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Palavras-chave Palavras-chave: estimação de localização, cooperação, tecnologias de
acesso rádio, seleção de links, redes heterogéneas, CRLB

Resumo As tendências nos mercados emergentes caminham na direção dos
servios baseados em posicionamento, criando uma nova perspectiva na
forma como podemos obter e utilizar informação de posicionamento.
Por um lado, as inovações em tecnologias da informação e sistemas
de comunicação sem fios permitiram o desenvolvimento de inúmeras
aplicações baseadas em localização, tais como a navegação e monitor-
ização de véıculo, aplicações de redes de sensores, domótica, gestão de
ativos, segurança e serviços de localização senśıveis ao contexto. Por
outro lado, as próprias redes sem fios podem beneficiar da informação
de localização dos utilizadores de forma a melhorarem as performances
de diferentes camadas de rede. Routing baseado em localização, sin-
cronização e cancelamento de interferência são os exemplos mais rep-
resentativos de áreas onde a informação de localização pode ser útil.

Soluções de localização t́ıpicas dependem de medições e de aproveita-
mento de métricas de sinal dependentes da distância, tais como a
potência do sinal recebido, o tempo ou ângulo de chegada. São mais
baratos e fáceis de implementar do que sistemas de localização ded-
icados com base em fingerprinting, com a desvantagem da perda de
precisão. Consequentemente, algoritmos inteligentes de localização e
técnicas de processamento de sinal têm de ser aplicados para com-
pensar a falta de precisão das estimativas de distância. A cooperação
entre nodos é usada nos casos em que as técnicas convencionais de
posicionamento não têm um bom desempenho devido à inexistência de
infraestrutura adequada, ou a um ambiente interior com obstruções.
O objetivo é ter uma arquitetura h́ıbrida, onde alguns nós têm pon-
tos de ligação a uma infraestrutura e simultaneamente estão interli-
gados através ligações ad-hoc de curto alcance. A disponibilidade de
equipamentos mais capazes permite cenários mais inovadores que tiram
proveito de múltiplas redes de acesso de rádio, bem como ligações peer-
to-peer, para o posicionamento.

A seleção de ligações é usada para otimizar o equiĺıbrio entre o con-
sumo de energia dos nós participantes e da qualidade da localização do
alvo. A diluição geométrica de precisão e a Cramér Rao Lower Bound
podem ser utilizadas como critrio para a escolha do conjunto adequado
de nodos de ancoragem e as medições correspondentes antes de realizar
a tarefa de estimativa de localização. Este trabalho analisa as soluções
existentes para a seleção de nós, a fim de melhorar o desempenho de
localização e propõe um novo método baseado em funções de utilidade.
O método proposto é então estendido para ambientes móveis e het-
erogéneos. Foram realizadas simulações bem como avaliação de dados
de medições reais. Além disso, alguns casos espećıficos foram con-
siderados, tais como a localização em cenários mal-acondicionados e
uso de informação negativa. As abordagens propostas revelaram uma
melhoria na precisão da estimação, ao mesmo tempo que reduziram
significativamente a complexidade do cálculo, o consumo de energia e
o overhead do sinal.





Keywords Location estimation, cooperation, radio access technologies, link
selection, heterogeneous environment, CRLB.

Abstract Future emerging market trends head towards positioning based services
placing a new perspective on the way we obtain and exploit positioning
information. On one hand, innovations in information technology and
wireless communication systems enabled the development of numerous
location based applications such as vehicle navigation and tracking,
sensor networks applications, home automation, asset management,
security and context aware location services. On the other hand, wire-
less networks themselves may benefit from localization information to
improve the performances of different network layers. Location based
routing, synchronization, interference cancellation are prime examples
of applications where location information can be useful.

Typical positioning solutions rely on measurements and exploitation of
distance dependent signal metrics, such as the received signal strength,
time of arrival or angle of arrival. They are cheaper and easier to imple-
ment than the dedicated positioning systems based on fingerprinting,
but at the cost of accuracy. Therefore intelligent localization algo-
rithms and signal processing techniques have to be applied to mitigate
the lack of accuracy in distance estimates. Cooperation between nodes
is used in cases where conventional positioning techniques do not per-
form well due to lack of existing infrastructure, or obstructed indoor
environment. The objective is to concentrate on hybrid architecture
where some nodes have points of attachment to an infrastructure, and
simultaneously are interconnected via short-range ad hoc links. The
availability of more capable handsets enables more innovative scenar-
ios that take advantage of multiple radio access networks as well as
peer-to-peer links for positioning.

Link selection is used to optimize the tradeoff between the power con-
sumption of participating nodes and the quality of target localization.
The Geometric Dilution of Precision and the Cramer-Rao Lower Bound
can be used as criteria for choosing the appropriate set of anchor nodes
and corresponding measurements before attempting location estima-
tion itself. This work analyzes the existing solutions for node selection
in order to improve localization performance, and proposes a novel
method based on utility functions. The proposed method is then ex-
tended to mobile and heterogeneous environments. Simulations have
been carried out, as well as evaluation with real measurement data. In
addition, some specific cases have been considered, such as localiza-
tion in ill-conditioned scenarios and the use of negative information.
The proposed approaches have shown to enhance estimation accuracy,
whilst significantly reducing complexity, power consumption and sig-
nalling overhead.
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Chapter 1

Introduction

The availability of position information already plays an integral role in todays wireless

communication networks and current trends suggest that it will form a pivotal part of fu-

ture systems. Innovations in information technology and wireless communication systems

enabled the development of numerous location based applications such as vehicle navigation

and tracking, sensor networks applications, home automation, asset management, security

and context aware location services. On the other hand, communication networks them-

selves may benefit from localization information to improve the performances of different

network layers. Location based routing, synchronization, interference cancellation are some

examples of fields where location information can be useful.

In this introduction, we start with motivations to investigate the localization problem.

Then a brief overview of localization techniques is provided in Section 1.2. The scope of

the thesis is specified in Section 1.3, while 1.4 outlines the focus of each chapter. Finally,

the novel contributions of the thesis are described in Section 1.5.

1.1 Motivation

Position information is necessary to provide location based services to the users, and

also contribute to enhancements on the network side. Our research is motivated by the

need for location based services in personal, professional and public domain. In this section,

we list the most common applications.
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1.1.1 Navigation and tracking

Navigation is the original localization application. Navigation services are based on

mobile users who need directions within their current geographical location. The main

location-based navigation solution is the global navigation satellite systems (GNSS), for

vehicles and pedestrians in an outdoor environment.

Tracking consists in determining the position of the user at each time step. The time

step can be fixed by the user or by the system. One popular example refers to tracking

postal packages so that both companies and clients know where their goods are at any

time [2]. Examples of asset tracking applications are fleet management such as emergency

vehicles and taxi companies, cargo tracking and asset tracking at manufacturing sites and

hospitals. A similar application allows companies to locate their field personnel.

1.1.2 Emergency and Security

The most famous emergency services are E911 in the United States and E112 in the

European Union. The U.S. Federal Communications Commission (FCC) has adopted rules

requiring wireless service providers to provide the public-safety answering point (PSAP)

with the location of the caller. Phase I rules required to provide the location of the cell site

or base station transmitting the call. Phase II required to deliver the location accurate to

within 50 to 300m [3].

For the 112 emergency calls in Europe, a recommendation of the European Commission

requires the operators to provide the best information available as to the location of the

caller, to the extent technically feasible.

1.1.3 Monitoring

Monitoring is based on Wireless Sensor Networks (WSN). In many applications, sensors’

locations must be known for their data to be meaningful. Examples of these applications are

environmental monitoring (collecting information such as temperature, humidity, pressure)

[4], logistics (monitoring and controlling goods), or health care monitoring [5].

1.1.4 Location based services

Yellow pages services, finding the nearest service such as ATM, gas station or restaurant,

accessing traffic news, obtaining a local street map are few examples of location-based
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informative services that can be offered to the user. Social networking, mobile games and

activities like geocaching are some attractive fields especially for young and teen users.

Advertising applications pinpoint users location and provide location-specific advertise-

ments on their mobile devices. However, user’s privacy has to be respected, and a user

may not accept that service providers have an unauthorized access to personal location

information.

Location sensitive billing allows the mobile operators to charge different rates to their

users depending on their location. One example is allowing flat rate when the user is at

home, in order to be able to compete with rates from landline operators.

1.1.5 Network enhancement

Location information can be used for enhancing wireless communication systems at

different network layers. Wireless communication systems have to provide a variety of

services for an increasing number of mobile users. Therefore an efficient use of wireless

communication systems is necessary to cover the increased demand for data rate. Frequency

spectrum as the main and most valuable resource in wireless communications is limited.

An efficient use of this resource is one of the main design objectives in the development of

future wireless communication systems. Some examples are:

• Location based routing

Location based routing protocols in mobile ad hoc networks (MANETs) improve net-

work scalability by reducing the total routing overhead [6]. The idea is to use location

information in order to reduce propagation of control messages, control packet flood-

ing, or make simplified packet forwarding decisions. Location based routing has also

been adopted in wireless sensor networks, mainly for the purpose of energy saving.

• Interference cancellation

Location information can be exploited in order to coordinate inter-cell interference,

enhance interference cancellation algorithms, and resource scheduling [7].

• Synchronization

The location information can be used to compute the distances to neighboring base

stations (BS). By measuring the time-of-arrival of the signal transmitted by the BSs,

a common reference time can be obtained and synchronization signals coming from

different base stations can be timely related. Hereby additional signal energy can be
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used for synchronization and the signals from these BSs are no longer considered as

interfering with each other [7].

• Cooperative communication and relaying

Position information can be useful in relay selection techniques. Both WLAN and

cellular network management can establish relayed or cooperative communication if

it is the best available connection with the mobile station. The impact that terminal’s

position information has on cooperative relaying schemes are for example awareness

of line of sight (LOS) conditions, or possibility to obtain the partial channel state

information (CSI) such as channel mean and channel covariance through exploitation

of the positioning information [8]. A potential problem that arises with the use of

relays is that these additional nodes also impose additional interference to nodes

of adjacent cells. Example of cooperative communications and relaying is shown in

Figure 1.1.

Base Station

Relay

Mobile

Figure 1.1: Cooperative communications and relaying

• Radio resource management

Wireless users can benefit from higher data rates through more effective use of re-

sources, due to exploiting a precise estimation of mobile terminals position infor-

mation. The goal of radio resource management is to optimize the utilization of
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bandwidth (capacity) and Quality of service (QoS). There are static, dynamic re-

source or mixed allocation schemes [9]. The concept can be further improved in

terms of capacity and power consumption at the terminals if the locations of the

terminals are known [10].

1.2 Historical overview

In this section we provide a brief historical overview of location systems, showing their

capabilities and their domains of application.

1.2.1 Global Navigation Satellite System

The global navigation satellite systems (GNSSs) are among the fundamental localiza-

tion solutions. Satellite systems rely on a constellation of satellites rotating in well-known

orbits and continuously transmitting signals used by the mobile terminals to perform

pseudo-range measurements based on the time of flight of transmitted signals

Any GNSS is made up of three parts: the space segment, consisting of satellites orbiting

the Earth; control segment, made of monitoring stations on Earth; and the user segment,

i.e., user receiver equipment capable of receiving and processing the GNSS signals. Cur-

rently, the Global Positioning System - GPS, which was first developed for military use

in the United States, is the only commercially available GNSS solution. Galileo, which is

developed by the European Union and European Space Agency (ESA), is scheduled to be

operational in 2014.

Over the last decades, several improvements to the GPS have been implemented. New

satellites are being launched to update the constellation. The availability of small size, low

power GPS chips allows their implementation in a wide range of devices, such as mobile

phones and computers.

The GNSS localization systems perform well only if the receiver is in line of sight with at

least four satellites. Especially in dense urban or indoor environments, navigation based on

GNSS becomes inaccurate or impossible, since the necessary amount of 4 directly visible

satellites is not reached. Therefore GNSS based localization may not be adequate for

applications that require precise location estimates, and for indoor scenarios. An analysis

of the GPS localization error in various environments is provided in [11].

Besides GPS and Galileo, other GNSSs have been developed or are currently under

development. The Global Navigation Satellite System (GLONASS) system, which was
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originally started by the Soviet Union, has been recently restored by the Russian govern-

ment. The Compass system is a Chinese GNSS which became operational in China in 2011

and the global system should be ready by 2020.

GPS assisted localization

Besides the standalone mode, where a GPS-capable mobile phone determines its posi-

tion based on signals received from GPS, it can also operate in the assisted mode. In that

case, it receives assistance data from terrestrial wireless networks (e.g. cellular networks)

[12]. The data rate of the GPS broadcast signal is only 50 bits per second, thus it can take

several minutes to obtain the first position fix. In assisted GPS (A-GPS), the GPS receiver

gets the initial position information from the cellular network, which helps to reduce the

time it takes the receiver to calculate its first position. This allows the receiver to stay in

idle mode when positioning is temporarily not needed, and reduces its power consumption.

The A-GPS is currently used in many GPS-capable cellular phones or mobile stations (see

Figure 1.2).

Base Station
Base Station

GPS satellite
GPS satellite

GPS satellite

GPS 

signal

GPS 

signal

Assistance 

information

A-GPS

server

GPS

receiver

Figure 1.2: Assisted GPS
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1.2.2 Network based Location Systems

Network based location systems take advantage of the existing wireless network infras-

tructure. Because of the variety of wireless terrestrial systems, different approaches have

been adopted so far to enable localization by exploiting network infrastructure. These sys-

tems cover either a large area, such as a large cell in a cellular system (e.g. GSM, UMTS),

or a smaller one (e.g. WiFi, UWB and Bluetooth).

Cellular networks

The simplest technique is cell-ID, where the mobile device is located inside the coverage

area of a base station. Depending on the cell size, the accuracy ranges from few hundred

meters in urban areas, to tens of kilometers in rural zones. A classical application of cellular

positioning is the localization of the origin of an emergency call. A more accurate method

is the Time Difference of Arrival (TDOA), where at least three synchronized base stations

provide measurements to the target [13].

With the recent development of the indoor femtocell concept, cellular location could

be much more accurate especially in indoor because of the small area covered by each cell

[14]. Currently, there is still no universal and efficient cellular solution available for indoor

environments.

Wireless Local Area networks

The IEEE 802.11a, b, g and n standards, also known as WiFi are generally used to

provide a wireless internet connection to mobile terminals through access points in indoor

environments. The broad deployment of Wireless local area networks (WLANs) offers a

realistic solution for indoor localization. The access points are usually set at known, fixed

locations, so it is possible to locate the connected devices with respect to these access

points. Most solutions rely on measuring the received signal strength to the access point,

and then perform either trilateration or a fingerprinting algorithm. More on this topic will

be provided in Chapter 2. The main advantage of using WLAN technology is that it is

already a common feature in most mobile devices and widely used. There are numerous

applications for WLAN positioning, including home entertainment, automotive industry,

or consumer electronics.
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Wireless Personal Area networks

Wireless personal area networks (WPANs) are short-range wireless networks, where

communicating devices are characterized by their low complexity and low power consump-

tion. WPANs are based on the working group IEEE 802.15 which consists of several task

groups such as Bluetooth (IEEE 802.15.1) or Zigbee (IEEE 802.15.4). The localization so-

lutions in WPANs rely on received signal strength, connectivity and proximity information,

or time-of-arrival measured using ultra-wideband UWB signals. The UWB technology has

been specified in the amendment IEEE 802.15.4a, an alternative PHY standard providing

high throughput, precise ranging capability and low power usage.

The standard 802.15.4 is attractive for wireless sensor networks because of their low

cost, and low power consumption feature. The knowledge of the relative sensors locations

improves the localization performance, and different cooperative methods involving mobile-

to-mobile radio links and measurements can also be used to localize all the sensors in the

network [15].

Heterogeneous networks

Mobile communication devices are becoming more intelligent and reconfigurable in na-

ture, supporting an increasing number of communication standards. Thus they are capa-

ble to exploit a heterogeneous communication infrastructure, comprising for instance 2G,

3G, LTE, WLAN and WiMAX. Moreover, mobile devices will have available peer-to-peer

(P2P) communication capabilities. In the traditional localization scenario, wireless termi-

nals use measurement based techniques to obtain distance estimates from the transmitter

and calculate their position. The availability of more capable handsets make way for more

innovative scenarios that take advantage of multiple radio access networks (RANs) as well

as peer-to-peer links for positioning. In particular, P2P links allow extending the cover-

age and improving the accuracy of positioning especially in sufficiently dense populated

environments (e.g. office buildings).

1.2.3 Autonomous Location Systems

Autonomous location systems rely on their own embedded hardware and software capa-

bilities. They eliminate the need for a priori topological knowledge of the environment, or

additional infrastructures as is the case with GNSS and wireless networks. One example is

the Simultaneous Location and Mapping (SLAM). SLAM is a research subject in the area
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of robotics, and is defined as the problem of building a model leading to a new map, or

repetitively improving an existing map, while at the same time localizing the robot within

that map [16].

1.2.4 Radio Frequency Identification (RFID) tags

Radio-frequency identification (RFID) uses radio-frequency electromagnetic fields iden-

tify and track tags attached to objects or carried by persons. The RFID reader can read

data emitted from RFID tags. Tags are small and cheap devices that can be active or

passive. The active tag is battery supplied and autonomously transmits signals, while

the passive tag reflects the signal transmitted from and operates without battery. RFID

readers and tags use a defined radio frequency and protocol for data transmission. The

transmission range is usually less than few meters [17], whereby active tags have more

range. The main reason why RFID does not provide accurate location sensing is the fact

that readers do not provide the signal strength of a tag directly. Instead, they report if the

tag is being detected or not detected in a given range. Solutions to improve performance

of RFID in dynamic environments have been presented in [18].

1.2.5 Other Location Systems

Other localization systems are based on acoustic [19], infrared [20], or magnetic [21]

measurements. These systems are usually deployed in local areas for short-range applica-

tions. Although these systems can be very accurate, they face several limitations. Acoustic

systems, which usually use ultrasonic frequencies, are very expensive and a dedicated in-

frastructure is needed. Infrared systems impose the line of site requirement. Their range is

limited to a few tens of meters, however the accuracy can be as low as tens of centimeters

[20]. Magnetic systems consist of sources of magnetic signals and by magnetometers, thus

special devices are needed. One example of commercial systems is Polhemus [22].

Table 1.1 presents an overview of major contributions on localization systems, from pre-

vailing ones such as GPS and network based positioning, to more specific ones, considering

indoor, cooperative, distributed and heterogeneous scenarios.
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Authors Contribution
[23] Enge 1994 A tutorial describing GPS signals, measurements and performance
[24] Caffery 1998 An overview of radiolocation in cellular systems

[25] Spirito 2001
Accuracy analysis of location estimation techniques
for cellular networks

[26] Patwari 2003
Derivation of performance bounds of cooperative localization
in wireless sensor networks

[27] Qi 2003
Accuracy limits for time delay based and
signal strength based positioning

[28] Liu 2007 Survey on indoor location systems

[29] Mayorga 2007
Positioning in heterogeneous networks,
combining Wi-Max and Wi-Fi peer-to-peer links

[30] Liu 2008
Error control mechanism based on characterization
of node uncertainties

[31] Wymeersch 2009
SPAWN, a fully distributed cooperative
algorithm based on UWB measurements

[32] Denis 2009
Joint update of ranging measurements and
position information

[33] Bargshady 2010
Heterogeneous localization, combining
Wi-Fi and UWB links

[34] Das 2010
Transmit and receive censoring for distributed
cooperative positioning

[35] Zorzi 2011
Improving localization performance by exploiting
opportunistic interactions between heterogeneous nodes

[36] Zirari 2012 Link selection criteria in heterogeneous localization

Table 1.1: Major contributions addressing localization systems
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1.3 Scope of the thesis

The localization problem can be examined from three aspects, namely:

1. Ranging

Ranging refers to estimation of distances between location-aware nodes, called an-

chors and the target with unknown position. Ranging can be examined from different

perspectives, and its performance will differ depending on what technology is used,

which signal metric is observed, and what models are used to translate that signal

metric into inter-node distance. One critical aspect of the ranging stage is the param-

eter extraction for the corresponding model. These parameters are usually obtained

by means of experiments and calibration [37], [38].

2. Positioning

In the positioning phase, the ranging information is used as input to the localization

algorithm. Signal processing and optimization techniques are deployed in order to

calculate the target coordinates based on the available information. Improvements

can be made, e.g., by exploiting cooperation [26],[31] performing node selection [39],

or discarding unreliable anchor nodes [34].

3. Communication

The communication aspect considers the message exchange between nodes. It exam-

ines the protocols that are used for communication and signalling caused by trans-

mitting position information.

We focus on the central part, the positioning part, while the ranging models are as-

sumed. This thesis is focused on positioning in heterogeneous environments. The associ-

ated node discovery schemes and message exchange protocols are beyond the scope of this

thesis. Moreover, we focus our attention on a multimodal target, able to simultaneously

connect to both infrastructure elements and peer nodes. The evaluation of the localization

performance was evaluated mainly using the following metrics:

• Accuracy, expressed either as the root mean square error or in terms or error cumu-

lative distribution function.

• Computational complexity, measured as the time needed to perform the algorithm.
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• Signaling overhead, which is represented as the number of additional messages that

have to be exchanged for localization purposes.

More details on performance metrics are given in Section 2.5 in Chapter 2. We review

the ranging methods in Section 2.1, and adopt one of the models from literature in further

work, namely the lognormal shadowing model for received signal strength measurements.

We use the recommended model parameters according to the scenario, while parameter

extraction and calibration is out of scope of this thesis.

1.4 Outline of the thesis

The outline of the thesis is presented in the following. In the introduction the possible

applications and services that use positioning information are described.

• Chapter 2: The second chapter presents the general overview of indoor positioning

as well as the state of the art on existing localization techniques and systems. We

start by listing the most common ranging techniques and their sources of error. The

fundamental principles of localization algorithms are described, and classified in two

main categories: probabilistic and deterministic algorithms. Particular emphasis is

put on cooperative positioning, as it is the main focus of this thesis. Most important

aspects of localization in heterogeneous networks are analysed and state of the art is

presented. At the end of the chapter, we present the metrics used to evaluate and

compare localization systems.

• Chapter 3: The third chapter is the core of the thesis. We consider the importance of

anchor node selection in order to optimize the tradeoff between the power consump-

tion of participating nodes and the quality of target location estimated. The main

algorithm treated in this chapter is iterative multilateration. In this algorithm, non-

anchor nodes serve as virtual anchors after having obtained their position estimate.

Shortcomings of iterative multilateration are the error accumulation and propaga-

tion, originating from the use of imperfect anchor positions which contaminate the

localization process through iterations.

The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used

as criteria for choosing the appropriate set of anchor nodes and corresponding mea-

surements before carrying out the location estimation task itself. This work analyzes
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the existing solutions for node selection in order to improve localization performance,

and proposes a novel method based on utility functions. The main contribution is a

selection principle that accounts for imperfect anchor locations.

• Chapter 4: Here we apply the node selection in a dynamic scenario. Different accu-

racy indicators are used as selection criteria in order to localize a moving target. We

propose a solution for energy efficient tracking in a heterogenous environment. We

analyzed a specific scenario, and also evaluated the performance averaged over ran-

dom located node configurations, that correspond to realistic indoor environments.

By analysing different setups, we determine the best trade-off between desired accu-

racy and cost.

Furthermore, in Section 4.2.1 we evaluate the node selection scheme with data ob-

tained from real measurements campaigns that were conducted within the FP7 Eu-

ropean projects WHERE and WHERE2.

• Chapter 5: Here we consider two specific non-cooperative cases of positioning. The

first one is a low-complexity method for a scenario when anchor nodes are near

collinear, which is considered an ill-conditioned scenario. Its localization accuracy

outperforms conventional algorithm used in the same scenario, with significantly

reduced complexity.

The second case, described in Section 5.2.5 is based on probability maps, where we

exploit negative information, e.g., information about where the mobile unit is not.

Since we applied a simple channel model, and assumed independent measurement

errors, the work serves as proof of concept for the proposed strategy. The approach

has been extended to exploit the history of mobile terminal’s location to assist the

computation of the terminal location.

• Chapter 6: The contributions of the thesis are summarized in the last chapter. We

present an overview of individual contributions per chapter and provide some con-

cluding remarks. Our suggestions for future research are outlined thereafter in Sec-

tion 6.2.
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Notation

Throughout the thesis, we use the following notations. Bold lower-case letters are used

for vectors, and italic lower-case letters for vector elements. Bold capital letters refer to

matrices, italic capital letters to matrix elements, and subscripts reveal matrix dimension.

Pij refers to power transmitted from node i and received at node j. Distance dij is the

distance between nodes i and j.

()T and ()−1 represent matrix transpose and inverse, respectively. E() is the expectation

of a random variable, and var() its variance. Variables with a tilde ∼ represent estimated

values, while those without tilde are the true values.

