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ABSTRACT 
GAIT AND LOCOMOTION ANALYSIS FOR TRIBOLOGICAL 

APPLICATIONS 
 
 

by 
 
 

Md Hayder Ali 
 
 

The University of Wisconsin-Milwaukee, 2013  
Under the Supervision of Professor Michael Nosonovsky 

 
 
 
 

The control of friction during walking is important to prevent slips and falls at workplace 

or other situations. Gait type is a crucial factor in walking. When person is walking, there 

is high possibility of slips and falls depending on the surface conditions friction, and gait. 

In this research, we survey these factors. Based on this, the study has focused on 

biometric system of gait and locomotion analysis. Biometric systems have become 

popular systems in recent decades. They are normally used for security systems such as 

access control and surveillance, human computer interaction, and multimedia 

management. In this thesis, Principal Component Analysis (PCA) with and without Radon 

Transform (RT) were used. Principal Component Analysis (PCA) technique is used to 

reduce the dimension of images without much loss of information. For the numerical 

experiments, we have selected CMU MoBo gait database. Two features were used for 

gait recognition: silhouette and Gait Energy Image (GEI). Only side view images with 

three walking styles were considered. To evaluate the system performance, the Equal 

Recognition Rate (ERR) criteria was used. Using the silhouette feature, Equal 

Recognition Rates (ERR) of 90.78%, 90.26%, and 87.75% were achieved for PCA-only 



iii 

 

technique and 90.92%, 90.20% and 87.76% for PCA with RT technique for slow walk, 

fast walk and “carrying-a-ball” walk respectively. The GEI-based template system 

achieved Equal Recognition Rates (ERR) of 91.62%, 90.90% and 92.34% using the 

PCA-only method and 91.70%, 90.88% and 92.34% using PCA with RT technique for 

slow, fast and carrying-a-ball respectively. Thus, the GEI-based template system 

achieved better recognition rates applying PCA with and without RT techniques 

compared to silhouettes-based system using PCA with and without RT techniques. The 

implications for friction are discussed.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Over View of Slips and Falls  

When person is walking on the street or any place, including workplace, it is possible 

accident of sudden falling or some environmental hazard happened. Nowadays, 

researchers found out that significantly increased accident any place and becoming 

serious injured. However, it may cause fatal or non-fatal injured for pedestrians.    

 

Slipping is the major cause of falling for the young or older individuals during walking. 

The individual can face serious back pain or muscular strain illness or ever injury cause 

for slipping. It is therefore very important to understand causes of slipping for humans. 

Various environmental and other factors were studied as causes of slip and fall including 

surface roughness, compliance, topography, adjacent area, contaminants, shoe, foot 

and others. However, lighting and contrastness levels are also causes of slip while 

walking. Even, weather and climate factors such as ice and snow may increase slipping. 

The human health conditions are also a factor to slip when person is walking.   

 

The most important point of slip is complicated conduct friction when subjects are 

walking. So if individuals are able to control gait not to exceed limitation of friction then 

individuals would not slip on the surface or any walking place. There are different types 

of walking style such as carrying with load, walking up hill, level walking, and each 

walking style requires different friction. Each walking style has different friction and 
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different techniques to prevent surface slipping. The gait analysis may reduce slip and 

fall accidents and may bring a good condition for the individuals. The gait analysis may 

be improved to reduce the friction whether it’s happened by shoe, walking surface or 

combination of both for walking person. The tribometric instruments may be applied for 

friction situation that faced by person. If the person gait known about pressure, velocity, 

contact time, and other related info to measure then frictional measurement devices 

shoe-floor interface may be produced desire results. Another challenging part is the 

characteristics of copying human gait. However, during slip, it is necessary to know the 

individuals foot details and it is also very condition of weather. The human posture 

control system is also a very important to maintain balance and protect to fall down. The 

balancing posture involves with biomechanics, control, and other interface with current 

environment which are protect not to slip. The kinematics and dynamics are very 

important to know about slip during gait.   

 

1.2 Biomechanics Locomotion  

The slips and falls are related with shoe or foot and floor which most complicated 

parameters of mechanical study. The slip is unable to avoid if the shear forces created 

while friction happened by shoe or floor interface. It is very important to know about 

foot forces and ground reaction forces when walking in normal and walking in fast with 

and without carrying a load. The food position is also an important point to avoid friction 

such as position of heel, position of foot fingers and other parts of foot. The walking 

speed is also required to know characteristic of slips and walking surface conditions. The 

slips and falls are also depending on the length of gait and step. The physical joints 
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(ankle, knee and hip) are also may cause of slips and falls. Especially, ankle, knee and 

hip are required to maintain human physical balance during walk.      

 

Walking on inclined surface, it is high possibility to slip as shear forces increased and 

unable to balance that occurred slip. The slope surface increased the risk of slips and 

falls and it may risk by ground reaction forces, kinematics, and joint moments 

(Strandberg and Lanshammar 1981, Perkins and Wilson 1983, Strandberg 1983, Winter 

1991, Redfern and Dipasquale 1997, Cham and Redfern 2001a, Mark et al. 2001).   

 

1.3 Walking on Ascending and Descending Order 

When the person is walking on the stair or slope surface, the body motion and muscular 

demands are significantly vary during walk. During walk on the stair, it is important to 

know to prevent slips and falls as can walk forward and backward direction (McFayden 

and Winter 1988, Mark et al. 2001).  

During walk, carrying a load is more challenging to prevent slips and falls. The 

physiological activities are required to balance the walking pattern that prevents slips 

and falls.   Kinematics of stair ambulation is very important to know when walking on 

the stair. It is depending on the hip and knee motion activities.  

 

Biomechanics during slipping, the authors explained about micro-slips, macro-slips and 

falls briefly. Normal gait on the normal dry surface, after conducting heel on the surface 

very fast make a complete stop which called micro-slip. After certain distance, the 

complete stopped is called macro-slip. Macro-slip is take very little bit time to make a 

complete stopped. Another slipping name is slip-stick which not develops into falls. Slip-
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stick can be divided into three groups called mini-slip, midi-slip and maxi-slip. It is very 

complicated to detect the mini-slip as it happened very shortly. Midi slip is about slip in 

certain distance and maxi-slip is about to fall but not fall on the surface. However, maxi-

slip has categorized into two groups namely, heel lose contact and unbalance heel 

contact to make safety fall. Fig. 1.1 shows the different type of slips (Perkins 1978, 

Cham and Redfern 2001c, Mark et al. 2001).   

                                                            

            

            

            

            

            

            

            

            

            

            

            

            

   

Figure 1.1: Shows the different type of slips  

Souece:       (Perkins 1978, Cham and Redfern 2001c, Mark et al. 2001) 

 

Biomechanics 

Slipping 

Micro slipping Macro 

slipping 

Slip-stick 

Mini-slip Midi-slip Max-slip 

Lose heel 

contact 

Unbalanced 

heel contact 
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When person is walking with carrying a load, the physical joint moments are working to 

control the walking speed. Mostly, hip and knee are balancing the physical load when 

large variations occur. The dynamic analysis will work automatically to balance body 

control. The human has power to control gesture during walk or during motion (Patla 

1993, Woollacott and Tang 1997, Mark et al. 2001).      

      

Two different direction of slips during a normal walk which are forward slip during the 

landing phase and backward slip during the take-off phase. Landing phase is more 

dangerous as need to control body weight. The slip distance significantly affected by 

floor conditions but not walking velocity. The friction used to apply for a measure of 

slipperiness. Thus, friction and slipperiness have a strong relationship for biomechanical 

industries. Many published paper has worked on the normal walk for research under dry, 

wet and complex environments. The authors have suggested taking variable parameter 

such as contact time, normal force build up rate, foot angle, and contact force of shoe, 

vertical force and sliding velocity. The authors explained about properties for safety. The 

static friction properties follow traditional drag-type devices and about foot slide. The 

steady state dynamic friction properties follow traditional of resistance to a steady state 

motion and it related with motion of foot and walkway.  

 

When individuals are walking on the treadmill, it can be seen that the walking cycles are 

not smooth. It proves that changing the walking direction and changing the walking 

cycle duration. It is also changing each frame distance. It all happened cause of friction 

and slips. It is also necessary to balance physical conditioning not to fall down on 
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surface. Treadmill surface is not same as other announced surface that friction is 

happening while walk on the treadmill and other surface.  

 

Figure 1.2: Illustration of material ratio calculation  

Source:        (Chang et al. 2010) 

 

Chang et al. discussed about surface roughness parameters. The authors have produced 

typical surface roughness profile by applying some mathematical terms of the root mean 

square of surface heights. However, Chang et al. illustrated of material ratio calculation 

which calculated to measure spatial wavelengths. Figure 1.2 shows the illustration of 

material ratio calculation. Nevertheless, Andrew et al. 2011 measured irregular surface 

using a profilometer for gravel and larger rocks surface. They found two different 

shapes of gait cycle and its completely different gait cycle where individuals are walking 

on the treadmill.   
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Figure 1.3: Gait cycle using Euclidean distance  

Source:        (Hayder et al. 2010, 2011) 

 

In this case, person is walking slowly on the treadmill. The gait cycle has measured and 

each gait cycle has 18 to 20 frames. The Euclidean distance method has applied to get 

gait cycle and know how is differ from each gait frame to frame.  After comparing above 

two figures, it can be announced that two figures are more or less look like same. Thus, 

gait cycle can be smooth depending on condition of walking surface and also friction of 

surface.  Once it is not possible to get a smooth gait cycle then there is a problem 

created by friction or friction by irregular surface.  
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1.4 Comparing Slips and Falls with Three Walking Styles Slow Walk, Fast 

Walk and Carrying with Ball Walk 

Slow Walk Vs Slips and Falls: When individuals are walking as normal speed of slow 

walk on the treadmill, the gait cycle will have a smooth curve. If there is no friction 

while individuals are walking on the normal condition surface then speed limit and well-

designed cycle curve will produce. Euclidean distance method applied to get a gait cycle 

curve to analysis how individuals are walking and getting slips and falls. From the curve, 

it can be seen that there is minor change to get a smooth gait curve. It proved that 

when individuals are walking as normal as slow speed then it has very less possibility to 

get friction, slips and falls. It is safe to walk slowly on normal surface with normal 

environments. Figure 4 shows the slow walking style cycle. 

 

Figure 1.4: Slow walking style cycle  

Source:        (Hayder et al. 2010, 2011) 
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Fast Walk Vs Slips and Falls: From the fast walking style cycle curve, there is some 

changes of the gait cycle curve after comparing with slow walk gait cycle curve. It 

proved that when individuals are walking slower than fast then individuals are not in 

control. There is some changes of direction and very walking speed limit. There is 

possibility to slips and falls and it has less safety to walk fast on the normal surface in 

normal environments. Figure 5 shows the fast walking cycle curve.  

 

Figure 1.5: Fast walking cycle curve  

Source:       (Hayder et al. 2010, 2011) 

 

Carrying a Ball Walk Vs Slips and Falls: when carrying a ball gait cycle has 

compared with slow walk and fast walk gait cycle curves, it is cleared that carrying a 

load during walk produced unusual gait cycles curve. It verified that it is less safety to 

walk with carrying a load. The main reason is to be balanced physical condition to walk 
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normally which is not possible after certain time. Thus, it has high possibility to slips and 

falls after comparing slow and fast walking styles.  

 

Figure 1.6: The carrying a ball gait cycles curve  

Source:        (Hayder et al. 2010, 2011) 

 

The kind of walking styles have measured for the forward walking styles. If individuals 

are walking in descending order then different result may come out. As we do not have 

any descending order walking styles gait database that cannot be figured out to 

compare the ascending order gait cycles results.  Figure 6 shows the carrying a ball gait 

cycles curve.  
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Finally, it can be announced that slow walk on the normal surface is giving safety walk 

and fast and carrying a load walk are giving less safety on normal surface under normal 

environment.  

 

In this research, we will work three types of walking styles walk on treadmill surface and 

normal indoor environment to get the experiments results.  

 

1.5 Conclusion 

In this thesis, friction, slip and fall will study when pedestrians are working at any place 

under any surface conditions. The gait and locomotion analysis for tribological 

applications have studied to know in details about slips and falls. The different types of 

slip have been studied to better understanding about normal walk on the normal 

surface. However, biomechanics locomotion has been studied to analysis to relate the 

desired applications.            
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CHAPTER 2 

 

 

OVER VIEW OF GAIT AND LOCOMOTION ANALYSIS 

 

 

2.1  Overview of Gait Recognition Systems 

Human gait is an effective biometric for person identification. The biometric system is 

mainly used to prevent unauthorised access. Biometric resources such as iris, 

fingerprints, palm prints and shoe prints, are a subject of extensive research work, 

studied and employed in many applications. Human gait is a biometric feature that can 

be captured from a great distance (Gafurov, 2007).  

 

There is need for automation in applications such as surveillance, access control and 

smart interfaces. Today, biometrics is a powerful tool for reliable automated person 

identification. The motion vision’s main purpose is to use surveillance when unexpected 

occurrences befall us. Wearable sensor systems require carrying the sensors and floor 

sensors system around that necessitates setting the sensors on the floor (Boulgouris et 

al., 2005; Moeslund et al., 2006). 

 

Gait recognition can be classified into three groups, namely, motion vision-based, 

wearable sensor-based and floor sensor-based. The motion vision can be divided further 

into two groups, namely, appearance-based methods and model-based methods. The 

appearance-based method can also be subdivided in two types: state-space methods 
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and spatio-temporal methods. Most researchers used the appearance-based method 

compared to model-based method (Bo and Youmei 2006). 

 

2.2 Application of Gait Recognition 

The gait recognition system is capable of identifying humans from such distance beyond 

human interactions. This characteristic of gait recognition system is suitable for 

applications in large and controlled environments such as banks, military installations 

and even airports that is enabled to quickly detect threats. 

 

The gait recognition system can also be used as a surveillance camera. It is able to 

identify an individual subject walking in the video stream as long as the individual 

subject’s data is already stored in the database. The gait recognition system can also 

detect unknown subjects such as intruders walking in front of the surveillance camera 

by triggering an alarm. In this case, only authorised person will be allowed to pass 

through without setting off the alarm. 

 

2.3 State of the Art in Gait Recognition System 

Nikolaos and Zhiwei (2007) proposed Radon Transform (RT) and Linear Discriminant 

Analysis (LDA) techniques in gait recognition. They used silhouettes from the Gait 

Challenge database for the experiment. The silhouette alignment is essential to the 

Radon Transform as it observes the image centre as the transform centre of the feature 

space, and LDA is then applied to decrease its dimensionality. The Principal Component 

Analysis (PCA) is also applied to reduce the dimensionality. However, Hao and Zhijing 

(2009) also used the RT technique and followed the same experimental procedure as 
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Nikolaos and Zhiwei (2007) for gait recognition. They applied the USF and SOTON gait 

database in their experiment. On the other hand, Ju and Bir (2006) constructed the Gait 

Energy Image (GEI) for gait recognition purposes. They applied the PCA and Multiple 

Discriminant Analysis (MDA) techniques to reduce the dimension of space (Khalid et al., 

2010). For their experiment, the USF HumanID gait database is used in order to obtain 

good classification results for walking styles for gait recognition system.  

 

The research has been effectively applied in many pattern recognition problems. Thus, 

gait recognition systems based on silhouettes and GEI template system were used in 

this research. Furthermore, the Radon Transform and PCA techniques were studied to 

help improve the performance of the gait recognition system. Moreover, the CMU MoBo 

gait database was studied for use in this research. Thus, the motivation in this research 

lies with developing a gait recognition system and comparing it to the silhouettes- and 

GEI-based systems.   

 

2.4 Challenges of Gait Recognition 

The gait recognition system is a measured and challenging task due to the many 

variations of walking styles that exists in different environments. Ling et al. (2009) 

pointed out several challenging features. These are:   

a. Object segmentation – The silhouette object segmentation exists under different 

conditions such as outdoor condition. The outdoor condition is continuously 

interrupted by various sources such as light, noise, shadow, and other conditions.  

b. Abnormal walk – If the subject walks abnormally, then it becomes very difficult to 

identify the right person.   
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c. Body coverings – Most of the objects are dressed in different kinds of clothing, thus 

giving rise to different silhouettes sizes under different environment. 

d. Gait databases – The existing gait databases are severely lacking in subject data.  

 

2.5 Problem Statement and Proposed Gait Recognition System  

Different gait databases were used in the research due to the many different databases 

that are available. However, some of the researchers were using the same gait database 

in their experiments. The size of known training and testing gait databases varies. The 

unknown gait dataset have not yet been set by any researcher for the experiment. 

Moreover, most researchers do not mention the criterion for recognition rates where 

only the recall capability of the system were used without any clear indication of the 

computational cost involved for the system.  

 

In this research, the two techniques of PCA with and without RT are combined based on 

the silhouette and GEI templates explained in Chapter 3, Chapter 4 and Chapter 5 

respectively. This research will focus on the different gait styles; which one is suitable to 

use CMU MoBo gait database in experiments described in Chapter 2. Nevertheless, most 

researchers did not compare between silhouettes- and GEI- based templates system 

using PCA with and without RT techniques. The comparison of the gait recognition 

results between the silhouettes- and GEI- based template systems using PCA with and 

without RT techniques is analysed and discussed in Chapter 5. 
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2.6 Objective of the Thesis  

The main objective of the thesis is to survey of friction, slips and falls during a walk and 

to evaluate the performance of the different gait features selected for person 

identification. 

 

2.7 Organization of the Thesis 

This thesis contains six chapters and a brief description of each chapter is given below.  

 

Chapter 1 briefly survey of friction, slips and falls during three different walking styles. 

  

Chapter 2 introduces the gait recognition systems and a brief explanation of the 

objective of this research is provided.  

 

Chapter 3 reviews several gait recognition methods. Since gait recognition methods are 

classified into three categories and for each category, a number of the most recent 

research papers were reviewed. The chapter ends with a proposal of the gait recognition 

system and an outline of the proposed plans.   

 

The basic principles of PCA with and without RT are described in Chapter 4. The Chapter 

4 gait database follows the experiment based on silhouettes and GEI templates for both 

proposed techniques. The proposed system of the techniques has explained in this 

chapter.  
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Chapter 5 provides data preparation techniques for the experiments. The same 

silhouettes- and GEI-based templates with known and unknown training datasets were 

shown in this chapter. However, GEI templates constructed over one complete gait cycle 

are presented in this chapter.   

 

A detailed analysis and discussion on this project is explained in Chapter 6. The 

comparison of recognition rate between silhouettes- and GEI-based template system 

using PCA with and without RT is also explained in this chapter. Further, performance 

comparisons between PCA with and without RT techniques using silhouettes and GEI 

templates are stated. Lastly, the computational cost involved is presented for the 

system. 

 

Finally, Chapter 7 summarises the thesis and provide some ideas for further 

development of the gait recognition system.   
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CHAPTER 3 

 

 

LITERATURE REVIEW OF GAIT ANALYSIS 

 

 

3.1 Introduction 

The current progress of work on gait recognition done by previous researchers, which 

will be investigated, providing an overview of the methods. Currently being investigated 

and provided background information on all of the gait recognition techniques, which 

have been used throughout for this project. Gait recognition techniques can be broken 

down into two main sections, model based and motion based techniques. These 

different approaches are described in more detail below. Several important information, 

which is indirectly connected to gait recognition system that used for the development 

of the system, and explained details. 

 

3.2 Purposes of Gait Recognition Systems  

The gait recognition system is an intelligent system that is capable of identifying the 

registered person. This system is applied on many applications such as access control, 

surveillance and smart interference. However, it is mainly used for surveillance and in 

forensics. For example, robbers use masks or gloves to hide their faces or finger prints 

to avoid detection. However, a camera can record robbery gait on video.  
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3.3 Classification of Gait Recognition Systems 

Gait recognition system is classified into three groups, namely, motion vision-based, 

wearable sensor-based and floor sensor-based. Motion vision is further divided into two 

groups, namely, appearance-based and model-based methods. Subsequently, the 

appearance-based method is further subdivided in two types: state space methods and 

spatio-temporal methods. Figure 3.1 shows the classification of gait recognition systems.  

