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Gait biometrics which concern with recognizing individuals by the way they walk are of a paramount
importance these days. Human gait is a candidate pathway for such identification tasks since other mechanisms
can be concealed. Most common methodologies rely on analyzing 2D/3D images captured by surveillance
cameras. Thus, the performance of such methods depends heavily on the quality of the images and the
appearance variations of individuals. In this study, we describe how gait biometrics could be used in individuals’
identification using a deep feature learning and inertial measurement unit (IMU) technology. We propose a
model that recognizes the biological and physical characteristics of individuals, such as gender, age, height, and
weight, by examining high-level representations constructed during its learning process. The effectiveness of the
proposed model has been demonstrated by a set of experiments with a new gait dataset generated using a shoe-
type based on a gait analysis sensor system. The experimental results show that the proposed model can achieve
better identification accuracy than existing models, while also demonstrating more stable predictive performance
across different classes. This makes the proposed model a promising alternative to current image-based modeling.

1. Introduction

Behavioral biometrics refer to recognizing individuals by analyzing
their distinctive behavior characteristics, such as gait, without interfer-
ing with the activities of the subject individuals (Yan et al., 2015). In
particular, gait biometrics or gait recognition verifies and identifies in-
dividuals based on their walking style (Alotaibi and Mahmood, 2015).

Several studies in the literature have focused on the analysis of hu-
man gait for identification tasks (Boulgouris and Chi, 2007; Kale et
al., 2004; Wang et al., 2010). This includes gender classification (Hu
et al., 2011) and age estimation (Lu and Tan, 2010; Makihara et al.,
2011), where several benchmark datasets, e.g., (Makihara et al., 2012;
Okumura et al., 2010; Yu et al., 2006), were used to evaluate the per-
formance of gait biometrics approaches. Most of the datasets used in
gait biometrics studies are generated from 2D/3D images captured by
surveillance cameras. These image based approaches however could be
problematic in a sense that the quality of a gait-based identification
model depends on the resolution of the captured images and variations
of the appearance of individuals in a typical surveillance scene (Wang
et al., 2016). For example, the appearance of an individual is subject to

* Corresponding author.
E-mail address: paul.d.yoo@ieee.org (P.D. Yoo).

changes as it is affected by some exterior factors, such as clothing and
environmental context, physical and mental conditions, such as age,
gender, and illness, etc. Yan et al. (2015), observations effects, such as
resolution, view angle, and position. A gait-based identification system
should be immune to variations of intra-class representations and sen-
sitive to variations of inter-class representations (Wang et al., 2016).
Thus, it is important to learn generic discriminative representations of
the gait of individuals in an automated fashion.

The proliferation of the Internet of Things (IoT), and its associ-
ated devices (e.g., wearable programmable devices, sensors, etc.), makes
collecting gait data of consenting individuals of such devices in non-
interfering fashion possible. This provides an alternative of the image-
based data to gait-based applications. In this study, we propose a novel
gait-based identification/recognition model based on inertial locomo-
tion information of the gait of individuals. The proposed model relies
on newly designed deep feature extraction and clustering-based learn-
ing model. We first collect a new gait dataset using a newly developed
shoe-type treadmill-based Inertial Measurement Unit (IMU) technology.
The gait of each participant is represented by a set of attributes, which
are then fed to a deep neural network of stacked sparse autoencoders to
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generate high level features/representations, immunizing the proposed
model to gait variations. The original attributes and generated features
are then combined and fed to an algorithm, which selects the most dis-
criminative features/representations of the data. The selected features
are used to build a clustering-based learning model, which identifies the
physical characteristics of individuals based on their gait information.
The main contributions of this study are as follows:

• a new gait dataset is constructed using a shoe-based IMU technol-
ogy;

• a machine learning model is developed where high-level represen-
tations of the data is combined with a randomized multi-layered
clustering model;

• the provision of an algorithmic approach to validate the usefulness
of Gait-IMU features, preventing incurring loss of information;

• the proposed model is clearly shown to have advantages over con-
ventional learning models in the identification of characteristics of
individuals; and,

• we prove that machine learning approaches using IMU technology
focusing on gait analysis information have a potential for use in a
number of branches of identification tasks.

The rest of this paper is organized as follows: Section 2 reviews re-
lated works. Section 3 presents the proposed model. Section 4 describes
the experimental setup used and presents a discussion on the obtained
results. Section 7 concludes the paper.

2. Related work

Over the last two decades, gait biometric has gained the attention
of many researchers due to its applicability to the images generated by
video surveillance cameras (Wang et al., 2016). The availability of large
amount of gait data makes it a strong candidate solution for surveil-
lance, criminal investigation and forensic applications (Bouchrika et al.,
2011; Iwama et al., 2013; Lynnerup and Larsen, 2014). For instance, as
we are already witnessing the emergence of Internet of Things (IoT),
Closed-Circuit TeleVisions (CCTVs) are ubiquitous and widely deployed
in public and private spaces. This facilitates the collection of gait infor-
mation of individuals without a physical contact (Shiraga et al., 2016).
A computational algorithm could then identify the subject individual
based on distinctive features extracted from the gait information of sub-
ject individual.

Gait biometrics methods can be categorized into two major classes:
model-based and model-free approaches (Alotaibi and Mahmood,
2015). Model-based approaches extract parameters that describe sub-
ject individuals using human body structure (Bhanu and Han, 2010).
On the other hand, model-free approaches focus on the motion of the
body where they extract descriptors based on silhouettes of the gait,
which then used to build classification models. Han and Bhanu (2006)
proposed a new image-based system named Gait Energy Image (GEI), a
spatio-temporal gait representation, for individual recognition. The GEI
is the average silhouette over one gait cycle, thus, it saves memory and
computational time for recognition tasks. Lee and Grimson (2002) de-
scribed a representation of human gait for individual identification and
gender classification, where the representation of a gait appearance is
based on simple features, such as moments extracted from orthogonal
view video silhouettes. Boulgouris and Chi (2007) proposed a new fea-
ture extraction process based on radon transform of binary silhouettes,
which are used to compute templates that are subsequently subjected
to linear discriminate analysis and subspace projection. Alotaibi and
Mahmood (2015) proposed a gait recognition technique using a spe-
cialized convolutional neural network. The proposed technique is less
sensitive to common variations that affect and degrade the performance
of gait recognition. Lu et al. (2014) investigated the problem of iden-
tifying human and gender recognition based on gait sequences with
arbitrary walking directions. Wang et al. (2016) proposed a deep rep-

resentation learning with an adaptive margin listwise loss for person
re-identification, to deal with imbalance data where negative pairs out-
number positive pairs.

Most recently, Khan et al. (2021, 2023) conducted an exhaustive
examination of codebook-based methodologies, elucidating the intri-
cate procedures involved in encoding visual gait sequences while also
identifying best practices to yield cutting-edge recognition outcomes.
Notably, their research delved into the exploration of two distinct local
features for encoding both the stationary visual attributes and dynamic
motion characteristics of individuals in motion. Furthermore, they scru-
tinized twelve diverse feature encoding techniques. This comprehensive
analysis encompassed an extensive evaluation on the sizeable CASIA-B
gait database, culminating in a thorough presentation of the compara-
tive performance results of these encoding methods.

