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AsstrAcT. We consider a class of infinite-state stochastic games generated by stateless pushdown
automata (or, equivalently, 1-exit recursive state machines), where the winning objective is specified
by a regular set of target configurations and a qualitative probability constregdhot ‘=1". The

goal of one player is to maximize the probability of reaching the target set so that the constraint is
satisfied, while the other player aims at the opposite. We show that the winner in such games can be
determined irNP N co-NP. Further, we prove that the winning regions for both players are regular,
and we design algorithms which compute the associated finite-state automata. Finally, we show that
winning strategies can be synthesizéetively.

1. Introduction

Stochastic games are a formal model for discrete systems where the behavior in each state is
either controllable, adversarial, or stochastic. Formally, a stochastic game is a directe@ gitiph
a denumerable set of verticgswhich are split into three disjoint subsats, V., andV. For every
v € Vp, there is a fixed probability distribution over the outgoing edges We also require that the
set of outgoing edges of every vertex is nonempty. The game is initiated by putting a token on some
vertex. The token is then moved from vertex to vertex by two playemsnd ¢, who choose the
next move in the vertices of andV,, respectively. In the vertices &f-, the outgoing edges are
chosen according to the associated fixed probability distributioquantitative winning objective
is specified by some Borel s&/ of infinite paths inG and a probability constrainto, where
> € {>, >} is a comparison and € [0, 1]. An important subclass of quantitative winning objectives
arequalitative winning objectiveshere the constagtmust be either 0 or 1. The goal of playeis
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to maximize the probability of all runs that stay\ivi so that it is>-related tao, while player® aims

at the opposite. Atrategyspecifies how a player should play. In general, a strategy may or may
not depend on the history of a play (we say that a strategistery-dependent (H)r memoryless

(M)), and the edges may be chosen deterministically or randatelgiministic (Dandrandomized

(R) strategies). In the case of randomized strategies, a player chooses a probability distribution on
the set of outgoing edges. Note that deterministic strategies can be seen as restricted randomized
strategies, where one of the outgoing edges has probability 1. Each pair of strategiefof
playerso and ¢ determines alay, i.e., a unique Markov chain obtained fragby applying the
strategiesr andr in the natural way. Theutcomeof a play initiated inv is the probability of all

runs initiated inv that are in the s/, denotedPy " (W). We say that a play is>p)-won by playem

if its outcome is>-related too; otherwise, the play is{p)-won by playero. A strategy of playen

(or player¢) is (>p)-winning if for every strategy of the other player, the corresponding play is
(>0)-won by playero (or by player$, respectively). A natural question is whether one of the two
players always has a§)-winning strategy, i.e., whether the gamedstermined The answer is
somewhat subtle. A celebrated result of Martin [18] (see also [17]) implies that stochastic games
with Borel winning conditions areveakly determined.e., each vertex has avaluegiven by

val(y) = supinfPST(W) =  inf supPIr (W) (1.1)

Hereo andr ranges over the set of all strategies for plageand player®, respectively. However,
the players do not necessarily hawmgtimal strategies that would guarantee the outcoralév) or
better against every strategy of the opponent. On the other hand, it follows directly from the above
equation that each player hassanptimal strategy (see Definition 2.3) for every- 0. This means
that if o # val(v), then one of the two players hasteof-winning strategy for the game initiated
in v. The situation whe = val(v) is more problematic, and to the best of our knowledge, the
literature does not yetffer a general answer. Let us also note thaffiftite-statestochastic games
and the “usual” classes of quantitafigealitative Borel objectives (such as Biichi, Rabin, Street,
etc.), the determinacy follows from the existence of optimal strategies (hence, the sup and inf in
Equation 1.1 can be safely replaced with max and min, respectively). For classes of infinite-state
stochastic games (such as stochastic BPA games considered in this paper), optimal strategies do not
necessarily exist and the associated determinacy results must be proven by other methods.
Algorithmic issues for stochastic games with quantitdtjualitative winning objectives have
been studied mainly for finite-state stochastic games. A lot of attention has been devoted to quanti-
tative reachability objectiveseven in the special case whenr- % The problem whether player
has a (>%)-Winning strategy is known to be INP N co-NP, but its membership t® is one of the
long-standing open problems in algorithmic game theory [9, 20]. Later, more complicated qualita-
tive/quantitativew-regular winning objectives (such as Bichi, co-Biichi, Rabin, Street, Muller, etc.)
were considered, and the complexity of the corresponding decision problems was analysed. We
refer to [10, 6, 8, 7, 21, 19] for more details. As for infinite-state stochastic games, the attention has
so far been focused on stochastic games induced by lossy channel systems [1, 2] and by pushdown
automata (or, equivalently, recursive state machines) [14, 15, 13, 12, 4]. In the next paragraphs,
we discuss the latter model in greater detail because these results are closely related to the results
presented in this paper.
A pushdown automaton (PDA3ee, e.g., [16]) is equipped with a finite control unit and an
unbounded stack. The dynamics is specified by a finite set of rules of theg®m ga, where
p, q are control states is a stack symbol, and is a (possibly empty) sequence of stack symbols.
A rule of the form pX < qua is applicable to every configuration of the forpXB and produces
the configuratiorgag. If there are several rules with the same left-hand side, one of them must be
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chosen, and the choice is appointed to playeplayer<, or it is randomized. Technically, the set