 

 

Figure 3.1:  Classification of Gait Recognition Systems  

Source: (Hayder et al. 2010) 

 

3.3.1 Floor Sensors System 

Lee et al. (2005) built a floor mat recognition system, which is a combination of various 

types of sensors. The floor mat is constructed according to the subjects foot stride. Even 

the length of the floor mat is calculated to accommodate two gait cycles. The system 
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construction shows the hardware interface details and how to apply the devices. 

However, the most important features chosen for the experiment are stride length, 

stride cadence and hill-to-hoe ratio. Figure 3.2 shows a floor sensor prototype. The 

researchers created their own gait database and applied it for recognition purposes. 

They reported that a recognition rate of above 80% is achieved by using their own small 

database.  

 

On the other hand, Jaakko et al. (2008) proposed an array of simple binary switch floor 

sensors to sense footsteps. They focus mainly on analysing footsteps and walking 

sequences to identify the person. The selected features are then extracted and 

processed for recognition purposes. The discriminative Bayesian classifier is also used 

for recognition purposes. They match up the individual footsteps and longer walking 

sequences with nine different persons and presented recognition results of 64% and 

84% respectively. Finally, they applied the context aware prototype to repeat the 

footstep location information for person identification.   

 

Rishi et al. (2010) described tracking and estimating a subject’s lower body parts 

moving on foot over the integrated floor surface. The Bayesian filter methods were 

applied to track the lower body pose of a walker via integrated sensors. The footsteps 

are generally taken for measuring purposes to calculate the accuracy of identification. 

Figure 3.3 shows the floor interface design.  However, the footsteps alignment of the 

right and left feet are calculated by using sensors. Based on the database, it was 

reported that the experiment achieved efficient results. 
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Many floor sensor system techniques were successfully analysed to identify the person. 

These techniques are implemented with many integrated devices and other necessary 

materials, which are deemed reliable for the system.      

 

Figure 3.2:  Prototype of floor sensors  

Source:         Lee et al. (2005) 

 

Figure 3.3:  Floor sensors interface with components level 

Source:         Orr and Abowd (2000)  
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3.3.2 Wearable Sensors 

Davrondzhon et al. (2006) proposed a wearable sensor-based technique for gait 

recognition.  They have placed a device to the lower leg to extract the gait pattern. The 

three directions of vertical, forward backward and sideway motions of the lower leg 

were acquired to get the output from the device. The three accelerations were then 

applied for verification purposes. In addition, the histogram similarity and gait cycle 

length were used for similarity measurement. They set their own database with 21 

participants. The motion record device was placed on the right leg of the participants 

between 20 to 40 years old. They trained on the indoor tiled surface with limited 

distance. Half of the walking distance signal was set for training and another half for 

testing. The performance results were presented as a Decision Error Trade-off curve 

(DET) and they reported a 5% and 9% equal error rate (EER) from the similarity and 

cycle length histogram respectively.  Figure 3.4 shows the sensor are set to the lower 

leg to record the accelerations.     

 

Figure 3.4:  Wearable sensors attached to lower leg  

Source:        Davrondzhon and Einar (2006) 
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Liu et al. (2007) stated the characteristic problems of gait acceleration signals, which 

occurred during the walking process. The proposed methods are time and frequency-

domain based. Besides, dynamic time warping (DTW) was used to deal with naturally 

occurring walking speeds. The proposed method suggested possible applications such as 

access control, smart interface, and other security sectors. For experiment purposes, by 

using their own gait database consisting of 21 subjects a 94.40% and 79.90% 

recognition rate was achieved for both time and frequency-domain methods 

respectively. The proposed method reported that it could identify persons based on gait 

accelerations. 

 

Takeda et al. (2009) proposed a gait recognition system based on wearable sensors 

method. The lower part of the body was selected to measure accelerations and angular 

velocities during walking. The tri-axial and three gyro sensors were used for the 

experiment. The selected sensors were set on the abdomen and lower limb segments 

for measuring accelerations and angular velocities during a walking. The proposed 

method is used for measuring three-dimensional position from gravitational acceleration 

using wearable sensors. This method was applied on three healthy volunteers to 

measure acceleration data of the lower limbs.  However, the Fast Fourier Transform 

(FFT) was applied for the characteristic frequency during walk. It was reported that the 

proposed method is essential for gait analysis. Figure 3.5 shows the wearable sensors 

set on the body.      
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The wearable sensors research groups are able to use wearable sensors that can be 

used to identify a person. Most wearable-sensor users set the sensors in different 

locations on the body to measure the walking patterns for identification purposes.  

 

Figure 3.5:  Attaching sensors in different locations 

Source:         Takeda et al. (2009) 

 

3.3.3 Motion Vision-based System 

The motion vision-based system uses video camera to capture images or video from 

long distances. This biometric technique is reliable for person identification in specific 

gait features. The main idea is to apply a combination of video and image processing 

techniques to extract the specific gait features. The biometric extraction technique of 

the motion vision-based system is shown in Figure 3.6. Figure 3.7 shows a general block 

diagram of the motion vision system. The advantage of the gait recognition is its 

biometric features that are reliably captured from a great distance. Moreover, it does not 

require user cooperation for gait recognition. 
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The various applications for the motion vision-based gait recognition system include 

surveillance and forensics. In robbery or criminal cases, thieves use masks to cover their 

faces and use hand gloves so that it is not possible to capture their faces or fingerprints 

for identification of the persons involved. However, by using the motion vision system, a 

camera can record the users gait on video for match-up analysis.   

 

Figure 3.6:  Extraction technique flow chart for motion vision-based system  

Source:         Nikolaos et al. (2005) 

 

Figure 3.7:  General block diagram of a gait recognition/authentication 

system  

Source:         Nikolaos et al. (2005) 

Khalid et al. (2009) proposed a novel gait representation based on optical flow fields 

computed from normalised and centred-person images over a complete gait cycle. The 
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Gait Energy Image (GEI) and Motion Silhouette Image (MSI) were constructed from gait 

silhouettes. The GEI and MSI templates were also applied in the experiment. However, 

they represented various covariances such as clothings, carry-ons, shoes and speed for 

comparing the recognition rates. For templates matching, the Euclidean distance was 

applied to measure the similarity between two subjects. For the experiment, SOTON and 

CASIA gait databases were used that yielded different results. However, the indoor and 

outdoor datasets were applied and yielded different results. Furthermore, the fusion 

technique was applied to obtain efficient recognition results for improved recognition 

rates.  

  

Xiaochao et al. (2008) proposed an effective gait recognition approach based on the 

Gait Energy Image (GEI). GEI is the average silhouettes over one gait cycle. GEI 

templates were constructed individually for each person. The Gabor filter was selected 

to improve gait features, while the discriminative common vector (DCV) was used for 

reducing space dimensions. The three types of gait templates presented by the 

researchers are called simple of GEI, three regions of a GEI and dynamics weight mask 

(DWM). However, the marked and selected three regions contained walking information 

to identify the person. In this experiment, the USF HumanID gait database was selected 

for recognition purposes. The experimental result of the GEI and non-GEI -based 

templates methods were compared between them and with other similar research 

methods. It was reported that the proposed system achieved better result.   

 

Heesung et al. (2009) proposed the backpack removal method for efficient and robust 

gait recognition. Initially, the GEI templates were constructed over one gait cycle from 
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the provided gait database. Then, the simple recursive principal component analysis 

(RPCA) technique was applied to remove the backpack from GEI templates. It was 

reported that the backpack was successfully removed from the gait representation 

templates while the subject is carrying a backpack during a walk. Three different 

walking styles were selected: slow, quick and walking-with-backpack, and the 

experimental results were compared. The results were also compared to other similar 

research methods and it reported efficient results.  

 

a.      Appearance-based Approach 

The gait appearance model is defined as a combination of histograms of individual 

silhouettes and contextual silhouettes. It is represented to be invariant to translation, 

rotation and scale by means of a shape description and gait images plane. In other 

words, appearance-based approaches employ a compact representation to characterise 

the motion patterns of the human body without taking into consideration of the 

underlying model structure. In this approach, several advantages and disadvantages are 

available with different features. Some examples of motion vision silhouettes are shown 

in Figure 3.8.   

 

 

Figure 3.8:  Examples of motion vision silhouettes  

Source:         Philips et al. (2002) 
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I. State Space Method 

This method represents human movements as a sequence of static configurations. Each 

configuration is recognised by analysing the appearance of the body in the 

corresponding pose. In other words, the state space method consider that gait motion is 

composed of a sequence of static body poses, and recognise it by considering temporal 

variation observations with respect to those static poses. 

 

Shi and Youxing (2007) approached the appearance-based methods for gait recognition 

system. Individual silhouettes and contextual silhouettes were taken and 2D polar plane 

used at the centre of the silhouette. They analysed how subjects’ walking appearance 

changed during a walk.  The definition of appearance model is presented as a 

combination of histograms of individual silhouettes and contextual silhouettes. However, 

the Jefferey divergence criterion and dynamic time wrapping technique was applied to 

calculate the similarity between test and reference sequences. In the experiment, the 

CASIA database was used, which contained 20 subjects and 12 sequences per subject 

for different viewing angles. The planned technique reported recognition rates of 92.5%, 

98.75%, and 100% when k=1, k=2 and k=3 respectively.  

 

Han et al. (2005) represented the feature extraction process based on static and 

dynamic knowledge methods. First, the basic gait features were selected for analysis. 

Second, the gait cycle was detected based on successive peak values of the width and 

height. Discrete Cosine analysis was applied to get the periodical sequences. The 

silhouettes were marked into three sections, namely, upper body part, middle body part, 

and lower body part. Here the lower body part was selected to measure the walking 
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distance over one gait cycle time. However, joint angles were measured from lower 

dynamic body part. To classify the gait features, the Support Vector Machine (SVM) was 

used for testing and training dataset. The three gait databases, namely, Little and Boyd, 

CMU (slow walk) and NLPR achieved three different recognition rates of 100%, 90.2%, 

and 90.6% respectively.  

 

Xu et al. (2006) proposed a gait recognition system based on walking direction for 

human identification purposes. They proposed a novel approach to calculate the walking 

direction and extracting features by utilising a human model. They investigated and 

evaluated the recognition rates in any walking directions by applying Support Machine 

Vector (SMV). However, the real walking video data was applied to the experiment and 

a high recognition rate was obtained. The proposed method mainly investigated the 

effect of changes of walking directions on recognition performance. Finally, they 

reported that the proposed method is robust with respect to different walking directions 

and types of clothing.  

  

Sungjun et al. (2006) proposed a new approach based on the appearance model 

method for gait recognition. A new feature vector called sample point vector was 

proposed. The purpose of using sample point vector is to calculate the mean and the 

variance values of each pixel that reflects the dynamic and static information for gait 

recognition. At the outset, the background subtraction process was applied for individual 

image sequences to obtain silhouettes. The sampled point vector was extracted along 

the central axis of the silhouette image. Moreover, to classify individual gait recognition, 
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the reduced multivariate polynomial model technique was applied. For the experiment, 

the CASIA database was used.  

 

Jun et al. (2006) approached a novel technique for gait recognition that is applied to 

different viewing angles. At first, moving objects contained in the difference motion 

slices were extracted. Two body shape appearances were expressed, which are static 

information appearance shape and dynamic information of habitual motion. The 

extraction of different motion slices and gait images were performed for the experiment. 

For similarity measurement and classifier, three different samples of classifier were 

used, namely, nearest neighbour (NN), KNN and exemplar nearest neighbour (ENN). To 

perform the experiment, the NLPR database which contained 15 different subjects of 

four gait sequences each was used. The length of each sequence is 26 frames. Based on 

the result, the proposed method reported an efficient person recognition capability.   

 

Bo and Yumei (2006) proposed two techniques, which are the PCA with and without LDA 

for gait recognition. At first, background subtraction was performed to construct the 

silhouettes. The produced silhouettes contained noise due to lighting variations. To 

remove lighting noise in the silhouettes, the Otsu method and morphological operations 

were applied to produce good quality silhouettes. The images were captured in frontal, 

lateral and oblique orientations of walking person contour for sequence classification. 

The silhouettes were then normalised. Next, the PCA with and without LDA techniques 

were applied to perform the experiments. The Normalised Euclidean Distance (NED) was 

applied for silhouettes matching purposes.  Mixed gait databases were arranged 

containing 30 subjects and 4 sequences per subject. The recognition rates achieved was 
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87% on PCA with LDA technique. Homologous and CMU gait databases were also 

applied for comparison purposes. The CMU database has different walking styles, which 

represented different results. On the CMU MoBo gait database, 96% recognition rate 

was obtained on the same walking styles of training and testing dataset.   

 

Xiaochao et al. (2008) presented the 2D Gait Energy Image (GEI). The GEI templates 

were constructed to get a robust gait feature. The Discriminative Common Vectors 

(DCV) was applied to reduce the dimensionality of the feature space. The DCV also 

improved class separability. Furthermore, the Gabor-based method was used to improve 

the recognition rates. The proposed method was performed on the USF HumanID gait 

database. The recognition rate was then compared to other similar research techniques. 

Ultimately, the proposed technique achieved an average recognition rate of 53.86%.  

 

Michela et al. (2008) proposed the front view approach for gait recognition system. First, 

standard background subtraction was done from video sequences where gait cycles is 

obtained using the periodic function. Then, gait volume descriptor was described to 

normalise the 3D gait volume. Three different types of walking directions were selected 

and performed for the experiment. In addition, three different gait databases, namely, 

University of Southampton, CASIA-A and B were applied. It was reported that the 

proposed method achieved a recognition rate of 96.50%. It was also compared to other 

similar research methods.  
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II.  Spatio-Temporal Method 

In this method, motion is characterised by the entire 3D spatio-temporal data (i.e., x, y 

and time) such as a sequence of grey-scale images. This data is treated as a large 

vector and recognition is done by mapping this vector to lower dimension feature vector 

and applying pattern recognition to it. Therefore, the gait representation is a sequence 

of feature that must be compared with another sequence when the fundamental walking 

periods T1 and T2 of the two sequences are not equal.  

 

Sungjun et al. (2007) proposed the Mass Vector method for gait recognition. They used 

the Dynamic Time Wrapping (DTW) method to deal with naturally changing walking 

speeds to match nonlinear time normalisation walking speed.  They have extracted the 

silhouettes using normal subtraction method and normalised it to get accurate 

recognition rates.  For the experiment, they applied NLRP database, which contained 20 

subjects and 4 sequences per subject. They compared the proposed system with other 

researchers’ system. The proposed system achieved a recognition rate above 80%. 

 

Tao Ding (2008) proposed a robust technique for gait recognition. The proposed system 

is based on modelling silhouette variation information, which is extracted by Locale 

Linear Embedding (LLE). The LLE was used to map the reduced dimensionality from 

higher dimension to lower dimension images and extracted spatio-temporal information. 

However, gait sequence is important to evaluate the difference between the models 

representing different gait cycles to verify that spatio-temporal information extraction is 

not affected. On the other hand, gait cycle localisation and time scaling were described 

to get robust silhouettes information.  Mainly, the proposed spatio-temporal gait 
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information based on LLE is to extract modelling shape variations information. For the 

experiment, the CMU MoBo database was applied on different gait styles training and 

testing dataset. It was reported that the proposed algorithm is a robust identification-

based algorithm for recognition system. 

 

Yangming and Guangjian (2008) proposed anatomical knowledge for gait recognition. At 

first, they extracted the human silhouettes from gait video sequences. Then, the 

anatomical knowledge was used to describe the silhouettes. For gait periodic analysis, 

the height and width periodic ratio was analysed based on local minimum and maximum 

gait period variations. The Hidden Markov Model (HMM) was applied to get a smooth 

gait periodic cycle for accurate results. The CMU MoBo database was selected for the 

experiment with high recognition rate achieved.  

 

Arun et al. (2005) proposed a combination technique (isoluminance stereo vision 

technique with 3D template matching method) to improve the gait recognition rates. 

The Visual Hull (VH), isoluminance lines for stereo vision and 3D template matching 

techniques was applied to the proposed gait method. The VH was used for the human 

modelling system and it is classified into two bases, namely, volume-based and surface-

based. Stereo vision was used to measure an object in 3D position with cameras placed 

in different directions to observe it. The 3D template matching technique was used to 

find the precise position and orientation of the object. However, the Hidden Markov 

Model (HMM) was employed to model a signal with variability in space and time 

parameters. The proposed method achieved better result with HMM.   
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Saeid et al. (2008) proposed the wavelet transform approach for gait recognition. The 

wavelet descriptors were used to describe the model of object’s boundary and spatio-

temporal boundary. At first, background subtraction was performed on each image and 

it produced perfect silhouettes. The USF gait challenge database was used for 

recognition purposes. For the experiment, 16 subjects were used with 10,400 frames. 

The training data comprising 7,000 frames and testing data with 3,400 frames were set 

for the experiment. To compare the proposed method’s result, the Fourier descriptors 

and wavelet were used.  The wavelet outperformed the Fourier descriptors method.  

 

Guoying et al. (2006) proposed the fractal scale and wavelet moment for gait 

recognition. Fractal scale method is better for one dimensional signal classification and it 

can describe the self-similarity of signals. Here, wavelet analysis was applied to translate 

and scale a function. The fractal scale has two types, namely, computational of global 

fractal scale and local fractal scale, and it has also two different meanings. Moreover, a 

combination of fractal scale and wavelet moments improved the recognition rates. For 

the experiment, the slow walking styles for training and testing datasets were arranged 

to perform and achieve 100% recognition rates. The combined method of fractal scale 

and wavelet moments improved recognition rates on slow walking style of training and 

testing datasets. However, slow walking styles training and fast walking styles testing 

datasets were performed and it obtained better results than other researchers.  

 

Song et al. (2008) proposed to extract gait feature for gait recognition. The proposed 

method focuses on the features of shape variations information. They mainly applied the 

shape differences information between successive frames to indicate gait information 
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called interframe variation vector (IVV). At first, moving subject was detected by 

applying normal background subtraction methods, then they extracted the human 

silhouettes and unwrap it to 1D distance. Moreover, the PCA technique was used to 

reduce the dimensionality of the silhouettes and extract the IVV. For the classification, 

the KNN was used to identify humans. For the experiment and performance evaluation, 

CASIA database was applied. The experimental results were then compared to other 

similar methods and it was reported that the proposed method achieved a 100% 

recognition rate. 

 

Dong et al. (2007) proposed the Marginal Fisher Analysis (MFA) and Content Based 

Image Retrieval (CBIR) system to reduce the dimension of the images. The MFA 

technique was used to reduce dimension of the individual silhouette. They have 

constructed an average gait cycle from gait video for the experiment. For the CBIR, 

another technique called Marginal Biased Analysis (MBA was adapted to the significance 

feedback problem. CBIR was used to get relevant feedback problems from positive 

sample as well as its neighbour’s positive samples. The KNN was used as classifier to 

measure the distance between galley and probe images. For the experiment, the USF 

HumanID and Corel Images Retrieval gait databases were used. They compared their 

recognition results with different similar techniques and reported that the proposed 

technique achieved better recognition rates.  
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b. Model-Based Methods 

Model-based approaches explicitly modelled human body or motion. Model-based 

approaches usually perform model matching in each walking sequences frame so that 

parameters such as trajectories are measured according to the model. Model-based 

approaches study static and dynamic body parameters of human locomotion. Although 

model-based approach is view-invariant and scale-invariant, it reflects the kinematic 

characteristics of walking manner. The specific gait parameters were used only for 

model-based approaches that usually require high quality gait sequences to be useful. 

This method has several merits and demerits that depend on features. The static 

parameters feature is view-invariant and compact. The main problem is the difficulty in 

capturing the images. Other gait features such as ellipse parameters, hip angle, and 

combination of shape parameters are compact representation, but it is low in 

robustness. The model-based approach is shown in Figure 3.9. Figure 3.9(a) shows 

distance static parameters which are measurements taken from static gait frames. 

Figure 3.9(b) shows ellipse fittings. In silhouettes, seven regions are divided to measure 

each region for recognition. Figure 3.9(c) shows hip rotation model. It calculates hip 

angles as a way to identify person. Figure 3.9(d) shows combination of body shapes. It 

measures combination of static parameters, ellipses, rotation angles to recognise 

person.  
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Figure 3.9: Model-based approach 

Source:          Boulgouris, N.V. (2005) 

 

Xiaxi et al. (2008) proposed the multiple views style for gait recognition. They argued 

that multiple views have unequal discrimination power and therefore, unequal 

contribution of recognition process. At first, they tested and evaluated all the views 

individually, and then combined all the results. They set a weight for each view based 

on its importance. For the test, at first, they selected fast walk and slow walk 

sequences. Six cameras were located in six different positions to capture the walking 

images. They then took bounding boxes of silhouettes from the original images for the 

subject, then align and normalise all the silhouettes into uniform dimensions. The most 

suitable views were found to be frontal and side views. The best result were obtained by 

using the product and the min combination rules. Using the CMU (MoBo) database, they 

achieved 92% recognition rate. 

 

Junqiu et al. (2008) proposed an integrated algorithm for tracking and segmenting 

silhouettes supported by gait recognition. The three modular approaches are tracking, 
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segmentation and gait recognition modules. The tracking module gives beginning input 

to the gait recognition module. The proposed tracking module is prepared based on the 

mean-shift algorithm. However, they created bounding box by tracking module. 

Furthermore, the tracking module outcome contained some inaccuracies due to 

background differences. Dynamic Time Warping (DTW) was described to get smooth 

gait sequences curve for recognition purposes. Nevertheless, they presented good 

quality gait silhouettes using Standard Gait Model (SGM). The Min-Cut algorithm was 

used for the interactive segmentation and improved the performance of subject 

segmentation. The experimental results reported that the proposed method improved 

initial tracking and segmentation results.   

 

Ai and Ji (2007) proposed an approach based on positioning of the human body joints 

for gait recognition system.  At first, silhouettes extraction was done using normal 

background subtraction and morphological operations to get good quality silhouettes.  

Then, 12 positions of body joints coordinates during walk were selected and calculated 

according to geometrical characteristics.  The discrete Fourier transform was applied to 

compute angle features. Finally, the KNN classifier was used for subject matching. To 

evaluate the performance, the Soton gait database was used for experiment. The 

experimental results were also compared with other researcher results and the proposed 

results were reported to have achieved 78% recognition rates.  
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Table 3.1: Classification of gait recognition methods 
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e 
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Based 

Nikolaos And Zhiwei 

(2007) 

Gait 
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96% 
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Recognitio

n 

Whole Body Sensitive 

to 

structural 
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complexity 

and low 
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Dimosthenis et al. 

(2007) 

USF 85% 
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n 
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structural 
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Xu et al. (2006) Real Human  

Walking  

Sequences 

80% 

Correct 

Recognitio

n 

Walking  

Direction 

?  

Han et al. (2005) CMU MoBo 90.2 % 

Correct  

Recognitio

n 

Position Of 

Angle 

Robustnes

s 

common 

structural 

representati

on 

Hong et al. (2006) CASIA 92.5% 

Correct  

Recognitio

n 

Person 

Walking 

Sensitive 

to 

structural 

difference 

High 

complexity 

and low 

robustness 

 

 

 

 

Model-

Based 

Liang et al. (2004) Own 

Database 

87.50% Dynamic 

Feature 

Compact 

representa

tion 

Difficult 

capturing 

Junqiu et al. (2008) Own 

Database 

Not Given 5D Space Compact 

representa

tion 

Low 

robustness 
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Chew et al. (2002) Not Given 85% 

Correct 

Recognitio

n 

Hip Angle Compact 

representa

tion 

Low 

robustness 

Haiping et al. (2006) 10005 

Frames  

and 285 

Sequences 

93% Body Pose Compact 

representa

tion 

Low 

robustness 

Rong et al.  CMU MoBo, 

USF 

96%, 61% Individual 

Body  

Parts 

Compact 

representati

on 

Low 

robustness 

 

Table 3.1 presents the classification of gait recognition methods. It includes 

representative works, database used, performance, features, advantages and 

disadvantages. This table shows only appearance-based methods and model-based 

methods.  
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3.4 Existing Gait Databases 

Gait recognition has been an active research topic in recent years. To perform 

experiments and evaluation of gait recognition systems, several gait databases are 

available for research purposes. The existing gait databases are CMU MoBo, USF, NLPR, 

CASIA, USF HumanID, and Soton. These gait databases are described briefly in the 

following section.    

 

3.4.1 CMU MoBo Gait Database 

Carnegie Mellon University (CMU) Motion of Body (MoBo) gait database is one of the 

most well-known gait database used in gait research. The gait data collection was 

started in March 2001 and it contained 25 subjects (23 males and 2 females) of 

individuals walking on a treadmill in the CMU 3D room. Ralph and Jiabo (2001) 

performed the four different walking styles: slow walk, fast walk, incline walk, and 

walking-with-a-ball. The CMU 3D room was adapted to capture multi-view walking 

sequences six video cameras were set and placed around the treadmill sufficient to 

record gait video. High quality 3 CCD cameras were employed (Figure 2.11) and 

captured with images size of 640*480 with 24-bit colour resolutions. All the cameras 

were calibrated.  

 

The selected participants had spent few minutes to familiarise their walk on the treadmill 

before video capturing. The subjects’ walking styles were recorded in the flowing order: 

for slow walk, the speed of the treadmill was comfortably adjusted to walking speed of 

the subjects. For fast walk, the subject was asked to walk comfortably fast. For incline 

walk, the treadmill was set at a 15 degrees incline angle with speed adjusted for a 
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comfortable walk. Finally, for walking-with-a-ball, the subjects were asked to hold a ball 

in front of his/her body while walking on the treadmill at comfortable speed. It is 

assumed that carrying a ball at walking pace is normal walking style. When the number 

of frames over one gait cycle for slow walk is compared, a similar frame number was 

noticed in carrying-a-ball walking styles, though it differs from person to person. The 

aim is to analyse and observe the effects of gait style while using the arms during a 

walk.  

 

Each subject had spent 15 minutes on the treadmill to complete the gait video 

recording. The length of each sequence is 340 frames recorded at a speed of 30 frames 

per second. There were 8,160 images recorded for each subject while observing 10 full 

gait cycles in an 11-second period. A background image was also captured with each 

camera to facilitate background subtraction. Table 3.2 shows an overview of the MoBo 

gait database. Figure 3.10 shows the setting of the cameras around the treadmill. Figure 

3.11 shows sample of all six walking styles. 

  

 



43 

 

 

 

 

Figure 3.10: Setting of cameras around the treadmill 

Source:          Ralph and Gross (2001) 

 

 

Figure 3.11: Sample of all six walking views  

Source:  Ralph and Gross (2001) 
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Table 3.2: Overview of the MoBo gait database 

Walking location Indoor treadmill 

Subjects 25 

Views 6 

Synchronized Y 

Walk styles 4 

Sequence length [sec] 11 

Pixel height 500 

 

Source:     Ralph and Gross (2001) 

 

For each subject, basic information were recorded including sex, age, weight, and the 

treadmill speed for the different walking sequences.  

 

3.4.2 CASIA Gait Database 

The Institute of Automation, Chinese Academy of Science (CASIA) is providing the 

CASIA gait database freely to gait recognition researchers in order to promote research 

in this field. In the CASIA gait database, there are three datasets, namely, DatasetA 

(former NLPR gait database), DatasetB (multi-view dataset), and DatasetC (infrared 

dataset).  

 

DatasetA was created with 20 persons on 10 December 2001 with three directions: 

parallel, 45 degrees and 90 degrees to the image plane. Twelve image sequences per 
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person and four sequences for each of the three directions were taken. The database 

has 19,139 images.  

 

DatasetB (multi-views dataset) was created in January 2005 with 124 subjects. The gait 

data was captured from 11 views and were made in three variations, namely, view 

angle, clothing and carrying condition changes.  

 

An infrared (thermal) camera collected DatasetC between July and August 2005 

containing 153 subjects in four walking conditions: slow walking, fast walking, incline 

walking and normal walking-with-a-bag. The videos were captured at night.   

 

3.4.3 USF Gait Database 

The University of South Florida (USF) collected gait data over four days, from 20-21 May 

2001 and 15-16 November 2001 at their facility involving 33 subjects. The data set 

consists of persons walking in elliptical paths in front of the cameras with multiple 

circuits. The USF database for each person has up to five covariates: two different shoe 

types (A and B), two different carrying conditions (with or without briefcase), on two 

different surface types (grass and concrete), from two different viewpoints (left and 

right) and some at two different time instants.  

 

Thus, the person’s gait images were taken in 32 possible conditions as shown in Figure 

3.12. However, not all the subjects were imaged in all conditions. The full data set is 

partitioned as depicted in the following grid. 
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Figure 3.12: 32 possible conditions of USF gait database 

 

The full version of the data sets were provided consisting of 1,870 sequences from 122 

subjects. 

 

3.4.4 Challenge Experiments and Base Line Performance 

A set of challenge experiment of different difficulty levels based on the collected data 

were provided. The challenge tasks were constructed in terms of gallery and probe sets. 

The gallery sets are subsets of the “enrolled” data and the probe sets are subsets of the 

query data.  

 

The largest subset were selected and the right camera sequences were arbitrarily 

chosen as the gallery set (G, A, R, NB, t1), i.e., (Grass, Shoe type A, Right Camera, No 

Briefcase and time t1). The rest of the subsets formed the probes, testing the effects of 

various covariates.  
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 3.4.5 NLPR Gait Database 

The NLPR gait database includes 20 subjects and four sequences for each viewing angle 

per subject, two sequences for one direction of walking, the other two sequences for the 

reverse direction of walking. For instance, when the subject is walking lateral to the 

camera, the direction of walking is from right to left for two of the four sequences, and 

from left t to right for the remaining sequences. All the gait sequences were captured 

outdoors twice on two different days. The subjects walk along a straight-line path at 

free cadences in three different views with respect to the image plane.  

 

3.4.6 Soton Gait Database 

The Soton gait data recorded the subjects outdoors and indoors. In indoor environment, 

the subjects walked along a defined track, under controlled lighting and on a treadmill. 

On the other hand, in outdoor environment, the subjects walked along the track with 

raincoat, if necessary. Two forms of data were collected, i.e., indoors and one outdoors.  

 

The first form of indoor image is that of a subject walking on a treadmill. The second 

records subjects walking along a specially designed track with designed background.  

 

The last data was recorded outside the background control area along the trajectory 

where the subjects walked. The background was intentionally made with cars and 

people.  
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The large database was created in summer 2001. Each subject has six different views 

with two views (frontal-parallel and oblique) per scenario. It was taken outside, inside 

the track and inside the treadmill environment.  

 

The small database obtained at least 10 subjects walking around the inside track with a 

green background. Each subject wears various footwear, clothes and carrying various 

bags and focused their at different speeds. The small database did not use the treadmill 

or outside data.  

 

3.5 Selected Gait Databases 

To evaluate and perform the experiment, a public gait database was selected. For this 

research, the CMU MoBo gait database was selected as it is popular among the 

researchers. Several projects have achieved high recognition rates with different 

techniques after using the CMU MoBo database. It recorded various walking styles to 

evaluate the different walking style recognition rates and has set standard techniques to 

evaluate gait test. This database is freely available from Ralph and Jiabo (2001). 

However, the most important advantage for selecting this database is that it has 

sufficient gait cycles for each subject. In addition, it has six types of gait styles, which is 

applied in this research.  
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Table 3.3: Existing gait databases 
 

Databas

e Name 

Num. 

of 

Subject
s 

Num. Of 

Sequenc

es 

Environme

nt 
Type  Variation

s 
Url 

CMU 

Databas
e 

25 600 Indoor, 
Treadmill 

By 
reques

t 

Viewpoint
s, Speed, 
Carrying 
Condition
s, Incline 
Surface 

www.hid.ri.cmu.edu 

CASIA 
Databas

e set A 

20 240 Outdoor By 
reques

t 

Viewpoint www.sinobiometrics.co
m 

CASIA 
Databas

e set B 

124 13640 Indoor By 
reques

t 

Viewpoint
s, 

Clothing, 
Carrying, 
Condition 

CASIA 
Databas

e set C 

153 1530 Outdoor, At 
Night, 

Thermal 
Camera 

By 
reques

t 

Speed, 
Carrying, 
Condition 

Gait 

Challeng
e 

Databas

e 

122 1870 Outdoor By 
reques

t 

Viewpoint
s, 

Surface, 
Shoe, 

Carrying, 
Condition, 

Time 

www.gaitchallenge.org 

Soton 
Small 

12 Not Given Indoor, 
Green 

Chrome-Key 
Backdrop 

By 
reques

t  

Carrying 
Condition, 
Clothing, 

Shoe, 
View 

www.gait.ecs.soton.ac
.uk 

 

 

3.6 Conclusion  

Table 3.3 summarises the chapter based on literature survey. The model-based and 

appearance-based methods were reviewed. In addition, wearable sensors-based and 

floor sensors-based methods were briefly explained. The appearance-based method is 

divided into two groups, namely, spatio-temporal method and static state method. There 
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are several articles that briefly described the use of both methods. Moreover, the 

selected gait database (CMU MoBo) was briefly described along with other available gait 

databases.   

 

 3.7 The Proposed Gait Recognition System 

The main interest in this research is to investigate gait recognition performance using 

two different techniques for gait recognition systems. To build the gait recognition 

system, the first step involves choosing a suitable gait database for the experiments. 

The selection of gait database was described in this chapter. Next step involves 

developing the gait recognition systems by applying PCA with and without RT techniques 

explained in Chapter 4. For the gait recognition system, two gait features selected, 

namely, silhouettes-based and GEI-based features used for the proposed techniques for 

gait recognition system.  

 

Two types of techniques were proposed. The first technique reduces the dimension of 

space and performs the experiments. The second technique combines PCA with RT to 

verify the effects of recognition rates.   
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CHAPTER 4 

 

PROPOSED SYSTEM 

 

4.1 Introduction 

Figure 4.1 shows the block diagram for gait recognition based on PCA method used in 

this research. A 2-D gait images were concatenated to form 1-D image vectors. A zero 

mean 1-D training images set were computed. PCA was then applied on the collection of 

1-D zero-mean images set vector to produce a low-dimensional features vector.  

 

 

 

Figure 4.1: Block diagram for gait recognition using PCA 

Source:       Hayder et al., 2010, 2011 
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Figure 4.2: Block diagram for gait recognition using PCA with RT techniques 

Source:       Hayder et al., 2010, 2011 

 

Figure 4.2 shows the block diagram of PCA with Radon Transform. Radon Transform 

was applied on the image to compute its 2-D projection image along angles varying 

from 00 to 1800. The result of the projection is the sum of the intensities of the pixels in 

each direction. All the projections of the image were concatenated to form 1-D Radon 

Transform vector. The 1-D Radon Transform vectors for all training images were 

computed and PCA applied on the collection to produce a low dimensional feature 

vector. 

 

4.2  Principal Component Analysis (PCA) 

Principal component analysis technique is also known as dimensional reduction 

technique which transform a vector X with size n to a unit vector Y with size k, where n 

is always smaller than k (Moghaddan, 2002 and Miroslaw, 2010). The advantage of 
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using PCA technique is to reduce the feature space dimension by considering the 

variance of the input data.  

 

The preferred projections ways are that the maximum amount of information is obtained 

in the smallest number of feature space dimensions. In order to obtain the best variance 

in the data, the data is projected to a subspace, which is capability, by the eigenvectors 

from the data. In that sense, the eigenvalue corresponding to an eigenvector match the 

amount of difference that eigenvector handles.  

 

In different applications, PCA technique is used broadly in image processing, gait 

detection and recognition, performance, in large databases and video. These 

applications are briefly explained.  

 

For image processing, the image is compressed from larger dimension into smaller 

dimension. The PCA method is widely used to recognise person by comparing the 

characteristics of the gait with known database. It can be applied to the freely available 

databases and useful for video stream coding and compression of talking heads.  

 

PCA is an important tool for data analysis and able to calculate eigenvalue 

decomposition of a data covariance matrix or singular value decomposition of a data 

matrix. 
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Figure 4.3: Principal Component Analysis on a 2-D data resulting in two 

eigenvectors, e1 and e2  

Source:        Mark et al., 2002 

 

For example, for an image with a 250x250 resolution, the feature vector will be 

(250x250) = 62,500.  For a feature vector with 62,500 features points, it is not feasible 

to be used for recognition purposes. PCA extracts the major difference in the feature 

vector and accept a perfect reform of the data to be shaped from only a few of the 

extracted feature values, hence reducing the amount of essential calculation. Figure 4.3 

shows Principal Component Analysis on a 2-D data resulting in two eigenvectors, e1 and 

e2.  

 

4.3 Radon Transform (RT) Technique 

The Radon Transform is one of the most powerful technique used to identify features 

within an image. Radon transform is well known in a wide range of image applications. 



55 

 

 

 

It is an integral transform function over straight line. One common form of RT is 

expressed among different forms in Equation (4.1). 

( ) ( ) ( )∫∫
∞

∞−

∞

∞−

−−∂= dxdyyxyxF θθρθρ sincos,,            (4.1) 

 

 

Figure 4.4: Image domain and radon domain 

Source:          idlastro.gsfc.nasa.gov/ idl_html_help/RADON.html  

 

where, X is defined as integral along a line through the image, θ is the angle and ρ  is 

the distance of the line from the source of the coordinate system as shown in Figure 

4.4. F(ρ, θ) is the integral line of a 2D function f(x, y) along a line from -∞ to +∞. The 

point and direction of the line is determined by two parameters ρ and θ as shown in 

Figure 3.4. F(ρ, θ) is the integral of f(x, y) over the line θθρ sincos yx += . In this gait 

analysis project, the two dimensional function is the binary silhouettes as it is the 

discrete form of pixel intensities along lines of different directions. The reference point 

has set centre of the silhouette as given in Figure 4.5. This figure shows the 

fundamental procedure of Radon Transform on binary silhouettes. Figure 4.5(a) is two 

parameters (ρ, θ) to verify the location of the integral line; Figure 4.5(b) is computation 

of Radon coefficients. 
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                            (a)                                                 (b) 

Figure 4.5: The fundamental procedure of Radon Transform on binary  

                      silhouettes: (a) Two parameters (ρ, θ) determine the  

                      location of the integral line; (b) Computation of Radon    

                      coefficients 

 Source:         Lei et al., (2009) 

 

The Radon Transform was used for silhouettes to establish mapping between domains 

determined by the coordinate system (x, y) and (ρ, θ). The radon domain is also 

determined by visualising Figure 4.5 that computes the radon co-efficient method. This 

figure shows an exact silhouettes direction projected onto the ρ axis. Otherwise, pixels 

along a set of lines parallel to the s axis are added together. A coefficient (ρi, θi) in the 

radon domain correspond to the sum of pixels along a line parallel to the s axis in the 

original silhouettes. The position and way of the summation line is determined by ρ and 

θ.  
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The Radon Transform is very appropriate for gait representation and recognition 

because during human walking, the large angular differences of the legs and arms axes 

are formed with respect to horizontal axis. In conclusion, the individual forms and 

walking patterns can be drawn by identifying and studying these radon coefficients.  

 

4.4 Matching Criteria  

The most important work in the experiment is to estimate periodicity of walking in a gait 

cycle. When a person is walking, the wide of the foreground silhouettes changes due to 

frequently changing lower body parts. The maximum and minimum widths of the 

subjects’ foreground difference is found by applying the Euclidean distance method. 

 

A fundamental idea of the recognition system is the pattern matching plan based on 

measures of space between pattern vectors. These various ways can be measured by 

two vectors. Generally, for the recognition purposes, the Euclidean space is used to 

measure between two pattern vectors. This space method is very famous in the pattern 

recognition research field. 