1.5 Novel contributions

The novel contributions of the thesis include the following:

• In Chapter 3, a utility based node selection scheme for static localization has been

proposed [39]. Cooperative positioning solutions result in higher signalling overhead

and computation cost than conventional positioning methods. Therefore the number

of actively participating nodes should be kept at a minimum. Compared to the

present approaches that consider nearest neighbor and random node selection scheme,

simulation results show that selecting subsets of nodes with highest utility values

leads to more accurate position estimates. The efficiency of using coalitional game

theory for localization has been demonstrated [40], and further improvements in node

selection in terms of complexity reduction have been proposed [41].

• In Chapter 4, we extend the static node selection scheme to a mobile heterogeneous

scenario. We analyzed a specific scenario, and a generalized one that corresponds to

realistic indoor environments. We presented an extensive study of different setups in

order to determine the best trade-off between desired accuracy and cost [42].

• In Chapter 5, we considered the use of negative information in positioning and track-

ing algorithms [43], [44]. Negative information had few applications for localization

in wireless networks. It has been mainly used for mobile robot localization [45, 46],

however it has been proved to be useful in wireless sensor localization as well [47]. In

order to enhance the performance of Wi-Fi based localization systems, the innovative

solution presented in this section considers so called ’negative information’. To some
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extent, the concept of negative information has been exploited in robot localization,

but not for wireless communication.

The aforementioned contributions resulted in the following list of scientific publications.

These include:

Conference papers

S. Hadzic, J. Bastos and J. Rodriguez: ”Enhanced Localization in Wireless Ad Hoc

Networks through Cooperation”, in Proceedings of ICST International Conference

on Mobile Lightweight Wireless Systems - MOBILIGHT, Barcelona, Spain, Vol. 1,

pp. 1 - 12, May 10-12, 2010.

S. Hadzic, J. Rodriguez: ”Cooperative positioning for heterogeneous wireless sys-

tems”, in 6th International Conference on Wireless and Mobile Communications

(ICWMC 2010), Valencia, Spain, September 20-25, 2010.

M. Albano, S. Hadzic, J. Rodriguez: ”Use of negative information in positioning al-

gorithms”, 6th International Mobile Multimedia Communications Conference (MO-

BIMEDIA 2010), Lisbon, Portugal, September 6-8, 2010.

S. Hadzic and J. Rodriguez, ”Utility based node selection scheme for cooperative lo-

calization”, in International Conference on Indoor Positioning and Indoor Navigation

(IPIN), Guimares, Portugal, September 21-23, 2011.

S. Hadzic, Joaquim Bastos, Jonathan Rodriguez, ”Reference node selection for coop-

erative positioning using coalition formation games”, 9th Workshop on Positioning,

Navigation and Communication 2012 (WPNC’12), Dresden, Germany, March 15-16,

2012.

V. Sucasas, S. Hadzic, H. Marques, J. Rodriguez and R. Tafazolli: ”Performance

evaluation of RSS based localization systems in mobile environments”, 17th IEEE

International Workshop on Computer-Aided Modeling Analysis and Design of Com-

munication Links and Networks (CAMAD 2012), Barcelona, Spain, September 17-19,

2012.

Journal papers

M. Albano, S. Hadzic, J. Rodriguez: ”Use of negative information in positioning and

tracking algorithms”, Springer Journal on Telecommunication Systems, Volume 53,

Number 3, July 2013.
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S. Hadzic, D. Yang, M. Violas, J. Rodriguez: ”Energy efficient mobile tracking in

heterogeneous networks using node selection”, in Eurasip Journal of Wireless Com-

munications and Networking, Volume 2014, Number 1, January 2014.

S. Hadzic, D. Yang, M. Violas, J. Rodriguez: ”RSS-based near-collinear anchor aided

positioning algorithm for ill-conditioned scenario”, accepted in International Jour-

nal of Wireless Communications and Mobile Computing, Science Publishing Group,

February 2014.

Book chapters

S. Hadzic, S. Mumtaz and Jonathan Rodriguez: ”Cooperative game theory and its

application in localization algorithms”, Chapter in Game Theory Relaunched, Intech

International Publisher, In-Tech, 2013.
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Chapter 2

Wireless localization systems

Generally, the localization process assumes a number of location aware nodes, called

anchors. In a typical two-stage positioning system, the first phase is the ranging phase,

where nodes estimate the distances to their neighbors by observing time of arrival, received

signal strength or some other distance dependent signal metrics. In the second phase,

nodes use the ranging information and the known anchor position for calculation of their

coordinates.

In this chapter, we begin by describing the most common ranging techniques, their

sources of error and statistical models in Section 2.1. In Section 2.2 we present the funda-

mental positioning algorithms, both deterministic and stochastic, followed by fingerprinting

methods. Nonetheless, we put particular emphasis on cooperative positioning algorithms,

and review them in Section 2.3. Since this thesis focuses on positioning in heterogeneous

networks, in Section 2.4 we give an overview on the state of the art solutions for localization

in such environments. When it comes to performance evaluation of localization algorithms,

we intuitively think of accuracy. However, there are other metrics that contribute to the

quality of a certain system. At the end of the chapter, in Section 2.5 we list the most

commonly used performance metrics.

2.1 Ranging techniques

In the first positioning stage, packets are exchanged between neighboring nodes. From

the physical waveforms corresponding to these packets, the receiver can extract information

regarding its distance to the transmitter by measuring or estimating one or more signal

metrics. Errors and uncertainties in localization arise from these signal metrics, which
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are subject to various sources of errors, such as noise, multipath, obstacles, interference,

clock drifts, and environmental effects. The errors affecting the metrics are realizations of

random variables, and the knowledge of their statistical properties are very important for

localization algorithms, as the development of efficient probabilistic estimators relies on this

knowledge. In the following, we list several common measurements and describe their use in

localization and their sources of error. Note that there are also localization methods based

on connectivity between nodes. They estimate the target coordinates based on information

reliant on the subset of connected nodes. One example is the centroid algorithm [48], where

position is estimated as the centroid of all anchors it is connected to. It requires a large

number of anchors. These methods are usually very simple to implement, but do not

provide very accurate results.

2.1.1 Received signal strength (RSS)

RSS based methods are based on the fact that signal attenuation is proportional to the

distance between transmitter and receiver. It is one of the most popular parameters to

be used in localization, since most wireless devices are capable of measuring the RSS in a

simple and inexpensive way. A path loss model is needed for estimating the distance from

the RSS value. Several factors, such as shadowing and reflection, may affect the radio signal

propagation as well as the received power. Unfortunately, these factors are environment

dependent and unpredictable. Time-varying errors caused by noise and interference can

be averaged out. As the shadowing effects cannot be precisely tracked, they are usually

modeled as a zero-mean lognormally distributed random variable. A widely accepted model

for characterizing the RSS is given by:

Pr = P0 − 10αlog10(
dij
d0

) +X (2.1)

where Pr is the received power in decibels, P0 is the received power at reference distance

d0 (usually at one meter) from the transmitter in decibels. dij is the distance between node i

and node j. α is the path loss exponent, while X is a zero mean Gaussian random variable

with variance σ2 in decibels and represents the shadowing component. X accounts for

randomness of the environment.

As can be seen, the model is nonlinearly dependent on the position of the transmitter.

If channel parameters, i.e., P0 and α, are known, the maximum likelihood estimate of the
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distance between node i and j can be obtained as:

d̃ij = d010
P0−Pr
10α (2.2)

It can be shown that the distance estimate obtained in 2.2 is biased. An unbiased

estimate for the distance can be derived as:

d̃ij = d010
P0−Pr
10α e−

1
2

10α
σ ln 10 (2.3)

The lower-bound on the variance of any unbiased distance estimator based on RSS

measurements can be obtained as [27]:

var(d̃) ≥ σ2d2(
ln 10

10α
)2 (2.4)

This bound is increasing with the square of the distance d. When α = 3 and σ2 = 4dB, its

value is about 9.4m2 for d = 10m. It also shows that larger path loss exponent α leads to

more accurate distance estimate. This can be explained by the fact that the average power

is more sensitive to distance for larger path loss [49]. Note that if the path loss exponent

α or reference power P0 are unknown, they must be treated as nuisance parameters when

estimating distance based on RSS [26]. For free space the path loss exponent α = 2,

and for indoor scenarios this parameter is highly environment dependent. In some indoor

environments, the value of α can even be less than 2, due to the waveguide effect [50]. An

RSS based model considers the randomness across a set of deployed environments. This

method is still the most convenient one, since almost all wireless radio devices can report

the received signal strength. However, due to multipath fading and shadowing present in

indoor environment, the accuracy of distance estimates may not always be satisfactory.

The fingerprinting method consists in constructing the RSS or shadowing maps via

measurements campaigns or calibration tools. This method is presented in section 2.2.3.

2.1.2 Time of arrival (TOA)

For TOA methods, distance is estimated based on the time the signal travels between

two devices. The physical position of the target can be estimated via trilateration. Figure

2.1 illustrates the cellular case with three base stations. On the left side the distance

estimates are exact, hence the circles (with radius equal to the distance between BS and

MT) intersect in one single point. On the right side however, distance estimates are
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erroneous and thus the circles do not intersect at one point, but form an area. For signals

propagating in free space at the speed of light (c ≈ 3 ∗ 108m/s), the distance between the

target node and the anchor node i is given by di = c(ti − t0) where t0 is the time instant

at which the emitter node begins transmission and ti is the time of arrival at the receiver

node.

R1

R2

R3

R1

R2

R3

Figure 2.1: Time of arrival based localization in a 2-dimensional space.

The need for time synchronization can be overtaken by measuring the round trip delay,

which is the time elapsed between the transmission of a signal and the reception of an

acknowledgment. The TOA estimate is commonly obtained by employing correlator or

matched filter receivers.

There are two ways to obtain the TOA: 1) one-way ranging which requires synchro-

nization between transmitter and receiver, and 2) two-way ranging where the distance

between two nodes is computed using the round-trip delay estimation without the need

for a common time reference. For time-of-arrival in asynchronous networks, a common

practice is to use two-way (or round-trip) TOA measurements. In this method, the first

node transmits a signal to a second node, which immediately replies with its own signal.

At the first sensor, the measured delay between its transmission and its reception of the

reply is twice the propagation delay plus a reply delay internal to the second sensor. This

internal delay is either known, or measured and sent to the first sensor to be subtracted.

Figure 2.2 illustrates Round Trip Time (RTT) measurements from the MS to the AP

using the DATA-ACK frames of the IEEE 802.11 MAC layer. The RTT is the time the
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signal spends travelling from a transmitter to a receiver and back again to the transmitter;

thus the TOA estimate is obtained by halving the RTT. RTT measurements are performed

instead of directly measuring TOA in order to avoid the need of time synchronisation

between the WiFi nodes. In each MAC layer data-ACK exchange, an ICMP Ping echo

request is piggybacked: the transmitter(MS) waits for the reception of the ICMP (Internet

Control Message Protocol) Ping echo request from the AP before sending the next ICMP

request [51]. The period between sending and receiving the data frame constitutes an RTT.

A timer exists to avoid blockage in case the MS does not receive the Echo response. In

case the MS receives the corresponding ACK and the ICMP echo response, the timer stops

and the pending RTTs counter decreases in one unit. In case of several collisions the timer

can reach timeout limit [51]. Due to the noise in the measurements, RTT is treated as a

random variable, and therefore statistical post-processing is required.

Mobile Station Access Point 

ICMP Echo Request 

RTT 

RTT 

RTT 

Timer Start 

Timeout Expires 

ICMP Echo 
Response 

ACK 

Echo Response not 
recieved 

Figure 2.2: Round trip time (RTT) measurements

In TOA ranging, a timing error of 1 microsecond corresponds to a ranging error of 300

m and a timing error of 1 nanoseconds corresponds to a ranging error of 0.3 m. Thus, for

most indoor applications, the error must not exceed a few nanoseconds. The main sources

of error are:
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• Multipath

In multipath propagation, several components of the same signal arrive at the receiver

via different propagation paths. In the absence of multipaths, a simple receiver

computes the TOA by maximizing the cross-correlation between the received signal

and the known transmitted waveform. In multipath propagation, the LOS path

might not be the strongest path and the receiver detects the first arriving path

and not the one with the highest peak. A common detection technique consists

in measuring the time when the cross-correlation first crosses a given threshold.

Generally, wider bandwidths are necessary to obtain greater temporal resolution,

as the peak of autocorrelation function is inversely proportional to the bandwidth.

Errors caused by multipath are often greater than those caused by the additive noise.

A trend in propagation time measurements is the use of ultra wide band (UWB)

signals for accurate distance estimation. Due to a wide transmission bandwidth

these signals have very short pulse duration, and the fine delay resolution makes it

possible to resolve multipath components [52].

• Additive noise

Even in LOS conditions and in absence of multipath signals, additive noise limits

the accuracy of TOA. For a given bandwidth and a signal-to-noise ratio (SNR),

assuming that the bandwidth is much lower than the center frequency, the lower

bound on variance of unbiased TOA estimation is given by [15]:

var(TOA) ≥ 1

8π2BTF 2
c SNR

(2.5)

where B is the signal bandwidth in Hertz, T is the transmitted symbol duration in

seconds, Fc is the center frequency in Hertz and SNR is the signal-to-noise ratio.

• Non-line of sight (NLOS)

When the direct path is blocked, the receiver can only observe NLOS components,

and the estimated distance is positively biased. While some of NLOS mitigation

approaches perform by identifying and discarding the NLOS observations, others

perform by solving a weighted least squares (assigning higher weights to links with

high LOS probability), or by assuming statistical models of the NLOS bias and apply-

ing a probabilistic estimation technique. A survey of the different NLOS mitigation

techniques is given in [53].
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• Timing errors

Synchronization errors, clock errors and drift, estimation of the reply delay in two-

way ranging contribute to errors in TOA estimation. Synchronization errors refer to

time differences between different clocks, while the clock errors refer to an individual

node‘s offset against absolute time. The reply delay has been illustrated in 2.2.

Statistical model

Short ranging measurements have shown that ranging errors can be roughly modeled

as Gaussian distributed in case of LOS propagation [15]:

T ∼ N(
d

c
+ µT , σ

2
T ) (2.6)

Here, d is the inter-node distance, c is the speed of light and therebyd
c

is the time needed

for the signal to travel between nodes. µT represents the measurement bias, thus the term
d
c
+µT is the mean value of the normal distribution, while σT is the standard deviation of the

time measurement error. In the case of NLOS and obstructed and severely attenuated LOS

signals, other models have been proposed to account for errors that can take large values,

for example a mixture of Gaussian distributions or Gaussian and exponential distributions

[54].

2.1.3 Time difference of arrival (TDOA)

The idea of TDOA ranging is to examine the difference in time at which signals arrive

at multiple receivers, rather than the absolute time of arrival. A straightforward method

for estimating the TDOA is to cross-correlate the signals arriving at a pair of anchor nodes.

The cross-correlation of two signals r1(t) and r2(t), is given by

R1,2(τ) =
1

T

T∫
0

r1(t)r2(t+ τ)dt (2.7)

where T represents the observation interval. The estimate of the delay is provided by the

argument τ , which is the parameter that maximizes R1,2. This method is widely used

especially in cellular systems [55]. TDOA ranging techniques have also been applied to

WLAN [56], eliminating the need for synchronization in the conventional methods. The

advantage of the TDOA based method over the TOA based method is that it only requires
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the anchor nodes to be synchronized with each other. It also does not depend on the clock

bias of each node. As for the TOA measurements, the error originates from the additive

noise, multipath and NLOS. The error model is zero-mean Gaussian.

2.1.4 Angle of arrival (AOA)

Angle of arrival techniques are based on measuring the angles between target and anchor

nodes. In order to apply these techniques, the nodes have to be equipped with antennas

capable of measuring the angles. The most common method is the use of array antennas,

which imply large device size. The angle of arrival is estimated from the differences in

arrival times at each of the array elements. The second approach uses the RSS ratio

between directional antennas.

In a 2-dimensional space, each AOA defines a straight line along which the target node

is located, and a minimum number of two AOA observations are needed for computing the

target coordinates. The advantages of this method are that it requires less observations

than other methods, and synchronization of the anchor nodes and target node clocks are

not a requirement. However, the hardware complexity is a drawback. Small errors in the

angle estimation result in a high localization error, especially when the target node is far

from the anchor nodes.

The major sources of error are NLOS conditions, multipath and array precision. The

resulting AOA measurements are typically modeled as Gaussian, with the mean equal to

the real angle to the target, and the standard deviation σα.

2.1.5 Comparison of ranging methods

The choice of the ranging method depends on the technology used for localization. For

example, it is unfeasible to measure the received signal strength from the GPS satellites.

Angle of arrival methods require special antennas, and are mainly used in the scope of

cellular networks based localization. Therefore it does not make sense to compare the

ranging methods without considering the scenario. In Table 2.1 we give an overview of

ranging methods with respect to the underlying technology.

Having in mind the scenario that we will examine, the most appropriate ranging method

is the RSS. Note that the TDOA technique cannot be applied because the distances between

MSs are so small that small errors in TDOA estimations would result in huge errors when

estimating their positions.
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Technology
Meas.

Accuracy Pros Limitation
techniques

GPS TDOA 10-20 m Earth scale
Expensive and
outdoor only

A-GPS TDOA <5 m Country scale
Expensive,

limited indoor

Cellular

TDOA 50-500 m Wide area
Synchronized

BS needed

AOA
>1◦ 50 m, for

1-3 km urban
Smart antennas

3 km cell size needed
Cell

Cell size 3-20 km suburban Low precision
ID

WiFi

RSS 1-5 m Widely used High accuracy

TOA 50-500 m
High data rate

only for
Relatively

AOA <100 m wide area (<1 km) fingerprinting

ZigBee RSS 1-10 m

Low power

Low scalability
consumption
Up to 50m
coverage

UWB TOA 0.1-1 m
Highly accurate

Short range (10-20 m)for short
range indoor

Table 2.1: Localization technologies and ranging methods

2.2 Range based positioning algorithms

Indoor localization techniques can be classified into two main groups: 1) The first

group uses dedicated infrastructure for positioning; in this case dedicated devices have to

be installed, and 2) the other group employs previously available wireless communication

infrastructures. The latter group is a cost efficient solution with large coverage, while high

accuracy, availability and reliability can be attained. On the other hand, there is a need for

more intelligent algorithms to compensate for the low performance of measurement tech-

niques. Most Wi-Fi-based location approaches correspond to radio maps (fingerprinting).

Although high accuracy is attainable, a complex training process is required to develop

the fingerprinting database, specifically each time the environment changes. Cooperative

positioning techniques are used in scenarios where non-cooperative solutions are not fea-

sible, or do not perform well in terms of accuracy, cost and complexity. The challenge is
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to allow nodes which are not in range of a sufficient number of anchors to be located, and

hereby increase localization performance in terms of both accuracy and coverage. While

positioning and navigation have been investigated for a long time, cooperative positioning

schemes have to extend those existing algorithms by making use of peer-to-peer measure-

ments among location-unaware nodes.

Given an underlying transmission technology, localization performance is also depen-

dent on the specific algorithm used in the location-update phase. Here we will list the most

common algorithms, which can be classified into deterministic and probabilistic ones. We

also give an overview on the most popular fingerprinting methods.

2.2.1 Deterministic positioning techniques

Deterministic approaches to localization are based on least squares (LS). Here we will

review the nonlinear least squares (NLS), weighted least squares (WLS) and linear least

squares (LLS) for the positioning problem.

Nonlinear least squares

Least squares algorithm is used in order to minimize the error between the estimated

position x̃ and the real position. A nonlinear least squares algorithm for positioning tries

to minimize the following cost function:

x̃ = arg min
x

N∑
i=1

(yi − f(xi))
2 (2.8)

where yi , i = 1, ..., N are the observations, and f(xi) are transformations of desired

state xi. In case of localization, yi are estimated distances between the target and anchor

node i, and f(xi) are the true distances between them.

Weighted least squares (WLS)

When the variances of measurement errors are available, the NLS can be formulated as

a weighted nonlinear least squares (WNLS):

x̃ = arg min
x

N∑
i=1

wi(yi − f(xi))
2 (2.9)
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For the selection of weights, several strategies have been adopted. Most works set the

weights equal to the inverse of estimated variances of the measurements (i.e., wi = 1
σ2
i
),

[57],[58],[59]. In [60] the weights are exponentially decreasing with the measured distances.

Basically the weights have to reflect the quality of the distance estimates. In general, the

WNLS solution coincides with the ML estimate if measurement errors are independent

individual distributed Gaussian.

Linear least squares (LLS)

The obvious approach in solving this positioning problem is to treat the coordinates of

the target x = (x, y) as the point of intersection of several circles, whose centers are the

locations of the N anchor nodes (xi, yi) for i = 1, ..., N . The exact distances between the

anchors and the target, di, are the radii of the individual circles. The equation for any of

these circles is

(xi − x)2 + (yi − y)2 = di (2.10)

The point of intersection of these circles is obtained by solving the resulting N nonlinear

equations, but first we have to linearize them. For two-dimensional positioning, when the

exact distances from three anchors are available, the solution of the system of equations

is completely determined. In general, for (N -1)-dimensional case, distances to N anchors

are needed. We can write a set of N equations:
(x1 − x)2 + (y1 − y)2

(x2 − x)2 + (y2 − y)2

...

(xN − x)2 + (yN − y)2

 =


d21

d22

...

d2N

 (2.11)

By subtracting one of the equations, e.g. the last one, from all previous ones, we

eliminate one unknown and obtain a linear set of (N -1) equations:
x1 − xN y1 − yN
x2 − xN y2 − yN

... ...

xN−1 − xN yN−1 − yN


(
x

y

)
=

1

2


d21 − d2N − x21 + x2N − y21 + y2N
d22 − d2N − x22 + x2N − y22 + y2N

...

d2N−1 − d2N − x2N−1 + x2N − y2N−1 + y2N


(2.12)

This linear system can be rewritten into a matrix form: Ax = b. Since the measured

distances di are only approximate estimates, we need to determine x such that Ax ≈ b .
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The least squares method finds its optimal solution when the sum of squared residuals is

a minimum. A residual is defined as the difference between an observed variable and the

predicted value from the estimated model. Minimizing the sum of squares of residuals:

rTr = (b−Ax)T(b−Ax) (2.13)

leads to equation

ATAx=ATb (2.14)

Assuming that the anchor nodes are reasonably placed (non collinear), the matrix ATA

is non-singular and well conditioned. Now the LS solution can be obtained as:

x̃ = (ATA)−1ATb (2.15)

For least-squares problems there are efficient algorithms and software implementations

for solving the problem to high accuracy and with high reliability. The least-squares

problem can be solved in a time approximately proportional to m2 ∗ N , where m is the

dimension of the target (we usually consider the 3-dimensional case), and N the number

of anchor nodes.

The linear version of the weighted least squares algorithm is given by:

x̃ = (ATW−1A)−1ATW−1b (2.16)

where W is a diagonal matrix with diagonal values equal to wi. One important feature

of the LLS method is the covariance matrix of the LS estimator. This covariance matrix

represents a measurement of uncertainty in the position estimate [61]:

P =E
[
{x̃− E(x̃)} {x̃− E(x̃)}T

]
= E

[
{x̃− x} {x̃− x}T

]
P = (ATW−1A)−1ATW−1E

[
ηηT

]
W−1A(ATW−1A)−1

P = (ATW−1A)−1

(2.17)

Here the parameter η represents the noise component added to the model. Equation

(2.17) results in:

P = (ATW−1A)−1 (2.18)
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To form a linear least squares problem, we need to find a signal model that is linear

in the unknown parameters. Therefore in the case of RSS based ranging, first we have to

estimate the distances based on the methods described in the previous section, and then

apply LLS on these estimates. In case of TOA, LLS techniques can be applied directly to

the measurements multiplied by the speed of light c.

2.2.2 Probabilistic positioning techniques

While the previously presented algorithms are deterministic, e.g., their aim is to find

the deterministic location, the statistical/probabilistic approach proposes an approximate

solution. Generally, the aim is to estimate the maximum a posteriori node location using

a set of observations (distance estimates) and a priori probability distributions of nodes

locations. Probabilistic algorithms exploit the available probabilistic models on the mea-

surements (i.e., likelihood functions) and positions (i.e., a priori information). There are

two approaches to the parameter estimation problem: Maximum Likelihood (ML) and

Bayesian estimation.

Maximum Likelihood Estimator

In the ML approach the unknown parameter θ is treated as deterministic. The es-

timation is then based on maximizing the likelihood function, e.g., the density of the

observations y conditioned on the parameter vector.

