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ABSTRACT 
INTEGRATION OF EEG-FMRI IN AN AUDITORY ODDBALL PARADIGM USING 

JOINT INDEPENDENT COMPONENT ANALYSIS  
 
 
 

Jain Mangalathu Arumana, B.Sc., M.Sc. 
 
 

Marquette University, 2012 
 
 
 

The integration of event-related potential (ERP) and functional magnetic 
resonance imaging (fMRI) can contribute to characterizing neural networks with high 
temporal and spatial resolution. The overall objective of this dissertation is to determine 
the sensitivity and limitations of joint independent component analysis (jICA) within-
subject for integration of ERP and fMRI data collected simultaneously in a parametric 
auditory oddball paradigm. The main experimental finding in this work is that jICA 
revealed significantly stronger and more extensive activity in brain regions associated 
with the auditory P300 ERP than a P300 linear regression analysis, both at the group 
level and within-subject. The results suggest that, with the incorporation of spatial and 
temporal information from both imaging modalities, jICA is more sensitive to neural 
sources commonly observed with ERP and fMRI compared to a linear regression analysis. 
Furthermore, computational simulations suggest that jICA can extract linear and 
nonlinear relationships between ERP and fMRI signals, as well as uncoupled sources (i.e., 
sources with a signal in only one imaging modality). These features of jICA can be 
important for assessing disease states in which the relationship between the ERP and 
fMRI signals is unknown, as well as pathological conditions causing neurovascular 
uncoupling, such as stroke. 
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1.1 INTRODUCTION 
 
 
 

There is much interest in how the brain executes complex sensory and cognitive 

processes such as language perception and production, memory, multisensory integration and 

learning. Characterizing the cortical networks involved in these processes could improve our 

understanding of brain function and dysfunction, help model neural processes, and even help 

diagnose or rehabilitate patients with neurologic deficits. A major challenge in understanding 

such networks in the human brain involves the noninvasive characterization of neural activity 

with both high spatial and high temporal resolution. The integration of electroencephalography 

(EEG), reflecting the temporal dynamics of large-scale neural activity, with spatially well-

defined fMRI activity (Bonmassar et al., 2001; Dale and Halgren, 2001; Liebenthal et al., 2003), 

can help to determine the spatio-temporal dynamics of neural activity in the brain.  

A variety of model-based (Dale and Halgren, 2001; Debener et al., 2005; Eichele et al., 

2005; Benar et al., 2007; Philiastides and Sajda, 2007; Laufs et al., 2008; Goldman et al., 2009; 

Ou et al., 2009; Rosa et al., 2011) and data-driven methods (Martinez-Montes et al., 2004; 

Calhoun et al., 2006; Correa et al., 2008; Brookings et al., 2009; Brown et al., 2010; Lei et al., 

2010; Luessi et al., 2010) have been developed to integrate EEG and fMRI. Model-based 

approaches, such as linear regression, are robust. However, at the same time, model-based 

approaches are limited due to the inherent assumption that EEG and fMRI vary consistently 

across time and space (for example, linearly). In contrast, data-driven techniques, such as joint 

independent component analysis (jICA), are not limited to linear relationships and may therefore 

provide a more comprehensive description of neural activity, especially in cases when the 

underlying relationship between EEG and fMRI is unknown.  
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ERPs describe the measured electrical potential to the occurrence of a temporally well-

defined event, such as a stimulus, whose response is usually obtained by averaging across many 

trials. To date, jICA has been tested for integration of single channel ERP and fMRI group data, 

and the results have suggested that the method is sensitive for extracting activation commonly 

observed in both neuroimaging modalities (Calhoun et al., 2006; Moosmann et al., 2008; 

Calhoun et al., 2009; Mijovic et al., 2012). This dissertation aimed to evaluate experimentally the 

performance of jICA for integration of ERP and fMRI data within-subject, including all spatio-

temporal information from both imaging modalities to increase the sensitivity of the method. A 

comprehensive computational analysis of jICA was then performed by varying several 

experimental factors to determine their importance and the limitations of the method for 

extracting common activation between ERP and fMRI.  

 The following sections provide an overview of the types of signals measured with ERP 

and fMRI. The advantages associated with integrating ERP and fMRI in an event-related 

experimental paradigm will be reviewed and the relationship between neural activity and the 

hemodynamic response will be outlined. Finally, the current status of model-based and data-

driven approaches to integrate ERP and fMRI will be reviewed, and current understanding of the 

neural networks associated with the auditory oddball paradigm, used here as a model 

experimental system within which to characterize jICA, will be discussed.  

1.2 Electroencephalography and ERPs 
 
 
 

Electroencephalography (EEG) is a noninvasive measurement of electrical activity in the 

brain (Berger, 1929). EEG is recorded at the scalp as the voltage difference between a ‘live’ 

electrode and a reference electrode (most commonly the central parietal electrode, CPz). EEG 
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mainly reflects the postsynaptic activity of neurons, rather than the spiking output of neurons 

(Logothetis et al., 2001). More specifically, the magnitude of measurable electric potential at the 

scalp is believed to be dependent on the summation of excitatory and inhibitory postsynaptic 

potentials, which arise from the apical dendrites of tens of thousands or millions of pyramidal 

cells that are spatially aligned in the outer layer of the cerebral cortex. The contribution of action 

potentials to the recorded EEG signal is believed to be rather small due to their brief temporal 

duration, resulting in less temporal overlap than post-synaptic potentials (Nunez and Srinivasan, 

2005). When neurons are activated, excitatory and/or inhibitory synapses produce local current 

sinks and sources. The mass activity of aligned pyramidal neurons leads to volume currents that 

can be modeled as a dipole, consisting of a source-sink combination (Nunez and Srinivasan, 

2005). Pyramidal neurons along the wall of a sulcus will tend to result in tangential dipoles 

relative to the surface electrodes, whereas neurons located on a gyrus will produce radial dipoles 

(Nunez and Srinivasan, 2005), see Figure 1-1.  
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Figure 1-1: Tangential and radial dipoles 
Illustration of the scalp, skull and cortex. The cortex shows the gyri and sulci structures and the tangential dipoles 
(red arrows and radial dipoles (gree arrows) measured with the EEG electrodes on the scalp. Reproduced from 
(Nunez and Srinivasan, 2005) 
 

 

Radial and tangential dipoles both contribute to the measured EEG signal, although it is 

thought that radial dipoles contribute more than tangential dipoles to EEG scalp recordings. 

Radial dipoles are thought to be produced by synchronous sources in many gyri that have dipole 

axes perpendicular to the skull/scalp, unlike tangential dipoles which result in dipoles oriented 

parallel to the skull/scalp (Nunez and Srinivasan, 2005). Indeed, a simulation study showed that 

tangential dipoles of the same strength and depth of radial dipole generally made smaller 

contribution to scalp potentials (Nunez and Srinivasan, 2005). In addition, tangential dipoles are 

located more often in deeper locations. However, despite the fact that EEG is mostly sensitive to 

aligned cortical structures, reports have shown that EEG is also able to detect activity in some 

strongly folded and deep structures, e.g. in hippocampus and amygdala (Lantz et al., 2001; 

Michel et al., 2004). The measured surface potential depends on the distribution of current 
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sources and sinks across the cortex. The neural current caused by the postsynaptic potentials, is 

also known as the primary current or the current of interest. EEG measures the potential field 

setup by scalp reaching currents, which are secondary currents in the surrounding medium. The 

skull causes attenuation and dispersion of the measured ionic currents. These volume currents 

occur due to effects of the electric field on extra-cellular charge carriers (Plonsey, 1969). The 

physics of an electrical dipole indicates that the potential produced in the surrounding medium 

falls off with the square of the distance. Physiologically, that would suggest that the deeper the 

source, the smaller the recorded EEG signal. In the case of a dipole layer such as the cortical 

surface, the fall-off with distance from a dipole layer is much slower compared to a single dipole. 

In addition, the head and skull are inhomogeneous, which can cause decreases in scalp potentials 

from sources close to the cortex surface, and increases in scalp potentials from deeper sources, 

due to the current line compression on the head (Nunez and Srinivasan, 2005). Therefore EEG is 

not only able to depict local sources, but also deeper sources. The lateral surface of the superior 

temporal cortex will be the focus of this dissertation.  

Event-related potentials (ERPs) describe the measured electrical potential to the occurrence 

of temporally well-defined events or stimuli. ERP signals are typically very small and embedded 

in a background of spontaneous electrical activity (Sanei and Chambers, 2007). Therefore, most 

commonly, trials are averaged over repeated instances of the same event to increase the signal-

to-noise ratio (SNR) and obtain an ERP response. Generally, ERP waveforms are characterized 

by three main features: amplitude, latency and scalp distribution. ERP signals are labeled 

according to the direction of their amplitude and their latency. For example, the N100 denotes a 

negative ERP response occurring at ~100ms, whereas the P300 describes a positive ERP 

response occurring at ~300ms (Sanei and Chambers, 2007). It is believed that earlier components 
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in the ERP generally reflect sensory processing, whereas later components are associated with 

cognitive processes.  

In order to identify the loci of neural activation observed with ERPs, source localization 

techniques are applied. Source localization is not trivial because an infinite number of different 

source configurations can produce the same scalp potential, a problem known as the inverse 

problem(Nunez and Srinivasan, 2005). The model of the underlying system consists of a head 

and a source model. The head model describes the volume conductor (brain, scalp, skull), and 

the source model describes the current distribution produced by large sets of neurons. There are 

two main types of source models: dipole and distributed models. Dipole models apply best to 

over-determined systems, with fewer neural sources than recording electrodes. Distributed 

models are better representations for under-determined systems, with more sources than 

electrodes. In this dissertation, distributed modeling was used for source reconstruction because 

multiple sources contribute to the P300 ERP component of interest in this study. 

 

1.3 Functional MRI  
 
 
 

Magnetic resonance imaging (MRI) was invented in 1973 by Paul Lauterbur (Lauterbur, 

1973) and applied to cognitive neuroscience in the mid-1980s. In the past decade, functional 

MRI has become widely used to study the normal human brain, degenerative brain diseases like 

Alzheimer’s (Prvulovic et al., 2011; Sperling, 2011) and Parkinson’s (Ibarretxe-Bilbao et al., 

2011), learning disabilities such as dyslexia (Shaywitz et al., 2006), and for presurgical mapping, 

for example in epilepsy patients (Swanson et al., 2007).  
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The blood-oxygen level dependent (BOLD) contrast, on which fMRI is based, is most 

often used to detect hemodynamic changes in the brain, typically associated with neural activity 

(Belliveau et al., 1990; Ogawa et al., 1990). The process of neuronal firing requires energy in the 

form of ATP. During periods of increased activity, the energy reserves become depleted within 

active neurons, and a hemodynamic response is triggered in the brain to ensure rapid delivery of 

new ATP. This process facilitates the generation of energy required by active neurons and leads 

to a surplus of oxyhemoglobin. Hemoglobin, which is diamagnetic when oxygenated and 

paramagnetic when deoxygenated, can be detected with the MR scanner such that a local 

increase in deoxyhemoglobin causes a local decrease in the BOLD signal. Higher BOLD signal 

intensities arise from increases in the concentration of oxygenated hemoglobin. The local ratio of 

oxyhemoglobin to deoxyhemoglobin causes a change in the BOLD contrast measured with 

fMRI. BOLD, like ERPs, has been shown to be more strongly correlated with local field 

potentials, reflecting mostly the synaptic input to a neural circuit. However, multi-unit activity, 

reflecting mostly the spiking output from a neural circuit also contributes to the BOLD signal 

(Logothetis et al., 2001).  

FMRI is widely used in neuroimaging due to its high spatial resolution, on the order of 1-

2 mm in humans (Huettel et al., 2009). However, the specificity of the fMRI signal is dependent 

on the MR acquisition parameters and MR hardware used. For example, gradient-echo sequences 

are sensitive to large vessels (in addition to small vessels), which may reflect neural activity from 

a more remote brain area. However, this problem is minimal at higher field strengths (3T or 

higher). In contrast, spin-echo sequences represent mostly capillary signals, reflecting activity 

from nearby brain areas (Ullsperger and Debener, 2010). Nevertheless, gradient-echo sequences 

are widely used because they enable faster whole brain fMRI acquisition compared to spin-echo 
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sequences. In addition, the availability of scanners with higher field strengths, has essentially 

eliminated the problem of sensitivity of the BOLD signal to large vessels.   

FMRI has low temporal resolution due to the sluggish nature of the hemodynamic 

response. Thus, fMRI does not typically reflect quick neuronal changes, even if images can be 

obtained rapidly (Faro, 2006). Brief synchronous neural activity (<hundreds of milliseconds) 

may not elicit a measurable hemodynamic response with BOLD, making fMRI more sensitive to 

prolonged activation (>hundreds of milliseconds) in the brain. Another case when an fMRI 

response may not be elicited is when a cortical patch generates an EEG signal by increasing 

synchronicity in a small patch of cortex without changing the metabolic consumption (Babiloni 

and Cincotti, 2004). The hemodynamic response following neural activation is observed at one 

to two seconds latency and reaches its peak from four to eight seconds following neural 

activation (Faro, 2006).   
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1.4 Relationship between neural activity and hemodynamic changes 
 
 
 

Neural activity in the brain causes local hemodynamic changes to support the increased 

metabolic demands of active neurons. In active neurons, the generation of action potentials and 

synaptic transmission at the dendrites introduce excess K+ and H+ into the extracellular matrix, 

causing dilation of arterioles (Kuschinsky et al., 1972; Nguyen et al., 2000). In addition, a 

sudden increase in the demand for energy during synaptic activity can result in a relative lack of 

O2 and glucose, causing an increase in blood flow and blood volume (Attwell and Iadecola, 

2002). The increase in intracellular Ca++ during neural activity activates the Ca-dependent 

enzyme neuronal nitric oxide synthase (nNOS), which produces the vasodilator nitric oxide (NO). 

There is ample evidence that NO also contributes to the increase in cerebral blow flow (CBF) 

produced by functional activity (Northington et al., 1992; Akgoren et al., 1994; Iadecola et al., 

1995; Lindauer et al., 1999; Buerk et al., 2003).  

Linear and nonlinear relationships between neural activity and the hemodynamic 

response have been found in humans (Logothetis et al., 2001; Zhang et al., 2008a; Liu et al., 

2010) and in animal models (Mathiesen et al., 1998; Ngai et al., 1999; Ances et al., 2000; Heeger 

et al., 2000; Rees et al., 2000; Logothetis et al., 2001; Hewson-Stoate et al., 2005).  At a 

macroscopic level, changes in neural activity can produce linear or nonlinear changes in the 

hemodynamic response. For example, it was shown that if the inter-stimulus interval is very 

short (0.25-4s), the BOLD response is often non-linear due to non-linearity in the vascular 

response (Liu et al., 2010). For longer intervals, a strong linear relationship between neural 

activity and hemodynamic response may be observed (Liu et al., 2010).  
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1.5 Temporal dynamics of information processing in brain networks  
 
 
 

The brain can be described as an incredibly complex set of networks of functionally and 

structurally interconnected regions that continuously share information. A brain network can be 

described in terms of the temporal evolution of information flow between brain regions. While 

the information flow reflects the activity of millions of neurons over short timescales (tens to 

hundreds of ms), the neural activity results in a slow and sluggish hemodynamic response in the 

brain (Boynton et al., 1996). For example, one study showed that in the understanding of 

intention, two functionally separable cortical networks are recruited (Grafton, 2009). A frontal-

parietal network, “action-observation network”, which performs sensorimotor integration and a 

second “social” network, involving the insula, prefrontal cortex, amygdala and precuneate cortex. 

There has been much interest in exactly how, when, and where in the brain these networks share 

information. In this work, specifically we are trying to identify the spatio-temporal relationship 

of brain networks associated with the auditory oddball paradigm using fMRI and ERP.  
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1.6 Simultaneous fMRI and ERP  
 
 
 

Unimodal neuroimaging is limited by lack of spatial or temporal specificity, and/or 

invasiveness. Numerous analysis techniques have been developed to combine fMRI and ERP 

data to generate high temporally and spatially resolved images, see Rosa et al. for a review (Rosa 

et al., 2011). Compared to other integrated neuroimaging approaches, such as combining 

magnetoencephalography (MEG) with near infrared spectroscopy (NIRS) (Mackert et al., 2008) 

or with intracortical recordings (Weber et al., 2008), the advantages of combined acquisition of 

fMRI and ERP include the ability to (1) acquire data from both modalities simultaneously, (2) 

collect data non-invasively (compared to intracortical recordings), (3) achieve high 3D spatial 

resolution via fMRI (compared to the lower resolution of NIRS) and high temporal resolution via 

ERP (Nunez and Srinivasan, 2005). (4) Furthermore, unlike MEG or NIRS, both fMRI and ERP 

are readily available in most clinical settings. Compared to MEG, ERP has the added advantage 

of being more sensitive to deep neural sources (Nunez and Srinivasan, 2005). On the other hand, 

magnetic fields are less prone to smearing by non-conductive elements (the skull) than electrical 

fields, resulting in somewhat higher spatial resolution of superficial sources with MEG compared 

to ERP. 

Simultaneous fMRI/ERP can be enhanced by using clustered image acquisition. In this 

method, image acquisition is clustered at relatively long intervals (7 sec and above), such that 

artifacts in the ERP related to fMRI acquisition are limited to ERP epochs with no events of 

interest (Liebenthal et al., 2003). The effect of acoustic scanner noise during sound presentation 
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is also minimized, an important feature for auditory tasks (Yang et al., 2000), such as those used 

in the studies detailed here.  

