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Abstract 

 
With the increasing awareness of heterogeneity in breast cancers, better predictions of breast 

cancer diagnosis and prognosis are important components of precision medicine. High-throughput 

profiles have been explored extensively in the last decades for diagnostic and prognostic 

biomarkers in breast cancer. However, different omics-based studies show little overlap results. 

With the abundance of multi-omics measurements for cancer patients, there is pressing need for 

integrative methods that can take advantage of biological information at different biological layers 

and extract the concerted mechanism in breast cancer.  

 

Towards this goal we propose a new class of pathway-based diagnosis and prognosis prediction 

models, which emphasize individualized pathway-based risk measurement using the pathway 

dysregulation scores. We hypothesize that higher-level pathway-based models will consistently 

perform better than gene- or metabolites- based models. Towards this we have obtained some 

promising preliminary results, using pathway-based features from transcriptomics data to predict 

breast cancer prognosis, as well as from metabolomics data to predict breast cancer diagnosis. Next 

we applied this methodology together with deep learning approach to integrate multi-omics data 

(gene expression, methylation and copy number variation) for breast cancer patients from public 

resources such as TCGA and METABRIC, for the purposes of identifying breast cancer 

subpopulations with prognosis differences. Our results showed that not only our pathway-based 

prediction consistently performs better than raw data based prediction, but also our deep-learning 

based integration method gives a better characterization of different cancer subgroups compared 

to current state-of-art method. 

 

In this thesis the significance of pathway-based biomarkers in breast cancer was characterized, 

from genomics, metabolomics to multi-omics level. In chapter 1, I further explain the breast cancer 

diagnosis and prognosis background relevant to the projects contained in this dissertation. Chapter 

2 is a research paper published in Genome Medicine, using pathway-based approach on 

metabolomics data to discover biomarkers for breast cancer diagnosis. In Chapter 3, we applied 

our pathway-based pipeline on transcriptomics data, to predict for breast cancer prognosis; this 

work is published in PLOS Computation Biology. Chapter 4 is a trial of integrating clinical traits 

with biomarkers to evaluate the risk of bladder cancer diagnosis, published in Cancer 

Epidemiology, Biomarkers and Prevention. This work brings the promising value of integrating 

more than one levels of information to predict the cancer outcome. Chapter 5 is a review paper 

published in Frontiers in Genetics, focusing on the current work of multi-omics data integration, 

summarizing the diverse computational tools developed over the years, their advantages and 

limitations. In Chapter 6, I extend the pathway-based pipeline to multi-omics data based a deep-

learning model, in order to predict patient survival, and to elucidate the biological pathways 
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relevant to each patient. Finally, in Chapter 7, I discuss what these research projects have 

accomplished in the grand scheme of the breast cancer research field, and explain what further 

work needs to be accomplished to follow up. In the future, we plan to validate the significant 

pathway biomarkers and discover the relationship of medicines with pathways to predict for better 

and personalized therapeutics treatment in breast cancer. 
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Specific Aims: 
 

 

The goal of this work is to discover consistent pathway-based biomarkers for breast cancer 

diagnosis and prognosis. With an observation that there is little overlap across different studies for 

biomarker discovery in breast cancer, the hypothesis of this work is that higher-level representation 

of biomarkers in pathways are more robust and consistent. Through applying different machine 

learning methods on single-omics or multiple omics data of breast cancer. I will apply different 

classification and regression algorithms to elucidate novel biological insights in breast cancer. 

 

To demonstrate and verify the hypothesis of this work,  

1. Pathway-based metabolomics diagnosis model for breast cancer 

2. Pathway-based transcriptomics (mRNA) and clinic-based prognosis model for breast cancer 

3. Pathway-based multi-omics prognosis model for breast cancer 
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Chapter 1. Background and Introduction 
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Breast Cancer Statistics 

Breast cancer is the most frequently diagnosed cancer in women, and ranks second (after lung 

cancer) in the deaths of women. In 2016, a total number of 249,260 cases of breast cancer 

(2,600 male and 246,660 female) are diagnosed, with 40890 (440 males and 40450 females) 

deaths from breast cancer (M. Garcia et al., 2016). 

 

From the data provided by American Cancer Society, the number of deaths from breast cancer 

has been around 40,000 since 2003 (American Cancer, 2003; A Jemal, Siegel, & Ward, 2009; 

Society, 2008). However, the number of diagnosed cancer increases from 212,600 cases to 

249,260, together with the breast cancer mortality rate decreases slightly over the past decade. 

This is partially due to the progress of more accurate diagnostic screening technology. 

 

Breast Cancer Screening and Diagnosis 

Breast screening is considered when women are without any symptoms of breast cancer to 

ensure early diagnosis (Bevers et al., 2009). However, this is impacted by a range of factors 

including family history and risk assessment, physical examination and patient’s familiarity 

with breasts. Breast awareness as noticing breast changes is recommended for women of all 

ages. These changes include: lumps inside breast; swelling, warmth, redness or darkening of 

the breast; changes in shape or size of the breast; itchy or rash in the nipple; pulling in of the 

nipple or other parts of breast; sustaining pain in the breast. 

 

Typically, for women with normal risk, breast cancer checks are determined by age ranges.  For 

women with ages between 20 and 40, a clinical breast exam is suggested every 1 to 3 years. 

For women after 40, an annual check of clinical breast exam together with annual 

mammography screening is considered. 
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Compared to normal risk group, increased risk group of women includes women with one of 

the following conditions: thoracic irradiation history, a family history of breast cancer, lobular 

carcinoma in situ and prior history of breast cancer. Upon these conditions, a combination with 

practical breast awareness by self, annual clinical breast exam, annual mammogram, annual 

MRI and risk reduction strategies should be applied.  

 

Diagnostic breast evaluation is different from normal breast screening/checks. A current 

uniform breast cancer risk assessment model is developed to identify those at increased risk 

with ages 35 and older (http://www.cancer.gov/bcrisktool/Default.aspx). This model is also 

called Gail model, which is based on several basic risk factors for breast cancer. Those factors 

includes age, mutation in either BRCA1 or BRCA2 gene, age of the patient’s first menstrual 

period, age of given birth to the first child and family history of breast cancer etc. This model 

gives an approximate 5-year probability of developing invasive breast cancer, and the risk result 

will suggest the frequency of breast screening for a women. 

 

Basically, mammograms and MRI are the most common ways to detect breast cancer in 

different age groups. However, mammograms suffer from low sensitivity around 60% and MRI 

suffers from low specificity less than 40%. Low sensitivity is associated with more undiagnosed 

cases, leading to patients diagnosed at a later stage with worse survival. Low specificity leads 

to a higher rate of false positive findings, meaning more normal patients will be diagnosed with 

high-risk of breast cancer, provoking unnecessary treatments, financial burden and 

psychological stresses for the misdiagnosed group. 

 

When a woman is suspected with a high risk of breast malignancy from screening, breast biopsy 

is recommended as a further check. Three types of biopsy can be offered: Fine needle aspiration 

biopsy, core needle biopsy and excisional biopsy. Fine needle biopsy is less invasive with 

minimum cost, but it requires pathologist’s expertise to interpret the results and follow-up tissue 

http://www.cancer.gov/bcrisktool/Default.aspx
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biopsy. Core needle biopsy is more accurate, but the procedure is very invasive with multiple 

needle insertions on breast. Excisional biopsy is removing the entire suspicious breast mass by 

a surgeon and is the most invasive biopsy approach.  

 

In summary, current technology on breast cancer diagnosis including screening, biopsy and risk 

assessment has defects in accuracy and invasiveness. An accurate, robust and non-invasive 

diagnostic approach is in pressing need. 

 

Breast cancer molecular subtypes and classification 

Breast cancer is a heterogeneous disease. There is increasing evidence showing there is 

diversity between tumors, within tumors and among different individuals (Polyak, 2011). This 

diversity/heterogeneity in breast cancer contributes to different risks of tumor progression and 

leads to different treatment responses (Blows et al., 2010). Thus, there is urgent calling to 

accurately classify breast cancer patients into clinically relevant subtypes (Dai et al., 2015). 

Sorlie et al. reported, by using immunohistochemistry (IHC) markers including ER, PR, HER2 

and KI67, breast cancers can be categorized into five molecular subtypes: Luminal A, Luminal 

B, HER2, Basal and Normal-like (Sørlie et al., 2001). The basic IHC expression patterns and 

prognosis prediction of these subtypes are summarized in Table I. 

