12 research outputs found

    A probabilistic model for gene content evolution with duplication, loss, and horizontal transfer

    Full text link
    We introduce a Markov model for the evolution of a gene family along a phylogeny. The model includes parameters for the rates of horizontal gene transfer, gene duplication, and gene loss, in addition to branch lengths in the phylogeny. The likelihood for the changes in the size of a gene family across different organisms can be calculated in O(N+hM^2) time and O(N+M^2) space, where N is the number of organisms, hh is the height of the phylogeny, and M is the sum of family sizes. We apply the model to the evolution of gene content in Preoteobacteria using the gene families in the COG (Clusters of Orthologous Groups) database

    Rapid Pathway Evolution Facilitated by Horizontal Gene Transfers across Prokaryotic Lineages

    Get PDF
    The evolutionary history of biological pathways is of general interest, especially in this post-genomic era, because it may provide clues for understanding how complex systems encoded on genomes have been organized. To explain how pathways can evolve de novo, some noteworthy models have been proposed. However, direct reconstruction of pathway evolutionary history both on a genomic scale and at the depth of the tree of life has suffered from artificial effects in estimating the gene content of ancestral species. Recently, we developed an algorithm that effectively reconstructs gene-content evolution without these artificial effects, and we applied it to this problem. The carefully reconstructed history, which was based on the metabolic pathways of 160 prokaryotic species, confirmed that pathways have grown beyond the random acquisition of individual genes. Pathway acquisition took place quickly, probably eliminating the difficulty in holding genes during the course of the pathway evolution. This rapid evolution was due to massive horizontal gene transfers as gene groups, some of which were possibly operon transfers, which would convey existing pathways but not be able to generate novel pathways. To this end, we analyzed how these pathways originally appeared and found that the original acquisition of pathways occurred more contemporaneously than expected across different phylogenetic clades. As a possible model to explain this observation, we propose that novel pathway evolution may be facilitated by bidirectional horizontal gene transfers in prokaryotic communities. Such a model would complement existing pathway evolution models

    Role of antisense RNAs in evolution of yeast regulatory complexity

    Get PDF
    AbstractAntisense RNAs (asRNAs) are known to regulate gene expression. However, a genome-wide mechanism of asRNA regulation is unclear, and there is no good explanation why partial asRNAs are not functional. To explore its regulatory role, we investigated asRNAs using an evolutionary approach, as genome-wide experimental data are limited. We found that the percentage of genes coupling with asRNAs in Saccharomyces cerevisiae is negatively associated with regulatory complexity and evolutionary age. Nevertheless, asRNAs evolve more slowly when their sense genes are under more complex regulation. Older genes coupling with asRNAs are more likely to demonstrate inverse expression, reflecting the role of these asRNAs as repressors. Our analyses provide novel evidence, suggesting a minor contribution of asRNAs in developing regulatory complexity. Although our results support the leaky hypothesis for asRNA transcription, our evidence also suggests that partial asRNAs may have evolved as repressors. Our study deepens the understanding of asRNA regulatory evolution

    Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes

    Get PDF
    BACKGROUND: Pseudogenes often manifest themselves as disabled copies of known genes. In prokaryotes, it was generally believed (with a few well-known exceptions) that they were rare. RESULTS: We have carried out a comprehensive analysis of the occurrence of pseudogenes in a diverse selection of 64 prokaryote genomes. Overall, we find a total of around 7,000 candidate pseudogenes. Moreover, in all the genomes surveyed, pseudogenes occur in at least 1 to 5% of all gene-like sequences, with some genomes having considerably higher occurrence. Although many large populations of pseudogenes arise from large, diverse protein families (for example, the ABC transporters), notable numbers of pseudogenes are associated with specific families that do not occur that widely. These include the cytochrome P450 and PPE families (PF00067 and PF00823) and others that have a direct role in DNA transposition. CONCLUSIONS: We find suggestive evidence that a large fraction of prokaryote pseudogenes arose from failed horizontal transfer events. In particular, we find that pseudogenes are more than twice as likely as genes to have anomalous codon usage associated with horizontal transfer. Moreover, we found a significant difference in the number of horizontally transferred pseudogenes in pathogenic and non-pathogenic strains of Escherichia coli