 

1.7 Model-based and data-driven techniques for the integration of fMRI and ERP 
 
 
 

Approaches to integration of fMRI and ERPs can broadly be divided into model-based 

and data-driven techniques. A variety of model-based methods have been developed to integrate 

ERP and fMRI data, see Huster et al. and Rosa et al. for a review (Rosa et al., 2011; Huster et al., 

2012). Linear regression is a well-known and robust method for multimodal integration, but it 

may neglect nonlinear relationships and therefore not fully capture brain activity. In the simplest 

formulation, the peak amplitude of an ERP component in an ERP time-series is used as a 

regressor in the fMRI data analysis, within the framework of the general linear model (Horovitz 

et al., 2002; Liebenthal et al., 2003). The ERP source analysis can also be informed by spatial 

constraints extracted from the fMRI maps (Babiloni et al., 2000; Dale and Halgren, 2001; Vanni 

et al., 2004; Esposito et al., 2009).  

A variety of studies have reported data-driven approaches for ERP-fMRI data fusion 

using a trial by trial design in individual data, for example using a multiway partial least squares 

analysis to correlate between fMRI time courses and spectral components of the ERP (Martinez-

Montes et al., 2004). Another proposed method to integrate ERP and fMRI uses a multi-set 

canonical correlation analysis, which maximizes correlated variations across trials between ERP 

and fMRI (Correa et al., 2010). ERP and fMRI can also be combined by extracting fMRI ICA 

components that are then used to compute cross-modal correlations with single-trial ERP 
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amplitudes (Huster et al., 2011). Bayesian frameworks have been developed to integrate ERP 

and fMRI (Daunizeau et al., 2007) and also MEG and fMRI (Plis et al., 2010).  

Recently, data-driven approaches such as joint independent component analysis (jICA), 

have been implemented to integrate ERP and fMRI data by searching for co-varying signals 

across subjects (Calhoun et al., 2009; Mijovic et al., 2012). The advantage of ICA, and data-

driven approaches in general, lies in their ability to estimate the underlying processes when 

detailed á priori models are not available (Calhoun et al., 2006). A distinction of the jICA 

approach is the use of a common mixing matrix for the ERP and fMRI data. Compared to other 

approaches using a separate mixing matrix (Correa et al., 2008; Brown et al., 2010), jICA may 

be particularly sensitive to linked activation between ERP and fMRI (Calhoun et al., 2006; 

Mangalathu-Arumana et al., 2012), but not limited to correlated sources, such as the P300 linear 

regression model. JICA, unlike other data-driven techniques, assumes a common modulation 

profile across task conditions. This is a reasonable assumption, especially in parametric 

paradigms, where neural activity is systematically modulated across experimental levels.  

Some data-driven techniques limit the analysis to just a few (1-4) electrodes of interest 

(Eichele et al., 2005; Calhoun et al., 2006; Correa et al., 2010). JICA has been applied to 

experimental ERP and fMRI data to spatially and temporally resolve brain areas active during 

auditory and visual oddball detection, albeit using data from a single EEG electrode across a 

group of subjects (Calhoun et al., 2006; Mijovic et al., 2012). Computational simulations have 

suggested that jICA may be applicable to within-subject analysis, using spatial and temporal 

information from multi-channel ERP and spatial information from fMRI (Moosmann et al., 

2008). JICA of multi-channel ERP data for within-subject analysis has also recently been 

demonstrated experimentally (Mangalathu-Arumana et al., 2012). In this work, the full array of 
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ERP multichannel data was used in the context of a parametric paradigm to enhance the 

sensitivity of the technique to co-varying ERP and fMRI signals. 

 

1.8 Auditory oddball paradigm 
 
 
 

The oddball paradigm was chosen in this dissertation, since it is well documented, proven 

to be clinically useful (Polich and Corey-Bloom, 2005), and yields relatively robust and large 

responses. Auditory stimuli have been selected for this investigation because auditory processing 

is essential for speech perception, one of the main functions of the brain that can be impaired 

following stroke. The auditory oddball paradigm consists of a sequence of frequent standard 

sounds and infrequent target or deviant sounds. Attentive deviance detection, typically studied 

with an oddball paradigm, elicits most notably a positive ERP component at an approximate 

latency of 300 ms (termed the P300). Simultaneous fMRI/ERP has been used to determine the 

major brain areas involved in attentive auditory deviance detection (Menon et al., 1997; Opitz et 

al., 1999; Mulert et al., 2004). Amplitude and latency measures of the P300 have proven to be 

clinically useful indices in a number of diseases, such as Alzheimer’s (Polich and Corey-Bloom, 

2005), dementia (Kraiuhin et al., 1986; Sara et al., 1988), and schizophrenia (Louza and Maurer, 

1989; Louza et al., 1992). Intracortical recordings from epileptic patients indicate that the P300 

elicited during an auditory oddball paradigm receives contributions from temporal lobe 

structures (Halgren et al., 1980; McCarthy et al., 1989). Scalp recordings from patients with 

lesions in the temporo-parietal lobe suggest that the integrity of the temporo-parietal junction is 

critical for the generation of the auditory P300 (Knight, 1984; Verleger et al., 1994). FMRI 

activation and ERP source reconstruction results from our study suggest that the major 
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generators of the auditory P300 are distributed in areas of the temporo-parietal junction and 

parietal cortex (Liebenthal et al., 2003; Mangalathu-Arumana et al., 2012).  
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1.9 Aims and Significance of Research 
 
 
 

The goal of the proposed work is to develop an optimal paradigm and tailored analysis 

methods to fuse fMRI and ERP, with high temporal and spatial resolution. To achieve this goal, 

the research addresses three specific aims:  

 

Specific Aim 1:  Develop an optimal parametric paradigm for determining the spatial and 

temporal dynamics of activity measured with ERP and fMRI in a wide neural network in healthy 

human subjects. An auditory P300 ERP oddball paradigm will be used in the context of a 

parametric manipulation to extract neural signals that vary with experimental condition (deviant 

level). The parametric paradigm has the virtue of increasing the variability of the measured 

signal, and thereby the sensitivity of the analysis method to detecting ERP and fMRI changes 

that are systematically related to the varied parameter. 

 

Specific Aim 2: Evaluate joint independent component analysis (jICA) for the fusion of fMRI 

and ERP signals in individual data, incorporating the full spatial and temporal information from 

both imaging modalities. The jICA approach will be compared to a multiple regression analysis 

using the P300 peak amplitude in a general linear model. Spatio-temporal jICA will be applied to 

localize neural sources related to the P300 within-subject. The full multi-channel array of EEG 

electrodes will be used, to enhance the sensitivity of jICA for extracting neural sources measured 

with fMRI and ERP. 
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Specific Aim 3: Characterize the separation of neural sources with jICA as a function of the 

experimental design and the coupling relationship between fMRI and ERP sources. Investigate 

the effect of various parameters of the experimental design on the jICA results, by simulating 

fMRI and ERP measurements of neural sources. A computational model will be implemented on 

a distributed computing cluster such that hundreds of simulations can be performed to test jICA 

in a wide range of conditions. The computational model will simulate fMRI and ERP 

measurements to known sources of neural activity to test the reliability of the jICA method for 

localizing neural activity as a function of several factors including, the SNR of ERP and fMRI 

measurements, the number of experimental samples, and the nature of the relationship between 

ERP and fMRI signals. 

 

 This work is based on the data-driven technique termed jICA, first developed by Calhoun 

and colleagues (Calhoun et al., 2006) to integrate ERP and fMRI data across subjects. In jICA, a 

joint coefficient matrix between ERP and fMRI is incorporated to extract linked activations 

across task conditions. A distinct advantage of jICA is that it is not limited to linear relationships 

between ERP and fMRI, such as generalized linear models, but is also sensitive to nonlinear 

relationships. To date, jICA has been used to integrate fMRI with ERP across subjects, using just 

one EEG recording electrode (Calhoun et al., 2006). A specific novelty in the present work (Aim 

2) is that jICA is applied to individual datasets, using spatial and temporal information from all 

EEG electrodes and all fMRI trials, in order to increase the sensitivity of the method to detection 

of neural sources observed in ERP and fMRI. Developing a method for individual data analysis 

is critical for clinical assessment of pathological conditions, where patient-specific diagnosis is 

needed. The inclusion of all spatio-temporal information from the ERP and spatial information 
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from the fMRI is expected increase the detection of neural sources with ERP and fMRI, not only 

at the group level, but also at the single subject level.  

Computational simulations will be used in Aim 3 to test the reliability of jICA for 

detection of neural sources measured with ERP and fMRI under different experimental 

conditions. Specifically, the SNR of neuroimaging data, number of experimental conditions, and 

type of relationship between ERP and fMRI signals will be investigated. A comprehensive 

sensitivity analysis of jICA, using a theoretical model to simulate sources throughout the brain, 

has not been published before and is a necessary pre-requisite before systematic and wide-spread 

use of jICA to fuse neuroimaging modalities can occur.  

 The ultimate goal of the proposed work is to establish a reliable method to assess neural 

activity recorded with ERP and fMRI. The methods developed here could have a significant 

impact for future studies of brain networks involving sensory-motor, language and memory 

processing in healthy brains, and eventually in patients with altered or dysfunctional brains. For 

example, in some diseases such as Alzheimer’s the increase in CBF following activation is 

attenuated, leading to local alterations of the normal relationship between neural activity and 

hemodynamic responses in the brain. The methodology proposed here to integrate fMRI and 

ERP is an important step toward establishing its clinical relevance, and toward enhancing the 

study of functional processing in the brain with high spatial and temporal resolution 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 2 
 
 
 

 Within-subject joint independent component analysis of simultaneous fMRI / ERP in an 
auditory oddball paradigm 
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2.1 INTRODUCTION 
 
 
 

The following chapter addresses Aims 1 and 2 of the dissertation and is largely 

based on a paper published recently in the journal Neuroimage (Mangalathu-Arumana et 

al., 2012). The advent of neuroimaging has led to major advances in understanding how 

the brain processes complex sensory information such as speech, and controls cognitive 

functions such as memory and learning. Characterizing the cortical networks involved in 

these processes has improved our understanding of brain function, our ability to model 

neural processes, and our ability to diagnose and rehabilitate patients with neurologic 

deficits. Non-invasive neuroimaging techniques, such as fMRI, electroencephalography 

(EEG) and magnetoencephalography (MEG) are at the heart of current research in 

Cognitive Neuroscience. Major efforts have been directed toward optimizing the methods 

to temporally and spatially resolve neural activity. FMRI can be acquired in a single-slice 

with a temporal resolution of 100 ms, and recent developments hold the promise for sub-

second temporal resolution for whole brain acquisitions (Feinberg et al., 2010; Lee et al., 

2010). Source reconstruction of EEG, and especially MEG, data can under ideal 

conditions resolve neural activity within one centimeter with high temporal resolution. 

Nevertheless, the slow nature of the hemodynamic response recorded in fMRI, and the 

inverse problem in EEG and MEG source reconstruction, pose inherent limitations for 

these techniques. Therefore, an attractive alternative to unimodal neuroimaging is to fuse 

non-invasive imaging methodologies that together offer high spatial and high temporal 

resolution (Dale and Halgren, 2001). A recent development in this respect has been the 

integration of event-related potentials (ERPs) and functional magnetic resonance imaging 
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(fMRI) recorded simultaneously in large-scale networks to capitalize on the high 

temporal resolution of ERPs and the spatially well-defined fMRI response (Bonmassar et 

al., 2001; Liebenthal et al., 2003). 

Despite the consensus that fMRI and ERPs both reflect essentially the same type 

of neural activity (synaptic potentials), it is important to note that there are significant 

differences between the measures, which may cause discrepancies in the estimation of 

neural sources. In particular, brief synchronous neural activity may be captured with EEG 

but not with imaging of the slow BOLD response. In contrast, neural activity in a limited 

brain region may be visible with fMRI, but located too deep or oriented such that it does 

not elicit a significant ERP response (Nunez and Silberstein, 2000).  

A variety of model-based methods have been developed to integrate ERP and 

fMRI data. Linear regression provides a well-known and robust method for multimodal 

integration, but it may not fully capture the richness of human brain activity. In the 

simplest formulation, the peak amplitude of an ERP component in an EEG time-series is 

used as a regressor in the fMRI data analysis, within the framework of the general linear 

model (Horovitz et al., 2002; Liebenthal et al., 2003). The ERP source analysis can also 

be informed by spatial constraints extracted from the fMRI maps (Dale and Halgren, 

2001; Vanni et al., 2004; Esposito et al., 2009).  

Recently, data-driven approaches such as joint independent component analysis 

(jICA) have been implemented to integrate ERP and fMRI data, by searching for co-

varying signals across subjects (Calhoun et al., 2009; Mijovic et al., 2012). The 

advantage of ICA, and data-driven approaches in general, lies in their ability to estimate 

the underlying processes when detailed á priori models are not available (Calhoun et al., 
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2006). JICA can recover both linear and non-linear relationships across experimental 

conditions and between imaging modalities. Another advantage of jICA is that it permits 

incorporation of multiple sources of spatial and temporal information, thereby potentially 

enhancing the sensitivity of the method to co-varying signals. This approach has been 

applied to experimental ERP and fMRI data to spatially and temporally resolve brain 

areas active during auditory and visual oddball detection, albeit using data from a single 

EEG electrode across a group of subjects (Calhoun et al., 2006; Mijovic et al., 2012). 

Computational simulations have suggested that jICA may be applicable to within-subject 

analysis, using spatial and temporal information from multi-channel ERP and spatial 

information from fMRI (Moosmann et al., 2008). But the potential benefits of 

incorporating multichannel ERP data, and its application to experimental results, have not 

been systematically tested.  

In this study, we examined the sensitivity of jICA and the value of incorporating 

the full spatial and temporal array of fMRI and ERP data for resolving neural activity at a 

single subject level using a parametric auditory oddball paradigm (Specific Aims 1 & 2). 

The oddball paradigm was selected because it yields extensive and robust responses in 

brain regions associated with sensory processing, categorization, response selection, and 

motor planning and execution.  The P300 ERP response associated with the oddball 

paradigm reflects neural processes related to target detection (Ritter and Vaughan, 1969; 

Coles et al., 1988; Picton, 1992; Polich, 2007), and the neural generators of this response 

have been studied with electrophysiological methods (Smith et al., 1990; Basile et al., 

1997; Menon et al., 1997; Halgren et al., 1998; Mecklinger et al., 1998) and fMRI 

(Linden et al., 1999; Kiehl et al., 2005; Friedman et al., 2009). Another advantage of the 
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oddball paradigm is that it lends itself well to a parametric design. In particular, the P300 

peak amplitude decreases with the increase in target detection difficulty, as indicated by 

decreased performance accuracy and/or increased reaction time (Polich, 2007)). In the 

present study, task difficulty was manipulated and a general linear model analysis of the 

fMRI data based on the ERP P300 peak amplitude was used as a reference (Aim1) to 

compare with jICA of single subject and group data (Aim2).  
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2.2 METHODS 
 
 
 

2.2.1 Participants 
 
 
 

Twenty-four healthy, right-handed volunteers, ages 18-40 years, participated in 

the study. Participants provided written and informed consent according to the 

Institutional Review Boards of the Medical College of Wisconsin and Marquette 

University, and were compensated for their participation in the study. Participants with 

no history of neurological disease and normal hearing as assessed by audiometry at 1-4 

kHz were enrolled in the study. Prior to scanning, psychometric curves were obtained for 

each subject based on their ability to discriminate differences in frequency (ranging from 

2-40 Hz) about a 1000 Hz tone. A minimum discrimination accuracy of 95% at 40 Hz 

difference was required for inclusion in the study, and all participants passed this 

criterion. Data from four participants were subsequently excluded, two due to excessive 

motion during scanning, and two due to noisy EEG. The criterion for excessive motion 

was a rejection of more than 5% of the total number of trials due to motion greater than 

5% of the total number of voxels in the dataset relative to a base functional magnetic 

resonance image (see image analysis below). The criterion for noisy EEG was defined as 

a mean baseline variance across electrodes that exceeded 10 µV. 

A group size of twenty-four subjects and 40 images per experimental condition 

was chosen based on simulations showing that a sample size of approximately twenty 
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subjects is necessary to achieve 80% power at α=0.002 (two-tailed) (Desmond and 

Glover, 2002). Kiehl showed that a high reproducibility of the hemodynamic response in 

a target detection task can be obtained with a group of 20 subjects (Kiehl and Liddle, 

2003). However, there are no relevant papers regarding how many trials are needed at an 

individual data analysis in an auditory oddball paradigm.  

In simultaneous fMRI-ERP acquisition, the SNR of ERPs is often degraded due the 

MRI environment noise. Generally, it is recommended to collect two or three times more 

trials than the number collected outside of the MRI scanner (Kruggel et al., 2001). In this 

study, based on pilot testing in five subjects with data collected inside and outside the 

scanner, a total number of one-hundred and forty four trials was determined to be 

sufficient to extract ERPs in the MRI scanner of comparable quality to those acquired 

outside of the scanner. Artifacts in the ERP and fMRI measurements caused by subject 

movement were reduced through use of a memory foam pillow to restrict head movement 

during scanning. The pillow also provide added comfort by helping to minimize the 

pressure of the EEG electrodes. Since subject motion has been found to increase with 

experiment duration, especially after 45-60 min (Lemieux et al., 2001), the ERP-fMRI 

study was divided into two sessions, each 40 minutes long. This reduced the discomfort 

of the subject, but still provided sufficient SNR in each modality.   