Most of the aforementioned studies mainly use silhouette/visual gait
sequence, which is normally extracted from 2D/3D images, of a sub-
ject individual for analysis, and most currently available datasets are
geared toward this concept (Lee et al., 2014). However, high resolution
images might not be always available due to environmental conditions,
setting variations (e.g., view angle), or limited capabilities of resources
(e.g., camera of low resolution). This study however uses an inertial
locomotion gait dataset using IMU technology and proposes a model
that builds a clustering-based learning model using high level represen-
tations extracted from a deep neural network of stacked autoencoders.
The following subsections describe the generation process of the dataset
and the proposed model.

3. Proposed model

The primary objective of this study is twofold. Firstly, it aims to
discern and elucidate the distinctive attributes of individuals, encom-
passing gender, age, height, and weight, through an exclusive analysis
of gait information only for forensic purposes. By leveraging advanced
deep feature learning and state-of-the-art IMU technologies, high-level
representations of gait patterns will be meticulously constructed. Sec-
ondly, this research endeavours to investigate the learnability and
practicality of the afore-mentioned gait information representations,
shedding light on their potential utility in diverse applications. The inte-
gration of cutting-edge methodologies and comprehensive data analysis
will provide valuable insights into the characterization and applicabil-
ity of gait-based forensic identification systems.

Recently, deep learning, which is also known as representation
learning, has emerged as a new area of machine learning (Deng, 2014)
and proven significant performance in different applications. For ex-
ample, Le (2013) showed that it is possible to learn a face detector
using only unlabeled images by training a deep neural network of lo-
cally connected sparse autoencoders. A deep neural network generates
invariant representations of objects which allow detecting these objects
even when they are in different position, size, etc. David and Netanyahu
(2015).

The proposed approach adopts these principles and applies them for
forensic identification of humans based on their gait information. The
generated representations of the gait information would be invariant to
changes, thus, are capable of identifying individuals even when there
are changes in their walking patterns. In order to achieve this, we first
need to generate a dataset that represents the gait patterns of individu-
als as fixed size vectors. A row in this dataset represents a person and
a column represents a certain characteristic of the gait of the person,
we fed the dataset into a deep neural network of stacked sparse autoen-
coders that generates high level representations of it. We then select
the most discriminative features of the original and extracted features
and use them to train a clustering-based learning model. It should be
noted that we refer to the original characteristics of a person’s gait as at-
tributes whilst we refer to the generated characteristics/representations
by the deep neural network as features. In what follows, we describe the
generation process of the dataset, the deep features learning and selec-

2



ARTICLE IN PRESS
JID:COSE AID:103559 /FLA [m5GeSdc; v1.344] P.3 (1-12)

K. Taha, P.D. Yoo, Y. Al-Hammadi et al. Computers & Security ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Fig. 1. Stepwise procedure for implementing the proposed model.

tion, and the clustering-based learning model. Fig. 1 shows the stepwise
procedure of the proposed model.

3.1. Phase 1: Data collection

The Inertial Measurement Unit (IMU)-based dynamic body balanc-
ing analysis system (DynaStabTM, JEIOS) including shoe-type data log-
gers (Smart Balance, JEIOS, South Korea), data collecting computers,
and the motion capture system using nine infrared cameras (MXT10,
Vicon) were used to collect the treadmill locomotion data. The data
loggers, Smart Balance, including IMU (IMU-3000TM, Inven Sense) can
measure the three-axial accelerations (up to 6g) and three-axial angular
velocities (up to 500 deg/s) of three orthogonal axes (Joo et al., 2015).
These IMUs were located in both outsoles of the shoes. The local coor-
dinate system of the IMU was established with anteroposterior (X-axis),
mediolateral (Y-axis), and vertical (Z-axis) directions, respectively. Fur-
thermore, the global coordinate system of the motion capture system
was set behind the left side of the treadmill with mediolateral (X-axis),
anteroposterior (Y-axis), and vertical directions, respectively.

The body height, weight, knee width, ankle width, and leg length
of all 90 participants were measured to make each participant’s body
model and is used for the motion capture. After completing the so-
matometry, all the participants wore the spandex shirts, shorts, and the
shoe-type data loggers. Sixteen reflective markers with a 14 mm spher-
ical shape to the participants were attached according to the Plug-in
gait model for motion capture. All markers were attached to the skin
by double-sided tape and kinesiotape to fix the markers. These markers
were attached to both left and right side, which were anterior superior
iliac spine, posterior superior iliac spine, lateral thigh, lateral femoral
epicondyle, lateral tibia, and lateral malleolus, and the calcaneus and
second metatarsal head markers were attached on the shoes associated
their anatomical landmark. Before starting the test, the participants per-
formed the warm-up such as stretching and joint moving for 5 minutes.
After completing the warm-up, they practiced a test walking on the
treadmill to adapt to the self-selected speed for 10 minutes. After 30s

from the start of the gait, we collected the treadmill gait data for 1
minute.

The data collection using both the IMU system and the motion
capture system were sampled at 100 Hz, and the collected data were fil-
tered using a second-order Butterworth low-pass filter with a cut off fre-
quency of 10 Hz. Both measurement systems simultaneously collected
the same subject’s locomotion data. All the data were synchronized
and analyzed based on the gait initiation point using DynaStab-Spotfire
(Kim et al., 2016). The comparisons of variables between IMU system
and motion capture system were conducted using spatiotemporal gait
parameters and resultant linear acceleration variables for the entire
treadmill gait trials for 1 minute. The spatiotemporal variables were
cadence, step length, stride length, single support phase, and double
support phase. The spatiotemporal variables from the motion capture
data were calculated as follows: (a) the cadence (step/min) was cal-
culated the total steps divided the 1 minute, (b) the step length was
defined as distance between left and right heel strike (HS) during tread-
mill gait, (c) the stride length was defined as the distance between two
subsequent midstance of the same foot. The resultant linear accelera-
tions from the IMU were calculated by the net acceleration of X, Y,
and Z axis at each left and right side. Furthermore, the resultant linear
accelerations from the motion capture were calculated by the double
differential of the heel marker’s positions of the X, Y, and Z axis. The
spatiotemporal variables from the motion capture and the resultant lin-
ear accelerations both IMU and motion capture were also derived using
the DynaStab-Spotfire.

A paired t-test was used to compare the spatiotemporal variables be-
tween IMU and motion capture. The error between the IMU and motion
capture was derived by root mean squares error (RMSE) over the total
signal for the resultant linear acceleration (Esser et al., 2012), and a per-
cent error was defined as the ratio between the RMSE value and the av-
eraged peak-to-peak amplitude of the motion capture data (Mayagoitia
et al., 2002). Pearson’s product-moment correlation analysis was used
to compare the validity of the spatiotemporal variables and the resultant
linear acceleration between IMU and motion capture. Correlation coef-
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ficients were interpreted as weak (0.0 ≤ r ≤ 0.25), fair (0.25 ≤ r ≤ 0.50),
moderate to good (0.50 ≤ r ≤ 0.75), or strong (0.75 ≤ r ≤ 1.0) (Portney et
al., 2000). The statistical significant level was set at 0.05.