Table I. Summary of breast cancer molecular subtypes 

 

Molecular Subtypes IHC marker Prognosis Prevalence 

Luminal A [ER+|PR+]HER2-KI67- Good 23.7% 

Luminal B [ER+|PR+]HER2-KI67+ 

[ER+|PR+]HER2+KI67+ 
Intermediate 

Poor 

38.8% 

14% 

Basal [ER-PR-]HER2-, basal+ Poor 11.2% 

Her2 [ER-PR-]HER2- Poor 12.3% 

Normal-like [ER+|PR+]HER2-KI67- Intermediate 7.8% 
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Luminal type breast cancers consist the most prevalent tumor types of breast cancer. Luminal 

A and Luminal B subtypes both express hormonal receptors patterns. While Luminal A 

subtypes have higher expression of ER-related genes, Luminal B subtypes have higher 

expression in proliferative genes (Sørlie et al., 2003). The prognosis for Luminal B type of 

patients is worse than those with Luminal A subtype. The hormonal receptor patterns of luminal 

subtypes determine the benefit of hormonal treatment for this group of patients, and people 

found that chemotherapy works poor in treating luminal breast cancers, compared with 

hormonal therapy. 

HER2 over-expression tumors are over-expressing genes in HER2 amplicon or over-expressing 

HER2 protein as receptors on breast cells (Perou et al., 2000). TP53 mutation is associated with 

40%~80% of HER2 tumors. HER2 subtype breast cancer has a poorer prognosis compared to 

Luminal A and Luminal B subtypes, with most of HER2 tumors of grade 3.  Chemotherapy 

works significantly better in HER2 subtype compared to Luminal breast cancers. Molecular 

level HER2 protein targeted treatments, like Trastuzumab, have also been developed for HER2 

breast cancers. 

Basal tumors have been known as the worst prognosis breast cancer subtypes. Low expression 

levels of hormonal receptors and HER2, together with a high expression on basal markers 

(EGFR etc.) and proliferative genes, characterizes basal subtype (Perou et al., 2000). Basal 

tumors have been reported to account for 60%~90% triple negative breast cancer, which is very 

aggressive and lacking systematic targeted clinical therapy (Cheng Fan et al., 2006). The triple 

negative status of immunohistochemistry markers such as ER, PR and Her2 determine that 

targeted treatments on these markers are not applicable and chemotherapy is left as the only 

treatment option. 

 

Other following studies tried to identify these molecular subtypes through gene expression 

profiling and found a diversity of gene-based signatures. PAM (Prediction Analysis of 
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Microarray) 50 is a well-known collection of 50 genes which are mostly related to hormonal 

receptor and proliferation (Parker et al., 2009). PAM 50 has been widely studied and proved to 

be clinically valuable and applicable in classifying patients for prognosis (Ades et al., 2014; 

Dowsett et al., 2013).  

 

In summary, these subtypes are found to be representative of the molecular-level differences 

among breast cancers, and are proved to be effective in differentiating clinical outcomes. 

However, more accurate and personalized risk prediction and management strategy for breast 

cancer prognosis are needed and current effort for personalized prognosis prediction is 

discussed in the following section. 

 

Breast cancer prognosis and prediction 

Commercial genomic prognostic assays for breast cancer, including Mammaprint and 

Oncotype DX etc., are summarized in Table II (Weigel & Dowsett, 2010).  

 

Table II. Commercially available prognostic tools for breast cancer. 

 

Tool Name Mammaprin

t 

MapQuant 

Dx  

MapQuant 

Dx 

simplified 

Oncotype 

DX 

Theros Veridex 

Platform DNA 

microarray 

DNA 

microarray 

qRT-PCR qRT-PCR qRT-PCR DNA 

microarray 

Assay 70-gene 

signature 

97-gene 

signature 

8-gene 

signature 

21-gene 

signature 

2-gene ratio 76-gene 

signature 

Availability Europe, US Europe Europe Europe, US US  

FDA 

approval 

Yes No No No No No 

Tissue Fresh, 

Frozen 

Fresh, 

Frozen 

FFPE FFPE FFPE Fresh, 

Frozen 
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Discovery 

Set 

78 ER+/-, 

N0, < 5 cm 

diameter 

cancers; 

age<55 

years 

64 ER+ 

cancers 

64 ER+ 

cancers 

447 ER+ 

cancers 

60 ER+, 

tamoxifen 

only treated 

cancers 

115 ER+/-, 

N0 cancers 

Predicted 

Outcome 

Distant 

metastasis at 

5 years 

Good (GGI 

I) or poor 

(GGI III) 

prognosis 

Good (GGI 

I) or poor 

(GGI III) 

prognosis 

Disease free 

relapse at 10 

years 

Relapse-free 

and overall 

survival 

Distant 

metastasis at 

5 years 

Results 

representatio

n 

Dichotomou

s; good or 

poor 

Dichotomou

s; good or 

poor 

Dichotomou

s; good or 

poor 

Continuous 

recurrence 

score 

Continuous 

recurrence 

score 

Dichotomou

s; good or 

poor 

Predictive 

value 

Chemothera

py response 

(poor 

prognosis 

group) 

Chemothera

py response 

(poor 

prognosis 

group) 

Chemothera

py response 

(poor 

prognosis 

group) 

Chemothera

py response 

(High 

recurrence 

score) 

Chemothera

py response 

(High 

recurrence 

score) 

Chemothera

py response 

(poor 

prognosis 

group) 

Citation (Van't Veer 

et al., 2002) 

(Sotiriou et 

al., 2006) 

(Toussaint 

et al., 2009) 

(Paik et al., 

2004) 

(Ma et al., 

2004) 

(Yixin 

Wang et al., 

2005) 

 

FDA: US Food and Drug Administration; qRT-PCR: quantitative real-time reverse 

transcription polymerase chain reaction; FFPE: formalin-fixed paraffin-embedded; GGI: 

Genomic grade index 

 

Mammaprint is the first genomic breast cancer prognostic assay which has been fully developed 

and approved by the US Food and Drug Administration (FDA) (Van't Veer et al., 2002). It is 

used for breast cancer prognostic prediction for patient with early stage (stage I, II) negative 

node and small tumors (sizes < 5 cm).  

MapQuant is another microarray-based biomarker assay focusing on classification of ER+ 

grade II tumors into grade I-like and grade III-like (Sotiriou et al., 2006). In contrast, the 

simplified version of MapQuant, MapQuant Dx simplified uses the technique of qRT-PCR and 

consist of only eight genes with the accuracy performance comparable to its pioneer MapQuant 

(Toussaint et al., 2009). 
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Oncotype calculated recurrence score based on the expression of 21 genes. The recurrence score 

is latter used to classify distant relapse of ER+, lymph node negative tumor in 10 years (Paik et 

al., 2004). This test has been included by the National Comprehensive Cancer Network for 

recurrence prediction and therefore guiding the therapeutic decisions for early ER+ and lymph 

node negative breast cancer patients (Reis-Filho & Pusztai, 2011). 

The following array called Veridex is developed focusing on prognostic markers independently 

discovered in ER+ and ER- groups (Yixin Wang et al., 2005). For ER+ breast cancer group, 

60-gene array is found to be predictive for distant metastasis. In contrast, 16-genes array is 

discovered to be predictive for distant metastasis in ER- breast cancers. 

Theros, a unique two-gene ratio (HOXB13 to IL17R) predictor of relapse-free survival and 

overall survival for ER+ patients (Ma et al., 2004). The response to endocrine treatment is also 

predicted with higher two-gene ratio suggesting a higher risk of recurrence.  

However, among these existing predicting assays, only very few genes are found to be 

overlapped, due to a large number of highly correlated genes (Sotiriou & Pusztai, 2009). For 

example, only one gene (SCUBE2) in common between Mammaprint and Oncotype Dx. 

Furthermore, it has been shown that different predictive signatures have comparable and 

concordant risk assignments, in spite of the few shared genes (Cheng Fan et al., 2006). This 

leads to the pathway-based approach which will be discussed in the later chapters. 
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Chapter 2. A novel model to combine clinical and pathway-based 

transcriptomic information for the prognosis prediction of breast 
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Abstract  

Background 

More accurate diagnostic methods are pressingly needed to diagnose breast cancer, the 

most common malignant cancer in women worldwide. Blood-based metabolomics is a 

promising diagnostic method for breast cancer. However, many metabolic biomarkers 

are difficult to replicate among studies.  

Methods 

We propose that higher-order functional representation of metabolomics data, such as 

pathway-based metabolomic features, can be used as robust biomarkers for breast 

cancer. Towards this, we have developed a new computational method that uses 

personalized pathway dysregulation scores for disease diagnosis. We applied this 

method to predict breast cancer occurrence, in combination with correlation feature 

selection (CFS) and classification methods. 

Results 

The resulting all-stage and early-stage diagnosis models are highly accurate in two sets 

of testing blood samples, with average AUCs of 0.968 and 0.934, sensitivities of 0.946 

and 0.954, and specificities of 0.934 and 0.918. These two metabolomics-based 

pathway models are further validated by RNA-Seq based TCGA breast cancer data, 

with AUCs of 0.995 and 0.993. Moreover, important metabolic pathways such as 

taurine and hypotaurine metabolism and alanine, aspartate and glutamate pathway are 

revealed as critical biological pathways for early diagnosis of breast cancer.  