 

2.2.2 Experimental Design 
 
 
 
 A tone auditory oddball paradigm was employed, composed of three repetitive 

standard 1000 Hz tones and one rare deviant target tone presented binaurally, which was 



27 
 

 
 

higher or lower in frequency compared to the standard tone (2 - 40Hz) is shown in Figure 

2-1. This frequency range was chosen due to the sensitivity of the human auditory system 

in this frequency range. The task consisted of pressing one of two buttons to indicate 

whether a deviant tone was of a higher or lower frequency than the repetitive standard 

tones (and to guess if they could not detect the deviant). The tones were of 100 ms 

duration with rise/fall times of 5ms, and were presented at 800 ms stimulus onset 

asynchrony (SOA). This SOA time allowed for the neural activity to return to baseline 

before the next stimulus was applied. The frequency deviant was inserted in position 3 or 

4 in the sequence in order to reduce subject’s expectation of the deviant tone and also 

sustain attention to the task. Subject would participate in a total of three sessions. Session 

one was a behavioral study, where each subject was tested on sixteen levels of deviant 

frequency differences (2-40Hz lower or higher compared to standard tone=100Hz). Each 

participant’s psychometric curve was determined, using a least-square error Weilbull fit 

to determine five levels of difficulty corresponding to 50%, 65%, 75%, 85% and 95% 

accuracy for testing during the simultaneous fMRI-ERP session. Session two and three 

subjects would participate in an FMRI-ERP experiment. The deviant tone was chosen 

from one of ten possible frequencies, five lower and five higher than the standard tone 

frequency, corresponding to five levels of task difficulty. One hundred and forty four 

trials were presented at each of the five levels, for a total of 720 trials, broken into twelve 

separate runs, acquired in two recording sessions on separate days. The onset of each 

auditory sequence was jittered relative to the time of image acquisition, such that the 

deviant tone was always presented 4000 ms before the middle of the next image 

acquisition block, and the image acquisition coincided with the estimated peak of the 
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BOLD response (Hall et al., 1999). Auditory stimuli were delivered using a pneumatic, 

MRI-compatible headphone system (Avotec, Inc., Stuart, FL), and the sequence of 

stimulus presentation was controlled with the Presentation software (Neurobehavioral 

Systems Inc., San Pablo, CA).  

 

Figure 2-1: Auditory oddball paradigm 
Auditory oddball paradigm consisting of three standard tones and one deviant tone. FMRI was acquired in 
a clustered manner, and EEG was acquired continuously. However, ERPs were analyzed only around the 
deviant tone during the silent interval, where MRI gradients were off. 

 

2.2.3 fMRI Acquisition 
 
 
 
 The study was conducted on a GE 3T Signa Excite scanner (GE Health Care, 

Milwaukee, WI). Functional MR images consisted of T2
*-weighted, gradient-echo, echo 

planar images acquired using a clustered volume acquisition (Belin et al., 1999; Edmister 

et al., 1999; Liebenthal et al., 2003) (TE=25ms; flip angle=77o; TR=7s; slices=33), with a 

five second silent interval. Axially-oriented contiguous slices (3x3x3.5mm voxels) 
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covering the entire brain were acquired (image acquisition=2.0s). High-resolution 

anatomical images of the entire brain were also acquired using a 3D spoiled gradient-

echo (SPGR) sequence (0.9x0.9x1mm voxels). 

 Clustered image acquisition offers several advantages: (1) the silent interval 

allows the subject to listen to the auditory sequences without acoustic masking by the MR 

gradients; (2) The clustered acquisition helps avoid gradient artifacts in the EEG periods 

of interest. Since in this study we are specifically interested in the ERPs around the 

deviant tone, which are presented during the time when MR gradients are switched off; 

(3) clustered image acquisition provides maximal separation between the hemodynamic 

response to the acoustic noise of the scanner (of no interest) and the hemodynamic 

response to the sound stimuli (which are the objective of the study) (Liebenthal et al., 

2003). One of the major disadvantages with the clustered acquisition is that only one 

image is collected per trial and therefore the temporal course of the hemodynamic 

response cannot be assessed, also there is a strong assumption that the collection is at the 

peak of the hemodynamic response function, which could be missed, since only one data 

point is acquired for each trial.  

 

2.2.4 EEG Acquisition 
 
 
 
 EEG was recorded continuously using an MRI-compatible MagLink system 

consisting of a 64-channel MagLink cap (62 monopolar electrodes, and 2 bipolar leads 

for ECG and VEOG), SynAmps 2 amplifiers, and a Scan 4.4 Workstation (Compumedics 
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Neuroscan, Inc., TX). An experimental setup of the subject in the MRI scanner wearing a 

EEG cap is shown in  

Figure 2-2. Maglink is a passive, carbon-fiber system. The Synamps’ 2 amplifiers were 

used with wide bandwidth DC recording to allow fast recovery after large gradient 

artifacts and ensure that the amplifier did not saturate. The Maglink cap is an elastic 

electrode cap with three types of head sizes (small, medium, large). Sintered Ag/Ag-Cl 

electrodes were positioned according to the extended International 10-20 system (Jasper, 

1958), with a hard-wired reference located at CPz.  EEG was recorded at 500Hz, and 

subsequently band-limited from 0-100Hz for analysis. 

 Subjects were asked to wash their hair right before the experiment and to not use 

any hair products (gel and hair spray) that could coat the scalp and reduce the SNR of 

EEG recordings. Prior to cap-positioning, subjects were asked to brush their hair for 

about 5 minutes to remove dead skin cells from the scalp and reduce interface 

impedances between the scalp and the electrodes. An appropriate cap size (small, 

medium, large) was chosen for each subject, as determined manually by locating three 

main electrodes (FZ, CZ, PZ) on the head (middle fronto-central, middle central, middle 

parietal).  Electrode gel was injected into each electrode to reduce the impedance (to < 5 

– 10 kΩ) between the scalp and the electrodes. The amount of electrode gel used in each 

electrode was limited to prevent bridging between adjacent electrodes and ensure 

collection of unique information. In addition to the electrodes on the cap, 

electrocardiogram (ECG) and electrooculogram (EOG) bipolar electrodes, and two 

monopolar mastoid electrodes were used. Before positioning these loose electrodes, the 

chest area, mastoids (left and right) and eye area (above and below left eye) were cleaned 
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with alcohol and exfoliated. Gel was injected into the electrodes and the electrodes were 

taped onto the skin.  

The heart beat causes a ballistocardogram artifact, which can subsequently be 

removed by computing a template ECG waveform from the ECG electrodes and 

subtracting it from the EEG data. EOG electrodes are typically used for removing eye 

blink artifacts.  However in this study, subjects were instructed to not blink during the 

auditory sequences and therefore the occurrence of blinks during EEG periods of interest 

was minimal. Trials in which the EEG signal exceeded amplitudes of 200µV were 

rejected. Since eye blink artifacts are larger than 200 µV, this procedure removed any 

remaining trials contaminated with eye blink artifacts, and specific eye blink artifact 

removal was not necessary.  

 

 
 
Figure 2-2: Experimental setup of subject 
Experimental setup of subject in the MRI scanner, with EEG acquisition using an elastic EEG cap. The 
response pad was positioned under the right hand for responses to the deviant tone. Auditory tones were 
delivered through headphones. 
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2.2.5 FMRI linear regression analysis  
 
 
 
 Functional MR image analysis was performed using the AFNI software package 

(Cox, 1996). The raw fMRI data 2D image slices were converted into 3D datasets using 

the to3D function (AFNI). For each subject the functional images were volumetrically 

registered to a base image (image 3 in run 1) (3dvolreg function in AFNI), which was 

acquired close in time to the anatomical images and after the BOLD signal had stabilized. 

Volume registration was performed to account for head movements during scanning and 

also to ensure that each voxel always corresponded to the same location in the brain for 

all trials. In addition, motion parameters were also saved with this analysis for later use in 

the general linear model. Images with excessive motion were rejected, the criterion for 

excessive motion was a rejection of more than 5% of the total number of trials due to 

motion greater than 5% of the total number of voxels in the dataset relative to a base 

functional magnetic resonance image, which was determined using the 3dToutcount 

function (AFNI). Multiple linear regression analysis was then performed to extract 

BOLD activity associated with the P300 (3dDeconvolve, AFNI function). The 

3dDeconvolve program can be used for multiple linear regression analysis, where an 

input stimulus and the measured fMRI time series are used to estimate the hemodynamic 

response at each voxel.  

In this study, a clustered image acquisition was used and therefore, only one image 

was collected for each trial. A reference function coding the peak amplitude of the trial-

averaged P300 ERP component in each task level was used as an individual regressor to 
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estimate the hemodynamic response at each voxel. Translation and rotation motion 

parameters estimated during registration were used as noise covariates in the regression. 

Anatomical images were transformed into Talairach-Tournoux coordinates (Tournoux, 

1988) to spatially normalize data between subjects (@auto_tlrc, AFNI function). The 

functional images were transformed into Talaraich-Tournoux coordinates using the 

aligned anatomical images as a template volume (@auto_tlrc, AFNI function). The 

individual functional maps were then smoothed with a 6mm full width half maximum 

gaussian filter, and the group results were computed using a random effects voxel-wise t-

test against zero (3dttest, AFNI function). The output dataset was thresholded voxel-wise 

at p<0.05, and clusters larger than 882 µl were removed to obtain a map-wise threshold 

of α<0.05, as indicated by Monte-Carlo simulation using alphasim (Cox, 1996). The 

application of the cluster analysis corrects for multiple comparison by computing the 

statistical power of cluster formation by chance. A total of 2000 images with a sample 

mask consisting of the same voxel size as the functional image (64x64x33) were 

randomly simulated. In order to account for voxel correlation, these images were also 

blurred with a 6mm gaussian kernel. 

 

2.2.6 EEG preprocessing 
 
 
 
 EEG analysis was performed using the Scan 4.4 Edit module (Compumedics 

Neuroscan Inc., TX). Channels showing a variance > 20 µV during the baseline period (-

200 to -50 ms) were removed from further analysis. The average number of channels 

excluded per subject was seven. EEG data were first filtered using a 0.1 – 30 Hz zero-
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phase bandpass FIR filter with a 48 dB/octave roll-off. Signals were then corrected to 

remove the ballistocardiogarm artifact (BA) introduced by the MR environment. ERPs 

were computed using an epoch time from -200 ms to 800 ms relative to deviant onset. 

Epochs were baseline corrected to compensate for drifts that occurred during EEG 

acquisition due to DC mode acquisition. Epochs in which the signal exceeded +200 µV 

were deemed to contain artifacts and were discarded. The average number of accepted 

trials per subject and per condition was 86%. All ERP data were re-referenced to the 

mastoid electrodes, which is commonly done to visualize the P300 data. In the group 

analyses, the grand average ERP waveform in each condition was computed by averaging 

the ERPs across subjects.  

 

2.2.7 Joint Independent Component Analysis (JICA) 
 
 
 
 The full spatial and temporal array of fMRI and ERP data was integrated here, in 

a within-subject variation of the group jICA approach described by Calhoun et al. 

(Calhoun et al., 2006; Calhoun et al., 2010; Edwards et al., 2011). ICA is a data-driven 

technique used to separate signal mixtures measured from multiple sources. It assumes 

that the mixture of signals results from distinct sources whose activity is statistically 

independent. JICA, a variant developed in the context of neuroimaging data, assumes a 

common mixing matrix between ERP and fMRI sources and making it sensitive to joint 

activity across neuroimaging modalities. In the formulation developed here, the infomax 

algorithm  (Bell and Sejnowski, 1995), is used to maximize the output entropy of sources 
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with nonlinear outputs, thereby maximizing the statistical independence of the extracted 

signals.  Entropy is a measure of uncertainty or unpredictability and described as follows: 

H (y) = − p(y) log(p(y)dy∫     [1] 

where y represents a random vector with density p(y). High entropy reflects that the 

variable is random or independent. If x is a matrix of measured fMRI and ERP signals 

across task conditions, reflecting mixtures of the same underlying neural sources, an 

individual source, yi, can be extracted 

yi = ϕ i bi
Tx( ) + n     [2] 

by determining the weight vector, bi, that maximizes the system entropy with respect to a 

Gaussian probability density function where iφ  is a nonlinear scalar function, and n is 

additive gaussian noise (Hyvarinen, 2001b).  

For jICA within-subject, the unblurred t –statistic fMRI maps were restructured 

into a NxM matrix where each row corresponded to the flattened image volume (M 

voxels) obtained for a single experimental condition relative to task level 1(task difficulty 

level, N=4). The ERP data was restructured into an NxP matrix with each row containing 

the flattened spatiotemporal sequence of data across electrodes for a single task condition 

(Figure 2-3). 
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Figure 2-3: Experimental setup of jICA 
Schematic of within-subject jICA across task levels. The ERP data is first concatenated across time points, 
electrodes and conditions. In the case of the fMRI, voxels are concatenated across conditions. ERP and 
fMRI datasets are concatenated into a single joint data matrix. PCA is applied as a pre-processing step to 
whiten the data and jICA was applied to the whitened joint data matrix. Source localization of the jICA-
ERP components was used to reconstruct the spatial distribution of source activity across the cortical 
surface.  JICA-fMRI components were voxel-wise and cluster thresholded and jICA-ERP components were 
vertex-wise and cluster thresholded to identify components with significant joint fMRI and ERP source 
activity. 
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The fMRI and ERP data sets were then concatenated to create a joint-Nx(M+P) 

matrix encompassing the full data set obtained across experimental conditions and 

imaging modalities. The signals associated with each modality were normalized to their 

standard deviation, in order to equalize variations across modalities. Principal Component 

Analysis (PCA) was applied to the normalized joint-matrix to whiten the signal, but the 

dimension of the dataset was not reduced. Principal component analysis finds projections 

onto an orthonormal set of basis that span the input and maximizes the data variance 

across each subsequent projection. Specifically, PCA extracts signals, or principal 

components, that have an orthogonal basis to each other. The first eigenvector and its 

weight, which is the first PCA component, give the direction of the maximum variance in 

the data. PCA basically restructures the correlated variables in a dataset into uncorrelated 

components by identifying directions in the dataset with maximum variance.  Often PCA 

is used to reduce a large number of measured variables, by discarding principal 

components with the lowest variance. Whitening reduces the number of parameter 

estimated with jICA, instead of estimating n2 parameters in the original mixing matrix A, 

only need to estimate an orthogonal mixing matrix. Therefore PCA reduces the 

complexity of the JICA computation. JICA was performed on the PCA extracted 

components. The jICA model for the ERP and fMRI data was defined as follows: 

 

fMRI:      xF=AsF      [3] 

ERP:      xE=AsE     [4] 
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where xF = [ Fx1
Fx2

Fx3
Fx4 ]T and xE = [ Ex1

Ex2
Ex3

Ex4 ]T describe the data recorded with fMRI 

and ERP respectively across four task conditions (Task condition=Levels 2 – 5, 

Baseline=Level 1), and the common mixing matrix, A, implicitly assumes that the 

recordings reflect a common mixture of the underlying neural sources in the brain. Since 

jICA is applied on the PCA components, A=
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 describes the mixing 

of sources across PCA components. The fMRI and ERP sources, denoted as sF and sE 

respectively and referred to as “ICA components”, represent the common underlying 

neural source which varies across task conditions as shown in Figure 2-4. In order to 

extract the source or ICA component, weight matrix W=A-1 must be estimated. ICA 

weights W were estimated using the infomax algorithm (Bell and Sejnowski, 1995) to 

minimize mutual information across components.  



39 
 

 
 

 

 

Figure 2-4: Illustration of Joint-Independent Component Analysis 
JICA assumes a shared mixing matrix (A) for the two imaging modalities, fMRI and ERP. The recordings 
of each modality are denoted by x. The 3D fMRI volume, xF, is concatenated into one row for each task 
condition. Similarly ERP signals were concatenated across electrodes and time, xE, for each task condition. 

 

 

The resulting jICA components consisted of a spatial jICA-fMRI map and a 

spatiotemporal jICA-ERP map. The jICA-fMRI map was thresholded at p<0.05 

(voxelwise, as determined from the distribution of all jICA-fMRI components). A 

corrected map-wise threshold of α<0.05 was applied, relative to chance distribution 

computed by randomizing the jICA-fMRI voxel values of all four components. JICA 

components whose fMRI signal survived this threshold, and their corresponding jICA-

ERP components, were selected for further analysis. With this thresholding scheme, a 

single jICA-fMRI component survived in each subject. 

In the group analysis, the jICA-fMRI map was created by computing the t-value 

of the mean of twenty components that survived significance against zero. The t-test map 

was thresholded voxelwise at p<0.05 and a corrected map-wise threshold of α<0.05 was 



40 
 

 
 

applied. The jICA group map consisted of the mean of the twenty jICA-ERP components 

that survived significance. 

In a subsequent analysis, jICA was also applied to a single EEG electrode (Pz) 

and the entire fMRI data set, to compare against the full spatiotemporal jICA in which all 

sixty-two EEG channels were used. This analysis was performed to investigate the 

sensitivity of jICA when more spatiotemporal information is included. The statistical 

analyses of the jICA components in this were the same as those described above. 

 

2.2.8 Source Reconstruction 
 
 
 
 Source reconstruction of the individual ERP data and jICA-ERP components was 

performed using the weighted minimum norm estimate (wMNE) to solve the inverse 

problem (Brainstorm 3.0, Matlab 2010b).  Minimum-norm estimates favor superficial-

based currents, this tendency can be alleviated with wMNE, which weights deeper 

sources. For each subject, the head was modeled in BrainVISA (v. 4.1.1) using the 

individual high-resolution T1-weighted MR images, and a 3-shell sphere Berg 

approximation representing the brain, scalp and skull, with conductivities of 0.33, 0.0042 

and 0.33, respectively. The cortical surface was parsed and represented as a high-density 

mesh of vertices, and subsequently down-sampled to 15,000 vertices (in Matlab). Sample 

electric dipoles were positioned at each vertex, with their directions constrained to be 

perpendicular to the cortical surface. Electrode positions were determined manually 

based on the EEG gel artifact observed in the MR images. Source reconstruction of the 
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grand average ERP and jICA-ERP waveforms was also computed, using the template 

Colin brain available in Brainstorm. 

Current source density estimates were z-score normalized relative to the baseline 

(-200 to -50 ms prior to deviant onset). Each source map was thresholded vertex-wise at 

p<0.05 relative to the post-stimulus distribution of all vertices across time, and a cluster-

threshold (five vertices connected) was applied.  