of all left-hand sides (i.e., pairs of the forpX) is split into three disjoint subsetsy, H,, andH,

and for all pX € Hq there is a fixed probability distribution over the set of all rules of the form
pX<= ga. Thus, each PDA induces the associated infinite-state stochastic game where the vertices
are PDA configurations and the edges are determined in the natural way. An important subclass
of PDA is obtained by restricting the number of control states to 1. Such PDA are also known as
statelessPDA or (mainly in concurrency theory) as BPA. PDA and BPA corresponetdarsive

state machines (RSM)nd 1-exit RSMrespectively, in the sense that their descriptive powers are
equivalent, and there aréfective linear-time translations between the corresponding models.

In [13], the quantitative and qualitativiermination objectivefor PDA and BPA stochastic
games is examined (a terminating run is a run which hits a configuration with the empty stack;
hence, termination is a special form of reachability). For BPA, it is shown that the vector of optimal
values yal(X), X € I), wherel is the stack alphabet, forms the least solution of @@ctively con-
structible system of min-max equations. Moreover, both players have optimal MD strategies which
depend only on the top-of-the-stack symbol of a given configuration (such strategies are called
SMD, meaning Stackless MD). Hence, stochastic BPA games with quanfitaiative termina-
tion objectives are determined. Since the least solution of the constructed equational system can be
encoded in first order theory of the reals, the existence ebgWinning strategy for playen and
playero can be decided in polynomial space. In the same paper [13§5thé15 upper complexity
bound for the subclass of qualitative termination objectives is established. As for PDA games, it
is shown that for every fixed > 0, the problem to distinguish whether the optimal vaha& pX)
is equal to 1 or less thas, is undecidable. ThEzP N Hg’ upper bound for stochastic BPA games
with qualitative termination objectives was improvedN® N co-NPin [15]. In the same paper, it
is also shown that the quantitative reachability problem for finite-state stochastic games (see above)
is eficiently reducible to the qualitative termination problem for stochastic BPA games. Hence, the
NP n co-NP upper bound cannot be improved without a major breakthrough in algorithmic game
theory. In the special case of stochastic BPA games wHgre= @ or Hy = 0, the qualitative
termination problem is shown to be B (observe that iH, = 0 or Hy = 0, then a given BPA
induces an infinite-state Markov decision process and the goal of the only player is to maximize
or minimize the termination probability, respectively). The results for Markov decision processes
induced by BPA are generalized to (arbitrary) qualitate&chability objective# [5], retaining the
P upper complexity bound. In the same paper, it is also noted that the properties of reachability
objectives are quite ffierent from the ones of termination (in particular, there is no apparent way
how to express the vector of optimal values as a solution of some recursive equational system, and
the SMD determinacy result (see above) does not hold).

Our contribution: In this paper, we continue the study initiated in [14, 15, 13, 12, 4] and
solve the gualitative reachability problem for unrestricted stochastic BPA games. Thus, we obtain a
substantial generalization of the previous results.

We start by resolving the determinacy issue in Section 3, and this part of our work actually
applies to arbitranfinitely branchingstochastic games, where each vertex has only finitely many
successors (BPA stochastic games are finitely branching). We show that finitely branching stochastic
games with quantitatiyqualitative reachability objectives are determined, i.e., in every vertex, one
of the two players has &p)-wining strategy. This is a consequence of several observations that are
specific for reachability objectives and perhaps interesting on their own.

