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Antisense RNAs (asRNAs) are known to regulate gene expression. However, a genome-wide mechanism of
asRNA regulation is unclear, and there is no good explanation why partial asRNAs are not functional. To
explore its regulatory role, we investigated asRNAs using an evolutionary approach, as genome-wide
experimental data are limited. We found that the percentage of genes coupling with asRNAs in Saccharomyces
cerevisiae is negatively associatedwith regulatory complexity and evolutionary age. Nevertheless, asRNAs evolve
more slowly when their sense genes are under more complex regulation. Older genes coupling with asRNAs are
more likely to demonstrate inverse expression, reflecting the role of these asRNAs as repressors. Our analyses
provide novel evidence, suggesting a minor contribution of asRNAs in developing regulatory complexity.
Although our results support the leaky hypothesis for asRNA transcription, our evidence also suggests that partial
asRNAs may have evolved as repressors. Our study deepens the understanding of asRNA regulatory evolution.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Antisense RNAs (asRNAs; also known as cis-natural antisense
transcripts) are transcribed from the opposite DNA strand of the
protein-coding sequences and overlap in part with the sense RNAs
[1,2]. Considering the low expression level of asRNAs, one hypothesis
suggests that asRNAs may result from the leakage of RNA transcription
machinery and represent transcriptional noise [3,4]. However, increas-
ing number of evidence has shown that asRNAs participate in eukaryot-
ic gene regulation [1–3]. Particularly, in Saccharomyces cerevisiae, the
prevailing functional presumption is of a repressive role [5–10], while
other functional roles such as activation [11] have been noted. Some
asRNAs were found to repress sense RNAs and lead to inverse expres-
sion between asRNAs and their corresponding sense RNAs in respect
to growth phases, stress conditions, or environmental changes [5–10].
For instance, IME4, a gene that mediates MAT and nutritional control
of meiosis [12], can be repressed in haploid cells by its asRNA, RME2,
which inhibits meiosis; low expression of RME2 in diploid cells results
in derepression of IME4 and thus initiates meiosis [5,9]. However, a
genome-wide mechanism of how asRNAs regulate gene expression
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is not available, nor is there an explanation of why partial asRNAs
are not functional. Investigations into the role of asRNAs in regulatory
evolution may provide clues to resolve these questions.

Gene expression is regulated by multilayered and interconnected
mechanisms, such as transcription factor binding events, histone
modification, RNA interference (RNAi), and post-translationalmodifica-
tion (PTM). The combinations of these mechanisms contribute to
different levels of regulatory complexity for each gene of an organism.
Recent studies have shown that regulatory complexity increases through
evolutionary time [13–16]. Compared to lineage-specific genes,
orthologous genes develop more transcription factor binding sites
(TFBSs) as well as more alternative isoforms; older genes also tend
to have more physical protein–protein interactions (PPIs), and are
more likely to be affected by nonsense-mediated decay and RNA
editing [13–16]. In addition, genes of high regulatory complexity
(estimated by the number of TFBSs and the degree of physical
PPIs) have been shown to be preferentially targeted by miRNAs
[17,18]. Therefore, the investigation of the association of asRNA
and regulatory complexity may deepen our understanding of the
role of asRNAs in gene regulation.

Because regulatory complexity cannot be directly measured,
employing surrogate indicators is necessary. Physical PPIs are the
foundation of biological signaling, and provide a mechanistic basis
for most biological processes in an organism [19]. Therefore, the
degree of PPIs has been used to demonstrate evolutionary mecha-
nisms and regulatory complexity of organisms [18–20]. Another
useful indicator is the percentage of intrinsically disordered regions
(IDRs) in protein sequences. IDRs are flexible protein segments that
do not fold completely [21]. This flexibility of protein structure can
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affect characteristics of regulatorymolecules, e.g. decoupling of specific-
ity and affinity, binding diversity, binding commonality, rates of associ-
ation and dissociation, and precise control and simple regulation of
binding thermodynamics [21]. Thus, the percentage of IDR is correlated
well with regulatory complexity [22]. Recently, it has been shown that a
protein can be modified by more than one form of PTM, and particular
PTMs located on specific residues are crucial for the recognition ofmod-
ular protein domains and the regulation of cellular signaling [23]. It is
hence reasonable to assume that a gene that has developed multiple
forms of PTM may also have high regulatory complexity. Although no
experimental support is available currently, it is interesting to conduct
a parallel comparison with this feature included in the evaluation
of regulatory complexity. Accordingly, to estimate the regulatory com-
plexity of a gene, we employed 1) the degree of physical PPIs and 2)
the percentage of IDRs in its protein sequence as surrogates for regula-
tory complexity, and we further compared them with the number of
PTM forms.