θ̃ML = arg max
θ
p(y|θ) (2.19)

where p(y|θ) is the likelihood function. In case of localization, observations are mea-

surements and corresponding distance estimates di so (2.19) becomes:

θ̃ML = arg max
θ
p(di|θ) (2.20)

The ML estimator is asymptotically efficient. This means that it converges to the Cramer

Rao Lower Bound (CRLB) at low error variances, when the statistics of the measurement

errors are known. In practice it is difficult to obtain a priori knowledge of the full statistics

of measurement errors. The algorithm itself is computationally demanding. The ML cost

function is highly nonlinear and contains multiple local minima and maxima. Therefore

the ML formulation has been relaxed to a convex optimization problem in the form of a
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semidefinite program [62]. However, due to its optimality, ML is a good benchmark for

evaluation of localization algorithms.

Bayesian estimators

In the Bayesian approach, the unknown parameter is treated realization of a random

variable of known a priori distribution. Two common Bayesian estimators are the minimum

mean square error (MMSE) and the maximum a posteriori (MAP) estimators, which are

maximizing the density of the parameter vector conditioned on the observations.

In general MAP estimators have superior performance than ML estimators, assuming

that the prior distributions used are the correct ones. When the assumed models deviate

from the true distributions, the estimation accuracy in principle degrades. If the prior

distributions are not known, a method known as Bayesian inference can be used. The belief

propagation algorithm is a graphical model for distributed statistical inference, widely used

for positioning. The amount of computation is proportional to the number of links in the

graph. Non parametric belief propagation (NBP) is more acceptable for localization in

wireless networks, because of its ability to accommodate non-Gaussian distance estimation

errors and provide an estimate of the remaining uncertainty in each node location [63].

NBP techniques are widely used for cooperative localization. The main drawback of these

algorithms is that convergence is not guaranteed in networks with loops [64].

Kalman filter (KF) remains one of the mostly used Bayesian techniques. The filter

defines a set of equations, which in a recursive manner can estimate the state of an unknown

noisy process. The traditional Kalman filter yields the optimal minimum mean squared

error (MMSE) estimate under assumptions that the noise is Gaussian, and that state

equations are linear [65]. The Kalman filter is a two-step process: prediction and correction

(Figure 2.3). In the prediction step, the filter predicts the next position and its estimated

error based on the previous position and its estimated error with a movement model.

During the correction step, the filter calculates the new position and its estimated error

by updating the predicted position using acquired measurements. The filter can start with

either step but will begin by describing the correction step first. The correction step makes

corrections to an estimate, based on new information obtained from sensor measurements.

The Kalman filter model assumes that the real state at time k evolves from the state

at k − 1. Thus the process equation is given as:

x̃k = Ax̃k−1 + Buk−1 + wk−1 (2.21)
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Time Update
(“Prediction”)

Measurement Update
(“Correct”)

Figure 2.3: Kalman filtering cycle: cyclic sequence of prediction and correction

The scale transition matrix A defines the relation between the previous state and the

current one, matrix B relates the previous external input vector uk with the actual state

w is the process noise and is a zero-mean Gaussian normal variable. wk−1 stands for the

process noise at the previous time instance. The output/observation vector is given by:

zk = Hx̃k + vk (2.22)

Here H is the state transition matrix and represents the relation between the present

state x̃k and the measurement zk expected for that state x̃k. The measurement error vk is

a random zero-mean Gaussian variable. It is assumed that the measurement noise v and

the process noise w are mutually independent random variables.

The starting values for the state x̃0|0 and the error covariance estimator P0|0 are system

dependent. For x̃0|0 it shall be the expected value of the state at time t0. Concerning the

P0|0 it is commonly initialized with the covariance matrix Q. The prediction state of the

Kalman filter is given by:

x̂k|k−1 = Akx̂k−1|k−1 +Bkuk−1|k−1

Pk|k−1 = AkPk−1|k−1A
T
k + Qk

(2.23)

and the prediction phase by:

Kk = Pk|k−1H
T
k (HkPk−1|k−1H

T
k + Rk)

−1

x̂k|k = x̂k|k−1 + Kk(Zk −Hx̂k|k−1)

Pk|k = (I−KkHk)Pk|k−1

(2.24)

The positioning process is illustrated in diagram in Figure 2.4.

However, location estimation in wireless communication systems is often a nonlinear
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Previous position + 

error estimate

Prediction

Predicted position + 

error estimate

Measurements

New position +

 error estimate

Update

Figure 2.4: Position estimation based on Kalman filter

problem. Here the solution is the suboptimal extended Kalman filter (EKF), which as-

sumes linearization of the prediction and measurement functions, based on a Taylor series

expansion. The computational efficiency of a KF is maintained. The drawback of the EKF

is that the convergence is not guaranteed in the case that the propagation error can not

be properly approximated by a linear function. The linearization process can also have a

high impact concerning the errors in the estimated mean and covariance.

2.2.3 Fingerprinting

The first part of the fingerprinting method is the offline phase where data collection is

performed. Location dependent parameters of the signals are measured at selected loca-

tions, and then processed and saved in a database. What follows is the online phase where

the target acquires the measurements of location dependent parameters, and compares it to

the values in the database. The target location is computed from the locations associated

to the database entries that best match the measurements.

Some fingerprinting and pattern recognition approaches are listed below. Active Badge

was an early system developed to localize mobile devices within a building using infrared

tags [20]. Targets are equipped with badges that transmit infrared signals providing infor-

mation about their location through a sensor network. RADAR system [66] is implemented

in WLAN nwtworks. The key idea is to record radio signals and build models for signal

propagation during off-line analysis.The median resolution of the RADAR system is in

the range of 2 to 3 meters, about the size of a typical office room. The systems main
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disadvantage is its dependence on empirical data. PlaceLab [67] uses connectivity from

GSM base stations and IEEE 802.11 access points. The coverage and accuracy of Place

Lab depend on the number and mix of beacons in the environment. Certain environments

may be more tolerant to a more granular grid spacing because of the radio propagation

conditions. Cricket [19] is a decentralized location support system based on RF and ul-

trasound. Incorporating ultrasound hardware was necessary because a purely RF-based

system did not provide satisfactory results. It takes into account user privacy and does

not depend on underlying network technology. Still, the systems granularity is a portion

of a room. In [68] the authors implemented an indoor WLAN location system based on

artificial neural networks (ANN). First the macro-location of the device is derived, knowing

with which access point the user is associated and using information about its coverage.

Micro-location is obtained based on RF fingerprinting and trained ANN, with an average

error below two meters.

Compared to range-based techniques, fingerprinting requires huge amount of resources

and time especially to establish and to populate the database. Each time the environment

changes, the cost of the localization system may increase, since regular updates are required.

One of the solutions which considered the issue of reducing the calibration effort has been

presented in [38]. It consists of reducing the number of locations at which measurements

are collected at the cost of reduced accuracy.

2.3 Cooperative positioning

Cooperation between nodes is used in cases when conventional positioning techniques

do not perform well due to lack of existing infrastructure, limited number of reference nodes

or obstructed indoor environment. The position of the target is then estimated based on

known positions of a number of anchors and also using measurements to other location-

unaware nodes (Figure 2.5). The existing cooperative positioning algorithms are mainly

intended for homogeneous networks under relatively high network connectivity and density.

Thus, significant efforts still have to be made to adapt, extend and optimize these promising

schemes into heterogeneous network architectures under realistic operating constraints.

Main performance metrics for cooperative positioning algorithms are position estima-

tion accuracy and latency, whereby the level of accuracy depends on the application for

which the system is being used. Latency or response time is an important issue for delay-

stringent applications. In fact the two major cost parameters are the amount of commu-
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Figure 2.5: Example of cooperative scenario

nication between nodes, and the computation process in the nodes. Cooperative solutions

have to achieve the desired cost-performance trade-offs. The number of actively participat-

ing nodes should be kept to a minimum, and therefore an appropriate cooperation subset

has to be chosen, while the other nodes can be ignored. Such a restrictive and selective

use of references is crucial in networks with limited resources.

In the following, we will survey the most popular cooperative localization algorithms.

First we will extend the previously described ML and LS estimators to the cooperative

case, and then describe some centralized cooperative methods such as multidimensional

scaling, convex sets and semidefinite programming. In the end, we will list the categories

of distributed positioning algorithms. Centralized localization algorithms are based on

global optimization, while distributed solutions use local information only. The basic idea

is to decompose the global estimation task into subtasks which comprise local computation

only.

2.3.1 Centralized cooperative localization techniques

Centralized algorithms are sometimes unavoidable when the nodes do not have suffi-

cient computational capacity. Measurements are sent to a central processor where all the

computation is performed.
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Maximum Likelihood Estimator

If there exists a statistical model for distance estimation (e.g., Gaussian), then a max-

imum likelihood estimator can be implemented. The ML algorithm finds the solution of a

set of nonlinear equations by iterative minimization of a cost function. In [26] the authors

developed a maximum likelihood estimator for cooperative positioning for both RSS and

TOA measurements, assuming that TOA- based ranging errors are Gaussian, and using a

lognormal model for RSS measurements. Several targets aim to estimate their locations

at the same time, and besides measurements to fixed anchor nodes, they also exchange

information between themselves. There are in total M nodes, N of which are anchor nodes

and the remaining M − N nodes have to be localized. Therefore, the parameter to be

estimated is a matrix X̃, consisting of M − N rows (unknown nodes) and 2 columns (x

and y coordinate).

When assuming that the measured power Pij at node i transmitted by node j is log-

normal, the random variable Pij(dBm) = 10log10Pij is Gaussian:

Pij(dBm) ∼ N(Pij(dBm), σ2
dB)

Pij(dBm) = P0(dBm)− 10αlog10(
dij
d0

)

(2.25)

where P ij is the mean power in dBm, σ2
dB is the variance of the shadowing, P0(dBm)

is the received power in dBm at reference distance d0 (usually 1m), and α is the path loss

exponent. For the RSS case the estimator is:

X̃ = arg min
X

N∑
i=1

M∑
j=N+1

[
ln
d̃2i,j
d2i,j

]2
(2.26)

In TOA case, with Gaussian distribution denoted as Ti,j ∼ N(
di,j
c
, σ2

T ), the MLE esti-

mator is:

X̃ = arg min
X

N∑
i=1

M∑
j=N+1

(cTi,j − di,j)2 (2.27)

In [26], in addition to the ML estimator, an analytical expression for the Cramer-Rao

lower bound (CRLB) for cooperative localization has been provided. More details on the

CRLB will be given in the next chapters.
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Least squares

The cost function to be minimized in the cooperative case is of the same form as (2.8),

but here we assume that besides N anchor nodes, there are also M −N non-anchor nodes

that are estmating their positions simultaneously:

X̃ = arg min
X

(
N∑
i=1

(yi − f(xi))
2 +

M∑
i=N+1

(yi − f(xi))
2) (2.28)

Similarly, the cost function for weighted least squares will be:

X̃ = arg min
X

(
N∑
i=1

wi (yi − f(xi))
2 +

M∑
i=N+1

wi (yi − f(xi))
2) (2.29)

In general, the WLS solution coincides with the ML estimate if measurement errors

are independent and identically distributed (i.i.d.) Gaussian random variables. In the

above equations, the term yi corresponds to estimated distances, d̃i, while the term f(xi)

represents true distances di. Iterative methods are applied to solve this kind of optimization

problems, such as Gauss-Newton or Levenberg-Marquardt method [69].

Semidefinite programming

Since ML and NLS methods yield nonconvex optimization problems. If the estimator

is not initialized with values close to the true solution, it can occur that the global maxima

are not found. Convex relaxation techniques can be employed to solve them in an efficient

way. In [70] pair-wise distance measurements are used as convex constraints. If two nodes

can communicate with each other, there is a proximity constraint between them, given a

limited radio range. The network can be seen as a graph with M nodes as vertices and

bidirectional connectivity constraints among them as edges. Positions of the first N nodes

are known, and the task is to find the coordinates of the remaining M − N unknown

nodes, such that the connectivity constraints are satisfied. The mathematical solution is

based on linear and semi-definite programming (SDP) techniques. Performance increases

with the number of additional constraints, or the tighter these are. However, the method

does not yield good performance if anchors are placed in the interior of the network. An

SDP relaxation based method is used in [57] to estimate locations of free nodes. Here the

non-convex quadratic constraints are converted into linear constraints, and the method

overcomes the problem of anchor placement.
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Figure 2.6: Distance measurements as convex constraints

Multidimensional scaling

For relatively sparse sensor networks the most widely used method is multi-dimensional

scaling (MDS), a statistical dimensionality reduction technique for data analysis that uses

pair-wise distance measurements as connectivity constraints [71]. MDS assumes N points,

suspended in a volume, whereby the positions of the points are not known, but the distance

between each pair of points are known. The distance between every pair of objects measures

their dissimilarities.

When nodes are uniformly positioned, MDS gives very good results and it localizes all

nodes at the same time, in contrast to trilateration based methods where nodes are being

localized one by one. Nevertheless, it assumes the knowledge of all mutual ranges between

sensors.

2.3.2 Distributed cooperative localization techniques

Distributed algorithms do not require the existence of a central processor, and this fact

makes them more scalable and attractive for large networks.

Successive refinement

Successive refinement algorithms are based on least squares [32], weighted least squares,

or maximum likelihood [72]. At each iteration, one or several nodes update their estimates

by minimizing local cost functions and send them to nodes in their vicinity, until a con-
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vergence criterion is met. An initialization phase is required and significantly affects the

accuracy and final convergence. In [32] initial estimates are obtained during the first phase

by performing a coarse connectivity based positioning, such as DV-hop. [73]. TOA based

ranging for UWB is used for further refinement, and the distributed LS is solved using the

gradient descent method. In [72] two methods have been proposed, one based on WLS

and solved using Levenberg-Marquardts algorithm, and another one based on distributed

log-likelihood maximization.

A distributed version of MDS has been considered in [74]. Another successive refinement

schemes have been elaborated in [75], [76].

Message passing

Message passing algorithms are based on Bayesian inference. The network is represented

as Markov fields or factor graphs. Statistical models for the measurements have to be

assumed, in order to define the potential functions between every pair of connected nodes

in the graph. Each node computes its posterior marginal distribution from its local a priori

information and messages received from neighboring nodes. Examples of these algorithms

are nonparametric belief propagation [64], [63], variational message passing [77] and factor

graphs [31].

Iterative multilateration

Iterative multilateration is a way to expand localization coverage throughout the net-

work in a step-by-step fashion, also allowing the nodes which are not in range of a sufficient

number of references to be localized. It follows an iterative scheme: once an unknown

node estimates its position, it becomes an anchor and broadcasts its position estimate to

all neighboring nodes. The process is repeated until all nodes that can have three or more

reference nodes obtain a position estimate [78]. AHLoS (Ad Hoc Localization System)

algorithm [75] uses TOA as the primary ranging method, and maximum likelihood multi-

lateration as the basis for position calculation. This work identified two main problems:

1) it requires a high degree of network connectivity and anchor density, and 2) it suffers

from error propagation. As a newly localized node becomes a new anchor for its neighbors,

the estimation error of the first node can propagate to other nodes and eventually get

amplified. Through successive iterations, the error could spread throughout the network

leading to a proliferation of error in large topologies. In [79] the authors proposed an

iterative algorithm that takes into account the behavior of the channel to provide accurate
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indoor positioning and importantly reduce error propagation. The error behavior of TOA

measurements depends on the channel conditions, and there are three classes of behavior:

dominant direct path, non-dominant direct path, and undetected direct path. The realistic

indoor channel model was developed using UWB measurements, and was used to model

the Distance Measurement Error (DME). DME establishes different statistical behavior,

depending on whether the received signal is direct path or not. Besides the quality of link

indicator, also the quality of estimate parameter has been provided. Simulations showed

that inaccurate ranging has a bigger impact on error propagation than the use of estimated

(and therefore erroneous) locations as anchors.

In [80] an error control mechanism has been developed, that consists of three com-

ponents: 1) error characterization, addressing the uncertainty of estimate, 2) neighbor

selection, excluding nodes with high uncertainty, and 3) update criterion, rejecting a new

estimate if its uncertainty is too high. The mechanism is distributed and uses only local

information, and computation is performed using multilateration. Localization error in

every unknown node comes from two sources: 1) the uncertainty in each anchor position,

denoted vertex error, and 2) uncertainty in each distance estimate, denoted edge error.

Error characterization is iterative: once a node derives its own error characteristics, its

overall error becomes the vertex error for its neighbors. Expressing uncertainty is a dif-

ficult task, and in [32] several simplifications are made. All variables are assumed to be

Gaussian and independent, so the uncertainty can be expressed as variance or covariance,

for scalar values and vectors, respectively. These assumptions are not accurate; however

they provide a way to accomplish error characterization.

2.4 Heterogeneous networks

Although there are many works on cooperative positioning, there is not much atten-

tion given to the heterogeneity of the networks. By heterogeneity we mean the various

and different radio access technologies (RATs) to which a mobile device can be conjointly

connected; some works use the notation hybrid. However, in terms of localization, this

may refer to different ranging technologies for the same RAT (combining RSS and TOA

- hybrid data fusion). In the area of WSN localization heterogeneous sensors may refer

to combination of different types of sensors such as audio and video, or image and RF.

Throughout this thesis, we refer to the use of different technologies. The work in [29] pro-

posed a cooperative positioning system where the Base station-MT link adopted the IEEE
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802.16e standard and Time Difference of Arrival (TDOA) based distance estimation, while

the MT-MT link adopted the IEEE 802.11a standard and RSS based distance estimation.

Simulations showed a high benefit from cooperation using short-range links between mobile

terminals. Most of the work concerning positioning in heterogeneous networks is consid-

ering Wi-Fi complementing cellular networks [81]. The combination of cellular and Wi-Fi

radio interfaces in mobile devices, and the fact that the position estimation techniques are

basically the same for both technologies, makes it a popular case scenario.

In [82] the mobile stations are equipped with two different technologies, able to establish

long range links to cellular base stations, as well as short range links allowing communica-

tion among mobile devices themselves. To overcome the problem of different positioning

characteristics for different technologies, a Two Level Kalman Filter (2LKF) is proposed,

to decouple relative localization using ad hoc links from the absolute localization using

long range cellular links. It is assumed that relative localization is performed using RSS

measurements between mobiles, while for absolute localization TOA and AOA are used.

The problem of integration of short- and long-range technologies is solved by decoupling

of estimators, so they can operate independently. Distributed computation is feasible to a

certain extent.

When it comes to short range technologies, combination of various RATs by exploiting

their individual advantages such as the

• robustness of Wi-Fi under harsh environments

• accuracy of UWB under LOS conditions

• low cost features of ZigBee

provides us with better overall localization results in GPS denied environments.

The work in [33] considers a mobile robot in an indoor environment. Ranging be-

tween fixed anchors and mobile robots is achieved through Wi-Fi RSS-based techniques,

while robot-robot ranging is performed through UWB TOA-based techniques. Different

models for link errors using RSS and TOA, while the position is estimated by means of

trilateration. In [35] two ranging techniques have been applied: one based on the RSSI

measurements obtained with ZigBee sensor nodes, and the other one based on the TOA

measurements on UWB devices. In case of RSSI based ranging, short distances have

smaller ranging error, while the probability distribution of the ranging error provided by

TOA does not depend on the actual distance. Main result shows the positive impact of

heterogeneity. The accuracy increases with the number of possible interactions between
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nodes (larger communication range). A heterogeneous indoor Wi-Fi/ZigBee environment

has been considered in [36]. Different link selection strategies for static scenarios have been

compared, such as Geometric Dilution of Precision (GDOP) and CRLB. The results show

a high correlation between predicted selection criteria and the actual positioning error.

2.5 Performance metrics of localization techniques

The choice of localization method will depend on the application and its requirements,

in sense that some will require highly accurate results, while others may prefer robustness

or ease of deployment. There are no unique criteria to evaluate and compare positioning

algorithms. In this section, we survey the principal factors that are considered when

choosing a localization technique.

2.5.1 Accuracy

The accuracy of a positioning system depends on several factors: the nature of mea-

surements, conditions of the wireless propagation channel, the used RAT, the number

and geometric configuration of anchor nodes, and the localization algorithm. In general,

time based measurements are more precise than RSS, but also the accuracy differs from

technology to technology.

Different positioning algorithms can be compared based on different accuracy metrics.

The most common ones are the cumulative distribution function and the root mean square

error, but sometimes also the instantaneous location error at a certain time stamp.

Cumulative distribution function

Due to randomness of measurement errors or network deployment, the error vector e

is random. The cumulative distribution function (CDF) of position error is defined as the

probability that the error is smaller than a certain value, that is:

P‖e‖(error) = Pr(‖e‖ ≤ error) (2.30)

Usually we observe the errors at 50% and 90%, since they represent the average perfor-

mance (median error), and ”worst case” error (robustness metric), respectively. Another

typical value is the 67% percentile error.
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Figure 2.7: Comparison between two CDFs..

The CDF gives more insight into the performance of positioning algorithms than ab-

solute error values. For example, two different algorithms may have relatively different

performances for different error intervals. The example in Figure 2.7 shows the CDF of

the position error for Algorithm 1 and Algorithm 2.

The x-axis contains the localization error in meters. The y-axis is the probability that

the algorithm output will provide an estimate with the error smaller than the value on

the x-axis. For example, the 67th percentile has the same value for both algorithms. This

means, both algorithms will provide an error lower than 5.7 meters in 67 % of cases.

Root mean square error

The root mean square error (RMSE) is defined as

RMSE =

√
E(‖x̃− x‖2) ≈

√√√√ K∑
k=1

‖x̃(k)− x‖2 (2.31)
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where x̃(k) are location estimates of target x for the kth realization of noise and/or node

deployment. Distinct random measurements are given at each network deployment k.

Instead of the average error, maximum or median error can be useful in some scenarios.

The CDF gives more insight into the performance of positioning algorithms than RMSE

which gives one value. For example, it can happen that two different algorithms have

relatively different performances for different error intervals. In Figure 2.7 Algorithm 1

outperforms Algorithm 2 at 50th percentile, as they will have median errors of 3.7 m and

4.4 m, respectively. However, it performs far worse at 90th percentile. Here the Algorithm

1 will have an error of 9.2 m in 90% of cases, while Algorithm 2 will have the error of only

7.7 m.

Accuracy of a localization system is usually the main quality indicator. However, there

is usually a tradeoff between position estimation accuracy and other factors that has to be

achieved.

2.5.2 Robustness

Robustness of a localization technique refers to its capability to perform well in case

of changes in the environment, such as node failures or changes in the wireless channel.

Sensitivity to outliers (measurements with large errors) also affects the system’s robust-

ness. Several methods have been proposed for dealing with outliers and NLOS conditions

[83]. A robust localization system should be resistant to irregular network topologies and

distributions of anchor nodes.

2.5.3 Deployment cost

Deployment cost is an important factor for commercial applications. Apart from instal-

lation cost, there is also the cost of updating and maintenance. One example of a system

with high deployment cost is fingerprinting. In order to decrease the cost, one option is

to employ previously available wireless communication infrastructures. Energy is another

cost factor of a system.

2.5.4 Implementation cost

Here we refer to practical issues in algorithm implementation. Other than deployment

cost, where economic aspects of hardware installation are considered, here the term ’cost’

refers to undesired conditions that occur during the localization process. The additional
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latency, data traffic and processing for localization may affect the performance of the

underlying communication network. The following factors are a trade-off to accuracy.

1. Communication overhead

Additional data traffic will occur while exchanging messages for sake of positioning

(coordinated, values of location dependent parameters, RSS, etc.). In general, RSS

based localization systems are most cost effective from this point of view, since the

strength of received signal is being measured between nodes during the neighbor

discovery phase, and does not require additional packet exchanges like TOA mea-

surements.

2. Latency

Latency occurs because of the time needed to obtain all the measurements, and the

time needed for the positioning algorithm to converge. This metric is crucial for

dynamic scenarios, since node locations change with time and might outdate if the

algorithm does not perform fast enough. Topology changes trigger the localization

update procedures that can cause excessive overhead in terms of delay.

3. Computational complexity

Algorithm complexity determines the computational complexity in time and space.

It can be expressed by means of time needed to perform certain operations, or by

means of number of operations involved in computations. Usually matrix inversions

increase the complexity to a high extent.

4. Power consumption

Power consumption is a crucial factor in low-power sensor networks. It involves

power used to send and receive messages, as well as power needed to perform local

processing. In centralized location systems a central unit calculates the estimated lo-

cations It is usually a powerful device with higher processing capability and sufficient

power supply and memory. In case of distributed localization, where calculations are

performed at the node itself, the effects of complexity become more evident.
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2.5.5 Coverage

Localization coverage refers to the number or percentage of target nodes that can

be localized, regardless of accuracy. The geometry and the node density have the most

effect on coverage. For a target to be positioned successfully, there should be enough

measurements taken from the surrounding anchors. Cooperative solutions increase the

coverage significantly. Scalability refers to the ability to perform the localization well in

large scale networks.