  

To examine the Euclidean space, simply study root of square differences between 

coordinates of a pair of objects. The square of difference between two scalars of each 

feature point in two feature vectors is added up and the square root of the addition is 

then calculated.  

 

The Euclidean distance between two points A and B is the length of the line segment 

connecting them AB, where two points, A = (a1, a2, a3 …, an) and B = (b1, b2, b3 …., bn) 

are in Euclidean n space, then the distance from A to B or from B to A is known as: 
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The location of a point in a Euclidean n space is a Euclidean vector. Hence, A and B are 

Euclidean vectors, begging from the source of the space. The magnitude of a vector 

measures the length of the vector. From this expression, the Euclidean space is the 

norm of the difference between two vectors. 

 

The Euclidean distance method is one of the most commonly used algorithms in human 

recognition systems (Kanak and Pratibha, 2011; Xiang et al., 2010; Jyori and Gupta, 

2011; Yi et al., 2010). This method is very similar to the correlation algorithm and in 

cases where submitted data has no negative values, it produces equivalent results. The 

main advantage of the Euclidean distance method over the correlation method is that it 

is reportedly slightly faster (Hayder et al., 2010). Other similarity measurements are 

available such as cosine distance (Schneider et al., 2007), Mahanalobis distance (Gedikli 

and Ekinci, 2005; Daoliang et al., 2007; Ekinci, 2006) and nearest neighbours (Liang et 

al., 2003). For this project, the Euclidean distance was selected for similarity measure.    
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Figure 4.6: Sample of the Euclidean distance result for one subject Source:       

Source:       Hayder et al., 2010, 2011 

 

The Euclidean distance is used for measurement purposes. If Euclidean distance 

between frame A and frame B in the train database is smaller than a fixed threshold 

value T, then frames A and B are considered to be the same subject. Threshold T is the 

largest Euclidean distance between any two images in the training database divided by a 

threshold tuning value (Tcpara) as given in Equation (4.3) (Hayder et al., 2010). The 

threshold is defined as:  

 

Tcpara

kj
T

]||||[max 〉Ω−Ω〈
=                      (4.3)  

 

Where, Tcpara is a tuning value; j, k = 1, 2, 3. . . , N. N is the total number of training 

images and Ω is the reduced dimension images for a given frame subject. A sample of 
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the Euclidean distance is shown in Figure 4.10 to verify the frame to frame matching for 

one subject. It can be seen from Figure 4.10 that each frame displays different 

magnitudes on one complete cycle. It is easy to select a gait cycle by applying the 

Euclidean distance method. The gait cycle can also be obtained manually.  

 

In the algorithm, two performance matrices were measured, namely, recall and reject.  

For recall, if a test image is correctly identified to an image of the same person from the 

training database, it is called Correct Classification (CC) as shown in Equation 4.4. 

However, if the test image is incorrectly matched with another subject images, it is 

called False Acceptance (FA) as shown in Equation 4.5. If an image from the training 

database is rejected by the system, then it is called False Rejection (FR) as in Equation 

4.6. For reject, if any test frame from the unknown set cannot be identified by the 

system, then it is called Correct Classification. If the test image can be detected by the 

system, then it is called False Acceptance (Hayder et al., 2010).  

 

          (4.4) 

 

                               (4.5) 

 

                                       (4.6) 
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4.5 Conclusion 

In this chapter, two techniques of gait recognition have discussed details with block 

diagram. However, matching criteria has explained in details that how produced 

recognition rates.  
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CHAPTER 5 

 

 

DATA PREPARATION 

5.1 Introduction  

Data preparation is concerned with creating datasets for application in the experiments. 

Two types of datasets are needed to be generated, namely silhouettes-based and GEI 

template-based. The known and unknown datasets also necessitate production of the 

silhouettes- and GEI template-based system. The following section describes the data 

preparation.  

 

5.2  Gait Databases 

Based on available literatures, there are many ways to subtract human body from video 

sequences to obtain foreground images. The normal subtraction technique produced 

imperfect silhouettes. It is therefore necessary to investigate further ways to receive 

quality silhouettes. It is believed the best way is to apply the normal subtraction method 

and use morphological filters to construct quality silhouettes. However, updating the 

background is also required to deal with colour space. Based on the environment, 

generation of background from video sequences is essential while updating the 

silhouettes background.  More importantly, the human body’s silhouettes must be in 

perfect shape to obtain high recognition rate accuracy.  
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However, better quality silhouettes reception during silhouette extraction process can be 

obtained by applying fixed threshold value separately for every single person for each 

walking styles and each view.  

 

Most researchers agreed that the foreground must be at centre of the frame. This 

technique produced smooth gait cycle curve for matching purposes and might acquire 

high recognition rates. Bo and Yumei (2006) aligned the foreground by applying 

diagonal, horizontal and vertical scanning projection for the experiment. Lei et al. (2009) 

used different existing gait databases and normalised the foreground at the centre for 

the experiment. Sungjun et al. (2007) reported that the extracted silhouettes normalised 

the foreground at the centre.  

 

In addition, Vili et al. (2009) used existing CMU MoBo gait database for the experiment 

achieving better gait cycle curve. However, the foreground silhouettes were not aligned 

at the centre. Guoying et al. (2007) used similar database for experimental purposes. 

Changhong et al., (2009) also applied the database without changing the silhouettes 

data.  

 

In this project, the provided silhouettes data is assumed to be set accordingly that is 

normalised at the same position for all subjects and each view. Figure 5.1 shows sample 

of complete gait cycles using CMU MoBo gait database. Smooth gait cycles pattern were 

received which proved silhouettes are aligned.  



64 

 

 

 

 

Figure 5.1: Sample of complete gait cycles for one subject 

Source:       Hayder et al., 2010, 2011 

 

5.3 silhouette data sets 

5.3.1  Silhouettes Extraction  

In the gait recognition system, silhouette is defined as a region of pixels of the walking 

person. It is the simplest form of line art and is used specifically in cartoon animations, 

technical designs. In this aspect, silhouettes extraction is the most important part to 

determine the recognition rate accuracy for the gait recognition system. In this system, 

silhouettes extraction generally involves the operation of segmenting the human body 

from a background. This process will be deal with in more details in the next section. 

 

Background subtraction is a method to detect a movement or important variations 

within a video frame with respect to a reference. If the pixel value and background 

value is not the same, then the processed pixel is marked as a silhouettes region. The 
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silhouettes are then obtained by subtracting the reference image frame from the current 

image frame (Rosalyn et al., 2009; Hansung et al., 2005). For example, let the current 

image frame be denoted as Ic, the reference image frame as Ir, and the output of the 

image frame as Ib. The general background subtraction operation is expressed by 

Equation 5.1.  In addition, Figure 5.2 illustrates the background subtraction process. The 

current image, Ic, the reference image, Ir, and the output image, Ib, are shown in 

Figures 5.2(a), 5.2(b) and 5.2(c) respectively.  

 

                                            Ib = | Ic – Ir |                                      (5.1) 

 

                                      

             (a) Current image (Ic)          (b) Reference image (Ir)           (c) Output image (Ib)            

 

Figure 5.2:  Illustration of background subtraction 

 

Silhouettes extraction from gait video sequences in any environment does not usually 

produce perfect silhouettes. Therefore, in most practical cases, there is a need to apply 

an efficient algorithm for the gait recognition system. The simplest way to produce 
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silhouettes is by morphological operations using the normal background subtraction 

method.   

 

Xi et al. (2006) proposed an algorithm for updating background information. They 

combined two features, namely, high level and low level knowledge features to update 

the background information in order to extract silhouettes. Moreover, they also applied 

fuzzy logic inference system to combine spatio-temporal information to remove moving 

things and process the human body silhouettes.  

 

Yi and Mehmet (2005) applied the Least Median of Squares (LMeDS) background 

modelling method to detect the image from video sequences and extract the 

background. However, they also applied threshold value via the histogram technique to 

compare the resultant difference of the current image and background image. 

Furthermore, Gaussian filters are used to eliminate noise from the extracted silhouettes.  

 

5.3.2  Training and testing data sets 

In this project, 25 individual subjects were selected and each individual subject has four 

kinds of walking styles. Each walking styles has six different walking views and each 

different walking views has 340 silhouettes. The gait database was divided into two 

groups, namely, known database and unknown database for experiment where 13 

subjects are for known and 12 subjects are for unknown selected randomly for all three 

walking styles. The known gait database was further divided in two sets, namely, 

training dataset and testing dataset. Each view has 340 silhouettes, and from this 340 
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silhouettes, a minimum of 14 walking cycles are available. Each cycle has approximately 

18–20 frames (Hayder et al., 2010).  

 

In this project, out of 14 cycles, 10 gait cycles were selected for training and four for 

testing based on 13 known subjects. Only one cycle is selected for unknown from the 12 

unknown subjects. For the experiment, the total number of images used for the three 

walking styles are 6,713 training, 2,691 testing, and 672 unknown testing for PCA-only 

technique. The known test database is used to test the recall capability of the gait 

recognition system. In contrast, the unknown test database is used to test the rejection 

capability of the system. The size of all the provided silhouettes frame is 486*600. The 

classification of the rearranged database structure is shown in Figure 5.3.  

 

 

 

Figure 5.3: Silhouettes training and testing data sets  

Source:       Hayder et al., 2010, 2011 
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Figure 5.4 shows a sample of a complete gait cycle for one subject. Figure 5.4 6o 5.7 

shows the samples of known training, known testing and unknown testing for slow, fast, 

and carrying-a-ball walking styles for silhouettes based-systems respectively.  

 

 

 

Figure 5.4:  A complete gait cycle for one subject for fast walking style 
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(a) Slow walking style training frames 

 

 

(b) Slow walking style testing frames 

 

 

(c) Slow walking style unknown testing frames 

 

Figure 5.5: Samples of slow walking style for known and unknown   

                    datasets 
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 (a) Fast walking style training frames 

 

 

(b)  Fast walking style testing frames 

 

 

(c) Fast walking style unknown frames 

 

Figure 5.6:  Samples of fast walking style for known and unknown  

                     datasets 
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(a) Carrying-a-ball walking style training frames 

 

 

(b) Carrying-a-ball walking style training frames 

 

(c) Carrying-a-ball walking style training frames 

 

Figure 5.7:  Samples of carrying-a-ball walking style known and unknown 

datasets 
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5.4  Gait Energy Image (GEI) data sets 

Nini et al. (2009) explained the construction of GEI templates and compares the 

performance with other research. The proposed techniques were reported to have 

improved recognition rates compared to other research using GEI templates. Heesung et 

al. (2009) also performed GEI templates experiments. Mayu et al. (2010) described GEI 

templates methods for application in human age applications for different experiment. In 

the final analysis, the GEI templates-based method is found efficient for application in 

person identification.  In this section, the silhouette sequences arrangement to build GEI 

templates were made to enhance the experiment.  

 

Gait Energy Image (GEI) is the sum of images of the walking silhouettes divided by the 

number of images. GEI is a useful representation with superior selective power and 

strength against segmental errors (Heesung et al., 2009; Khalid et al., 2010). Given the 

pre-processed binary gait silhouette images Bt(x, y) at time t in a sequence, GEI is 

expressed as Equation 5.2. 

 

���, �� � �
	

∑ ����, ��	
��                             (5.2) 

 

Where, N is the number of frames in one complete gait cycle and x and y are values in 

the image coordinates (Nini et al., 2009; Khalid et al., 2010; Ju and Bir, 2006; Heesung 

et al., 2009). To make GEI templates, the silhouettes were selected from the provided 

CMU MoBo gait database. Figure 5.9 shows the constructed sample of GEI templates 

over one gait cycle seen at the far right images. Figure 5.10 to 5.12 shows the samples 
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of known training, known testing and unknown testing for slow, fast, and carrying-a-ball 

walking styles for GEI templates-based systems respectively.  

 

The provided CMU MoBo database has four kinds of walking patterns, namely, slow, 

fast, incline and carrying-a-ball walk. Each walking pattern has six types of views from 

different angles. Each view captures 340 frames that can be calculated with a minimum 

of 14 cycles, and each cycle has approximately 18 to 20 frames. One gait cycle frame 

constructs a GEI template. Thus, one subject has a minimum of 14 GEI templates. For 

the training and testing datasets, 10 GEI templates were selected for training and four 

for testing in order to perform the experiment. The total number of GEI training and GEI 

testing templates are 13*10=130 and 13*4=52 respectively. For the unknown subject, 

one cycle has been selected to construct GEI unknown templates indicating each person 

has one GEI unknown template. Figure 5.7 shows sets of training and testing GEI 

databases. The previous silhouettes gait database section that arranged and prepared 

the GEI templates for this section were realistically followed to compare results. The 

total numbers of GEI testing templates were compared with GEI training templates for 

recognition purposes. The GEI testing templates were used to test the recall capability 

of the gait recognition system. Another 12 subjects called GEI unknown templates with 

one cycle for three walking styles were prepared for reject capability of the system. The 

technique of PCA-only was applied in this chapter for recognition purposes. The 130 GEI 

images were used for training dataset while 52 GEI images were used for testing 

dataset.  
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Figure 5.8: Design of testing and training gait datasets 

Source:       Hayder et al., 2010, 2011 

 

 

Figure 5.9: The constructed sample of GEI templates from a sequence of  

                    Silhouettes for fast walking  style 



75 

 

 

 

 

 (a): Sample of slow walking styles of GEI training input 

 

 (b): Sample of slow walking styles of GEI training input 

 

 (c): Sample of slow walking styles of GEI training input 

 

Figure 5.10: Samples of slow walking styles known and unknown        

datasets for GEI templates systems 
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 (a): Sample of fast walking styles of GEI training input 

 

 (b): Sample of fast walking styles of GEI training input 

 

 (c): Sample of fast walking styles of GEI training input 

 

Figure 5.11: Samples of fast walking styles for known and unknown  datasets 

for GEI templates systems 
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 (a): Sample of carrying-a-ball walking styles of GEI training input 

 

 (b): Sample of carrying-a-ball walking styles of GEI testing input 

 

(c): Carrying-a-ball walking styles of unknown GEI templates gait                 

dataset input  

 

Figure 5.12: Samples of carrying-a-ball walking styles for known and     

                    unknown datasets for GEI templates systems 
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5.5  Conclusion 

In this chapter, data preparation were described. The known and unknown datasets 

were briefly explained for silhouettes-based system. However, the known and unknown 

datasets were processed for the GEI-based system. 
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CHAPTER 6 

 

 

RESULTS AND DISCUSSION 

 

 

6.1 Introduction 

The main objective of this thesis is to compare the recognition rates between 

silhouettes- and GEI template-based system using Principal Component Analysis (PCA) 

with and without Radon Transform (RT) techniques. Section 6.2 describes the PCA 

technique for silhouettes as gait features and also setting threshold parameter using 

PCA technique only. Section 6.3 describes PCA with RT technique with setting threshold 

parameter. Section 6.4 explains the comparison of recognition rates between silhouettes 

and GEI templates. Section 6.5 provides performance comparison between PCA with and 

without RT using silhouettes and GEI templates, and finally, Section 6.6 summarises the 

chapter.  

 

6.2 using PCA only 

6.2.1 Silhouettes as gait features 

6.2.1.1 Setting Threshold Parameter using PCA Technique Only 

The threshold value is a place or position to begging to obtain system result. The value 

of the threshold tuning parameters can be used to tune the performance of the system 

to have either high correct recall with high false acceptance rate for application such as 

boarder monitoring, or high correct rejection rate for unknown persons for application 
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such as access control. For this work, the threshold tuning parameters were set so that 

the system has equal correct recall rates and correct rejection rates. The TCPARA 

(threshold) value mentioned that was chosen for each system is shown in Figure 6.1 to 

6.3, and each walking system has different TCPARA values. The recognition rate varies 

according to set TCPARA value. If the system sets TCPARA value to 1, then it will have 

high recognition rate percentage. Thus, the recognition rate is dependent on the 

TCPARA values of the system (Hayder et al., 2010).   

 

An acceptance (the frames match) or rejection (the frames do not match) is determined 

by using a threshold value. To collect results for the false rejection rates, all the frames 

for a single subject is compared with every other frames of other subjects. No frame is 

compared with itself and each frame is only compared once, giving testing frame for 

comparisons to test false rejection for method. Using test images, every person is 

compared with every other subject. This gives comparisons of subject with no person 

compared to himself, and each frame only compared once. For every threshold value, 

we might compute a FAR and a FRR (Figure 6.1 to 6.3) by the system. 

   

Figure 6.4 shows experimental performance using PCA-only technique for three walking 

styles. It also shows the Equal Recognition Rate (ERR) for PCA techniques for three 

walking styles. When the recall correct classification is equal to reject correct 

classification, it is called ERR. For this work, the ERR achieved 90.78%, 90.26% and 

87.75% for PCA-only method for the three walking styles: slow walk, fast walk, and 

carrying-a-ball walk respectively. The fixed threshold values are 6.42, 6.34, and 4.90 for 

slow walk, fast walk and carrying-a-ball walk respectively. If the TCPARA value is set to 
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1, then the best correct classification rate attained is above 95% for PCA-only methods 

for all three walking styles when reject correct classification rate is 0%.  

 

Figure 6.1, Figure 6.2 and Figure 6.3 shows the recall correct classification rate is 

decreasing as TCPARA value increases, while the reject correct classification rate is 

increasing as TCPARA value increases. However, the FAR for both recall and reject 

decreases as TCPARA value increases. However, each walking styles FAR and FRR may 

be calculated from both systems according to the recognition rates. The FAR for both 

recall and reject decreases as TCPARA value increases. Therefore, different walking 

styles have different threshold values for the system and it is similar for all three walking 

styles for PCA with and without RT techniques based on silhouettes- and GEI-based 

templates.  

 

Based on the three walking styles, the researcher observed that slow walking styles 

represented better ERR compared to carry-a-ball walking styles and fast walking styles. 

The fast walking styles achieved slightly better ERR than carrying-a-ball walking styles. 

The carrying-a-ball walking styles attained low ERR than slow walking styles and fast 

walking styles.   
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Figure 6.1: Recognition result using PCA for slow walk 

 

 

 

Figure 6.2: Recognition result using PCA for fast walk 

 

 

 



 

 

Figure 6.3: Recognition result using PCA for carrying a ball

 

6.2.1.2 Results and discussion 

Figure 6.4: Equal Recognition Rate for three walking styles using PCA 

                    techniques
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: Equal Recognition Rate for three walking styles using PCA  

Carryign a 
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Equal recognition rate for three walking styles using PCA technique



 

 

Figure 6.5: FAR and FRR for three walking styles using PCA techniques

 

Figure 6.5 shows the FAR and FRR results using PCA

dependent on the achieved recognition results and fixed threshold values. According to 

the slow walk, fast walk, and carrying

the slow walking styles attained 2.91% FAR and 6.36% FRR, while recognition rate 

attained was 90.78%. The fast walking styles obtained 0.00% FAR and 9.74% FRR, 

when recognition rate was 90.26%. Finally, carrying
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nt on the achieved recognition results and fixed threshold values. According to 

walk of ERR (shown in Figure 6.1 to 6.3), 

the slow walking styles attained 2.91% FAR and 6.36% FRR, while recognition rate 

d was 90.78%. The fast walking styles obtained 0.00% FAR and 9.74% FRR, 

ball walking styles acquired 
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2.91% FAR and 9.36% FRR, whereas recognition rate attained was 87.75%. By 

summing up all three, namely, equal recognition rates, FAR, and FRR, then a 100% 

match up with the system rates is obtained. Figure 6.6 shows output of the correct 

matching displaying the matching frames “Test[158]-Train[459]” correctly matching the 

training dataset frame in same subject. However, the correct frame matching was 

computed manually.   

 

(a) Slow walking styles 

 

(b) Fast walking styles 
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(c) Carrying-a-ball walking styles 

 

Figure 6.6: Sample of output of correct matching frames 

 

6.2.2 GEI as Gait Features 

6.2.2.1 Setting the Threshold Tuning Parameter for GEI-based template 

system 

Section 6.5.1 mentioned the purpose of applying tune parameters to the system. The 

different templates-based system has different threshold values for recall and reject. In 

this GEI-based templates system using PCA-only technique, different TCPARA values for 

each walking system were obtained as shown in Figure 6.7 to Figure 6.9.  