 

2.2.9 Region of Interest analysis 
 
 
 
 The source density profiles of the ERP and jICA-ERP data in several regions of 

interest (ROI) were examined in order to characterize the temporal dynamics of task-

related neural sources. ROIs were determined functionally from the fMRI P300 linear 

regression group maps, and constrained using anatomical definitions from the TT_N27 

atlas in Afni. Four ROIs were selected, in the right and left posterior superior temporal 

gyrus (STG) and in the right and left supramarginal gyrus (SMG). These regions were 

selected for analysis, because they are commonly activated in the auditory oddball 

paradigm (Polich, 2007), including in the present study.  

The Colin brain surface model was created using the Colin brain from Brainstorm, 

reconstructed in Freesurfer (v 5.0). ROIs were projected onto the Colin surface model, 

which samples the voxel in the gray matter along the direction of the surface normal 

using nearest neighbor interpolation, and discontinuities in region boundaries were 

smoothed using a two-vertex region growing algorithm, followed by a two-vertex region 

reduction to maintain the approximate surface area of the original ROI. For each ROI, the 
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signal-to-noise ratio (SNR), and the number of vertices that survived a vertex-wise 

significance threshold of p<0.05 relative to the distribution of all vertices across the post-

stimulus time interval (0-800 ms), were computed. SNR was computed over time, as the 

difference between the mean current density across ROI vertices with significant activity 

(p<0.05) in the post-stimulus period and the mean current density across the cortical 

surface in the baseline period, divided by the variance of the baseline source activity. 

Vertices in the baseline period were selected randomly with the constraint that the overall 

number of vertices matched that of the activated vertices within the ROI. Subsequently, 

the area under the SNR curve was computed for the N100 window at 50-200 ms and for 

the P300 window at 350-700 ms. 
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2.3 RESULTS 
 
 
 

2.3.1 Behavioral Results 
 
 
 

The psychometric curve for tone discrimination in a typical subject (4138) is 

shown in Figure 2-5 A. In this subject, accuracy varied from 22 to 100 % for frequency 

differences of 2 and 40 Hz, respectively, and generally increased with frequency 

difference. A least-square Weilbull fit was used to determine the five task levels for the 

scanner study, corresponding to prescan accuracies of 50, 65, 75, 85 and 95%. The tone 

discrimination performance of subject 4138 during the fMRI/ERP study, and the range of 

performance across the group of twenty participants, are shown in Figure 2-5 B. The 

results confirm that with increasing frequency difference, performance accuracy 

increased.  

 
Figure 2-5: Behavioral Results 
(A) Prescan tone discrimination performance on the oddball task and least-square error Weibull fit to the 
psychometric curve for subject 4138. (B) Tone discrimination accuracy (±1 S.E.) for subject 4138 in the 
fMRI/ERP session at five deviant levels corresponding to 50, 65, 75, 85 and 95% prescan accuracy (black 
line). The grayed region shows the range in performance accuracy across 20 subjects. 
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2.3.2 ERP Waveforms 
 
 
 

Subject 4138 (A) and grand average (B) ERP waveforms at electrode Pz, at the 

five task-difficulty levels, are shown in Figure 2-6. The insets show the scalp topography 

of the ERP component at the peak of the response to the level five frequency difference 

(420 ms for subject 4138 and 430 ms for the grand average). For both the single subject 

and the grand average, the increase in amplitude with task difficulty of the component 

peaking around 430 ms, and its parietal topography, are consistent with the P300 (Polich, 

2007). Across subjects, P300 peak amplitude increased with deviant levels (Figure 2-6 C), 

while reaction time decreased with P300 peak amplitude (Figure 2-6 D). It is noteworthy 

that the P300 peak response was more accurately modeled as nonlinear (2-parameter 

exponential) versus linear relative to task level (r2 = 0.98 and 0.75, respectively), and 

reaction time (r2 = 0.96 and 0.86, respectively). 

 

 

Figure 2-6: ERP Results 
ERP responses at electrode Pz to five deviant frequency levels corresponding to 50-95% prescan 
performance accuracy for (A) subject 4138 and (B) the group. (C) Group mean P300 peak amplitude at 
electrode Pz as a function of task level and (D) task reaction time as a function of P300 peak amplitude. 
Plots in C and D are fit with a two-parameter exponential curve (red trace). Error bars denote standard error 
across subjects. 
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2.3.3 FMRI Linear Regression Maps 
 
 
 
The group fMRI linear regression map, obtained using the individual level-wise P300 

peak amplitudes for within-subject analysis, is shown in Figure 2-7 A. The primary areas 

activated in this map were the right middle and posterior portions of the superior 

temporal gyrus (STG), the left middle STG, the left inferior temporal gyrus (ITG), and 

the left inferior frontal gyrus (IFG). Results for the P300 linear regression in subject 4138 

are shown in Figure 2-7 B. This map showed small regions of positive activation in the 

middle and posterior STG and supramarginal gyrus (SMG), bilaterally. Supplementary  

Table 5-1 and  

Table 5-2 in the Appendix lists the peak coordinates and extent of all significant clusters 

of activation found in the fMRI regression maps for the group of twenty subjects and for 

subject 4138, respectively. The size range of significant clusters in the linear regression 

analysis was 1103-22,704 µl in the group map (with two large clusters corresponding to 

activity in the left inferior parietal lobule, and right superior parietal lobule) and 1-379 µl 

for subject 4138.  
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Figure 2-7: FMRI Results 
FMRI activity using the P300 peak amplitude as a regressor (A) in a group of 20 subjects (α<0.05, 
corrected for multiple comparisons), and (B) in subject 4138 (p<0.05, uncorrected), overlaid on a template 
brain in Talairach space (TT_N27 Colin brain). Slice numbers, indicating the distance (in mm) in the 
sagittal plane from the origin in the anterior commissure are shown. L-left; R-right. 
 

2.3.4 Source Reconstruction of the P300 ERP component 
 
 
 

Source reconstructions of the group P300 ERP response for task level 5 are shown 

in Figure 2-8. Task level 5 was selected for the source reconstruction because the P300 

amplitude is largest at this level. Source reconstruction of the group activity revealed 

sources in the time window of the P300, in the left pre- and post- central gyri (PreCG and 

PostCG, respectively), left IFG, left posterior STG, and left occipital cortex. On the right, 



47 
 

 
 

sources were observed in the superior temporal plane and gyrus (STP/STG), in the 

supramarginal gyrus (SMG) and in the middle frontal gyrus (MFG). The single subject 

source reconstructions (not shown) were generally noisy, with sources observed in 

multiple brain regions and at additional time points outside the N100 and P300 time 

windows. This result is likely related to the low SNR of the ERPs in a single subject 

(SNR≈2) compared to the grand average ERPs (SNR≈5).  

 

Figure 2-8: Group ERP source reconstruction 
Source reconstruction for the grand average (N=20) level 5 ERP in the baseline period prior to deviant 
onset (-200 to 0 ms), and at 100 ms intervals during the P300 response (350 to 650 ms), in the left (L) and 
in the right (R) hemispheres. Source magnitude is expressed as a z-score relative to the magnitude during 
the baseline period.  
 

2.3.5 jICA fMRI maps 
 
 
 
 JICA was applied on the ERP and fMRI data across task levels. Only one jICA 

fMRI-ERP component in each subject survived the significance threshold, and therefore a 

total of twenty components were used in the group analysis. The group fMRI jICA map 

(Figure 2-9 A) revealed activity in the middle and posterior STG and in the SMG, 

bilaterally, as well as in the PreCG, PostCG and IFG, predominantly on the left. Clusters 
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in this analysis ranged 412-25,055 µl (with one large cluster corresponding to activity in 

the left postcentral gyrus). This pattern of activity was similar to that observed in the 

group P300 linear regression map (Figure 2-7 A) in the superior temporal and frontal 

cortex. However, the activity returned by jICA was stronger (approximately 50% 

increase in t- value in the right middle and posterior STG and SMG, and in the left PreCG 

and PostCG)) and more extensive, as evident from comparison of cluster sizes between 

the two maps (see  

Table 5-3 in the appendix). Other important differences were that activity in the PreCG 

and PostCG, consistent with that observed in the P300 source reconstruction maps 

(Figure 2-8 and Figure 2-11), was observed only in the fMRI jICA maps. In contrast, 

activity in the right ITG was observed only in the P300 regression maps.  

The fMRI jICA maps for subject 4138 (Figure 2-9) showed strong activity in the middle 

and posterior STG and in the SMG, predominantly on the right, as well as in PreCG, 

PostCG and IFG, bilaterally (clusters ranged 189-2142 µl shown in  

Table 5-4 in the appendix). The single subject jICA map was very similar to that of the 

group in that the same network of regions was activated. However, the pattern of 

lateralization of the individual and group maps was somewhat different. The differences 

in lateralization may reflect individual differences, which result in more bilateral activity 

at the group level. The single subject jICA results were far more robust than those for the 

single subject P300 linear regression, as evidenced by the strong similarity of the 

individual jICA (but not P300 regression) map to the group maps. 
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Figure 2-9: JICA-fMRI maps 
FMRI jICA for (A) the group of twenty subjects (t-test of twenty components against zero), and for (B) 
subject 4138 (both at α < 0.05, corrected for multiple comparisons), overlaid on the TT_N27 Colin brain. 
Slice numbers are indicated. 
 

2.3.6 ERP jICA  
 
 
 
 The ERP jICA waveforms at electrode Pz for the group of twenty subjects (blue) 

and for subject 4138 (red) are shown in Figure 2-10. The group and single subject 

waveforms overlap closely, with a marked increase in amplitude during the P300 time 

window (as observed in the group and individual ERP waveforms shown in Figure 2-6). 

There is also a negative phase peaking around 140 ms and corresponding to the N100 

time window. The peak amplitudes in the negative and positive phases of the ERP are 

larger, and the negativity is more distinct, in the single subject jICA results. These 
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differences may be due to smoothing in the group maps that reflects inter-individual 

differences in the latency of N100 and P300.   

 

Figure 2-10: JICA-ERP temporal profile 
JICA-ERP at electrode Pz for the group of twenty subjects (mean shown in dark blue and standard 
deviation shown in light blue) and subject 4138 (red). 
 

2.3.7 Source Reconstruction of the ERP jICA  
 
 
 
 Source reconstructions of the ERP jICA data, for the group of subjects and for 

subject 4138, are shown in Figure 2-11. Source magnitudes are reported as a z-score 

computed relative to the baseline interval (-200 to-50 ms). The group source 

reconstruction (top panel) showed significant P300 related activity in the STG, and SMG, 
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bilaterally, and in the occipital cortex, IFG, and PreCG and PostCG, predominantly on 

the left, similar to the group ERP source reconstructions and group fMRI jICA map. In 

subject 4138 (bottom panel), activity was observed in the same network of regions, albeit 

with smaller z-scores, likely due to the lower SNR observed at the individual level.  

 

Figure 2-11: JICA-ERP source reconstruction 
Time series of the ERP jICA source reconstruction in the baseline interval (-200 to 0 ms), and at 100 ms 
intervals during the P300 response (350 to 650 ms), for the group (top) and for subject 4138 (bottom), in 
the right (R) and left (L) hemispheres. Source magnitude is expressed as a z-score relative to the magnitude 
during the baseline period. 
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2.3.8 Region of interest analysis 
 
 
 

Figure 2-12 shows the mean time course of statistically significant vertices 

(p<0.05) in four task-relevant ROIs (left and right STG and SMG), for sources 

reconstructed from jICA (solid line) and task level 5 (dashed line) activity in the group 

(top panel) and subject 4138 (bottom panel).  

 

Figure 2-12: Number of active vertices for ERP JICA-ERP source activity within ROIs 
Number of vertices within each ROI with significant ERP activity (p<0.05), for jICA exctracted across task 
levels (solid line), and for level 5 (dotted line),  as a function of time relative to deviant onset at 0 ms. 
Results are shown separately for the group (top) and for subject 4138 (bottom)in the left and right SMG 
(red and blue, respectively) and the left and right STG (green and black, respectively). 

 

This measure roughly reflects the extent of activation within each ROI as a 

function of time. At the group level (top panel), the jICA sources contained a larger 
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number of statistically significant vertices compared to the Level 5 sources in all ROIs, 

particularly during the N100 (STG ROIs) and P300 (all ROIs) time windows. In subject 

4138 data, the number of significant vertices was generally smaller in the jICA relative to 

level 5 sources (except in the right SMG). However, the temporal profiles of the jICA 

sources in the individual data were better defined in that they showed increases relative to 

the baseline specifically during the time windows of the N100 and P300.  

Figure 2-13 shows the time course of the SNR in the same four ROIs, for the 

group data (top panel) and for subject 4138 (bottom panel). In the group data, the jICA 

compared to the task level 5 results showed a 20% increase in the area under the SNR 

curve from 350 to 700 ms in the right STG, and a 70% increase in the right SMG. In 

subject 4138, the jICA results showed a 300% increase in SNR area from 350 to 700ms 

in the right SMG. Detailed SNR area results are also shown in Table 2-1 for the N100 

peak from 50-200 ms, and the P300 peak from 350 to 700 ms at the four ROIs, for 

subject 4138 and the group. 

 

 
 STG R SMG R STG L SMG L 
Group N100 P300 N100 P300 N100 P300 N100 P300 
Level 5 225 2071 268 2097 464 2216 366 3458 

jICA 430 2725 592 3485 982 2549 594 3477 
Subject 

4138 
 

Level 5 164 615 328 365 305 410 172 528 
jICA 377 339 543 1146 307 520 117 309 

 
Table 2-1: Area under curve for the N100 and P300 component 
Area under the curve (representing SNR) of the level 5 and jICA N100 and P300 components, in the four 
ROIs, for the group and for subject 4138. The N100 interval was selected from 50-200 ms and the P300 
interval from 350-700 ms. 
 

The single subject temporal profiles were generally consistent with those of the 

group and those reported in the literature for auditory oddball detection, revealing a 
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progression of neural activity from STG to SMG associated with the N100 and P300 

responses. Differences in the activation pattern between the single subject and group data 

may reflect individual variations in the location and lateralization of temporoparietal 

activity related to auditory oddball detection, and/or deviations in the positioning of ROIs 

and source localization relative to individual  

neuroanatomy.  

 

 

Figure 2-13: SNR for ERP and ERP-jICA source activity within ROIs 
SNR is shown for the group (top) and for subject 4138 (bottom) ERP jICA extracted across task levels 
(solid line) and ERP activity in level 5 (dotted line),as a function of time relative to deviant onset at 0 ms, 
in the left and right SMG (red and blue, respectively)and the left and right STG (green and black, 
respectively). 
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2.3.9 Relationship between ERP and fMRI joint components 
 
 
 

JICA can also be used to extract the underlying relationship between ERP and 

fMRI activity using the mixing coefficients of the linked jICA ERP and fMRI 

components. The mixing coefficient matrix “A” (see 2.2.7), describes the mixing of the 

underlying sources across samples. That is, the coefficients describe how ERP and fMRI 

signals vary across samples, and thereby the relationship between ERP and fMRI. In 

general, ICA extracts the unmixing coefficients “W”, which can be used to retrieve the 

mixing coefficients “A” by computing the pseudo-inverse of the unmixing coefficients 

(A = W-1). Since jICA was applied on whitened and normalized data, the data first need 

to be unwhitened and unnormalized  

 

ArE(MxP) = (D(MxP)× A(MxP) ⋅ NE(MxP)   [5] 

ArF (MxP) = (D(MxP)× A(MxP)) ⋅ NF (MxP)   [6] 

 

where D is the pseudo-inverse of the original whitening matrix, NE and NF are the 

pseudo-inverses of the normalization matrices applied to the ERP and fMRI data 

respectively, and Ar describes the reconstructed coefficients for the ERP “ArE” and fMRI 

“A rF” sources respectively and M and P equal 4. Figure 2-14 shows the mixing 

coefficients of the joint ERP and fMRI components plotted against one another. Results 

show that jICA extracted a nearly linear relationship between ERP and fMRI (r2=0.83). 
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Figure 2-14: Relationship between ERP and fMRI joint components 
The mixing coefficients of the jICA-ERP components are plotted against the mixing coefficients of the 
jICA-fMRI components. 

2.3.10 Multi-Channel versus Single-Channel ERP jICA 
 
 
 
 In order to investigate whether the sensitivity of jICA for extracting common 

fMRI and ERP sources is increased when multiple ERP channels are included, jICA was 

compared between two data sets. One set with all sixty-two ERP channels and the entire 

fMRI volume (described above), and the other with only one ERP channel (Pz) and the 

entire fMRI volume. A voxelwise t-test showing the differences between the resulting 

fMRI jICA maps is shown in Figure 2-15. The difference map shows that jICA with the 

full array of spatiotemporal information yielded significantly more activity in regions 

specifically associated with the P300, including the STG, bilaterally, and the right SMG. 

With the exception of activity immediately below the Pz electrode, there were no areas 
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that showed stronger activity for the single ERP channel analysis. The results suggest that 

there is an advantage to using the full array of ERP electrodes in jICA. 

 

 
Figure 2-15: Multi-channel ERP JICA vs. single-
ERP channel jICA 
T-test between the jICA fMRI group maps obtained 
using the full spatiotemporal sequence of multi-
channel ERP activity, and using a single electrode, 
Pz. 
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2.4 DISCUSSION 
 
 
 
 The integration of neural activity recorded simultaneously with ERP and fMRI 

can highlight the temporal dynamics of different brain regions. In particular, the 

integration of ERP and fMRI within-subject could be useful for the diagnosis of 

neuropathology. This paper examined the potential advantages of using jICA to fully 

integrate parametric fMRI and ERP P300 data within-subject, relative to using the P300 

ERP peak amplitude as a regressor in a general linear model. The jICA approach depicts 

linear and non-linear covariations between the ERP and fMRI signals, and therefore has 

the potential to be more sensitive and comprehensive than the general linear regression 

model. In addition, the full array of ERP electrodes and ERP data points was used here in 

the jICA approach, as opposed to the single electrode and point in time (peak activity) 

used (here and typically) in the linear regression analysis, thereby potentially allowing for 

more sensitive characterization of neural activity. 

