397 research outputs found

    EEG Based Inference of Spatio-Temporal Brain Dynamics

    Get PDF

    Graph learning and its applications : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science, Massey University, Albany, Auckland, New Zealand

    Get PDF
    Since graph features consider the correlations between two data points to provide high-order information, i.e., more complex correlations than the low-order information which considers the correlations in the individual data, they have attracted much attention in real applications. The key of graph feature extraction is the graph construction. Previous study has demonstrated that the quality of the graph usually determines the effectiveness of the graph feature. However, the graph is usually constructed from the original data which often contain noise and redundancy. To address the above issue, graph learning is designed to iteratively adjust the graph and model parameters so that improving the quality of the graph and outputting optimal model parameters. As a result, graph learning has become a very popular research topic in traditional machine learning and deep learning. Although previous graph learning methods have been applied in many fields by adding a graph regularization to the objective function, they still have some issues to be addressed. This thesis focuses on the study of graph learning aiming to overcome the drawbacks in previous methods for different applications. We list the proposed methods as follows. • We propose a traditional graph learning method under supervised learning to consider the robustness and the interpretability of graph learning. Specifically, we propose utilizing self-paced learning to assign important samples with large weights, conducting feature selection to remove redundant features, and learning a graph matrix from the low dimensional data of the original data to preserve the local structure of the data. As a consequence, both important samples and useful features are used to select support vectors in the SVM framework. • We propose a traditional graph learning method under semi-supervised learning to explore parameter-free fusion of graph learning. Specifically, we first employ the discrete wavelet transform and Pearson correlation coefficient to obtain multiple fully connected Functional Connectivity brain Networks (FCNs) for every subject, and then learn a sparsely connected FCN for every subject. Finally, the ℓ1-SVM is employed to learn the important features and conduct disease diagnosis. • We propose a deep graph learning method to consider graph fusion of graph learning. Specifically, we first employ the Simple Linear Iterative Clustering (SLIC) method to obtain multi-scale features for every image, and then design a new graph fusion method to fine-tune features of every scale. As a result, the multi-scale feature fine-tuning, graph learning, and feature learning are embedded into a unified framework. All proposed methods are evaluated on real-world data sets, by comparing to state-of-the-art methods. Experimental results demonstrate that our methods outperformed all comparison methods

    Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions

    Get PDF
    Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research

    Brain Music : Sistema generativo para la creación de música simbólica a partir de respuestas neuronales afectivas

