104,490 research outputs found

    Gene Regulation, Modulation, and Their Applications in Gene Expression Data Analysis

    Get PDF
    Common microarray and next-generation sequencing data analysis concentrate on tumor subtype classification, marker detection, and transcriptional regulation discovery during biological processes by exploring the correlated gene expression patterns and their shared functions. Genetic regulatory network (GRN) based approaches have been employed in many large studies in order to scrutinize for dysregulation and potential treatment controls. In addition to gene regulation and network construction, the concept of the network modulator that has significant systemic impact has been proposed, and detection algorithms have been developed in past years. Here we provide a unified mathematic description of these methods, followed with a brief survey of these modulator identification algorithms. As an early attempt to extend the concept to new RNA regulation mechanism, competitive endogenous RNA (ceRNA), into a modulator framework, we provide two applications to illustrate the network construction, modulation effect, and the preliminary finding from these networks. Those methods we surveyed and developed are used to dissect the regulated network under different modulators. Not limit to these, the concept of "modulation" can adapt to various biological mechanisms to discover the novel gene regulation mechanisms

    miRNA expression profiles and molecular networks in resting and LPS-activated BV-2 microglia-Effect of cannabinoids.

    Get PDF
    Mammalian microRNAs (miRNAs) play a critical role in modulating the response of immune cells to stimuli. Cannabinoids are known to exert beneficial actions such as neuroprotection and immunosuppressive activities. However, the underlying mechanisms which contribute to these effects are not fully understood. We previously reported that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabidiol (CBD) differ in their anti-inflammatory signaling pathways. Using lipopolysaccharide (LPS) to stimulate BV-2 microglial cells, we examined the role of cannabinoids on the expression of miRNAs. Expression was analyzed by performing deep sequencing, followed by Ingenuity Pathway Analysis to describe networks and intracellular pathways. miRNA sequencing analysis revealed that 31 miRNAs were differentially modulated by LPS and by cannabinoids treatments. In addition, we found that at the concentration tested, CBD has a greater effect than THC on the expression of most of the studied miRNAs. The results clearly link the effects of both LPS and cannabinoids to inflammatory signaling pathways. LPS upregulated the expression of pro-inflammatory miRNAs associated to Toll-like receptor (TLR) and NF-κB signaling, including miR-21, miR-146a and miR-155, whereas CBD inhibited LPS-stimulated expression of miR-146a and miR-155. In addition, CBD upregulated miR-34a, known to be involved in several pathways including Rb/E2f cell cycle and Notch-Dll1 signaling. Our results show that both CBD and THC reduced the LPS-upregulated Notch ligand Dll1 expression. MiR-155 and miR-34a are considered to be redox sensitive miRNAs, which regulate Nrf2-driven gene expression. Accordingly, we found that Nrf2-mediated expression of redox-dependent genes defines a Mox-like phenotype in CBD treated BV-2 cells. In summary, we have identified a specific repertoire of miRNAs that are regulated by cannabinoids, in resting (surveillant) and in LPS-activated microglia. The modulated miRNAs and their target genes are controlled by TLR, Nrf2 and Notch cross-talk signaling and are involved in immune response, cell cycle regulation as well as cellular stress and redox homeostasis

    New Synthetic Endocannabinoid as Anti-Inflammaging Cosmetic Active: an In Vitro Study on a Reconstructed Skin Model

    Get PDF
    Endocannabinoids have been recently appointed as interesting cosmetic actives in regulating inflammaging, a state of chronic low-grade inflammation, known for being involved in many senescence\u2019s manifestations, included skin aging. The aim of this study was to assess the anti-inflammaging activity of a new synthetic endocannabinoid, Isopalmide\uae, on a reconstructed skin model, on which inflammaging has been reproduced through UVA radiation and light mechanical stress. We tested Isopalmide\uae both as a single active and conveyed in a cosmetic product, in comparison with Anandamide, a well-known natural endocannabinoid with anti-inflammatory action. The anti-inflammaging activity of topically applied products has been assessed, after 6 hours of treatment post-irradiation, through the transcriptional modification of genes involved in the NF-\u3baB pathway and the epigenetic pathway targeting miRs as potential biomarkers of inflammaging: miR-21, miR-126 and miR-146a. The results confirmed the anti-inflammatory action of Anandamide which inhibits NF-\u3baB, while Isopalmide\uae showed its anti-inflammaging activity through the establishment of an inflammatory/anti-inflammatory balance by maintaining NF-\u3baB inactive in the cytoplasm and active in the nucleus. The anti-inflammaging activity was shown also by the cosmetic product containing Isopalmide

    Modulation of autocrine TNF-α-stimulated matrix metalloproteinase 9 (MMP-9) expression by mitogenactivated protein kinases in THP-1 monocytic cells