The main results of our paper, presented in Section 4, concern stochastic BPA games with
qualitative reachability objectives. In the context of BPA, a reachability objective is specified by
aregular setT of target configurations. We show that the problem of determining the winner in
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stochastic BPA games with qualitative reachability objectives iBlfhn co-NP. Here we rely
on the previously discussed results about qualitative termination [15] and use the corresponding
algorithms as “black-box procedures” at appropriate places. We also rely on observations presented
in [5] which were used to solve the simpler case with only one player. However, the full (two-
player) case brings completely new complications that need to be tackled by new methods and
ideas. Many “natural” hypotheses turned out to be incorrect (some of the interesting cases are
documented by examples in Section 4). We also show that the sets of all configurations where
playero and playerd have a €o)-winning strategy (where € {0, 1}) is efectively regular and
the corresponding finite-state automata dfedaively constructible by a deterministic polynomial-
time algorithm withNP N co-NP oracle. Finally, we also give an algorithm whicomputesa
(>0)-winning strategy if it exists. These strategies are randomized and memoryless, and they are
alsoeffectively regularin the sense that their functionality caffiextively be encoded by finite-state
automata (see Definition 4.3). Hence, winning strategies in stochastic BPA games with qualitative
reachability objectives can bdfectively implemented.

Due to space constraints, most of the proofs had to be omitted and can be found in the full
version of this paper [3]. In the main body of the paper, we try to sketch the key ideas and provide
some intuition behind the presented technical constructions.

2. Basic Definitions

In this paper, the set of all positive integers, non-negative integers, rational numbers, real num-
bers, and non-negative real numbers are derisgtéd, Q, R, andR=?, respectively. For every finite
or countably infinite se§, the symbolS* denotes the set of all finite words ov@ér The length of
a given wordu is denotedu|, and the individual letters in are denotedi(0),--- ,u(ul — 1). The
empty word is denoted, wherelg| = 0. We also us&™ to denote the se8* \ {}. For every finite
or countably infinite seM, a binary relation—» € M x M is total if for every m € M there is some
n € M such thatm — n. A pathin M = (M, -) is a finite or infinite sequenc& = my, My, ...
such thatmy — my,; for everyi. Thelengthof a finite pathw = my, ..., m;, denotedengthiw), is
i +1. We also usav(i) to denote the elememt, of w, andw; to denote the pathy, mi,1,... (by
writing w(i) = mor w; we implicitly impose the condition thdéngth(w) > i+1). A givenne M
is reachablefrom a givenm € M, written m —* n, if there is a finite path froomton. A runis
an infinite path. The sets of all finite paths and all rungvinare denoted-Path(M) and RunM),
respectively. Similarly, the sets of all finite paths and runs that start in a giverM are denoted
FPath(M, m) andRun(M, m), respectively.

Now we recall basic notions of probability theory. L&be a finite or countably infinite set. A
probability distributionon A is a functionf : A — R=% such that) .. f(a) = 1. A distribution f is
rational if f(a) € Q for everya € A, positiveif f(a) > O for everya € A, andDirac if f(a) = 1 for
somea € A. The set of all distributions oA is denotedD(A).

A o-field over a setX is a setF C 2% that includesX and is closed under complement and
countable union. Aneasurable spade a pair &, ) whereX is a set calledample spacand¥ is
ao-field overX. A probability measur@ver a measurable spacg ) is a function : ¥ — R0
such that, for each countable collecti@4}ic; of pairwise disjoint elements of, P(Uiq Xi) =
>iel P(OXi), and moreoveP(X) = 1. A probability spaceis a triple X, F,P) where K, 7) is a
measurable space aftlis a probability measure oveK(¥).

Definition 2.1. A Markov chainis a triple M = (M, — , Prob) where M is a finite or countably

infinite set ofstates — C M x M is a totaltransition relation andProb is a function which to
eachs € M assigns a positive probability distribution over the set of its outgoing transitions.
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In the rest of this paper, we write—=>t whenevers—t and Prob((s,t)) = x. Eachw e
FPath(M) determines dasic cylinder Runf1, w) which consists of all runs that start withh To
everys e M we associate the probability spaétuf(M, s), 7, P) where¥ is theo-field generated
by all basic cylinderdur(M, w) wherew starts withs, and® : ¥ — R=0 is the unique probability
measure such th@&Rur(M, w)) = I !x wherew = s, - - - , spands =5 s, forevery 0< i <m
(if m= 0, we putP(RunM, w)) = 1).

Definition 2.2. A stochastic games a tupleG = (V, —, (Vg, Vo, V), Prob) whereV is a finite or
countably infinite set ofiertices —» < V x V is a totaledge relation (Vg, Vo, Vo) is a partition
of V, andProb is a probability assignmentvhich to eachv € V., assigns a positive probability
distribution on the set of its outgoing transitions. We say thas finitely branchingif for each
v € V there are only finitely many € V such thatv— u.

A stochastic game is played by two playersand<, who select the moves in the verticesvef
andV,, respectively. Leb € {O, ¢}. A strategyfor playero is a function which to eactvv € V*V
assigns a probability distribution on the set of outgoing edges ofhe set of all strategies for
playero and player> is denotedt andIl, respectively. We say that a strategis memoryless (M)
if 7(wv) depends just on the last vertexanddeterministic (D)f 7(wv) is a Dirac distribution for alll
wv. Strategies that are not necessarily memoryless are dabeaty-dependent (KHand strategies
that are not necessarily deterministic are cafalomized (R)Hence, we can define the following
four classes of strategies: MD, MR, HD, and HR, where D ¢ HR and MD<C MR ¢ HR,
but MR and HD are incomparable.