2.5.6 Combined metrics

Instead of evaluating the algorithm according to different metrics individually, one can

consider a composite metric where different criteria are combined. For example, the cost

metric defined in [84] is an example of a composite metric which merges accuracy and

complexity in one metric.

We can conclude that there is no unique way to compare two localization algorithms.

Different positioning approaches can be evaluated based on a number of metrics, e.g., the

ones presented in this section.

2.6 Conclusion

In this chapter we described the basic principles of localization in wireless networks.

The distance estimation techniques presented here, particularly the RSS based ranging

method, will be used as input for positioning algorithms in the following three chapters.

We provided a comparison of different ranging methods with respect to the underlying

technology. In most algorithms we will use the WNLS technique described in Section 2.2.1.

However, the ML from 2.2.2 method will also be used, mainly as a benchmark.

Since this thesis considers cooperative localization in heterogeneous environments, we

put particular emphasis on these two topics. However, chapter 5 deals with special cases

of non-cooperative scenarios.
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Chapter 3

Utility based anchor node selection

In this chapter we will focus on principles and methods for selecting the set of anchor

nodes to be used in the localization process. First we will describe the scenario, and the

principles of the iterative multilateration algorithm. Several criteria have been proposed in

the literature, depending on the scenario requirements and the algorithms used. After the

scenario description, we continue with presenting the state of the art solutions on node

selection in wireless localization. In the following, we will review the selection criteria,

such as GDOP and CRLB, with emphasis on their modifications which include anchor

uncertainty. Since this work applies the iterative multilateration algorithm as a solution

for cooperative localization, this raises key challenges in terms of managing anchor uncer-

tainty. We will also review some concepts from game theory and see how these concepts

can be adapted to the localization problem. At the end of the chapter, we will present the

simulation results and analysis of our proposed node selection method, together with some

improvements with respect to computational complexity. Since the selection procedure itself

is computationally demanding, we apply some simplifications based on spatial correlation

in order to reduce the complexity.

3.1 Scenario

Measurements from heterogeneous infrastructure (Wi-Fi access points, ZigBee anchors)

are complemented by peer-to-peer measurements between mobile devices. In particular, we

intend to use the WLAN standard, since it can operate in both infrastructure and ad hoc

mode, and combine these links with some short range IEEE 802.15.4 ad hoc links. In the

proposed scenario a multi-mode mobile terminal device is assumed, thus the peer-to-peer
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links can be both through WLAN or WPAN. In particular, we will consider a distributed

localization approach, namely iterative multilateration, illustrated in Figure 3.1. Once

an unknown node estimates its position, it becomes a virtual anchor and broadcasts its

position estimate to all neighboring nodes. The process is repeated until all nodes that

have three or more reference nodes in their vicinity are able to obtain a position estimate.

Unknown node

Anchor node

Connection 

from anchor

Connection 

from virtual 

anchor

Step 1

Step 2

Step 3

Figure 3.1: Iterative multilateration

The above mentioned only involves information within local neighborhood and hence

reduces communication cost. However, it suffers from error propagation. As a newly

localized node is becoming a new anchor for its neighbors, the estimation error of the first

node can propagate to other nodes and eventually get amplified. Excessive iterations could

lead to widespread error distribution throughout the network, leading to abundant error

in large topologies. The effect may also arise in global methods such as multidimensional

scaling (MDS) or semi-definite programming (SDP), but the global constraints are likely

to balance against each other. For this reason the global methods are less vulnerable

to error accummulation. Hence it is important to choose reference nodes carefully and

hereby reduce error accumulation by taking into account uncertainties in reference nodes

estimates. The procedure is illustrated in Figure 3.2, where the target can localize itself

using neighboring anchor nodes, but also using so called virtual anchors, i.e., nodes that

have obtained their location estimates in previous iterations. Anchor nodes can be Wi-Fi

access points and deterministically placed ZigBee anchors, while the role of virtual anchors

is taken by other mobile devices connected through Wi-Fi direct (P2P links), or a ZigBee

sensor whose position was initially unknown and has been obtained in the meantime.

Virtual anchors have different degrees of uncertainties in their location estimates.
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Localization error is a function of several factors, such as the number of anchor nodes,

node density, network topology etc. In addition to noisy distance estimates and reference

node geometry, the error propagation problem is also resulting from the use of erroneous

estimates as virtual anchors in subsequent iterations.

Target

Anchor

Virtual Anchor

Figure 3.2: Multilateration with virtual anchors

An unknown node receives information from many neighbors, some of which are virtual

anchors with a degree of uncertainty in their estimates. Therefore not all of those links

have the same level of usefulness, even if localization accuracy increases with the number

of used reference nodes, from the information theory perspective. Especially the geometry

of used reference nodes has been shown to have a high impact on lateration.

Degree of uncertainty in the accuracy of the virtual anchors position obtained through

successive iterations can be estimated based on the properties of the localization algorithm.

Thus in case of LS position calculation, uncertainty is represented by the trace of the

covariance matrix. The location estimates and the corresponding covariance matrix for all

these estimates can also be derived by the Best Linear Unbiased Estimator (BLUE) [59].

The information about uncertainty in a node’s location estimate is very important for

some applications. Position uncertainty is unavoidable in a context-aware application and

should not be hidden from the users. One example of a confidence-based application is

choosing a safe retreat route for firefighters. The system would only choose a safe route if
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it is within a 95% confidence-level region. In the next section we will illustrate the error

propagation in the iterative multilateration approach.

3.1.1 Error propagation

In order to illustrate error propagation, we assume a scenario consisting of 30 nodes, 6

of them are anchor nodes and the remaining ones are unknown. The positioning process

start from unknown nodes which are able to identify at least three anchors within their

communication range. Then they become virtual anchors and serve as reference nodes to

their neighbors. We plot the cumulative distribution function (CDF) of the positioning

error after first iteration, where only nodes with exactly known positions are being used

as references. The average localization error Ē is defined as

E =
1

N

N∑
i=1

√
(x̃i − xi)2 + (ỹi − yi)2 (3.1)

where N is the total number of localized nodes, (x̃i, ỹi) and (xi, yi) are the estimated

and true position of node i.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error in meters

cd
f

 

 

 
comm. range 10m
comm. range 15m

comm. range 5m

Figure 3.3: Positioning error for first iteration

The positions were estimated based on the least quares algorithm, using distance es-

timates based on the lognormal shadowing model. We used the typical values from the
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literature for the path loss exponent α, namely 2, and the shadowing variance has been

set to 4 dB. The CDF in Figure 3.3 shows the percentage of localized nodes whose error

is smaller than a certain value. The communication range has been set at 5 meters, 10

meters and 15 meters, respectively.

After the second iteration the positioning error significantly increases, as shown in

Figure 3.4.
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Figure 3.4: Positioning error for second iteration

It is evident that communication range will have an impact on localization coverage.

Even though the errors for smaller communication ranges are lower, the number of itera-

tions needed to achieve full localization coverage will be higher.

3.2 State of the art

The node selection problem arises in various applications, including robotics [85], tar-

get tracking [86], [87], and wireless sensor networks. The node selection problem can be

formulated in a Bayesian framework [88] and an information theoretic framework.

Several works have considered anchor node selection for improving localization accuracy.

In [89] the geometrical impact has been addressed and compared against the approach of

using the closest reference nodes. More recent approaches consider cooperative scenarios,
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and the selection criteria are mainly based on theoretical localization performance limits

such as the Cramer Rao Lower Bound [34], [32]. The algorithm in [34] includes both

transmit and receive censoring. Transmit censoring prevents unreliable position estimates

to be broadcasted, while receive censoring discards inadequate links once measurements

are collected. All censoring decisions are distributed and based on a modified CRLB. In

[32] unreliable links are sequentially discarded based on CRLB analysis during the coarse

positioning phase - purely connectivity based, without distance estimation. This leads to

resources savings, because the number of packets exchanged in the refined TOA based

ranging phase is reduced. Some works also apply concepts from coalitional games and

utility functions.

To model the tradeoff between power consumption and localization performance, a

coalitional game theory based scheme has been proposed in [90], where coalition formation

within the set of neighboring anchors helps to reduce communication costs. In [91] and

[92] methods based on minimization of mean square error (MSE) are discussed, where

utility of each set consisting of N nodes is defined as the reciprocal of the mean square

error. The work in [93] uses notions from game theory, and utility is defined as information

gain from a node, i.e. the mutual information between the prior density of target position

and the measurement. Additionally, a price for transmission is included to account for

the current energy level in the nodes, and the energy needed for data transmission. Our

work is also based on principles of utility functions and cooperative game theory. Therefor

we will continue with an overview on cooperative game theory and its use in localization

algorithms.

3.3 Selection criteria

In this section we will derive the metrics used for node selection in localization algo-

rithms.

3.3.1 Geometric dilution of precision

The concept of Geometric dilution of precision (GDOP) is taken from the GPS technol-

ogy, where it is used to specify the effect of satellite geometry on the precision of position

estimate. In case of terrestrial localization, it is also ued as a metric of precision. It depends

only on the angular distribution of anchor nodes around the target, and not on the distance

between target and anchors [25]. The GDOP does not depend on the ranging method, as
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it only takes into account the relative geometry between nodes. It can be calculated as

[94]:

GDOP =

√
tr(GTG)−1 (3.2)

where G is the following geometry matrix:

G =


a1x a1y 1

a2x a2y 1

... ... ...

aNx aNy 1

 (3.3)

The term ai = (aix, aiy) is the unit vector from target t to anchor i:

aix = xi−x̃t√
(xi−x̃t)2+(yi−ỹt)2

aiy = yi−ỹt√
(xi−x̃t)2+(yi−ỹt)2

(3.4)

When selecting the ideal set of anchor nodes, one should try to identify the constellation

that provides the minimum GDOP.

3.3.2 Cramer Rao lower bound

The Cramer-Rao lower bound for the localization problem has been derived in [26]. It

indicates the lower bound on variance that an unbiased estimator can achieve.

Cramer Rao lower bound for RSS based localization

Assuming the lognormal propagation model, the Fisher information matrix (FIM) for a

network consisting of N anchor nodes with positions (xi, yi) and one target with unknown

position (xT , yT ) is given by:

F =

[
Fxx Fxy

F T
xy Fyy

]
(3.5)

Here the elements are:
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Fxx = b

N∑
i=1

(xT − xi)2

d4i
, Fyy = b

N∑
i=1

(yT − yi)2

d4i
, Fxy = b

N∑
i=1

(xT − xi)(yT − yi)
d4i

(3.6)

and

b = (
10α

ln 10σRSS
)2 (3.7)

The Cramer-Rao lower bound is obtained as the trace of the Fisher information matrix

and is given by:

CRLBRSS =
Fxx + Fyy

FxxFyy − F 2
xy

=
1

b

N∑
i=1

d−2i

N−1∑
i=1

N∑
j=i+1

d⊥ijdij
d2i d

2
j

(3.8)

where dij is the distance between anchor nodes i and j and d⊥ij is the shortest distance

from the target node to the line segment connecting nodes i and j.

Eq. B.2 provides the lower bound on the accuracy of target coordinates. Considering

the one-dimensional case, i.e., the RSS ranging, the standard deviation of the distance

estimate will be of the form: √
var(d̃ij) ≥

ln 10

10

σ

α
dij (3.9)

We see in the above equation that the accuracy of the distance estimation is proportional

to the distance itself. Therefore, in order to keep the distance estimation error less than a

certain value emin, the target has to be in the range of:

r0 =
10

ln 10

α

σ
emin (3.10)

Since the parameters σ and α are determined by the channel characteristics, there is

little we can do to control and improve the distance estimation accuracy. Thus the received

signal strength based distance estiation is limited to short-range positioning.

Cramer Rao lower bound for TOA based localization

In case of TOA based distance estimation, the elements of the Fisher information matrix

in Eq. 3.5 are the following:
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Fxx =
1

c2σ2
T

N∑
i=1

(xT − xi)2

d2i
, Fyy =

1

c2σ2
T

N∑
i=1

(yT − yi)2

d2i
, Fxy =

1

c2σ2
T

N∑
i=1

(xT − xi)(yT − yi)
d2i

(3.11)

Again, the CRLB for location estimation using N anchors is calculated as the trace of

the FIM:

CRLBTOA = c2σ2
TN

[
N−1∑
i=1

N∑
j=i+1

(
d⊥ijdij
didj

)2
]−1

(3.12)

Other than the RSS case, here we are able to control the system performance by

adjusting the effective bandwidth W and/or the SNR [27]:√
var(d̃TOA) ≥ c

2
√

2π

1

W

1√
SNR

(3.13)

Therefore,the TOA based method can perform well for long-range positioning.

3.3.3 Squared position error bound

The squared position error bound (SPEB) is a metric derived in [95], but in [96] the

imperfect a priori location knowledge of the anchor nodes is taken into account, and the

SPEB is derived in a closed-form, considering RSS based distance estimates. The closed-

form indicates that the effect of the imperfect knowledge of anchor locations on SPEB is

equivalent to the increase of the variance of RSS-based distance estimation:

SPEB =

N∑
i=1

1
βi(

N∑
i=1

cos2φi
βi

)(
N∑
i=1

sin2φi
βi

)
−
(

N∑
i=1

sinφi cosφi
βi

) (3.14)

where φi denotes the angle from i-th anchor to the target, i.e., φi = tan−1 yt−yi
xt−xi , and βi

accounts for both anchor uncertainty (ω2
i is the variance of a priori knowledge of anchor

location) and distance estimation uncertainty [27]:

βi = ω2
i + εd2i (3.15)

The existence of this closed-form expression facilitates the node selection when uncer-
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tainties in anchor positions have to be considered.

To illustrate the motive for using geometry for node selection, we show in Figure 3.5 a

target trying to select the best three neighbors out of 6 that will be used for positioning.

Considering the links individually, anchor nodes A1, A2 and A3 might be the best ones,

since they are ZigBee anchors. However with respect to target‘s location nodes A2 and

A3 cannot contribute any additional information, as they all provide information in one

direction. The same holds for anchor nodes A5 and A6.

GDOP helps us identify geometric conditions, thus we can discard redundant informa-

tion from an angular point of view. CRLB and SPEB go beyond geometry and also contain

information about channel conditions and reliability of the anchor positions.

A3 A2 A1

A4

A5

A6

Figure 3.5: Redundant information from angular diversity perspective

3.4 Cooperative game theory and its applications in

localization algorithms

Cooperative game theory provides a convenient framework for modeling collaboration in

multiagent systems. It has been used in several topics in wireless communication systems,

such as resource allocation, scheduling, cognitive radio (CR) etc. It is also very appropriate

for localization problems, where it allows forming optimal coalitions of nodes to localize a

target node.
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Game theory is a field of applied mathematics for analyzing complex interactions among

entities. It is basically a collection of analytic tools that enables distributed decision pro-

cess. Game theory (GT) provides insights into any economic, political, or social situation

that involves individuals with different preferences. GT is used in economics, political

science and biology to model competition and cooperation among entities, and the role

of threats/punishments in long term relations. The formation of coalitions or alliances is

omnipresent in many applications. For example, in political games, parties, or individuals

can form coalitions for improving their voting power. Recently, computer science and engi-

neering have been added to the list of scientific areas applying GT. While in optimization

theory the goal is to optimize a single objective over one decision variable, game theory

studies multi-agent decision problems. In social sciences and economics, the focus of game

is the design of right incentives/payoffs; in engineering it comes to efficiency on how to

design efficient decentralized schemes that take into account incentives. However, there

are still similarities when applying game theory to different disciplines. For example, a

measurement allocation framework for localization in wireless networks, based on the idea

to allocate more measurements to the nodes which contribute more, mimics a capitalist so-

ciety where the gains are mostly reinvested where more profit is expected. It also replicates

the concept of natural selection in population genetics.

In general, a game consists of a set of players (decision makers), while each player has

its strategy, whereby utility (payoff) for each player measures its level of satisfaction. Each

players objective is to maximize the expected value of its own payoff [97]. There are two

main branches of game theory: cooperative and non-cooperative. Non-cooperative GT

addresses interactions among individual players, each aiming to achieve their own goal,

namely improving its utility, or reducing its costs. By contrast, in cooperative games

the utility does not only depend on a single nodes strategy, but also on the strategies

of other nodes within a coalition. Hence, cooperative game theory is more elaborate.

Especially in realistic situations where entities can participate in several coalitions, the

potential structure of these coalition allocations is more complex; thus there is a need for

approaches that are able to reduce the complexity, without identifying and comparing all of

the 2n−1 possible coalitions, n being the number of players. A normal form representation

of a game is given by

g = 〈N,Si, {ui}〉 (3.16)

where N = {1, ..., n} is the set of n players. We indicate an individual player as i ∈ N
and each player i has an associated set Si = {si1, . . . , sim} of possible strategies from which,
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in a pure strategy normal form game, it chooses a single strategy si ∈ Si to be realized.

s = {s1, . . . , sN} is the strategy profile of N players, i.e., the outcome of the game, while

s−i is the strategy profile of all players but the i-th, and {ui} = {u1, . . . , uN} is the utility

function of the i-th player. The utility function measures the preferences of each player to a

given strategy, assuming the strategies of other players are known. If s is a strategy profile

played in a game, then ui (s) denotes a payoff function defining is payoff as an outcome of

s.

One of the concepts for solving non-cooperative games is the Nash equilibrium (NE).

Nash equilibrium is a stable solution of the game such that no player has reason to

unilaterally change its action, since it may not improve its utility function. More pre-

cisely, a strategy profile set s∗ = {s∗1, . . . , s∗N} is a NE if for ∀si ∈ Si and for ∀i ∈ N ,

u
(
s∗i , s

∗
−i
)
≥ u

(
si, s

∗
−i
)
. A strategy set that corresponds to the Nash equilibrium signifies

a consistent prediction of the outcome of the game. In other words, if all players predict

that Nash equilibrium will occur, there is no player in the game that has incentives to

choose a different strategy. Any game allowing mixed strategies has at least one NE. How-

ever, some pure strategy normal form games may not have a NE solution at all. Therefore

it is relevant to formulate the utility function in such a way that the game has at least one

equilibrium point. When efficiency is important, Pareto Optimality is used. The existence

of Nash Equilibrium does not assure that the outcome of a game will be beneficial for all

players. Mathematically formulated, a strategy set s = {s1, . . . , sN} is Pareto optimal if

and only if there exists no other strategy set t = {t1, . . . , tN}such that ui(t) ≥ ui(s) for

∀i ∈ N , and for some k ∈ N , uk (t) > uk (s). In other words, Pareto optimal outcome

cannot be improved upon without hurting at least one player.

3.4.1 Coalitional games in wireless communications

From the communication networks perspective, there is a need for developing dis-

tributed and flexible wireless networks, where the units make independent and rational

strategic decisions. In addition, low complexity distributed algorithms are required, to ca-

pably represent collaborative scenarios between network entities. Srivastava [98] proposed

a mapping of network components to game components according to Table 3.1.

A coalition formation game is uniquely defined by the pair (N, v). N = {1, 2, . . . ,N}
denotes the set of players, e.g., network entities, pursuing to form sets in order to collab-

orate with each other. Any nonempty subset S ∈ N is called a coalition. Coalitions with

cardinality |S| = 1, are called singleton coalitions and N is called the grand coalition. The
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set of all coalitions in a game is called coalition structure and is denoted by P . v denotes

the coalition value which quantifies the worth of a coalition in a game.

Network component Game component
Nodes Players
Available adaptations Action set
Performance metrics Utility function

Table 3.1: Mapping of network components to game components

Coalitional games in characteristic form are classified into two types based on the

distribution of gains among users in a coalition:

1. A transferable utility (TU) game where the total gain achieved can be apportioned

in any manner between the users in a coalition subject to feasibility constraints, and

2. A non-transferable utility (NTU) game where the apportioning strategies have addi-

tional constraints that prevent arbitrary apportioning. Each payoff is dependent on

joint actions within coalition.

In TU games, the cooperation possibilities of a game can be defined by a characteristic

function v that assigns a value v(S) to every coalition S. Here v(S) is called the value of

coalition S, and it characterizes the total amount of transferable utility that the members

of S could gain without any help from the players outside of S. In general, we use the term

coalition structure to refer to any mathematical structure that describes which coalitions

(within the set of all 2n − 1 possible coalitions) can effectively negotiate in a coalitional

game.

In case of TU games, goal is to find a coalition structure that maximizes the total

utility, while in NTU games it is the structure with Pareto optimal payoff distribution. A

centralized approach can be used, but it is generally NP-complete. The abbreviation NP

refers to ”nondeterministic polynomial time”, and the most notable characteristic of NP-

complete problems is that no fast solution to them is known. The reason is that finding

an optimal partition requires iterating over all the partitions of the player set N . The

number of partitions grows exponentially with the number of players in N . For example,

for a game where N has 10 elements, the number of partitions that a centralized approach

has to go through is 115975 (easily computed through the Bell number [99]. Therefore,

using a centralized approach for finding an optimal partition is, generally, computationally

complex and not very practical. Nevertheless, many applications require the coalition
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formation process to take place in a distributed manner, so that the players have autonomy

on the decision whether or not to join a coalition. Indeed, the complexity of the centralized

approach has initiated a growth in the coalition formation literature, with the goal to find

low complexity and distributed algorithms for establishing coalitions. A novel classification

of coalitional games has been proposed in [99]. Games are grouped into three types:

canonical games, coalition formation games and coalitional graph games. Their properties

are shown in Table 3.2.

Canonical coalitional games Coalition formation games Coalitional graph games
Grand coalition is the opti-
mal structure

Resulting coalitional
structure depends on
gains and costs

Interaction of players de-
pends on communication
graph structure

Goal: stabilize the grand
coalition

Goal: form appropriate
coalition structure

Goal: stabilize grand
coalition or form network
topology taking into ac-
count the communication
graph

Table 3.2: Classification of coalitional games

Game theory can be applied to communication networks from several aspects: at the

physical layer, link layer and network layer. However, there are certain challenges when

applying game theory principles to wireless networks. For example, GT assumes that the

players act rationally, which does not exactly reflect real systems. Furthermore, realistic

scenarios necessitate complex models, yet the main challenge is to select the appropriate

utility function, due to a lack of analytical models that would map each nodes available

actions to higher layer metrics.

Non-cooperative games have been mainly applied for applications such as spectrum

sharing, power control or resource allocation, hence mainly settings that can be seen as

competitive scenarios. On the other hand, cooperative game theory provides analytical

tools to study the behavior of rational players in cooperative scenarios. In particular,

coalitional game theory is proven to be a very powerful tool for designing fair, efficient and

robust cooperation strategies in communication networks.

Physical layer security has been studied via coalitional games in [100], [101]. In a

distributed way, wireless users organize themselves into coalitions while maximizing their

secrecy capacity - maximum rate of secret information sent from a wireless node to its

destination in the presence of eavesdroppers [100]. The process is illustrated in Figure

3.6. This utility maximization is taking into consideration the costs occurring during
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information exchange. On the other hand, [101] introduces a cooperation protocol for

eavesdropper (attacker) cooperation. Here the utility function is formulated to capture the

damage caused by the attackers, and the costs in terms of time spent for communication

among the eavesdroppers. In both cases, independent disjoint coalitions will form in the

network, as the grand coalition would involve various communication costs.

Figure 3.6: Example of wireless users organized into coalitions

The works in [102] and [103] consider coalition structures in a wireless network where

users are permitted to cooperate, while maximizing their own rates. Here both transmitter

and receiver cooperation in an interference channel is studied. Several models have been

analyzed: a TU and an NTU model, and with perfect and partial cooperation. In [102], the

feasibility and stability of the grand coalition for all cases was evaluated, while the work
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in [103] is focused on stable coalition structures. In [104] a game theoretical framework

for virtual MIMO has been proposed, where single antenna transmitters self-organize into

coalitions. The utility function denotes the total achieved capacity, and also includes the

power constraint to account for the costs. In [105] the multi-channel spectrum sensing

problem is formulated as a coalitional game, where players are secondary users that coop-

eratively sense the licensed channels of primary users. The utility of each coalition reflects

the sensing accuracy and energy efficiency. Distributed algorithms have been proposed to

determine a stable coalition structure, maximizing the overall utility in the system. More

game theory based solutions for spectrum sensing in cognitive radio have been proposed

in [106] and [99]. A network-level study using coalition formation has been performed in

[107], considering a scenario where service providers are cooperating in order to enhance

the usage of the available resources. Particularly, different providers may serve each others

customers and thereby increase the throughput and reduce the overall energy consumption.

The model supports multi-hop networks and is not limited to stationary users and fixed

channel conditions. A game theory based framework is used to determine optimal deci-

sions and a rational basis for sharing the aggregate utility among providers. The optimal

coalition structure can be obtained by means of convex optimization. Other applications of

game theory include packet forwarding in ad hoc networks, distributed cooperative source

coding, routing problems, and localization algorithms, which will be more elaborated in

the following.