    Get PDF
    Matrix metalloproteinase 9 (MMP-9) is implicated in various physiological processes by its ability to degrade the extracellular matrix (ECM) and process multiple regulatory proteins. Normally, MMP-9 expression is tightly controlled in cells. Sustained or enhanced MMP-9 secretion, however, has been demonstrated to contribute to the pathophysiology of numerous diseases, including arthritis and tumor progression, rendering this enzyme a major target for clinical interventions. Here we show that constitutive MMP-9 secretion was abrogated in THP-1 monocytic leukemia cells by addition of neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or TNF receptor type 1 (TNF-R1), as well as by inhibition of TNF-α converting enzyme (TACE). This indicates that MMP-9 production in these cells is maintained by autocrine stimulation, with TNF-α acting via TNF-R1. To investigate the intracellular signaling routes involved in MMP-9 gene transcription, cells were treated with different inhibitors of major mitogen-activated protein kinase (MAPK) pathways. Interruption of the extracellular signal-regulated kinase pathway 1/2 (ERK1/2) using PD98059 significantly downregulated constitutive MMP-9 release. In contrast, blockage of p38 kinase activity by addition of SB203580 or SB202190, as well as inhibition of c-Jun N-terminal kinase (JNK) using L-JNK-I1, clearly augmented MMP-9 expression and secretion by an upregulation of ERK1/2 phosphorylation. Moreover, exogenously added TNF-α augmented MMP-9 synthesis and secretion in THP-1 cells via enhancement of ERK1/2 activity. Taken together, our results indicate that ERK1/2 activity plays a pivotal role in TNF-α-induced MMP-9 production and demonstrate its negative modulation by p38 and JNK activity. These findings suggest ERK1/2 rather than p38 and JNK as a reasonable target to specifically block MMP-9 expression using MAPK inhibitors in therapeutic applications

    Operator Sequence Alters Gene Expression Independently of Transcription Factor Occupancy in Bacteria

    Get PDF
    A canonical quantitative view of transcriptional regulation holds that the only role of operator sequence is to set the probability of transcription factor binding, with operator occupancy determining the level of gene expression. In this work, we test this idea by characterizing repression in vivo and the binding of RNA polymerase in vitro in experiments where operators of various sequences were placed either upstream or downstream from the promoter in Escherichia coli. Surprisingly, we find that operators with a weaker binding affinity can yield higher repression levels than stronger operators. Repressor bound to upstream operators modulates promoter escape, and the magnitude of this modulation is not correlated with the repressor-operator binding affinity. This suggests that operator sequences may modulate transcription by altering the nature of the interaction of the bound transcription factor with the transcriptional machinery, implying a new layer of sequence dependence that must be confronted in the quantitative understanding of gene expression

    A dynamical model reveals gene co-localizations in nucleus

    Get PDF
    Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency-or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes

    CHO microRNA engineering is growing up : recent successes and future challenges

    Get PDF
    microRNAs with their ability to regulate complex pathways that control cellular behavior and phenotype have been proposed as potential targets for cell engineering in the context of optimization of biopharmaceutical production cell lines, specifically of Chinese Hamster Ovary cells. However, until recently, research was limited by a lack of genomic sequence information on this industrially important cell line. With the publication of the genomic sequence and other relevant data sets for CHO cells since 2011, the doors have been opened for an improved understanding of CHO cell physiology and for the development of the necessary tools for novel engineering strategies. In the present review we discuss both knowledge on the regulatory mechanisms of microRNAs obtained from other biological models and proof of concepts already performed on CHO cells, thus providing an outlook of potential applications of microRNA engineering in production cell lines

    Joint co-clustering: co-clustering of genomic and clinical bioimaging data

    Get PDF
    AbstractFor better understanding the genetic mechanisms underlying clinical observations, and better defining a group of potential candidates for protein-family-inhibiting therapy, it is interesting to determine the correlations between genomic, clinical data and data coming from high resolution and fluorescent microscopy. We introduce a computational method, called joint co-clustering, that can find co-clusters or groups of genes, bioimaging parameters and clinical traits that are believed to be closely related to each other based on the given empirical information. As bioimaging parameters, we quantify the expression of growth factor receptor EGFR/erb-B family in non-small cell lung carcinoma (NSCLC) through a fully-automated computer-aided analysis approach. This immunohistochemical analysis is usually performed by pathologists via visual inspection of tissue samples images. Our fully-automated techniques streamlines this error-prone and time-consuming process, thereby facilitating analysis and diagnosis. Experimental results for several real-life datasets demonstrate the high quantitative precision of our approach. The joint co-clustering method was tested with the receptor EGFR/erb-B family data on non-small cell lung carcinoma (NSCLC) tissue and identified statistically significant co-clusters of genes, receptor protein expression and clinical traits. The validation of our results with the literature suggest that the proposed method can provide biologically meaningful co-clusters of genes and traits and that it is a very promising approach to analyse large-scale biological data and to study multi-factorial genetic pathologies through their genetic alterations

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore