research

On the Problem of Computing the Probability of Regular Sets of Trees

Abstract

We consider the problem of computing the probability of regular languages of infinite trees with respect to the natural coin-flipping measure. We propose an algorithm which computes the probability of languages recognizable by \emph{game automata}. In particular this algorithm is applicable to all deterministic automata. We then use the algorithm to prove through examples three properties of measure: (1) there exist regular sets having irrational probability, (2) there exist comeager regular sets having probability 00 and (3) the probability of \emph{game languages} Wi,kW_{i,k}, from automata theory, is 00 if kk is odd and is 11 otherwise

    Similar works