IMU sensors can produce missing or corrupted data due to several
factors, including noise, sensor errors, or connectivity issues. Fortu-
nately, as seen in the provided dataset, no missing data observed in
our case. However, if missing data is observed, then we suggest to
employ the following strategies. Interpolation methods (Imoize et al.,
2022), such as linear or cubic spline interpolation, can estimate missing
values based on neighboring data points. Data smoothing techniques
(Ageng et al., 2021) moving averages and low-pass filters can reduce
noise and fill small gaps. Machine learning models, such as recurrent
neural networks, can predict missing data, capturing complex patterns.
Statistical imputation methods, like mean or median imputation, can re-
place missing values with summary statistics. Sensor fusion with other
data sources can also help estimate missing IMU data (Girbés-Juan et
al., 2021). Custom algorithms and data quality assessment are essential,
along with documentation to ensure transparency and reproducibility.
In dealing with missing IMU data, it is crucial to strike a balance be-
tween data recovery and preserving data integrity. A combination of
these methods tailored to the specific characteristics of the data and the
application’s requirements is often necessary. Regular monitoring and
calibration of IMU sensors can minimize missing data, while real-time
data quality assessment can help detect issues as they arise. Ultimately,
a thoughtful and systematic approach to handling missing IMU data
enhances the reliability and accuracy of subsequent analyses and appli-
cations.

3.2. Phase 2: Deep feature learning and selection

3.2.1. Deep features learning with stacked autoencoders
The previous subsection describes how the movement of a person

is converted to a fixed size vector. Given that the gait of an individ-
ual is subject to changes, identifying individuals based on their gait
information is prone to errors as it depends on the physical and mental
conditions of the individuals. For example, patients with Parkinson’s
Disease (PD) have difficulties in controlling their movement. There-
fore, a set of high level representations of the gait of an individual
that is resilient to variations, is to be created in order to identify dif-
ferent individuals accurately based on their way of walking. To this
end, we construct a deep neural network of sparse autoencoders where
the output of an autoencoder is fed into the following autoencoder in
a hierarchical architecture. The basic idea is to define higher level rep-
resentations of the gait of an individual from the lower ones where the
same lower level representations help to define the higher level ones
(Deng, 2014).

As in Fig. 2, an autoencoder is a deterministic feed-forward artificial
neural network of one hidden layer and the output is set as the input.
The number of neurons in the output layer is equal to the number of
neurons in the input layer and there is a hidden layer of k neurons in
between. Usually, the number of neurons in the hidden layer is set to a
number that is less than the number of input neurons, in order to cre-
ate a bottleneck and force the network to learn a compact higher level
representation of the input. The model aims to learn an approximation
x
′ of the input which would be more beneficial compared to the raw
input x (Karalas et al., 2015).

An input x ∈ ℝ
p, where p is the number of attributes, is transfered

to a hidden representation h of k neurons/units through an encoder
function (Karalas et al., 2015):

f (x) = h = �f (W1x+ b1), (1)

where �f is an activation function. Logistic sigmoid and the hyperbolic
tangent are typical examples of nonlinear activation function that are
used in traditional autoencoders. As in equation (1), the activation func-
tion takes a weight matrixW1 ∈ℝ

k×p, which represents weights learned
on the connections between the input to the hidden layer, and a bias

Fig. 2. Architecture of an autoencoder. The encoder takes the input X and
computes the latent code h. The decoder computes a reconstruction of X from
h (Karalas et al., 2015). Note that X̂ is set to X and bias units are not presented
for simplicity.

vector b1 ∈ℝ
k×1. Then, the output is computed by mapping the hidden

representation h back into a reconstructed x̂ ∈ ℝ
p×1 using a decoder

function as follows Karalas et al. (2015):

g(f (x)) = x̂ = �g(W2h+ b2), (2)

where W2 ∈ ℝ
p×k and b2 are the learned decoding weight matrix and

the bias parameters, respectively. The model is parameterized by four
parametersW1,W2, b1, and b2. These parameters are estimated by min-
imization the error between the input and the output based on a loss
function, such as the normalized least square error given by Karalas et
al. (2015):

JAE (�) =
1

m

m∑

i=1

(
1

2
||x(i) − x̂

(i)||2), (3)

where ||.|| is the Euclidean distance. Typical autoencoder is trained
using backpropagation with stochastic gradient descent (David and Ne-
tanyahu, 2015). In order to prevent the problem of overfitting, a weight
decay term is introduced to the cost function (Karalas et al., 2015).

Although the default assumption is that the number of neurons in
the hidden layer is small, we can still have insightful structures from
the data when the number of neurons in the hidden layer is greater
than the input neurons, by imposing sparsity constraints on the hidden
neurons, even when the number of hidden neurons is large (Ng et al.,
2012).

Sparsity is introduced to the cost function of the autoencoder by
penalizing it with a sparsity constant term �. Kullback-Leibler (KL) di-
vergence (Kullback and Leibler, 1951), which is a function to measure
of the non-symmetric difference between two probability distributions
� and �̂, is used as a sparsity term in the cost function of the sparse
autoencoder. The KL has a value of 0 when �̂ = � and increases as �̂

diverges from �. KL is given by Ng et al. (2012):

KL(�||�̂u) = � log
�

�̂u
+ (1 − �) log

1 − �

1 − �̂u
, (4)

where �̂u is the average latent unit activation given by Karalas et al.
(2015):

�̂u =
1

m

m∑

i=1

[�u(x
(i))], u = 1, ..., k. (5)

The regularized cost function of a sparse autoencoder is given by:

JSAE (�) = JAE (�) + �

k∑

j=1

(KL(�||�̂u)), (6)

where the parameter � controls the effect of the sparsity regularizer.
Once a sparse autoencoder is trained, we can discard the decoder

parameters and fix the parameters of the encoder, in order to keep the
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Fig. 3. Architecture of a typical deep neural network comprising stacked sparse
autoencoders. It is important to emphasize that the network can accommodate
any quantity of autoencoders and hidden neurons exceeding one.

layer unchanged. The output of the hidden layer is then fed into an-
other sparse autoencoder as an input. The second sparse autoencoder
is trained in a similar way to the training process of the first autoen-
coder. As seen in Fig. 3, a typical deep neural network is constructed by
combining multiple sparse autoencoders in a hierarchical fashion where
the output of an encoder is treated as an input to the following autoen-
coder. Ultimately, we aim to learn higher level representations of the
input which refers to the low level features (i.e., input layer). Concep-
tually, the subsequent layers correspond to higher level features. In a
typical setting of a deep neural network, the output of the last hidden
layer in the deep neural network is used to train a supervised softmax
classifier. However, this study builds a novel clustering-based learning
model based on selected features of the original attributes and gener-
ated features of stacked sparse autoencoders as described in Section 3.3.

3.2.2. Feature selection
Although the extracted features give high level representations of

the input data, they may not improve the prediction accuracy. Here,
we would like to know to what extent the extracted features are im-
portant and to see if they have a better significance than the original
attributes/features or not. To address these questions, as in Fig. 4, the
original attributes are combined with the features extracted by the deep
network and then passed to a feature selection algorithm, which selects
the most important and discriminative features of the data. In this study,
we used a correlation based approach, namely Correlation based Fea-
ture Selection (CFS) (Hall, 1999), relying on the hypothesis that a good
feature set contains features that are highly correlated with the class,
but uncorrelated with each other. The CFS has been considered here
as it quickly identifies and screens irrelevant, redundant, and noisy fea-
tures, and identifies relevant features as long as their relevance does not
strongly depend on other features (Hall, 1999). The selected features
are then used to build a clustering-based learning model as described in
Section 3.3.

