569 research outputs found

    Gait recognition with shifted energy image and structural feature extraction

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, we present a novel and efficient gait recognition system. The proposed system uses two novel gait representations, i.e., the shifted energy image and the gait structural profile, which have increased robustness to some classes of structural variations. Furthermore, we introduce a novel method for the simulation of walking conditions and the generation of artificial subjects that are used for the application of linear discriminant analysis. In the decision stage, the two representations are fused. Thorough experimental evaluation, conducted using one traditional and two new databases, demonstrates the advantages of the proposed system in comparison with current state-of-the-art systems

    Pose Invariant Gait Analysis And Reconstruction

    Get PDF
    One of the unique advantages of human gait is that it can be perceived from a distance. A varied range of research has been undertaken within the field of gait recognition. However, in almost all circumstances subjects have been constrained to walk fronto-parallel to the camera with a single walking speed. In this thesis we show that gait has sufficient properties that allows us to exploit the structure of articulated leg motion within single view sequences, in order to remove the unknown subject pose and reconstruct the underlying gait signature, with no prior knowledge of the camera calibration. Articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The variation of motion out of this plane is subtle and negligible in comparison to this major plane of motion. Subsequently, we can model human motion by employing a cardboard person assumption. A subject's body and leg segments may be represented by repeating spatio-temporal motion patterns within a set of bilaterally symmetric limb planes. The static features of gait are defined as quantities that remain invariant over the full range of walking motions. In total, we have identified nine static features of articulated leg motion, corresponding to the fronto-parallel view of gait, that remain invariant to the differences in the mode of subject motion. These features are hypothetically unique to each individual, thus can be used as suitable parameters for biometric identification. We develop a stratified approach to linear trajectory gait reconstruction that uses the rigid bone lengths of planar articulated leg motion in order to reconstruct the fronto-parallel view of gait. Furthermore, subject motion commonly occurs within a fixed ground plane and is imaged by a static camera. In general, people tend to walk in straight lines with constant velocity. Imaged gait can then be split piecewise into natural segments of linear motion. If two or more sufficiently different imaged trajectories are available then the calibration of the camera can be determined. Subsequently, the total pattern of gait motion can be globally parameterised for all subjects within an image sequence. We present the details of a sparse method that computes the maximum likelihood estimate of this set of parameters, then conclude with a reconstruction error analysis corresponding to an example image sequence of subject motion

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm

    Gait and Locomotion Analysis for Tribological Applications

    Get PDF

    Analysis of Affective State as Covariate in Human Gait Identification

    Get PDF
    There is an increased interest in the need for a noninvasive and nonintrusive biometric identification and recognition system such as Automatic Gait Identification (AGI) due to the rise in crime rates in the US, physical assaults, and global terrorism in public places. AGI, a biometric system based on human gait, can recognize people from a distance and current literature shows that AGI has a 95.75% success rate in a closely controlled laboratory environment. Also, this success rate does not take into consideration the effect of covariate factors such as affective state (mood state); and literature shows that there is a lack of understanding of the effect of affective state on gait biometrics. The purpose of this study was to determine the percent success rate of AGI in an uncontrolled outdoor environment with affective state as the main variable. Affective state was measured using the Profile of Mood State (POMS) scales. Other covariate factors such as footwear or clothes were not considered in this study. The theoretical framework that grounded this study was Murray\u27s theory of total walking cycle. This study included the gait signature of 24 participants from a population of 62 individuals, sampled based on simple random sampling. This quantitative research used empirical methods and a Fourier Series Analysis. Results showed that AGI has a 75% percent success rate in an uncontrolled outdoor environment with affective state. This study contributes to social change by enhancing an understanding of the effect of affective state on gait biometrics for positive identification during and after a crime such as bank robbery when the use of facial identification from a surveillance camera is either not clear or not possible. This may also be used in other countries to detect suicide bombers from a distance

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Learning a deep-feature clustering model for gait-based individual identification

    Get PDF
    Gait biometrics which concern with recognizing individuals by the way they walk are of a paramount importance these days. Human gait is a candidate pathway for such identification tasks since other mechanisms can be concealed. Most common methodologies rely on analyzing 2D/3D images captured by surveillance cameras. Thus, the performance of such methods depends heavily on the quality of the images and the appearance variations of individuals. In this study, we describe how gait biometrics could be used in individuals’ identification using a deep feature learning and inertial measurement unit (IMU) technology. We propose a model that recognizes the biological and physical characteristics of individuals, such as gender, age, height, and weight, by examining high-level representations constructed during its learning process. The effectiveness of the proposed model has been demonstrated by a set of experiments with a new gait dataset generated using a shoe-type based on a gait analysis sensor system. The experimental results show that the proposed model can achieve better identification accuracy than existing models, while also demonstrating more stable predictive performance across different classes. This makes the proposed model a promising alternative to current image-based modeling

    Measuring memetic algorithm performance on image fingerprints dataset

    Get PDF
    Personal identification has become one of the most important terms in our society regarding access control, crime and forensic identification, banking and also computer system. The fingerprint is the most used biometric feature caused by its unique, universality and stability. The fingerprint is widely used as a security feature for forensic recognition, building access, automatic teller machine (ATM) authentication or payment. Fingerprint recognition could be grouped in two various forms, verification and identification. Verification compares one on one fingerprint data. Identification is matching input fingerprint with data that saved in the database. In this paper, we measure the performance of the memetic algorithm to process the image fingerprints dataset. Before we run this algorithm, we divide our fingerprints into four groups according to its characteristics and make 15 specimens of data, do four partial tests and at the last of work we measure all computation time

    Distributed Learning for Multiple Source Data

    Get PDF
    Distributed learning is the problem of inferring a function when data to be analyzed is distributed across a network of agents. Separate domains of application may largely impose different constraints on the solution, including low computational power at every location, limited underlying connectivity (e.g. no broadcasting capability) or transferability constraints related to the enormous bandwidth requirement. Thus, it is no longer possible to send data in a central node where traditionally learning algorithms are used, while new techniques able to model and exploit locally the information on big data are necessary. Motivated by these observations, this thesis proposes new techniques able to efficiently overcome a fully centralized implementation, without requiring the presence of a coordinating node, while using only in-network communication. The focus is given on both supervised and unsupervised distributed learning procedures that, so far, have been addressed only in very specific settings only. For instance, some of them are not actually distributed because they just split the calculation between different subsystems, others call for the presence of a fusion center collecting at each iteration data from all the agents; some others are implementable only on specific network topologies such as fully connected graphs. In the first part of this thesis, these limits have been overcome by using spectral clustering, ensemble clustering or density-based approaches for realizing a pure distributed architecture where there is no hierarchy and all agents are peer. Each agent learns only from its own dataset, while the information about the others is unknown and obtained in a decentralized way through a process of communication and collaboration among the agents. Experimental results, and theoretical properties of convergence, prove the effectiveness of these proposals. In the successive part of the thesis, the proposed contributions have been tested in several real-word distributed applications. Telemedicine and e-health applications are found to be one of the most prolific area to this end. Moreover, also the mapping of learning algorithms onto low-power hardware resources is found as an interesting area of applications in the distributed wireless networks context. Finally, a study on the generation and control of renewable energy sources is also analyzed. Overall, the algorithms presented throughout the thesis cover a wide range of possible practical applications, and trace the path to many future extensions, either as scientific research or technological transfer results
    corecore