Conclusions 

We have successfully developed a new type of pathway-based model to study 

metabolomics data for disease diagnosis. Applying this method to blood-based breast 

cancer metabolomics data, we have discovered crucial metabolic pathway signatures 
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for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach 

may be generalized to other omics data types for disease diagnosis. 

 

Introduction 

Breast cancer is the most frequently diagnosed cancer in women worldwide excluding 

skin cancer, and it is ranked second for the deaths among cancer patients (Society, 

2015). Early diagnosis of breast cancer is crucial for patients’ prognosis. However, 

current clinically diagnosed breast tumors have a median size of 2 to 2.5 cm (Singletary 

et al., 2002), which are likely to be later stage (stage III) breast tumors already 

metastasized to axillary lymph nodes. A highly accurate diagnostic test for breast 

cancer is currently lacking. The standard mammography test has sensitivities of merely 

54% to 77% (Guth et al., 2008). Other diagnostic tools such as ultrasound, computed 

tomography (CT) and magnetic resonance imaging (MRI) are slightly more sensitive, 

however, they are costly. There is pressing need for more accurate, cost efficient and 

non-invasive alternative methods for breast cancer diagnosis.  

Meeting the criteria above, metabolomics has quickly risen as a new method in the 

cancer biomarker field. As the final products of various biological processes, 

metabolites hold the promise as accurate biomarkers that reflect upstream biological 

events such as genetic mutations and environmental changes (Fiehn, 2002). Discoveries 

of altered metabolites and pathways will help to gain better understanding of 

dysregulated metabolism in tumor initiation and progression. Previous metabolomics 

studies have shown that certain metabolites can successfully differentiate patients from 

normal controls, or even classify sub-populations of certain diseases including breast 

cancer (Blasco et al., 2014; Budczies et al., 2014; Cai et al., 2010; Y. Fan et al., 2011; 
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E. Garcia et al., 2011; Pasikanti et al., 2010; Qiu et al., 2010; Tenori et al., 2015; J. Wei 

et al., 2011). For example, glutamate was found enriched in breast cancer patients and 

the glutamate-to-glutamine ratio was significantly correlated with ER status (Budczies 

et al., 2014). Serum profiles of breast cancer patients showed that histidine, glucose and 

lipids were strongly correlated with breast cancer relapse with a predictive accuracy of 

75% (Tenori et al., 2015). However, similar to other types of biomarkers, metabolomics 

biomarker results are difficult to duplicate among different studies, due to a 

combination of reasons, such as the heterogeneity of the populations and study sizes, 

variability of the experimental protocols, noise in the metabolomics data, as well as the 

biological variations in the turnover rates of metabolites.  

Given the observation that metabolites and enzymes involved in the same biological 

processes are often dysregulated together in cancer (F. Zhang & Du, 2012), we 

hypothesize that higher-order quantitative representations of metabolomics features, 

such as  pathway-based metabolomics features, are coherent surrogates of 

metabolomics biomarkers and with more information of biological functions. To our 

knowledge, this idea had not been implemented in the context of metabolomics data, 

although proposed before in other types of omics data analysis, such as transcriptomics 

and genetics (GWAS and Exome-Sequencing) data. Towards this, we have developed 

a completely personalized, novel computational method for pathway-based 

metabolomics data analysis, using the non-parametric principle curve approach (Hastie 

& Stuetzle, 1989).  We integrate metabolite features as pathway features, and subject 

them to feature selection and machine-learning classifications. This methodology is 

applied to identify breast cancer diagnosis biomarkers, especially for early pathological 

stages. The resulting classification models are highly accurate for breast cancer all-
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stage diagnosis (AUC=0.986) and early-stage diagnosis (AUC=0.995) in the plasma 

training set. Moreover, these models predict equally impressively in plasma testing and 

serum validation samples, with AUCs of 0.923 and 0.995 for the all-stage diagnosis, 

and AUCs of 0.905 and 0.902 for early-stage diagnosis. We have discovered several 

critical pathways for breast cancer early diagnosis, including taurine and hypotaurine 

metabolism and alanine, aspartate and glutamate metabolism.  

 

Methods 
Study population. Three data sets are used in this study: two metabolomics data from our 

own group, and one RNA-Seq data set from TCGA breast cancers. The first metabolomics 

cohort is composed of 132 breast cancer and 76 control plasma samples and the second 

independent set has 103 breast cancer and 31 control serum samples. All samples were 

obtained from City of Hope Hospital. This study was approved by the institutional review 

boards (IRB) of City of Hope National Medical Center. All participants signed an informed 

consent before they participated in the study. Additionally, we downloaded TCGA breast 

cancer RNA-Seq data from 1082 tumor and 98 tumour adjacent normal controls (Cancer 

Genome Atlas, 2012), from the TCGA data portal https://tcga-data.nci.nih.gov/tcga/. 

Patient characteristics, staging of disease and other parameters are shown in Table I.  

Data set configurations for diagnostic model training, validation, and testing.  For the 

all-stage diagnosis model, we used 80% of the plasma (106) and 80% of the control (61) 

samples as the training data. We employed three testing data sets including: (1) the 

remaining 20% of the plasma (26) and 20% of the control (15) samples as the first hold-

out testing data; (2) the entire 103 breast cancer and 31 control serum samples; (3) a cohort 

of 98 pairs of age-matched breast cancer TCGA RNA-Seq data. There is no sample overlap 

between the training and testing set. To train the early stage diagnosis model, we used the 

https://tcga-data.nci.nih.gov/tcga/


 

14 

 

subset of Stage I (15 samples) and II (37 samples) of the training data in the all-stage 

diagnosis model described above, in combination with the 61 healthy control samples. 

Collection and storage of blood serum and plasma. Fasting serum and plasma specimens 

were collected in the morning before breakfast from all the participants. The samples from 

controls were obtained from healthy volunteers. The breast cancer patients were newly 

diagnosed and were not recurrent or on any medication prior to sample collection. All 

samples were placed into clean tubes and immediately stored within two hours of collection 

at -80 °C until analysis.  

Metabolic profiling.  LC-TOFMS and GC-TOFMS were used for the metabolomics 

profiling of all blood samples in the study. The profiling procedure (sample preparation, 

metabolite separation and detection, metabolomics data pre-processing, metabolite 

annotation, and, finally, statistical analysis for biomarker identification) was performed. To 

eliminate batch effect, all of the plasma samples were processed in one batch, so were all 

of the serum samples. Experimental details are provided in the appendix. All annotated 

metabolites from GC-TOFMS and LC-TOFMS datasets were combined and exported to 

SIMCA-P+ 12.0 software (Umetrics, Umeå, Sweden) for multivariate statistical analysis. 

Pathway mapping of metabolites. The names of metabolites are standardized by linking 

them to Human Metabolome Database (HMDB) IDs, with consideration of synonyms. A 

comprehensive master file was created, which contains the mapping information between 

310 human metabolic pathways and affiliated metabolites. Pathway and metabolite 

information is extracted from HMDB (Wishart et al., 2013), Small Molecule Pathway 

Database (SMPDB) (Jewison et al., 2014), Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (M. Kanehisa & S. Goto, 2000), Recon 2 (Thiele et al., 2013), IPA (QIAGEN’s 

Ingenuity® Pathway Analysis, IPA®, QIAGEN Redwood City, 

www.qiagen.com/ingenuity), FLink (FLink: Frequency weighted links. Available from:  

http://ncbi.nlm.nih.gov/Structure/flink/flink.cgi) and PubChem (Bolton, Wang, Thiessen, 
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& Bryant, 2008). Most of the metabolites could be mapped to pathways by the master file. 

The remaining unmapped metabolites were manually searched in literatures.  

Pathifier algorithm. We used the R package pathifier (Y. Drier, M. Sheffer, & E. Domany, 

2013) to perform pathway-based metabolite sets analysis. The details about pathifier were 

described elsewhere (Y. Drier et al., 2013; S. Huang, C. Yee, T. Ching, H. Yu, & L. X. 

Garmire, 2014). Briefly, this algorithm transfers the information from metabolites-level to 

pathway-level by inferring the pathway deregulation score (PDS) for each sample in each 

pathway. This PDS score is an individualized pathway-level measurement of abnormality. 

The normal condition samples are utilized to construct a principal curve, which is then 

smoothed. Every sample will be projected to the smoothed principal curve and the PDS 

score is the normalized projection distance for each pathway of each sample. If the sample 

differs from others more in a particular pathway, then the projection distance to the curve 

is larger and leads to a higher PDS score for this pathway.  