The group and single subject jICA results revealed activity in the superior 

temporal and supramarginal cortex, predominantly on the right. These areas have been 

associated with auditory processing and auditory oddball detection in previous work 

(Linden et al., 1999; Linden, 2005), and also in the P300 linear regression performed in 

the present work. Activity was also observed in the precentral and postcentral gyri, 

predominantly on the left, likely reflecting right-hand motor planning and motor control. 

This interpretation is consistent with the strong relationship between mean motor 

response time and mean P300 peak amplitude observed here (Figure 2-6), and with 
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previous work suggesting involvement of this region in motor response during an oddball 

task (Linden et al., 1999; Strobel et al., 2008).   

The source reconstruction of the jICA group data revealed activity during the 

P300 time window in the superior temporal and supramarginal gyri, bilaterally, and in the 

occipital, inferior frontal, and pre- and post- central gyri, predominantly on the left. These 

maps are generally consistent with previous reports of the P300 neural sources (Halgren 

et al., 1980; Linden, 2005). The jICA source reconstruction maps were also largely 

consistent with the source reconstruction maps of the group ERP data, and the group 

fMRI maps, reconfirming the strength of the jICA approach for spatially and temporally 

resolving task related neural activity (Calhoun et al., 2006; Moosmann et al., 2008). 

However, activity in the left occipital cortex was observed only in the ERP source 

reconstructions, but not in the fMRI maps. Activation of the occipital cortex has been 

reported in previous Loreta source reconstructions of the auditory P3b ERP component, 

although the significance of this finding remains uncertain (Anderer et al., 1998; Volpe et 

al., 2007). 

 A primary difference between the fMRI P300 linear regression and jICA maps 

was that only the jICA maps showed activity in the precentral and postcentral gyri. This 

result may be related to the fact that mean response times did not vary linearly with the 

mean P300 peak amplitude (Figure 2-6), and were therefore not well modeled in the P300 

linear regression. Another difference between the fMRI maps was that the main areas 

associated with the P300, namely the right superior temporal and supramarginal gyri, 

were activated more strongly and extensively with the jICA approach. This difference 

may again be related to the fact that the P300 ERP peak amplitude did not vary perfectly 
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linearly with task level (Figure 2-6), such that co-variations between the ERP and fMRI 

data were better modeled with the jICA approach. 

A general drawback of the general linear model (GLM) is that assumptions about 

the co-linearity of the ERP and fMRI data may not always hold, for example at low levels 

of sensory stimulation (Logothetis et al., 2001), or in pathological conditions such as 

stroke, Alzheimer’s or Parkinson’s disease (Polich and Pitzer, 1999; Polich and Corey-

Bloom, 2005; Girouard and Iadecola, 2006). In such cases, jICA could be particularly 

advantageous for ERP and fMRI data fusion because the method is applicable to both 

linear and nonlinear relationships.  

 In this work, the full array of spatial and temporal information from the ERPs was 

incorporated into the jICA approach. In contrast, the P300 linear regression used 

information from only one electrode at the time point of the P300 peak amplitude. The 

superior sensitivity of the jICA relative to the GLM may be largely related to these 

factors. The importance of including additional ERP channels is supported by the 

comparison of the single and multi-channel ERP jICA. Our comparison showed that with 

one electrode, the sensitivity of jICA to P300 related activity in the right superior 

temporal and supramarginal gyri was significantly reduced. Taken together, the results 

suggest that incorporating more spatiotemporal information is useful for fusing ERP with 

fMRI. The benefits from incorporating more temporal information from the ERP 

waveform will be investigated in computational modeling studies aimed at further 

optimization of jICA for ERP-fMRI data fusion. 

 Perhaps the most significant finding of this study is that the approach proposed 

here, using jICA to fully integrate fMRI and ERP data in the context of a parametric 
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paradigm, lends itself well to within-subject analysis. The single subject fMRI jICA data, 

and source reconstruction of the ERP jICA component, were both consistent with the 

group jICA maps. In contrast, the individual fMRI P300 regression maps and ERP source 

reconstructions were generally too noisy to evaluate, demonstrating an advantage of the 

jICA approach particularly for individual data analysis. This finding is particularly 

important because analysis of individual patient data is necessary for implementation of 

multimodal neuroimaging as a clinically relevant diagnostic tool.  

  

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 3 
 
 
 

 Theoretical evaluation of Joint-Independent Component Analysis for the integration 
of multi-channel ERP and fMRI data 
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3.1 Introduction 
 
 
 
 Combining functional magnetic resonance imaging (fMRI) and event-related 

potential (ERP) responses has become a popular approach for studying neural activation 

with high temporal and spatial resolution (Dale and Halgren, 2001; Horovitz et al., 2002; 

Liebenthal et al., 2003; Liebenthal et al., 2010; Dubois et al., 2012; O'Connell et al., 

2012). A number of methods for integrating the information between the two modalities, 

that capitalize on the respective strengths of each, have been proposed. Linear, model-

based approaches have been used successfully to characterize joint activity (see (Rosa et 

al., 2011; Huster et al., 2012) for a review), at the expense of assuming a direct linear 

relationship between ERP and fMRI measures. However, linear models can be too rigid 

to capture the richness of human brain activation. Recently, data-driven approaches such 

as joint independent component analysis (jICA) have been implemented to integrate ERP 

and fMRI data, by searching for co-varying signals across a group of subjects (Calhoun et 

al., 2009; Mangalathu-Arumana et al., 2012; Mijovic et al., 2012). An advantage of ICA, 

and data-driven approaches in general, lies in their ability to identify statistical 

relationships between signals when detailed á priori models are not available (Calhoun et 

al., 2006). Another advantage of jICA that makes it well-suited for individual data 

analysis is the separation of noise and signal into separate components (known as 

denoising). Although linear approaches denoise datasets as well, it has been shown that 

noisy fMRI datasets may follow non-gaussian distributions (Zarahn et al., 1997), to 

which ICA methods are particularly sensitive. The benefits of jICA for individual data 
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analysis can further be enhanced by using spatial and temporal information from multi-

channel ERPs (Mangalathu-Arumana et al., 2012).  

In a previous study, using a parametric design with four experimental levels in 

each subject, a single jICA-fMRI component was found to carry all the significant neural 

activity associated with the perceptual task (Mangalathu-Arumana et al., 2012). This 

result was hypothesized to be related to the relatively low variability in the dataset (small 

number of experimental levels), hindering the separation of neural sources into different 

components. The segregation of sources into separate components is desirable for 

characterization of their spatiotemporal dynamics. Thus, increasing data variability by 

using a trial-by-trial design or an increased number of experimental levels could improve 

source segregation with jICA. On the other hand, single-trials have lower signal-to-noise 

ratio (SNR), which could lower the sensitivity of jICA.  

Stimulus-induced changes in neural activity can produce linear or nonlinear 

changes in the hemodynamic response, depending on the brain area activated and the rate 

and intensity of stimulation. With short inter-stimulus intervals (0.25-4s), the fMRI 

response can be non-linearly related to the neural response, whereas at longer intervals a 

strong linear relationship is typically observed (Rees et al., 1997; Mechelli et al., 2000; 

Birn and Bandettini, 2005; Liu et al., 2010). Similarly, a brief period of synchronous 

neural activity, resulting in increased firing coherence among a small percentage of 

neurons, may be captured with ERPs without significantly changing local metabolic 

consumption, resulting in little, if any, change in the much slower BOLD response 

(Babiloni and Cincotti, 2004). Conversely, neural activity of limited extent may be 

visible with fMRI, but located too deep or oriented such that it does not elicit a 
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significant ERP response (Nunez and Silberstein, 2000). Aside from normative instances 

of neurovascular uncoupling, pathological conditions can also lead to highly non-linear 

(essentially uncoupled) relationships between neural activity and the hemodynamic 

response (Girouard and Iadecola, 2006). The performance of jICA with linearly varying 

neural and hemodynamic signals is relatively well established (Calhoun et al., 2006; 

Mangalathu-Arumana et al., 2012), but the application of the technique to non-linear 

relationships has not been systematically examined. 

The current study uses computer simulations to characterize the sensitivity of 

jICA for extracting known neural sources in individual data, as a function of imaging 

SNR, number of experimental samples and the relationship between ERP and fMRI 

signals (linear, nonlinear, and uncoupled sources). The ability of jICA to localize neural 

sources measured with fMRI and ERPs under these conditions was examined in the 

context of both a parametric and a nonparametric experimental paradigm.  An illustration 

summarizing the different parameters simulated is shown in Figure 3-1. 
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Figure 3-1: Illustration of experimental design and relationship between ERP and fMRI signals. 
Illustration of the parameter space tested, SNR vs number samples (A) for linear and nonlinear relationship 
between ERP and fMRI (B), and for  parametric (C) and  nonparametric (D) experimental designs. In a 
parametric paradigm, response amplitude varies systematically with experimental level. In a non-
parametric paradigm, there is no systematic relationship between response amplitude and experimental 
level. 

 

Through the simulations, we show that jICA is able to extract linear, nonlinear, as 

well as uncoupled relationships, with the degree of segregation between sources 

dependent on the SNR, number of samples and the experimental design used. 
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3.2 Methods 
 
 
 

3.2.1 Overview of Computational Model  
 
 
 

The detection and segregation of neural sources was examined along three 

dimensions, the number of independent ERP and fMRI data samples, the SNR of fMRI 

and ERP data, and the nature of the relationship between fMRI and ERP signals (linear, 

nonlinear, and uncoupled), to characterize the trade-offs between experimental design 

and source segregation in jICA. Multi-channel ERP waveforms and whole-brain fMRI 

maps were simulated for three neural ”sources” located in brain regions implicated in 

auditory oddball detection (Liebenthal et al., 2003; Mangalathu-Arumana et al., 2012), in 

the right frontal cortex, right temporo-parietal cortex, and left motor cortex (Figure 3-2 - 

top right; blue, yellow, and red squares, respectively). 

The neural sources were simulated as fMRI activation foci in a 3D whole brain 

MRI volume (64x64x33 voxels) in Talaraich space (Tournoux, 1988), using the Afni 

software (AFNI, Cox et al., 1996). Each source consisted of a cube (5x5x5 voxels, 

4000µL) of active voxels characterized by a BOLD response that varied homogeneously 

in space as a function of an external “stimulus” vis-à-vis a parametric/nonparametric 

experimental design.  

The ERP manifestation of each neural source was defined spatially on the cortical 

surface of the Colin brain (Holmes et al., 1998), as implemented in Brainstorm 
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(Brainstorm 3.1) (Tadel et al., 2011). The cortical surface consisted of a mesh of 15,000 

vertices. Sample electric dipoles were positioned at each vertex with orientations 

constrained to be perpendicular to the cortical surface at that point. Cortical sources were 

created by projecting the fMRI sources to the cortical surface using Freesurfer (v 5.0) 

(Dale et al., 1999; Fischl et al., 1999). Voxels in the gray matter were projected along the 

direction normal to the surface using nearest neighbor interpolation. Each cortical source 

was assigned a current density profile over a 1000 ms epoch, and the amplitude was 

scaled as a function of the applied “stimulus” and the experimental design. The current 

source density profiles for the sources in right motor and right temporo-parietal cortex 

(Figure 3-2, top left) were simulated as gaussian-weighted sinusoids peaking at 100ms 

(with positive and negative phases) and 800ms (with a negative phase), respectively. The 

frontal fMRI source was simulated as uncoupled and had no ERP manifestation.  

ERPs were formed through forward projection of the current source density 

profiles to the scalp surface of the Colin brain, using a 3-shell sphere head model in 

Brainstorm. Each simulated ERP consisted of the time-varying voltage waveforms 

obtained from sixty-two electrode locations on the scalp (positioned according to the 10-

20 system), using a template electrode position file for the Colin brain.  

 

 

 

 



69 
 

 
 

 

Figure 3-2: Work flow of computational simulations.  
Three sources were simulated, with fMRI activity in the right temporo-parietal cortex, right frontal cortex 
and left motor cortex (A. right panel). The volumetric fMRI data corresponding to the right temporo-
parietal and left motor sources were projected onto a mesh of vertices on a cortical surface and simulated 
with gaussian-weighted sinusoidal temporal profiles (A. left panel). ERP topographical maps were 
generated by forward projecting the temporo-parietal and motor sources onto the scalp partition of the 
Colin head model (B.) fMRI and ERP signals co-varied linearly (temporo-parietal and motor source, 
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Simulation #1), nonlinearly (f(x)=1-exp(x), temporo-parietal and motor source, Simulation #2), or were 
uncoupled (f(x)=0, the frontal source). For jICA, the simulated fMRI and ERP data sets were concatenated 
into a single row to create a joint-matrix across all samples and imaging modalities (Mangalathu-Arumana 
et al., 2012), see also Figure 2-3. PCA was applied to the joint-matrix to whiten the signal and to limit the 
dimensionality of the dataset to twenty components. JICA was then performed on the PCA components. 
The resulting jICA components consisted of a spatial jICA-fMRI map and a spatiotemporal jICA-ERP map 
(C.). Source maps of the jICA-ERP channel data were computed and projected onto the Colin cortical 
surface model (D.) to facilitate comparison with the jICA-fMRI maps.  
 

3.2.2 Parametric and non-parametric experimental design 
 
 
 

In separate simulations, the amplitudes of the fMRI and ERP responses were 

varied across experimental samples, consistent with either a parametric or a non-

parametric experimental design. In simulations of a parametric design, signal amplitudes 

of ERP and fMRI sources varied along a continuum defined by varying the values of a 

stimulus variable (e.g., change in frequency in a frequency discrimination task). ERP and 

fMRI amplitudes covaried across trials for each source.  The relationships between fMRI 

and ERP signals associated with each neural source were simulated as a linear model 

(f(x)=x), an exponential model (f(x)=1-exp(x)) or an uncoupled model (f(x)=0). In 

simulations of a non-parametric design, ERP and fMRI signals covaried in a linear, 

nonlinear or uncoupled fashion, but there was no parametric relationship across the 

stimulus variable (i.e., experimental samples were independent). An illustration of the 

parametric and non-parametric designs and the relationship between ERP and fMRI is 

shown in Figure 3-1C and D. 
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3.2.3 Simulation parameters for computational model 
 
 
 

For a given relationship between ERP and BOLD responses (linear or nonlinear), 

484 simulations were run, examining the detection and segregation of neural sources as a 

function of the numbers of samples (4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 40, 50, 60, 80, 100, 

140, 180, 220, 260, 300, 360), and paired SNRs for ERP (0.37, 0.41, 0.45, 0.49, 0.52, 

0.55, 0.58, 0.64, 0.71, 0.83, 1.01, 1.17, 1.31, 1.43, 1.65, 1.85, 2.18, 2.48, 2.74, 2.98, 3.20, 

3.5) and fMRI (0.79, 0.86, 0.93, 1.01, 1.11, 1.26, 1.50, 1.67, 1.93, 2.12, 2.37, 2.74, 3.35, 

3.87, 4.32, 4.74, 4.99, 5.30, 5.66, 6.12, 6.70, 7.0).  The uncoupled relationship (frontal 

source) was included in both sets of simulations. The range of SNRs in each imaging 

modality was chosen based on measures obtained from previous experimental data for a 

single trial (low SNR: ERP=0.35, fMRI = 0.8) and an experimental condition obtained 

from averaging 72 trials (high SNR: ERP=3.5, fMRI = 7) (Mangalathu-Arumana et al., 

2012). For ERP signals, SNR was defined as the maximum ERP amplitude in the post-

stimulus window divided by the standard deviation of the prestimulus baseline. For fMRI 

signals, SNR was defined as the score of a paired t-test between task and rest conditions. 

In the context of a typical experimental design, the extremes of the SNR ranges (ERP: 

0.37 and 3.5; fMRI: 0.8 and 7) and numbers of samples (4 and 360) represent examples 

of a parametric design with a small number of samples and high SNR per sample (due to 

averaging), and a trial-by-trial design with a large number of samples and low SNR per 

sample. The performance of jICA as a function of these variables was evaluated based on 

the accuracy of source retrieval and the separation between sources as described in 

Section 3.2.7.  
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Analyses were performed using the 128 node high-performance computing cluster 

at Marquette University (8 cores and 24 GB RAM per node). Simulations were 

implemented on a distributed cluster, where each combination of paired ERP/fMRI SNR 

and number of samples was run as an independent simulation on a single node. 

Simulations were submitted through the CONDOR job scheduler (Condor, 7.7.6), using a 

condor script to automatically generate the fMRI and ERP datasets for each simulation on 

the fly at each compute node using a compiled (stand-alone) Matlab executable script 

together with AFNI. FMRI datasets were created using AFNI and loaded into Matlab. 

ERP datasets were created using the brainstorm toolbox run through Matlab. Following 

data generation, the Matlab script performed jICA on the datasets. Amplitude and cluster 

thresholding on jICA-fMRI datasets was subsequently performed in AFNI. Normalized 

source detection values were extracted (see Section 3.2.7 for details) using Matlab and 

the results returned via the job scheduler for analysis. ERP datasets were back-

transformed onto the cortical surface using a distributed source reconstruction in 

Brainstorm and amplitude thresholded using Matlab. Normalized source detection values 

were extracted from the thresholded ERP source maps in Matlab and the results returned 

via the job scheduler for analysis. 

 

3.2.4 Temporal and Spatial ICA 
 
 
 
Temporal and spatial ICA were applied to the ERP and fMRI data, respectively, 

and served as a “benchmark” to evaluate the effectiveness of jICA in segregating neural 

sources as a function of SNR and number of samples based on the underlying statistics of 
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the data. The “general” ICA approach represented the “ideal” case for ICA source 

detection within a single imaging modality, meaning that the sources extracted within a 

single imaging modality should ideally match the original simulated source. This analysis 

defines the best possible performance of ICA within the limitation of the type of signal, 

SNR and number of samples used.   

