8,824 research outputs found

    Obligation Blackwell Games and p-Automata

    Full text link
    We recently introduced p-automata, automata that read discrete-time Markov chains. We used turn-based stochastic parity games to define acceptance of Markov chains by a subclass of p-automata. Definition of acceptance required a cumbersome and complicated reduction to a series of turn-based stochastic parity games. The reduction could not support acceptance by general p-automata, which was left undefined as there was no notion of games that supported it. Here we generalize two-player games by adding a structural acceptance condition called obligations. Obligations are orthogonal to the linear winning conditions that define winning. Obligations are a declaration that player 0 can achieve a certain value from a configuration. If the obligation is met, the value of that configuration for player 0 is 1. One cannot define value in obligation games by the standard mechanism of considering the measure of winning paths on a Markov chain and taking the supremum of the infimum of all strategies. Mainly because obligations need definition even for Markov chains and the nature of obligations has the flavor of an infinite nesting of supremum and infimum operators. We define value via a reduction to turn-based games similar to Martin's proof of determinacy of Blackwell games with Borel objectives. Based on this definition, we show that games are determined. We show that for Markov chains with Borel objectives and obligations, and finite turn-based stochastic parity games with obligations there exists an alternative and simpler characterization of the value function. Based on this simpler definition we give an exponential time algorithm to analyze finite turn-based stochastic parity games with obligations. Finally, we show that obligation games provide the necessary framework for reasoning about p-automata and that they generalize the previous definition

    Tree games with regular objectives

    Full text link
    We study tree games developed recently by Matteo Mio as a game interpretation of the probabilistic μ\mu-calculus. With expressive power comes complexity. Mio showed that tree games are able to encode Blackwell games and, consequently, are not determined under deterministic strategies. We show that non-stochastic tree games with objectives recognisable by so-called game automata are determined under deterministic, finite memory strategies. Moreover, we give an elementary algorithmic procedure which, for an arbitrary regular language L and a finite non-stochastic tree game with a winning objective L decides if the game is determined under deterministic strategies.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Qualitative Reachability in Stochastic BPA Games

    Get PDF
    We consider a class of infinite-state stochastic games generated by stateless pushdown automata (or, equivalently, 1-exit recursive state machines), where the winning objective is specified by a regular set of target configurations and a qualitative probability constraint `>0' or `=1'. The goal of one player is to maximize the probability of reaching the target set so that the constraint is satisfied, while the other player aims at the opposite. We show that the winner in such games can be determined in PTIME for the `>0' constraint, and both in NP and coNP for the `=1' constraint. Further, we prove that the winning regions for both players are regular, and we design algorithms which compute the associated finite-state automata. Finally, we show that winning strategies can be synthesized effectively.Comment: Submitted to Information and Computation. 48 pages, 3 figure

    On the Problem of Computing the Probability of Regular Sets of Trees

    Get PDF
    We consider the problem of computing the probability of regular languages of infinite trees with respect to the natural coin-flipping measure. We propose an algorithm which computes the probability of languages recognizable by \emph{game automata}. In particular this algorithm is applicable to all deterministic automata. We then use the algorithm to prove through examples three properties of measure: (1) there exist regular sets having irrational probability, (2) there exist comeager regular sets having probability 00 and (3) the probability of \emph{game languages} Wi,kW_{i,k}, from automata theory, is 00 if kk is odd and is 11 otherwise

    Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

    Get PDF
    The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynch's probabilistic bisimilarity for probabilistic automata. In this paper, we present a characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condon's simple policy iteration on these games. The correctness of Condon's approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in UPcoUP\textbf{UP} \cap \textbf{coUP} and \textbf{PPAD}. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. The characterization of the probabilistic bisimilarity distance mentioned above crucially uses a dual presentation of the Hausdorff distance due to M\'emoli. As an additional contribution, in this paper we show that M\'emoli's result can be used also to prove that the bisimilarity distance bounds the difference in the maximal (or minimal) probability of two states to satisfying arbitrary ω\omega-regular properties, expressed, eg., as LTL formulas

    MeGARA: Menu-based Game Abstraction and Abstraction Refinement of Markov Automata

    Full text link
    Markov automata combine continuous time, probabilistic transitions, and nondeterminism in a single model. They represent an important and powerful way to model a wide range of complex real-life systems. However, such models tend to be large and difficult to handle, making abstraction and abstraction refinement necessary. In this paper we present an abstraction and abstraction refinement technique for Markov automata, based on the game-based and menu-based abstraction of probabilistic automata. First experiments show that a significant reduction in size is possible using abstraction.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Solving Stochastic B\"uchi Games on Infinite Arenas with a Finite Attractor

    Full text link
    We consider games played on an infinite probabilistic arena where the first player aims at satisfying generalized B\"uchi objectives almost surely, i.e., with probability one. We provide a fixpoint characterization of the winning sets and associated winning strategies in the case where the arena satisfies the finite-attractor property. From this we directly deduce the decidability of these games on probabilistic lossy channel systems.Comment: In Proceedings QAPL 2013, arXiv:1306.241
    corecore