoodReportCnt(%)":4.0,"FoodCategFreq(perDay)":0.0125}}
{"userID":591,"C":{"food_category":"R2EF_PurchOffCamp",
"FoodCategCnt/FoodReportCnt(%)":25.0,"FoodCategFreq(perDay)":0.075}}
{"userID":591,"C":{"food_category":"HomeF",
"FoodCategCnt/FoodReportCnt(%)":71.0,"FoodCategFreq(perDay)":0.2125}}
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{"userID":585,"C":{"food_category":"RestAurantF",
"FoodCategCnt/FoodReportCnt(%)":4.0,"FoodCategFreq(perDay)":0.05}}
{"userID":585,"C":{"food_category":"R2EF_PurchOffCamp",
"FoodCategCnt/FoodReportCnt(%)":11.0,"FoodCategFreq(perDay)":0.15}}
{"userID":585,"C":{"food_category":"CampusF",
"FoodCategCnt/FoodReportCnt(%)":3.0,"FoodCategFreq(perDay)":0.0375}}
{"userID":585,"C":{"food_category":"HomeF",
"FoodCategCnt/FoodReportCnt(%)":83.0,"FoodCategFreq(perDay)":1.175}}
{"userID":584,"C":{"food_category":"R2EF_PurchOffCamp",
"FoodCategCnt/FoodReportCnt(%)":23.0,"FoodCategFreq(perDay)":1.0}}
{"userID":584,"C":{"food_category":"CampusF",
"FoodCategCnt/FoodReportCnt(%)":4.0,"FoodCategFreq(perDay)":0.175}}
{"userID":584,"C":{"food_category":"RestAurantF",
"FoodCategCnt/FoodReportCnt(%)":5.0,"FoodCategFreq(perDay)":0.2}}
{"userID":584,"C":{"food_category":"HomeF",
"FoodCategCnt/FoodReportCnt(%)":69.0,"FoodCategFreq(perDay)":3.05}}

A.5 Clinical Presentation Frequency

A.5.1 Finding Time Lag Between Report

val w = Window.partitionBy("user\_id").orderBy("record_time_secs")
val previousEnd = lag($"record_time_secs", 1).over(w)
val fbiReportIntervalDF = dfFBI_withRecordTimeInSec.withColumn(

"prev_record_time_secs", previousEnd).withColumn("timeLag",
($"record_time_secs"-$"prev_record_time_secs"))

A.6 To Avoid Eating Out

A.6.1

To make our life easier, we need to add two columns to the illness reports dataframe – record_time in seconds
and the time 24 hours after the illness report, again in seconds. We also change the record_time column in
food report dataframe into seconds.

val record_time_inSecs = col("record_time").cast("long")
val oneDayLater_inSecs = col("record_time").cast("long") + 86400L

val joinedEatingWithIllnessReport = eatingSurveyDF.join(dfFBI,
eatingSurveyDF("user_id") <=> dfFBI("user_id") &&
eatingSurveyDF("record_time").between(dfFBI("record_time"),
dfFBI("oneDayAfter_record_time"))
)

A.6.2
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val riskyFoodCategorizerUDF = udf((foodType:String) => (foodType match {
case "CampusF" => 1; case "RestaurantF" => 1;
case "R2EF_PurchOffCamp" => 0; case "HomeF" => 0; }))

val eatingReportIn24H_afterIllnessReport=joinedEatingWithIllnessReport.
withColumn("riskyFood", riskyFoodCategorizerUDF($"foodType")).
groupBy("user_id", "record_time_illness").agg(sum($"riskyFood").
as("riskyFoodConsumptionCount"), count($"riskyFood").
as("FoodConsumptionCount")).filter($"FoodConsumptionCount"!== 0)

Post-Illness Avoidance of Recent Restaurants

val exprs = Array("lat", "lon").map(_ -> "mean").toMap
val dfGPS_oneMinuteWindow = dfGPS.groupBy($"user_id", $"record_time").

agg(exprs).withColumn("lat", round($"avg(lat)", 4)).
withColumn("lon", round($"avg(lon)", 4))

val geoTaggedRestaurantFoodReport =
dfGPS_oneMinuteWindow.join(onlyEatingAtRest,
dfGPS_oneMinuteWindow("user_id_gps") <=> onlyEatingAtRest("user_id")
&& dfGPS_oneMinuteWindow("record_time_min_gps") <=> onlyEatingAtRest
("record_time_min_eating"))

val geoTaggedEatingJoinedWithIllness_before =
geoTaggedRestaurantFoodReport.join(dfFBI_TodayAndOneWeekBeforeAfter,
geoTaggedRestaurantFoodReport("user_id") <=>
dfFBI_TodayAndOneWeekBeforeAfter("user_id")
&& geoTaggedRestaurantFoodReport("record_time").
between(dfFBI_TodayAndOneWeekBeforeAfter("oneWeekBefore_record_time"),
dfFBI_TodayAndOneWeekBeforeAndAfter("record_time")))
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Appendix B

B.1 Principle behind Transition and Emission Matrices Extraction

Table 6.1 shows a simplified and shortened sample of aggregated model run outputs. For the sake of simplicity
in exposition, within this discussion, we limit the number of restaurants in the model to three and for the sake
of brevity, “GNO”, “Rest0”, “Rest1" and “Rest2” are denote the hidden state names of “Global No_Outbreak”,
“Restaurant[0]_Contaminated”, “Restaurant[1]_Contaminated”, and “Restaurant[2]_Contaminated”, respec-
tively. A schematic of the HMM for our simplified example is shown in Figure B.1.

Figure B.1: Hidden Markov Model For Simplified Example

At any given time-step (each day in our example), our Markovian multistate system can be in one of
the four hidden states of “GNO”, “Rest0”, “Rest1” or “Rest2”, with transitions as shown in Figure B.1. This
entails a Transition matrix as shown in Table B.2. Please note that the probability of transition from
any contaminated restaurant directly to another contaminated restaurant is taken as zero, meaning that –
as shown in Figure B.1 – the HMM assumes that the system must return to the GNO state for at least a
minimum of one day following resolution of restaurant contamination before a new restaurant is contaminated.

To calculate the probability of transition from a current state to any of the probable states, we first
need to find the probability of leaving a given state, which is equivalent to one over the mean number of
time-steps that the system has spent in that state. By finding the portion of transitions from a given state
to any other state and multiplying it by the probability of leaving that given state, one can calculate the
per-time-step transition probability Pxy, where x is the current state and y is the next state of the system.
We can summarize our findings as follows:

PGNO,GNO = 1− 1

∆TGNO
= 1− 1

8
= 0.875

PGNO,Rest0 =
1

∆TGNO
× GNO_to_Rest0_Transition_Count

GNO_Exit_count
=

1

8
× 1

3
= 0.042

PGNO,Rest1 =
1

∆TGNO
× GNO_to_Rest1_Transition_Count

GNO_Exit_count
=

1

8
× 1

3
= 0.042
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Table B.1: Training Data Sample

Day True_State Rest0_Obs_Count Rest1_Obs_Count Rest2_Obs_Count
0 GNO 0 0 0
1 GNO 0 0 0
2 Rest1 0 0 0
3 Rest1 0 3 0
4 Rest1 0 5 0
5 GNO 0 8 0
6 GNO 0 0 0
7 GNO 0 0 0
8 Rest0 2 0 0
9 Rest0 6 0 0
10 GNO 0 0 0
11 Rest2 0 0 4
12 Rest2 0 0 7
13 Rest2 0 0 8
14 GNO 0 0 0
15 GNO 0 0 0

Table B.2: Transition Table for Sample Data

GNO Rest0 Rest1 Rest2
GNO PGNO|GNO PGNO|Rest0 PGNO|Rest1 PGNO|Rest2

Rest0 PRest0|GNO PRest0|Rest0 0.0 0.0
Rest1 PRest1|GNO 0.0 PRest1|Rest1 0.0
Rest2 PRest2|GNO 0.0 0.0 PRest2|Rest2

PGNO,Rest2 =
1

∆TGNO
× GNO_to_Rest2_Transition_Count

GNO_Exit_count
=

1

8
× 1

3
= 0.042

PRest0,GNO =
1

∆TRest0
= 0.5

PRest0,Rest0 = 1− 1

∆TRest0
= 1− 1

2
= 0.5

PRest1,GNO =
1

∆TRest1
=

1

3
= 0.33

PRest1,Rest1 = 1− 1

∆TRest1
= 1− 1

3
= 0.67

PRest2,GNO ==
1

∆TRest2
=

1

3
= 0.33

alignPRest2,Rest2 = 1− 1

∆TRest2
= 1− 1

3
= 0.67

If we assume that the number of cases reporting a restaurant as being in contaminated state follows
a Poisson distribution, then upon triggering the emergence of contamination within in a restaurant, that
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restaurant will transition from a lower (non-outbreak) lambda to a higher lambda. With the HMM having
four hidden states, for each restaurant we can define four Poisson distributions. Table B.3 shows a matrix
which holds the Poisson probability density function corresponding to each of the states for each restaurant.
The density function at row and column one, for instance, is corresponding to a Poisson distribution fitted
over the data when only observations regarding Rest[0] and the state of “GNO” are considered.

Table B.3: Emission Matrix holding Poisson probability density functions for Sample Data

Rest[0] Rest[1] Rest[2]
GNO f(ORest[0]|λGNO) f(ORest[1]|λGNO) f(ORest[2]|λGNO)
Rest0 f(ORest[0]|λRest0) f(ORest[1]|λRest0) f(ORest[2]|λRest0)
Rest1 f(ORest[0]|λRest1) f(ORest[1]|λRest1) f(ORest[2]|λRest1)
Rest2 f(ORest[0]|λRest2) f(ORest[1]|λRest2) f(ORest[2]|λRest2)

B.2 Emission and Transition Portions Inference During Simulation
Model Run

Previous_Step_Probability = [1*N]; //N: number of states
Transition_Portion = [1*N]
for (State s in States){

Probability_T_Portion = 0;
for(i in number_of_states){

//P(i-->s): Probability of transition from i to s
P(i-->s) = Previous_Step_Probability[i] *
Transition_Probability(i-->s);
Probability_T_Portion += P(i-->s);

}
Transition_Portion[s] = Probability_T_Portion;

}
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Emission_Portion = [1*N]
for (State s in States){

//if state is No_outbreak
if (s == NGO){

Emission_Probability = 1.0;
//iterate over the restaurants
for(Restaurant r in restaurants){

- get the distribution corresponding to lower occurrences of illness
for each restaurant r, (where r is not contaminated)
and calculate p the probability of observing o,
given the daily report count for r.
- //multiply the achieved probabilities:
Emission_Probability *= p;

}
} else {

for(Restaurant r in restaurants){
// restaurant name r is same as state s
if(r == s ){

- get the distribution corresponding to higher occurrences of illness
(i.e this restaurant is contaminated) and calculate p_targeted,
the probability of observing o,
given the daily report count for r;
Emission_Probability *= p_targeted

} else {
- get the distribution corresponding to lower occurrences of
illness for each restaurant r, (where r is not contaminated)
and calculate p the probability of observing o,
given the daily report count for r;
//multiply the achieved probabilities:
Emission_Probability *= p;

}
}

}
Emission_Portion[s] = Emission_Probability;

}
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