 

After applying the PCA-only method on GEI templates for the three walking styles, three 

different ERR, namely, 91.62%, 90.90% and 92.34% were achieved as shown in Figure 

6.10. The fixed threshold values obtained were 6.31, 6.60 and 10.12. It was mentioned 

earlier that if TCPARA value is decreasing, then recognition rate increases, with 95% of 
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recognition rates achieved from slow and fast walk. However, above 90% recognition 

rate is achieved for carrying-a-ball walk.  

 

The carrying-a-ball walking styles represented better recognition rates compared to slow 

and fast walking styles. Moreover, each walking styles rejection rates may be calculated 

according to equal recognition rates. From the three walking styles, it was observed that 

carrying-a-ball walking styles represented better ERR compared to slow and fast walking 

styles. However, the slow walking styles achieved slightly better ERR than fast walking 

styles. The fast walking style attained lower ERR than slow walking style and carrying-a-

ball walking styles. Therefore, the three walking styles presented three different results.    

 

 

Figure 6.7: Recognition result using PCA-only for slow walk 
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Figure 6.8: Recognition result using PCA-only for fast walk 

 

 

Figure 6.9: Recognition result using PCA-only for carrying-a-ball walk 

 

 

 

 

 



 

 

6.2.2.2 Results and discussion

 

Figure 6.10: Equal recognition rates for three walking styles using PCA

                     only 
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Figure 6.11: FAR and FRR for three walking styles using PCA-only 

 

Figure 6.11 shows the FAR and FRR results using PCA method. The FAR and FRR are 

dependent on the achieved recognition result and fixed threshold values. According to 

the slow walk, fast walk, and carrying-a-ball walk of ERR (Figure 6.7 to Figure 6.9), the 

slow walk attained 0% FAR and 8.38% FRR, while recognition rate was 91.62%. The 

fast walk obtained 0.00% FAR and 9.10% FRR, when recognition rates were 90.90%. 

Lastly, carrying-a-ball walk acquired 1.92% FAR and 13.46% FRR, whereas recognition 

rate attained was 90.38%. When all three equal recognition rates, FAR and FRR were 

summed up, then a 100% match up with the system recognition rates are obtained. 
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Figure 6.12 shows output of the correct matching frames. It displays the matching 

frames “Test[9]-Train[29]” correctly matching training dataset frames.  

 

 

(a) Slow walking styles 

 

 

(b) Fast walking styles 
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(c) Carrying-a-ball walking styles 

 

Figure 6.12: Sample of GEI output of the correct matching frames using  

                      PCA-only; (a) slow walking styles, (b) fast walking styles,  

                      and (c) carrying-a-ball walking styles 

 

6.3 A Comparison of Recognition Rates between Silhouettes and GEI 

Templates 

6.3.1 Using PCA with Radon Transform  

For this project, the CMU MoBo gait database was selected from various available 

databases. This database is suitable for application in the experiment because it 

contains different types of walking styles database. The existing gait databases also 

have different available gait styles. The main reason CMU MoBo database was selected 

is because it can be downloaded from the website provided freely by Ralphs and Gross 

(2001). The selected database provides silhouettes and video sequences extracts used 

in this project.  



 

 

Figure 6.13: A comparison of recognition rates between silhouettes
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based system using PCA-only technique. The GEI-based system achieved approximately 

4.54% better result for carrying-a-ball walking styles compared to silhouettes-based 

system using PCA-only technique. In this PCA-only technique, carrying-a-ball walking 

styles presented better equal recognition result based on GEI template-based system, 

and fast walking styles presented slightly lower ERR based on GEI templates systems. 

The most significant ERR difference was achieved from carrying-a-ball walking styles 

based on GEI templates using PCA-only technique. 

 

For the silhouettes-based system, slow walking styles presented slightly better result 

than fast walking style, but significantly different than carrying-a-ball walking styles. 

However, it was reported that slow and fast walking styles gave almost identical results. 

The low ERR is obtained from carrying-a-ball walking styles. Thus, slow walking styles is 

provide better result compared to fast and carrying-a-ball walking styles on silhouettes-

based system using PCA-only technique. It can be concluded that GEI template-based 

systems gave better results on all three walking styles compared to silhouettes-based 

system using PCA-only technique. 



 

 

Figure 6.14: A comparison of recognition rate between silhouettes and GEI 

                    templates using PCA with RT technique

 

Figure 6.14 shows a comparison of recognition rates between silhouettes

template-based systems using PCA with RT technique. For slow and fast walking styles, 
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based system using PCA with RT technique. In addition, it was reported that slow 

walking styles presented better recognition rate for both template-based systems using 

PCA with RT technique. The slightly lower ERR were obtained from fast walking styles 

based on both template systems using PCA with RT technique. In conclusion, the GEI 

template-based system obtained better result than silhouettes-based system using PCA 

with RT technique. The silhouettes-based systems always yield lower ERR for PCA with 

RT technique on all three walking styles: slow walk, fast walk, and carrying-a-ball walk 

respectively. 

 

 

 

Figure 6.15: Sample of one gait cycle and a GEI template 
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The GEI templates were prepared to compare the experimental results with silhouettes-

based system. GEI is defined as the average frame over one gait cycle. Figure 6.15 

shows the sample of one gait cycle which were used to construct GEI templates as 

shown at the last row right-most frame. Figure 6.16 shows two different conditions of 

GEI templates where the head, torso and other upper body parts moved very little 

during walking. It can be verified that the pixels with high intensity values in a GEI 

template mean indicate that the body parts moved little, while the lower body parts of 

legs, hands and other lower body parts moved frequently with low intensity values. In 

addition, GEI template contains information of lower body parts on how people move 

during walking. Therefore the covariance conditions can be detected and analysed from 

GEI templates according to body shape changes.  

 

 

 

Figure 6.16: Sample of two different conditions of GEI templates 
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The most informative part of the GEI is the dynamic areas that caused the common 

covariance conditions during a walk. The common covariance conditions, such as 

carrying tools and clothings, of human appearance changes during a walk. The static 

areas also retained valuable information for classification, but are sensitive to changes in 

various covariance conditions. Basically, it contains body shape information, thus 

allowing person identification from dynamic areas of the GEI template.  

 

Investigations revealed that the GEI template-based system obtained the best ERR 

because every single frame has different number of pixel values over a complete gait 

cycle. The next gait cycle also yield another GEI template and so on. The researchers 

noticed that each GEI template has approximately the same number of pixels. However, 

each particular frame pixel over one gait cycle may not have the same particular 

numbers of frame and pixel values as the next gait cycle and so on. Nevertheless, the 

average pixels over one gait cycle may have approximately the same number of pixel 

values as the next GEI pixel values. Thus, this is the main advantage for applying GEI 

template-based system to obtain the highest accuracy recognition rate. In conclusion, 

the GEI template-based system achieved better result than silhouettes-based system 

using PCA with RT technique.     
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6.4 Performance Comparison between PCA With and Without RT using 

Silhouettes and GEI Templates 

 

6.4.1 Principal Component Analysis (PCA) 

Ling et al. (2009) presented spatio-temporal for gait recognition. At first Hough 

Transformed templates were constructed over one gait cycle for the experiment. The 

Laplacian of Gaussian technique was applied to detect edges of silhouettes gait intensity 

and then mapped it between the image space and accumulator space. Secondly, the 

commonly-used PCA technique was applied to reduce the dimension of the images 

without much loss of information. The obtained results were compared with other 

proposed results, and the proposed system achieved efficient result. For the experiment, 

CASIA gait database was used for recognition purposes.  

 

Qiong et al. (2009) proposed PCA and LDA methods for recognition systems. The PCA 

technique was used to reduce the dimension of the image, while the LDA technique was 

used to perform optimisation of the pattern class. The Euclidean distance and correlation 

were applied for measuring purposes. For the experiment, FERET database was applied 

for evaluation, and reported that PCA with LDA techniques obtained more efficient result 

than PCA-only technique.  

 

Su and Qian (2010) proposed Fuzzy PCA (FPCA) algorithms to GEI templates. At first 

gait video sequences over gait cycle were processed and GEI images constructed. GEI 

produced one image with an average of one gait cycle. However, eigenvalues and 

eigenvectors were constructed using FPCA and the obtained eigenvectors were expected 
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into lower aspect space. For the feature classifier, the NN classifier was used for the 

experiment. CASIA gait database was applied and stated that FPCA achieved more 

efficient result compared to using PCA with RT technique, KPCA and PCA-only 

techniques.  

 

Murat (2006) analysed multiple projection systems for gait recognition using common 

PCA technique. At first, the distance vector was produced. It is defined as the difference 

between bounding box and outer contour of silhouettes. The four projections presented 

four 1-D signals which is the value of distant vector. The normalised gait cycle 

performed auto correlation to obtain smooth gait cycle. Secondly, eigenspace conversion 

based on PCA technique is useful to time various distant vectors, and the statistical 

distance-based supervised model categorisation is then completed in the lower 

dimensional eigenspace for person detection.  Lastly, the final decision was produced by 

fusion strategy and achieved an efficient result. 



 

 

Figure 6.17: Performance
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When applying silhouettes-based system, PCA with and without RT techniques 

presented identical ERR. The reason for obtaining identical ERR is that the testing frame 

is compared to large number of training frames to match up similar frame. However, 

variations of each frame pixels are not significant over a complete gait cycle. When the 

first frame of one gait cycle is compared to first frame of next gait cycle, then it is clear 
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that pixel variations is negligible.  Moreover, if a testing frame does not find similar 

amount of pixels frame from next gait cycle, then it continue searching the next gait 

cycle to find similar match up frames. Each testing frame is compared with all training 

dataset only once. Moreover, the silhouettes normalisation is also an important point to 

achieve high accuracy results.  

 

On silhouettes-based system, the slow walking style presented the best identical ERR 

compared to fast and carrying-a-ball walking styles using PCA with and without RT 

techniques. More number of frames were obtained from a complete gait cycle based on 

slow walking styles. Thus, the difference for each frame size to each other is very small 

compared to fast walking styles. There is a very high possibility of getting similar match 

up frames and achieve high ERR.  

 

Fast walking styles has the second highest ERR. When the subject’s walking speed is 

fast, then it is possible to change the initial walking direction and speed. The walking 

direction may change on each gait cycle. In this case, the fast walking styles has 

provided a slightly lower ERR than slow walking styles.  

 

Carrying-a-ball walking styles presented worse ERR than slow and fast walking styles. 

When a person is carrying a ball during walking, then the walking direction will change 

rapidly. It is necessary to adjust the body balance while the subject is carrying some 

things on the hand or on the body. The walking direction may change quickly on each 

gait cycle. This is the case for obtaining low ERR. It was also proven that when a subject 
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is carrying extra belongings during walking, then gait recognition will vary depending on 

each person.  

 

However, some of the frame pixel values are excessive, and therefore similar match up 

frames cannot be obtained. Thus, when a subject’s walking direction changed even very 

slightly, then recognition rates will also change accordingly.  

 

In this case, efficient ERR was achieved from these experiments. Many researchers 

obtained high correct classification of recognition rates in different arrangements of gait 

database and features. In this silhouettes-based system, the computational time is 

longer and required higher memory space to run the system. 

 

Performing recognition in a high dimensional space can significantly diminish the 

efficiency of system performance. Principal Component Analysis (PCA) is widely utilised 

to reduce the dimensionality of the data. The goal of PCA is to reduce the dimensionality 

of the data while retaining as much as possible of the variations present in the original 

dataset. PCA allows us to compute a linear transformation that maps data from a high 

dimensional space to a lower dimensional space.  

 

6.4.2 Principal Component Analysis (PCA) with Radon Transform (RT) 

Tanaya and Rabab (2010) proposed the use of Different Radon Transform (DiffRT) in 

gait feature extractions for gait recognition purposes. They were applied to differential 

RT (DiffRT) to extract high frequency features information. At first, the average 

silhouettes made and applied DiffRT to extract average silhouettes features. For the 



104 

 

 

 

experiment, USF gait database was applied and achieved efficient result. The proposed 

method was also compared with other methods and it performed better.  

 

Nikolaos and Zhiwei (2007) and Hao and Zhijing (2007) proposed to analyse gait feature 

extraction using Radon Transform (RT) and Linear Discriminant Analysis (LDA). The 

silhouettes were aligned at the centre using Radon Transform technique. The silhouette 

alignment is important as transform image information from centre of the silhouettes. 

For the experiment, USF gait database was used. A few other gait databases were used 

for the experiment, but the proposed method greatly improved recognition rates 

compared to other databases. The Radon Transform was also applied for gender 

recognition and achieved a resourceful result (Lei et al., 2009).  

 

Jia et al. (2009) analysed and described human shape features. The connected chips 

linking (CCPL) and mean-shift estimation were used to extract contour pixels of the 

targets. The contour features were transformed into normalised Radon matrixes. The 

main target is to identify whether that input frames are normal human motion or 

aggressive human motion. The AdaBoost algorithm was applied to classify normal or 

aggressive motion. The proposed method was efficient for analysing gait motion. 

Chatana et al. (2010) used RT for human identification based on Electrocardiogram 

(ECG) and achieved best accuracy result.    

 

GEI-based gait recognition system is one of the most powerful system for obtaining high 

recognition rates. GEI template is the average template over one gait cycle. After 

performing GEI templates to the experiment, high recognition rates were achieved 
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compared to silhouettes-based system as shown in Figure 6.18. Different recognition 

rates were obtained in different walking styles using PCA with and without RT 

techniques based on GEI templates system. For the slow walking styles, PCA with RT 

technique presents considerably better result than PCA-only technique. The fast walking 

styles shows identical recognition rates for both techniques. For carrying-a-ball walking 

styles, PCA with RT technique also shows identical results. 

  

In addition, slow walking styles presented better result compared to fast walking styles 

for both techniques. The slightly low recognition rate was obtained from fast waking 

styles than slow walking styles for both techniques, and carrying-a-ball walking styles 

presented appreciably better results compared to fast and slow walking styles. Slow 

walking styles and carrying-a-ball walking styles yield significantly higher recognition 

rates than fast walking styles.  

 

 

 

 



 

 

Figure 6.18: Performance comparison between PCA with and without RT 

                    techniques using GEI templates
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slightly better result than silhouettes-based system. However, the carrying-a-ball 

walking styles attained significantly better results compared to silhouettes-based system. 

The silhouettes-based frames were excessive causing low recognition rate acquisition, 

but when silhouettes were converted to GEI templates, then it achieved high recognition 

rate. Here, GEI templates training and testing dataset is limited in numbers to match up 

the testing frame from training dataset. However, a small number of the frame changes 

made significant difference the recognition rate percentage.  

 

The GEI templates shape is different from silhouettes shape, which means that pixel 

values in the silhouettes and GEI templates are different. In addition, GEI template 

presents variable covariance conditions to identify how person moves during walking.  

 

The Radon Transform is especially appropriate for gait representation and recognition. 

When people walk, naturally the large angular variations occur in legs and arms with 

respect to the horizontal axis. It means that the Radon Transform is measured from the 

centre of the silhouettes. Each angle energy of the original silhouettes will come out in 

precise coefficients that vary considerably through time. Thus, Radon coefficients are 

very important for identifying the subject’s shape and walking styles.  However, Radon 

calculates with respect to the silhouettes translating invariance and easy to calculate.  

Moreover, each Radon coefficient comprises contributions from several pixels, thus it is 

less risky to variations due to false noisy pixels on the original silhouettes. 

 

The projection of the image intensified along a radial line oriented at a specific angle. 

The RT mapping is from the Cartesian coordinates (x, y) to Polar coordinates (distance 
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and angel). Although PCA with and without RT techniques gave almost identical 

recognition rates, the matched frames are different for both silhouettes- and GEI-based 

systems. Thus, PCA applied on Radon Transform feature does not increase recognition 

rates. Radon transform is not helping significantly on normalise-frontal image. It was 

applied to verify improvement gains when applied on normalised frontal image. The RT 

probably has some small rotational effects on the image that is unseen to the naked 

eyes. 

 

6.4.3 Comparison of Recognition Results with other Researchers Results 

In order to test flexibility of walking styles, the researchers displayed the proposed 

algorithm on CMU database to compare with other researchers algorithms based on 

silhouettes systems. Table 6.1 shows the comparison of gait recognition rate with other 

researchers. It can also be seen from Table 6.1 that the recognition performances of 

proposed methods are superior to Amit, Zhang and Bo and Youmei algorithms in 

different walking styles conditions. For the slow walking styles, the proposed methods 

recognition rate is worse than Zhang and Daoliang’s algorithms, but superior than Amit’s 

algorithms. However, the proposed method’s result is slightly better than Bo and 

Youmei’s algorithms. For fast walking styles, the result achieved is superior than Amit, 

Zhang, and Bo and Youmei algorithms, but equal results were obtained with Daoliang’s 

algorithms. Finally, for carrying-a-ball walking styles, the obtained recognition result is 

slightly lower than Amit’s algorithm, but Zhang’s algorithms achieved superior results. 

However, Bo and Youmei and Daoliang achieved better results than the proposed 

method in carrying-a-ball walking styles.  
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Amit et al. (2003) used half of the gait cycles for testing and another half for training. 

However, the Hidden Markov Model (HMM) technique was applied to the experiment. 

The highest result displayed was 91% on ball walking styles. The cumulative match 

score system was applied to display the experimental result and achieved 91% correct 

classification rate (CRR) in the top three matches on same walking styles (ball vs ball). 

Zhang et al. (2004) also followed Amit’s technique, but different gait dataset were set. 

Four gait cycles for training and one for testing were applied. However, the experimental 

result displayed of cumulative match score system and achieved 100% (CCR) 

recognition rate on slow walking styles and carrying-a-ball walking styles, which is better 

than Amit and Bo and Youmei’s technique. Bo and Yumei (2006) applied PCA with and 

without LDA for recognition purposes. They followed Amit et al. (2003) and Zhang et al. 

(2004) database settings and adapted the walking speed for comparison. A 96% 

recognition rate was found which is very close to Zhang’s algorithm, but superior to 

Amit’s algorithm. Daoliang et al. (2007) applied PCA technique based on GEI gait 

templates, which is the same as one of the proposed techniques, but gait database was 

set differently from Daoliang’s algorithm. They set half of the gait cycles for training and 

another half for testing. Daoliang et al.(2007) obtained better result than the proposed 

system under different conditions. 

  

A low recognition rate was received from carrying-a-ball walking styles. The first ten gait 

cycles for training and next four for testing were taken. However, the last four cycles 

may not be the same as first ten cycle’s walking styles directions, walking speed or body 

movement to adjust balance for carrying additional stuffs. This may cause low 

recognition acquisition rate for carrying-a-ball walking styles.  
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The recognition rate depends on the size of the database. Thus, the proposed gait 

dataset is different from others and obtained different results. The above-mentioned 

authors used known gait dataset only, but did not compare it with unknown dataset. If 

known and unknown gait database is set, then it may change the percentage of the 

recognition rate. This rate will reduce if the system has found similar matching frame 

from any one unknown dataset. The researcher tested with unknown dataset and found 

similar frames from unknown dataset by proposed system. This is the cause of low 

recognition acquisition rate. When the recalls correct classification is equal to reject 

correct classification, it is called ERR. Therefore, the average recognition rate achieved 

comparatively low recognition rate than other researchers (Table 2). The proposed 

methods focused on ERR to compare with other systems.  

 

From Table 6.1, the proposed technique showed that slow and fast walking styles 

obtained different recognition results than each other, but carrying-a-ball walking styles 

obtained low recognition rates than slow and fast walking styles. The fast walking styles 

gave 100% recognition rate only. This suggests that for reasons of low recognition, 

certain parts of the body may not be efficient than others. In particularly, the motion of 

the legs and hands may not adjust in the same manner as slow or fast walking styles in 

every gait stride. It may rapidly change from frame to frame. Thus, the walking 

directions may change to adjust the control of the body for carrying-a-ball. Therefore, 

walking conditions are not stable while carrying-a-ball during a walk. It can be reported 

that the proposed algorithm demonstrated good recognition rates for slow and fast 
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walking styles. The carrying-a-ball walking styles achieved slightly low recognition rates 

compared to other results. 