3.3. Phase 3: Clustering-based learning

The learned latent features from a stacked autoencoder (SAE) de-
scribed in Phase 2 are often more discriminative and relevant for clus-
tering tasks compared to the original raw data due to the following rea-
sons: 1) SAEs are trained to encode input data into a lower-dimensional
representation, i.e., latent features, which aim to retain the most rele-
vant and discriminative information. In clustering, these features pro-
vide a compact yet informative representation of the data, making it
easier for clustering algorithms to identify underlying patterns and sim-
ilarities among data points, 2) SAEs are unsupervised learning models,
meaning they do not rely on labeled data during training. As a result,
the learned latent features are driven by the intrinsic structure of the
data, capturing inherent data relationships that are often not apparent
in the original raw data. This unsupervised feature learning helps in
identifying meaningful clusters and revealing hidden data structures,
3) SAEs employ non-linear activation functions in their hidden layers,
enabling them to model complex relationships in the data. This non-
linearity allows the autoencoder to learn intricate decision boundaries,

enabling the extracted latent features to better capture cluster bound-
aries and handle non-linearly separable data, and 4) The architecture
of SAEs with multiple hidden layers allows them to learn hierarchical
representations of the data. The lower layers capture simple and lo-
cal features, while the higher layers capture more complex and global
patterns. This hierarchical representation aids in identifying clusters at
different levels of granularity, leading to more effective clustering re-
sults.

In this phase, an ensemble model consists of a set of base classifiers
where the final prediction of the ensemble model is derived based on
majority voting approach. It should be noted that the decisions of the
base classifiers should be different in order to have an accurate deci-
sion. This can be reinforced by building heterogeneous or diverse base
classifiers that commit non-identical error on a test instance. Diversity
among base classifiers can be enforced by different methods, such as:

• using base classifiers of different types (e.g., support vector ma-
chine, naive bayes, etc.) of an ensemble model.

• using different training datasets for building base classifiers of the
same type of an ensemble model.

• using different parameters for base classifiers of the same type (e.g.,
use different number of hidden layers or neurons for a neural net-
work classifier) of an ensemble model.

Typical to Rahman and Verma (2011), diversity among base classi-
fiers of the proposed model is provided by generating multiple layers
of data clustering where different seeds are used in different layers of
the ensemble model. The idea is based on the observation that the out-
put of some clustering algorithms (e.g., K-means algorithm) depends on
the initialization parameters (e.g., number of clusters and seed). In this
context, a layer is defined as an instance of K-means clustering using a
randomly selected seed. To clarify this, consider a dataset of two classes
(male and female) as in Fig. 5 (a). This dataset can be partitioned into
mutually exclusive clusters. For example, Fig. 5(b) shows resultant clus-
ters of the K-means algorithm using a specific seed. On the other hand,
Fig. 5(c) shows resultant clusters of the K-means algorithm using an-
other seed. As can be seen in Fig. 5(b) and (c), clusters at the same
layer are mutually exclusive; however, clusters at different layers are
not. In other words, the clusters at different layers are not identical but
might have overlapping data. Based on this observation, as in Fig. 5(d),
it is possible to build an ensemble model that covers the whole search
space by building base classifiers on the clusters at different layers of
the K-means algorithm. This is because the training datasets of the con-
stituent base classifiers of the ensemble model are not identical which
enforces diversity among the base classifiers of the ensemble model.

As in Algorithm 1, the proposed model generates multiple layers of
K-means clustering. In each layer l, there are C clusters. The resultant
clusters of a layer could be one of two types:

• Atomic clusters, which refer to clusters that have only instances of
one class (e.g., a cluster that has instances of males only).

• Non-atomic clusters, which refer to clusters that have instances of
different classes (e.g., cluster that has males and females).

The proposed model builds classifiers on non-atomic clusters
whereas it remembers the class labels of atomic clusters. This would
reduce the complexity of the ensemble model as the model builds bi-
nary classifiers on non-atomic clusters only.

The testing process of a test instance begins with finding the near-
est cluster’s centroid at each layer. The cluster that has the minimum
distance between its centroid and the testing instance at each layer is
selected as the appropriate cluster. The corresponding classifier at each
layer is then used to predict the class label of the testing instance. The
final label of the testing instance is determined by the majority vote
among all the predictions at different layers.
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Fig. 4. Stepwise procedure of deep feature learning and selection.

Fig. 5. (a) a dataset of two classes (male and female). (b) resultant clusters of
K-means algorithm using seed 1 (i.e., layer 1). (c) resultant clusters of K-means
algorithm using seed 2 (i.e., layer 2). (d) a projection of the resultant clusters at
different layers.

Algorithm 1 Pseudo-code of building a clustering-based learning
model.
1: Initialize the parameters of the model (L: number of layers in the model, C : number
of clusters in each layer), and enter a training dataset D of N labeled instances.

2: for Each layer l do
3: Partition D into C clusters using a random seed;
4: for Each cluster c do
5: if c is an atomic cluster then
6: Remember the label of the majority class (Y(l,c)) of the cluster c in the
layer l;

7: else
8: Build a classifier M(l,c) on c;
9: Save the classifier M(l,c) ;
10: end if
11: end for
12: end for

To model the human gait during locomotion, we utilized the Java
and Python programming languages and employed numerical methods
for simulation.

4. Experimental setup

4.1. Dataset and preprocessing

The gait dataset has 90 instances where each instance is represented
by 162 independent (i.e., explanatory) variables and 4 dependent vari-
ables (i.e., response variables), namely, gender, age, height, and weight.
The gender variable is categorical having two classes such as male and
female while the other variables are numeric. The dataset is exclusively
numerical, including the target variables; however, the data analysis
technique of this study predicts the class of a nominal space. As such, it
is necessary to transform the non-numeric variables into nominal space.

Often, uniform binning is used to perform data transformations for
a machine learning model (Dougherty et al., 1995). However, the main
problem of this method is with the way it determines the appropriate
number of bins. A number of interesting studies have been reported in

Table 1
Statistics of the dataset per target variable.

Target Label Classes

Gender Male (43), Female (47)
Age -inf–55.6 (1), 55.6–59.2 (2), 59.2–62.8 (6), 62.8–66.4 (13),

66.4–inf (68)
Weight -inf–46.21 (2), 46.21–50.42 (11), 50.42–54.63 (9), 54.63–58.84

(17), 58.84–63.05 (17), 63.05–67.26 (16), 67.26–inf (18)
Height -inf–148.3 (8), 148.3–inf (82)

This table presents the class distribution of the target variables within the
dataset following the discretization process. For instance, the ‘Gender’ target
variable comprises two classes: the ‘Male’ class, consisting of 43 instances, and
the ‘Female’ class, comprising 47 instances. Similarly, the ‘Age’ target variable
has been discretized into five classes. The first class encompasses instances with
an age below 55.6 years, totaling 1 instance. The second class includes instances
with ages ranging between 55.6 and 59.2 years, encompassing 2 instances, and
so forth.

the literature in relation to finding optimum number of bins (Boulle,
2005; Dougherty et al., 1995; Yang and Webb, 2001, 2002). Dougherty
et al. (1995) show the simplest approach, where the number of bins
is set to 10 regardless of the number of instances. On the other hand,
the K-proportional approach Yang and Webb (2001) set the number of

bins to ⌊
√
N⌋ where N is the number of instances. In this study, the

number of bins is initially set to 10 and the number of bins is optimized
using leave one out approach.1 Table 1 shows statistics of the used
dataset as per target variable after transforming numeric variables into
the nominal space using binning.