In this study, we explored the contribution of yeast asRNAs in
developing regulatory complexity. Data about asRNAs of S. cerevisiae
is generated by strand-specific paired-end sequencing in three condi-
tions (mid-log phase, early stationary phase, and heat shock), followed
by a series of bioinformatics analyses. We first analyzed the association
between asRNA distribution and regulatory complexity, reflecting the
contribution of asRNAs in developing complex regulation. To unravel
the role of asRNAs in regulatory evolution, the asRNA substitution
rates and asRNA expression patterns were also investigated. To further
explore the fate of asRNAs in evolution, we characterized asRNAs
of genes of five different evolutionary ages. Finally, based on the
hypothesis that the asRNA mechanism may be RNA–RNA interaction
[1], we discussed the mechanisms of asRNA action by analyzing
the sense–antisense overlapping region, which is suggested to be
the interacting region of sense and asRNAs [1]. Our observations
elucidate the role of asRNAs in regulatory evolution and broaden
our understanding of the regulatory mechanisms of asRNAs.
2. Results

2.1. Negative association between asRNA distribution and regulatory
complexity

Previous studies have indicated that miRNAs preferentially target
geneswith high regulatory complexity [17,18]. In order to studywheth-
er asRNAs have a similar tendency, we investigated the association
between asRNA distribution and regulatory complexity. In S. cerevisiae,
asRNAs have been found to respond to different growth phases, stress
conditions, or environmental changes [5–10]. Therefore, we first col-
lected yeast cells in mid-log phase, early stationary phase, and after
heat shock treatment, and annotated asRNAs by the transcriptome
Fig. 1.Association between asRNAdistribution and regulatory complexity. Percentages of genesw
(PPIs), (B) percentages of intrinsically disordered regions (IDRs), and (C) numbers of post-transla
sequencing of S. cerevisiae (see Materials and methods section). Next,
for each gene, we estimated the degree of physical PPIs, the percentage
of IDRs, and further used the number of PTM forms as a counterpart.
Interestingly, as shown in Fig. 1A, the percentage of genes coupling
with asRNAs is negatively associated with the degree of physical PPIs
of sense genes (Chi-square test of independence, P = 1.9 × 10−18).
Similar negative associations of asRNA distribution with the percentage
of IDRs or the number of PTM forms were also observed (Fig. 1B, one-
sided two-sample proportion test, P = 2.7 × 10−6; Fig. 1C, Chi-square
test of independence, P = 1.2 × 10−6). Overall, our results indicate
that the negative association between asRNA distribution and the regu-
latory complexity of sense genes is robust. Hence, the results suggest
that asRNAs may frequently appear in genes with simpler regulation,
yet tend to be eliminated as genes develop complex regulation.

2.2. Slower evolution of asRNAs of genes under complex regulation

In order to understand the functional significance of asRNAs involved
in various regulatorymechanisms,we investigated the rate of evolution-
ary changes in asRNAs by measuring the number of substitutions
compared to orthologous regions in Saccharomyces paradoxus. The results
show that S. cerevisiae asRNAs of genes with more physical PPIs evolve
more slowly than those of genes with less PPIs (Fig. 2A, Kruskal–Wallis
test, P = 1.3 × 10−4). Similar relationships were discovered between
evolutionary rate and the frequency of IDRs or PTMs (Fig. 2B, one-sided
Wilcoxon test, P = 1.3 × 10−3; Fig. 2C, Kruskal–Wallis test, P = 0.031).
As a result, asRNAs of genes involved in more complex regulation tend
to evolve more slowly than the others. In addition, all asRNAs evolve
more slowly than the non-antisense non-coding RNAs (non-AS ncRNAs)
(Fig. 2A, Kruskal–Wallis test, P = 8.4 × 10−7; Fig. 2B, Kruskal–Wallis
test, P = 9.8 × 10−6; Fig. 2C, Kruskal–Wallis test, P = 1.2 × 10−3)
and the four-fold degenerate sites, which were used as neutral refer-
ences [24,25] (Fig. 2A, Kruskal–Wallis test, P b 2.2 × 10−16; Fig. 2B,
Kruskal–Wallis test, P b 2.2 × 10−16; Fig. 2C, Kruskal–Wallis test,
P b 2.2 × 10−16). Our results suggest that asRNAs from genes with
more complex regulation are subject to stronger purifying selection.