Temporal ICA was applied to the ERP temporal profiles across electrodes, and 

spatial ICA was applied to the fMRI flattened image volumes. Prior to analysis, principal 

component analysis (PCA) was applied to the data in each modality separately to whiten 

the signal and reduce the dimensionality of the data for datasets with more than twenty 

samples. To keep the analysis computationally tractable, temporal and spatial ICA were 

performed on the ERP and fMRI PCA-extracted components, respectively.  

For spatial ICA, the components consisted of a spatial ICA-fMRI map and for 

temporal ICA, the components consisted of a spatiotemporal ICA-ERP map (specifically, 

a time series of scalp-topography maps). Distributed source reconstructions of temporal 

ICA-ERP components were used to facilitate comparisons between the spatial locations 

of the ERP and fMRI activity. Source localization of the ICA-ERP maps was performed 

using the weighted minimum norm estimate (wMNE) to solve the inverse problem for a 

distributed representation of electric dipoles located at each vertex on the cortical surface 

model and oriented perpendicular to the cortical surface. (Brainstorm 3.0, Matlab 2010b). 

The Colin head volume conductor and cortical surface models used to simulate the 

sources were also used to reconstruct the cortical source activity from each temporal 

ICA-ERP component.  
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3.2.5  JICA 
 
 
 

The fusion of fMRI and ERP data was performed using a within-subject 

parametric form of jICA described by Mangalathu-Arumana et al. (Mangalathu-Arumana 

et al., 2012). In this approach, the variation in ERP and fMRI signals is described across 

different levels of a data set in a single subject (as opposed to across subjects, as in other 

forms of jICA) (see Section 2.2.7 for a detailed description). In each simulation, jICA 

was used to compute jointly varying spatially and temporally independent ERP and fMRI 

components. Prior to analysis, the fMRI and ERP data sets were concatenated into a 

single row to create a joint-matrix encompassing the full data set obtained across all 

samples and imaging modalities, see Figure 2-3. Similar to the temporal and spatial ICA, 

PCA was applied to the joint-matrix to whiten the signal and to reduce the dimensionality 

of the dataset to twenty components for simulations containing more than 20 samples. 

JICA was then performed on the PCA-extracted components. Each of the resulting jICA 

components consisted of a spatial jICA-fMRI map and a spatiotemporal jICA-ERP map 

containing linear projections of the joint fMRI/ERP data across experimental samples 

that maximized the statistical independence across jICA components. Distributed source 

reconstructions of the jICA-ERP components were used to facilitate comparisons 

between the spatial locations of the neural sources corresponding to the ERP and fMRI 

activity (Section 3.2.2).  
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3.2.6 Statistical analysis 
 
 
 

JICA-fMRI and ICA-fMRI maps were thresholded at p<0.01 (voxelwise, relative 

to the distribution of jICA-fMRI and ICA-fMRI activity from all components 

respectively) to identify regions of significant activity within each component. A 

corrected map-wise cluster threshold of α<0.05 was applied to identify significant regions 

of activity relative to a chance distribution computed by randomizing the jICA-fMRI and 

ICA-fMRI voxel values, respectively, across all extracted components. JICA-ERP and 

temporal ICA-ERP source maps were thresholded at p<0.01 relative to the post-stimulus 

distribution across all vertices and components to identify regions on the cortical surface 

with statistically significant activity. 

 

3.2.7 Characterization of Source Detection 
 
 
 

The ability of jICA to detect and parse neural sources was evaluated by 

computing two metrics, the normalized source detection and source segregation values 

(described below), for each neural source and jICA component.  

In the simulations, vertices corresponding to each source were predetermined and 

therefore analysis was based on these vertices only. For each jICA-fMRI component, the 

mean signal of all significantly active voxels (p<0.01, α<0.05) in each of the three source 

volumes ( fMRIs ) was computed, and the normalized contribution of the Nth jICA-fMRI 

component to the overall source activity, fMRI
Ns , was defined as 
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to characterize the separation of each source across components. The maximum 

normalized source detection value for jICA-fMRI and spatial ICA-fMRI, max( fMRI
Ns ),was 

computed to determine the component with the highest contribution to the original neural 

source.  

For each jICA-ERP component (in the form of current density source maps), the 

time course of the signal in vertices that survived the significance threshold were 

correlated against the time course of the current source density maps of the original 

simulated sources to characterize the correspondence between the input ERP and output 

jICA-ERP and temporal ICA-ERP signals. The normalized contribution of each jICA-

ERP component to the current density of each simulated source, sN
ERP, was defined as  

∑∑

∑

= =

==
comp vert

vert

N

j

N

i
xy

N

i
xy

EEG
N

r

r
s

1 1

1       [2] 

where rxy denotes the vertex-wise correlation between the input and jICA-ERP current 

sources density profiles summed across the total number, Nvert, of significantly active 

vertices within a component (p<0.01) and across all jICA components (Ncomp). The 

maximum normalized source detection value for jICA-ERP and temporal ICA-ERP, max 
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( sN
ERP), was computed to determine the component with the highest contribution to the 

source.  
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3.3 Results 
 
 
 

3.3.1 Temporal and spatial ICA: SNR vs. number of samples in a non-parametric 
design 
 
 
 
The first set of simulations examined source segregation in the context of a non-

parametric experimental design in which the experimental samples were independent. 

The relationship between ERP and fMRI signals was linear. This type of design applies 

to experiments with complex (non-systematic) variations in the physiological response 

between experimental samples (e.g., disparate experimental conditions or trials, for 

example, in a resting state experiment). Temporal and spatial ICA were applied to the 

ERP and fMRI data, respectively, as a reference for comparison with jICA results. The 

segregation of sources using temporal ICA for ERP and spatial ICA for fMRI is shown as 

a function of the SNR and number of samples in Figure 3-3. The degree of source 

separation across ICA components was evaluated using the normalized source detection 

values, max(EEG
Ns ) and max( fMRI

Ns ), for each source.  

For source separation of ERPs using temporal ICA, 70-90% of the temporo-

parietal ( EEG
Ns = [0.7, 0.9]) and 80-100% of the motor source activity were captured by a 

single component (Figure 3-3 – left). Source segregation degraded systematically as the 

number of samples increased, but there was little effect of SNR. For the uncoupled right 

frontal source, simulated with no corresponding ERP source, the ICA-ERP time course 
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showed a small correlation with the (spatially closest) temporo-parietal source, resulting 

in very low maximum normalized source detection values, EEG
Ns , ranging 0.1-0.3.  

Source separation of fMRI using spatial ICA showed maximum normalized 

source detection values ranging 0.8-1 for all sources, and all but the smallest SNRs 

(ERP=~0.4-0.5 and fMRI=~0.9-1.2) and numbers of samples (4-6) (Figure 3-3,  right 

panel). In those cases, max(fMRI
Ns ) ranged 0.4-0.5, indicating a split in the underlying 

neural sources between components. Overall, spatial ICA showed little dependence on 

SNR or number of samples, with source activity typically assigned to a single component.   
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Figure 3-3: Maximum normalized source detection of within-subject temporal and spatial ICA with a 
nonparametric experimental paradigm. 
Maximum normalized source detection values for temporal ICA of ERP and spatial ICA of fMRI, 

max( EEG
Ns ) and max( fMRI

Ns ) respectively, using a non-parametric experimental paradigm. Source 

separation is shown for the three simulated sources as a function of the SNR and the number of 
experimental samples. The dashed line in each graph shows the √N decrease in SNR with number of trials 
averaged per sample, with the start and end points of the curve taken from experimental data (Mangalathu-
Arumana et al., 2012). The maximum normalized source detection values range 0-1, with a value of 1 
corresponding to extraction of the complete source into a single component. A value of 0.5 indicates that 
50 % of the source activity was extracted into one component and the remaining activity attributed to at 
least one additional component. A value of 0 indicates a finding of no source activity. 
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3.3.2 JICA: SNR vs. number of samples in a non-parametric design 
 
 
 
The segregation of neural sources in fMRI/ERP data using jICA in a non-

parametric design when there is a linear relationship between ERP and fMRI is shown in 

Figure 3-4. Simulation results for jICA-ERP showed normalized detection values ranging 

0.7-0.9 for the temporo-parietal and motor sources, and 0.1-0.3 for the frontal source, 

similar to those for temporal ICA. For the temporo-parietal source, normalized detection 

values decreased with the increase in number of samples, consistent with the temporal 

ICA-results. However the motor source showed a reverse trend, suggesting that it was 

mainly extracted into a single component. At low SNR, increasing the number of samples 

improves the separation of the motor source into a single component, resulting in an 

overall opposite trend for this source. These findings emphasize that in order to determine 

how sources are split across components, it is necessary to examine not only the 

maximum normalized source detection value (as shown in Figure 3-4), but also the 

normalized values of each component. This type of analysis is shown and discussed in 

section 3.3.4 in more detail.    

JICA-fMRI results for the right temporo-parietal and left motor source showed 

normalized source detection values, max(fMRI
Ns ), ranging 0.4-1.  Source separation into a 

single component was less likely at low SNRs and for small numbers of samples, (fMRI
Ns  

= [0.4, 0.6]), but increased quickly with SNR and the number of samples (fMRI
Ns  = [0.8, 

1]).  Results also showed that the boundary for separation into a single component 
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(roughly, values above 0.8) fell along SNR/samples combinations approximating those of 

a typical parametric experimental design (black dotted line in the graph). The maximum 

normalized source detection values for the uncoupled frontal source also ranged 0.4-1, 

but the degree of separation into multiple components was very limited compared to the 

two other sources, suggesting that sources with representation in a single modality may 

be extracted with jICA.  

Figure 3-5 shows the temporal profile of the jICA-ERP source density output 

(black) and the simulated ERP input (blue) for representative vertices of the temporo-

parietal and motor sources, at SNR=3.5 and 6 samples (left panel), and at SNR=0.37 and 

360 samples (right panel). The temporal profiles of the original and re-constructed 

sources where highly correlated (r2>0.98) at both SNR and sample combinations, 

suggesting that jICA-ERP was able to accurately extract the simulated sources in each 

case. Significant activation was not found in brain areas removed from those simulated in 

the temporo-parietal and motor cortex. However, activation was observed in areas 

immediately adjacent to the simulated cortical areas, possibly due to limitations in the 

spatial resolution of the ERP source reconstruction. 
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Figure 3-4: Maximum normalized source detection for within-subject jICA in a nonparametric 
experimental paradigm. 

Maximum normalized source detection values for jICA-ERP and jICA-fMRI, max( EEG
Ns ) and max( fMRI

Ns ) 

respectively, using a non-parametric experimental paradigm. Source separation, measured via the source 
detection values, is shown for the three sources as a function of the SNR and number of experimental 
samples. The temporo-parietal and motor sources were simulated with linear coupling between the ERP 
and fMRI responses. The frontal source, consisting of an fMRI response only, was uncoupled. Other 
conventions are as in Figure 3-3.  
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Figure 3-5: Temporal profiles of ERP and jICA-ERP responses for representative vertices chosen 
from the temporo-parietal and motor sources. 
JICA-ERP source density temporal profile (black line) and ERP source density input temporal profile 
(shown here without noise added for visual clarity, blue line) for the temporo-parietal (top) and motor 
(bottom) sources (left, SNR=3.5 and 6 samples; right, SNR=0.37 and 360 samples).  
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3.3.3 JICA: SNR vs. number of samples in a parametric design 
 
 
 
In a separate set of simulations, the performance of jICA with a linear relationship 

between ERP and fMRI was evaluated in the context of a parametric design. In this type 

of experimental design, there is a systematic relationship between the input and 

physiological response across trials. As a result, there is a relatively strong correlation 

between sources. Thus, the sources simulated in this study were not independent (unlike 

those in the non-parametric experimental design), but rather were part of a neural 

network activated in a correlated manner across trials, as is often the case in experimental 

data (for example, in an auditory oddball paradigm).  

The segregation of neural sources in fMRI/ERP data, using jICA in a parametric 

design, is shown in Figure 3-6. Simulation results for jICA-ERP showed normalized 

detection values ranging 0.7-0.9 for the temporo-parietal source, 0.5-0.9 for the motor 

source, and 0.1-0.6 for the frontal source. In the case of the frontal source, which had no 

ERP response associated with it, the increased correlation is due to the procedure of 

normalizing source detection values across components. Higher normalized values for the 

source were observed when the overall number of samples (and components) was low, 

and one component carried slightly higher correlation values. The raw (unnormalized) 

correlation values for the frontal source never exceeded r2=0.2. Generally, normalized 

source detection was applied to extract the component that carried the majority of the 

activity of a source. These results show that the raw source detection values are also a 

useful source of information when examining the results. For the temporo-parietal source, 

normalized detection values decreased with the increase in number of samples, consistent 
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with the jICA-results in the non-parametric simulations. The motor source, as in the non-

parametric design, showed a reverse trend, indicating that it was increasingly extracted 

into a single component as the number of samples increased.  

JICA-fMRI results showed normalized source detection values, max( fMRI
Ns ), 

ranging 0.8-1 for the temporo-parietal source, 0.5-1 for the motor source and 0.8-1 for the 

frontal source.  Source separation into a single component was less likely at higher SNRs 

and numbers of samples, (fMRI
Ns  = [0.5, 0.7]), but increased quickly as both the SNR and 

number of sample decreased (fMRI
Ns  = [0.8, 1]).  These results are reversed from those for 

the non-parametric design, in which sources were more likely to be separated when the 

number of samples and SNR was low. In the parametric design, the sources simulated 

were strongly correlated by design and were therefore not separated into different 

components. Further analysis of the source segregation pattern is given in section 3.3.5.  
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Figure 3-6: Maximum normalized source detection for within-subject jICA in a parametric 
experimental paradigm. 

Maximum normalized source detection values for jICA-ERP and jICA-fMRI, max( EEG
Ns ) and max( fMRI

Ns ) 

respectively, using a parametric experimental paradigm. Source separation, measured via the source 
detection values, is shown for the three sources as a function of the SNR and number of experimental 
samples. The temporo-parietal and motor sources were simulated with linear coupling between the ERP 
and fMRI responses. The frontal source, consisting of an fMRI response only, was uncoupled. Other 
conventions are as in Figure 3-3.  
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3.3.4 JICA Source Segregation with Linear ERP-fMRI Relationship: Non-
parametric design 

 
 
 

To better understand how sources are segregated with jICA, the representation of 

the sources across all components was examined. Figure 3-7 shows the correspondence 

between all twenty jICA-ERP and jICA-fMRI components obtained in a nonparametric 

experimental paradigm, as a function of the number of samples, for the temporo-parietal 

source, at two levels of SNR. The normalized source detection values, EEG
Ns  and fMRI

Ns , 

are used to index the contribution of each jICA-ERP (lower triangles) and jICA-fMRI 

(upper triangles) component to the source. Only values exceeding a source detection 

threshold of 0.1 are shown. This type of analysis is important to differentiate cases where 

sources are not (or are only partially) retrieved with jICA from cases where the sources 

are split into more than component (within a neuroimaging modality or between 

modalities).  

At high SNR (3.5, Figure 3-7, top panel), the ERP and fMRI responses for the 

same source are segregated into different components when the number of samples is 

higher than six. With six or fewer samples, one joint component carries both the ERP and 

fMRI activity for the temporo-parietal source. At low SNR (0.37, Figure 3-7, bottom 

panel), the ERP and fMRI responses of the temporo-parietal source are not segregated 

into separate components until the number of samples exceeds 80. These results show 

that jICA not only segregates different neural sources, but also segregates the same 

source in different imaging modalities. This result is likely due to the inherent differences 

in spatial and temporal statistics of the ERP and fMRI signals. However, an important 
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feature of jICA is that even when the ERP and fMRI responses associated with the same 

source are split into separate components, the component in each modality also carries a 

residual of the activity related to this source in the other modality. For example, a 

component carrying significant ERP activity will also contain a residual of the 

corresponding fMRI response. This presence of the residual provides a quantitative 

measure that can be used to link fMRI and ERP components associated with a common 

neural source. Specifically, an ERP dominant component would exhibit a high correlation 

with an fMRI dominant component associated with the same source, because of the 

residual activity of the other modality that each of them carries. Thus, jICA, unlike 

unimodal ICA, can be used to link ERP and fMRI signals of a common source.  

Similar results were obtained for the motor source (shown in the appendix, Figure 

5-1). Finally, it is worth noting that the jICA components containing source-relevant 

activity always tend to be the component with the highest numbers. This is not an 

inherent feature of jICA itself, but is tied to the application of PCA prior to jICA, which 

orders components according to the highest eigenvalue.  
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Figure 3-7: Normalized source detection for jICA in a non-parametric design 
Normalized source detection values for jICA-ERP and jICA-fMRI in a nonparametric experimental design, 
for the temporo-parietal source as a function of the number of samples and number of extracted jICA 
components, for high SNR (ERP= 3.5; fMRI=7; top panel) and low SNR (ERP= 0.37; fMRI=0.8; bottom 

panel). The lower and upper triangle in each square represent max(EEG
Ns ) and max( fMRI

Ns ), respectively. In 

this simulation, the relationship between ERP and fMRI activity was linear. The black arrows indicate the 
point of separation of ERP and fMRI activity into separate components. 
 

 

3.3.5 JICA Source Segregation with Linear ERP-fMRI Relationship: Parametric 
design 
 
 
 
The correspondence between all twenty jICA-ERP and jICA-fMRI components in 

a parametric design is shown in Figure 3-9, as a function of the number of samples, for 

the temporo-parietal source at two levels of SNR. The results show that the ERP and 

fMRI responses associated with the temporo-parietal source were always represented in 
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the same component, with little dependence on the SNR. As mentioned previously, in the 

parametric design the sources are highly correlated and therefore less likely to be 

separated into different components. However, a different trend was observed for the 

motor source (Figure 3-9), where ERP and fMRI responses were separated into different 

components, similar to the pattern observed in the non-parametric design. The motor 

source was temporally more variable compared to the temporo-parietal source and 

therefore potentially more distinguishable. Similar results for each of these sources were 

also obtained with a nonlinear relationship between ERP and fMRI signals (Appendix: 

Figure 5-2 and Figure 5-3). 