Feature selection and evaluation of classification models. For feature selection from the 

training data, we used the correlation feature selection (CFS) method implemented in Weka 

(Hornik, Buchta, & Zeileis, 2009) with 10-fold cross validation. CFS is a machine learning 

method that selects features with the highest correlation to responses and lowest correlation 

with other selected features (Hall, 1999). In the 10-fold cross validation step, training data 

is split into 10 parts and 9 of them were used as the actual training set while the rest 1 part 

as validation set, such that a set of features were selected by CFS. We repeated this process 

10 times among different parts, and kept the features that were selected 10 out of 10 times 

(100%). To select the best suited classifier, we evaluated the performance of three 

classification methods: logistic regression, SVM and random forest on training dataset on 

the same set of CFS-selected features. We used a comprehensive list of metrics that include 

AUC, sensitivity, specificity, Matthew’s correlation coefficient (MCC) and F-statistic.  
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TCGA RNA-Seq analysis. Breast cancer TCGA RNA-Seq data were downloaded from 

the data portal https://tcga-data.nci.nih.gov/tcga/ on 10/23/2015 (Cancer Genome Atlas, 

2012). We included 1082 breast cancer samples with 98 control samples. For pathway level 

analysis, we implemented pathifier algorithm on the RNA-Seq data and applied limma’s 

differential t-test to compare the pathway level results with our study. For metabolite level 

analysis, the enzyme (gene) information for featured metabolites were extracted from 

KEGG and SMPDB. Limma’s differential t-tests were used for calculation of the p-values 

for each enzyme (gene). Barplots were used for comparison between metabolites and the 

related enzyme (gene) in breast cancer and normal samples.  

Metabolite based model comparison. We built the metabolites-based model on the same 

plasma training data set. We conducted feature selection and classification the same way 

as pathway-based models, so that they are comparable. Specifically, we used the correlation 

feature selection (CFS) method implemented in Weka with a 10-fold cross-validation for 

feature selection. We implemented logistic regression models for all-stage and early-stage 

classification to compare with pathway-based model. 

Power analysis of diagnosis model. To ensure the adequacy of our pathway-based 

metabolomics model, we calculated the sample size and statistical power using the module 

implemented in MetaboAnalyst (Xia, Sinelnikov, Han, & Wishart, 2015), where the 

implementation was described by van Iterson et al (van Iterson, van de Wiel, Boer, & de 

Menezes, 2013).  

Data availability. All the input metabolomics data used for this study are deposited in 

Metabolomics Workbench: http://metabolomicsworkbench.org/ (Project ID PR000284). 

Additionally, the metabolites mapped to pathways are included in Supplementary File 

mapped_metabolites_names.csv. The R scripts for pathway mapping, PDS matrix 

generation and logistic regression are available at  

http: //www2.hawaii.edu/~lgarmire/MetaboloPathwayModel.htm.  

https://tcga-data.nci.nih.gov/tcga/
http://metabolomicsworkbench.org/
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Results  

Data sets and the analysis workflow 

Three cohorts are used in this study: two of them are our own metabolomics profiling data sets 

from independent plasma and serum samples, and the third cohort is the TCGA breast cancer 

RNA-Seq data (to test the generalization of the pathway-based model across data types). The 

metabolomics data include newly diagnosed pre-treatment samples from (1) 132 breast cancer 

and 76 control plasmas, and (2) 103 breast cancer and 31 control serums. For the two cohorts 

of plasma and serum samples, we conducted metabolomics experiments by both liquid 

chromatography time-of-flight mass spectrometry (LC-TOFMS) and gas chromatography 

time-of-flight mass spectrometry (GC-TOFMS). According to the power analysis tool in 

MetaboAnalyst (Xia et al., 2015), the study achieves a power of 0.84 (supplementary figure 1), 

supporting the adequacy of the metabolomics data. The physiological and clinical information, 

such as age, ethnicity and tumor stage for the plasma, serum data and TCGA sets are 

summarized in Table I. 

To analyse the metabolomics data, we have developed a novel computational pipeline that 

identifies pathway-based biomarkers for blood-based breast cancer diagnosis (Figure 1). The 

essence of the approach is to transform metabolite-level information to completely personalized 

pathway-level information. The overall workflow of the pathway-based model and the analysis 

process is as follows:   

First, metabolites are mapped to their standardized Human Metabolome Database (HMDB) 

IDs, and the pathway-metabolite relationships are summarized in a master file from multiple 

resources, including Human Metabolome Database (HMDB), Kyoto Encyclopedia of Genes 

and Genomes (KEGG), Small Molecule Pathway Database (SMPDB), IPA, FLink, Recon 2 

and PubChem. Next, we used the pathifier algorithm to convert the raw metabolite-based data 

matrix to the pathway-based matrix that contains pathway dysregulation scores (PDS). Pathifier 



 

18 

 

is a non-parametric method for dimension reduction, where a one-dimensional Principle Curve 

is derived from a cloud of data points in the high-dimensional space; The PDS is a metric for 

the degree of pathway abnormality per patient, and it is the distance on the Principle Curve 

from the starting point to the point projected by a particular and individualized pathway (Y. 

Drier et al., 2013; Hastie & Stuetzle, 1989). A PDS ranges from 0 to 1, where a score closer to 

1 indicates a more aberrant pathway. Then, we used the PDS matrix from 80% of qualified 

plasma set to train classification models. We selected plasma set to train the classification 

models, as it has a larger sample size and more complete information of tumor stages. The 

details of feature selection and classification to train the models, and model testing with three 

different data sets are described in the following.  

Metabolic-pathway based all-stage diagnostic model for breast cancer  

We first investigated the metabolomics-based pathways as biomarkers to predict breast cancers 

composed of all stages of tumors (Figure 2). To select the best set of features that are maximally 

relevant and minimally redundant, we used CFS with 10-fold cross-validation on the plasma 

training dataset, which is composed of 80% of breast cancer and 80% healthy controls. With 

these selected features (Figure 2C), we evaluated three widely used classification methods: 

logistic regression, SVM and random forest on the plasma training data set. The resulting 

performance metric AUC (0.986) show that logistic regression performs the best among the 

three methods (Supplementary Table I). We thus used logistic model as the model of choice to 

evaluate three other testing datasets: the 20% hold-out plasma testing samples, the entire serum 

sample set, and a cohort of 98 pairs of age-matched breast cancer RNA-Seq data from TCGA. 

Note for TCGA data, we generated the pathway dysregulation scores (PDS) and extracted the 

values for the same features as the training data set. Although these three data sets are generated 

from different populations and technology platforms, our hypothesis is that pathway-based 

features should represent true biology and therefore the model based on metabolomics data 

should generally predictive. 
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The resulting metabolic pathway-based diagnostic model performs very well in all three testing 

data sets, with AUCs of 0.923, 0.995 and 0.9946 in the hold-out plasma testing samples, serum 

samples and TCGA RNA-Seq set, respectively (Figure 2A). Moreover, other statistical metrics 

such as the sensitivity, specificity, MCC and F-statistic are also outstanding, confirming the 

robustness and generality of the pathway-based model (Figure 2B). The even superior 

performances of the model on serum metabolomics data and TCGA RNA-Seq data are 

surprising. This may be due to the more complete lists of metabolites in serum and genes in 

RNA-Seq data, compared to the plasma samples. The good AUC obtained from the age-

matched TCGA RNA-Seq data suggest that age is unlikely a driving factor leading to accuracy 

of the classification from the metabolomics based pathway-model. Nevertheless, we further 

examined if age is a dominant confounding factor in the metabolomics training data. For this, 

we divided the plasma data into subset 1 with 35 pairs of age-comparable samples and the other 

subset 2 with 97 breast cancer and 41 age-incomparable controls. If diagnosis signals were 

driven by age, then a model trained on age-incomparable subset 2 would have very poor 

prediction on subset 1 where the ages among these samples are comparable. However, a new 

model on age-incomparable subset 2 still achieves a very high AUC of 0.913 on age-

comparable subset 1. Thus the pathway features (Figure 2C) in the earlier model are predictive 

of breast cancer diagnosis.  

The relevance of these eight pathway features to diagnosis, as measured by Mutual Information 

(MI), is listed in the following descending order: taurine and hypotaurine metabolism, 

glutathione metabolism, methionine metabolism, glycine serine and threonine metabolism, 

phospholipid biosynthesis, propanoate metabolism, cAMP signaling pathway and 

mitochondrial beta-oxidation of medium chain saturated fatty acids. Interestingly, none of the 

pathways has an MI more than 0.5, indicating the complexity of the disease and the significance 

of pathways collectively. Among them, taurine and hypotaurine metabolism stands out as the 

most important pathway (MI=0.386). Hypotaurine is a product of enzyme cysteamine 
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dioxygenase in this pathway, involved in protecting against oxidative stress and cancer-induced 

membrane damage (Brand, Leibfritz, Hamprecht, & Dringen, 1998; Gossai & Lau-Cam, 2009). 