 

TABLE 6.1: Comparison based on CMU database 

Train vs 

Test 

Amit et 

al. 

(2003) 

Zhang 

et al. 

(2004) 

Bo and 

Youmei 

(2006) 

Daoliang 

et al. 

(2007) 

 

Proposed 

method 

(silhouette 

based 

system) 

Proposed 

method 

(silhouett

e based 

system) 

Proposed 

method 

(GEI based 

system) 

Slow vs 

slow  

72% 

(CCR)  

100% 

(CCR) 

96% 

(CCR) 

100%  

(CCR) 

96.37% 

(CCR) 

90.78% 

(ERR) 

98.07% 

(CCR) 

Fast vs 

fast  

68% 

(CCR) 

96% 

(CCR)  

96% 

(CCR)  

100%  

(CCR) 

100% 

(CCR) 

90.26% 

(ERR) 

100% 

(CCR) 

Ball vs ball  91% 

(CCR) 

100% 

(CCR) 

96% 

(CCR) 

96%  

(CCR) 

89.62% 

(CCR) 

87.75% 

(ERR) 

94.23% 

(CCR) 

 

 

6.4.4 Computational Cost 

Both PCA with and without RT techniques require longer system time to compute using 

silhouettes-based system. Since silhouettes take up more space as it contains larger 

number of training and testing frames, thus silhouettes-based system require larger 

memory to read the system for PCA with and without RT techniques. However, if GEI 

template-based systems were used for PCA with and without RT techniques, then the 

system will run very fast as it takes up low space and low memory to read the system. 

The computation time is very limited and efficient for GEI template-based system. Thus, 
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the system’s computational time is dependent on the size of the known and unknown 

datasets.   

 

The approximate computational time is designated in Table 6.2 for slow walking styles 

recognition system. GEI template-based system is much more computationally efficient 

than silhouettes-based system using PCA with and without RT techniques. The results 

were obtained by using a platform with an Intel Dual Core 1.98 GHz CPU and 3.24 GB 

memory. 

 

Table 6.2: Comparison of the computational time of silhouettes and GEI template-based 

system for recognising based on proposed gait dataset 

 

Computational cost Silhouette-based 

system (sec) 

GEI-based 

system (sec) 

PCA with RT technique 20226 52 

PCA only technique 19620 50 

 

It was suggested that this project use GEI template-based system using PCA-only 

technique to get the desired output from the system.  

 

The advantage of the gait recognition is its biometric features. These biometric features 

can be reliably captured from a great distance. Moreover, it does not require user 

cooperation for gait recognition. It is very difficult to recognise a subject if the subjects 

are almost the same size (width and height). If subject’s body figure is changed from 

big size to slim size, or slim size to big size, then it becomes complicated to recognise 
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the subject. Abnormal walking styles also give rise to complexities in identifying person. 

If we are able to make 100% reliable gait recognition system in any situations or 

environments, then the subject need not to carry any materials to identify subjects and 

research will go on. 

 

6.5 Conclusion 

The comparison of recognition rates between PCA with and without RT techniques 

based on silhouettes and GEI templates system were described. The comparison 

between silhouettes and GEI templates system were also described in detail. The 

reasons of using both PCA with and without RT techniques based on silhouettes and GEI 

templates comparisons were also stated, even though it has been reported that the 

PCA-only method based on GEI template is the best for the system. The best equal 

recognition result was 92.30% using PCA with and without RT techniques based on GEI 

templates for carrying-a-ball walking styles. Finally, PCA-only technique presented 

efficient result based on GEI templates. 
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CHAPTER 7 

 

CONCLUSION 

 

 

7.1 Overview of Friction, Slips and Falls 

Friction slips and falls survey describes briefly. The three walking styles have compared 

with slips and fall during walk on treadmill. The survey found that under normal surface 

condition, slow walk is safer compared to fast and carrying a load walk.  

 

7.2 Gait Features  

The CMU MoBo gait database was selected for this research. The selected gait database 

contains 25 subjects with four types of walking styles. The silhouettes extraction 

methods were briefly explained in Chapter 2. The provided silhouettes were selected for 

the research.  After that, the database was rearranged to suit the experiment.  

 

Two datasets were prepared, namely, known dataset and unknown dataset. The known 

dataset (13 subjects) was divided into two sets, namely, training dataset and testing 

dataset. Twelve subjects were selected for unknown dataset. Fourteen cycles were 

selected for the experiments where 10 cycles were used for training and four cycles for 

testing. Each gait cycle contains approximately 18-20 frames. The training dataset 

consists of 6,729 frames, which were selected from CMU MoBo database. Similarly, the 

2,714 frames for the test dataset were selected from same database. These frames 

were selected based on subjects walking styles.  
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Next, the Gait Energy Image (GEI) was constructed to compare recognition rates with 

silhouettes-based system. GEI was made by average of one complete gait cycle. The 

GEI template dataset was rearranged from silhouettes dataset. The training dataset 

consist of 130 templates, which were selected from subject gait cycles. The 52 GEI 

templates in the test dataset were also chosen from the same subject gait cycles. The 

12 GEI templates dataset were preferred for unknown dataset.   

 

7.3 Principal Component Analysis (PCA) Techniques 

The basic concept of PCA method was described briefly to be used for the experiment. 

The PCA technique was proposed to obtain the recognition rates. The proposed method 

was used to reduce the dimension of the images for experiment. The PCA method was 

applied for two features that are silhouettes- and GEI template-based systems. Both 

feature techniques presented acceptable recognition rates. The GEI template-based 

system was found with better recognition rates than silhouettes-based system.  

 

7.4 Principal Component Analysis (PCA) with Radon Transform (RT)  

           Technique 

The fundamental concept of PCA-only and PCA with RT methods were briefly explained 

for use in the research. The Radon Transform was applied to verify if there is any 

improvement when applied on normalised frontal image, since the RT probably has 

some small rotational effects on the image that are hard to see with the naked eyes. 

Although PCA with and without RT gave almost the same recognition rates, the matched 

frames are different for both silhouettes- and GEI-based systems. Thus, PCA applied on 
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Radon Transform features does not increase recognition rates. Radon Transform is not 

contributing significantly on normalise-frontal images. The PCA with RT technique was 

also proposed for this research which was applied to calculate each angle of silhouettes 

and transform to formulate feature vector. The RT output was passed through PCA to 

reduce the dimension of the frames for conducting test. This technique was applied to 

silhouettes- and GEI template-based systems to compare the recognition rates. The 

recognition results were presented in that section.  

 

7.5 Analysis and Discussion 

Two methods were proposed and investigated. The first technique proposed to reduce 

the dimension of the frames and performed the experiment. The second technique 

proposed to transform data to lie on co-efficient template and passed through PCA to 

reduce the dimension for the experiment. Both proposed techniques were applied for 

recognition purposes. A comparison of recognition rates was presented between 

silhouettes and GEI templates using PCA with and without RT techniques.  However, 

performance comparison were presented between PCA with and without RT techniques, 

based on silhouettes and GEI templates. The advantages of GEI template-based system 

were briefly described. In addition, the computational cost was also explained. The 

obtained recognition rates were compared with other researchers. As a result, the PCA 

with RT technique achieved 92.34% recognition rate using GEI template-based system 

in this research.  

 

The experiments were tested with known and unknown datasets, and threshold tuning 

parameters can be used to tune the system performance to suite an application. GEI 
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template-based system presented more efficient result than silhouettes-based system 

using PCA with and without RT techniques. Although PCA with and without RT gave 

almost identical recognition rates, the matched frames are different for both silhouettes- 

and GEI-based systems. The GEI template-based system on PCA-only technique is 

better for the system because of shorter system run time and low memory. Thus, the 

three walking styles gave more efficient results based on the proposed techniques.    

 

7.6 Future Works 

Although the PCA with and without RT techniques output has shown an improvement 

for gait recognition systems, it is necessary to perform the experiment with different 

walking styles under different conditions (slow vs fast, fast vs ball, and so on) for 

comparison. It is also important to verify the recognition rates using different gait 

databases under the proposed methods.  

 

The proposed gait recognition techniques necessitate performing with similar sized 

subjects such as height, width, size of the body and verifying the recognition rate 

accuracy with known and unknown datasets. However, the current techniques can be 

tested with different walking styles on training and testing dataset to find the 

percentage of matching frames using CMU MoBo gait database.  
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APPENDICES 

APPENDIX A: PCA PROGRAM PSEDUCODE 

1.1 PCA ALGORITHM APPLIED FOR FACE RECOGNITION 

A 2-D facial image can be represented as 1-D vector by concatenating each row (or column) into 

a long thin vector. 

 

 

 

 

Figure 1.1: An NxN pixel image of a face, represented as a vector of size N2-dimensional image 

space. 

 

Supposed we have I1, I2 … IM images in the training set, where M is the number of total images 

in training set. All images represented as N2-dimensional vectors. Each image Ii represented as a 

vector Γi. 

 

Average face vector Ψ calculated. 

                                                                                                                        

(1) 

 

 

Each face vector Γi were subtracted the mean face Ψ, to get a set of vectors Φi. The purpose of 

subtracting the mean image from each image vector is to be left with only the distinguishing 

features from each face and “removing” information that is common. 

                                                                                                                          

(2) 

Covariance matrix C calculated. 

Original 
NxN pixel 

image 
N2 x 1 vector 
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, where                                                         

(3) 

Note that C is an N2xN2 matrix and A is an N2xM matrix. Eigenvectors ui of C need to be 

calculated.  However note that C is an N2xN2 matrix and it would return N2 Eigenvectors each 

being N2 dimensional. For an image this number is huge.  Instead of the Matrix AAT, consider the 

matrix ATA. Remember A is an N2xM matrix, thus ATA is an MxM matrix. If the Eigenvectors of 

this matrix were found, it would return M Eigenvectors, each of dimensions Mx1.Tthese 

Eigenvectors will be called vi. Consider the eigenvectors vi of ATA such that 

− ATA vi = λ vi 

− vi is the eigenvector of ATA, and λ is the eigenvalue. 

− Multiplying both sides by A, we have AAT (Avi) = λ(Avi). 

− From the new equation, it can be seen that Avi is the eigenvector of AAT. 

− So, the eigenvector of C=AAT, is ui = Avi. 

 

This implies that using vi we can calculate the M largest Eigenvectors of AAT. Remember that M 

<< N2 as M is simply the number of training images. Find the best M Eigenvectors of C = AAT by 

using the relation discussed above. That is: ui = Avi.  The eigenvectors were then normalize so 

that || ui || = 1. Select the best K Eigenvectors, where K ≤ M. Since these eigenvectors have the 

same dimension as the original image, they have a face like appearance, which were called 

Eigenfaces. 

 

Now each face in the training set (minus the mean), Φi can be represented as a linear 

combination of these Eigenvectors ui. 

                                                                                                                   

(4) 

where uj are eigenfaces. These weights can be calculated as 

                                                                                                                             

(5) 

Each normalized training image is represented in this basis as a vector. 

 

Where i = 1, 2… M. This means we have to calculate such a vector corresponding to every image 

in the training set and store them as templates. 
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APPENDIX B: ALGORITHM OF EUCLIDEAN DISTANCE  

 

2.1 DISCUSSION OF EFFECT OF THRESHOLD TUNING PARAMETER ON 

RECOGNITION RATE 

As can be seen from the recall correct classification rate is decreasing while the rejection correct 

classification rate is increasing as Tcpara increase. However, the False Acceptance Rate for both 

recall and rejection decrease as Tcpara value increases. Thus, the value of the threshold tuning 

parameter can be used to tune the performance of the system to have either high recall with 

high false acceptance rate for application such as boarder monitoring or high rejection rate for 

unknown persons for application such as access control. 

 

2.2 DISTANCE MEASUREMENT 

The Euclidean distance measure is used for the classification task. If the Euclidean distance 

between test image y and image x in the training database d(x,y) is smaller than a given 

threshold t then images y and x are assumed to be of the same person. The threshold t is the 

largest Euclidean distance between any two face images in the training database, divided by a 

threshold tuning value (Tcpara) as given in Equation 1. 

 

The distance threshold Өtc is the largest distance between any two face images, and divided by a 

threshold tuning value (Tcpara). 

Өtc =  
�����,���Ω�Ω����

������
                                                        

(1) 

Where j, k = 1, 2 … M 

M = total number of training image 

Ω = the reduced dimension images 

 

2.3 The Euclidean distance algorithm 

Euclidean distance is calculated from the center of the source cell to the center of each of the 

surrounding cells. True Euclidean distance is calculated in each of the distance tools. 

Conceptually, the Euclidean algorithm works as follows: for each cell, the distance to each source 

cell is determined by calculating the hypotenuse with x_max and y_max as the other two legs of 

the triangle. This calculation derives the true Euclidean distance, rather than the cell distance. 

The shortest distance to a source is determined, and if it is less than the specified maximum 

distance, the value is assigned to the cell location on the output raster. 
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Determining true Euclidean distance 

The output values for the Euclidean distance raster are floating-point distance values. If the cell 

is at an equal distance to two or more sources, the cell is assigned to the source that is first 

encountered in the scanning process. You cannot control this scanning process. 

The above description is only a conceptual depiction of how values are derived. The actual 

algorithm computes the information using a two-scan sequential process. This process makes the 

speed of the tool independent from the number of source cells, the distribution of the source 

cells, and the maximum distance specified. The only factor that influences the speed with which 

the tool executes is the size of the raster. The computation time is linearly proportional to the 

number of cells in the Analysis window. 

 

2.4 Measures of distance between samples: Euclidean 

Pythagoras’ theorem 

The photo shows Michael in July 2008 in the town of Pythagorion, Samos island, Greece, paying 

homage to the one who is reputed to have made almost all the content of this book possible 

Pythagoras the Samian. The illustrative geometric proof of Pythagoras’ theorem stands carved on 

the marble base of the statue – it is this theorem that is at the heart of most of the multivariate 

analysis presented in this book, and particularly the graphical approach to data analysis that we 

are strongly promoting. When you see the word “square” mentioned in a statistical text (for 

example, chi square or least squares), you can be almost sure that the corresponding theory has 

some relation to this theorem. We first show the theorem in its simplest and most familiar two-

dimensionalform, before showing how easy it is to generalize it to multidimensional space. In a 

right 4- 2 angled triangle, the square on the hypotenuse (the side denoted by A in figure 1) is 

equal to the sum of the squares on the other two sides (B and C); that is, A2 = B2 + C2. 

 

Figure 1 Pythagoras’ theorem in the familiar right-angled triangle, and the monument to this 

triangle in the port of Pythagorion, Samos island, Greece, with Pythagoras himself forming one of 

the sides. Figure 1 Pythagoras’ theorem in the familiar right-angled triangle, and the monument 

to this triangle in the port of Pythagorion, Samos island, Greece, with Pythagoras himself forming 

one of the sides. 
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Figure 1 Pythagoras’ theorem in the familiar right-angled triangle, and the monument to this 

triangle in the port of Pythagorion, Samos island, Greece, with Pythagoras himself forming one of 

the sides. 

 

2.5 Euclidean distance 

The immediate consequence of this is that the squared length of a vector x = [ x1 x2 ] is the sum 

of the squares of its coordinates (see triangle OPA in figure 2, or triangle OPB – |OP|2 denotes 

the squared length of x, that is the distance between point O and P); and the figure 2 Pythagoras’ 

theorem applied to distances in two-dimensional space. 

 

Figure 2: Pythagoras’ theorem applied to distances in two-dimensional space. 
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squared distance between two vectors x = [ x1 x2 ] and y = [ y1 y2 ] is the sum of squared 

differences in their coordinates (see triangle PQD in figure 2; |PQ|2 denotes the squared distance 

between points P and Q). To denote the distance between vectors x and y we can use the 

notation x, y d so that this last result can be written as: 

2
22

2
11,

2 )()( yxyxd yx −+−=   

 

that is, the distance itself is the square root 

2
22

2
11, )()( yxyxd yx −+−=  

 

What we called the squared length of x, the distance between points P and O in figure 2, is the 

distance between the vector x = [ x1 x2 ] and the zero vector 0 = [ 0 0 ] with coordinates all zero: 

2
2

2
10, ( xxd x +=   

 

which we could just denote by dx . The zero vector is called the origin of the space. 
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Figure 3: Pythagoras’ theorem extended into three dimensional space 

 

We move immediately to a three-dimensional point x = [ x1 x2 x3 ], shown in figure 3. This figure 

has to be imagined in a room where the origin O is at the corner – to reinforce this idea ‘floor 

tiles’ have been drawn on the plane of axes 1 and 2, which is the ‘floor’ of the room. The three 

coordinates are at points A, B and C along the axes, and the angles AOB, AOC and COB are all 

90° as well as the angle OSP at S, where the point P (depicting vector x) is projected onto the 

‘floor’.  

 

Using Pythagoras’ theorem twice we have: 

|OP|2 = |OS|2 + |PS|2 (because of right-angle at S) 

|OS|2 = |OA|2 + |AS|2 (because of right-angle at A) 

and so 

|OP|2 = |OA|2 + |AS|2 + |PS|2 

that is, the squared length of x is the sum of its three squared coordinates and so 
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2
3

2
2

2
1 xxxd x ++=          

 (1) 

It is also clear that placing a point Q in figure 3 to depict another vector y and going through the 

motions to calculate the distance between x and y will lead to 

2
313

2
22

2
11, )()()( yxyxyxd yx −+−+−=      

 (2) 

 

Furthermore, we can carry on like this into 4 or more dimensions, in general J dimensions, where 

J is the number of variables. Although we cannot draw the geometry any more, we can express 

the distance between two J-dimensional vectors x and y as: 

2

1
, )(∑

=

−=
j

j
jjyx yxd         

 (3) 

This well-known distance measure, which generalizes our notion of physical distance in two- or 

three-dimensional space to multidimensional space, is called the Euclidean distance (but often 

referred to as the ‘Pythagorean distance’ as well). 

 

Source: http://www.econ.upf.edu/~michael/stanford/maeb4.pdf 

Wikipedia http://en.wikipedia.org/wiki/Euclidean_distance  
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APPENDEX C: RADON TRANSFORM AND ALL MATLAB CODES 

3.1 RADON TRANSFORM 

The Radon transform is an integral transform whose inverse is used to reconstruct images from 

medical CT scans. A technique for using Radon transforms to reconstruct a map of a planet's 

polar regions using a spacecraft in a polar orbit has also been devised (Roulston and Muhleman 

1997). 

 

The Radon transform can be defined by 

  

 

                       

(1) 

  

                       

(2) 

   

                        

(3) 

 

where is the slope of a line and is its intercept. The inverse Radon transform is 

 

                                                                 

(4) 

 

where is a Hilbert transform. The transform can also be defined by 

                                           

(                                       

(5) 

   

 

where is the perpendicular distance from a line to the origin and is the angle formed by the 

distance vector. 

 

Using the identity 

                              

                                                                                     

                                                               

(6) 

 

where is the Fourier transform, gives the inversion formula 
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(7) 

 

The Fourier transform can be eliminated by writing 

                                                                  

                                                         

(8) 

 

where is a weighting function such as 

                                                  

(9) 

 

 

                                                  

(10) 

Nievergelt (1986) uses the inverse formula 

                                  

(11) 

 

where 

                                                                    

                                                             

(12) 

 

Ludwig's inversion formula expresses a function in terms of its Radon transform. and 

are related by 

 

                                                                    

(13) 

 

                                                                    

(14) 

 

The Radon transform satisfies superposition 

 

(15)

 

linearity 

 

(16)
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scaling 

 

(17)

 

rotation, with rotation by angle  

 

(18)

 

and skewing 

 

(19)

(Durrani and Bisset 1984; correction in Durrani and Bisset 1985). 