3.4.2 Game theory for localization algorithms

Recently game theory has been applied in localization algorithms, mainly for modeling

the cost-performance trade-off and for selection of reference nodes. The work in [93] applies

game theory for sensor network localization, namely for measurement allocation among

reference nodes localizing the target. The localization process has been modeled as a

game belonging to the class of weighted-graph games. For such a representation, the

vertices correspond to the players, and the coalition value can be obtained by summing

the weights of the edges that connect a pair of vertices in the coalition with self-loop

edges only considered with half of their weights. A weighted-graph game can therefore

be well represented by N(N−1)
2

+ N weights, in contrast to 2N numbers which are usually

required to represent a cooperative game. The basic idea is to allocate more weights to

nodes that contribute more to the localization process. The allocation algorithm has been

integrated into a Bayesian estimator. In [108], utility is defined as the information gain
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from a node, i.e. the mutual information between the prior density of target position and

the measurement. Additionally, transmission cost is included to account for the current

energy level in the nodes, and the energy needed for data transmission.

The algorithm proposed in [109] assumes a number of static anchor nodes, strategically

placed to guarantee coverage to all unknown nodes. Anchors transmitting with lower

power can provide coverage to a smaller number of nodes; the aim is to minimize power

consumption at the anchor nodes, while assuring desired localization accuracy. The metric

for positioning quality is the GDOP. The problem has been formulated as a noncooperative

game, using Nash equilibrium as a solution concept.

In [110] the coalition formation within the set of neighboring anchors helps reduce

communication costs. Using only a subset of available reference nodes does not necessarily

degrade the accuracy, since some of them provide redundant information. In some situ-

ations it might be even useful to discard ranging information from some reference nodes,

after they have been identified as unreliable due to biases in the measurements. In this

paper the localization problem has been defined as a coalitional non-transferable utility

(NTU) game, where coalitions are formed based on the merge and split procedure. The

utility function is defined to account for both a quality and cost indicator. While the

quality function accounts for inconsistencies between each of the node’s measured distance

and the final joint estimated distance within the coalition, the cost function is related

to communication costs. The target tracking task based on coalition formation has been

implemented using a Kalman filter. For the coalition formation approach a higher mean

estimation error has been observed than for the grand coalition, i.e., when all nodes con-

tribute to the tracking process. Nevertheless, in terms of communication costs the proposed

scheme provides significant savings.

[90] proposes a dynamic coalition formation algorithm used for energy saving in multiple

target localization. Assuming that nodes in sleep mode do not record any measurements

and thereby save energy in both sensing and transmitting data, the optimization problem

is formulated to maximize the average sleep time of all nodes in the network, assuring that

targets are localized with desired accuracy. An important contribution is the exploitation

of spatial correlation of sensor readings. The accuracy metric used is the determinant of

the Bayesian Fisher information matrix (B-FIM). The characteristic function is formulated

in a way that larger coalitions of sensors do not necessarily lead to longer sleep times. This

is mainly due to the fact that the B-FIM, depending on both relative angles and distances

of sensors to the target, does not automatically increase as the number of sensor nodes in
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a coalition increases. The trade-off between performance and average sleep time allocated

in the network is demonstrated via Monte Carlo simulations.

3.5 Utility based node selection scheme

Besides the use of theoretical localization performance limits, e.g., CRLB, as the selec-

tion criteria, concepts from coalitional games and utility functions have also been adopted

in the proposed node selection approach. Given a set of candidate nodes S = {S1, ..., Sn},
the problem is to determine the subset S’ of k < N nodes, which is referred to as the ’best

set’. The ’best set’ is the one which achieves a tradeoff between power consumption and

quality of information with respect to positioning accuracy. This tradeoff can be modeled

using the notions of utility and cost. Hereby ’utility’ refers to the accuracy of collected

information and its usefulness (i.e., by means of the mean square error), while ’cost’ is

associated with energy spent executing the performed task.

3.5.1 Formulating the utility function

The main challenge here is to choose the appropriate utility function, i.e., how a node

values different levels of performance. Kaplan [92] defines the utility as the reciprocal

of the expected mean square error performance of the extended Kalman filter (EKF). It

is inspired by the GDOP and uses the predicted geometry to determine the best set of

active nodes. Isler [87] formulates the sensor selection problem as a bicriteria optimization

problem. Utility is related to the uncertainty of the measurements, while cost is measured

by the number of sensors. The paper has formally proved the observation that a small

number of anchors is sufficient for a good estimate. A decentralized selection scheme has

been proposed in [108] for EKF tracking. The utility function consists of two components:

one to quantify the amount of information gain, and the second to reflect a virtual price

paid for data transmission.

We can formulate the node selection optimization as the one that maximizes the ac-

curacy subject to constraints given by nodes limited processing capacity. The following

parameters are relevant for reference node selection: number of references, their uncer-

tainty (in case of virtual anchors), quality of range estimates and geometry. Since the

CRLB gives the upper bound on accuracy, the general approach defines the utility func-

tion as inversely proportional to the CRLB. In fact, CRLB is computed as the trace of the

Fisher Information matrix (FIM), and actually represents the sum of the squares of the
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estimate’s confidence region. Similarly, the FIM’s determinant represents the volume, and

the smallest eigenvalue the length of the largest axis of the confidence region. There is no

actual advantage in using one of these functions over others.

Besides the quality indicator, utility function also has to reflect the cost. Cost is

related to the energy spent for message exchanges between nodes, and is proportional to

the distances of target node to reference nodes. Having in mind the power consumption if

all reference nodes were used for localization, the grand coalition is not optimal. Therefore

we define the problem as a non-superaditive cooperative game.

Knowing that at least three nodes are needed in order to perform localization, we set

the coalition value to zero for all subsets containing less than three elements.

Assuming that the communication range is R, we define the utility function as:

v(C) =

 0, if |C| < 3
1

CRLBi∈C
−
∑
i∈C

di,t
R
, otherwise

(3.17)

Where CRLBi ∈ C is the CRLB for the coalition C, di,t is the distance from node

i ∈ C to the target t, and R is the transmission range, used to normalize the cost function.

The first term is the benefit indicator, while the second term represents the cost function

related to the power consumption required for communication. A lower CRLB indicates

higher accuracy, and therefore it is inversely proportional to the benefit. The cost function

is formulated using the fact that distant nodes spend more energy for communication, and

accordingly the cost is proportional to distance.

In order to illustrate the performance of coalition formation based node selection, we

will perform an exhaustive search over all possible coalition sets containing three nodes.

The results are presented in the next subsection.

Results

For evaluation purposes we consider one snapshot in the iterative algorithm, where a

node analyzes its local neighborhood, and exchanges information with NA reference nodes

within communication range R = 30m. Among the candidate references the goal is to

choose three of them, NS = 3, which maximize the utility function. In our simulations, we

assume that a node has 10 available candidate nodes, randomly placed within communi-

cation range of the unknown node. Position is calculated using the LLS algorithm, using

erroneous distance estimates as in Eq. (2.3).
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Ranging error is modeled using channel parameters α = 2.3 and σ = 3.92dB, as in [26].

In this work we assume a random, independent ranging error and all links have the same

channel conditions. The number of all possible combinations is:

NA!

NS!(NA −NS)!
(3.18)

where NA is the total number of available reference nodes, and NS is the number of

nodes to be selected, i.e., the coalition size.
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Figure 3.7: Simulation setup

For the evaluation scenario we assume NA = 10 and NS = 3. We examine 1000 random

setups. One possible setup is shown in Figure 3.7, where we highlight examples of good
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and bad geometric conditions.

Since the network density is not high, and having in mind limited communication range,

NA is relatively small and the exhaustive search approach is applicable. Otherwise we would

have to switch to the pruned search methods. Each combination represents a possible

coalition, and for all of them the coalition value is calculated based on (3.17). The subset

of nodes with the highest value for utility function is used to estimate the position. The

set containing all NA available reference nodes represents the grand coalition (the coalition

of all nodes). However, since in our case there is cost associated with coalition formation,

and we limit the selection to 3 nodes, the grand coalition will not form. Figure 3.8 shows

through a scatter plot that higher coalition values lead to more accurate position estimates.

Figure 3.8: Localization error vs. coalition value

In Figure 3.9 we compare the error cumulative distribution functions (CDF) of our

proposed selection strategy against selection based on closest distances, as well as purely

random reference selection. We perform 1000 independent runs. The 90th percentile for

utility based selection is 3.5 m, which is an improvement of 39%, compared to 90th percentile

of 5.9 m for closest distance, and 51% improvement with respect to the 7.2 m error in

the random case. In case of coalitions formed choosing more than three nodes, the gain
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achieved using utility based selection is less noteworthy. This is mainly due to the fact

that the random selection and closest distance approach perform better when more anchor

nodes are available. On the other hand, the computational complexity notably increases

for larger coalition sets.
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Figure 3.9: CDF of localization error

3.5.2 Node selection for localization exploiting spatial correla-

tion

Besides the vast computational cost, exhaustive search also imposes memory cost, since

we have to avoid checking a particular coalition repetitively. Therefore we propose a search

method which exploits the spatial correlation among candidate reference nodes. In this

manner, some of those nodes could be eliminated from the candidate list straightaway.

The concept of spatial correlation has been widely applied in WSNs, in order to place a

number of low-power sensor nodes in sleep mode, and thus saving energy [12]. In the case

of sensor networks, readings are mainly about the environment: temperature, humidity,
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etc. In our context, readings are position coordinates. Assuming that adjacent nodes

report similar readings, the overall amount of available anchor nodes can be adequately

represented by a reduced number of active nodes serving as anchors.

We propose to divide the coverage area of the target into correlation regions, as proposed

in [111]. Here the correlation region refers to the region in which the nodes report similar

readings. From the localization performance perspective, one can assume that spatially

correlated nodes provide redundant information from the angular diversity point of view.

Consequently, the entire coverage area is efficiently represented by a subset of active anchor

nodes which perform such task well, comparable to that of the original setup. Such an

approach helps reducing the search method complexity, since only a subset of anchors needs

to be involved in the coalition formation procedure. The exploitation of spatial correlation

has been applied to various aspects of wireless communications, with the goal to reduce

redundancy. A concept that makes use of spatial correlation for localization has been

proposed in [112]. The node coordinates are transformed into a polar coordinate system

and the sensing area is divided into a number of partitions with equal angles with respect

to the target. Then from each partition the node with the highest measured RSS is chosen.

The work in [113] exploits the spatial correlation to measure the link quality of wireless

sensor nodes. The intuition behind spatial correlation is that sensor nodes geographically

close to each other may have correlated link quality. The history information of link quality

for one node may be used for estimating not only its own link quality, but also that of

other neighbor sensor nodes geographically close.

We performed simulations for different node densities and compared the performances

for exhaustive search and spatial correlation based method, in terms of root-mean-square

error (RMSE) and computation complexity. We assume that after a number of iterations,

the target node is within coverage of several anchor nodes, some of which virtual anchors

not perfectly aware of their locations, but with some uncertainty. The goal is to choose

reference nodes which will provide the most accurate localization result, by evaluating the

utility function over all subsets. The optimal method would be to perform an exhaustive

search and evaluate the utility function over all possible combinations. This method is

guaranteed optimal but the search time is exponential and the number of combinations is

very large. Having in mind that with each iteration the number of available reference nodes

increases significantly, we have to reduce the search time, i.e., the number of combinations.

We apply the concept of spatial correlation based on clustering, as proposed in [111], and

compare it with exhaustive search approaches. The assumption is that the nodes report
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similar values when they are close to each other. However, this closeness (θ) depends on

the application requirements. In [111] the purpose is energy saving, but here we use the

concept for localization. The correlation regions are formed as squared rectangles and

nodes lying in the rectangle are assumed to be spatially correlated. Cluster formation

procedure is assumed to be as described in [114].
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Figure 3.10: RMSE error vs. number of nodes

We performed 1000 runs for each setup. Each setup is a squared area 36 m x 36 m, with

the target placed at the center of the area. The number of anchor nodes varies between

10 and 40, as represented on the x - axis of Figure 3.10. While the target is always placed

at the center of the area. the anchors are randomly uniformly distributed, and we assume

that 50% of them are virtual anchors, i.e., nodes that have obtained their location estimate

and now act as anchors. Therefore the node selection criteria used is the SPEB explained

in Section 3.3. The clustering resolution is 9 m x 9 m, thus we will have 16 regions in

total. Note that due to the random nature of anchor placement some regions will be

empty, especially in low density cases. Positions are computed using the same algorithm

and parameters as in previous section. Figure 3.10 shows that applying spatial correlation

70



results in a slight reduction of localization accuracy. We can also observe that the accuracy

using spatial correlation does not improve much after the number of anchor nodes passes

30 nodes. This is due to the clustering resolution, which is fixed, as well as the size of the

area. Thus for a large number of nodes and high density, the chosen representative nodes

will often be the same ones.

Figure 3.11 shows a comparison of computational complexity, when increasing the num-

ber of anchor nodes. We define computational complexity as the amount of time spent on

localization, in this case on a simulation run. The measurement of computation time is

calculated using MATLAB functions tic and toc, which return the elapsed time in seconds.

The computation time can be significantly reduced, especially as the number of nodes

increases.
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Figure 3.11: Computation time vs. number of nodes
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3.6 Conclusion

In this chapter we address the node selection problem in cooperative localization. We

model the localization process as a cooperative game, and formulate the corresponding

utility function. Game theory proves to be a powerful tool for modelling various aspects

of localization procedure, such as improved accuracy or energy saving. After giving an

overview of the most significant contributions in the literature on this subject so far,

we have proposed a localization procedure aiming to improve accuracy by selecting the

references providing the best conditions in terms of channel conditions and node geometry.

The utility function is defined in such a way that it captures node geometry, ranging quality

and anchor node uncertainty. Besides providing enhanced performance, choosing only a

subset of the available references contributes to resource saving. Computational complexity

is reduced by using a randomized search method that exploits spatial correlation among

coalition members.
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Chapter 4

Node selection in mobile and realistic

scenarios

After having reviewed the ranging methods and positioning algorithms in Chapter 2,

and after describing the node selection methods in chapter 3, now we extend the anchor

node selection to a dynamic, mobile scenario. Here, latency is the main issue. If it takes

too long to perform localization, the node will have significantly changed its position since

the measurement took place. Furthermore, the LOS/NLOS conditions might change while

the target moves.

In Section 4.1.5 we will propose a node selection method for mobile tracking, and in

4.2.1 we evaluate the scheme using experimental data obtained during a WHERE2 mea-

surement campaign. The Extended Kalman filter is the most popular tracking tool in robot

applications. However, since a mobile scenario requires continuous and rapid localization,

it is more pragmatic to use distributed algorithms.

4.1 Energy efficient mobile tracking in heterogeneous

networks using node selection

Ranged-based positioning is capable of achieving better accuracy in heterogeneous net-

work, where multi-RAT enabled mobile nodes are allowed to deploy not only the far-away

access points but also high spatial density peer-nodes as anchor nodes. However, due to

peer-node energy supply constraint and network capacity constraint, an efficient coop-

eration strategy is required. In this section, we propose a cooperation method to track
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the position of a moving target under required accuracy, and reduce the power consump-

tion and signaling overhead via anchor selection. It is demonstrated by simulation that

the proposed method is capable of reducing 34 % signaling overhead with about 0.5 me-

ter degradation of accuracy compared to exhaustive cooperation in a practical scenario.

We also evaluate the achievable performance averaged over random located node config-

urations, and compare the proposed scheme with the mostly used nearest-node selection

algorithm [1] in terms of accuracy and cost.

4.1.1 Introduction

In the context of non-cooperative homogeneous networks, the number of anchor nodes

such as Wi-Fi access points are small and far away from each other, which limits the

localization accuracy. In the context of heterogeneous network, a multi-RATs aided mobile

device is capable of communicating not only with the APs, but also peer nodes such as

fixed Zigbee/Bluetooth sensors or other mobiles nodes if cooperation is supported. The

spatial density of peer nodes is much higher than the one of APs. Using these nodes as

anchor nodes could significantly decrease the distance estimation error, and improve the

range-based positioning accuracy. However, peer-nodes are energy-constrained. Unlike

the APs, they are not supposed to be always in transmission mode broadcasting their

coordinates. In order to cooperate with peer nodes, training sequences and extra packets

are required for distance estimation and location information exchange, which results in

signaling overhead and additional power consumption. Hence, an efficient cooperation

strategy is required so as to achieve the required positioning accuracy and minimize the

resulting power consumption and traffic overhead.

We investigate a heterogeneous network containing fixed location-known Wi-Fi APs

covering the area of interest and sufficient number of connected multi-modal (Wi-Fi and

ZigBee) peer nodes. The goal is to estimate position of a moving node with required

accuracy. We propose a cooperation method to reduce the signaling overhead via anchor

node selection. The main idea is to select a subset of anchor nodes for location estimation.

As the mobile moves, this selected subset remains the same until the required accuracy

cannot be satisfied which triggers a re-selection process. Compared to the exhaustive

cooperation, the proposed method is capable of reducing 34% signaling overhead with

about 0.5 meter degradation of accuracy in a specific practical scenario. We also average out

the performance over randomly generated node configurations, and compare the proposed

scheme with the mostly used nearest-node selection algorithm [1] in terms of accuracy and
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cost. The rest of the section is organized as follows: in 4.1.2 we present the state of the

art solutions in anchor selection. In section 4.1.3 we describe our target scenario. The

proposed method is detailed in 4.1.4. The simulation results and discussion are shown in

4.1.5. The concluding remarks are given at the end of the chapter.

4.1.2 Related work

The accuracy of positioning algorithm is influenced by both measurement noise and the

relative node geometry [115], [116]. A comparison of different selection criteria, namely

CRLB and GDOP, and analysis of their correlation with localization error in both cooper-

ative and non-cooperative scenarios have been given in [36]. Here the mobile scenario has

been studied, so the selection criteria is used for predicting the best set of anchor nodes.

An important aspect in localization is energy saving. The use of coalitional games

has been proposed in [90] with the purpose of determining which nodes can stay in sleep

mode, while only a subset participates in the positioning algorithm. In [1] experiments

were performed to increase the energy efficiency of a localization system in wireless sensor

networks. The idea is to use the closest anchor nodes, and the remaining ones stay in semi

active state. Besides radio localization, there are also works that consider multimedia

(camera) sensors for energy aware target tracking [117].

Compared to previous works, here we investigate mobile tracking in a heterogeneous

network with the following novel contributions:

a) The proposed method exploits the knowledge of indoor layout to improve the

RSS-based distance estimation accuracy;

b) We proposed a new location accuracy indicator for Linear Weighted Least Square

(LWLS) estimator, and demonstrated it outperforms the CRLB;

c) The proposed method deploys the AP to control cooperation with the aim of

maximizing the performance given the affordable overhead.

4.1.3 Target scenario

The target scenario is illustrated in Figure 4.1, which shows a heterogeneous network

containing three types of nodes: APs, peer-nodes and mobiles. Peer-nodes and mobiles

are equipped with both Wi-Fi and ZigBee modules. APs and peer-nodes both know their

positions, and serve as anchor nodes. However, they are different in two aspects: 1) APs
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are spatially separated covering long distance, while peer-nodes are densely packed with

short-distance coverage. 2) APs periodically broadcast its position information, while peer-

nodes do not due to power supply constraint. We are interested in the scenario having

dense nodes, so that the moving multi-RATs mobile is always able to communicate with

APs and more than three peer-nodes.

Figure 4.1: Heterogeneous network containing location-known access points, peer-nodes
serving as anchor nodes, and one multi-RATs target mobile moving according to a certain
trajectory

For the target mobile, we denote the set of reachable APs as NAP , the set of reachable

peer-nodes as Np, the set of reachable anchor nodes as NA(NAP ∪NP) , and their locations

as xn = [xn, yn]T (n ∈ NA) in 2-dimensional space. We assumed that there is at least

one AP , (|NAP| ≥ 1) and at least 3 reachable peer-nodes (|NP| ≥ 3). The AP associated

with the target node is called connected AP. The target node position is denoted as x =

[x, y]T . The distance between the n-th anchor and the target node is denoted as dn =√
(xn − x)2 + (yn − y)2.

The estimated distance using ranging technical such as RSS/TOA is denoted as d̃n

with mean value E
(
d̃n

)
and variance var

(
d̃n

)
. The estimated target location is denoted
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as x̃ = [x̃, ŷ]T . We employed Root Mean Squared Error (RMSE) to represent the estimation

accuracy, which is formulated as

RMSE =
√
tr(Cx̃) =

√
E
(
(x̃− x)2 + (ỹ − y)2

)
(4.1)

The notation Cx̃ represents the covariance matrix of estimated vector x̃ . The required

accuracy is denoted as RMSEreq (unit: meter). Our goal is to select a subset of nodes

NS(NS ⊆ NA) having fixed cardinality |NS| such that: 1) the required accuracy can be

achieved or approached as close as possible; 2) the remaining unselected anchors could

remain silent so as to save power consumption and reduce traffic overhead.

4.1.4 Proposed method

The proposed method is illustrated in Figure 4.2.

Figure 4.2: Illustration of the proposed method

At the beginning (t = 0), the target mobile node transmits training sequence at its

highest transmit power, and seeks for assistance from all reachable peer-nodes. Peer-nodes

measure the related signal parameters such as RSS/TOA and transmit measurement results
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to the connected AP. If peer nodes cannot communicate with the AP, the measurement

results are sent via the target node. Upon receiving the measurements, the connected AP

performs distance estimation, and then chooses the best set of anchors NS over all possible

combinations S = {NS} which is expected to achieve the smallest RMSE. The estimation

result x̃ and the chosen set NS are transmitted to the target node.

As the target node moves on, it will periodically transmit training sequences, and seeks

assistance from those selected peer-nodes. Upon receiving the measurements, the connected

AP will estimate the achievable RMSE using the selected set of anchors. If the required

accuracy is satisfied, the estimation result x̃ using this chosen set NS is transmitted to

the target node. Otherwise, a re-selection process is triggered, and a new set NS will be

chosen.

In addition, the indoor layout map is assumed to be available at the AP, which will

be used to improve the RSS-based distance estimation as detailed in Section 4.1.5. The

coordinates of all anchor nodes are also recorded and updated at the AP, which avoids the

overhead traffic caused by exchanging location information between peer-nodes and the

target node.

Location accuracy indicator

The pseudo-code of the proposed method is summarized in Algorithm 1.

Initialization: t=0; NS
(−1) = NAP

if t > 0 and R̂MSE(NS
(t−1)) ≤ RMSEreq then

NS
(t) = NS

(t−1);
else

NA = NAP ∪ NP;

S = {NS} , |S| = C
|NS|
|NA|;

for i = 1 : |S| do

Calculate R̂MSE (Si)
end

NS
(t) = arg min

Si
R̂MSE(Si)

end

x̂ (t) = f
(

NS
(t)
)

; t = t+ 1

Algorithm 1: Cooperative scheme with anchor selection at time (t), given the previous
selected anchor set x
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The key aspect is positioning accuracy estimation. In this section, we will detail two

location accuracy indicators: estimated CRLB denoted as ĈRLB, and estimated RMSE

for Linear Weighted Least Square estimator denoted as R̂MSELWLS. In the next section,

we will compare these two indicators in terms of their correlation with the true RMSE.

Estimated CRLB

The target of range-based positioning is to estimate x based on the observation distance

vector d̃. In estimation theory, the Cramer Rao Lower Bound is defined as the lower bound

on variance of any unbiased estimator, which formulated as:

RMSE =
√
tr(Cx̂) ≥

√
CRLB (4.2)

The notation tr(Cx̂) represents the covariance matrix of estimated vector x̂. CRLB has

been introduced in Section 3.3. Supposed that the log-likelihood function of x given the

distance vector d̃ is equal to the natural logarithm of the probability density function of d̃

given x, formulated as `(x|d̂) = ln
(

p(d̂|x)
)

, the CRLB is calculated as

CRLB =
1

tr (F (x))
,F (x) = −E

(
∂2`(x|d̂)

∂x2

)
(4.3)

The Fisher Information Matrix (FIM) F (x) is a function of the second derivative of the

likelihood function. If F (x) contains any unknown parameters, which are replaced by

their estimated values, the resultant bound is called the estimated CRLB, denoted ĈRLB.

For example, the CRLB of RSS-based ranging in 2-dimentional space derived in [26] is a

function of the unknown distance dn. Hence, it is only feasible to calculate the estimated

ĈRLB using d̃n.