Taurine and hypotaurine metabolic pathway has been shown to be relevant to multiple types of 

cancers, such as ovarian, lung, colon and renal cancers (Fong, McDunn, & Kakar, 2011; 

Pradhan, Desai, & Palakal, 2013; Roy et al., 2014; Tiruppathi, Brandsch, Miyamoto, 

Ganapathy, & Leibach, 1992). Here for the first time, we have discovered that taurine and 

hypotaurine metabolism is also dysregulated in the blood samples of breast cancer. In order to 

confirm the significance of each pathway at the transcriptome level, we crosschecked pathway-

level expression results using TCGA RNA-Seq data. The pathway level results of two data 

types are consistent overall as expected (Supplementary Table II). For example, taurine and 

hypotaurine metabolism pathway has a significant p-value of 1.01E-25 for the differential test 

in the metabolomics data, and it is also a top-ranked pathway with a p-value of 7.40E-9 in the 

RNA-Seq data. 

Next, we identified the measurable metabolites in these selected pathways from both plasma 

and serum samples and presented their average log fold changes in tumor versus control 

samples (Figure 2D and Supplementary Table III (A)). Hypotaurine is the primary metabolite 

in the leading significant taurine and hypotaurine pathway, and it has 2.41-fold (0.0086 vs. 

0.0025) amount in the tumor as in normal plasma samples. Pyruvate, the most central 

metabolite in the cell and a common component of glycine, serine and threonine metabolism 

and taurine and hypotaurine metabolism pathway, is consistently higher in breast cancer blood 

samples (Figure 2D and Supplementary Table III (A)). From control to cancer conditions, it 

has 1.82-fold increase in the plasma, and 2.89-fold in the serum samples (Figure 2D and 

Supplementary Table III (A)). Interestingly, several amino acids are lower in cancer samples 

compared to controls, including succinate (1.69-fold decrease in plasma, 4.58-fold decrease in 

serum), choline (1.23-fold decrease in plasma, 4.58-fold decrease in serum), serine (2.72-fold 

decrease in plasma, 1.13-fold decrease in serum), glycine (1.25-fold decrease in plasma, and 
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1.83-fold decrease in serum) and alanine (1.11-fold decrease in plasma, and 1.62-fold in serum 

(Supplementary Table III (A)). Decrease of glycine and alanine levels in plasma and serum of 

breast cancer have been reported before (Miyagi et al., 2011; J. Shen, Yan, Liu, Ambrosone, & 

Zhao, 2013). Choline, serine and glycine are the major component of glycine, serine and 

threonine metabolism, glutathione metabolism and methionine metabolism, whereas succinate 

is the major component of propanoate metabolism and cAMP signalling pathway. Similarly, 

glycerol-3-phosphate in phospholipid biosynthesis is significantly lower in the cancer samples, 

with a 6-fold decrease in plasma. The comparisons between some key metabolites in our 

metabolomics study and the corresponding enzymes from TCGA RNA-Seq data are shown in 

Supplementary Figure 2. Overall, the directions of changes in metabolites are consistent with 

those of corresponding enzymes.  

 

Metabolic pathway based early-stage diagnostic model for breast cancer  

Early detection of breast cancer is critical to improve patients’ survival. Due to the small sample 

size (n=16) in Stage I, we combined the samples in stage I and II as early-stage cancers, and 

constructed a sub-model to diagnose early-stage breast cancer, similar to the previous all-stage 

diagnosis model. As expected, the pathway-based early-stage diagnostic model performs very 

well on the training data set, with AUCs of 0.995. Moreover, it also predict very well on the 

three testing data sets, with AUCs of 0.905, 0.902 and 0.999 in the 20%  hold-out plasma 

testing, serum, and TCGA breast cancer samples (Figure 3A). Other model performance 

metrics also yield satisfactory results in both data sets, supporting the excellence of the early 

diagnostic model (Figure 3B).  

Eight key pathways are identified as diagnostic features for early stage breast cancer detection 

(Figure 3A), namely taurine and hypotaurine metabolism, alanine aspartate and glutamate 

metabolism, protein digestion and absorption, purine metabolism, malate-aspartate shuttle, 

cAMP signalling pathway, propanoate metabolism and biosynthesis of unsaturated fatty acids, 
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in the descending order of significance. Similar to the all-stage diagnosis model, taurine and 

hypotaurine metabolism is again the top-ranked pathway (MI=0.414, Figure 3C), indicating its 

significance as a new signature for early stage breast cancer detection. Alanine, aspartate and 

glutamate metabolism is a new pathway feature selected by the early stage diagnosis model, 

largely due to the increase of aspartate from 0.063 to 0.182 and decrease of asparagine from 

0.091 to 0.038 in the cancer and control plasma samples, respectively. This implies a 

transformation relationship from aspartate to asparagine from normal to cancer. The cAMP 

signalling pathway has been intrinsically linked to a variety of pathways such as PI3K pathway, 

and antibodies directed against the soluble adenylyl cyclase that catalyses cAMP have been 

shown as highly specific markers for melanoma (Desman, Waintraub, & Zippin, 2014; 

Rodriguez & Setaluri, 2014). To further confirm the significance of our finding, we calculated 

the differences of the above eight feature pathways between tumor vs. control sample, using 

the metabolomics data and TCGA RNA-Seq data. The pathway level results from the two data 

types are both significant (Supplementary Table II).  

At the metabolite level, some key metabolites are preserved in the early-stage diagnosis sub-

model (Figure 3D), compared to the all-stage model (Figure 2D). They include cysteine, 

glutamine and asparagine, which have higher concentrations in early-stage tumor samples; as 

well as alanine and aspartate, which are decreased during early tumorigenesis. The finding that 

aspartate, the precursor of beta-alanine (Marshall, 1965), is significantly and robustly lower 

even in early stage breast cancers is a very interesting finding, and this further confirms that 

dysregulations of amino acid metabolism and metabolites are early events associated with 

breast cancer tumorigenesis (Miyagi et al., 2011). We summarized the averaged expression of 

the key metabolites and the differential test p-values in Supplementary Table III (B). We also 

compared the relationship of the key metabolites from our study and the enzymes transforming 

those metabolites from TCGA RNA-Seq data in Supplementary Figure 3. Both sets of results 

show consistent trends in general.  
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Integrative analysis of key pathways and metabolites 

Metabolic regulation is elaborately related with cancer initiation and progression, as 

proliferating cells demand nutrients for energy production as well as synthesis of genetic 

materials, proteins and lipids (Fiehn, 2002; F. Zhang & Du, 2012). Although the feature 

pathways identified by diagnostic and early diagnostic models are different, they are 

nevertheless interconnected in the cellular context (Figure 4). Alanine, glutamine and aspartate 

metabolisms are interconnected, and we observe consistent decreasing trends of alanine, 

glutamine and aspartate in cancer vs. normal samples. Moreover, the amino acid, glucose and 

phospholipid metabolisms can be inter-connected through glutaminolysis, a process that 

supplies carbon and nitrogen resources to the growing and proliferating cancer cells (Dang, 

2010).We also summarize the overlap of metabolites from pathways featured in the all-stage 

diagnosis and early-stage diagnosis. Common metabolites important to the two models are beta-

alanine, glycine, serine, lactate, succinate, oxoglutarate, alanine, 3-hydroxybutyrate, 

methionine, valine, cadaverine and pyruvate, all functionally linked to glutaminolysis 

(Supplementary Figure 4).  

Comparison of pathway-based and metabolite-based metabolomics models 

To evaluate the pathway-based metabolomics diagnosis modeling approach with the commonly 

used metabolite-based approach, we constructed a “baseline” metabolite-based model, using 

exactly the same CFS feature selection and logistic regression steps as done in our pathway-

based method. Since the AUC values indicate that the early-stage model is less likely to have 

over-fitting, we use the early-stage breast cancer data to compare the pathway-based and 

metabolite-based diagnosis models. In the training data set, the pathway-based approach 

performs slighter better with an AUC of 0.995, compared 0.988 in the metabolite-based 

approach (Figure 5). Similar trend also exists in the testing data set, where the pathway-based 

model yields an AUC of 0.905, whereas the metabolite-based model has an AUC of 0.888 

(Figure 5).    
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The FDA approval of biomarkers requires the demonstration of the biomarker candidate 

functions (Katz, 2004), we thus built single-variate logistic models to show the diagnostic 

potential of individual pathway or metabolite features selected by the models. Comparatively, 

the top pathway features show better disease association than the top metabolite features 

(Supplementary Table IV). In the pathway-based model, taurine and hypotaurine metabolism 

yields the most statistical significance (p<2E-16, t-test) followed by protein digestion and 

absorption pathway (p= 3.5E-10, t-test). On the other hand, in the metabolite-based model, the 

most significant metabolite cysteine (HMDB00192) has significant p-value of 2.22E-9. These 

results indicate that the top individual pathway feature may have better diagnostic performance 

than metabolites. 