The line integral along is 

 

(20)

 

The analog of the one-dimensional convolution theorem is 

 

(21)

 

the analog of Plancherel's theorem is 

 

(22)

 

and the analog of Parseval's theorem is 

 

(23)

 

If is a continuous function on , integrable with respect to a plane Lebesgue measure, and 

       

                                                                                                                             

     (24) 

 

for every (doubly) infinite line where is the length measure, then must be identically zero. 

However, if the global integrability condition is removed, this result fails (Zalcman 1982, 

Goldstein 1993).  
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Sources:  

Anger, B. and Portenier, C. Radon Integrals. Boston, MA: Birkhäuser, 1992.  

Armitage, D. H. and Goldstein, M. "Nonuniqueness for the Radon Transform." Proc. 
Amer. Math. Soc. 117, 175-178, 1993.  

Deans, S. R. The Radon Transform and Some of Its Applications. New York: Wiley, 
1983.  

Zalcman, L. "Uniqueness and Nonuniqueness for the Radon Transform." Bull. London 
Math. Soc. 14, 241-245, 1982. 

http://mathworld.wolfram.com/RadonTransform.html  
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Flow Chart of Radon Transform 
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Figure 3.1 : Flow chart of Radon Transform technique 
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Mail procedure
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Figure 3.2: Flow chart of main procedure 

 

Procedure 1 

 

Figure 3.3: Flow chart of Procedure 1 
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X procedure 

 

Figure 3.4: Flow chart of X procedure 
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Y procedure 

 

Figure 3.5: Flow chart of Y procedure 
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PROGRAM CODE 

EUCLIDEAN DISTANCE 

tic 

clc 

close all 

clear all 

 

M = input('Load how many image: '); 

 

img=imread('test1.jpg'); 

if isrgb(img) 

img = rgb2gray(img); 

end 

 

row=100; 

col=100; 

% [row col]=size(img); 

 

fprintf('\nPreparing test image\n'); 

EU = []; % storing the images in a matrix 

checkloop=0; 

for i=1:M 

str=strcat('test',int2str(i),'.jpg'); 

eval('img=imread(str);'); 

if isrgb(img) 

img = rgb2gray(img); 

end 

img=histeq(img,255); 

img=imresize(img, [row col]); 

temp=reshape(img',row*col,1); 

EU=[EU temp]; 

 

fprintf('%d  ', i); 

checkloop = checkloop+1; 

if checkloop == 10 

fprintf('\n'); 
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checkloop = 0; 

end 

end 

 

EU = double(EU); 

 

checkloop=0; 

fprintf('\nCalculating euclidean distance\n'); 

distance=[]; 

frame=[]; 

for i=1:M; 

temp = norm(EU(:,1)-EU(:,i)); 

distance = [ distance; temp ]; 

 

fprintf('%d  ', i); 

checkloop = checkloop+1; 

if checkloop == 10 

fprintf('\n'); 

checkloop = 0; 

end 

frame=[frame i]; 

end 

 

figure(1); 

axes1 = axes('Parent',figure(1),'FontSize',14); 

hold on 

plot1 = plot(frame,distance,'Parent',axes1,'MarkerSize',3,'LineWidth',2); 

set(plot1,'MarkerFaceColor',[0 0 0],'Marker','o',... 

'DisplayName','Distance value',... 

'Color',[0 0 0]); 

legend('show'); 

set(legend,'Location','NorthOutside'); 

xlabel('Frame number','FontSize',16); 

ylabel('Euclidean distance value','FontSize',16); 

hold off 
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fprintf('\nProgram end - Image size [%dx%d]\n',col,row); 

elapsed=toc/60; 

fprintf('Elapsed time is: %d minutes %2.1f seconds\n',fix(elapsed), (elapsed-fix(elapsed))*60); 

 

 

DATA INPUT 

clc 

clear 

 

fprintf('\n[TRAINING SET DETAIL]\n'); 

fprintf('How many person in training set\t: '); 

trainperson_no = input(' '); 

 

train_person_detail=[]; % to store amount of images used for each person 

for i=1:trainperson_no 

fprintf('Person [%d]\tgot how many image\t: ',i); 

temp = input(' '); 

train_person_detail=[train_person_detail;temp]; 

end 

fprintf('For LDA - Each person got how many image? '); 

population = input(' '); 

class_number=trainperson_no; % total class/person 

 

looptrain=0; % default training image size 

for i=1:trainperson_no 

looptrain = looptrain + train_person_detail(i); 

end 

fprintf('Your training set size is: %d\n',looptrain); 

 

 

fprintf('\n[TESTING SET (KNOWN) DETAIL]\n'); 

fprintf('How many person in testing set\t: '); 

testperson_no1 = input(' '); 

 

test_person_detail1=[]; % to store amount of images used for each person 

for i=1:testperson_no1 
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fprintf('Person [%d]\tgot how many image\t: ',i); 

temp = input(' '); 

test_person_detail1=[test_person_detail1;temp]; 

end 

 

no_test1=0;  % default test image size 

for i=1:testperson_no1 

no_test1=no_test1+test_person_detail1(i); 

end 

fprintf('Your testing set size is: %d\n',no_test1); 

 

fprintf('\n[TESTING SET (UNKNOWN) DETAIL]\n'); 

fprintf('How many person in testing set\t: '); 

testperson_no2 = input(' '); 

 

test_person_detail2=[]; % to store amount of images used for each person 

for i=1:testperson_no2 

fprintf('Person [%d]\tgot how many image\t: ',i); 

temp = input(' '); 

test_person_detail2=[test_person_detail2;temp]; 

end 

 

no_test2=0;  % default test image size 

for i=1:testperson_no2 

no_test2=no_test2+test_person_detail2(i); 

end 

fprintf('Your testing set size is: %d\n',no_test2); 

 

save data\training_and_testing_data_input 

save data\forlda population class_number 

 

 

 

 

 

 



153 

 

 

 

PROMOSING 

clear 

tic 

clc 

close all 

load data\training_and_testing_data_input 

 

DisplayTrainingSet=[]; 

TrainingSet=[]; 

 

DisplayTestSet1=[]; 

DisplayTestSet2=[]; 

TestSet1=[]; 

TestSet2=[]; 

 

fprintf('LOAD AND STORE IMAGE IN MATRIX\n'); 

fprintf('‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾'); 

 

str1='F:\provided silhouettes for known and unknown\known_unknown_silhouettes\carrying a 

ball walk\train\'; 

str2='F:\provided silhouettes for known and unknown\known_unknown_silhouettes\carrying a 

ball walk\test\'; 

str3='F:\provided silhouettes for known and unknown\known_unknown_silhouettes\carrying a 

ball walk\unknown\'; 

 

fprintf('\nResize image -\nRow: '); 

rowused = input(' '); 

fprintf('Col: '); 

colused = input(' '); 

 

fprintf('\nLoad training images\t\t- [          '); 

% Preparing training images 

for i=1:looptrain 

strimg=strcat(str1,'train', int2str(i),'.jpg'); 

eval('img=imread(strimg);'); 

if size(img,3)==3 
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img=rgb2gray(img); 

end 

img=histeq(img,255); 

img=imresize(img, [rowused colused]); 

temp=reshape(img', rowused*colused,1); 

TrainingSet=[TrainingSet temp]; % training image set 

percent=(i/looptrain)*100; 

fprintf('\b\b\b\b\b\b\b\b\b%6.2f%% ]', percent); 

end 

clear temp 

 

fprintf('\nLoad test images (known)\t- [          '); 

% Preparing testing images (known) 

for i=1:no_test1 

strimg=strcat(str2,'test',int2str(i),'.jpg'); 

eval('img=imread(strimg);'); 

if size(img,3)==3 

img=rgb2gray(img); 

end 

img=histeq(img,255); 

img=imresize(img, [rowused colused]); 

temp=reshape(img', rowused*colused,1); 

TestSet1=[TestSet1 temp]; % training image set 

percent=(i/no_test1)*100; 

fprintf('\b\b\b\b\b\b\b\b\b%6.2f%% ]', percent); 

end 

clear temp 

 

fprintf('\nLoad test images (unknown)\t- [          '); 

% Preparing testing images (unknown) 

for i=1:no_test2 

strimg=strcat(str3,'unknown',int2str(i),'.jpg'); 

eval('img=imread(strimg);'); 

if size(img,3)==3 

img=rgb2gray(img); 

end 
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img=histeq(img,255); 

img=imresize(img, [rowused colused]); 

temp=reshape(img', rowused*colused,1); 

TestSet2=[TestSet2 temp]; % training image set 

percent=(i/no_test2)*100; 

fprintf('\b\b\b\b\b\b\b\b\b%6.2f%% ]', percent); 

end 

clear temp 

fprintf('\n'); 

 

N = size(TrainingSet,1); % dimension of the image 

 

save data\prosimgdata N TestSet1 TestSet2 TrainingSet colused looptrain no_test1 no_test2 

rowused trainperson_no testperson_no1 testperson_no2 train_person_detail test_person_detail1 

test_person_detail2 

fprintf('\nProgram end - Data saved!\nImage size [%dx%d]\nTrainig & Testing size - [%d, %d, 

%d]\n',colused,rowused,looptrain,no_test1, no_test2); 

elapsed=toc/60; 

fprintf('Elapsed time is: %d minutes %2.1f seconds\n',fix(elapsed), (elapsed-fix(elapsed))*60) 

 

 

PROGRAM PCA 

tic 

clear all 

close all 

load data\prosimgdata 

load data\data_train 

clear DisplayTrainingSet DisplayTestSet1 DisplayTestSet2 

 

fprintf('\n\nPCA WITH RADON\n'); 

fprintf('‾‾‾‾‾‾‾‾‾‾‾‾‾‾\n'); 

 

 

% 

===========================================================

============= 
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% S=resmat_train; % radon + pca 

S=TrainingSet; % pca only 

% 

===========================================================

============= 

 

 

fprintf(' Finding mean image\n'); 

% Getting mean image 

S=double(S); 

tmimg=mean(S,2);  % obtains the mean of each row instead of each column 

 

fprintf(' Finding zero-mean matrix of the image set\n'); 

% Step 3: Subtract the mean 

Sdiff = S - repmat(tmimg,1,looptrain); % zero-mean image set 

 

fprintf(' Finding covariance matrix C=AA''\n'); 

% Step 4: Find covariance matrix 

% Find eigenvector if C = AA' 

% Consider C = A'A 

covariance = double(Sdiff') * double(Sdiff); 

% Find v=eigenvector, d=eigenvalue 

% A'A(v) = d(v) 

% But use AA'(Av) = d(Av) method 

% So Av is the eigenvector for C=AA' 

% I have proove this myself 

% With this, i will get the best M's eigenvector of C=AA' 

 

fprintf(' Finding eigenvectors & eigenvalues\n'); 

% Step 5: Find eigenvectors and eigenvalues of C=AA' 

[ v d ] = eig(covariance); 

d = diag(d); 

 

fprintf(' Sorting eigenvalues for C=A''A - [          '); 

for i=1:looptrain-1 

j=1; 
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while j<looptrain 

if d(j) < d(j+1) 

temp1 = d(j); 

temp2 = v(:,j); 

d(j) = d(j+1); 

v(:,j) = v(:,j+1); 

d(j+1) = temp1; 

v(:,j+1) = temp2; 

else 

end 

j=j+1; 

end 

percent=(i/(size(d,1)-1))*100; 

fprintf('\b\b\b\b\b\b\b\b\b%6.2f%% ]', percent); 

end 

clear temp1 temp2; 

fprintf('\n'); 

% d --> M's highest eigenvalues, sorted from HI to LO. 

% v --> M's best eigenvectors, ordered by eigenvalue, HI to LO. 

 

% normalizing ||v|| = 1 

for i=1:looptrain; 

v(:,i)=v(:,i)/norm(v(:,i)); 

end 

eigenface = double(Sdiff) * v; % this is the best M eigenvector of C=AA' 

 

 

no_of_fevec = looptrain; % the best K's eigenvector 

d=d(1:no_of_fevec); 

eigenface=eigenface(:,1:no_of_fevec); 

% select the best K's eigenvector 

% normaly K <= M 

fprintf(' Number of eigenfaces used: %d \n', no_of_fevec); 

 

fprintf(' Normalizing ||eigenface|| = 1\n'); 

% Step 6: Getting the eigenfaces 
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% normalizing ||eigenface|| = 1 

for i=1:no_of_fevec; 

eigenface(:,i)=eigenface(:,i)/norm(eigenface(:,i)); 

end 

 

 

fprintf(' Getting weight vector (kernel set) of training images'); 

% Step 7: Finding weights vector of the training images 

W=[]; 

W=eigenface'*double(Sdiff); 

fprintf('\n'); 

 

% used for fusion of system 

W_pca_with_radon = W; 

eigenface_pca_with_radon = eigenface; 

tmimg_pca_with_radon = tmimg; 

 

 

save data/rdpcadata W_pca_with_radon eigenface_pca_with_radon looptrain no_test1 no_test2 

tmimg_pca_with_radon; 

fprintf('\nProgram end\nImage size [%dx%d]\nNumber of eigenvector used 

[%d]\n',colused,rowused,no_of_fevec); 

elapsed=toc/60; 

fprintf('Elapsed time is: %d minutes %2.1f seconds\n',fix(elapsed), (elapsed-fix(elapsed))*60); 

 

PROGRAM RADON 

tic 

clear 

close all 

 

fprintf('\n\nPERFORMING RADON TRANSFORM\n'); 

fprintf('‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾\n'); 

 

% fprintf('theta step size, 1 to 10?\n: '); 

% increament = input(' '); 

increament = 1; 
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% fprintf('rho step size, 1 to 10?\n: '); 

% increa2 = input(' '); 

increa2 = 1; 

save data\radonincrea increament increa2 

 

load data\prosimgdata 

% ------------------------------------------------ 

% || PERFORM RADON TRANSFORM ON TRAINING IMAGES || 

% ------------------------------------------------ 

resmat_train = []; % empty matrix 

rhomat_train = []; 

fprintf('Perform radon transform on Training Image Set\n'); 

fprintf('Progress [          '); 

for i=1:looptrain 

f=TrainingSet(:,i); 

f=(reshape(f,colused,rowused))'; 

f=double(f); 

[M N] = size(f); 

 

% Center of the image 

m = round(M/2); 

n = round(N/2); 

 

% The total number of rho's is the number of pixels on the diagonal, since 

% this is the largest straight line on the image when rotating 

rhomax = ceil(sqrt(M^2 + N^2)); 

rc = round(rhomax/2); 

 

theta = 0:180; 

mt = max(theta); 

 

res = cast(zeros(rhomax+1,mt),'double'); % add 1 to be sure, 

% could also be subtracted when 

% checking bounds 

 

for t = 1:increament:45 % below 45 degrees, use y as variable 



160 

 

 

 

 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

 

for r = 1:rhomax 

rho = r - rc; 

b = rho/sintheta; % y = ax + b 

 

ymax = min(round(-a*m+b),n-1); 

ymin = max(round(a*m+b),-n); 

 

for y = ymin:increa2:ymax 

 

x = (y-b)/a; 

xfloor = floor(x); % The integer part of x 

xup = x - xfloor; % The decimals of x 

xlow = 1 - xup; % What is says 

x = xfloor; 

x = max(x,-m); 

x = min(x,m-2); 

 

% Flip the image horizontally: 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xlow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xup*f(y+n+1,x+m+2); 

end 

end 

end 

 

for t = 46:increament:90 

 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

for r = 1:rhomax 

rho = r - rc; 
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b = rho/sintheta; % y = ax + b 

xmax = min(round((-n-b)/a),m-1); 

xmin = max(round((n-b)/a),-m); 

for x = xmin:increa2:xmax 

y = a*x+b; 

yfloor = floor(y); 

yup = y - yfloor; 

ylow = 1 - yup; 

y = yfloor; 

y = max(y,-n); 

y = min(y,n-2); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + ylow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + yup*f(y+n+2,x+m+1); 

end 

end 

end 

 

for t = 91:increament:135 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

for r = 1:rhomax 

rho = r - rc; 

b = rho/sintheta; % y = ax + b 

xmax = min(round((n-b)/a),m-1); 

xmin = max(round((-n-b)/a),-m); 

for x = xmin:increa2:xmax 

y = a*x+b; 

yfloor = floor(y); 

yup = y - yfloor; 

ylow = 1 - yup; 

y = yfloor; 

y = max(y,-n); 

y = min(y,n-2); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + ylow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + yup*f(y+n+2,x+m+1); 
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end 

end 

end 

 

for t = 136:increament:179 % above 135 degrees, use y as variable 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

for r = 1:rhomax 

rho = r - rc; 

b = rho/sintheta; % y = ax + b 

ymax = min(round(a*m+b),n-1); 

ymin = max(round(-a*m+b),-n); 

for y = ymin:increa2:ymax 

x = (y-b)/a; 

xfloor = floor(x); 

xup = x - xfloor; 

xlow = 1 - xup; 

x = xfloor; 

x = max(x,-m); 

x = min(x,m-2); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xlow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xup*f(y+n+1,x+m+2); 

end 

end 

end 

for t = 180 % the sum-line is vertical 

rhooffset = round((rhomax - M)/2); 

for x = 1:M % cannot use r as x in both res and f since they are not the same size 

r = x+rhooffset; 

r = rhomax - r + 1; 

for y = 1:N 

res(r,t) = res(r,t) + f(y,x); 

end 

end 

end 
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rhoaxis = (1:rhomax+1) - rc; %original 

% rhoaxis = rhoaxis'; % original 

theta = 1:180; % original 

 

% store all the res to single matrix 

[rowres colres]=size(res); 

temp=reshape(res',rowres*colres,1); 

resmat_train=[resmat_train temp]; % store all the res image <---- main data 

 

[rowrho colrho]=size(rhoaxis); 

temp=reshape(rhoaxis',rowrho*colrho,1); 

rhomat_train=[rhomat_train temp]; % store all the rhoaxis 

 

 

percent=(i/looptrain)*100; 

fprintf('\b\b\b\b\b\b\b\b\b%6.2f%% ]', percent); 

end 

fprintf('\n'); 

save data\data_train resmat_train rhomat_train colres rowres colrho rowrho; 

 

 

clear 

close all 

load data\radonincrea 

load data\prosimgdata 

% ------------------------------------------------------- 

% || PERFORM RADON TRANSFORM ON TESTING (KNOWN) IMAGES || 

% ------------------------------------------------------- 

resmat_test1 = []; 

rhomat_test1  = []; 

fprintf('\nPerform radon transform on KTB\n'); 

fprintf('Progress [          '); 

for i=1:no_test1 

f=TestSet1(:,i); 
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f=(reshape(f,colused,rowused))'; 

f=double(f); 

 

[M N] = size(f); 

% Center of the image 

m = round(M/2); 

n = round(N/2); 

 

% The total number of rho's is the number of pixels on the diagonal, since 

% this is the largest straight line on the image when rotating 

rhomax = ceil(sqrt(M^2 + N^2)); 

rc = round(rhomax/2); 

 

theta = 1:180; 

mt = max(theta); 

 

res = cast(zeros(rhomax+1,mt),'double'); % add 1 to be sure, 

% could also be subtracted when 

% checking bounds 

 

 

for t = 1:increament:45 % below 45 degrees, use y as variable 

 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

 

for r = 1:rhomax 

rho = r - rc; 

b = rho/sintheta; % y = ax + b 

 

ymax = min(round(-a*m+b),n-1); 

ymin = max(round(a*m+b),-n); 

 

for y = ymin:increa2:ymax 

x = (y-b)/a; 
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xfloor = floor(x); % The integer part of x 

xup = x - xfloor; % The decimals of x 

xlow = 1 - xup; % What is says 

x = xfloor; 

x = max(x,-m); 

x = min(x,m-2); 

 