RMSE for Linear Weighted Least Square Estimator

If the Linear Weighted Least Squared estimator is used, we can have a closed-form

expression of x̃ as:

x̃ = (ATC−1
b̂

A)−1ATC−1
b̂

b̂ (4.4)

The matrix A is a function of xn, vector b̂ is a function of d̃n as well as anchor

coordinates xn, and C−1
b̂

is the inverse of covariance matrix of b̂. Hence the covariance

matrix Cx̂ also has a closed-form expression as:

79



Cx̂ = (ATC−1
b̂

A)−1 (4.5)

In the case of C−1
b̂

is a function of unknown distance dn , the estimated version Ĉ−1
b̂

using d̃n is employed. We derive the location accuracy indicator as:

R̂MSELWLS =

√[
(AT Ĉ−1

b̂
A)
−1
]
1,1

+

[
(AT Ĉ−1

b̂
A)
−1
]
2,2

(4.6)

4.1.5 Simulation results and analysis

Although the proposed method is not constrained by ranging techniques, RSS-based

distance estimation is used in our simulation for its universal applicability and ease of

implementation. Using the unbiased distance estimator, the estimated distance squared

for the n-th anchor can be formulated as

d̂2n = e−
2rn
α
− 2λ2n

α2 (4.7)

It has zero mean and variance of var
(
d̂2n

)
= d4n

(
e

4λ2n
α − 1

)
.

We express the location accuracy indicators using these distance estimates. Thus the

CRLB is formulated as:

ĈRLBRSS =

√√√√√√√√1

b

N∑
n=1

d̂−2n

N−1∑
n=1

N∑
m=n+1

(
̂dt⊥n,mdn,m
d̂2nd

2
n,m

)2 (4.8)

where the distance between n-th and m-th anchors, and the term d̂t⊥n,m is the estimated

shortest distance from target to the segment connecting n-th and m-th anchors. b has been

explained in Section 3.3.

Using the Best Linear Unbiased Estimator (BLUE) proposed in [59], the estimated

RMSE is formulated as Eq. 4.6 using:
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A =


−2x1 −2y1 1

−2x2
...

−2y2
...

1
...

−2xn −2yn 1

 ,Ĉ−1
b̂

=


̂

var
(
d̂21

)
0

. . .

0
̂

var
(
d̂2n

)

−1

(4.9)

In this rest of this section we describe the simulation for a) the specific scenario from

Figure 4.3, and b) generalized scenarios with randomly distributed anchors and averaged

performances over ten different constellations. We generated the deployment in MATLAB,

and then determined the channel conditions based on the WINNER tool [118]. More details

on the WINNER channel model are provided in the Appendix C.

A specific scenario

We consider a practical scenario illustrated in Figure 4.3, which consists of 1 Wi-Fi AP

and 7 peer-nodes. The target moves from the corridor to a room. Along the movement tra-

jectory, propagation conditions between the target and the other nodes change, according

to LOS or NLOS modeled by the WINNER II channel model [118].

Figure 4.3: Simulation scenario consists of 1 Wi-Fi access point, 7 peer nodes, and one
target mobile node moving from the corridor to a room
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We assume that the map layout is known, hence we are perfectly aware of LOS/NLOS

conditions at each point of the trajectory. The target node moves at a speed of 1 m/s.

We trace the location of the target node every 1 second , which results in 38 foot-prints.

The WINNER models [118] for indoor scenario at carrier frequency 2.4 GHz are used to

simulate the channel between AP/peer-nodes and target node. The path loss parameter α

is set to αLOS = 1.85 and αNLOS = 3.68. The variance of zero-mean lognormal shadowing

σ2 is set to σ2
LOS = 2dB and σ2

NLOS = 5dB respectively. αLOS is lower than the path loss

exponent in free space, because of the waveguide effect that may occur in corridors [119].

The true location RMSE is averaged over 1000 independent shadowing samples. Setting

|NS| and RMSEreq for different values, we simulate the following 4 schemes:

1. Scheme 1: |NS| = |NAP| + |NP|, RMSEreq = 0, this is equivalent to exhaustive

cooperation, where all reachable APs and peer-nodes are used for location estimation

at every sampling time;

2. Scheme 2: |NS| = 3, RMSEreq = 0, using ĈRLBRSS in Eq.4.8 as indicator, and

LWLS/ML location estimator;

3. Scheme 3: |NS| = 3, RMSEreq = 0, using R̂MSELWLS in Eq.4.6 as indicator, and

LWLS location estimator;

4. Scheme 4: |NS| = 3, RMSEreq = 1 and 2, using R̂MSELWLS in Eq.4.6 as indicator,

and LWLS location estimator.

Location accuracy indicator comparison

Using the parameters set for Scheme 2, three out of eight anchors, which provide the

lowest value of ĈRLBRSS, are chosen at each sampling time. The true RMSEs using

LWLS estimator and the maximum likelihood estimator are compared to the indicated

value ĈRLBRSS in Figure 4.4. The ML estimator is the optimal RSS-based position

estimator, however it is computationally very demanding and we use it for benchmark

purposes. It is demonstrated that from the 15 sample onward, where the anchor nodes are

dense and distributed in variable directions, the indicated RMSE using ĈRLBRSS has a

good correlation with the true RMSE using ML estimator, but much lower than the true

RMSE using LWLS estimator.

In the first few samples, the ĈRLBRSS values are low, but the true RMSE using either

linear or ML estimators are very high. The reason is the closest 3 anchors are not in-line

with the target, but almost collinear with each other. In this situation, the assumption
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`(x|d̂) = ln
(

p(d̂|x)
)

does not hold anymore. In fact, given d̂, the log-likelihood function

of x achieves two peak values, one at the true location, the other at the mirror location

symmetric to the approximate line connecting these to the near collinear anchors. Hence,

ĈRLB gives false accuracy estimation. It chooses the close, but near-collinear anchors,

which results in high positioning error. The estimated error and the bound are not very

close, thus it is not a reliable indicator.

Using similar parameters, Figure 4.5 compares the indicator R̂MSELWLS and the true

RMSE. Again, 3 out of 8 anchors, which provide the lowest value of R̂MSELWLS are chosen

at each sampling time. The results show that the indicated RMSE using R̂MSELWLS has a

good correlation with the true RMSE using LWLS estimator at all samples. Near collinear

anchors are avoided during the first few samples.

Figure 4.4: Comparison between the CRLB indicators and the true RMSE when using
Scheme 2

Based on these two figures, we could conclude that R̂MSELWLS is a better RMSE

indicator than ĈRLB, which can avoid choosing near collinear anchors, and provides more
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accurate estimation of the achievable RMSE when LWLS estimator is deployed. Hence, we

will use the R̂MSELWLS indicator and LWLS estimator to evaluate the proposed method.

Figure 4.5: Comparison between indicator R̂MSELWLS and the true RMSE when using
Scheme 3

Exhaustive cooperation versus the proposed method

We simulate the proposed method and compare its RMSE to those using exhaustive

cooperation. The parameters are summarized in Scheme 4 and Scheme 1, respectively. As

shown in Figure 4.6, the degradation of accuracy is negligible. When using the proposed

method with RMSEreq = 2, the average RMSE is about 0.53 (meter) higher than exhaus-

tive cooperation. However, the total traffic overhead reduction is about 34% as shown in

Figure 4.7. More explicitly, the proposed method does not always require messages from

all anchors (in green). It only occasionally requires additional control packets from the

AP (in blue) to invoke the re-selection process. Compared to exhaustive cooperation, the

overall transmit overhead over 38 samples is reduced by 34% using the proposed method.

The energy spent on this traffic overhead is saved. The higher error threshold value trig-
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gers less re-selections, thus the traffic is further reduced when RMSEreq = 2, instead of

RMSEreq = 1.

Figure 4.6: Comparison of the achievable accuracy RMSE between exhaustive cooperation
using Scheme 1 and the proposed method using Scheme 4

Generalized scenario

In order to extend the validity of the results presented for the specific scenario from

Figure 4.3, we evaluated the proposed method in more generalized scenarios. We consider

a mobile moving across a 25 m x 10 m room. The number of anchors in the room is 20,

where one of them is the access point (|NAP| = 1) and the remaining ones are peer nodes

(|Np| = 19). We generated 10 setups having anchor nodes randomly distributed over the

room, while the target node follows the same trajectory from the bottom-left side to the

upper-right. The averaged performance at 30 sampled locations along the trajectory are

evaluated. Again, the WINNER model for indoor scenario at carrier frequency 2.4 GHz
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are used with path loss parameter α set to αLOS = 1.85 andαNLOS = 3.68. The variance of

zero-mean lognormal shadowing σ2 is set to σ2
LOS = 2dB and σ2

NLOS = 5dB respectively.

The true location RMSE is averaged over 1000 independent shadowing samples.

Figure 4.7: Comparison of packet overhead between exhaustive cooperative (Scheme 1)
and the proposed method (Scheme 4)

We simulate the following two schemes:

• Proposed algorithm: using R̂MSELWLS in Eq.4.6 as indicator, and LWLS location

estimator, RMSEreq = 0.6 meter, and various combination of |NS| and |NA|:

(|NS|, |NA|) = {(3, 7) , (3, 14), (3, 20), (5, 7), (7, 7), (7, 14), (20, 20)}

• Three nearest node selection algorithm used in [1].

Comparison of different combination of |NS| and |NA|
The averaged localization accuracy using the proposed algorithm with different com-

bination of |NS| and |NA| are shown in Figure 4.8. First of all, the required accuracy

RMSEreq = 0.6 meter is achieved for all settings from track sample 5 to 27, when the target

moves in the central area of the room surrounded with sufficient number of anchor nodes.
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By contrast, when the target moves in the edge of the room corresponding to samples 1-5

and 27-30, the accuracy requirement is only always achieved if (|NS|, |NA|) = (20, 20). It is

because at edge areas, the number of reachable anchors is limit and they are not 360 degree

spread. Second, as expected, the accuracy improves by increasing the number of selected

nodes |NS| or the cardinality of potential selection set |NA|. However, the performances

using 3 selected nodes out of 7, 14 and 20 are very similar. The accuracy is significantly

improved when increasing both |NS| and |NA| such as (5,7) and (7,14).
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Figure 4.8: Comparison of different combination of |NS| and |NA| using the proposed
algorithm in terms of averaged localization accuracy

Figure 4.9 illustrates the traffic overhead accumulated from 30 tracking samples and

averaged over 10 different setups. The traffic overhead consist of 1 message from |NS|
selected nodes at each tracking sample, 1 message from AP and |NA|− |NS| messages from

peer nodes at some tracking sample when re-selection is activated. Figure 4.8 shows that

selecting 5 nodes of 7 candidates achieve the smallest traffic overhead, while selecting 3

nodes results in higher traffic overhead because it triggers more often re-selection.
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Deploying the parameters stated in [120], we compare the energy needed for different

schemes in Table 4.1. More explicitly, we assume that each message last for 1ms, and

adopt the typical value of 32 mW (15 dBm) as transmit power of peer nodes, and 63 mW

(18 dBm) as transmit power of APs [120]. The total energy required for transmitting the

averaged traffic shown in Figure 4.9 is calculated, assuming that each message lasts 1 ms.

Again, it demonstrates that (5,7) combination achieve the smallest energy consumption.

Figure 4.9: Averaged traffic overhead using 1) the proposed algorithm with different com-
bination of |NS| and |NA| ; and 2) the nearest-3 node selection algorithm in [1]

Case
Proposed algorithm with different

3 nearest nodes
combination of —Ns— and —Na—
20 of 20 3 of 20 3 of 7 5 of 7

Energy in mJ 19.2 16.315 5.903 3.661 1.92

Table 4.1: Power consumption for overhead messages

Nearest-nodes algorithm versus the proposed method

As a benchmark we used the approach of choosing the three closest nodes, as in [1],

which is popular because of its simplicity. Although it has the lowest signaling overhead

and power consumption as shown in Figure 4.9 and Table 4.1, we can see from Figure 4.10

that the accuracy requirement is much worse compared to the proposed algorithm. The

main reason for this is that by choosing simply three nodes with the strongest RSSI we

run the risk to choose three collinear nodes, or almost collinear which is an ill-conditioned

scenario and yields large errors. This prenominal has been overlooked in [1], where anchor
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nodes are regularly placed. It is a reasonable assumption in sensor network as considered in

[1], but no longer valid in our heterogeneous network. Finally, we summarize our analysis

in terms of performance trade-offs in Table 4.2. In this sense, cost is related to commu-

nication overhead, power consumption, search complexity and computational complexity.

For accuracy metrics, we used the mean RMSE.

Figure 4.10: Comparison of the nearest-3-node selection algorithm to the proposed algo-
rithm in terms of averaged localization accuracy

For the communication overhead metric we use the number of messages which are

exchanged in the anchor selection process. The search complexity is the number of possible

search space size, and the computational complexity arises from matrix inversions that

have to be performed in WLS localization algorithm. The proposed algorithm provides the

flexibility of achieving different trade-offs by manipulating the value of |NS| and |NA|.
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Mean Comm. Size of Comp.
Performance RMSE Overhead search complexity

metric (meter) (packet space (size of A
number) in Eq.(4))

The nearest 3-nodes 2.109 60 1 3×3

Proposed algorithm

20 of 20 0.2975 600 1 20×20
3 of 20 0.5424 465 1140 3×3
3 of 7 0.5716 136 21 3×3
5 of 7 0.4501 128 35 5×5

Table 4.2: Analysis of cost-performance trade-offs

4.2 Reference node selection in realistic localization

contexts

In this section we show the benefits of a node selection scheme, using real measurement

data obtained during measurement campaigns within the WHERE2 project at the premises

of the German Aerospace Center (DLR).

The selection process is based on theoretical location performance bounds, such as

the Cramer Rao Lower Bound, which captures information about both relative geometry

and quality of received signal strength based distance estimates. In order to determine the

optimum set of reference nodes, we perform an exhaustive search over all combinations and

compute their CRLB values. We use setup 2 from [121] and consider ZigBee nodes only.

Regarding RSSI measurements, the most relevant radio parameters of the used CC2431

chip are the operation frequency of 2.4 GHz with a bandwidth of 5 MHz, a TX power of

0 dBm and a RX sensitivity of -92 dBm.

All ZigBee anchors are located in a small open space area and the positioning system

is over determined. This helps to evaluate the potential of more sophisticated cooperative

positioning algorithms, GDOP reduction and link selection. To infer on the ranges from

experimental RSSI readings we use the one-slope path loss model, whose parameters are

the reference power P0 at the distance d0 = 1m, and the path loss exponent α, which

characterizes the power decay versus distance. The deviations of experimental RSSI values

from the path loss model are commonly modeled as realizations of a zero-mean Gaussian

random variable with variance σ2. Such path loss parameters are environment dependent

and therefore must be determined empirically from a set of calibration measurements. The

90



parameters extracted for this site-specific model as in [121] are P0 = −47dBm, α = 2, and

σ2 = 5.8dB .

4.2.1 Results

RSS-based range information is derived using estimators from [122], specifically the

ML estimator: d̃ML = eMe−S
2
, where M = (P−P0) ln 10

10α
+ ln d0 and S = σ ln 10

10α
. Here we are

assuming the path loss model from (2.1).

Figure 4.11: Scenario for evaluation: anchor locations are MT ACO, circles present the
target trajectory.

We consider a real measurement campaign carried out at DLR premises where a multi-

standard mobile terminal equipped with both a RSSI-enabled Zigbee node and an RTD-

enabled OFDM device is assumed to be moving along a corridor. The physical environment

is a 15mx33m indoor floor divided into multiple offices. The measurements are performed at

stationary positions and a MT trajectory is emulated out of the tested positions. However,

we only consider the ZigBee measurements. For 11 target positions shown at Figure 4.11,

we evaluated the CRLB values for all combinations of three anchor nodes (in total 35

combinations of three anchors out of seven).

We kept track of combinations that result in lowest CRLB, and finally compared the
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cumulative distribution functions of positioning errors when using the anchor node com-

binations yielding lowest CRLB values and a random combination of anchor nodes. The

estimator used for position computation was the WLS estimator. Results are shown in

Figure 4.11.
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Figure 4.12: CDF of positioning errors when using a random combination of anchors, and
combination yielding lowest CRLB values

We could also observe that the combination of anchors MT ACO 08, MT ACO 07 and

MT ACO 04 (Figure 4.11) produced very large positioning errors for all target locations.

This might be due to the fact that MT ACO 08 and MT ACO 07 are both almost in line

with the target, and MT ACO 04 has multiple obstacles and therefore rather bad NLOS

propagation conditions.

92



4.3 Conclusion

In Section 4.1.5 we proposed a cooperation method for range-based positioning in het-

erogeneous network via node selection in order to reduce communication and energy cost.

Inactive nodes do not waste energy while collecting, processing, and communicating mea-

surements. We analyzed a specific scenario, and a generalized one that corresponds to

realistic indoor environments. We presented an extensive study of different setups in order

to determine the best trade-off between desired accuracy and cost.

Furthermore, we evaluated the node selection for ZigBee nodes in an indoor environment

using experimental data in Secton 4.2.1. We observed that combinations resulting from

minimum CRLB provide better results than the random selection. The 90th percentile

error for CRLB based selection is 8 meters, compared to 11 meters for random selection.

We also observed that certain combinations lead to large errors even if the CRLB value is

low.
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Chapter 5

Special cases of non-cooperative

positioning

In the previous chapters we considered a cooperative scenario, where nodes collabo-

rate in order to enhance positioning accuracy. In this chapter two specific cases of non-

cooperative positioning are described, namely a low-complexity algorithm for positioning in

an ill-conditioned scenario with collinear anchor nodes in Section 5.1.4, and a map-assisted

method that incorporates use of negative information in Section 5.2.5.

5.1 RSS based collinear anchor aided localization al-

gorithm for ill-conditioned scenario

The conventional received signal strength based positioning algorithms such as LS and

WLS estimation produce significant estimation errors when the anchor nodes positions

approach a collinear scenario. In this section, we propose the CAP (Collinear Anchor aided

Positioning) algorithm to provide robust positioning performance under ill-conditioned

matrix conditions, whilst contributing toward overall low computational complexity. In

this section, without loss of generality, we will focus on RSS-based lateration technique

in a 2-dimensional space. The geometric method can be applied to TOA based distance

estimates, without any restrictions.
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5.1.1 Introduction

One limitation of lateration technique is that it requires distance measurements from

at least 3 non-collinear anchors for calculating an objects position in 2-dimensional space.

The accuracy of above-mentioned LS and WLS significantly degrades when the anchors are

approaching collinear. The main reason for this degradation is that these two positioning

algorithms involve matrix inversions which results in significant error injection when the

matrix is ill-conditioned. The accuracy of high-complexity ML algorithm also degrades as

well.

In this section, we consider an ill-conditioned scenario, in which the anchor nodes are

nearly collinear, and the target does not lie on the same line as the anchors. Furthermore,

we assume an indoor scenario where GPS does not work, and the positioning procedure

relies exclusively on available anchor nodes. Although the probability decreases with the

increase in the number of anchors, having near collinear anchor nodes is possible in practice.

For example, it is possible that in public safety scenarios such as fire prevention, most of

the well-planned indoor location sensors may be destroyed in a fire with only a few near

collinear collocated sensors intact. Based on this scenario, we propose a Collinear Anchors-

aided Positioning (CAP) algorithm, which provides significantly better localization results

compared to the conventional LS/WLS algorithms. Its localization accuracy is comparable

with ML, but with significantly reduced complexity.

The problem of anchor placement is a well-known subject in localization literature

[115], [123]. Whether the localization algorithm is statistical and uses the Cramer-Rao

lower bound as performance metric [123], or it introduces a new confidence metric for

geometrical localization such as trilateration [115], the conclusions are similar - the best

performance is given when anchor nodes are well separated around the target. One of the

anchor constellations that have the biggest negative impact on localization performance is

the collinear case, and several works have adopted methods to identify and discard such

setups. It has been referred to as the pathological case [124], and the goal is to avoid

it. Specific lower bounds on the degree of collinearity of anchor nodes sufficient to achieve

optimal localization results have been proposed in [125]. The metric to measure collinearity

is the height of the anchor triangle. The impact of anchor placement has also been studied

in [126].
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5.1.2 Preliminaries

The target scenario we consider in this section is illustrated in Figure 5.1 that depicts

the target node position in a 2-dimensional space with near collinear anchors.

Figure 5.1: Target scenario with near collinear anchors

The target node T is located in 2-dimensional space with unknown coordinates (x, y)

There are N fixed near collinear located anchors. In order to quantify the degree of

collinearity between anchor nodes, we introduce the matrix A as in [124], which is formu-

lated as:

A =

∣∣∣∣∣∣∣∣∣∣
x1 − xN y1 − yN
x2 − xN y2 − yN

...
...

xN−1 − xN yN−1 − yN

∣∣∣∣∣∣∣∣∣∣
(5.1)

This matrix contains information about geometrical configuration of anchor nodes. We

use the condition number of matrix A as an indicator of collinearity: in the extreme

case when all three anchors are collinear, the matrix is singular and the condition number

cond[A] is infinite. If the condition number is too large, the matrix (in our case the scenario)

is said to be ill-conditioned.

From the expression for the LS solution (Eq. (2.12)), it can be seen that there are

two factors affecting the estimation error of the target: 1) the distance estimation errors
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resulting from noisy measurements, which are part of the matrix b, and 2) the geometry

of reference nodes. Information about anchor geometry is part of the matrix A. The

estimation error is upper bounded [30]:

|∆x|
|x|
≤ cond(A)

|∆b|
|b|

(5.2)

For collinear nodes, or if the number of reference nodes is less than three, matrix

A is singular and its condition number is infinity. For a high value of even the minor

perturbation in distance estimations would cause a large error in position estimate. If the

reference nodes are well separated around the unknown node, matrix A is well conditioned.

There are several methods for distance estimation, such as [127], [128], etc. Even though

in practice it has been shown that the RSS ranging performs well in addition to location

maps (fingerprinting), we adopt RSS method in this section due to its simplicity. It is

still the most easy-to-apply method for practical systems, because there is no need for any

additional hardware, neither for synchronization. Suppose that the anchors Ri transmit

a signal, and the long-term averaged received signal strength at reference distance d0 is

P0 (dBm), the long-term averaged received signal strength Pi at the target is a shown in

Section 2.1 in (2.1). Employing the unbiased estimator proposed in [59], and based on the

results of [129], the unbiased estimate of the squared distance d2i is:

d̃2i = e−
2ri
α
− 2λ2i
α2 (5.3)

Here ri = 0.1 ln(10)(Pi − P0)− α ln(d0), and λ2i = 0.01(ln(10))2σ2
i .

Moreover, the variance of the estimation is formulated as:

var(d̃2i ) = d4i (e
4λ2i
α2 − 1) (5.4)

Equation 5.4 demonstrates that the variance grows exponentially with the shadowing

parameter. Since we assume equal channel conditions for all links, the variance of the

distance estimates will be proportional to the distance itself. Here we have to mention

that in case of TOA based ranging, the variance is not dependent on the distance, but is

modeled by a zero-mean additive Gaussian noise.

Having the estimated distances d̃2i and the knowledge of anchors locations (xi, yi), the

target node is capable of estimating its own location coefficients (x, y) by exploiting the

relationship (xi − x)2 + (yi − y)2 = d2i . The most common estimation algorithm is (linear)
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Least Square [127], and its improved versions including the Weighted Least Square [58],

incremental least square (ILS) [124] etc. However, the above-mentioned algorithms require

at least 3 well-conditioned anchors. The Maximum-likelihood estimation algorithm [26]

does not have this constraint, but it requires iterative operations, which results in high

computational complexity. Motivated by the insufficiency of current estimation algorithms,

we propose a new Collinear Anchor aided Positioning (CAP) estimation algorithm, which

is described in the section 5.1.3.

5.1.3 Collinear anchor aided positioning algorithm

In this section, we describe the proposed algorithm given a scenario with N = 3 anchor

nodes. The proposed algorithm can be extended to N > 3 scenario by first selecting 3 an-

chors having the most reliable estimation of distance according to Equation 5.4. Supposed

there are three near collinear anchors R1, R2 and R3 and var(d̃21) ≤ var(d̃22) ≤ var(d̃23), the

proposed CAP algorithm is detailed as follows:

Step 1: Employ the typical LS algorithm; obtain an initial estimation of the target

nodes location, which is represented as (x̃(1), ỹ(1)).