2.3. Number of asRNAs reducing in yeast genome during evolution

Previous studies have shown that miRNAs tend to accumulate
through time, consequently leading to complex regulation [13]. We
therefore asked whether asRNAs show a similar tendency. In order to
categorize genes by evolutionary time, we followed the method from
Liu et al. [26]. We classified yeast genes into five age groups based on
the presence of orthologs in divergent phylogenetic groups represented
in the database OrthoMCL-DB [27] (seeMaterials andmethods section).
The oldest age group, age five, includes 664 of the most ancient genes,
which are conserved in all cellular organisms (the common ancestors
ith asRNAswere grouped bydifferent (A)degrees of physical protein–protein interactions
tionalmodification (PTM) forms, including acetylation, ubiquitination, or phosphorylation.



Fig. 2. Substitution rates in asRNAs of genes under different levels of regulatory complexity. Substitution rates in asRNAswere grouped by corresponding sense genes of different (A) degrees
of physical PPIs, (B) percentages of IDRs, and (C) numbers of PTM forms. Significance is determined by least significant difference test (P b 0.05). Any two bars in each panel are significant
except for thebars annotated by “n.s.” (not significant). Non-AS ncRNAs, non-codingRNAs that do not overlapwith anyORF transcript; 4-fold degenerate sites, four-fold degenerate sites of all
ORFs used as a control [24,25].
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of Eukaryota, Bacteria and Archaea); age four includes 1610 genes con-
served in Eukaryota only; age three includes 691 genes conserved only
in the Fungi/Metazoa group (Opisthokonta); age two includes 2224
genes conserved in kingdom Fungi; and age one includes 605 of the
youngest genes, conserved only in the genus Saccharomyces. Assuming
there is a constant ratio for the asRNA gain and loss, we analyzed the
asRNAs number among the gene groups of different ages to observe
the evolutionary tendency of asRNAs. The results show that genes
in the older groups are less likely to have associated asRNAs (Fig. 3;
Chi-square test of independence, P = 3.0 × 10−9). Since regulatory
complexity accumulates over time [13–16], the negative association
between asRNAs and evolutionary age is consistentwith the observation
in Fig. 1, and suggests that yeast asRNAs tend to be lost during evolution.
2.4. Genes under complex regulation tend to exhibit inverse expressionwith
corresponding asRNAs

Functional sequences tend to be conserved during evolution [28].
Together with the observed asRNA reduction in yeast genome and
Fig. 3. Percentages of genes coupling with asRNAs at different evolutionary ages. Genes of
age one group are the youngest and present only in genus Saccharomyces, genes of age two
group are present inkingdomFungi, genes of age three group arepresent in Fungi/Metazoa
group (Opisthokonta), genes of age four group are present in Eukaryota, genes of age five
group are most ancient and present in all cellular organisms (the common ancestors of
Eukaryota, Bacteria and Archaea).
purifying selection on partial asRNAs, we hypothesized that partial
asRNAs may have become functional and may contribute to the com-
plex regulation of sense genes. One of the regulation hypotheses sug-
gests that asRNAs repress sense RNAs, and lead to inverse expression
between sense and asRNA pairs under different growth conditions or
in different cell types [5–10]. To estimate the inverse expression of
sense and asRNA pairs, we calculated the correlation coefficient of
their abundance across different conditions (see Materials and
methods section). Interestingly, genes with more physical PPI have
higher percentage of sense–antisense pairs that show inverse expres-
sion (Fig. 4A, Chi-square test of independence, P = 4.4 × 10−7). More-
over, the expression of sense RNAs from genes with more IDRs or more
PTM forms also tends to be inversely correlated with the expression of
their corresponding asRNAs (Fig. 4B, one-sided two-sample propor-
tion test, P = 0.028; Fig. 4C, Chi-square test of independence,
P = 0.025), regardless of different correlation thresholds (see Sup-
plementary Fig. S1). Taken as a whole, sense–antisense pairs from
genes with higher regulatory complexity are more likely to show in-
verse expression. Thus, the results suggest that a certain proportion
of asRNAs might have evolved as repressors when the corresponding
sense genes developed complex regulation.