The dataset and its description are publicly available.2

4.2. Parameter tuning

As described in Section 3.2, we train a deep neural network consist-
ing of two sparse autoencoders where the output of the first autoen-
coder is fed into the second one as an input. This process is mainly
parameterized by the number of neurons of each autoencoder. To find
the optimal number of neurons in each autoencoder, we initially set the
number of neurons in each autoencoder to 10% (i.e., 16) of the number
of input attributes. We then increase the number of neurons in each au-
toencoder by 10% of the number of the input attributes iteratively until
the number of neurons reaches the number of the input attributes (i.e.,
162).

Each iteration computes the recognition/identification accuracy of a
softmax classifier. The combination of the number of neurons of the first
and the second autoencoders that maximizes the prediction accuracy of
the softmax classifier is chosen as the optimal numbers of neurons. This
process is performed for each target variable (i.e., gender, age, height,
and weight). We also observed that when both the number of neurons
of the first autoencoder and the number of neurons of the second au-
toencoder are equal to 16, the softmax classifier achieves the highest
accuracy of predicting the gender. As mentioned in Section 3.2, the fea-

1 weka.filters.unsupervised.attribute.Discretize.
2 https://github.com/zaidalmahmoud/Gait-Analysis-Dataset.
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Fig. 6. The Within-Cluster Sum of Squares (WCSS) loss over different number
of clusters.

tures extracted by the deep stacked sparse autoencoders are combined
with the original attributes of the data and a feature selection algorithm
is then used to select the most discriminative features of the data. The
features selected by the feature selection algorithm are used to build
the clustering-based learning model.

As in Section 3.3, the clustering-based learning model (i.e., K-Means)
is parameterized by the number of clusters and the number of layers.
These parameters are selected by varying the number of clusters and
layers and picking the numbers that maximize the prediction accuracy
of the proposed learning model empirically. Within the K-Means frame-
work, two parameters stand out as particularly pivotal: the number of
clusters denoted as “K” and the initialization method. (See Fig. 6.)

In our quest to determine the ideal value for K, we leveraged the El-
bow method. This method entails the creation of a graph that portrays
the sum of squared distances, commonly referred to as “inertia,” for
data points with respect to their assigned clusters across various K val-
ues. Our objective was to discern the “elbow point” within the graph,
characterized by a discernible inflection where the inertia diminishes at
a notably slower rate. This juncture often offers valuable insights, sig-
nifying the optimal number of clusters that best characterize the data’s
underlying structure.

Following the WCSS (within-cluster sum of squares) analysis pre-
sented in Fig. 6, we have determined the most suitable number of clus-
ters for our dataset to be three (K=3). Subsequently, we will proceed
to construct a K-Means model that accommodates these three clusters
and apply it to the IMU dataset. The pivotal step in this process is the
utilization of the “fit-predict” method, which furnishes us with the clus-
ter assignments or labels for each individual data point within the IRIS
dataset. These labels serve as a basis for visualizing and interpreting the
clustering outcomes.

Regarding the initialization of cluster centroids, it is vital to ac-
knowledge that this process can exert a substantial influence on both the
convergence dynamics and the quality of outcomes produced by the K-
Means algorithm. Among the established initialization methodologies,
notable options include random initialization, the K-Means++ initial-
ization strategy, and the manual selection of a subset of data points to
serve as initial centroids. The K-Means++ method, renowned for its
ability to engender superior results compared to purely random initial-
ization, has garnered popularity as a prudent choice.

5. Experimental results and analysis

To evaluate the effectiveness of the proposed method, we com-
pare its performance with the performance of other machine learning

methods, including Multi-Layered Perceptron (MLP) (Haykin, 2008), K-
Nearest Neighbor (KNN) (Aha et al., 1991), AdaBoostM1 (Freund et al.,
1996), and Random Forest (RF) (Breiman, 2001), on the generated gait
dataset described in Subsection 3.1. The results of the proposed method
were obtained by modifying the Java code of Weka package (Hall et al.,
2009).

The most common and well-accepted statistical methods to evaluate
the performance of a learning model are cross-validation and boot-
strapping. In this study, we used 10 folds cross-validation approach
to evaluate the recognition performance of the selected methods as it
gives us a better understanding of how these methods perform on new
datasets (Kohavi et al., 1995). The gait dataset is divided into 10 ran-
dom subsets where 9 subsets are used for training and the other 1 subset
is used for testing. This process is repeated, iteratively, until all subsets
are tested. The classification errors of testing subsets are accumulated
followed by computing the mean absolute error.

To demonstrate the significance of the extracted deep features in en-
hancing the performance of machine learning models, we evaluate the
performance of the selected machine learning models on three different
feature sets: feature set 1 (FS1), which consists of the original attributes
of the data. Feature set 2 (FS2), which consists of the extracted features
only; and feature set 3 (FS3), which consists of the selected features
by the CFS feature selection algorithm from the combination of FS1
and FS2. The number of extracted features and selected features is not
constant for all target variables/labels. For example, the number of ex-
tracted features is 16 when the target is gender; however, the number
of extracted features is 32 when the target variable is age. This is due to
the optimization process that selects the number of hidden neurons that
maximizes the accuracy of a softmax classifier for each target variable.

5.1. Gait-based gender recognition

Table 2 shows the recognition accuracy of different models for the
target variable ‘gender’ on each feature set. Accuracy in this classifica-
tion problem refers to the proportion of correct outcomes, encompass-
ing both True Positives (TP) and True Negatives (TN), out of the total
instances assessed. The key performance metrics for this classification
problem include Accuracy (ACC), Sensitivity (TPR), Specificity (SPC),
False Positive Rate (FPR), and False Negative Rate (FNR), each defined
as follows:

ACC =
TP + TN

TP + FN + FP + TN
, (7)

TPR =
TP

TP + FN
, (8)

SPC =
TN

FP + TN
, (9)

FPR =
FP

FP + TN
, (10)

FNR =
FN

FN + TP
, (11)

where FP is the False Positive and FN is the False Negative.
As can be seen in Table 2, the MLP achieves the highest recognition

accuracy of 68.888% when FS1 is used whereas the proposed clustering-
based learning model achieves the highest recognition accuracy when
FS2 and FS3 are used. Noticeably, the recognition accuracy of all mod-
els degrades when FS2 is used. This means that the extracted features,
when used solely, do not improve the recognition accuracy of machine
learning models for the target variable ‘gender’. On the other hand,
using a combination of both the original attributes and the extracted
features improves the recognition accuracy of machine learning models
for the target variable ‘gender’. This is evidenced by the results shown
in Table 2. The proposed clustering-based model achieves a recogni-
tion accuracy of 75.555% using FS3, outperforming all other learning
models used in this study.

Table 3 provides a detailed examination of the proposed model’s
performance when applied to the optimal feature set, denoted as FS3,
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Table 2
Recognition accuracy of different models for the target variable ‘gender’.

Model FS1 FS2 FS3

MLP 68.888 53.333 66.666
K-NN 60.000 46.666 55.555
AdaBoostM1 52.222 52.222 66.666
RF 52.222 38.888 58.888
Clustering-based 62.222 53.333 75.555

The presented table displays the performance results concerning the recogni-
tion accuracy achieved by specific machine learning models when applied to
gait data generated for the target variable, which is gender. Within the table,
FS1 denotes the inclusion of the original data attributes, FS2 represents the
utilization of features extracted by a deep neural network consisting of stacked
sparse autoencoders, as depicted in Fig. 4, and FS3 encompasses the features se-
lected through the CFS algorithm, as illustrated in Fig. 4. It is noteworthy that
Encoder 1 incorporates 16 hidden neurons, while Encoder 2 employs a similar
configuration with 16 hidden neurons.