Step 2: By choosing first two anchors Ri, i = {1, 2}, we have the following two

equations:

(x1 − x̃)2 + (y1 − ỹ)2 = d̃21

(x2 − x̃)2 + (y2 − ỹ)2 = d̃22
(5.5)

where d̃2i is the estimated distance between node Ri and node T using the unbiased

algorithm of Equation 5.3. Coordinates (x̃, ỹ) represent the estimated coordinates. Since

the anchors lie on the line l, without loss of generality, we choose the x-axis in parallel

with this line l to simplify the notations as shown in Figure 5.1. This condition can be

easily achieved using transformations as translation, rotation and reflection. Hence, we

have y1 = y2 . By subtracting those two equations, after simple rearrangement we get an

estimation of x:

x̃(2) =
d̃22 − d̃21 − (x22 − x21)

2(x1 − x2)
(5.6)

By substituting x̃(2) into Equation 5.5, we have:
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ỹ(2+) =

 y1 +

√
d̃21 − (x1 − x̃(2))2

0

ifd̃21 − (x1 − x̃(2))
2 ≥ 0

ifd̃21 − (x1 − x̃(2))
2
< 0

ỹ(2−) =

 y1 −
√
d̃21 − (x1 − x̃(2))2

0

ifd̃21 − (x1 − x̃(2))
2 ≥ 0

ifd̃21 − (x1 − x̃(2))
2
< 0

(5.7)

From 5.7 we conclude that two estimates ỹ(±) can be calculated. In cases where the

solution is an imaginary number, e.g., when there is no solution, we decided to assume the

value y = 0. This situation appears in case of a high σ2 value. We obtain two second-step

estimations of y: ỹ(2+) and ỹ(2−).

Step 3: So far we have three estimation results: (x̃(1), ỹ(1)), (x̃(2), ỹ(2+)) and (x̃(2), ỹ(2−)).

The final estimation is chosen as follows:

x̃(3) = x̃(2) (5.8)

ỹ(3) = arg min
ỹ(2+),ỹ(2−)

{∣∣ỹ(2+) − ỹ(1)
∣∣ , ∣∣ỹ(2−) − ỹ(1)∣∣} (5.9)

The advantage of the CAP algorithm is that it avoids ill-conditioned matrix inversion.

Hence it outperforms traditional localization algorithms when having near collinear anchors

as shown in the next section.

5.1.4 Analysis and simulation results

In order to evaluate the performance of our proposed algorithm, we perform simulations

in MATLAB. We compare the performance of the CAP algorithm to the state-of-the-art

algorithms, specifically LS, WLS and ML, and also include the Cramer Rao lower bound as

a performance indicator. We consider a scenario having the minimum number of anchors

(three) and one target. The target T is placed at fixed coordinates (50, 50), namely in

the center of a 100 x 100 m square area. We assume that the path loss value is the same

throughout all area, namely α = 3. We compute the root mean square error (RMSE) for

different algorithms by running 1000 simulation runs, for shadowing variance values be-

tween -20 and 20 dB. In the first simulation, three anchors are fixed at coordinates (20, 20)

and (70, 20), and (90, 30), which results in matrix condition number cond(A)=10.9. The

position estimation RMSE versus shadowing variance using different positioning algorithms
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is illustrated in Figure 5.2.
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Figure 5.2: Position estimation RMSE versus shadowing variance for different positioning
algorithms

It shows that for a low shadowing scenario σ2 = 0.1 , the RMSE using LS and WLS

is 6.75 meter, whilst using the proposed CAP the RMSE is 1.37 meter. The proposed

algorithm is about 5 times more accurate than the LS and WLS algorithms. Moreover,

for medium shadowing scenario σ2 = 1 , the performance of the proposed CAP algorithm

is reduced, but still showing better performance than the LS and WLS algorithm. Fur-

thermore, for high shadowing cases σ2 = 10, the estimation error using CAP becomes

again significantly better than the conventional LS and WLS. In addition, Figure 5.2 also

demonstrates that the performance of proposed CAP algorithm is comparable with the

performance of the ML algorithm in low and medium shadowing conditions. The ML
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estimator is usually implemented using the expectation-maximization (EM) iterative al-

gorithm, which may converge to a local maximum depending on starting values. The

relatively poor performance of ML shown in Figure 5.2 is due to using the EM algorithm,

and using LS estimates as its starting value. This implementation method works well for

well-conditioned anchors. It also works well for near-collinear anchors having low shad-

owing values. As illustrated in Figure 5.2, the mean square error using ML is close to

the CRLB when the shadowing variance is low, which means the distance estimation is

relatively accurate. It increases as the shadowing variance increases, and finally converge

to the curve using LS estimation. To better illustrate this phenomena, we demonstrate the

spatial distribution of the estimated results using LS and ML for an ill-conditional scenario

in Figures 5.3 and 5.4.
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Figure 5.3: Spatial distribution of estimated values for LS and ML estimates; scenario
includes 3 anchor nodes and one target node, shadowing variance is 0.01 dB

The ML estimates is capable of converging to the true target nodes when the shadowing

value is 0.01.However, the ML estimates become similar to the LS estimates in a scenario

with higher shadowing. Although randomly choosing multiple starting values can improve

this drawback of EM, it still cannot guarantee the convergence to the global optimum,
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while it significantly increases the complexity.
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Figure 5.4: Spatial distribution of estimated values for LS and ML estimates; scenario
includes 3 anchor nodes and one target node, shadowing variance is 6 dB

To sum up, ML should outperform our proposed algorithm in theory. However, using

the practical EM algorithm, ML becomes worse than our proposed algorithm in practice.

In a high shadowing scenario, the performance of the ML algorithm converges to the LS

performance since it employs the LS estimate as its initial value before iteration. Having

this implementation in mind, our proposed CAP algorithm slightly outperforms the ML

solution at high values of shadowing variance. On the other hand, the proposed CAP

algorithm is much more computationally efficient. Since the ML involves computationally

demanding mathematical operations such as matrix inversion and matrix multiplication

coupled with the iterative procedure, its complexity will be in the order of Niter ∗O(N3),

where Niter is the number of iterations (in our simulations we used Niter = 20), and N the

number of anchor nodes. On the other hand, the CAP algorithm only involves simple alge-

braic operations, such as addition, subtraction and division. Therefore its computational

complexity is in the order of O(N).

In the second simulation, the first two anchors remain at (20, 20) and (70, 20), while
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the third anchor is moved along a circle with radius 45m in steps of 15 degrees. In Figure

5.5 we show the plot of the condition number versus the angle of the third anchor with

respect to line l for a full 360 degrees circle. Furthermore, we compute the gain as the

ratio between the RMSE for LS/ WLS and the RMSE of our CAP algorithm.

Figure 5.5: Condition number as metric for ill-conditioned scenario, and the gain of CAP
vs. LS and WLS

Hence, if gain ≤ 1, the proposed CAP algorithm provides less or equal estimation

accuracy. If gain > 1, the proposed CAP algorithm provides higher estimation accuracy

compared to the LS/WLS algorithm. As we can see from Figure 5.5, setting σ2 = 0.1,

our CAP algorithm outperforms both the LS and WLS for ill-conditioned scenarios having

large matrix condition value. The gain over LS is larger than the gain over WLS, which

indicates that the WLS is more robust to the ill-conditioned scenario than LS algorithm.
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5.2 Use of negative information in positioning and

tracking algorithms

5.2.1 Introduction

To avoid additional hardware deployment, indoor localization systems have to be de-

signed in such a way that they rely on existing infrastructure only. Besides the processing

of measurements between nodes, localization procedure can include the information of all

available environment information. In order to enhance the performance of Wi-Fi based

localization systems, the innovative solution presented in this section considers also the

notion of negative information. An indoor tracking method inspired by Kalman filtering

is also proposed.

In this section, we propose a novel solution to increase the localization and tracking

performance. Basically, this is achieved by incorporating information about nodes that are

not in range, which allows us to eliminate candidate solutions. The localization system

reports the location of a mobile terminal via a map of possible locations, and the map

resulted by a localization round is used, after a dispersal representing the user mobility, as

the input for the successive localization round. Finally, we propose a metric to evaluate

the trade-off between a correct location of the mobile terminal, and the size of the set of

the possible locations, i.e. correctness vs precision.

5.2.2 Related Work

Indoor localization has been a motivating research topic and many methods have been

proposed so far, including Wi-Fi, RFID and UWB localization. Indoor localization tech-

niques can be classified into two main groups: 1) The first group uses dedicated infras-

tructure for positioning; in this case dedicated devices have to be installed, and 2) the

other group employs previously available wireless communication infrastructures. The lat-

ter group is a cost efficient solution with large coverage, whilst high accuracy, availability

and reliability can be attained. On the other hand, there is a need for more intelligent

algorithms to compensate for the low performance of the measurement techniques.

Most Wi-Fi-based location approaches correspond to radio maps (fingerprinting). Al-

though high accuracy is attainable, a complex training process is required to develop the

fingerprinting database, specifically each time the environment changes.

The Active Badge System was an early system developed to localize mobile devices
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within a building [20]. Every badge identifies itself periodically, sending unique infrared

signals to the receivers. Although it provides accurate location, the drawbacks of the sys-

tem are poor scalability due to limited range of IR, and deployment cost. The system

RADAR [66], based on WiFi fingerprinting, uses signal strength information from multi-

ple receiver locations. The main idea is to record radio signals and build models for the

signal propagation during off-line analysis. However the system’s main disadvantage is its

dependence on empirical data. The work in [130] uses neural networks based on Bayesian

Regularization or Gradient Descent to obtain the location of mobile nodes from RSSI and

LQI. PlaceLab [67] uses connectivity from GSM base stations and 802.11 access points. If

the node density is high enough, the system achieves accuracy of 15-20 meters, which is

even lower than GPS, but unlike GPS, it is capable to perform localization for both indoor

and outdoor environments. Both passive and active RFID devices have been considered

in [131] to provide connectivity based localization. These algorithms use signal parameters

such as RSS to create a radio map of the environment. Afterwards, location is estimated by

matching online measurements with the existing fingerprints, collected during the offline

training phase. However, the fingerprinting method is a complex procedure that requires

a training process to develop the fingerprinting database, specifically each time the envi-

ronment changes. Cricket [19] is a decentralized location support system for sensors based

on RF and ultrasound. Incorporating ultrasound hardware was necessary because a purely

RF-based system did not provide satisfactory results. It takes into account user privacy

and does not depend on underlying network technology. Still, the systems granularity is a

portion of a room. Other localization techniques for wireless sensor networks are described

in [132].

Particle filtering methods weigh the particles according to their likelihood. Monte Carlo

estimation methods are mainly used for robot localization and tracking [133]. In principle,

the procedure is divided into a prediction phase, where the robot moves and its positions

uncertainty increases, and an update phase where new observations are integrated to filter

and update data. Anyhow, the constraints in wireless sensors and ranging accuracy make

node localization more difficult than robot localization [134].

Negative information had few applications for localization in wireless networks. Most

of the work targeted problems for mobile robot localization [45, 46, 135]. In Markov local-

ization for mobile robots, the absence of an expected measurement can be used to improve

localization. The difficulties in implementing a system that uses negative information are

mainly due to the lack of expected measurement readings: the target may not be there or
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the sensor may not be able to detect the target. To avoid false negatives, the model needs

to consider possible obstructions [45]. Nevertheless, even a false attempt to detect a target

can be exploited in tracking applications, based on Bayesian approach to target tracking

[46]. Negative information can be integrated by generating an artificial measurement. The

precondition for processing negative information is a refined sensor model. However, all

these works only consider cases where an expected observation is missing. In [135] the au-

thors have shown how negative information can be incorporated into FastSLAM, a system

that is alternative to the complex Extended Kalman Filter approach for robot localization.

In wireless sensor localization, Monte-Carlo localization algorithms make use of negative

information [47]. However, it can be useful only in obstacle-free areas, and leads to local-

ization errors otherwise.

The requirements on localization systems are even stricter when nodes are mobile, since

for real time tracking there is a demand not mainly on accuracy, but also on latency and

complexity. Kalman filtering is the most widely adopted technique for location tracking.

One Kalman filter based solution making use of RSS measurements has been presented

in [136]. Basically, the Kalman Filter (KF) offers an optimal solution for linear systems,

where measurement errors follow a Gaussian distribution. Otherwise, the KF has to be

transformed into the Extended Kalman Filter (EKF), suitable for non-linear systems [137].

The EKF consists of three phases:

1. the predict phase, which computes the a priori estimation based on the previous

estimate, and

2. the update phase, that occurs when a new measurement becomes available;

3. finally, the a posteriori estimate is computed.

The current location of the node depends on the previous location, which is modeled

by the state transition function; in localization problems this is basically the mobility

(velocity) model.

5.2.3 Proposed technique

Composing different sources of (negative) information

This subsection proposes a technique to fuse different types of information to perform

localization of a unit. The technique described is as abstract as possible, since it aims
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only at showing the general idea. Subsection 5.2.3 will refine the technique towards the

implementation in a simple wireless scenario, and Section 5.2.4 will provide information

about the implemented system.

We propose a model where localization procedure makes use of different sources of

information, that can comprise sources of negative information. In this respect, positive

information means that some data is saying “you can be here”, while data bearing negative

information is saying “you can not be here”. The main idea behind the system is to

provide a framework to compose different kinds of information that can contribute to the

localization process. Instead of applying only positive reasoning, an alternative way is to

consider all the locations in the area, and provide a technique to evaluate how “unlikely”

a mobile unit to be located in a given position. Our approach to localization is based

on the fact that “when you have eliminated the impossible, whatever remains, however

improbable, must be the truth” [138]. In fact the proposed system exploits all the available

information to all possible mobile locations, resulting in a normalized probability map of

probable locations.

For each possible location on the probability map, the predicted measurement is com-

puted, and then the predicted noise is applied to it, to get a probability distribution

function for the measurement. The location on the probability maps is described by its

coordinates (x, y) in the plane, the error e we would need to match the prediction with the

measurement is:

e = Vx,y −m (5.10)

where Vx,y is the predicted signal in (x, y) and m is the measurement. Using the symbol

F for the pdf of the error, and p for the pdf for the localization, p is function of the required

measurement error e, and is parametric in (x, y):

px,y(m) = Fx,y(e) = Fx,y(Vx,y −m) (5.11)

The composition of different types of information is done by considering all the mea-

surements with their own error, and by considering these errors as independent. Given a

measurement m1 taken from a source of information, for example the RSS from an access

point, the probability for a unit to be in a given location (x, y) depends on the expected

measurement µ1(x, y), the expected error of the signal σ1(x, y), and the predicted distri-

bution of the signal at the location (x, y). With our notation, p1 is the probability for
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a measurement to be m1. Since we are considering independent information sources, if

the probability to be in the same location (x, y) given a measurement m2 from a different

information source is p2, the probability for that location is p1p2.

Now, for all possible mobile positions, we apply the same kind of reasoning to check

the “compatibility” of each measurement with the expected signal. If at a given stage of

the computation, the probability map is M(x, y), after a given measurement is applied,

the probability map is modified to M ′(x, y):

M ′(x, y) = M(x, y)px,y(m) = M(x, y)Fx,y(Vx,y −m) (5.12)

If we start from a probability map where all the probabilities are, for example, equal

to 1, we will end up with a map where a number of locations are ruled out, while a set

of locations are still quite probable. Now we apply the normalization process, where all

the probabilities are multiplied by the same number such that the maximum value in the

probability map is 1. On the other hand, if we consider that we have already localized

the mobile terminal, a special source of information that we can apply to the probability

map is the history of the mobile terminal location. The map obtained in the previous

localization step is used as input for the following localization round, after applying a

dispersal algorithm to represent the user mobility.

In principle, an approach could first display the probability distribution of a node’s

position based on signal strength measurements from all access points that are in range.

Afterwards, we update this distribution by incorporating negative information: if a signal

measurement is missing, we consider it as a signal that is too weak to be received, and we

set its value as some conventional value. The fact that a node is not able to sense certain

access points gives us the possibility to update the probability distribution, by ruling out

some potential solutions to the localization problem.

It is possible to apply a threshold τ to the probability map, to consider that the mobile

unit can be in all the locations where the probability value is higher than τ , while it can’t

be in the locations where the probability is lower than τ . The threshold is useful both for

visualization purposes, and as a metric for the localization:

• From the point of view of the visualization, the threshold is used to show the final

user a map with only the locations where the user is likely to be located.

• As a metric, while tuning up the technique, it is possible to consider the size of the

“feasible locations” map, and the distance between this area and the real location
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of the user. The more stringent the threshold, the smaller the “feasible location”

area, but the more probable that the real user location will fall out of the “feasible

location” area. Hence, it is possible to experiment with the threshold to evaluate the

trade-off between a correct location of the mobile terminal, and the size of the set of

the possible locations, i.e. correctness vs precision.

The proposed technique is able to provide two main benefits:

• composition of information from multiple sources: every source of information is

considered with its error and its distribution, to evaluate the compatibility of the

measurement with a given location (x, y). Moreover, the probability of location

(x, y) is just the multiplication of all the probabilities that are extracted from the

single measurements;

• exploitation of negative information: we are not giving value only to information that

validates a given location. On the contrary, we consider valuable all the information,

for example the absence of the RSS from an access point. In this case, the system

would estimate the probability for the signal to be low enough not to be received,

and would exploit that probability for generating the probability maps.

Implementing the proposed technique

This subsection proposes the design of a prototype for the localization system. The

scenario that we consider is a wireless scenario, where a mobile unit (e.g.: a laptop) is in

range with a number of IEEE 802.11 access points.

When a node is sensing available access points, some of them can be detected and

the others not. Our information is increased by knowing the fact that some of the access

points could not be sensed. The measurements of interest are the RSS values, since these

are readily available in IEEE 802.11 interfaces. During the scanning phase, a node performs

sensing to identify all the available access points.

We limit the system to using a simple lognormal signal model [139] to translate the

RSS values to distances, and hence to probabilities for given locations. We are aware of

the limitations of this model in terms of predicting power for the RSS, but we chose it on

purpose to test our proposed technique against poor signal processing techniques. If the

system will be able to perform reasonably, we can conclude that applying refined signal

processing techniques and a more reasonable signal propagation model, such as the ones

described in [119] and [140], would further improve the localization performance.
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When the user localization performed in a given round, is used as a basis for a new

localization, a dispersal algorithm is applied to the map. In particular, it is considered that

the user can move up to a speed v measured in meters/seconds, and that the localization

algorithm uses measurements taken every θ seconds. In the rest of the discussion, we

use the symbol Mi to address the localization map obtained after the application of the

algorithm in round i, and M ′
i+1 for the map that is feed into the localization algorithm

for round i+ 1. Both maps are functions of M(x, y) from a pair of coordinates (x, y) to a

number that is the probability density that a terminal is located in (x, y). The map M ′
i+1

is computed as follows:

1. for each location (x′, y′) of the map M ′
i+1, area Ax′,y′ is the set of points in Mi that

are at most at distance vθ from (x′, y′), that is,

Ax′,y′ = {(x, y) ∈M ′
x′,y′

with (x− x′)2 + (y − y′)2 < (vθ)2} (5.13)

2. for each point (x, y) ∈ Ax′,y′ , Mi(x, y) is added to M ′
i+1(x

′, y′), that is,

M ′
i+1(x

′, y′) =
∑

(x,y)∈Ax′,y′

Mi(x, y) (5.14)

3. an optional step is to perform the normalization of the map M ′
i+1, to have either

max
(x′,y′)

M ′
i+1(x

′, y′) = 1

or ∑
(x′,y′)

M ′
i+1(x

′, y′) = 1

We consider that a tuning phase has been executed in the area, with the goal of finding

the parameters of the simple lognormal signal model, and we consider that for each access

point, some part of the area is behaving like a Line of Sight (LOS) signal transmission,

while the rest is behaving like a non Line of Sight (NLOS) signal transmission. Thus, for

the prediction of the RSS of the signal, we use two functions, one for LOS distances and

one for NLOS distances, with d the Euclidean distance between the access point and the

location (x, y). Both the functions are of the form:
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Vx,y = RSS0 − 10 ∗ α ∗ log(d/d0) (5.15)

where RSS0 is the received power at reference distance d0 (we assume the usual value

for reference distance d0 = 1m), α is the path loss exponent. The functions for LOS and

NLOS differ only for the values of RSS0 and np, and this translates into two system-wide

set of parameters for the signal propagation, one set applied to all the access points with

LOS access, and the other set applied to access points with NLOS. In both cases, we

consider that the error on the received signal strength has Gaussian statistics, with 5 dBm

width for the LOS signal, and 7 dBm for the NLOS signal, as suggested in [141]. When a

signal is missing, we consider it as a poor signal, and we set its RSS to the value of −70

dBm.

Although the tuning phase adds a setup time to our technique since it is necessary to

perform the tuning for every single scenario, one motivation for the simple lognormal signal

model is that it uses only 2 parameters to describe signal propagation, and hence a limited

number of measurements can be sufficient for fitting the wireless channel parameters.

5.2.4 Experiments

We illustrate our model based on measurements performed on the second floor of the

Instituto de Telecomunicações building (Figure 5.6). The dimensions of the area are about

50 m by 50 m. There are three access points in an indoor environment (represented on

Figure 5.6 by a lightning icon). We recorded measurements from a laptop to the access

points, at several locations in the building. Communications are performed by using the

WLAN 802.11g standard. The speed of the mobile terminal when performing tracking is

v = 1m/s, and the measurements used to perform localization are taken every θ = 4s.

Tuning of the system

Measurements were taken on the locations shown in Figure 5.7. WiFi Hopper[142]

was used as a tool to record the received signal strength at the mobile station from the

infrastructure (access points). WiFi Hopper is a WLAN utility with the ability to display

network details like type of network, network mode (infrastructure or ad-hoc), received

signal strength (RSS values), frequency and channel, encryption type etc.
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Figure 5.6: Floor 2 of the Instituto de
Telecomunicações, and access points’ lo-
cation.

Figure 5.7: Locations where data were
taken for the tuning of the mobility
model.

We performed several measurements inside the building using a Toshiba Satellite laptop

equipped with an Atheros network adapter, running Windows Vista and using the basic

drivers the operating system is shipped with.

RSS values from all three access points were collected, both with and without Line of

Sight. As stated in Subsection 5.2.3, to translate RSS values into distances d, we use the

simple lognormal model, shown in Equation 5.15, where RSS0 is the received power at

reference distance d0 (we assume the usual value for reference distance d0 = 1m), np is the

path loss exponent.

The simplified path loss model is defined for example on page 40 of [143] as:

Pr(dBm) = Pt(dBm) +K(dB)− 10α log
d

d0
(5.16)

In Equation 5.16, K is a constant which depends on the environment. When the

simplified path loss model is used to approximate experimental measurements with line

of sight, the value of K can be set to the free space path loss at reference distance d0.

Knowing that the EIRP for the access point is 15dBm, and the 2.4GHz frequency offers a

path loss at reference distance 1m of 39.9dB (calculation based on the Free Space model),

we adopt the value of −24.9dBm for RSS0. As we can see from Figure 5.8, for the case
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when measurements were taken from access points that have Line of Sight connection, the

data fit returned value α = −1.827.

Figure 5.8: Fit for the simple lognormal parameters, access points in Line of Sight.

For the NLOS case we determine the constant K together with np by applying the

least square fit to experimental data. Having in mind that the EIRP is identical as in the

LOS case, we obtained the values α = −5.769 for the path loss exponent, and K = 11.58.

The fit based on experimental data can be seen in Figure 5.9. A rather small number of

total measurements provided us a rough approximation of the parameters for the simple

lognormal model.

However, for accurate modeling of propagation parameters, it would be essential to

predict complete received signal statistics and consider the effect of variable shadowing

due to the movement of people in the observed area[144]. Empirical calculation of those

parameters needs to consider losses originating from obstacles of varying material, size and

number[145]. In both cases, the fit that we used reported a pretty unprecise matching

with the values, hence we can predict that the localization system will not provide perfect

localization, but will have to exploit the composition of all available information, with the

goal of providing a good localization of the mobile unit.
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Figure 5.9: Fit for the simple lognormal parameters, access points NOT in Line of Sight.

Localization of the mobile unit

The experiments involved measuring the RSS values from the three access points, com-

puting for each measurement the pdf, and multiplying these three probability densities to

find out the probability density of a given location. The visualization process was per-

formed by applying a mask to the floor plant, where the dark areas refer to the possible

mobile locations.

Figures 5.10, 5.11, 5.12 and 5.13 show the localization of the same mobile unit, rep-

resented in the figures by a small white + sign. The first three figures represent the

probability maps for each of the access points (where + is the mobile unit, and the small

thunder is the access point). Even though the real location of the mobile unit matched with

the probability map, the localization was not precise since a number of locations featured a

high compatiblity with the RSS measurement. Figure 5.13, on the other hand, constitutes

the composition of the probability map of all the access points. The result shows that the

mobile unit is considered to be in a well defined area, either in the corridor, which is its

actual position, or in the room nearby.

Figures 5.14, 5.15, 5.16 and 5.17, show more probability maps. In each of the figures,

all the three RSS measurements were used, and the real location is represented by a small
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Figure 5.10: Probability map when
using only the first access point.

Figure 5.11: Probability map when
using only the second access point.

Figure 5.12: Probability map when
using only the third access point.

Figure 5.13: Probability map when
combining all available information.
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Figure 5.14: Localization with one
access point with LOS, two with
NLOS.

Figure 5.15: Localization with two
access points with LOS, one with
NLOS.

Figure 5.16: Localization with three
access points with NLOS.