To investigate the effect of the number of pathways on the performance of pathway-based 

model, we conducted sensitivity analysis exemplified by early-stage diagnosis model. We 

randomly selected ½ (51) of the initial 101 pathways within exactly the same training sample 

sets, and applied the same CFS feature selection criteria with 10-fold cross validation. CFS 

selects 6 pathways for early-stage model (Supplementary Table V). We imposed logistic 

regressions on these selected features and compared the changes in AUCs due to changes in 

pathways. Reducing the initial number of pathways decreases the performance of the models, 

as expected. In the training data, the half-size pathway-based early stage diagnosis model has 

a slight decrease of AUC from 0.995 to 0.948. Such decrease is more pronounced in the serum 

testing data from 0.903 to 0.753. Similar trends are observed in the all-stage diagnosis model.  

 

Discussion 
Summary of discoveries 

Metabolomics provides the most direct measurement of phenotypic changes, since it reflects 

the final molecular result of the combination of all upstream genetic, transcriptomic and 

proteomic changes (Denkert et al., 2012). The relative incomplete coverage of metabolomic 

measurements has been a challenge for their use for diagnostic classifiers. In this study, we 
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address this challenge by using a new metric of personalized pathway dysregulation score. This 

score can interpret the metabolomics data in the context of the metabolic pathways on 

individual patient level, thereby enables us to discriminate the differences in specific pathways 

between cancer and normal samples. This approach accurately predicted all-stage breast cancer 

patients from normal controls (AUC=0.968). It even detected early-stage (stage I and II) breast 

cancers with excellent accuracy (averaged AUC=0.904 in two testing sets). In addition to the 

increased power achieved by integrating concerted metabolic changes as described in this paper, 

our pathway-based classifiers can potentially offer deeper biological insights as to which 

cellular processes are dysregulated in breast cancer. We have discovered novel critical 

pathways, such as taurine and hypotaurine metabolism and alanine, aspartate and glutamate 

metabolism related to glutaminolysis, for the early diagnosis of breast cancer. 

A new paradigm to use pathways as features of biomarker classification models 

Conventionally, almost all metabolomics studies aim to identify metabolites as biomarkers. 

Even among the few studies that involve the systematic pathway approach (Borgan et al., 2010; 

Krumsiek, Suhre, Illig, Adamski, & Theis, 2011, 2012; Nam, Chung, Kim, Lee, & Lee, 2009)), 

none of them has developed a computational methodology to employ pathways as input features 

for the downstream statistical or machine learning modeling of biomarkers diagnosis or 

prognosis 

The disadvantages of using metabolites as predictors of biomarker diagnosis or prognosis 

models are obvious: low reproducibility. This could be due to various reasons, such as the 

heterogeneity of the populations and small study sizes, variability of the experimental 

protocols and technical noise in the metabolomics data. In fact, we compared the multiple 

studies that had attempted to identify metabolites in blood as biomarkers for breast cancer 

previously (Jobard et al., 2014; Oakman et al., 2011; Poschke, Mao, Kiessling, & de 

Boniface, 2013; J. Shen et al., 2013), and found little overlap or even controversies among the 

studies (Supplementary Figure 5) (Asiago et al., 2010; de Leoz et al., 2011; Miller et al., 

2015; Miyagi et al., 2011; Oakman et al., 2011; Poschke et al., 2013; J. Shen et al., 2013; 
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Tenori et al., 2015; C. Yang, Richardson, Smith, & Osterman, 2007). On the contrary, many 

metabolites in the featured pathways that we have found with our method coincide with 

previous reports, such as increases of alanine, pyruvate and lactate, as well as decrease of 

choline in cancer samples. Thus the pathway-based method is more tolerable to heterogeneity 

of the population, compare to the metabolite based biomarker approach. Furthermore, the 

tolerability of pathway-based method to population heterogeneity is also manifested through 

embracing age differences by the pathway features. The models predict fairly well on 3 

different sets of testing data, even when the ages are matched. Moreover, biologically 

motivated feature selection approach offers systems level and biological level insights, which 

the metabolite-based models lack. Such system level knowledge is very critical as we move 

forward towards developing intervention strategies for cancer prevention or therapeutics 

strategies for cancer treatment. Biological system is highly robust with redundant 

components, and attacking the higher-level structures such as pathways offers a better 

strategy than changing the expression of lower-level components such as genes or 

metabolites. 

The workflow that we propose here is a fully personalized pathway-based diagnostic modeling 

framework for metabolomics data. Moreover, it is compatible with conventional metabolite-

based predictive modeling approach after the step of input matrix transformation. This 

methodology represents generalization of the pathway-based predictive modeling philosophy, 

which we had exemplified earlier using the transcriptomics and clinical data to predict breast 

cancer prognosis (S. Huang et al., 2014). The most distinguished characteristic of our method, 

is that it summarizes the contribution of potentially correlated metabolites in the same pathway 

into a single metric of PDS score, on a patient by patient basis. It not only preserves the 

individual patient information before classification, but also gives direct numerical value 

(rather than the rank) per pathway per patient. Doing so provides bountiful flexibilities to use 

pathways as features for various downstream analysis, exemplified here as diagnosis biomarker 
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modeling. The applications are far beyond disease diagnosis though. For example, one could 

also use the new data matrix of PDS scores to perform clustering or survival analysis. On the 

other hand, other bioinformatics tools for metabolomics analysis, such as MetaboAnalyst (Xia 

et al., 2015) and Metabolite Set Enrichment Analysis (Xia & Wishart, 2010), either use pathway 

enrichment post hoc or lose individual patient’s value during the set enrichment analysis.  

Perhaps the most powerful utility of this modeling approach, is that the pathway features may 

be generalized to other omics platforms, despite the differences in experimental protocols, 

masses that are measured (metabolites, mRNAs, proteins etc.) and their units. Here we have 

demonstrated that the pathway features obtained from metabolomics data have excellent 

predictive performance in TCGA breast cancer RNA-Seq data, where both the sample sources 

and technical platform are different from the metabolomics datasets. Moreover, by projecting 

metabolites profiles to pathway profiles, metabolomics data can be integrated with other types 

of omics data such as RNA-Seq gene expression, DNA methylation and copy number 

variation data.  

Important discoveries of altered pathways during carcinogenesis 

Our results demonstrate that taurine and hypotaurine metabolism is the most indicative pathway 

for breast cancer diagnosis. Taurine, converted from hypotaurine by hypotaurine 

dehydrogenase, is intricately linked with alanine and glutamate metabolism (Figure 4). 

Although it is the first time for us to report this significant pathway in breast cancer early 

diagnosis, many lines of evidence suggest this is a critical pathway in tumor development. 

Hypotaurine is known to modify the indices of oxidative stress and membrane damage, both of 

which are associated with cancers (Bucak et al., 2009; Gossai & Lau-Cam, 2009). Additionally, 

others have linked this pathway to worse prognosis in ovarian, kidney, colon and lung 

adenocarcinoma (Pradhan et al., 2013; Roy et al., 2014; Tiruppathi et al., 1992; W. Yang et al., 

2014). Moreover, glutamate decarboxylase 1, a key enzyme in taurine and hypotaurine 
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metabolism, has been identified as a tissue biomarker for benign and malignant prostate cancer 

(Jaraj et al., 2011).  

We also found alanine, aspartate and glutamate metabolism together with malate-aspartate 

shuttle to be significant pathways in early stage diagnosis model. Aspartate is the key 

metabolite that shows significant lowered level in breast cancer blood samples (Supplementary 

Table III (B). Aspartate is produced from oxaloacetate by a transamination process. It 

participates in urea cycle to facilitate the removal of ammonia and it also acts in the biosynthesis 

of pyrimidine for translocating NADH into mitochondria. Interestingly, the lower level of 

aspartate in the blood is reversely associated with increased aspartate in the breast cancer tissue 

and cell lines (Xie et al., 2015), suggesting that the aspartate pool in the blood is utilized to 

supply more aspartate in breast cancer cells. Consistent with this hypothesis, asparagine 

synthetase, the enzyme that generate asparagine from aspartate, was overexpressed under 

glucose deprivation in pancreatic cancer cells to protect against apoptosis(H. Cui et al., 2007).  