 

 
Figure 3-8: Normalized source detection for jICA in a parametric design 
Normalized source detection values for jICA-ERP and jICA-fMRI in a parametric experimental design, for 
the temporo-parietal source as a function of the number of samples and number of extracted jICA 
components, for high SNR (ERP= 3.5; fMRI=7; top panel) and low SNR (ERP= 0.37; fMRI=0.8; bottom 

panel). The lower and upper triangle in each square represent max(EEG
Ns ) and max( fMRI

Ns ), respectively. In 

this simulation, the relationship between ERP and fMRI activity was linear.  
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Figure 3-9: Normalized source detection for jICA in a parametric design 
Normalized source detection values for jICA-ERP and jICA-fMRI in a parametric experimental design, for 
the motor source as a function of the number of samples and number of extracted jICA components, for 
high SNR (ERP= 3.5; fMRI=7; top panel) and low SNR (ERP= 0.37; fMRI=0.8; bottom panel). The lower 

and upper triangle in each square represent max(EEG
Ns ) and max( fMRI

Ns ), respectively. In this simulation, 

the relationship between ERP and fMRI activity was linear. The black arrows indicate the point of 
separation of ERP and fMRI activity into separate components.  
 

 

3.3.6 JICA Source Segregation with an Uncoupled source 
 
 
 

Disease states or methodological issues can lead to uncoupled relationships 

between ERP and fMRI. As part of the analysis of jICA performance in both the 

parametric and nonparametric experimental designs, the frontal source was simulated as 

an uncoupled (fMRI-only) source such that it had fMRI but no ERP activity associated 
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with it. Figure 3-10 shows the normalized source detection values for jICA-ERP and 

jICA-fMRI, for the frontal source as a function of the number of samples and extracted 

components, at high (ERP=3.5; fMRI=7.0) and low (ERP=0.37; fMRI=0.8) SNR. Here 

source activity detected via the ERP,  EEG
Ns , was computed by correlating the temporal 

profile of the frontal source activity against the temporal profile of the temporal-parietal 

source input (as the next closest spatially to the frontal source). The EEG
Ns  values ranged 

0-0.3 at both SNR levels. These results show that ERP activity was minimal with jICA in 

the frontal source area. Normalized source detection rates for fMRI activity with jICA, 

fMRI
Ns , ranged 0.9-1 at SNR=3.5 and 0.6-0.9 at SNR=0.37. Joint components for ERP and 

fMRI activity were not seen at either SNR levels, as expected. Similar results were 

obtained with a parametric design (Appendix: Figure 5-4 ).  
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Figure 3-10: Normalized source detection for jICA in a non-parametric design 
Normalized source detection values for jICA-ERP and jICA-fMRI in a nonparametric experimental design, 
for the uncoupled frontal source as a function of the number of samples and number of extracted jICA 
components, for high SNR (ERP= 3.5; fMRI=7; top panel) and low SNR (ERP= 0.37; fMRI=0.8; bottom 

panel). The lower and upper triangle in each square represent max(EEG
Ns ) and max( fMRI

Ns ), respectively. In 

this simulation, the relationship between ERP and fMRI activity was linear.  
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3.3.7 JICA Source Segregation with a Nonlinear ERP-fMRI relationship: Non-
parametric design 
 
 
 
Nonlinear relationships between neural activity and cerebral blood flow have been 

reported, for example by Zhang et al. (Zhang et al., 2008b), raising the question of 

whether jICA could be used to extract such sources and identify the underlying 

relationship. In a separate set of simulations, we tested jICA performance with a 

nonlinear relationship (1-exp(x)) between ERP and fMRI signals for sources located in 

the temporo-parietal and motor cortex, for both the non-parametric and parametric 

experimental designs. The frontal source remained uncoupled (visible to fMRI only).  

Figure 3-11 shows the normalized source detection values for jICA-ERP and 

jICA-fMRI, when the temporo-parietal source is characterized by a nonlinear relationship 

between fMRI and ERP in the case of a nonparametric experimental design. The jICA-

ERP and jICA-fMRI sources are segregated into different components at similar but 

slightly higher sample numbers than for the linear relationship shown in Figure 3-9. 

For the exponential ERP/fMRI relationship simulated here, ERP and fMRI 

sources were nearly segregated when 9 or more samples were obtained at high SNR, and 

when more than 100 samples were obtained at low SNR. However the segregated 

components were still linked in the sense that both components carried signal residuals of 

the other modality. Results for the motor source are shown in the supplement (Figure 5-5 

of the Appendix). 

In order to establish that the nonlinearity between ERP and fMRI activity was 

indeed extracted with jICA (and not only the linear component of the activity), the 
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mixing coefficients were used to determine the relationship between the activity of the 

linked ERP and fMRI jICA components. The mixing coefficient matrix “A” (see 2.2.7), 

describes the mixing of the underlying sources across samples. That is, the coefficients 

describe how ERP and fMRI signals vary across samples, and thereby the relationship 

between ERP and fMRI. ICA extracts the unmixing coefficients “W”, which can be used 

to retrieve the mixing coefficients “A” by computing the pseudo-inverse of the unmixing 

coefficients (A = W-1). Since jICA was applied on whitened and normalized data, the data 

first need to be unwhitened “D”, and unnormalized for ERP “NE” and fMRI “NF”   

 

  )20360()2020()20360(()20360( xNxAxDxA ErE ⋅×=        [3] 

)20360())2020()20360(()20360( xNxAxDxA FrF ⋅×=        [4] 

 

where D is the pseudo-inverse of the original whitening matrix, NE and NF are the 

pseudo-inverses of the normalization matrices applied to the ERP and fMRI data 

respectively, and describes the reconstructed coefficients for ERP “ArE” and fMRI “ArF”. 

Figure 3-11 shows that for a larger number of samples, ERP and fMRI responses are 

separated into different jICA components. In Figure 3-12, the mixing coefficients of these 

split ERP and fMRI components are plotted against one another, for linear and nonlinear 

signal relationships (left and right panels, respectively). Results show that jICA can 

extract the underlying relationship between ERP and fMRI components, whether linear or 

non-linear. Sources are split between components in both modalities; a residual of the 

activity in each modality is still present in the component containing the primary activity 

associated with the other modality. This relationship between components provides a 
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means for linking multi-modal activity correlated along overlapping dimensions, e.g., in 

space and time for ERP, and in space for fMRI. Components exhibiting high correlation 

with another component were assumed to be linked and the corresponding mixing 

coefficient of the component exhibiting high correlation in “A” was selected.  

 

 

Figure 3-11: Normalized source detection for jICA in a non-parametric design 
Normalized source detection values for jICA-ERP and jICA-fMRI in a non-parametric experimental 
design, for the temporo-parietal source as a function of the number of samples and number of extracted 
jICA components, for high SNR (ERP= 3.5; fMRI=7; top panel) and low SNR (ERP= 0.37; fMRI=0.8; 

bottom panel). The lower and upper triangle in each square represent max(EEG
Ns ) and max( fMRI

Ns ), 

respectively. In this simulation, the relationship between ERP and fMRI activity was nonlinear. The black 
arrows indicate the point of separation of ERP and fMRI activity into separate components.  
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Figure 3-12: Relationship between ERP and fMRI joint components 
The mixing coefficients of the jICA-ERP components are plotted against the mixing coefficients of the 
jICA-fMRI components, for linear (left) and nonlinear (right) relationships between fMRI and ERP signals 
in the temporo-parietal source, for a high number of samples (N=360) and low SNR (=0.37 for ERP and 
=0.8 for fMRI).  Coefficients of components that showed the highest normalized source detection values 
for ERP and fMRI were selected for this analysis. 
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3.3.8 JICA source segregation: comparison of imaging modalities in a non-
parametric design 

 
 
 

The performance of jICA for segregating neural sources based on ERP and fMRI 

data was compared, using a linear relationship between ERP and fMRI signals in a non-

parametric design. Results of the same analysis with a nonlinear relationship between 

ERP and fMRI were similar and are shown in the Appendix Figure 5-6. Figure 3-13 

shows a comparison of jICA segregation of motor and temporo-parietal sources (lower 

and upper triangle in each square representing one data point, respectively), as a function 

of the number of samples and number of components in jICA-fMRI (top panels) and 

jICA-ERP (bottom panels), at high (=3.5, left panels) and low (=0.37, right panels) SNR. 

Results show that for a low SNR (0.37), the motor and temporo-parietal sources 

contributed to the same jICA-fMRI component when the number of samples was lower 

than seven. This is consistent with previous empirical jICA results (Mangalathu-Arumana 

et al., 2012). However, the sources were segregated into different jICA-ERP components 

even at a low SNR.  

At a high SNR (3.5), the motor and temporo-parietal sources were segregated into 

different jICA-fMRI and jICA-ERP components with normalized detection values 

ranging 0.7-0.8 for EEG
Ns  and 0.6-0.9 for fMRI

Ns . Results for other source comparisons were 

similar and are shown for the motor vs. frontal source in the supplement (Figure 5-7). 
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Figure 3-13: Source segregation with jICA-fMRI and jICA-ERP for two sources in non-parametric 
design 
Comparison of normalized source detection values for jICA-fMRI (top panels) and jICA-ERP (lower 
panels) components of the motor and temporo-parietal sources (lower and upper triangle in each square 
representing one data point, respectively) is shown here for a linear fMRI/ERP relationship. The 
segregation of motor and temporo-parietal sources is shown as a function of the number of samples and 
number of components and for high SNR (ERP= 3.5; fMRI=7 (left) and low SNR (ERP= 0.37; fMRI=0.8 
(right). The black arrow indicates separation of the temporal and motor sources into different components. 
At high SNR, motor and temporo-parietal were always segregated into separate components.   

 

3.3.9 JICA source segregation: comparison of imaging modalities in parametric 
design 

 
 
 

Figure 3-14 shows a comparison of jICA segregation of motor and temporo-

parietal sources (lower and upper triangle in each square representing one data point, 

respectively) with fMRI and ERP responses that are related linearly in a parametric 

design. Results show that for both high and low SNRs, the motor and temporo-parietal 

sources contributed to the same jICA-fMRI component. However, the sources were 

always segregated into separate jICA-ERP components at high and low SNR.  
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Figure 3-14: Source segregation with jICA-fMRI and jICA-ERP for two sources in parametric 
design 
Comparison of normalized source detection values for jICA-fMRI (top panels) and jICA-ERP (lower 
panels) components of the motor and temporo-parietal sources (lower and upper triangle in each square 
representing one data point, respectively) is shown here for a linear fMRI/ERP relationship. The 
segregation of motor and temporo-parietal sources is shown as a function of the number of samples and 
number of components and for high SNR (ERP= 3.5; fMRI=7 (left) and low SNR (ERP= 0.37; fMRI=0.8 
(right). The black arrow indicates separation of the temporal and motor sources into different components. 
At high SNR, motor and temporo-parietal were always segregated into separate components.   
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3.4 Discussion 
 
 
 

The integration of ERP and fMRI data can facilitate imaging of neural activity 

with high spatiotemporal resolution. JICA has successfully been applied to the integration 

of ERP and fMRI (Calhoun et al., 2006; Moosmann et al., 2008; Sui et al., 2011; 

Mangalathu-Arumana et al., 2012). Nevertheless, jICA (like other methods) is limited by 

the extent of variability in the data set, the SNR and the experimental design. Given that 

experiment duration is limited, there is a tradeoff between the number of independent 

samples or parametric levels that can practically be acquired and the SNR of each sample 

or level. Describing the dependence of jICA on these factors is useful for optimizing the 

design of future experiments wishing to use this method for ERP and fMRI data fusion.  

A distinct feature of jICA is that it is not limited to linear relationships between 

ERP and fMRI, like linear regression models. Given that the relationship between ERP 

and fMRI signals may in some cases be nonlinear, or even uncoupled, it is important to 

understand the advantages and limitation of jICA with nonlinear signal variations.  

Here we have used computer simulations to examine the performance of jICA as 

a function of SNR, number of samples, and the relationship between ERP and fMRI, in 

the case of parametric and non-parametric experimental designs. The jICA results 

revealed that simulated sources in the cortex can accurately be retrieved in time and space 

based on the ERP and fMRI signal covariations. However, the ability to retrieve a source 

in a single jICA component, measured here as the normalized source detection value, is 

dependent on multiple factors, including the SNR, the number of experimental samples 

and on the type of experimental design, whether parametric or non-parametric. JICA 
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successfully recovered linear, non-linear and uncoupled covariations between the ERP 

and fMRI signals in parametric and non-parametric designs.  

 For jICA-ERP, maximum normalized source detection values ranged 0.7-0.9 

when ERP and fMRI sources co-varied linearly in a non-parametric experimental design, 

indicating that the majority of the source activity (70-90%) commonly varying from trial 

to trial was reflected in a single jICA-ERP component. This result was relatively robust 

to variations in SNR and number of samples for the ranges tested in this study. This 

finding is probably related to the large variability in space and time of the ERP data. 

Similar results were observed in the parametric design as well, suggesting that the type of 

experimental design did not have a significant effect on the extraction of ERP sources. 

   For jICA-fMRI, maximum normalized source detection values ranged 0.4-0.6 at 

low SNR and numbers of samples, and 0.8-1 at high SNR and number of samples, for 

ERP and fMRI sources that co-varied linearly in a non-parametric design. These results 

indicate that with low data variability, a high SNR is needed to recover the majority of 

the source into one component, whereas for high data variability jICA becomes relatively 

independent of the SNR.  Since the goal is to extract linked sources, it might be 

advantageous to always correlate sources across components to identify linkages between 

ERP and fMRI dominant components, as was shown in Figure 3-12.  

  In the parametric design, the results obtained for jICA-fMRI were different from 

those obtained with the non-parametric design. JICA-fMRI maximum normalized source 

detection values ranged 0.8-1 at low SNR and numbers of samples, and 0.5-0.8 at high 

SNR and number of samples, for ERP and fMRI sources that co-varied linearly. In a 

parametric experimental design, there is a systematic relationship between the input and 
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physiological response across trials, resulting in a relatively strong correlation between 

sources. Thus, the sources simulated in this study were not independent (unlike those in 

the non-parametric experimental design), but rather were part of a neural network 

activated in a correlated manner across trials. In this case, jICA is not able to separate the 

sources.  

For the uncoupled right frontal source, jICA-fMRI source detection values (fMRI
Ns ) 

ranged 0.4-1 in the non-parametric design, but the values were largely biased toward the 

upper end of this range compared to those for the coupled sources. These findings can be 

understood in terms of the extent of functional correlation between sources. Sources 

varying in only one modality can be thought of as less functionally correlated with 

sources varying in both modalities. As a result, a lesser amount of signal variability or 

lower SNR is required for separation of an uncoupled source from coupled sources with 

jICA-fMRI (compared to separation of two coupled sources). Similar results were 

observed for the parametric design at both SNR levels (not shown).  

When ERP and fMRI signals co-varied linearly in a non-parametric paradigm, 

sources were segregated into different jICA-ERP and jICA-fMRI components when the 

number of experimental samples increased (beyond 6 at high SNR and 80 at low SNR). 

This finding is probably due again to the difference between ERP and fMRI data, where 

ERP signals vary in time and in space, an fMRI signals solely in space. This 

understanding of the basis of jICA is critical for accurate interpretation of analysis results. 

Specifically, with high signal variability or high SNR, activity from the same neural 

source can be attributed to different jICA-fMRI and jICA-ERP components. In these 

cases, a secondary analysis, to identify linked ERP and fMRI components, is necessary to 
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determine the correspondence between fMRI and ERP activity. This could be 

accomplished through spatial correlation of significant voxel activity in the fMRI and 

temporal and spatial correlation of significant vertex activity in the ERP source maps 

across components to identify corresponding ERP and fMRI components. The strength of 

jICA is that it extracts the relevant information necessary for making conclusive 

observations. When ERP and fMRI signals co-varied nonlinearly in a non-parametric 

experimental design, ERP and fMRI activity was segregated into different components at 

similar sample numbers as those observed for a linear relationship (beyond 9 at high SNR 

and 100 at low SNR).  

When ERP and fMRI signals co-varied linearly in a parametric paradigm, ERP 

and fMRI activity related to the temporo-parietal source was always attributed to one 

joint component. However, different results were observed with the motor source in both 

the parametric and non-parametric designs, where ERP and fMRI activity was separated 

into different jICA-ERP and jICA-fMRI components. The motor source was distinct in 

that it had a biphasic ERP temporal profile, whereas the temporo-parietal source had a 

single phase. It is possible that jICA separated the ERP and fMRI activity of the motor 

source into different components because this source was temporally more variable and 

therefore more distinguishable. However, more simulations are needed to test jICA on 

different types of ERP temporal variations and investigate the effect of this factor on 

source segregation. 

In this work, the full array of spatial and temporal information from ERPs and the 

full spatial information from fMRI were incorporated into the jICA approach. The 

temporal ICA used the same ERP data and the spatial ICA used the same fMRI data. 
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Normalized source detection results for temporal ICA-ERP and spatial ICA-fMRI were 

similar to those observed with the jICA method, suggesting that source extraction with 

jICA was comparable to unimodal ICA approaches. However, the performance of jICA 

was poorer with low sample numbers and low SNRs. These results can be understood in 

the context of the increased complexity of the combined fMRI and ERP data used for 

jICA compared to the unimodal data used for temporal and spatial ICA. Since jICA 

extracts non-gaussian signals, it will not only separate different types of sources, but also 

imaging modalities. However, the primary advantage of jICA is precisely that it extracts 

joint components commonly varying across both imaging modalities and therefore 

presumably representing the same neural source. Importantly, the present work 

demonstrates that with optimal selection of paradigm parameters, jICA can provide 

comparable source separation results to temporal and spatial ICA, with the advantage of 

extracting joint activity between ERP and fMRI. 