Each pair of strategiesr(z) € X x II determines a uniquplay of the gameG, which is a
Markov chainG(o, 7) whereV* is the set of states, andu—= wuu iff u— ' and one of the
following conditions holds:

e Uec Vg ando(wu) assigns<to u— u’, wherex > 0;

e Ue V, andz(wu) assigns<to u— u’, wherex > 0;

e ueVyandusu.
Let T C V be a set otarget vertices. For each pair of strategies f) € £ x IT and every € V,
let P, (ReaclfT)) be the probability of alw € RunG(c, ), V) such thatw visits someu € T
(technically, this means that(i) € V*T for somei € Ng). We say that a giver € V has a valuef
SUR,.cx INf et Py (ReackfT)) = inf i sup,.s Py " (Reack{T)). If v has a value, thewal(v) denotes
thevalue of vdefined by this equality. Since the set of all runs that visit a vertek igfobviously
Borel, we can apply the powerful result of Martin [18] (see also Theorem 3.3) and conclude that
every ve V has a value.

Definition 2.3. Lete > 0. We say that

e o € X is g-optimal (or s-optimal maximizinyif Py”"(Reacl{T)) > val(v) — ¢ for all = € IT;

e 7 € Il is e-optimal (or e-optimal minimizing if £;"(ReaclfT)) < val(v) + ¢ for all o € X.
A O-optimal strategy is calledptimal A (quantitative) reachability objectives a pair T, >0)
whereT C V andrp is a probability constraint, i.ex; € {>, >} andp € [0, 1]. If o € {0, 1}, then the
objective isqualitative We say that

e 0 € Xis (>p)-winningif Py (ReaclT)) > o for all 7 € IT;

e 1 ellis (>0)-winningif Py (Reack{T)) # o for all o € X.
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3. The Determinacy of Stochastic Games with Reachability Objectives

In this section we show that finitely-branching stochastic games with quantitptalgative
reachability objectives adeterminedn the sense that for every quantitative reachability objective
(T,>p) and every vertex of a finitely branching stochastic game, one of the two players has a
(>0)-winning strategy.

For the rest of this section, let us fix a finitely branching gane (V, — , (Va, Vo, Vo), Prob)
and a set of target verticéds. Also, for everyn € Ng and a pair of strategiesr(r) € £ x II, let
Py (Reach(T)) be the probability of all runsv € RunG(c, x), v) such thatw visits someu € T in
at mostn transitions (clearlyPy ™ (ReachfT)) = limp_. Py (Reack(T))).

To keep this paper self-contained, we start by giving a simple proof of Martin’s weak de-
terminacy result (Equation 1.1) for the special case of finitely-branching games with reachability
objectives. For every € V andi € Ny, we defineV;(v) € Ng inductively as follows:Vy(v) is
equal either to 1 or 0, depending on whethier T or not, respectivelyV;,1(v) (for v ¢ T) is equal
either to maxV;(u) | v u}, min{V;(u) | v u}, orzwi’u X - Vi(u), depending on whethere Vg,

v eV, orve Vo, respectively. (Fov e T we putVi,1(v) = 1.) Further, putV(v) = limi_« Vi(v)
(note that the limit exists because the sequewgéy), V1(v), ... is non-decreasing and bounded).
A straightforward induction onreveals that

Vi(vy = maxminPy"(Reach(T)) = minmaxPy " (Reack(T))
oeX mell nell oeX

Also observe that, for everiye Ny, there are fixed HD strategies € X andn; € 1T such that for
everyr € [T ando € X we have tha®y™ (Reach(T)) < Vi(v) < Py (Reach(T)).

Theorem 3.1. Every ve V has a value and val) = V(v).

Proof. One can easily verify that
V) < supinlfT Py (ReaclfT)) <

oex €
Hence, it sifices to show that, for everye V, player< has a ¢V(v))-winning HD strategyr in v.

For everyi € N, let W; be the set of allv € V*V,, such thatw(0) = v, lengthiw) = i, and
w(i) — w(i+1) for every 0< i < lengthiw). The strategyr is defined inductively, together with an
auxiliary setlT; C TI. We start by puttindI; = {z; | i € Ng}. Now assume thdf; has already been
defined. For everyvu € W,, let us fix an edgei— u’ such thatr(wu)(u— u’) = 1 for infinitely
manyr € II; (observe that there must be such an edge bedausdinitely branching). We put
a(wu)(u u') = 1 andllj, 1 = {7 € ITj | r(wu)(u—> u’) = 1}.