Table 3
Other performance measures on chosen feature set for the target variable ‘gen-
der’.

Model TPR SPC FPR FNR

MLP (FS1) 0.6809 0.6977 0.3023 0.3191
K-NN (FS1) 0.5778 0.6136 0.3864 0.4222
AdaBoostM1 (FS3) 0.6809 0.6512 0.3488 0.3191
RF (FS3) 0.5319 0.6512 0.3488 0.4681
Clustering-based (FS3) 0.7447 0.7674 0.2326 0.2553

This table presents a comparative analysis of performance metrics extracted
from the confusion matrix, specifically, sensitivity (TPR), specificity (SPC), False
Positive Rate (FPR), and False Negative Rate (FNR), for various machine learn-
ing models utilizing their most effective feature sets.

as initially presented in Table 2. The outcomes elucidate a substan-
tial augmentation in both the Sensitivity (TPR) and Specificity (SPC).
These results affirm the model’s adeptness in accurately distinguishing
instances pertaining to both male and female categories. The concurrent
reduction in the False Positive Rate (FPR) serves as a robust indication
of the model’s improved precision, as it substantially lowers the likeli-
hood of misclassifying an instance as female when, in fact, it belongs
to the male category. This heightened precision is particularly advanta-
geous for the accurate identification of female cases.

5.2. Gait-based age recognition

We investigate the recognition accuracy of the selected machine
learning models for the target variable ‘age’ on FS1, FS2, and FS3. As
seen in Table 1, most of the participants are of age greater than 66.4
years. Thus, the baseline accuracy is 75.555%.

Table 4 shows the recognition accuracy of the target variable ‘age’.
The proposed clustering-based model achieves the highest recognition
accuracy of 76.666% using FS1. However, its recognition accuracy
degrades when FS2 and FS3 are used. The RF classifier behaves sim-
ilarly to the clustering-based model. However, the MLP, K-NN, and
AdaBoostM1 classifiers show the highest recognition accuracy when
FS2 is used. This means that the extracted features are good repre-
sentatives of the data. Although the clustering-based model achieves
a recognition accuracy of 76.666%, this is considered as a low recogni-
tion accuracy as the baseline accuracy is 75.555%. The low performance
of different machine learning models is attributed to the imbalance data
where 68 participants are of age greater than 66.4 years. This causes bi-
asness toward the majority class as a machine learning algorithm sees
more examples of the majority class during the learning process, which
prevents recognizing instances of minority classes.

As shown in Table 5, the proposed algorithm demonstrates notewor-
thy proficiency in classifying classes from 3 to 5, while the RF model
excels in categorizing classes from 1 to 2. In the case of class 1, both al-

Table 4
Recognition accuracy of different models for the target variable ‘age’.

Model FS1 FS2 FS3

MLP 63.333 74.444 60.000
K-NN 55.555 67.777 55.555
AdaBoostM1 71.111 75.555 68.888
RF 74.444 68.888 72.222
Clustering-based 76.666 75.555 72.222

This table shows the recognition accuracy of selected machine learning models
on the generated gait data for the target variable ‘age’. FS1 contains the original
attributes of the data. FS2 contains the extracted features by the deep neural
network of stacked sparse autoencoders as in Fig. 4. FS3 contains the selected
features by the CFS algorithm as in Fig. 4. The number of hidden neurons of
Encoder 1 is 16 and the number of hidden neurons of Encoder 2 is 32.

Table 5
Other performance measures on chosen feature set for the target variable ‘age’
(Clustering-based (FS1) Vs RF (FS1)).

Class ACC (%) PPV TPR F1

1 83.33 / 85.56 0.95 / 0.98 0.82 / 0.82 0.88 / 0.90
2 84.44 / 86.67 0.47 / 0.53 0.62 / 0.62 0.53 / 0.57
3 90.00 / 87.78 0.33 / 0.27 0.50 / 0.50 0.40 / 0.35
4 96.67 / 93.33 0.33 / 0.0 0.50 / 0.0 0.40 / 0.0
5 98.89 / 95.56 0.50 / 0.0 1.0 / 0.0 0.67 / 0.0

Given the multi-class nature of the target variable ‘Age’, this table presents
additional performance metrics, specifically, Accuracy (ACC), Precision (PPV),
Sensitivity (TPR), and F1 Score, for the two top-performing models and their
respective feature sets as displayed in Table 4. In each column, the value on the
left signifies the performance measure for the clustering-based approach, while
the value on the right represents the performance of the Random Forest (RF)
model. For instance, in the case of class 5, the accuracy for the clustering-based
method is 98.89, whereas it is 95.56 for the RF model.

gorithms exhibit strong performance, achieving an accuracy of 0.88 for
the clustering-based approach and 0.90 for RF. The F1 score, being the
harmonic mean of precision and recall (TPR), assumes particular signifi-
cance in this context. A high F1 score for class 1 indicates a harmonious
balance between precision and recall. This implies that the classifier
not only makes precise positive predictions (high precision) but also
captures a substantial portion of the true positive instances (high re-
call). Thus, a high F1 score underscores the robust performance of the
classifier for this specific class.

5.3. Gait-based weight recognition

Table 6 shows the recognition accuracy of different machine learn-
ing models for the target variable ‘weight’. As seen in Table 6, the
clustering-based model shows the best recognition performance when
FS1, FS2, and FS3 are used. Of particular interest, most of the models
achieve a comparable or better performance denoted by the recognition
accuracy using FS2. For example, the MLP achieves a recognition accu-
racy of 15.555% using FS1; and a recognition accuracy of 20% using
FS2. The K-NN achieves a recognition accuracy of 6.666% using FS3;
and a recognition accuracy of 20% using FS2. This clearly indicates
that features extracted from the deep neural network are good repre-
sentatives of the input data and can potentially improve the recognition
accuracy of machine learning models for the target variable ‘weight’.
Noticeably, the clustering-based model achieves recognition accuracy of
26.666% using FS2, outperforming other conventional machine learn-
ing models.

As depicted in Table 1, the Weight variable encompasses a total of
seven distinct classes. Notably, the clustering-based model exhibits ex-
ceptional performance, particularly in its ability to accurately classify
classes ranging from 5 to 7, as well as class 1, all achieving accuracy
levels surpassing 80%. Substantial TPRs are evident in classes 3 and 7.
These observations imply that the clustering-based model demonstrates
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Table 6
Recognition accuracy of different models for the target variable ‘weight’.

Model FS1 FS2 FS3

MLP 15.555 20.000 17.777
K-NN 22.222 20.000 6.666
AdaBoostM1 17.777 12.222 12.222
RF 20.000 20.000 14.444
Clustering-based 22.222 26.666 18.888

This table shows the recognition accuracy of selected machine learning mod-
els on the generated gait data for the target variable ‘weight’. FS1 contains the
original attributes of the data. FS2 contains the extracted features by the deep
neural network of stacked sparse autoencoders as in Fig. 4. FS3 contains the se-
lected features by the CFS algorithm as in Fig. 4. The number of hidden neurons
of Encoder 1 is 144 and the number of hidden neurons of Encoder 2 is 48.

Table 7
Other performance measures on chosen feature set for the target variable
‘weight’ (Clustering-based (FS2) Vs K-NN (FS1)).