 In summary, the jICA approach used here, incorporating spatiotemporal 

information from both fMRI and ERP data, revealed a dependence on SNR and the 

number of samples for resolving neural sources. The findings could help determine the 

optimal number of trials and conditions in parametric and non-parametric experiments 

that are necessary for segregation of neural sources into separate components using the 

jICA approach. Under optimal conditions, jICA was able to extract linear as well as 

nonlinear relationships, which could be advantageous when the relationship between ERP 

and fMRI signals is unknown, or when it is suspected to be nonlinear due to an 

underlying pathological condition. JICA was also found to extract uncoupled sources, 

which could be of clinical relevance in pathological conditions, such as stroke. Finally, 
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jICA reveals the underlying relationship between ERP and fMRI representations, which 

could be important for understanding the signals observed with fMRI and ERP in health, 

and in pathological conditions in which neurovascular coupling may be affected. 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 4 
 
 

 Summary of Results 
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The focus of the work presented in this dissertation was the integration of ERP and 

fMRI with high temporal and spatial resolution, using jICA. In Chapter 2, the potential 

advantages of using jICA to fully integrate parametric fMRI and ERP P300 data within-

subject was examined, relative to using the P300 ERP peak amplitude as a regressor in a 

general linear model. The jICA approach depicts linear and non-linear covariations 

between the ERP and fMRI signals, and therefore has the potential to be more sensitive 

and comprehensive than the general linear regression model. In addition, the full array of 

ERP electrodes and ERP data points was used here in the jICA approach, as opposed to 

the single electrode and point in time (peak activity) used (here and typically) in the 

linear regression analysis, thereby potentially allowing for more sensitive characterization 

of neural activity.  

The empirical results showed that jICA successfully extracted neural sources with 

commonly varying ERP and fMRI activity. Using the entire spatio-temporal information 

of the ERP with the spatial information of the fMRI, enhanced the results observed with 

jICA. JICA results were superior to those of the P300 linear regression analysis, which 

used information from only one electrode at the time point of the P300 peak amplitude. 

Given that the nature of the relationship between ERP and fMRI signals in this study was 

unknown (whether nonlinearities were present), the superior sensitivity of the jICA 

relative to the general linear model (GLM) may largely be related to the inclusion of all 

spatio-temporal information from the ERPs. Another major finding was that jICA 

successfully recovered neural sources not only at the group level, but also at the 

individual data level. The single subject jICA-fMRI activity, and source reconstruction of 

the jICA-ERP activity within a component, were both consistent with the group jICA 
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maps. In contrast, the individual fMRI P300 regression maps and ERP source 

reconstructions were generally too noisy to evaluate, demonstrating an advantage of the 

jICA approach particularly for individual data analysis. This finding is particularly 

important because analysis of individual patient data is necessary for implementation of 

multimodal neuroimaging as a clinically relevant diagnostic tool.  

In Chapter 3, computer simulations were used to characterize the ability of jICA 

to extract known neural sources within-subject as a function of data SNR, number of 

experimental samples and the relationship between the ERP and fMRI signals (linear vs. 

nonlinear, including uncoupled sources). The ability of jICA to detect and segregate 

neural sources measured with fMRI and ERPs was examined within-subject in the 

context of parametric and non-parametric experimental paradigms.  

Simulation results showed that jICA performance varies as a function of SNR, 

number of experimental samples, experimental paradigm, and the relationship between 

fMRI and ERP sources. In a non-parametric design at low SNR and with low number of 

samples, the ERP and fMRI activity was extracted into a joint component with jICA. 

However, with increasing SNR and number of samples, ERP and fMRI activity was 

separated into different components. JICA extracted neural sources with linear as well as 

nonlinear relationships between ERP and fMRI signals. This feature of jICA is 

advantageous when the relationship between ERP and fMRI signals is unknown, or when 

it is suspected to be nonlinear due to an underlying pathological condition. JICA was also 

found to extract uncoupled sources, which could be of clinical relevance in pathological 

conditions, such as stroke. Another important finding was that jICA may in some cases 

(with high sample numbers) separate ERP and fMRI activity from the same source into 
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different components. However, split jICA-ERP and jICA-fMRI components can 

successfully be linked back together with a secondary correlation analysis. Nevertheless, 

future investigations need to be conducted to automate the linkage between ERP and 

fMRI sources. Another approach would be to take advantage of the temporal and spatial 

structure of the ERP and fMRI signal as part of an analysis such as complexity pursuit 

(Hyvarinen, 2001a). Most importantly, jICA could be used to extract the underlying 

relationship between ERP and fMRI signals. This type of information could be important 

for understanding physiological changes associated with pathological conditions affecting 

neurovascular coupling. 
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 APPENDIX 

 
 
Volume Mean Max x y z Lobe Structure 

Positive activations 

1612 2.32 2.98 60 -27 10 
Right 
Temporal 

Superior 
Temporal 
Gyrus    

13523 2.32 3.62 20 -81 36 
Right 
Parietal 

Superior 
Parietal 
Lobule 

1788 2.46 4.27 39 38 -4 
Right 
Frontal 

Middle 
Frontal 
Gyrus       

1173 2.29 3.00 29 17 -4 Right Insula                    

3327 2.48 4.42 -48 -23 -18 

Inferior 
Temporal 
Gyrus     

1301 2.35 2.98 -25 -76 -14 
Fusiform 
Gyrus             

1297 2.22 2.59 -48 -24 13 

Superior 
Temporal 
Gyrus    

1103 2.39 3.39 -41 -56 4 

Left 
Temporal 
 
 
 
 
 

Middle 
Temporal 
Gyrus       

22704 2.34 4.03 -29 -77 42 Left Parietal 

Inferior 
Parietal 
Lobule 

4045 2.26 2.98 -10 -8 51 
Frontal 
Gyrus 

2482 2.54 4.39 -26 53 8 

Middle 
Frontal 
Gyrus        

1109 2.27 2.89 -50 -5 11 

Left Frontal 
 
 
 

Inferior 
Frontal 
Gyrus 

2330 2.39 3.61 -1 -55 -23 
Left 
Cerebellum Cerebellum 

 
Table 5-1: Cluster volumes of group fMRI maps 
The volume (in µl), mean and maximum t-values, center of mass Talairach coordinates (Talairach and 
Tournoux, 1988), and lobe location and structure labels of clusters of fMRI activation for the group of 
twenty subjects, using the P300 peak as a regressor in the general linear model. Coordinates are reported in 
LPI orientation. 
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Volume Mean Max x y z Lobe Structure 
Positive activations 

118 2.44 3.16 55 -34 29 
Right 
Temporal 

Supramarginal 
Gyrus        

298 2.31 2.80 22 -58 69 
Right 
Parietal 

Superior 
Parietal Lobule   

223 2.25 2.59 10 -68 32 
Right 
Occipital Cuneus                    

379 2.34 3.04 31 28 46 
Middle Frontal 
Gyrus       

335 2.40 2.79 13 46 39 
Superior 
Frontal Gyrus     

214 2.28 2.76 25 11 62 
Middle Frontal 
Gyrus       

150 2.53 3.17 34 4 32 
Superior 
Frontal Gyrus 

146 2.50 2.90 52 34 25 

Right 
Frontal 
 
 
 
 

Middle Frontal 
Gyrus       

125 2.40 3.23 -41 -73 22 
Left 
Temporal 

Middle 
Temporal 
Gyrus       

189 2.61 3.39 -46 -37 25 
Left 
Parietal 

Inferior Parietal 
Lobule    

295 2.20 2.60 -14 -19 74 
Precentral 
Gyrus            

179 2.20 2.51 -13 -35 70 
Precentral 
Gyrus            

161 2.61 3.25 -20 11 46 
Medial Frontal 
Gyrus        

148 2.39 2.95 -2 2 64 
Superior 
Frontal Gyrus      

144 2.40 3.22 -25 -4 66 

Left 
Frontal 
 
 
 
 

Superior 
Frontal Gyrus      

195 2.58 3.54 -1 -43 22 Left 
Posterior 
Cingulate         

Negative activations 

105 -2.39 -2.86 46 -5 43 
Right 
Frontal 

Precentral 
Gyrus           

 
Table 5-2: Cluster volumes of single subject 4138 fMRI maps 
The volume (in µl), mean and maximum t-values,  center of mass  Talairach coordinates (Talairach and 
Tournoux, 1988), and lobe location and structure labels of clusters of fMRI activation for subject 4138, 
using the P300 peak as a regressor in the general linear model. Clusters smaller than 105 µl are not reported 
in the table, but are shown in the corresponding fMRI maps in the paper. Coordinates are reported from 
Left-to-Parietal-to-Inferior (LPI) orientation. 
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Volume Mean Max x y z Lobe Structure 

Positive activations 

563 3.2152 4.0965 63.5 -36.5 14.5 
Right 
Temporal 

Superior Temporal 
Gyrus    

1451 3.4126 5.2656 47.5 -38.5 23.5 
Inferior Parietal 
Lobule   

503 3.2311 4.454 2.5 -51.5 42.5 Precuneus                 

448 3.5221 5.5071 27.5 -58.5 47.5 

Right 
Parietal 
 
 

Superior Parietal 
Lobule   

936 3.3239 4.9576 48.5 -13.5 40.5 Precentral Gyrus          
594 4.0415 5.771 37.5 -17.5 54.5 

Right 
Frontal Precentral Gyrus          

505 3.8673 6.2543 8.5 -51.5 -5.5 
Right 
Cerebellum Culmen                     

562 3.3763 4.8332 35.5 -9.5 20.5 Right Insula                     
25055 3.6623 11.019 -32.5 -27.5 40.5 Postcentral Gyrus         
1021 3.4652 5.7677 -15.5 -75.5 41.5 Left Parietal Precuneus                  

1250 3.2999 4.7714 25.5 -79.5 22.5 
Left 
Occipital Cuneus                     

3751 3.5304 7.4036 -2.5 -19.5 47.5 Paracentral Lobule         

1381 3.5282 5.7255 -27.5 27.5 32.5 
Middle Frontal 
Gyrus        

1028 3.6194 6.2478 -12.5 53.5 19.5 
Superior Frontal 
Gyrus      

565 3.4441 5.5172 -39.5 20.5 18.5 

 
Left Frontal 
 
 
 

Middle Frontal 
Gyrus        

1107 3.4282 5.8927 -0.5 -60.5 -2.5 
Left 
Cerebellum Cerebellum                   

412 3.423 6.0185 -10.5 -23.5 12.5 Left Thalamus                   
 
Table 5-3: Cluster volumes of group jICA-fMRI 
The volume (in µl), mean and maximum t-values, center of mass Talairach coordinates (Talairach and 
Tournoux, 1988), and lobe location and structure labels of clusters of jICA-fMRI activation for the group 
of twenty subjects (Volumes were voxel-thresholded at p<0.01 to separate two large clusters (larger than 
83000 �l) into smaller ones). Coordinates are reported in LPI orientation. 
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Volume Mean Max x y z Lobe Structure 

Positive activations 

724 0.82 1.13 59 -41 -4 
Middle Temporal 
Gyrus      

724 0.85 1.33 59 -50 14 
Superior Temporal 
Gyrus    

630 0.72 1.12 50 -38 10 
Superior Temporal 
Gyrus    

598 1.07 1.48 56 -26 14 

Right 
Temporal 
 
 
 

Superior Temporal 
Gyrus    

1166 0.87 2.21 56 -35 28 
Inferior Parietal 
Lobule   

788 1.02 1.45 59 -32 24 
Inferior Parietal 
Lobule   

756 1.03 1.60 59 -41 17 
Superior Temporal 
Gyrus    

598 0.91 1.81 53 -26 17 

Right 
Parietal 
 
 
 Postcentral Gyrus         

630 0.86 1.14 2 -77 28 Cuneus                     
536 0.59 1.04 14 -74 -1 

Right 
Occipital Lingual Gyrus             

567 0.95 1.49 11 53 10 
Right 
Frontal 

Superior Frontal 
Gyrus 

724 0.77 1.50 8 8 31 Right Cingulate Gyrus           

662 0.91 1.52 -41 -32 45 Left Parietal 
Inferior Parietal 
Lobule    

693 0.64 1.20 -29 -26 52 Precentral Gyrus           

630 0.26 -1.26 -35 35 24 
Left Frontal 
 

Middle Frontal 
Gyrus        

976 0.77 1.01 -8 -38 -39 Cerebellum 
536 0.74 1.01 -11 -53 -4 

Left 
Cerebellum Cerebellum 

Negative activations 
2142 -0.67 -0.95 8 -41 63 Postcentral Gyrus 

1354 -0.69 -1.03 17 -50 59 

Right 
Parietal 
 

Superior Parietal 
Lobule   

1858 -0.65 -1.01 -26 -29 59 Postcentral Gyrus 
882 -0.64 -0.86 -17 -38 63 

Left Parietal 
 Postcentral Gyrus          

756 -0.67 -0.90 -2 -2 63 Left Frontal 
Superior frontal 
gyrus 

 
Table 5-4: Cluster volumes of single subject jICA-fMRI maps 
The volume (in µl), mean and maximum t-values, center of mass Talairach coordinates (Talairach and 
Tournoux, 1988), and lobe location and structure labels of clusters of jICA-fMRI activation for subject 
4138. Coordinates are reported in LPI orientation. 
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Figure 5-1: Normalized source detection for the motor source with linear relationship 
Normalized source detection values for jICA-ERP and jICA-fMRI using a nonparametric experimental 

design, (lower and upper triangle in each square representing max(EEG
Ns ) and max( fMRI

Ns ), respectively), 

for the motor source as a function of the number of samples and number of extracted jICA components, for 
high SNR (ERP= 3.5; fMRI=7; top panel) and low SNR (ERP= 0.37; fMRI=0.9; bottom panel). In this 
simulation, the relationship between ERP source and fMRI activity was linear within a non-parametric 
design. The black arrows indicate the point of separation of ERP and fMRI activity into separate 
components. 
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Figure 5-2: Normalized source detection for the temporo-parietal source with nonlinear relationship 
in a parametric design 
Normalized source detection values for jICA-ERP and jICA-fMRI using a parametric experimental design, 

(lower and upper triangle in each square representing max( EEG
Ns ) and max( fMRI

Ns ), respectively), for the 

temporo-parietal source as a function of the number of samples and number of extracted jICA components, 
for high SNR (ERP= 3.5; fMRI=7; top panel) and low SNR (ERP= 0.37; fMRI=0.9; bottom panel). In this 
simulation, the relationship between ERP source and fMRI activity was nonlinear within a parametric 
design.  
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Figure 5-3: Normalized source detection for the motor source with nonlinear relationship in a 
parametric design 
Normalized source detection values for jICA-ERP and jICA-fMRI using a parametric experimental design, 

(lower and upper triangle in each square representing max( EEG
Ns ) and max( fMRI

Ns ), respectively), for the 

motor source as a function of the number of samples and number of extracted jICA components, for high 
SNR (ERP= 3.5; fMRI=7; top panel) and low SNR (ERP= 0.37; fMRI=0.9; bottom panel). In this 
simulation, the relationship between ERP source and fMRI activity was nonlinear within a parametric 
design. 

 



132 
 

 
 

 

 
Figure 5-4: Normalized source detection for jICA in a parametric design 
Normalized source detection values for jICA-ERP and jICA-fMRI in a parametric experimental design, for 
the uncoupled frontal source as a function of the number of samples and number of extracted jICA 
components, for high SNR (ERP= 3.5; fMRI=7; top panel) and low SNR (ERP= 0.37; fMRI=0.8; bottom 

panel). The lower and upper triangle in each square represent max(EEG
Ns ) and max( fMRI

Ns ), respectively. In 

this simulation, the relationship between ERP and fMRI activity was linear.  
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Figure 5-5: Normalized source detection for the motor source with non-linear relationship 
Normalized source detection values for jICA-ERP and jICA-fMRI using a nonparametric experimental 

design, (lower and upper triangle in each square representing max(EEG
Ns ) and max( fMRI

Ns ), respectively), 

for the motor source as a function of the number of samples and number of extracted jICA components, for 
high SNR (ERP= 3.5; fMRI=7; top panel) and low SNR (ERP= 0.37; fMRI=0.8; bottom panel). In this 
simulation, the relationship between ERP source and fMRI activity was non-linear within a non-parametric 
design. The black arrows indicate the point of separation of ERP and fMRI activity into separate 
components. 
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Figure 5-6: Source segregation with jICA-fMRI and jICA-ERP for two sources in non-parametric 
design 
Comparison of normalized source detection values for jICA-fMRI (top panels) and jICA-ERP (lower 
panels) components of the motor and temporo-parietal sources (lower and upper triangle in each square 
representing one data point, respectively) is shown here for a non-linear fMRI/ERP relationship. The 
segregation of motor and temporo-parietal sources is shown as a function of the number of samples and 
number of components and for high SNR (ERP= 3.5; fMRI=7 (left) and low SNR (ERP= 0.37; fMRI=0.8 
(right). The black arrow indicates separation of the temporal and motor sources into different components. 
At high SNR, motor and temporo-parietal were always segregated into separate components.   
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Figure 5-7: Normalized source detection for jICA-fMRI and jICA-ERP for motor and frontal 
sources 
Comparison of normalized source detection values for the jICA-fMRI (top panels) and jICA-ERP (lower 
panels) components of the motor and frontal sources (lower and upper triangle in each square representing 
one data point, respectively). The segregation of motor and frontal sources is shown as a function of the 
number of samples and number of components and for high SNR (ERP= 3.5; fMRI=7 (left) and low SNR 
(ERP= 0.37; fMRI=0.8 (right). The relationship between ERP and fMRI in this simulation was linear for 
the motor and uncoupled for the frontal sources. 
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