We claim that for everyr € X we have thaPy”" (ReaclfT)) < V(v). Assume the opposite.
Then there isr € T such thatPy”(ReaclfT)) = o > V(v). Further, there is somk € N such
that Py " (Reach(T)) > V(v) + (o — V(v))/2. It follows directly from the definition ofr that
there is soman € N,m > k such thatry, € I, andz(w) = ny(w) for everyw € Wy, Hence,
Py M(Reach(T)) > V(V) + (o — V(v))/2 > V(v), which contradicts the definition oF. [

The characterization ofal(v) as a limit of'V;(v) has the following important consequence:

inf sup®y " (ReaclfT)) (3.2)
7€l ey

Lemma 3.2. For every fixed vertex & V, we have that
Ve>0 JoeX dne N Vrell : Py (Reach(T)) > val(v) — ¢

Proof. It suffices to choose a fiiciently largen € N and puto- = o,. [
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Note that from the proof of Theorem 3.1 we obtain a HD strategyIT such thatvv € V and
Yo € T we have thay " (ReaclfT)) < val(v). This result can be strengthened to MD strategies.

Theorem 3.3. There is a MD strategyt € II such that for every ¥ V and every € £ we have
that Py (ReaclfT)) < val(v). That is,x is an optimal minimizing strategy in every vertex.

Theorem 3.4(Determinacy) Let ve V and let(T,>0) be a (quantitative) reachability objective.
Then one of the two players hagrep)-winning strategy in v.

Proof outline. We prove that if playek> does not have ap-winning strategy, then player has a
>o-winning strategy. That is, we prove the implication

Vonell doeX : Py"(ReaclT)) >0 = doeX Vnell : Py (ReaclT))>o0 (3.2)

If > is > orval(v) # o, then this follows easily by Theorem 3.3. For the constraidthe statement

is trivial. Now suppose that is > ando = val(v) > 0, and assume that the left-hand side in (3.2)
holds. Observe that we can safely restrict the set of edges available toplaydoseu — u’ where
val(u’) = val(u). Using the left-hand side of (3.2), one can show that for eweeyV, the value
val(s) stays unchanged in the new game obtained by applying this restriction. Due to Lemma 3.2, to
everys € V in the new game we can associate a strategy * andng € N such that for every € I1

we have thaf:s"(Reach (T)) > val(s)/2. The>p-winning strategy- for playero is obtained by
“iterating” the strategiess in the following sense: we start with,, and after performing a path

of lengthn,, we change the strategy &, wheresis the last vertex visited by. The strategyrs is

used for the nextg transition, and then we perform another “iteration”. Observe that each round of
this “iteration” decreases the probability thtis not reached by a factor of/2, independently of

the strategy of playeo. [

4. Qualitative Reachability in Stochastic BPA Games

Stochastic BPA games correspond to stochastic games induced by stateless pushdown automata
or 1-exit recursive state machines (see Section 1). A formal definition follows.

Definition 4.1. A stochastic BPAgame is atuplé = (I', —, (I'z, ¢, '), Prob) whererl  is a finite
stack alphabet— C I' x I'? is a finite set ofrules (wherel'=? = {w € I'* : | < 2}) such that
for eachX € I' there is some rulX — «, (I'y,I'¢,I'p) is a partition ofl", andProb is aprobability
assignmentvhich to eachX e I' assigns a rational positive probability distribution on the set of
all rules of the formX — a.

A configurationof A is a word @ € I*, which can intuitively be interpreted as the
current stack content where the leftmost symbol aofis on top of the stack. Each sto-
chastic BPA gameA = ([, —,(I'g,I'o,I'o), Prob) determines a unique stochastic game
Gpa =" =, Ial™ ToI", o™ U {g}), Proby) where the transitions of> are determined as fol-
lows: e > &, andXB - af iff X — «@. The probability assignmeiitrob, is the natural extension of
Prob, i.e.,e > £ and for allX € T, we have thakg S o iff X <5 a.

In this section we consider stochastic BPA games with qualitative termination objedtjvas (
whereT C I'* is aregular set of configurations. For technical convenience, we define the sike of
as the size of the minimal deterministic finite-state automaign= (Q, do, 6, F) which recognizes
thereverseof T (if we view configurations as stacks, this corresponds to bottom-up direction). Note
that the automator# can be simulated on-the-fly lnby employing standard techniques (see, e.g.,
[11]). That is, the stack alphabet is extended te Q and the rules are adjusted accordingly (for
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example, ifX— YZ, then for everyg € Q the extended BPA game has a ru¥ @) — (Y,r)(Z,q)
whered(g, Z) = r). Note that the on-the-fly simulation a4 in A does not fect the way how

the game is played, and the size of the extended game in polynomisl amd |.</|. The main
advantage of this simulation is that the information whether a current configuration belohgs to

not can now be deduced just by looking at the symbol on top of the stack. This leads to an important
technical simplification in the definition 4f:

Definition 4.2. We say thafl C I'* is simpleif ¢ ¢ T and there id't C T such that for every
Xa e I'" we have thaKa e T iff X e I'T.