Class ACC (%) PPV TPR F1

1 78.89 / 70.00 0.44 / 0.15 0.22 / 0.11 0.30 / 0.13
2 72.22 / 75.56 0.24 / 0.25 0.25 / 0.19 0.24 / 0.21
3 72.22 / 73.33 0.33 / 0.27 0.47 / 0.24 0.39 / 0.25
4 73.33 / 71.11 0.18 / 0.24 0.12 / 0.24 0.14 / 0.24
5 80.00 / 84.44 0.15 / 0.27 0.22 / 0.33 0.18 / 0.30
6 81.11 / 81.11 0.25 / 0.29 0.27 / 0.36 0.26 / 0.32
7 95.56 / 88.89 0.25 / 0.0 0.50 / 0.0 0.33 / 0.0

Given the multi-class nature of the target variable ‘Weight’, Table 7 presents
additional performance metrics, specifically, Accuracy (ACC), Precision (PPV),
Sensitivity (TPR), and F1 Score, for the two top-performing models and their
respective feature sets as displayed in Table 6. In each column, the value on
the left signifies the performance measure for the clustering-based approach,
while the value on the right represents the performance of the K-NN model. For
instance, in the case of class 7, the accuracy for the clustering-based method is
95.56, whereas it is 88.89 for the K-NN model.

Table 8
Recognition accuracy of different models for the target variable ‘height’.

Model FS1 FS2 FS3

MLP 85.555 86.666 87.777
K-NN 87.777 83.333 84.444
AdaBoostM1 86.666 90.000 86.666
RF 91.111 85.555 91.111
Clustering-based 92.222 92.222 90.000

This table shows the recognition accuracy of selected machine learning models
on the generated gait data for the target variable ‘height’. The FS1 contains
the original attributes of the data. The FS2 contains the extracted features by
the deep neural network of stacked sparse autoencoders as in Fig. 4. The FS3
contains the selected features by the CFS algorithm as in Fig. 4. The number
of hidden neurons of Encoder 1 is 48 and the number of hidden neurons of
Encoder 2 is 80.

a high degree of effectiveness in correctly identifying instances belong-
ing to these specific classes within the dataset. This high TPR suggests
a notably reduced incidence of false negatives, indicating that the clas-
sifier seldom fails to identify instances of these classes when they are
indeed present. (See Table 7.)

5.4. Gait-based height recognition

As depicted in Table 1, the target variable ‘height’ has two classes
where the first class has 8 instances and the second class has 82 in-
stances. As such the baseline accuracy is 91.111%. As can be seen in
Table 8, all models achieve a recognition accuracy less than the baseline
accuracy except the clustering-based model where it achieves a recog-
nition accuracy of 92.222% on FS1 and FS2. In general, the FS1 gives
the best recognition accuracy; however, FS2 and FS3 give a comparable
or better performance.

Table 9
Other performance measures on chosen feature set for the target variable
‘height’.

Model TPR SPC FPR FNR

MLP (FS3) 0.9146 0.5000 0.5000 0.0854
K-NN (FS1) 0.9024 0.6250 0.3750 0.0976
AdaBoostM1 (FS2) 0.8902 0.6250 0.3750 0.1098
RF (FS1) 0.9268 0.7500 0.2500 0.0732
Clustering-based (FS1) 0.9390 0.7500 0.2500 0.0610

This table presents a comparative analysis of performance metrics extracted
from the confusion matrix, specifically, sensitivity (TPR), specificity (SPC), False
Positive Rate (FPR), and False Negative Rate (FNR), for various machine learn-
ing models utilizing their most effective feature sets.

Table 9 provides an in-depth analysis of the machine learning algo-
rithms when applied to their optimal feature set, as initially presented
in Table 8. The results reveal a significant improvement in both TPR
and SPC. This implies that the clustering-based algorithm stands out
as the only method capable of effectively identifying instances falling
within the positive range (i.e., 148.3 and above) as well as those within
the negative range (i.e., below 148.3). The low FPR signifies that the
model is less likely to incorrectly classify an instance as positive when,
in fact, it falls within the negative range. This combination of high TPR,
high SPC, and low FPR underscores the model’s precision and accuracy
in distinguishing between positive and negative instances.

6. Potential applications

To date, gait biometrics technologies have received only a limited
exposure in a commercial setting, yet a number of studies have revealed
the potential for the use of gait biometrics in industry (e.g., security and
forensic) (Mason et al., 2016). However, such approaches still a long
way from being commercially applicable (Mason et al., 2016).

Although image-based approaches have received the most research
interest in the literature, the first actual commercial incorporation of
gait biometrics has come from the wearable and floor sensor indus-
tries (Mason et al., 2016). This is made possible by the proliferation
of wearable programmable devices which are acceptable by consent-
ing owners (Mason et al., 2016). This motivates several companies to
develop gait biometric-based applications and devices. For example,
Plantiga (2023) is developing a shoe-based tracking system. It is en-
visaged that sensor-based approaches will gain more popularity in the
near future because they provide more possibilities in terms of integra-
tion with other forms of biometrics for human identification purposes
(Mason et al., 2016). Thus, we believe that the proposed approach is an
alternative solution to image-based approaches and has an opportunity
to be deployed in gait biometric-based devices and applications.

From forensic perspective, gait biometrics can be used as forensic
tools. For example, it has been reported in engadget (2018) that “inves-
tigators have used data from iOS’ built-in Health app as evidence in the
investigation of a rape and murder case. Police cracked the suspect’s
phone with the help of an unnamed Munich company and discovered
Health data that corresponded with his reported activity the day of the
crimes, which included dragging the victim down a river embankment
and climbing back up. The suspect’s Health app appeared to have reg-
istered this last action as two instances of stair climbing, and an officer
obtained similar results when replicating the accused’s movements.

The Health info (which also included his overall activity levels) was
only part of the information investigators collected. They only had in-
complete public surveillance video and geodata, but they noticed that
his phone contacted a cell tower near the crime scene at a time consis-
tent with video footage, and that there was an unusually long period
of inactivity before it had to contact a new cell site. The victim’s Nokia
phone also sent its last location data shortly after the crime is believed
to have taken place.”
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The IMU sensors found in modern mobile phones are a typically
combination of several different types of sensors, including accelerom-
eter, gyroscope, magnetometer and barometer. These sensors work to-
gether within the IMU system of a mobile phone to provide data related
to motion, orientation, and spatial positioning. The data from these
sensors have widely been used by various applications, including gam-
ing, virtual reality, augmented reality, fitness tracking, navigation, and
other motion-based interactions. The IMU sensors, we believe, when
applied to gait analysis, have the potential to be utilized in various
identification tasks due to the mainly following three reasons.

Firstly, IMU-based gait analysis is non-intrusive and unobtrusive,
as it requires only small wearable sensors attached to the body. This
characteristic makes it suitable for identification tasks where privacy,
comfort, and convenience are important considerations. Unlike other
biometric methods such as fingerprinting or iris scanning, gait analy-
sis using IMUs can be performed without direct contact or specialized
equipment.

Secondly, IMUs can provide continuous monitoring of gait parame-
ters over an extended period. This capability allows for the creation of
comprehensive gait profiles that capture subtle variations and changes
in an individual’s gait pattern over time. Such detailed profiles enhance
the accuracy and reliability of identification tasks that rely on gait anal-
ysis.

Finally, IMUs can be combined with other sensing technologies, such
as accelerometers, gyroscopes, and magnetometers, to provide more
comprehensive and accurate gait analysis. By fusing data from multiple
sensors, it is possible to capture additional gait features and improve the
overall identification performance. For example, combining IMU data
with video-based systems can offer both quantitative and qualitative
gait information. Gait analysis using IMU technology finds applications
in various identification tasks. These include biometric identification for
security purposes (e.g., access control, surveillance), healthcare applica-
tions (e.g., monitoring and assessing patients’ mobility and rehabilita-
tion progress), forensic analysis, and even personalized user recognition
in interactive systems or virtual reality environments.

