667 research outputs found

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    COVID-19 & privacy: Enhancing of indoor localization architectures towards effective social distancing

    Get PDF
    Abstract The way people access services in indoor environments has dramatically changed in the last year. The countermeasures to the COVID-19 pandemic imposed a disruptive requirement, namely preserving social distance among people in indoor environments. We explore in this work the possibility of adopting the indoor localization technologies to measure the distance among users in indoor environments. We discuss how information about people's contacts collected can be exploited during three stages: before, during, and after people access a service. We present a reference architecture for an Indoor Localization System (ILS), and we illustrate three representative use-cases. We derive some architectural requirements, and we discuss some issues that concretely cope with the real installation of an ILS in real-world settings. In particular, we explore the privacy and trust reputation of an ILS, the discovery phase, and the deployment of the ILS in real-world settings. We finally present an evaluation framework for assessing the performance of the architecture proposed

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Indoor location identification technologies for real-time IoT-based applications: an inclusive survey

    Get PDF
    YesThe advent of the Internet of Things has witnessed tremendous success in the application of wireless sensor networks and ubiquitous computing for diverse smart-based applications. The developed systems operate under different technologies using different methods to achieve their targeted goals. In this treatise, we carried out an inclusive survey on key indoor technologies and techniques, with to view to explore their various benefits, limitations, and areas for improvement. The mathematical formulation for simple localization problems is also presented. In addition, an empirical evaluation of the performance of these indoor technologies is carried out using a common generic metric of scalability, accuracy, complexity, robustness, energy-efficiency, cost and reliability. An empirical evaluation of performance of different RF-based technologies establishes the viability of Wi-Fi, RFID, UWB, Wi-Fi, Bluetooth, ZigBee, and Light over other indoor technologies for reliable IoT-based applications. Furthermore, the survey advocates hybridization of technologies as an effective approach to achieve reliable IoT-based indoor systems. The findings of the survey could be useful in the selection of appropriate indoor technologies for the development of reliable real-time indoor applications. The study could also be used as a reliable source for literature referencing on the subject of indoor location identification.Supported in part by the Tertiary Education Trust Fund of the Federal Government of Nigeria, and in part by the European Union’s Horizon 2020 Research and Innovation Programme under Grant agreement H2020-MSCA-ITN-2016 SECRET-72242

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    Evaluating Indoor Positioning Systems in a Shopping Mall: The Lessons Learned From the IPIN 2018 Competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75 th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Posicionamento cooperativo para redes sem fios heterogéneas

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaFuture emerging market trends head towards positioning based services placing a new perspective on the way we obtain and exploit positioning information. On one hand, innovations in information technology and wireless communication systems enabled the development of numerous location based applications such as vehicle navigation and tracking, sensor networks applications, home automation, asset management, security and context aware location services. On the other hand, wireless networks themselves may bene t from localization information to improve the performances of di erent network layers. Location based routing, synchronization, interference cancellation are prime examples of applications where location information can be useful. Typical positioning solutions rely on measurements and exploitation of distance dependent signal metrics, such as the received signal strength, time of arrival or angle of arrival. They are cheaper and easier to implement than the dedicated positioning systems based on ngerprinting, but at the cost of accuracy. Therefore intelligent localization algorithms and signal processing techniques have to be applied to mitigate the lack of accuracy in distance estimates. Cooperation between nodes is used in cases where conventional positioning techniques do not perform well due to lack of existing infrastructure, or obstructed indoor environment. The objective is to concentrate on hybrid architecture where some nodes have points of attachment to an infrastructure, and simultaneously are interconnected via short-range ad hoc links. The availability of more capable handsets enables more innovative scenarios that take advantage of multiple radio access networks as well as peer-to-peer links for positioning. Link selection is used to optimize the tradeo between the power consumption of participating nodes and the quality of target localization. The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used as criteria for choosing the appropriate set of anchor nodes and corresponding measurements before attempting location estimation itself. This work analyzes the existing solutions for node selection in order to improve localization performance, and proposes a novel method based on utility functions. The proposed method is then extended to mobile and heterogeneous environments. Simulations have been carried out, as well as evaluation with real measurement data. In addition, some speci c cases have been considered, such as localization in ill-conditioned scenarios and the use of negative information. The proposed approaches have shown to enhance estimation accuracy, whilst signi cantly reducing complexity, power consumption and signalling overhead.As tendências nos mercados emergentes caminham na direção dos serviços baseados em posicionamento, criando uma nova perspectiva na forma como podemos obter e utilizar informação de posicionamento. Por um lado, as inovações em tecnologias da informação e sistemas de comunicação sem fios permitiram o desenvolvimento de inúmeras aplicações baseadas em localização, tais como a navegação e monitorização de veículo, aplicações de redes de sensores, domótica, gestão de ativos, segurança e serviços de localização sensíveis ao contexto. Por outro lado, as próprias redes sem fios podem beneficiar da informação de localização dos utilizadores de forma a melhorarem as performances de diferentes camadas de rede. Routing baseado em localização, sincronização e cancelamento de interferência são os exemplos mais representativos de áreas onde a informação de localização pode ser útil. Soluções de localização típicas dependem de medições e de aproveitamento de métricas de sinal dependentes da distância, tais como a potência do sinal recebido, o tempo ou ângulo de chegada. São mais baratos e fáceis de implementar do que sistemas de localização dedicados com base em fingerprinting, com a desvantagem da perda de precisão. Consequentemente, algoritmos inteligentes de localização e técnicas de processamento de sinal têm de ser aplicados para compensar a falta de precisão das estimativas de distância. A cooperação entre nodos é usada nos casos em que as técnicas convencionais de posicionamento não têm um bom desempenho devido à inexistência de infraestrutura adequada, ou a um ambiente interior com obstruções. O objetivo é ter uma arquitetura híbrida, onde alguns nós têm pontos de ligação a uma infraestrutura e simultaneamente estão interligados através ligações ad-hoc de curto alcance. A disponibilidade de equipamentos mais capazes permite cenários mais inovadores que tiram proveito de múltiplas redes de acesso de rádio, bem como ligações peer-to-peer, para o posicionamento. A seleção de ligações é usada para otimizar o equilíbrio entre o consumo de energia dos nós participantes e da qualidade da localização do alvo. A diluição geométrica de precisão e a Cramér Rao Lower Bound podem ser utilizadas como critrio para a escolha do conjunto adequado de nodos de ancoragem e as medições correspondentes antes de realizar a tarefa de estimativa de localizaçãoo. Este trabalho analisa as soluções existentes para a seleção de nós, a fim de melhorar o desempenho de localização e propõe um novo método baseado em funções de utilidade. O método proposto é então estendido para ambientes móveis e heterogéneos. Foram realizadas simulações bem como avaliação de dados de medições reais. Além disso, alguns casos específicos foram considerados, tais como a localização em cenários mal-acondicionados e uso de informação negativa. As abordagens propostas revelaram uma melhoria na precisão da estimação, ao mesmo tempo que reduziram significativamente a complexidade do cálculo, o consumo de energia e o overhead do sinal
    corecore