Perspectives and future work  

In this study, we have proposed a new and personalized pathway-based approach to integrate 

metabolites-level metabolomics data, in the application of breast cancer diagnosis.  The success 

of this type of pathway models first relies on data obtained through a profiling (rather than 

targeted) approach where as many metabolites/genes as possible are recorded. Compared to 

other omics data types, metabolomics data are much less standardized across different studies, 

and data repositories are lacking (Berg et al., 2013; Johnson & Lange, 2015). A community 

effort needs to be devoted to improve data sharing, in order to accumulate statistically well-

powered data sets to predict disease diagnosis and prognosis.  To drive our modeling approach 

towards clinical diagnosis, we are planning to build a large database to store the metabolomics 

profiles as references. In the model construction step, samples will be labeled as cancer/normal 

classes are used, and their individual pathway scores (normalized scores between 0 and 1) will 

be calculated as inputs subject to feature selection and classification step.  When a new sample 

arrives, the metabolite profile will be normalized relative to the database, a new vector of PDS 
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scores will be calculated after the same metabolite-to-pathway transformation. The 

classification model can then call for the probability for this new sample as being normal or 

cancerous. Depending on the accuracy of prediction in the new sample, we can elect to 

incorporate it into the training data set and re-train the model, thus improving the predictive 

power of the model over time. Moreover, from the new patient’s PDS profile we can also infer 

the aberrant pathways, and identify problematic metabolites (and associated enzymes) for this 

specific patient. Therefore, the discoveries could be used for not only diagnosis prediction but 

also precision medicine.   

Conclusions 

We have successfully developed a new type of pathway-based model that uses metabolomics 

data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics 

data, we were able to discover crucial metabolic pathway signatures for breast cancer diagnosis, 

which may be valuable for diagnostic tests and therapeutic interventions (Yizhak et al., 2014). 

Further, this modeling approach can be broadly applicable to other omics data types for disease 

diagnosis. 
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Appendix A: Chapter 2 Figures 
 

Figure 1. The workflow of pathway-based metabolomics data analysis. 

Step 1. Conversion from metabolite- to pathway-based metabolomics data. The input 

data include the master file containing pathway-metabolites mapping information, the 

metabolomics profiling data and the normal/tumor classification vector. The 

metabolomics-level data are transformed to pathway-level data by the pathifier algorithm. 

The output file of pathifier is the Pathway Deregulation Score matrix within which each 

score measures the deregulation of a specific pathway for a specific sample. Step 2. Model 

construction.  Qualified COH plasma samples are split by 80/20 for training and holdout 

testing data. Correlation feature selection (CFS) is used for feature selection and the logistic 

regression model is used for classification. 10-fold cross-validation is applied with CFS 

feature selection in the plasma training dataset. Two models are constructed: all-stage 

diagnostic model and early-stage diagnostic model. Step 3. Model evaluation. The model 

performance is assessed using ROC curves and various metrics including AUC, MCC, 

Sensitivity, Specificity and F-statistic.  
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Figure 2. Analysis of the performance of the all-stage diagnosis model for breast 

cancer.  

 

80% of controls and cases in COH plasma data set are used to train the model. The 

remaining COH plasma data (20%) and COH serum data set are used as the testing set and 

validation set. A. ROC curves for the all-stage breast cancer diagnosis from different data 

sets. B. AUC, MCC, Sensitivity, Specificity and F1-statistic to measure the performance of 

the all-stage diagnosis model. C. Mutual information for pathway features selected by the 

all-stage diagnosis model. D. Log fold change of metabolites associated with the selected 

pathway features, by comparing cases to the controls across different data sets.  
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Figure 3. Analysis of the performance of the early-stage diagnosis model for breast 

cancer.  

 

80% of controls and early-stage (stage I and II) cases in COH plasma are used to train the 

model.  The remaining controls and early stage cases in COH plasma samples, as well as 

controls and early stage cases in COH serum data are used as the testing and validation set. 

A. ROC curves for the early-stage breast cancer diagnosis from different data sets. B. AUC, 

MCC, Sensitivity, Specificity and F1-statistic to measure the performance of the early-

stage diagnosis model. C. Mutual information for pathway features selected by the all-stage 
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diagnosis model. D. Log fold change of metabolites associated with the selected pathway 

features, by comparing cases to the controls across different data sets.  

Figure 4. Integrative analysis of pathway features and the associated metabolites. 

 

The key pathways and their intersections crucial for breast cancer diagnosis. Metabolites 

and enzymes are represented with nodes of different shapes and colors, and their 

relationships are represented by edges.    

Figure 5. ROC curves comparison of pathway-based model and metabolites-based 

model among data sets        
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The same 80% of early stage (stage I and II) cases and controls from COH plasma from 

early stage diagnosis model stands for the plasma training set. The 20% of early stage (stage 

I and II) cases and controls testing represents the testing set. Metabolites based model is 

based on the same 10-fold cross-validation CFS selection on the plasma training set. ROC 

curves for training and testing sets are compared between plasma-based model and 

metabolites-based model among data sets. 
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Appendix B: Chapter 2 Supplementary Figures 
Supplementary Figure 1. Power analysis and sample size estimation plot  

 
Supplementary Figure 2. Bar plot comparing the key metabolites in all-stage 

diagnosis model to the expressions of corresponding enzymes in TCGA breast cancer 

RNA-Seq data.   

 
The enzymes (genes) for these metabolites were extracted from KEGG and SMPDB. P-

values were calculated using differential tests in Limma. ***: P<0.001. 

Supplementary Figure 3. Bar plot comparing the key metabolites in early-stage 

prediction model to the expressions of corresponding enzymes in TCGA breast cancer 

RNA-Seq data.  
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The enzymes (genes) for these metabolites were extracted from KEGG and SMPDB. P-

values were calculated using differential tests in Limma. ***: P<0.001 

Supplementary Figure 4. Venn diagram of the metabolites from the selected pathways 

in two models (all-stage diagnosis and early-stage diagnosis) 
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Supplementary Figure 5. Metabolites detected as biomarkers for breast cancers by 

different studies 

 

Study1: (serum) E Jobard et.al (2014)  

Study2: (serum) ML de Leoz et.al (2011)  

Study3: (serum) C Oakman et.al  (2011) 

Study4: (serum) VM Asiago et.al (2010) 

Study5: (serum) L Tenori et.al (2015) 

Study6: (plasma) Y Miyagi et.al (2011) 

Study7: (cell line) C Yang et.al (2007) 

Study8: (plasma) J Shen et.al (2013) 

Study9: (plasma) JA Miller et.al (2015) 

Study10: (serum) I Poschke et.al (2013) 
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Appendix C: Chapter 2 Tables 
Table I: Summarization of patient and clinic characteristics  

Source  COH Plasma COH serum 
TCGA paired 

RNASeq 

 Division   Training Set Testing set  Testing set  Testing Set 

    
Breast  
Cancer 

Healthy 
Control 

Breast 
Cancer 

Healthy 
Control 

Breast 
Cancer 

Healthy 
Control 

Breast 
Cancer 

Healthy 
Control 

Number of 
samples 

  106 61 26 15 103 31 98 98 

Age (median, 
range) 

  53, 31-73 34, 21-40 
54.5, 36-

72 
37, 21-40 52, 32-72 36, 18-49 

56, 30-
90 

56, 30-
90 

Stage I   16  3  18  16  

Stage II   40  9  49  60  

Stage III   38  8  54  21  

Stage IV   11  6  19  1  

  Asian 14  3  14  1 1 

  Black 5 12 4 1 6 5 6 6 

Race White 76 28 18 9 69 21 90 90 

  Latino  21  5  5   

  Native     1    

  Others 10  1  13  1 1 
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Chapter 3. A novel model to combine clinical and pathway-based 

transcriptomic information for the prognosis prediction of breast cancer 
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Abstract 

Breast cancer is the most common malignancy in women worldwide. With the increasing awareness of 

heterogeneity in breast cancers, better prediction of breast cancer prognosis is much needed for more 

personalized treatment and disease management. Towards this goal, we have developed a novel 

computational model for breast cancer prognosis by combining the Pathway Deregulation Score (PDS) 

based pathifier algorithm, Cox regression and L1-LASSO penalization method. We trained the model on 

a set of 236 patients with gene expression data and clinical information, and validated the performance on 

three diversified testing data sets of 606 patients. To evaluate the performance of the model, we 

conducted survival analysis of the dichotomized groups, and compared the areas under the curve based on 

the binary classification. The resulting prognosis genomic model is composed of fifteen pathways (e.g. 

P53 pathway) that had previously reported cancer relevance, and it successfully differentiated relapse in 

the training set (log rank p-value = 6.25e-12) and three testing data sets (log rank p-value < 0.0005).  

Moreover, the pathway-based genomic models consistently performed better than gene-based models on 

all four data sets.  We also find strong evidence that combining genomic information with clinical 

information improved the p-values of prognosis prediction by at least three orders of magnitude in 

comparison to using either genomic or clinical information alone. In summary, we propose a novel 

prognosis model that harnesses the pathway-based dysregulation as well as valuable clinical information. 