Note that the requirememt¢ T in the previous definition is not truly restrictive, because each
BPA can be equipped with a fresh bottom-of-the-stack symbol which cannot be removed. Hence,
we can safely restrict ourselves just to simple sets of target configurations. All of the obtained
results (including the complexity bounds) are valid also for regular sets of target configurations.

Since stochastic BPA games have infinitely many vertices, even memoryless strategies are not
necessarily finitely representable. It turns out that the winning strategies for both players in sto-
chastic BPA games with qualitative reachability objectives affe¢gvely)regular in the following
sense:

Definition 4.3. LetA = (I', —, (I'n, I'¢, '), Prob) be a stochastic BPA game, anddet {0, ¢}.
We say that a strategy for player© is regular if there is a deterministic finite-state automaton
</ over the alphabel’ such that, for everyXa € T'oI'*, the value ofr(Xa) depends just on the
control state entered by after reading the reverse & (i.e., the automaton? reads the stack
bottom-up).

For the rest of this section, we fix a stochastic BPA game(I', —, (I'z, ¢, o), Prob) and a
simple sefl of target configurations. Since we are interested just in reachability objectives, we can
safely assume that for eveR/e I't, the only rule wherdR appears on the left-hand sideRs— R
(this assumption simplifies the formulation of some claims). WeTys® denote the sef U {&},
and we also slightly abuse the notation by writinghstead of{e} at some places (particularly in
expressions such &®eaclfc)).

For a given se€ ¢ I'* and a given qualitative probability constraint, we use €]2° and [C] ZQ
to denote the set of alf e I'* from which playem and player> has a &o)-winning strategy in the
gameA with the reachability objectiveQ, o), respectively. Observe tha€[;? = I'* \ [C]¢ due
to the determinacy results presented in Section 3.

In the forthcoming subsections we examine the sSE{§[for the two meaningful qualitative
probability constraints-0 and=1 (observe thatT]z° = ™ and [T]>! = 0). We show that the
membership to T]>° and [T]=% is in P and NP n co-NP, respectively. The same holds for the
sets [r]go and [I']Zl, respectively. Further, we show that all of these sets #extvely regular,
and that §p)-winning strategies for both players arffextively computable. The associated upper
complexity bounds are essentially the same as above.

4.1. The SefT]2°

We start by observing that the sef§]}° and [I']<>>0 are regular, and the associated finite-state
automata have a fixed number of control states. A proof of this observation is actually straightfor-
ward.

Proposition 4.4. Let.Z = [TI2°nT and % = [T,]2° N T. Then[T]2? = #*&T* and[T.]2° =
BT U %*. ConsequenthfT]20 =T* \ [T]2° = (B \ @) U(Z \ &) ([\B)".
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Our next proposition says how to compute the seteind .

Proposition 4.5. The pair(«, %) is the least fixed-point of the function:k2" x 2) — (2" x 21),
where HA, B) = (A, B) is defined as follows:

A = TTUAU{XelgUIy]| thereis X— g such thaf3 € B*"AI'"}
U {X el | forall X — B we have thag € B"A'*}
B = I'TUBU{XelLUIy]| thereis X< B such thap e B'AI'* U B*}
{XeTl| forall X — g we have tha € B°'AI'" U B*}

Since the least fixed-point of the functiéhdefined in Proposition 4.5 is computable in poly-
nomial time, the finite-state automata recognizing the §g&°[and [I']<>>0 are computable in poly-
nomial time. Thus, we obtain the following theorem:

Theorem 4.6. The membership tr']>° and [T]<>>0 is decidable in polynomial time. Both sets are
gffectively regular, and the associated finite-state automata are constructible in polynomial time.
Further, there are regular strategias € X andnx € II constructible in polynomial time that are
(>0)-winning in every configuration ¢f]2° and[T]2°, respectively.

4.2. The Se{T]z!

The results presented in this subsection constitute the very core of this paper. The problems
are more complicated than in the case BEL, and several deep observations are needed to tackle
them. We start by showing that the set§* and [T]:* are regular.