    Get PDF
    gráficas, tablasEsta tesis de maestría presenta una metodología de aprendizaje profundo multimodal innovadora que fusiona un modelo de clasificación de emociones con un generador musical, con el propósito de crear música a partir de señales de electroencefalografía, profundizando así en la interconexión entre emociones y música. Los resultados alcanzan tres objetivos específicos: Primero, ya que el rendimiento de los sistemas interfaz cerebro-computadora varía considerablemente entre diferentes sujetos, se introduce un enfoque basado en la transferencia de conocimiento entre sujetos para mejorar el rendimiento de individuos con dificultades en sistemas de interfaz cerebro-computadora basados en el paradigma de imaginación motora. Este enfoque combina datos de EEG etiquetados con datos estructurados, como cuestionarios psicológicos, mediante un método de "Kernel Matching CKA". Utilizamos una red neuronal profunda (Deep&Wide) para la clasificación de la imaginación motora. Los resultados destacan su potencial para mejorar las habilidades motoras en interfaces cerebro-computadora. Segundo, proponemos una técnica innovadora llamada "Labeled Correlation Alignment"(LCA) para sonificar respuestas neurales a estímulos representados en datos no estructurados, como música afectiva. Esto genera características musicales basadas en la actividad cerebral inducida por las emociones. LCA aborda la variabilidad entre sujetos y dentro de sujetos mediante el análisis de correlación, lo que permite la creación de envolventes acústicos y la distinción entre diferente información sonora. Esto convierte a LCA en una herramienta prometedora para interpretar la actividad neuronal y su reacción a estímulos auditivos. Finalmente, en otro capítulo, desarrollamos una metodología de aprendizaje profundo de extremo a extremo para generar contenido musical MIDI (datos simbólicos) a partir de señales de actividad cerebral inducidas por música con etiquetas afectivas. Esta metodología abarca el preprocesamiento de datos, el entrenamiento de modelos de extracción de características y un proceso de emparejamiento de características mediante Deep Centered Kernel Alignment, lo que permite la generación de música a partir de señales EEG. En conjunto, estos logros representan avances significativos en la comprensión de la relación entre emociones y música, así como en la aplicación de la inteligencia artificial en la generación musical a partir de señales cerebrales. Ofrecen nuevas perspectivas y herramientas para la creación musical y la investigación en neurociencia emocional. Para llevar a cabo nuestros experimentos, utilizamos bases de datos públicas como GigaScience, Affective Music Listening y Deap Dataset (Texto tomado de la fuente)This master’s thesis presents an innovative multimodal deep learning methodology that combines an emotion classification model with a music generator, aimed at creating music from electroencephalography (EEG) signals, thus delving into the interplay between emotions and music. The results achieve three specific objectives: First, since the performance of brain-computer interface systems varies significantly among different subjects, an approach based on knowledge transfer among subjects is introduced to enhance the performance of individuals facing challenges in motor imagery-based brain-computer interface systems. This approach combines labeled EEG data with structured information, such as psychological questionnaires, through a "Kernel Matching CKA"method. We employ a deep neural network (Deep&Wide) for motor imagery classification. The results underscore its potential to enhance motor skills in brain-computer interfaces. Second, we propose an innovative technique called "Labeled Correlation Alignment"(LCA) to sonify neural responses to stimuli represented in unstructured data, such as affective music. This generates musical features based on emotion-induced brain activity. LCA addresses variability among subjects and within subjects through correlation analysis, enabling the creation of acoustic envelopes and the distinction of different sound information. This makes LCA a promising tool for interpreting neural activity and its response to auditory stimuli. Finally, in another chapter, we develop an end-to-end deep learning methodology for generating MIDI music content (symbolic data) from EEG signals induced by affectively labeled music. This methodology encompasses data preprocessing, feature extraction model training, and a feature matching process using Deep Centered Kernel Alignment, enabling music generation from EEG signals. Together, these achievements represent significant advances in understanding the relationship between emotions and music, as well as in the application of artificial intelligence in musical generation from brain signals. They offer new perspectives and tools for musical creation and research in emotional neuroscience. To conduct our experiments, we utilized public databases such as GigaScience, Affective Music Listening and Deap DatasetMaestríaMagíster en Ingeniería - Automatización IndustrialInvestigación en Aprendizaje Profundo y señales BiológicasEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizale

    Multimodal Data Fusion and Quantitative Analysis for Medical Applications

    Get PDF
    Medical big data is not only enormous in its size, but also heterogeneous and complex in its data structure, which makes conventional systems or algorithms difficult to process. These heterogeneous medical data include imaging data (e.g., Positron Emission Tomography (PET), Computerized Tomography (CT), Magnetic Resonance Imaging (MRI)), and non-imaging data (e.g., laboratory biomarkers, electronic medical records, and hand-written doctor notes). Multimodal data fusion is an emerging vital field to address this urgent challenge, aiming to process and analyze the complex, diverse and heterogeneous multimodal data. The fusion algorithms bring great potential in medical data analysis, by 1) taking advantage of complementary information from different sources (such as functional-structural complementarity of PET/CT images) and 2) exploiting consensus information that reflects the intrinsic essence (such as the genetic essence underlying medical imaging and clinical symptoms). Thus, multimodal data fusion benefits a wide range of quantitative medical applications, including personalized patient care, more optimal medical operation plan, and preventive public health. Though there has been extensive research on computational approaches for multimodal fusion, there are three major challenges of multimodal data fusion in quantitative medical applications, which are summarized as feature-level fusion, information-level fusion and knowledge-level fusion: • Feature-level fusion. The first challenge is to mine multimodal biomarkers from high-dimensional small-sample multimodal medical datasets, which hinders the effective discovery of informative multimodal biomarkers. Specifically, efficient dimension reduction algorithms are required to alleviate "curse of dimensionality" problem and address the criteria for discovering interpretable, relevant, non-redundant and generalizable multimodal biomarkers. • Information-level fusion. The second challenge is to exploit and interpret inter-modal and intra-modal information for precise clinical decisions. Although radiomics and multi-branch deep learning have been used for implicit information fusion guided with supervision of the labels, there is a lack of methods to explicitly explore inter-modal relationships in medical applications. Unsupervised multimodal learning is able to mine inter-modal relationship as well as reduce the usage of labor-intensive data and explore potential undiscovered biomarkers; however, mining discriminative information without label supervision is an upcoming challenge. Furthermore, the interpretation of complex non-linear cross-modal associations, especially in deep multimodal learning, is another critical challenge in information-level fusion, which hinders the exploration of multimodal interaction in disease mechanism. • Knowledge-level fusion. The third challenge is quantitative knowledge distillation from multi-focus regions on medical imaging. Although characterizing imaging features from single lesions using either feature engineering or deep learning methods have been investigated in recent years, both methods neglect the importance of inter-region spatial relationships. Thus, a topological profiling tool for multi-focus regions is in high demand, which is yet missing in current feature engineering and deep learning methods. Furthermore, incorporating domain knowledge with distilled knowledge from multi-focus regions is another challenge in knowledge-level fusion. To address the three challenges in multimodal data fusion, this thesis provides a multi-level fusion framework for multimodal biomarker mining, multimodal deep learning, and knowledge distillation from multi-focus regions. Specifically, our major contributions in this thesis include: • To address the challenges in feature-level fusion, we propose an Integrative Multimodal Biomarker Mining framework to select interpretable, relevant, non-redundant and generalizable multimodal biomarkers from high-dimensional small-sample imaging and non-imaging data for diagnostic and prognostic applications. The feature selection criteria including representativeness, robustness, discriminability, and non-redundancy are exploited by consensus clustering, Wilcoxon filter, sequential forward selection, and correlation analysis, respectively. SHapley Additive exPlanations (SHAP) method and nomogram are employed to further enhance feature interpretability in machine learning models. • To address the challenges in information-level fusion, we propose an Interpretable Deep Correlational Fusion framework, based on canonical correlation analysis (CCA) for 1) cohesive multimodal fusion of medical imaging and non-imaging data, and 2) interpretation of complex non-linear cross-modal associations. Specifically, two novel loss functions are proposed to optimize the discovery of informative multimodal representations in both supervised and unsupervised deep learning, by jointly learning inter-modal consensus and intra-modal discriminative information. An interpretation module is proposed to decipher the complex non-linear cross-modal association by leveraging interpretation methods in both deep learning and multimodal consensus learning. • To address the challenges in knowledge-level fusion, we proposed a Dynamic Topological Analysis framework, based on persistent homology, for knowledge distillation from inter-connected multi-focus regions in medical imaging and incorporation of domain knowledge. Different from conventional feature engineering and deep learning, our DTA framework is able to explicitly quantify inter-region topological relationships, including global-level geometric structure and community-level clusters. K-simplex Community Graph is proposed to construct the dynamic community graph for representing community-level multi-scale graph structure. The constructed dynamic graph is subsequently tracked with a novel Decomposed Persistence algorithm. Domain knowledge is incorporated into the Adaptive Community Profile, summarizing the tracked multi-scale community topology with additional customizable clinically important factors

    Modern Views of Machine Learning for Precision Psychiatry

    Full text link
    In light of the NIMH's Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of the ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. Additionally, we review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We further discuss explainable AI (XAI) and causality testing in a closed-human-in-the-loop manner, and highlight the ML potential in multimedia information extraction and multimodal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research

    Regularisoitu riippuvuuksien mallintaminen geeniekpressio- ja metabolomiikkadatan välillä metabolian säätelyn tutkimuksessa