2.5. Old genes tend to exhibit inverse expressionwith corresponding asRNAs
and less SAL/SRL

As the regulatory machinery is shaped through time [13–16], we
explored the potential functions of asRNAs by comparing features of
genes of different evolutionary ages. We first analyzed the pattern
of inverse expression of sense and asRNAs,whichmay indicate a repres-
sive regulatory function of asRNAs [5–10]. Subsequently, we calculated
the ratio of sense–antisense overlapping length to sense transcript
length (SAL/SRL), which we expect will reflect the proportions of
sense transcripts interacting with asRNAs. The results show that the
older group of genes has the higher percentage of sense and asRNA
pairs that exhibit inverse expression (Fig. 5A, Chi-square test of indepen-
dence, P = 0.01), regardless of different correlation thresholds (see Sup-
plementary Fig. S2). In addition, genes in the youngest age group have
the highest SAL/SRL (Fig. 5B, Kruskal–Wallis test, P = 5.2 × 10−5),
which is inconsistent with the lowest percentage of sense–antisense
pairs with inverse expression in this group. Thus, it is likely
that RNA–RNA interaction does not solely explain the repression
mechanism. Overall, consistent with the observation in Fig. 4,
Fig. 5A reveals the significance of the asRNA role as repressors in
yeast regulatory evolution. On the contrary, although genes in the
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Fig. 4. The tendency of inverse expression between sense and asRNA pairs in genes of different regulatory complexity. Percentages of genes that show inverse expressionwith corresponding
asRNAs were grouped by different (A) degrees of physical PPIs, (B) percentages of IDRs, and (C) numbers of PTM forms.
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youngest age group contain the highest percentage of genes coupling
with asRNAs (Fig. 3), their percentage of genes with inverse expres-
sion is the lowest (Fig. 5A). This phenomenon might be associated
with the observed reduction of asRNAs in yeast genome.

3. Discussion

Previous work has elucidated that genes targeted bymiRNAs tend to
possess high regulatory complexity [17,18]. It is unclear whether genes
coupling with asRNAs also exhibit similar tendencies. In this study,
we aimed to investigate the asRNA targeting preference in terms of
regulatory complexity, as estimated by the degree of physical PPIs, the
percentage of IDRs, and the number of PTM forms. Although about
one-fifth of the ORF genes in S. cerevisiae are coupling with asRNAs in
our investigation,we found that the ratio of genes couplingwith asRNAs
shows a negative associationwith gene regulatory complexity. The neg-
ative association implies that, overall, asRNAs may play a minor role
in developing complex regulation. This observation supports previous
hypothesis that some asRNAs belong to transcriptional noise [3,4].
This explanation is also supported by our observation that only 175
of 988 pairs of sense and asRNAs exhibit inverse expression [5–10].
Nonetheless, our analyses also show that asRNAs coupling with genes
under high regulatory complexity tend to evolve more slowly, and
higher percentages of them exhibit inverse expression. Accordingly,
we hypothesize that some retained asRNAs may find a niche and tend
Fig. 5. Analyses showing partial asRNAs function as repressors in yeast evolution.
(A) Percentages of genes that exhibit inverse expression with corresponding asRNAs
were grouped by different evolutionary ages. (B) The ratios of sense–antisense
overlapping length to sense transcript length (SAL/SRL) of genes were grouped
by different evolutionary ages. The bar with an asterisk (*) represents significant
differences with any other bar, as determined by least significant difference test
(P b 0.05). Error bars indicate standard error of the mean.
to function as repressors, which contribute to the complex regulation
of sense genes. In contrast, most other asRNAs do not develop a role in
gene regulation and may be eliminated in evolution.

To further support our hypothesis, we investigated the tendency
of genes of different evolutionary ages to couple with asRNAs.
Indeed, we found that yeast asRNAs become less frequent through
evolutionary time. This finding is also consistent with previous stud-
ies, which reveal the rapid turnover of asRNAs after divergence of
S. cerevisiae and S. paradoxus [8,29]. In fact, it has been found that
half of the six sense–antisense pairs examined do not show con-
served expression patterns from mid-log to early stationary phase
between S. cerevisiae and S. paradoxus [8]. Furthermore, we analyzed
the data released by Goodman et al. [29] (see Materials andmethods
section), and found that about one third of asRNAs are not conserved
across all four strains in S. cerevisiae and S. paradoxus, also suggest-
ing the rapid turnover of asRNAs. Consistently, this finding may
also explain the higher percentage of genes coupling with asRNA
in age one genes (the youngest genes), while only a small portion
of them behaves as repressors. As a result, the elimination of asRNAs
through evolution provides consistent evidence suggesting that partial
asRNAs might be a by-product of transcription (leaky hypothesis)
[3,4], at least in the early, function-developing, stage.