Figure 5.17: Localization with one
LOS access point, two NLOS access
points.
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white + sign. Figures 5.14 and 5.15 compare the localization results when a mobile unit

moves from a location where it has just one LOS access point, to a location where it has

two LOS access points. Figure 5.16 shows the behavior of the technique when there are

no access points in LOS, and it confirms the limitations of the signal model we are using

(simple lognormal model). Finally, Figure 5.17 shows another scenario with only one LOS

access point, and the localization is quite precise. We see that in some cases the method

gives fairly good results. Nevertheless, we have to keep in mind that the applied channel

model is very simple, serving only to illustrate the proposed scheme.

5.2.5 Tracking by means of probability map recycling

The experiments involving the tracking of a mobile unit involved using the posterior

probability, computed at the end of a localization process, as the priori map for the succes-

sive round. Between the computation of the posteriori and its use as priori, a dispersion

round is executed on the map, in which every location on the map adds to its own localiza-

tion probability, the localization probability of all the locations in range, given a mobility

model that predicts users will move at 1m/s and that the localization is executed once

every 4 seconds.

The figures 5.18-5.27 provide a comparison of localization maps when the probability

map is recycled, and when the previous state is ignored and localization is performed from

scratch. In each figure, a small white + sign shows the real location of the mobile terminal.

It is clear that the systems tracking capabilities improved the system by ignoring locations

that do not match with previous estimates, hence reducing the set of potential solutions.

A metric to tune up the localization system

The metric proposed in Subsection 5.2.3 is applied here to the probability maps obtained

by localization. In particular, figures 5.28-5.31 show the size of the “feasible location” areas,

when the system considers respectively 1% and 0.5% of the best locations on the map. It

is seen that “recycling” the old probability map gives a very good result in terms of the

distance between the real location of the MT and the “feasible locations”.

Figure 5.32 shows the results of an experiment when applying the different thresholds

(1% and 0.5%) to the path analyzed in Section 5.2.5, both using and not using the old

“a posteriori” map as the next “a priori”. The figure shows the distance between the real

location of the MT and the “feasible locations” map against the step of localization. Each
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Figure 5.18: Localization without re-
cycling the old map as an “a priori”.

Figure 5.19: Localization using the
old localization map as an “a priori”.

Figure 5.20: Localization without re-
cycling the old map as an “a priori”.

Figure 5.21: Localization using the
old localization map as an “a priori”.

Figure 5.22: Localization without re-
cycling the old map as an “a priori”.

Figure 5.23: Localization using the
old localization map as an “a priori”.
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Figure 5.24: Localization without re-
cycling the old map as an “a priori”.

Figure 5.25: Localization using the
old localization map as an “a priori”.

Figure 5.26: Localization without re-
cycling the old map as an “a priori”.

Figure 5.27: Localization using the
old localization map as an “a priori”.
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Figure 5.28: Localization without re-
cycling the old map, threshold at
1%.

Figure 5.29: Localization using the
old localization map as an “a priori”,
threshold at 1%.

Figure 5.30: Localization without re-
cycling the old map, threshold at
0.5%.

Figure 5.31: Localization using the
old localization map as an “a priori”,
threshold at 0.5%.
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point represents a location on the map where we collected measurements about the signal

strengths, computed the probability maps using the different strategies, and measured

the distance between the real location and the closest point on the probability map. We

collected 11 measurements for each strategy that was taken into account.
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Figure 5.32: Comparison of “recycling the a priori” algorithm against localizing without
an “a priori”, using the metric of Subsection 5.2.3.

It is clear that there is a trade off between the size of the “feasible locations” map and

the distance to the real location. The smaller the map is, the greater the precision of MT

localization. On the other hand, it can be observed that in certain cases the real location

of the MT is not inside the “feasible location” regions when the map is smaller, hence a

lower threshold decreases the performance of the localization technique.

Thus, in a real deployment scenario, it will be necessary to consider the threshold for

the “feasible locations” regions as a trade-off between precision and localization reliability.
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5.3 Conclusion

In Section 5.1.4 we have proposed the CAP algorithm that performs well under ill-

conditioned scenarios where the anchor nodes are almost collinear, which can likely occur

in public safety scenarios. The proposed algorithm has been shown to provide up to seven

times more accuracy than the traditional LS and three times more than WLS algorithms,

whilst showing almost three orders of magnitude less in terms of complexity. In our future

work we intend to apply different channel parameters for each link, since an identical chan-

nel model does not represent realistic indoor channel conditions appropriately. However,

our assumption serves well for the proof-of-concept of the proposed method.

Indoor localization is still a challenging research topic. One way to improve the po-

sitioning procedure is to make use of all available environmental information. In Section

5.2.5 we have shown how negative information (information about where the mobile unit

is not) can be incorporated into an indoor positioning scenario. We showed the proof

of concept for the proposed strategy, given that we applied a simple channel model, and

assumed independent measurement errors. In addition, inspired by tracking algorithms,

we extended our approach by exploiting the history of mobile terminal’s location to assist

the computation of the terminal location. The method based on probability map recycling

outperformed the basic implementation.

For illustration purposes, we used a simple lognormal model without taking into account

spatial correlation. However, correlated shadowing is shown to have significant impact on

system performance in WLAN networks [146]. If a signal in a certain direction is attenuated

by an obstruction, it is very likely that a received signal in close proximity is experiencing

a similar shadowing effect. The assumption that shadowing losses are correlated among

nearby links has been verified by experimental measurements [147]. Therefore is it im-

portant to improve statistical propagation models and include them in the localization

algorithms, which is an item for future work.
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Chapter 6

Conclusion and future work

In this chapter, we summarize the obtained results and the reached conclusions and we

give some directions for intended future work.

6.1 Conclusion

• In Chapter 1 we outlined the main motivations to investigate the problem of in-

door localization. We presented the principal application areas and gave a historical

overview on development of positioning techniques, from GNSS and cellular to short-

range and indoor techniques.

• Chapter 2 contains the state of the art on wireless localization systems. We assessed

the ranging techniques and the range-based positioning methods. The latter can

be classified into deterministic and statistical techniques. We also provided a brief

overview of fingerprinting solutions, although they are not the subject of this thesis.

We place particular emphasis on cooperative positioning, and present the state of the

art solutions, highlighting their advantages and drawbacks. Among the vast number

of cooperative positioning applications, we emphasize the use in heterogeneous en-

vironments. This subject has not been well investigated yet, and might deliver the

ultimate solution for indoor positioning [148].

After presenting various algorithms and methods for position determination, we list

the performance metrics used to evaluate and compare different approaches. Even

though we intuitively think of accuracy when it comes to assessing the quality of

localization algorithms, there are other metrics that we must cosider, such as cost
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(computational and deployment cost), robustness and scalability.

• In Chapter 3 we addressed the problem of the reference node selection. The problem

has been widely addressed in the area of localization, but mainly for homogeneous

networks. We present the most commonly used selection criteria, and propose a way

to extend them to cover the aspect of heterogeneous networks. Furthermore, we also

consider imperfect knowledge of the reference nodes, e.g., their uncertainty.

One way to address the node selection problem is by modeling the localization process

as a cooperative game. In Section 3.4 we reviewed the basic principles of cooperative

game theory, and show how network components can be mapped to game compo-

nents. Then we presented a utility based node selection scheme. Despite providing

good results, the initial scheme suffers from drawbacks, such as vast computational

requirements due to the combinatorial search complexity. Thus we proposed a ran-

domized search method that exploits spatial correlation and still provides favourable

results.

• In Chapter 4, we consider the node selection for a mobile target. The scenario is

heterogeneous,i.e., a multi-RAT aided mobile device capable of communicating not

only with the WI-FI access points, but also peer nodes such as fixed Zigbee sensors

or other mobiles nodes (if cooperation is supported). The peer nodes have a higher

spatial density and can thereby significantly improve the positioning accuracy, but

since they are energy constrained their use should be kept to a minimum. Hence we

propose an energy efficient cooperation strategy to minimize the power consumption

while keeping the positioning accuracy at a required level. Inactive nodes will not

waste energy while collecting, processing and communicating measurements.

We also evaluate the node selection scheme using experimental data obtained during

a WHERE2 measurement campaign at the premises of the German Aerospace Center

(DLR). The setup contains ZigBee anchors that are located in a small open space

area and the positioning system is over determined. We compared the localization

accuracy when using a combination of anchors that provides the lowest CRLB with

the randomly selected anchors approach.

• Chapter 5 considers two specific cases of wireless localization. First we proposed a

low-complexity algorithm for ill-conditioned scenarios where conventional algorithms

fail to provide reasonable results. Ill-conditioned scenarios are where the anchor
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nodes are almost collinear, that can occur in public safety scenarios among other

places.

In the second part of Chapter 5 we proposed a novel solution to increase the lo-

calization and tracking performance. Basically, this is achieved by incorporating

information about nodes that are not in range, which allows us to eliminate candi-

date solutions. The novelty of the method is based on exploiting negative information

for indoor positioning and tracking scenarios. It is based on probability map recy-

cling. As in most tracking algorithms, the history of mobile terminal’s location can

be exploited to assist the computation of the terminal location.

6.2 Future work

There are number of possibilities for future research. In the following, some research

directions are mentioned:

• We began our investigations considering a static scenario, which we extended by

incorporating mobility in the target node. However, in a realistic scenario the peer

nodes from the scenario in Section 4.1.5 could also be moving. Such a scenario that

incorporates both target and peer nodes mobility imposes several challenges that have

to be considered. The peer nodes would have to frequently update and communicate

their position to the access points, and thus the communication overhead would

be excessive, in addition to impacting the latency. All these criteria will have to

be studied and evaluated in more detail, imposing new design requirements on the

localization approach.

• The utility based node selection scheme in 3.5 faces the problem of combinatorial

search complexity. We addressed this issue by exploiting spatial correlation, discard-

ing redundant reference nodes and thereby reducing the search space. Nevertheless,

heuristic search methods could be applied to reduce the search complexity without

the need for understanding the whole topology and nodes’ mutual geometry. We aim

at investigating further these methods, in a bid to advance further the node selection

algorithm.

• Throughout this thesis we assumed a channel model based on parameters commonly

assumed in the literature. The next step would be to evaluate the node selection
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scheme from Section 3.5 and the dynamic scenario from Section 4.1.5 using on-site

experimental results, similarly to the preliminary results presented in Section 4.2.1.

Even though the indoor localization problem has been a research topic for more than a

decade, the ultimate solution is still a topic for future research. Experts presume that mass-

market indoor positioning will continue to improve slowly, using hybrid and heterogeneous

schemes that take advantage of every radio source available [148].
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Appendix A

Extended Kalman Filter

Kalman filter is a controlled process that is governed by a linear stochastic difference

equation. This algorithm uses a statistical approach in object location estimation. In a

situation where the process or system is non-linear, EKF is employed. The non-linearity

of the system can be associated either with the process model, with the observation model

or with both. The linearization ability is the major difference between EKF and KF

algorithm.

In the extended Kalman filter, the state transition and observation models need not be

linear functions of the state but may instead be differentiable functions. The solution uses

a Taylor expansion and truncates the models in the linear terms, obtaining expressions for

the models equivalent to equations (2.21) and (2.22) a. The difference is that the terms A

and H are now the Jacobian matrices instead of model specific parameters. Thus, those

Jacobian matrices can be defined as:

A =
∂f

∂x̃
(x̃k−1, Uk−1, 0) (A.1)

H =
∂h

∂x̃
(x̃k, 0) (A.2)

The prediction stage of the EKF is defined by:

x̂k|k−1 = f(x̂k−1|k−1, uk−1|k−1, 0)

Pk|k−1 = AkPk−1|k−1A
T
k + Qk−1

(A.3)
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Correction:
Kk = Pk|k−1H

T
k (HkPk−1|k−1H

T
k + Rk)

−1

x̂k|k = x̂k|k−1 + Kk(Zk − h(x̂k|k−1, 0))

Pk|k = (I−KkHk)Pk|k−1

(A.4)

One of the drawbacks of the EKF approach for stochastic filtering is the linearization

of the models. This linearization depending on the application can have a high impact

concerning the errors in the estimated mean and covariance. The problem gets more and

more evident with the increasing importance that higher order terms have in the nonlinear

model.

Unlike its linear counterpart, the EKF in general is not an optimal estimator. Further-

more, if the initial state estimate is wrong, or if the process is modeled incorrectly, the

filter may quickly diverge, owing to its linearization.
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Appendix B

Simulation setup description

Scenario generation:

Scenario size

Number of nodes

Node specification:

Node ID

Node coordinates

Transmit power

Communication range

RAT

Node property (anchor, 

target, virtual ancor)

Path loss

Propagation parameters

Log-normal shadowing

WINNER II channel model
Node selection: 

Selection criteria

Utility function

Positioning 

algorithms:

Least squares

Maximum likelihood

Position estimates

Number of messages 

exchanged

Algorithm complexity

Accuracy

Overhead

Energy consumption

Computation time

SETUP GENERATION CHANNEL/LINK MODELS

OUTPUT

PERFORMANCE 

EVALUATION

LOCALIZATION

CONNECTIVITY 

MATRIX

Figure B.1: Simulation setup

Here we describe our simulation modules. We start with the setup generation, where we

specify the scenario size and the number of nodes. The nodes are placed either randomly
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or, in few cases, deterministically. Then we specify the nodes, by assigning attributes such

as ’Node ID’, position, transmit power and communication range. Since we consider a

heterogeneous scenario, we also have to specify the RAT of each node. Finally, we have to

distinguish between anchors, targets and virtual anchors.

The second module is the channel/link model block, where propagation parameters

are generated. We consider RSS based localization, and the model we used is lognormal

shadowing.

Pr = P0 − 10αlog10(
dij
d0

) +X (B.1)

where Pr is the received power in decibels, P0 is the received power at reference dis-

tance d0 (usually at one meter) from the transmitter in decibels. dij is the distance between

node i and node j. α is the path loss exponent, while X is a zero mean Gaussian ran-

dom variable with variance σ2 and represents the shadowing component. X accounts for

randomness of the environment. Depending on the RAT, the communication range and

channel parameters α and σ2 will vary.

Based on the information of node coordinates and communication range, we form a

connectivity matrix, whose elements are zero for nodes not connected to each other. This

allows us to have an overview which nodes are able to communicate with each other.

The core part is the localization block. Here the computation takes place. We use as

input the previously described modules, and before performing the localization itself, we

analyze different setups based on reference node selection criteria. The selection criteria we

used are the Cramer Rao lower bound (CRLB), Geometric dilution of precision (GDOP)

and the Squared position error bound (SPEB) from 3.3.

B.1 Selection criteria

The CRLB for RSS based localization is:

CRLBRSS =
1

b

N∑
i=1

d−2i

N−1∑
i=1

N∑
j=i+1

d⊥ijdij
d2i d

2
j

(B.2)

where dij is the distance between anchor nodes i and j and d⊥ij is the shortest distance

from the target node to the line segment connecting nodes i and j, and the term
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b = (
10α

ln 10σRSS
)2 (B.3)

accounts for channel parameters.

The GDOP is given by

GDOP =

√
tr(GTG)−1 (B.4)

where G is the following geometry matrix:

G =


a1x a1y 1

a2x a2y 1

... ... ...

aNx aNy 1

 (B.5)

The term ai = (aix, aiy) is the unit vector from target t to anchor i:

aix = xi−x̃t√
(xi−x̃t)2+(yi−ỹt)2

aiy = yi−ỹt√
(xi−x̃t)2+(yi−ỹt)2

(B.6)

Finally, the SPEB in closed form for RSS localization is given by:

SPEB =

N∑
i=1

1
βi(

N∑
i=1

cos2φi
βi

)(
N∑
i=1

sin2φi
βi

)
−
(

N∑
i=1

sinφi cosφi
βi

) (B.7)

where φi denotes the angle from i-th anchor to the target, i.e., φi = tan−1 yt−yi
xt−xi , and βi

accounts for both anchor uncertainty (ω2
i is the variance of a priori knowledge of anchor

location) and distance estimation uncertainty:

βi = ω2
i + εd2i (B.8)

The existence of this closed-form expression facilitates the node selection when uncer-

tainties in anchor positions have to be considered. The exploitation of spatial correlation

from Section 3.5.2 is also done in this block.
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B.2 Algorithms

Different algorithms are used for position calculation, such as LS, WLS or BLUE. The

ML estimator is usually used as a benchmark. In the ML approach the unknown parameter

is treated as deterministic. In case of RSS based ranging, the estimator is give by:

x̃ = arg min
X

N∑
i=1

(ln
d̃2i,j
d2i,j

)

2

(B.9)

Here d̃2i,j are estimated distances between target j and anchors i, while d2i,j are the true

distances.

The ML estimator is asymptotically efficient. This means that it converges to the

Cramer Rao Lower Bound (CRLB) at low error variances, when the statistics of the mea-

surement errors are known.

The linear lest squares algorithm has been described in detail in Section 2.2.1. The

BLUE estimator, which we used for localization in Chapter 4, has been derived in [59]. We

start from the equation, denoting the distance between the target and i-th anchor:

(xi − x)2 + (yi − y)2 = di (B.10)

To convert the RSS measurements into linear models in x, we first introduce a range

variable:

x2 + y2 = R (B.11)

Now Eq. (B.10) becomes:

− 2xix− 2yiy +R = d2i − x2i − y2i (B.12)

or in matrix form Aθ = b. That is, A is a known matrix, θ is the parameter vector to

be estimated and b is the observation vector. In practice, b is substituted with b̂ where

d2i are replaced by their unbiased estimates, denoted by d̂2i . To solve for Aθ ≈ b̂ according

to the BLUE, we need to find d̂2i and their covariance matrix:

d̂2n = e−
2rn
α
− 2λ2n

α2 (B.13)

and its variance var
(
d̂2n

)
= d4n

(
e

4λ2n
α − 1

)
.
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the noise covariance for b̂, denoted by Cb, is a diagonal matrix of the form:

Cb = diag(d41

(
e

4λ21
α − 1

)
, d42

(
e

4λ22
α − 1

)
, ..., d4N

(
e

4λ2N
α − 1

)
) (B.14)

Finally, the solution for θ̂ is:

θ̂ = (ATC−1
b̂

A)−1ATC−1
b̂

b̂ (B.15)

B.3 Performance evaluation

Based on the output (position estimates, number of messages exchanged, etc.), we

analyze the performance metrics from 2.5. As accuracy metric we used are the error

cumulative distribution function (CDF) or the root mean square error (RMSE).

The cumulative distribution function (CDF) of position error is defined as the proba-

bility that the error is smaller than a certain value, that is:

P‖e‖(error) = Pr(‖e‖ ≤ error) (B.16)

Usually we observe the errors at 50% and 90%, since they represent the average per-

formance (median error), and ”worst case” error (robustness metric), respectively.

The root mean square error (RMSE) is defined as

RMSE =

√
E(‖x̃− x‖2) ≈

√√√√ 1

K

K∑
k=1

‖x̃(k)− x‖
2

(B.17)

where x̃(k) are location estimates of target x for the kth realization of noise and/or node

deployment. Distinct random measurements are given at each network deployment k.

In order to cooperate with peer nodes, training sequences and extra packets are re-

quired for distance estimation and location information exchange, which results in signal-

ing overhead and additional power consumption. Hence, an efficient cooperation strategy

is required so as to achieve the required positioning accuracy and minimize the resulting

power consumption and traffic overhead.

We assess the latency by means of time needed to execute the algorithm. The overhead

is measured as the number of additional packets required for localization. In general,

RSS based localization systems are most cost effective from this point of view, since the
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strength of received signal is being measured between nodes during the neighbor discovery

phase, and does not require additional packet exchanges like TOA measurements. Power

consumption is measured assuming that each message last for 1ms, and adopting the

typical value of 32 mW (15 dBm) as transmit power of peer nodes, and 63 mW (18 dBm)

as transmit power of APs.
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Appendix C

WINNER II channel model

The WINNER II channel models have been developed within the WINNER project.

WINNER (Wireless World Initiative New Radio) is a consortium of 41 partners coordi-

nated by Nokia Siemens Networks working towards enhancing the performance of mobile

communication systems.

The main purpose of the WINNER II channel model is to generate radio channel

realisations for link and system level simulations of local area, metropolitan area, and wide

area wireless communication systems. The covered propagation scenarios are indoor office,

large indoor hall, indoor-to-outdoor, urban micro-cell, bad urban micro-cell, outdoor-to-

indoor, stationary feeder, suburban macro-cell, urban macro-cell, rural macro-cell, and

rural moving networks. In our simulations we used the indoor small office/ residential

propagation scenario, called scenario A1 in WINNER literature. It supports LOS and

NLOS conditions, low mobility (up to 5km/h) and frequencies ranging from 2-6 GHz.

This specific scenario is depicted in Figure C.1.

Base stations (Access Points) are assumed to be in corridor, thus LOS case is corridor-

to-corridor and NLOS case is corridor-to-room. In the NLOS case the basic path-loss is

calculated into the rooms adjacent to the corridor where the AP is situated. For rooms

farther away from the corridor wall-losses must be applied for the walls parallel to the

corridors.

Parameters used in the WINNER II Channel Models have been specified from the

measurement results or, in some cases, found from literature. The WINNER Channel

Modelling Process is divided into three phases. The first phase starts from definition of

propagation scenarios. The second phase of the channel modelling process concentrates on

data analysis. Depending on the required parameters, different analysis methods and items
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are applied. For the post-processed data, statistical analysis is done to obtain parameter

PDFs. The third phase of the channel modelling process covers the items required in

simulation. Parameters are generated according to the PDFs, by using random number

generators and suitable filters.

User AP LOS NLOS

Figure C.1: WINNER II scenario A1 - indoor office

C.1 Path loss model

Path loss models for the various WINNER scenarios have been developed based on

results of measurements carried out within the WINNER project, as well as results from

the open literature. These path loss models are typically of the form of Eq. (C.1), where

d is the distance between the transmitter and the receiver in meters, fc is the system

frequency in GHz, the fitting parameter A includes the path-loss exponent, parameter B

is the intercept. Parameter C describes the path loss frequency dependence, and X is
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an optional, environment-specific term (e.g., wall attenuation in the indoor office NLOS

scenario).

PL = A log(d) +B + C log(
fc
5

) +X (C.1)

The models can be applied in the frequency range from 2 6 GHz and for different

antenna heights. The variables of Eq. (C.1) are either defined, or a full path loss formula

is explicitly provided. For the indoor small office/ residential scenario, the variables have

been provided depending on wheter it is LOS or NLOS link, and the final path loss formula

is:

PL =

{
18.7 log(d) + 46.8 + 20 log(fc

5
), σ = 3

36.8 log(d) + 43.8 + 20 log(fc
5

) + 5(nw − 1), σ = 4
(C.2)

Here nw is the number of walls between the BS and the MS (nw > 0 for NLOS).

C.2 Matlab implementation

WINNER II implementation in MATLAB supports a multi-base station and multi-

mobile station network layout. The network layout includes information about the number

and locations of MSs and BSs and the number of sectors in a BS (in case of a multi-cell

network). Desired number of K links is formed by random BS-MS pairing (number of BSs

and MSs is given implicitly during antenna selection). In the original implementation,

random positions for all stations are generated, and random scenario and propagation

conditions to all links are assigned. We manually edited the original files to support a

specific setup, and generated the link conditions (LOS/NLOS) on our own.

The WINNER II channel model computation consists of two main parts:

• the random user parameter generation and

• the actual channel matrix computation.

Global simulation parameters could be classified into parameters defining model struc-

ture (also includes system dependant parameters like center frequency), and simulation

control parameters. These parameters control sampling in time and delay, parameter

initialization mode (random vs. manual), and format of output parameters (e.g. inclu-

sion/exclusion of path-loss in channel matrix). The implementation is shown in the diagram

in Figure C.2.
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INPUT MATLAB STRUCTURES
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LAYOUTPAR 
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PARAMETERS FOR ALL 

LINKS

GENERATION OF 

CHANNEL COEFFICIENTS 

FOR ALL LINKS

OUTPUT MATLAB STRUCTURES

CHANNEL MATRIX 

DELAYS

FULL OUTPUT 

Setting scenario 

specific 

parameters

Generation of 

path loss 

parameters

Figure C.2: WINNER II model MATLAB implementation

Input arguments are:

• WIMPAR - general simulation parameters;

• LAYOUTPAR - defines position of terminal stations, their assigned antenna arrays

and gives links of interest for simulation;

• INITVALUES (optional) - parameters of the propagation channel. When this pa-

rameter is given WIM does not generate the channel parameters randomly, but uses

the supplied initial channel values.
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Output arguments are:

• Channel matrix H between all links;

• Multipath delays for all links;

• Full output - stores the randomly generated link parameters.

We did not make use of all the features provided by the WINNER model. However, it

proved to be a very convenient tool for modeling link parameters, as well as saving different

configurations in order to average them out, as we did in Section 4.1.5.
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