While IMU-based gait analysis using machine learning offers sev-
eral advantages, it also has some limitations or weaknesses that should
be taken into consideration. Firstly, gait patterns can vary signifi-
cantly among individuals due to factors such as age, health conditions,
footwear, and walking surfaces. Machine learning models trained on
one population may not generalize well to other populations, which
can limit the effectiveness of IMU-based gait analysis across diverse de-
mographics. Adapting the models to accommodate variations in gait
patterns becomes essential for improving accuracy and generalization.
Secondly, IMU sensors are susceptible to environmental conditions and
external interferences. Vibrations, magnetic fields, and other external
factors can introduce noise or distort the measurements, impacting the
quality of gait data. Robust filtering and preprocessing techniques are
required to mitigate the influence of environmental factors and ensure
accurate gait analysis. Lastly, while IMU sensors provide valuable data
on motion and orientation, the information may be limited compared to
other sensor modalities or imaging techniques. IMU-based gait analysis
relies primarily on capturing body movements, which may not capture
fine-grained details or subtle variations in gait patterns. Incorporating
additional sensors or modalities may be necessary to enhance feature
representation and improve the accuracy of identification tasks. We be-
lieve that addressing these weaknesses through ongoing research and
development efforts is essential to unlock the full potential of IMU-
based gait analysis using machine learning and ensure its practical
applicability across a wide range of identification tasks.

Regarding the offline and online application aspects, we acknowl-
edge that it is essential to clarify the operational aspects of our ap-
proach. Our method primarily involves the use of Inertial Measurement
Unit (IMU) sensors, which are often integrated into modern mobile
devices. The process of extracting latent features from the gait data,
as well as the initial training of the machine learning model, can be

performed offline. During this stage, the model learns the underlying
patterns and relationships from the gait data to create a representation
that is effective for subsequent identification tasks.

Once the model is trained and the latent features are obtained, the
actual identification tasks can be performed online. The online appli-
cation involves deploying the trained model on a mobile device or a
dedicated system to process real-time gait data and predict the numeric
attributes, such as age, height, and weight, of individuals based on their
gait patterns. This real-time prediction capability can be invaluable in
various contexts, such as forensic analyses, healthcare applications, and
user recognition in interactive systems.

7. Concluding remarks and future work

This study highlights the significance of gait analysis as a potential
alternative to traditional image-based identification methods. While ex-
isting technologies heavily rely on analyzing 2D/3D images captured
by surveillance cameras, this study demonstrates the utilization of gait
biometrics in combination with deep feature learning and inertial mea-
surement unit (IMU) technologies. By exploring this novel approach
theoretically and experimentally, the study reveals compelling results
that surpass the accuracy of existing models in individual identification
tasks.

Our experimental results undeniably showcase the exceptional per-
formance of the proposed clustering-based model in achieving high
identification accuracy. Specifically, in gender identification, the model
achieves a recognition accuracy of 75.555% using FS3, outperforming
all other examined learning models. Moreover, for age identification, it
achieves the highest recognition accuracy of 76.666% using FS1.

The produced representations derived from the clustering-based ma-
chine learning model, which captures gait information, exhibit a no-
table degree of invariance to variations. As a result, these represen-
tations demonstrate robustness in identifying individuals, even amidst
significant changes occurring in their walking patterns.

Specifically, the use of extracted latent features from a stacked au-
toencoder in ensemble clustering can be technically suitable and ad-
vantageous for several reasons: 1) By extracting latent features via SAE,
the high-dimensional input data can be reduced to a lower-dimensional
space, which helps in handling computational complexity and improves
clustering performance, 2) SAEs are unsupervised learning models that
can automatically learn hierarchical and abstract representations of the
data. These learned features are often more discriminative and relevant
for clustering tasks compared to the original raw data, 3) The learned la-
tent features are likely to capture the underlying structure and patterns
in the data while being less affected by noise and minor variations. This
robustness can improve the overall performance of ensemble clustering
methods, and 4) When using the latent features in an ensemble cluster-
ing approach, each base clustering model in the ensemble can be built
on different subsets of these features. This diversity enhances the en-
semble’s ability to capture different aspects of the data distribution and
boosts clustering accuracy.

When it comes to weight identification, the proposed clustering-
based model consistently demonstrates superior recognition perfor-
mance when utilizing FS1, FS2, and FS3. Additionally, for height identi-
fication, it achieves a recognition accuracy of 92.222% when using FS1
and FS2. We firmly believe that our research, which leverages machine
learning approaches and incorporates IMU technology for gait analysis,
opens up new possibilities for various identification tasks. Most impor-
tantly, it addresses the limitations associated with image quality and
individual appearance variations, which are inherent in current image-
based methods.

The findings from this study not only contribute to the existing liter-
ature on gait analysis but also have significant implications for practical
applications. By establishing the potential of IMU-based gait analysis,
this research paves the way for advancements in identification tasks
across multiple domains. The demonstrated superiority of the proposed
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model provides a solid foundation for future research and applications
in fields such as security systems, healthcare monitoring, forensic anal-
ysis, personalized user recognition, and more.

This study’s results underscore the transformative potential of ma-
chine learning approaches that leverage IMU technology and prioritize
gait analysis information. By overcoming the limitations of image-based
methods, this research opens up new possibilities for accurate and reli-
able identification tasks, marking a substantial advancement in the field
of identification technologies.

In the context of designing such machine learning architecture for
the precise estimation of human attributes (e.g., age, gender, height,
and weight) derived from IMU sensor data, it is imperative to proac-
tively address potential adversarial scenarios. To ensure the model’s
robustness and fairness, the authors suggest devising a comprehensive
plan to mitigate adversarial scenarios. This plan should encompass mul-
tiple stages of data preprocessing, involving meticulous data curation to
eliminate biases and outliers while anonymizing sensitive information.
The augmentation of adversarial data during training enables the model
to better withstand potential attacks and perturbations. The plan may
also involve rigorous evaluation through fairness metrics, including dis-
parate impact and equal opportunity, to quantify bias in predictions.
Bias mitigation techniques, such as re-weighting and adversarial train-
ing, are then employed to rectify these biases. Adversarial testing could
also be integrated into the evaluation process to assess the model’s re-
silience against targeted attacks. Privacy preservation techniques, such
as differential privacy, should be implemented to safeguard sensitive
information.

Building upon the findings of this study, there are several promising
avenues for future research in the field of gait analysis and identification
tasks. Further exploration can be conducted to optimize the proposed
clustering-based model by investigating the impact of different feature
combinations and fusion techniques on identification accuracy. As dis-
cussed, incorporating additional biometric modalities, such as facial
recognition or voice recognition, alongside gait analysis could poten-
tially enhance the overall identification performance. Extending the
study to larger and more diverse datasets would provide valuable in-
sights into the generalizability and robustness of the proposed model.
Moreover, conducting longitudinal studies to investigate the stability
and consistency of gait-based identification over time would be benefi-
cial. Extending the ideas above, we also have plan to explore real-time
implementation and deployment of the proposed model in practical
scenarios, such as security systems or healthcare monitoring, would pro-
vide valuable insights into its feasibility and effectiveness in real-world
applications.
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