In conclusion, our results provide the first evidence showing that
asRNAs may not be retained in the genome during evolution. Antisense
RNAs may change rapidly during evolution, thus leading to lineage-
specific gene regulation, as in the case of intergenic long ncRNA, sug-
gested by Kutter et al. [30]. To further explore asRNA regulatory
mechanisms, we compared the sense–antisense expression and SAL/SRL
between old and young genes. Our results show that old genes coupling
with asRNAs exhibit higher ratios of inverse expression. The finding
suggests that asRNAs may tend to play a role as a repressor in regu-
latory evolution. However, we observed that old genes have unex-
pectedly low SAL/SRL as compared to young genes. As a relatively
large sense–antisense overlap may be required to support the RNA–
RNA interaction hypotheses for the mechanism of asRNA regulation
[1], this low SAL/SRL finding implies that asRNAs may regulate gene
expression through other mechanisms such as transcription collision
or the recruitment of histone-modifying enzymes [1]. Although asRNAs
coupling with age one genes seem to have higher SAL/SRL, we found
that there is no significant difference in the lengths of asRNAs in
the gene groups of different ages (Kruskal–Wallis test, P = 0.13). None-
theless, some limitations may cause bias in our conclusions. First, the
inverse expression between sense and asRNAs may only represent
a subset of functional asRNAs, since asRNAs can act through other
mechanisms. Second, the sample size for asRNAs expression is limited,
which may lead to experimental bias. Future work should enlarge
the sample size by including more different conditions, time points,

image of Fig.�4
image of Fig.�5


488 C.-H. Lin et al. / Genomics 102 (2013) 484–490
and/or cell types. Additional investigations and analyses are necessary
to explore the asRNA functions in regulation.

4. Materials and methods

4.1. Yeast strains, growth conditions and treatments

To elucidate the dynamics of asRNAs in yeast, the laboratory strain
BY4741was cultured and sampled in three different growth conditions:
mid-log phase, early stationary phase, and after heat-shock treatment.
Yeast was grown in rich medium (1.5% yeast extract, 1% peptone, 2%
dextrose, 2 g/L SC amino acid mix, 100 mg/L adenine, 100 mg/L trypto-
phan, 100 mg/L uracil) at 30 °C to an OD600 of 0.802 for mid-log phase.
Glucose levelsweremonitored hourly by glucose (HK) assay kit (Sigma-
Aldrich, MO, USA), and early stationary phase time points were taken
2 h after the glucose levels reached zero (OD600 ~ 2.22). For each condi-
tion, 12 ml was harvested and quenched by adding 20 ml pre-chilled
liquid methanol to generate a final concentration of 60%. Media was
later removed by centrifugation, cells were washed in RNase-free
water and stored overnight at −80 °C. Similarly, 12 ml of mid-log cul-
ture was collected for heat shock treatment as follows: culture medium
was removed by centrifugation. Cells were resuspended in 10 ml, 42 °C
pre-warmed medium and put in a 42 °C water bath for 15 min. Heat
shocked sample was quenched by adding 20 ml liquid pre-chilled
methanol, which was later removed by centrifugation, after which
cells were washed in RNase-free water and stored overnight at−80 °C.

4.2. Construction of strand-specific cDNA library

To strengthen the ability to determine the polarity of RNA transcripts,
a strand-specific cDNA library was constructed by the dUTP second-
strand method [8,31], which was identified as the leading protocol
for paired-end sequencing [32]. Briefly, incorporation of dUTP
during second-strand cDNA synthesis and subsequent destruction
of the uridine-containing strand in the sequencing library were
responsible for identifying the orientation of transcripts.