Proposition 4.7. Let« = [T,]3'NT, # = [T N[TIZINT, ¢ = [TIZINT. Then[TI5! = #*¢T*
and[T]5! = 2 /T U 2",

Proposition 4.7 can be proven by a straightforward induction on the length of configurations.
Observe that if there is an algorithm which computes the«get [Tg]g1 N I for an arbitrary
stochastic BPA game, then this algorithm can also be used to compute tﬁ'qgéet\[l“ (this is
becauseX e [TIgtiff X e [T.]32, where [,]5* is considered in a stochastic BPA gaebtained
from A by adding two fresh stochastic symb{sZ together with the ruleX <% Xz, z<% 7, and
settingT = T). Due to Theorem 3.4, we have thét= T\ ([T]g1 NT), and thus we can compute
also the se¥. Since# =T \ (& U %) (again by Theorem 3.4), we can also compute the’&et
Hence, the core of the problem is to design an algorithm which computes thé set

In the next definition we introduce the crucial notion deaminal set of stack symbols, which
plays a key role in our considerations.

Definition 4.8. A setM C T is terminalif the following conditions are satisfied:
e I'TNM=0;
e foreveryZ e M n (I'y UI'p) and every rule of the foriZ — « we have thatr € M*;
e foreveryZ e M NI, there is a rul&Z — « such thatr € M*.

Since is terminal and the union of two terminal sets is terminal, there is the greatest terminal
set that will be denote@ in the rest of this section. Also note tHatdetermines a unique stochastic
BPA gameAc obtained fromA by restricting the set of stack symbols@oand including all rules
X< a whereX, @ € C*. The set of rules oA¢ is denoted— . The probability of stochastic rules
in Ac is the same as iN.
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Definition 4.9. A stack symbolY € T is awitnessif one of the following conditions is satisfied:
(1) Y e [T3%
(2) Y e CandY € [¢]3!, where the setd] 5! is computed imc.

The set of all witnesses is denotéd

Observe that the problem whethée W for a givenY e I' is decidable ilNPNco-NP, because
Condition (1) is decidable i due to Theorem 4.6, the s€tis computable in polynomial time,
and the membership t@]@l is in NP n co-NP due to [15] (this is the only place where we use the
decision algorithm for qualitative termination designed in [15]).

Obviously,W C o/. One may be tempted to think that the s#tis just theattractor of W,
denotedAtt(W), which consists of al/ € T" from which player® can enforce visiting a witness with
a positive probability (i.e.V € Att(W) iff I € II Yo € = : P (ReacfWrI™)) > 0). However,
this is not true, as it is demonstrated in the following example:

Example 4.10. Consider a stochastic BPA ganzfe = (XY, Z,R}, =, ({X},0,{Y,Z R}), Prob),

whereX— X, XY, X7, YbY, z¥8Y, Z¥R R<L R and the sefl contains justR.

The game is initiated iX, and the relevant part @3 (reachable fronX) is shown in the following
figure:

R
1Y) [X] Z RO 1
i T3

2

Observe thaty = {X,Y,Z},C = W = {Y}, butAtt({Y}) = {Z, Y}.

In Example 4.10, the problem is that playsican use a strategy which always selects the rule
X< X with probability one, and playe¢ has no way to influence this. Nevertheless, observe
that playero has essentially two options: he either enters a symb#lti§fY}), or he performs the
loop X — X forever. The second possibility can be analyzed by “cuttifity the setAtt({Y}) and
recomputing the set of all withesses together with its attractor in the resulting stochastic BPA game,
which contains onlyX and the ruleX — X. Observe thaX is a witness in this game, and hence it
can be safely added to the s&t Thus, the computation of the set for the stochastic BPA game
A'is completed.

For general stochastic BPA games, the algorithm for computing th€ gebceeds by initiating
2/ 10 () and then repeatedly computing the A&8(W), setting.es := o7 U Att(W), and “cutting dt”
the setAtt(W) from the game. This goes on until the game or theAtgiW) becomes empty. The
way how Att(W) is “cut off” from the current game is described below. First, let us present an
important (and highly non-trivial) result which states the following:

Proposition 4.11. If o7 # 0, then W= 0.

Proof outline. We show that ifW = @, then there is a MR strategy € X such that for everX e T’
and everyr € IT we have thafy " (ReaclfT,)) = 1. In particular, this means that = 0.