    The diversity of a distributed genome in bacterial populations

    Full text link
    The distributed genome hypothesis states that the set of genes in a population of bacteria is distributed over all individuals that belong to the specific taxon. It implies that certain genes can be gained and lost from generation to generation. We use the random genealogy given by a Kingman coalescent in order to superimpose events of gene gain and loss along ancestral lines. Gene gains occur at a constant rate along ancestral lines. We assume that gained genes have never been present in the population before. Gene losses occur at a rate proportional to the number of genes present along the ancestral line. In this infinitely many genes model we derive moments for several statistics within a sample: the average number of genes per individual, the average number of genes differing between individuals, the number of incongruent pairs of genes, the total number of different genes in the sample and the gene frequency spectrum. We demonstrate that the model gives a reasonable fit with gene frequency data from marine cyanobacteria.Comment: Published in at http://dx.doi.org/10.1214/09-AAP657 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Evidence for the additions of clustered interacting nodes during the evolution of protein interaction networks from network motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput screens have revealed large-scale protein interaction networks defining most cellular functions. How the proteins were added to the protein interaction network during its growth is a basic and important issue. Network motifs represent the simplest building blocks of cellular machines and are of biological significance.</p> <p>Results</p> <p>Here we study the evolution of protein interaction networks from the perspective of network motifs. We find that in current protein interaction networks, proteins of the same age class tend to form motifs and such co-origins of motif constituents are affected by their topologies and biological functions. Further, we find that the proteins within motifs whose constituents are of the same age class tend to be densely interconnected, co-evolve and share the same biological functions, and these motifs tend to be within protein complexes.</p> <p>Conclusions</p> <p>Our findings provide novel evidence for the hypothesis of the additions of clustered interacting nodes and point out network motifs, especially the motifs with the dense topology and specific function may play important roles during this process. Our results suggest functional constraints may be the underlying driving force for such additions of clustered interacting nodes.</p

    Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions

    Get PDF
    PublishedThe complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes.This work is funded by BBSRC grant BB/I020489/1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Evolution of Symbiotic Bacteria in the Distal Human Intestine

    Get PDF
    The adult human intestine contains trillions of bacteria, representing hundreds of species and thousands of subspecies. Little is known about the selective pressures that have shaped and are shaping this community's component species, which are dominated by members of the Bacteroidetes and Firmicutes divisions. To examine how the intestinal environment affects microbial genome evolution, we have sequenced the genomes of two members of the normal distal human gut microbiota, Bacteroides vulgatus and Bacteroides distasonis, and by comparison with the few other sequenced gut and non-gut Bacteroidetes, analyzed their niche and habitat adaptations. The results show that lateral gene transfer, mobile elements, and gene amplification have played important roles in affecting the ability of gut-dwelling Bacteroidetes to vary their cell surface, sense their environment, and harvest nutrient resources present in the distal intestine. Our findings show that these processes have been a driving force in the adaptation of Bacteroidetes to the distal gut environment, and emphasize the importance of considering the evolution of humans from an additional perspective, namely the evolution of our microbiomes

    Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

    Get PDF
    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.National Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health. Department of Health and Human Services (contract HHSN266200400001C)National Institutes of Health. Department of Health and Human Services(contract HHSN2722009000018C)Brazil. National Council for Scientific and Technological Developmen

    Functional Genomic Examinations Of Interactions Between Common Members Of The Human Gut Microbiota

    Get PDF
    The adult human gut microbiota consists of hundreds to thousands of bacterial species, the majority belonging to the Bacteroidetes and the Firmicutes. Differences in the balance between these phyla has been linked to obesity in mice and humans. However, little is known about their interactions in vivo. I have used comparative and functional genomics, proteomics and biochemical assays to identify the ways they marshal their genomic resources to adapt to life together in the distal gut. I first annotated the complete genome sequences of two human gut Bacteroidetes (Bacteroides vulgatus and Parabacteroides distasonis) and two Firmicutes (Eubacterium rectale and E. eligens). By comparing the genomes of all sequenced gut Bacteroidetes and Firmicutes, I found that gut Bacteroidetes\u27 genomes contain large groups of genes responsible for: i) sensing, binding, and metabolizing the varied polysaccharides that they encounter in the distal intestine; and: ii) constructing their polysaccharide capsules. These portions of their genomes have been shaped by lateral gene transfer, including phage and conjugative transposons, as well as by gene duplication. By colonizing germ-free mice with B. thetaiotaomicron, or B. vulgatus, or both species together, I documented that B. vulgatus upregulates its unique glycan-degrading enzymes to adapt to the presence of B. thetaiotaomicron. In contrast to the Bacteroidetes, the Firmicutes have smaller genomes, a significantly smaller proportion of glycan-degrading genes, and are suited to degrade a more specialized assortment of dietary carbohydrates. By colonizing germ-free mice with E. rectale and/or B. thetaiotaomicron, I showed that B. thetaiotaomicron, like B. vulgatus, upregulates its unique glycoside hydrolase activities to adapt to the presence of E. rectale, increasing its degradation of host-derived glycans that E. rectale cannot use. In contrast, E. rectale downregulates its polysaccharide degradation genes and upregulates nutrient transporters, likely allowing it to access sugars released by B. thetaiotaomicron\u27s glycoside hydrolases. These models of the human gut microbiota illustrate niche specialization and functional redundancy within the Bacteroidetes, the adaptable niche specialization that likely underlies the success of Firmicutes in this habitat, and the importance of host glycans as a nutrient foundation that ensures ecosystem stability
    corecore