The cDNA librarywas constructed by TruSeq RNA Sample Preparation
Kits v2 based on the guide (Illumina). Five μg of total RNA was diluted
with nuclease-free water to 50 μl and heated in a preheated heat block
at 65 °C for 5 min to disrupt the secondary structures. PolyA-containing
mRNA was purified using 50 μl RNA purification beads for each sample.
The purified RNA fragments were reverse-transcribed into first-strand
cDNA by SuperScript II Reverse Transcriptase (Invitrogen) and random
primers (Illumina). The cDNA/RNA hybrid was precipitated with ethanol
and ammonium acetate. The second-strand cDNA synthesis was per-
formed in a 80 μl reaction volume using NEBNext® mrna second strand
synthesismodule (NEB) anddNTP/dUTPmix (Fermentas, dTTP → dUTP)
at 16 °C for 2.5 h. The DNA fragmentswere purified by QIAquick PCR pu-
rification kit (Qiagen) and treated with T4 DNA polymerase, E. coli DNA
polymerase I Klenow fragment andT4polynucleotide kinase in a 30 μl re-
action using the buffer and the enzyme in the kit (Illumina) at 37 °C for
30 min. The blunt phosphorylated DNA fragments were purified by the
MinElute PCR purification kit (Qiagen) and treated with Klenow frag-
ment of DNApolymerase in the presence of dATP to add an adenine over-
hang to the 3′ end of each strand in a 30 μl reaction using the kit
(Illumina) at 37 °C for 30 min. Adapters were ligated to DNA fragments
in a 37.5 μl reaction using the kit (Illumina). The ligation products
were purified by the MinElute PCR purification kit (Qiagen) and ligation
products in the size range from 350 to 450 bp were eluted from the gel.
These products were precipitated and resuspended in 21 μl TrueSeq
resuspension buffer using QIAquick Gel extraction Kit (Qiagen) and
treated with USER™ enzyme mixture (Uracil-Specific Excision Reagent,
NEB) to degrade the dUTP in the second strand. The adapter-ligated
DNA fragments were amplified by the kit (Illumina). The amplified
products were purified by Agencourt AMPure XP (Beckman) and
collected in 30 μl resuspension buffer (Qiagen) as the cDNA library
for sequencing.

4.3. Identification of ORF transcripts and asRNAs

RNA paired-end sequencing was performed by Illumina Hiseq2000
with the standard protocol. For each sample, sequencing yielded around
11.6 million 101-nucleotide paired-end reads (range from10.95 million
to 12.12 million). To map these 101-nucleotide paired reads, we used
Bowtie [33] and TopHat [34] following the published protocol [35]
with known genome sequences and annotations from Saccharomyces
Genome Database (SGD, http://www.yeastgenome.org) for S. cerevisiae.
The sequencing reads mapped to unique positions on the genomewere
further selected from total mapped reads for further analysis (~92% of
total mapped reads).

Further, to determine the complete transcriptional landscape, we
designed a method to detect all the transcripts. Read depth was used
to define the transcript unit as described below, and then the transcript
boundaries were manually adjusted. The position with the highest read
depth was designated as the starting point to extend each segment.
Second, we extended the segment bidirectionally until the read depth
mean of the segment was four times higher than its flanking position;
the threshold was empirically determined to separate close transcripts.
Third, the boundary of this segmentwas further adjusted to thefirst and
last internal read. Fourth, the regions already identified as transcripts
were removed from following cycles. We repeated this process until
the highest read depth was less than five. Subsequently, the obtained
transcripts overlapping with verified and uncharacterized ORFs in the
same orientation were defined as ORF transcripts (ORF-Ts); on the
other hand, transcripts distal to verified and uncharacterized ORF
were assigned as ncRNAs. Eventually, when an ORF-T and a ncRNA in
different orientations overlapped by at least 1 bp, they were coupled
as a sense–antisense pair and the ncRNA was defined as an asRNA. In
total, we found 1215 genes coupling with 995 asRNAs, including 883
unannotated ncRNAs, 74 dubious ORFs, 22 small nucleolar RNAs, 11
transfer RNAs, and 5 annotated ncRNAs.

4.4. Analyses of PPIs, IDRs and PTMs

We downloaded the physical PPI dataset of S. cerevisiae from the
database BioGrid (version 3.1.92) [36] to calculate thedegree of physical
PPIs. In order to analyze the physical PPI degrees appropriately, we
divided all genes into three groups of similar sizes based on the 33rd
percentile (PPIs = 5), and the 67th percentile (PPIs = 19). As a result,
we classified PPIs ≤ 5 as low level (1871 genes), between 6 and 19 as
medium level (1991 genes), ≥20 as high level (1932 genes).