SinceW = 0, the condition of Definition 4.9 does not hold for aMye T', which in particular
means that for alY € C we have thaty ¢ [s]zl, i.e., Y € [£]5! by Theorem 3.4 (here, the sets
[g]<:>1 and E]5! are considered in the gamie). Due to [13], there exists a SMD strategy for
playero in Ac such that for everyY € C and every strategy of player ¢ in Ac we have that
PoTT(Reaclle)) = 1. Now we define the promised MR strategye X as follows: for a given
Xa € I'ol'™, we puto(Xa) = o1(Xa) if Xa starts with somg € C* where|g| > |A]l. Otherwise,
o(Xa) returns the uniform probability distribution over the outgoing transitionXdaf
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Now, let us fix some strategy € II. Our goal is to show thaP{"(ReaclfT.)) = 1. By
analyzing the playsa (o, ), one can show that there is a set of rths RunGa(o, ), X) and a set
of rules <y € < such that

(A) P(V) >0, —y C <, and for everyw € V we have thatv does not visifT, and the set of
rules that are used infinitely often wis exactly — .

Observe that eacl € V has a finite prefix,, such that the rules of> \ < ¢ are used only iv,.
Further, we can partition the runs ¥finto countably many sets according to this prefix. One of
these sets must have a positive probability, and hence we can conclude that thereVisand a
finite pathv € FPath(X) such that

(B) P(U) > 0, and eachv € U satisfies the followingw starts withv, the rules of<— \ — ¢
are used only in the prefix of w, and the length of every configuration wfvisited after
the prefixv is at least as large as the length of the last configuration in the préfie last
condition still requires a justification which is omitted in here).

We show thatP(U) = 0, which is a contradiction. Roughly speaking, this is achieved by observing
that, after performing the prefix, the strategies- andx can be “simulated” by strategies and

7’ in the gameG,. so that the set of rund is “projected” onto the set of rung’ in the play
Gac(o’,n") whereP(U) = P(U’). Then, it is shown thaP(U’) = 0. This is because the strategy
o’ is “sufficiently similar” to the strategyr (see above), and hence the probability of visiting

in Gac(o’, ") is 1. From this we geP(U’) = 0, becauséJ)’ consists only of infinite runs, which
cannot visite. The arguments are subtle and rely on several auxiliary technical observations.

In other words, the non-emptiness .@f is always certified by at least one witnessVéf and
hence each stochastic BPA game with a non-emptyan be made smaller by “cuttingfd Att(W).

The procedure which “cutsfii the symbolsAtt(W) is not completely trivial. A naive idea of
removing the symbols oftt(W) together with the rules where they appear (this was used for the
stochastic BPA game of Example 4.10) does not always work. This is illustrated in the following
example:

Example 4.12. Consider a stochastic BPA gamfe = ({(X,Y,Z R}, —,({X},0,{Y,Z R}), Prob),
whereX X, XY, X 2ZY, YbY, 28X, ZY8R RL R, andT; = (Rl The game is
initiated in X. We have thateZ = {Y} (observe thatX,Z,R € [T,]5!, because the strategy
of player o which always selects the rulé < ZY is (=1)-winning). We have tha€ = W =
Att(W) = {Y}. If we removeY together with all rules wher& appears, we obtain the game
A = ({X, Z R}, <, ({X},0,{Z R}), Prob), whereX — X, Z&3 X, Z¥3 R R<L: R. In the gamey’, X
becomes a witness and hence the algorithm would incorrectlX pub <.

Hence, the “cutting” procedure must be designed more carefully. Intuitively, we do not remove
rules of the formX — ZY whereY e Att(W), but change them intX — Z’Y, where the symbat’
behaves likeZ but it cannot reacls. Thus, we obtain the following theorem:

Theorem 4.13. The membership tpT]=! and [T]<:>1 is decidable inNP n co-NP. Both sets are
gffectively regular, and the associated finite-state automata are constructible by a deterministic
polynomial-time algorithm wittNP n co-NP oracle. Further, there is a regular strategy € X

that is (=1)-winning in every configuration ¢fr]5%. Moreover, the strategy is constructible by a
deterministic polynomial-time algorithm withP N co-NP oracle.

Note that in Theorem 4.13, we do not claim the existence (and constructability) of a regular
(=1)-winning strategyr for player <. Actually, such a strateggoeseffectively exist, but we only
managed to find a relatively complicated and technical proof which, in our opinion, is of little



218 T. BRAZDIL, V. BROZEK, A. KUCERA, AND J. OBDRZALEK

practical interest (we do not see any natural reason for implementing a strategy which guarantees
that the probability of visitingl is strictly less than 1). Hence, this proof is not included in the paper.

5. Conclusions

We have solved the qualitative reachability problem for stochastic BPA games, retaining the
same upper complexity bounds that have previously been established for termination [15]. One
interesting question which remains unsolved is the decidability of the problem wheiliey = 1
for a given BPA configuratiom (we can only decide whether playarhas a £1)-winning strat-
egy, which is sfficient but not necessary fmal(e) = 1). Another open problem is quantitative
reachability for stochastic BPA games, where the methods presented in this paper séécreimsu
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