    Get PDF
    Fusing different high-throughput data sources is an effective way to reveal functions of unknown genes, as well as regulatory relationships between biological components such as genes and metabolites. Dependencies between biological components functioning in the different layers of biological regulation can be investigated using canonical correlation analysis (CCA). However, the properties of the high-throughput bioinformatics data induce many challenges to data analysis: the sample size is often insufficient compared to the dimensionality of the data, and the data pose multi-collinearity due to, for example, co-expressed and co-regulated genes. Therefore, a regularized version of classical CCA has been adopted. An alternative way of introducing regularization to statistical models is to perform Bayesian data analysis with suitable priors. In this thesis, the performance of a new variant of Bayesian CCA called gsCCA is compared to a classical ridge regression regularized CCA (rrCCA) in revealing relevant information shared between two high-throughput data sets. The gsCCA produces a partly similar regulatory effect as the classical CCA but, in addition, the gsCCA introduces a new type of regularization to the data covariance matrices. Both CCA methods are applied to gene expression and metabolic concentration measurements obtained from an oxidative-stress tolerant Arabidopsis thaliana ecotype Col-0, and an oxidative stress sensitive mutant rcd1 as time series under ozone exposure and in a control condition. The aim of this work is to reveal new regulatory mechanisms in the oxidative stress signalling in plants. For the both methods, rrCCA and gsCCA, the thesis illustrates their potential to reveal both already known and new regulatory mechanisms in Arabidopsis thaliana oxidative stress signalling.Bioinformatiikassa erityyppisten mittausaineistojen yhdistäminen on tehokas tapa selvittää tuntemattomien geenien toiminnallisuutta sekä säätelyvuorovaikutuksia eri biologisten komponenttien, kuten geenien ja metaboliittien, välillä. Riippuvuuksia eri biologisilla säätelytasoilla toimivien komponenttien välillä voidaan tutkia kanonisella korrelaatioanalyysilla (canonical correlation analysis, CCA). Bioinformatiikan tietoaineistot aiheuttavat kuitenkin monia haasteita data-analyysille: näytteiden määrä on usein riittämätön verrattuna aineiston piirteiden määrään, ja aineisto on multikollineaarista johtuen esim. yhdessä säädellyistä ja ilmentyvistä geeneistä. Tästä syystä usein käytetään regularisoitua versiota kanonisesta korrelaatioanalyysistä aineiston tilastolliseen analysointiin. Vaihtoehto regularisoidulle analyysille on bayesilainen lähestymistapa yhdessä sopivien priorioletuksien kanssa. Tässä diplomityössä tutkitaan ja vertaillaan uuden bayesilaisen CCA:n sekä klassisen harjanneregressio-regularisoidun CCA:n kykyä löytää oleellinen jaettu informaatio kahden bioinformatiikka-tietoaineiston välillä. Uuden bayesilaisen menetelmän nimi on ryhmittäin harva kanoninen korrelaatioanalyysi. Ryhmittäin harva CCA tuottaa samanlaisen regularisointivaikutuksen kuin harjanneregressio-CCA, mutta lisäksi uusi menetelmä regularisoi tietoaineistojen kovarianssimatriiseja uudella tavalla. Molempia CCA-menetelmiä sovelletaan geenien ilmentymisaineistoon ja metaboliittien konsentraatioaineistoon, jotka on mitattu Arabidopsis thaliana:n hapetus-stressiä sietävästä ekotyypistä Col-0 ja hapetus-stressille herkästä rcd1 mutantista aika-sarjana, sekä otsoni-altistuksessa että kontrolliolosuhteissa. Diplomityö havainnollistaa harjanneregressio-CCA:n ja ryhmittäin harvan CCA:n kykyä paljastaa jo tunnettuja ja mahdollisesti uusia säätelymekanismeja geenien ja metabolittien välillä kasvisolujen viestinnässä hapettavan stressin aikana

    Integration of EEG-FMRI in an Auditory Oddball Paradigm Using Joint Independent Component Analysis

    Get PDF
    The integration of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) can contribute to characterizing neural networks with high temporal and spatial resolution. The overall objective of this dissertation is to determine the sensitivity and limitations of joint independent component analysis (jICA) within-subject for integration of ERP and fMRI data collected simultaneously in a parametric auditory oddball paradigm. The main experimental finding in this work is that jICA revealed significantly stronger and more extensive activity in brain regions associated with the auditory P300 ERP than a P300 linear regression analysis, both at the group level and within-subject. The results suggest that, with the incorporation of spatial and temporal information from both imaging modalities, jICA is more sensitive to neural sources commonly observed with ERP and fMRI compared to a linear regression analysis. Furthermore, computational simulations suggest that jICA can extract linear and nonlinear relationships between ERP and fMRI signals, as well as uncoupled sources (i.e., sources with a signal in only one imaging modality). These features of jICA can be important for assessing disease states in which the relationship between the ERP and fMRI signals is unknown, as well as pathological conditions causing neurovascular uncoupling, such as stroke

    Pathway-Based Multi-Omics Data Integration for Breast Cancer Diagnosis and Prognosis.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017
    corecore