% Flip the image horizontally: 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xlow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xup*f(y+n+1,x+m+2); 

end 

end 

end 

 

for t = 46:increament:90 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

for r = 1:rhomax 

rho = r - rc; 

b = rho/sintheta; % y = ax + b 

xmax = min(round((-n-b)/a),m-1); 

xmin = max(round((n-b)/a),-m); 

for x = xmin:increa2:xmax 

y = a*x+b; 

yfloor = floor(y); 

yup = y - yfloor; 

ylow = 1 - yup; 

y = yfloor; 

y = max(y,-n); 

y = min(y,n-2); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + ylow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + yup*f(y+n+2,x+m+1); 

end 

end 

end 
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for t = 91:increament:135 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

for r = 1:rhomax 

rho = r - rc; 

b = rho/sintheta; % y = ax + b 

xmax = min(round((n-b)/a),m-1); 

xmin = max(round((-n-b)/a),-m); 

for x = xmin:increa2:xmax 

y = a*x+b; 

yfloor = floor(y); 

yup = y - yfloor; 

ylow = 1 - yup; 

y = yfloor; 

y = max(y,-n); 

y = min(y,n-2); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + ylow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + yup*f(y+n+2,x+m+1); 

end 

end 

end 

for t = 136:increament:179 % above 135 degrees, use y as variable 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

for r = 1:rhomax 

rho = r - rc; 

b = rho/sintheta; % y = ax + b 

ymax = min(round(a*m+b),n-1); 

ymin = max(round(-a*m+b),-n); 

for y = ymin:increa2:ymax 

x = (y-b)/a; 

xfloor = floor(x); 

xup = x - xfloor; 

xlow = 1 - xup; 
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x = xfloor; 

x = max(x,-m); 

x = min(x,m-2); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xlow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xup*f(y+n+1,x+m+2); 

end 

end 

end 

for t = 180 % the sum-line is vertical 

rhooffset = round((rhomax - M)/2); 

for x = 1:M % cannot use r as x in both res and f since they are not the same size 

r = x+rhooffset; 

r = rhomax - r + 1; 

for y = 1:N 

res(r,t) = res(r,t) + f(y,x); 

end 

end 

end 

 

rhoaxis = (1:rhomax+1) - rc; %original 

% rhoaxis = rhoaxis'; % original 

theta = 1:180; % original 

 

% store all the res to single matrix 

[rowres colres]=size(res); 

temp=reshape(res',rowres*colres,1); 

resmat_test1=[resmat_test1 temp]; % store all the res image <---- main data 

 

[rowrho colrho]=size(rhoaxis); 

temp=reshape(rhoaxis',rowrho*colrho,1); 

rhomat_test1=[rhomat_test1 temp]; % store all the rhoaxis 

 

percent=(i/no_test1)*100; 

fprintf('\b\b\b\b\b\b\b\b\b%6.2f%% ]', percent); 

end 

fprintf('\n'); 
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save data\data_test1 resmat_test1  rhomat_test1; 

 

 

 

clear 

close all 

load data\radonincrea 

load data\prosimgdata 

% --------------------------------------------------------- 

% || PERFORM RADON TRANSFORM ON TESTING (UNKNOWN) IMAGES || 

% --------------------------------------------------------- 

resmat_test2 = []; 

rhomat_test2  = []; 

fprintf('\nPerform radon transform on UTB\n'); 

fprintf('Progress [          '); 

for i=1:no_test2 

f=TestSet2(:,i); 

f=(reshape(f,colused,rowused))'; 

f=double(f); 

 

[M N] = size(f); 

% Center of the image 

m = round(M/2); 

n = round(N/2); 

 

% The total number of rho's is the number of pixels on the diagonal, since 

% this is the largest straight line on the image when rotating 

rhomax = ceil(sqrt(M^2 + N^2)); 

rc = round(rhomax/2); 

 

theta = 1:180; 

mt = max(theta); 

 

res = cast(zeros(rhomax+1,mt),'double'); % add 1 to be sure, 

% could also be subtracted when 

% checking bounds 
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for t = 1:increament:45 % below 45 degrees, use y as variable 

 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

 

for r = 1:rhomax 

rho = r - rc; 

b = rho/sintheta; % y = ax + b 

 

ymax = min(round(-a*m+b),n-1); 

ymin = max(round(a*m+b),-n); 

 

for y = ymin:increa2:ymax 

x = (y-b)/a; 

xfloor = floor(x); % The integer part of x 

xup = x - xfloor; % The decimals of x 

xlow = 1 - xup; % What is says 

x = xfloor; 

x = max(x,-m); 

x = min(x,m-2); 

 

% Flip the image horizontally: 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xlow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xup*f(y+n+1,x+m+2); 

end 

end 

end 

 

for t = 46:increament:90 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

for r = 1:rhomax 
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rho = r - rc; 

b = rho/sintheta; % y = ax + b 

xmax = min(round((-n-b)/a),m-1); 

xmin = max(round((n-b)/a),-m); 

for x = xmin:increa2:xmax 

y = a*x+b; 

yfloor = floor(y); 

yup = y - yfloor; 

ylow = 1 - yup; 

y = yfloor; 

y = max(y,-n); 

y = min(y,n-2); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + ylow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + yup*f(y+n+2,x+m+1); 

end 

end 

end 

for t = 91:increament:135 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

for r = 1:rhomax 

rho = r - rc; 

b = rho/sintheta; % y = ax + b 

xmax = min(round((n-b)/a),m-1); 

xmin = max(round((-n-b)/a),-m); 

for x = xmin:increa2:xmax 

y = a*x+b; 

yfloor = floor(y); 

yup = y - yfloor; 

ylow = 1 - yup; 

y = yfloor; 

y = max(y,-n); 

y = min(y,n-2); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + ylow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + yup*f(y+n+2,x+m+1); 
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end 

end 

end 

for t = 136:increament:179 % above 135 degrees, use y as variable 

costheta = cos(t*pi/180); 

sintheta = sin(t*pi/180); 

a = -costheta/sintheta; % y = ax + b 

for r = 1:rhomax 

rho = r - rc; 

b = rho/sintheta; % y = ax + b 

ymax = min(round(a*m+b),n-1); 

ymin = max(round(-a*m+b),-n); 

for y = ymin:increa2:ymax 

x = (y-b)/a; 

xfloor = floor(x); 

xup = x - xfloor; 

xlow = 1 - xup; 

x = xfloor; 

x = max(x,-m); 

x = min(x,m-2); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xlow*f(y+n+1,x+m+1); 

res(rhomax - r + 1,mt-t) = res(rhomax - r + 1,mt-t) + xup*f(y+n+1,x+m+2); 

end 

end 

end 

for t = 180 % the sum-line is vertical 

rhooffset = round((rhomax - M)/2); 

for x = 1:M % cannot use r as x in both res and f since they are not the same size 

r = x+rhooffset; 

r = rhomax - r + 1; 

for y = 1:N 

res(r,t) = res(r,t) + f(y,x); 

end 

end 

end 
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rhoaxis = (1:rhomax+1) - rc; %original 

% rhoaxis = rhoaxis'; % original 

theta = 1:180; % original 

 

% store all the res to single matrix 

[rowres colres]=size(res); 

temp=reshape(res',rowres*colres,1); 

resmat_test2=[resmat_test2 temp]; % store all the res image <---- main data 

 

[rowrho colrho]=size(rhoaxis); 

temp=reshape(rhoaxis',rowrho*colrho,1); 

rhomat_test2=[rhomat_test2 temp]; % store all the rhoaxis 

 

percent=(i/no_test2)*100; 

fprintf('\b\b\b\b\b\b\b\b\b%6.2f%% ]', percent); 

end 

fprintf('\n'); 

save data\data_test2 resmat_test2  rhomat_test2; 

 

 

fprintf('\nProgram end - Data saved!\n'); 

elapsed=toc/60; 

fprintf('Elapsed time is: %d minutes %2.1f seconds\n',fix(elapsed), (elapsed-fix(elapsed))*60) 

 

 

PROGRAM END 

tic 

close all 

clear all 

load data\prosimgdata 

load data\rdpcadata 

load data\data_test1; 

load data\data_test2; 

 

ccmat1 = []; 

farmat1 = []; 
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frrmat1 = []; 

ccmat2=[]; 

farmat2=[]; 

decide = 3; 

 

fprintf('\n\n(PCA WITH RADON) RECOGNITION TASK\n'); 

fprintf('‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾\n'); 

tcstart = input('Start of TCPARA value: '); 

tcend = input('End   of TCPARA value: '); 

stepval=input('Step value           : '); 

TCPARA = []; 

y=1; 

tccheck=0; 

while tccheck<tcend 

TCPARA(y) = tcstart+(stepval*(y-1)); 

tccheck=TCPARA(y); 

y=y+1; 

end 

 

fprintf('\n[] Total TCPARA to be tested: %d', size(TCPARA,2)); 

fprintf('\n[] Program start\n'); 

 

bigloop=1; 

while bigloop<3 

selection = bigloop; 

if selection == 1 

fprintf('\n[] Processing on Known Database - [          '); 

else 

fprintf('\n[] Processing on Unknown Database - [          '); 

end 

 

loading=0; 

for z=1:size(TCPARA,2) 

 

Tcpara=TCPARA(z); 
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if selection == 1 

rmdir('result\PCA(with radon)\','s'); 

mkdir('result\PCA(with radon)\'); 

mkdir('result\PCA(with radon)\[known]CorrectMatching\'); 

mkdir('result\PCA(with radon)\[known]FAR\'); 

mkdir('result\PCA(with radon)\[known]FRR\'); 

mkdir('result\PCA(with radon)\[unknown]CorrectReject\'); 

mkdir('result\PCA(with radon)\[unknown]FAR\'); 

 

% 

===========================================================

============= 

%     T=[resmat_test1]; % radon + pca 

T=TestSet1; % pca only 

% 

===========================================================

============= 

 

% Step 3: Subtract the mean 

T=double(T); 

Tdiff = T - repmat(tmimg_pca_with_radon,1,no_test1); 

elseif selection == 2 

rmdir('result\PCA(with radon)\[unknown]CorrectReject','s'); 

rmdir('result\PCA(with radon)\[unknown]FAR','s'); 

mkdir('result\PCA(with radon)\[unknown]CorrectReject\'); 

mkdir('result\PCA(with radon)\[unknown]FAR\'); 

 

% 

===========================================================

============= 

%     T=[resmat_test2]; % radon + pca 

T=TestSet2; %pca only 

% 

===========================================================

============= 
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% Step 3: Subtract the mean 

T=double(T); 

Tdiff = T - repmat(tmimg_pca_with_radon,1,no_test2); 

else 

end 

 

 

if selection == 1 

no_test=no_test1; 

test_person_detail=test_person_detail1; 

elseif selection == 2 

no_test=no_test2; 

test_person_detail=test_person_detail2; 

end 

 

% Step 4: Finding weight vector of the test image 

w=[]; % Storing the weight of training images in matrix 

for i=1:no_test; 

temp = eigenface_pca_with_radon' * double(Tdiff(:,i)); 

w=[w temp]; 

loading=loading+1; % LOADING 

percent=(loading/(size(TCPARA,2)*(no_test+looptrain+no_test)+size(TCPARA,2)))*100; 

fprintf('\b\b\b\b\b\b\b\b\b%6.2f%% ]', percent); 

end 

clear temp 

 

Tc = 0; 

for j=1:looptrain; 

for k=1:looptrain; 

% euclidean distance start 

temp = max(norm(W_pca_with_radon(:,j)-W_pca_with_radon(:,k))); 

% euclidean distance end 

if temp > Tc 

Tc = temp; 

end 

end 
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loading=loading+1; % LOADING 

percent=(loading/(size(TCPARA,2)*(no_test+looptrain+no_test)+size(TCPARA,2)))*100; 

fprintf('\b\b\b\b\b\b\b\b\b%6.2f%% ]', percent); 

end 

Tc = Tc/Tcpara; 

clear temp 

 

success=0; 

frr=0; 

CC=0; 

far=0; 

 

testflag = test_person_detail(1); 

TestPerson = 1; 

 

for h=1:no_test; 

if h<= testflag 

% do nothing 

else 

testflag=testflag+test_person_detail(TestPerson+1); 

TestPerson=TestPerson+1; 

end 

 

E = []; 

for i=1:looptrain; 

temp = norm(w(:,h)-W_pca_with_radon(:,i)); 

E = [ E; temp ]; 

end 

[Emin person] = min(E); 

clear temp 

 

trainflag = train_person_detail(1); 

TrainPerson=1; 

for k=1:person 

if k<= trainflag 

% do nothing 
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else 

trainflag=trainflag+train_person_detail(TrainPerson+1); 

TrainPerson=TrainPerson+1; 

end 

end 

 

if Emin < Tc 

success=success+1; 

if selection == 1 

img=uint8(TestSet1(:,h)); 

img=reshape(img,(colused),(rowused)); 

img1=img'; 

elseif selection == 2 

img=uint8(TestSet2(:,h)); 

img=reshape(img,(colused),(rowused)); 

img1=img'; 

end 

img=uint8(TrainingSet(:,person)); 

img=reshape(img,(colused),(rowused)); 

img2=img'; 

img3=[img1 img2]; 

img3=imresize(img3, [(rowused*10) (colused*10)]); 

if selection == 1 

if TrainPerson==TestPerson 

CC=CC+1; 

str=strcat('result\PCA(with radon)\[known]CorrectMatching\','Test[',int2str(h),'] - 

Train[',int2str(person),'].jpg'); 

eval('imwrite(img3,str)'); 

 

else 

far=far+1; 

if selection == 1 

str=strcat('result\PCA(with radon)\[known]FAR\','Test[',int2str(h),'] - 

Train[',int2str(person),'].jpg'); 

eval('imwrite(img3,str)'); 
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end 

end 

elseif selection == 2 

str=strcat('result\PCA(with radon)\[unknown]FAR\','Test[',int2str(h),'] - 

Train[',int2str(person),'].jpg'); 

eval('imwrite(img3,str)'); 

 

end 

else 

frr=frr+1; 

if selection == 1 

img=uint8(TestSet1(:,h)); 

img=reshape(img,(colused),(rowused)); 

img1=img'; 

elseif selection == 2 

img=uint8(TestSet2(:,h)); 

img=reshape(img,(colused),(rowused)); 

img1=img'; 

end 

img=imread('unknown.jpg'); 

img=rgb2gray(img); 

img2=imresize(img, [(rowused) (colused)]); 

img3=[img1 img2]; 

img3=imresize(img3, [(rowused*10) (colused*10)]); 

if selection == 1 

str=strcat('result\PCA(with radon)\[known]FRR\','Test[',int2str(h),'].jpg'); 

eval('imwrite(img3,str)'); 

 

elseif selection == 2 

str=strcat('result\PCA(with radon)\[unknown]CorrectReject\','Test[',int2str(h),'].jpg'); 

eval('imwrite(img3,str)'); 

 

else 

end 

end 

loading=loading+1; % LOADING 
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percent=(loading/(size(TCPARA,2)*(no_test+looptrain+no_test)+size(TCPARA,2)))*100; 

fprintf('\b\b\b\b\b\b\b\b\b%6.2f%% ]', percent); 

end 

 

% results in percentage (%) 

success=(success/no_test)*100; 

CC=(CC/no_test)*100; 

far=(far/no_test)*100; 

frr=(frr/no_test)*100; 

 

 

if selection == 1 

ccmat1 = [ccmat1 CC];       % correct classification for known database 

farmat1 = [farmat1 far];         % FAR for known database 

frrmat1 = [frrmat1 frr];       % FRR for known database 

else 

ccmat2 = [ccmat2 frr];      % correct classification for unknown database 

farmat2 = [farmat2 success]; % FAR for unknown database 

end 

loading=loading+1; % LOADING 

percent=(loading/(size(TCPARA,2)*(no_test+looptrain+no_test)+size(TCPARA,2)))*100; 

fprintf('\b\b\b\b\b\b\b\b\b%6.2f%% ]', percent); 

end 

 

if selection == 1 

recall=[TCPARA; ccmat1; farmat1; frrmat1]; 

save('recall.mat','ccmat1','farmat1','frrmat1','recall'); 

elseif selection == 2 

reject=[TCPARA; ccmat2; farmat2]; 

end 

 

bigloop=bigloop+1; 

end 

xcross=[TCPARA; ccmat1; ccmat2]; 

true=1; 

while(true) 
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fprintf('\n\nShow result''s graph?\n1. Yes\n2. No\nchoise: '); 

showgraph = input(''); 

if showgraph == 1 

 

figure(1); 

axes1 = axes('Parent',figure(1),'FontSize',14); 

hold on 

plot1 = plot(TCPARA,ccmat1,'Parent',axes1,'MarkerSize',8,'LineWidth',3); 

set(plot1,'MarkerFaceColor',[0 0 0],'Marker','o',... 

'DisplayName','Recall Correct Classification',... 

'Color',[0 0 0]); 

plot2 = plot(TCPARA,farmat1,'Parent',axes1,'MarkerSize',12,'LineWidth',3); 

set(plot2,'MarkerFaceColor',[0 0 0],'Marker','x',... 

'DisplayName','Recall FAR',... 

'Color',[1 0 0]); 

legend('show'); 

set(legend,'Location','NorthOutside'); 

xlabel('TCPARA','FontSize',16); 

ylabel('Percentage (%)','FontSize',16); 

hold off 

 

figure(2); 

axes1 = axes('Parent',figure(2),'FontSize',14); 

hold on 

plot1 = plot(TCPARA,ccmat2,'Parent',axes1,'MarkerSize',8,'LineWidth',3); 

set(plot1,'MarkerFaceColor',[0 0 0],'Marker','o',... 

'DisplayName','Reject Correct Classification',... 

'Color',[0 0 0]); 

plot2 = plot(TCPARA,farmat2,'Parent',axes1,'MarkerSize',12,'LineWidth',3); 

set(plot2,'MarkerFaceColor',[0 0 0],'Marker','x',... 

'DisplayName','Reject FAR',... 

'Color',[1 0 0]); 

legend('show'); 

set(legend,'Location','NorthOutside'); 

xlabel('TCPARA','FontSize',16); 

ylabel('Percentage (%)','FontSize',16); 
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hold off 

 

load recall.mat 

figure(3); 

axes1 = axes('Parent',figure(3),'FontSize',14); 

hold on 

plot1 = plot(TCPARA,ccmat1,'Parent',axes1,'MarkerSize',8,'LineWidth',3); 

set(plot1,'MarkerFaceColor',[0 0 0],'Marker','o',... 

'DisplayName','Recall Correct Classification',... 

'Color',[0 0 0]); 

plot2 = plot(TCPARA,ccmat2,'Parent',axes1,'MarkerSize',12,'LineWidth',3); 

set(plot2,'MarkerFaceColor',[0 0 0],'Marker','x',... 

'DisplayName','Reject Correct Classification',... 

'Color',[1 0 0]); 

legend('show'); 

set(legend,'Location','NorthOutside'); 

xlabel('TCPARA','FontSize',16); 

ylabel('Percentage (%)','FontSize',16); 

hold off 

 

load recall.mat 

figure(4); 

axes1 = axes('Parent',figure(4),'FontSize',14); 

hold on 

plot1 = plot(TCPARA,farmat1,'Parent',axes1,'MarkerSize',8,'LineWidth',3); 

set(plot1,'MarkerFaceColor',[0 0 0],'Marker','o',... 

'DisplayName','Recall FAR',... 

'Color',[0 0 0]); 

plot2 = plot(TCPARA,farmat2,'Parent',axes1,'MarkerSize',12,'LineWidth',3); 

set(plot2,'MarkerFaceColor',[0 0 0],'Marker','x',... 

'DisplayName','Reject FAR',... 

'Color',[1 0 0]); 

legend('show'); 

set(legend,'Location','NorthOutside'); 

xlabel('TCPARA','FontSize',16); 

ylabel('Percentage (%)','FontSize',16); 
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hold off 

true=0; 

elseif showgraph==2 

true=0; 

else 

fprintf('[No such option!]'); 

end 

end 

 

fprintf('\nProgram end - Image size [%dx%d]\n',(colused),(rowused)); 

elapsed=toc/60; 

fprintf('Elapsed time is: %d minutes %2.1f seconds\n',fix(elapsed), (elapsed-fix(elapsed))*60); 
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