We used the percentages of IDRs of each gene as calculated by Kim
et al. [37]. The IDRs were predicted by the software DISOPRED [38].
The average of IDR percentages of all genes in the genome is 25%. There-
fore, genes with IDR percentages equal to and greater than 25% were
categorized into the disordered group, which was suggested to have
higher regulatory complexity than the group of other genes with IDR
percentages less than 25%.

To identify genes with PTMs, we identified a gene as having protein
N-alpha-terminal acetylation, ubiquitination, or phosphorylation if the
gene was in the compiled dataset from previous studies [39–43]. Over-
all, of 5794 verified and uncharacterized ORF genes, there were 1604
geneswithN-alpha-terminal acetylation, 918 geneswith ubiquitination,
and 2504 geneswith phosphorylation. Themajority, 2460 genes, had no
form of PTM, while 1952 genes had only one form of PTM, 1072 genes
had two forms of PTM, and 310 genes had all three forms of PTM. We
grouped genes by their levels of PTM forms: none (0), single (1) and
multiple (≥2) forms of PTM.We proposed that the regulatory complex-
ity of these three gene groups should differ from each other due to
following reasons. First, a gene with a PTM form is assumed to be
under more complex regulation than a gene without any PTM form.

http://www.yeastgenome.org
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Second, a gene with multiple PTM forms may be additionally regulated
by the combination of different forms of PTM [44] and lead to higher
regulatory complexity than genes with only one or no PTM form.
4.5. Estimation for the rate of evolutionary changes in asRNAs

The rate of evolutionary changes in asRNAs was estimated by deter-
mining the nucleotide substitution rate without considering insertions
or deletions. We aligned the asRNA sequences of S. cerevisiae and the
orthologous sequences of S. paradoxus by the softwareMUSCLE (version
3.8.31) [45]. We excluded regions overlapping with ORFs and eliminat-
ed the cases in which aligned regions were shorter than 50 bp to avoid
potential biases of poor alignment. After filtering, 478 asRNAs and
441 non-antisense ncRNAs were obtained for analyses. Moreover, the
substitution rate of the four-fold degenerate sites was used as a neutral
reference [24,25].
4.6. Gene classification by evolutionary age

In order to investigate the propensity of genes to persist in the
genome during evolution, methods of Liu et al. [26] were applied to
assign the evolutionary age of genes. We utilized the algorithm
GeneTRACE [46] which considers gene loss and horizontal gene transfer
events to identify the evolutionary age of each gene. For the input
information, the phylogenetic tree from NCBI [47], and the orthologous
profile of each gene from the database OrthoMCL-DB (version 5) [27]
were used. Based on the results of GeneTRACE, we determined the
presence or absence of each orthologous gene at each node of the phy-
logenetic tree. The genes that were present in all cellular organisms
(the common ancestors of Eukaryota, Bacteria and Archaea) were
assigned as age five (664 of the most ancient genes), only in Eukaryota
assigned as age four (1610 genes), only in the Fungi/Metazoa group
(Opisthokonta) as age three (691 genes), only in kingdom Fungi as age
two (2224 genes), and only in genus Saccharomyces as age one (605 of
the youngest genes).
4.7. Analyses of sense–antisense inverse expression and interacting regions

Because the inverse expression between sense and asRNAs was
suggested as an indicator for the functionality of asRNAs [5–10], we
evaluated the inverse expression by calculating Pearson correlation
coefficient of sense and asRNAs expression at mid-log phase, early
stationary phase, and after heat shock treatment. Expression data with
missing values for any one condition was removed from the analysis.
After initial screening, 988 pairs of sense and asRNAs met our criteria
and were used in this study. We used BPKM (bases per kilobase of
genemodel per millionmapped bases) as the relative expression abun-
dance [48], and calculated Pearson correlations of BPKMs between
sense and antisense expression (threshold for Pearson correlation:
less than −0.6). In addition, in order to discuss the regulatory mecha-
nisms of asRNAs, we evaluated the RNA–RNA interaction by calculating
SAL/SRL.
4.8. Evaluation of asRNA conservation

To investigate the conservation of asRNAs, we compared the genes
with asRNAs across four strains of S. cerevisiae and S. paradoxus. We
downloaded the data of asRNA abundance from Goodman et al. [29].
To increase the confidence of asRNA expression, we only classified
genes with asRNAs when the BPKM of asRNAs was more than one.
We calculated the ratio of the number of genes with asRNAs conserved
across four strains to the average number of genes with asRNAs in
each strain.
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