The selected pathways in our prognosis model are promising targets for therapeutic intervention.  
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Introduction 

Breast cancer is the second (after skin cancer) most frequently diagnosed cancer in women, and ranks 

second (after lung cancer) in the deaths of women in year 2013 (Society, 2013). Most clinical studies 

categorize breast cancer into four molecular subtypes: Luminal A, Luminal B, Triple Negative/ Basal like 

and Her2(Carey et al., 2006; O'Brien et al., 2010). The survival outcomes differ significantly among the 

clinical subtypes. Luminal A and B subtypes have a relatively good prognosis, whereas triple negative or 

basal like tumors, and Her2 tumors have very poor prognosis with much higher recurrence and metastasis 

rates(Carey et al., 2006; Haque et al., 2012; O'Brien et al., 2010). Furthermore, it is increasingly being 

realized that breast cancers are much more heterogeneous diseases than what is determined by the clinical 

subtypes, and that better prediction of prognosis is needed early on for more personalized treatment and 

management.  Towards this goal, prognosis biomarkers of breast cancers have been investigated in many 

studies (Cancer Genome Atlas, 2012; van de Vijver et al., 2002; Y. Wang et al., 2005), based on signatures 

from high-throughput platforms such as gene expression profiles. Some signature panels such as the NKI 

70 test are currently in commercial use with decent prediction of metastasis (van 't Veer et al., 2002).  

However, transcriptomic data are usually poorly dimensioned with many more genes than the number of 

samples, thus methods that reduce the dimension by incorporating higher-order information of functional 

units, such as gene sets, pathways and network modules, have been recently explored (G. Abraham, A. 

Kowalczyk, S. Loi, I. Haviv, & J. Zobel, 2010; Efron & Tibshirani, 2007; E. Lee, H. Y. Chuang, J. W. Kim, 

T. Ideker, & D. Lee, 2008; S. Ma, M. R. Kosorok, J. Huang, & Y. Dai, 2011; F. Reyal et al., 2008; 

Subramanian et al., 2005; A. E. Teschendorff et al., 2010; van den Akker et al., 2013). This methodology 

is based on the observation that multiple genes involved in the same biological processes are often 

dysfunctional all together in cancers (Bild et al., 2006), therefore features selected from representative 

functional units are presumably more robust with better biological annotations(Bild et al., 2006; van den 

Akker et al., 2013). Currently, two main approaches to define functional units have been proposed. One 
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approach is to identify de novo functional units from the data. For example, van Vliet used an unsupervised 

module discovery method to identify gene modules, scored them and use them as features in a Bayes 

classifier (van Vliet, Horlings, van de Vijver, Reinders, & Wessels, 2012). Teschendorff et al. reported 

improved prognostic classification of breast cancers via a novel strategy to discover the activated pathways 

from the modules of “expression relevance network” (A. E. Teschendorff et al., 2010). Similarly, network 

analysis with combination of all the useful gene information has been developed and utilized to measure 

the coordination among the genes (S. Ma et al., 2011). The other main approach uses the existing pathway 

information to build functional units. For example, Lee et al used the MsigDB C2 gene sets to select feature 

sets using the t-test, and represented the pathway activity level by a subset of genes whose combined 

expression delivered optimal discriminative power for the disease phenotype (E. Lee et al., 2008). Abraham 

et. al used a set statistic that aggregated the expression levels of all genes in a set, and constructed prognostic 

gene sets that were as predictive as individual genes, yet more stable and interpretable within the biological 

context (G. Abraham et al., 2010). 

However, most of these methods model the prognosis as binary outcomes, and post hoc analyze the 

performance of the methods using survival information; or individualized information of pathway 

deregulation is lost during information extraction before deriving statistical metrics. More importantly, the 

merits of combining clinical features and genomic features together have not been adequately addressed in 

most studies, where the models were only built upon the genomic information. In this study, we use a novel 

pathway-based deregulation scoring matrix to transform the gene-based genomic features in combination 

with the Cox regression and L1-LASSO regularization to model survivals. With this pathway deregulation 

score matrix as inputs, we constructed a pathway-based genomic model consisting of fifteen cancer relevant 

pathways that successfully predicted relapse difference (log rank p-value=6.25e-12, and AUC=0.80) and 

validated them on three breast cancer data sets with diversified clinical profiles (log rank p-value<0.0005, 

and average AUC=0.68). The pathway-based genomic models consistently performed better than gene-

based models on all four data sets. Moreover, combining genomic level information with clinical 
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information improved prognosis prediction and classification by at least three orders of magnitudes of p-

values, in comparison to either genomic or clinical information alone.   

Materials and Methods 

Study Population 

We used four publicly available data sets of breast cancer samples from National Center for Biotechnology 

Information (NCBI) Gene Expression Omnibus (GEO) GSE4922 (A. V. Ivshina et al., 2006), GSE1456 (Y. 

Pawitan et al., 2005), GSE3494 (L. D. Miller et al., 2005)  and GSE7390 (C. Desmedt et al., 2007). All four 

data sets are based on Affymetrix HG-U133A microarray platform, and have relapse-free survival 

information as well as some other clinical information, as shown in Table 1. For data set GSE7390 (C. 

Desmedt et al., 2007), all patients are lymph node negative. The GSE3494 data set was used as the training 

set as it has more clinical information, and all others were used as testing data sets.  

Microarray Gene Expression Data Processing and Analysis 

We mapped original probe IDs to Gene IDs using R package biomaRt (Kasprzyk, 2011). In order to relate 

the probe ID to the Gene ID, we downloaded the array annotation file and used the RefSeq IDs as the 

intermediates to map to the Gene ID.  When a gene has multiple probes, we computed the geometric mean 

of log2 transformed probe intensities as the gene expression.  All the data sets were normalized 

independently between array using limma package (Smyth, 2004). To minimize batch effects across 

different data sets, we used the CONOR package with the Bayesian method (Rudy & Valafar, 2011).  

We generated the PAM50 heatmap of the gene expression data and the correlation heatmap with 

hierarchical clustering, where Euclidean distance measure was employed. For the clinical factors, we 

correlated their associations with the relapse in the training data set with both Chi-square test and Wilcoxon 

log-rank test for survival curves. 

Prognostic Pathway-based Classifier Selection 

The pathway information was obtained from the GSEA (http://www.broadinstitute.org/gsea/) curated gene 

sets that include a total of 403 pathways from Biocarta (http://www.biocarta.com) (Nishimura, 2001a)and 

http://www.biocarta.com/
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KEGG(M. Kanehisa & S. Goto, 2000). To perform gene sets analysis, we used R package Pathifier (Y. 

Drier et al., 2013), an algorithm that transforms the information from the gene level to pathway level and 

infers pathway deregulation scores for each pathway within each sample. The pathway deregulation score 

(PDS) in each sample is a measure of degrees of the deviation of a specific pathway from the “normal status” 

located on the principle curve. The concept of principle curve was proposed by Hastie and Stuetzle (Hastie 

& Stuetzle, 1989) as a nonparametric nonlinear extension of the PCA (Principle Component Analysis) in 

which the assumptions of dependence in the data are avoided. A principle curve is a one-dimensional curve 

that is derived from the local average of p-dimensional points and goes through the cluster of p-dimensional 

principle components. It sensibly captures the information of variation in all the samples. Specifically,  the 

single parameter   varies tracing the whole data along the curve (Hastie & Stuetzle, 1989). The curve 

( )f   is defined to be a principal curve if (X| (X) ) ( )fE f     for arbitrary . The principle curve is 

built through iterations of smoothed procedure in the local average of data points. If one sample differs 

from others in one specific pathway, the distance to the curve is further and it leads to a higher PDS score 

and vice versa.  

In the model selection stage, we used Cox-Proportional Hazards (Cox-PH) model  based on L1 – penalized 

(LASSO) estimation (J. J. Goeman, 2009; R. Tibshirani, 1997; Robert Tibshirani, 2011), with the R package 

penalized (J. J. Goeman, 2009). With the input of both PDS score containing the gene sets information and 

survival information of time and relapse, a tuning parameter lambda was used to restrict the number of 

parameters in the model. The optimal lambda was selected after running 250 simulations through likelihood 

cross-validation. A prognostic genomic model was thus generated with specific pathways and coefficients.  

We then computed a Prognosis Index (PI) score which is the logarithm of hazard ratio. We divided the 

samples into two groups of higher risk and lower risk with a 3 to 1 ratio, based on the 3rd quartile of PI. 

We used this cutoff to reflect the relapse/non-relapse ratio in the training data set. 

We tested the above model in three other data sets. To do so we used the same PI cutoff above and separated 

samples into predicted high risk and low risk groups. We then used Kaplan-Meier curve together with 
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Wilcoxon log rank test to evaluate the performance of our model. To generate the receiver operating 

characteristic (ROC) curves, PIs are used as predicted values in comparison to the “truth” values of 

relapse/non-relapse information. The confusion matrix with sensitivity and 1- specificity is calculated for 

each division in ROC curves and the areas under the curve (AUC) is shown along with the ROC plot.   

Combined Molecular and Clinical Model  

To determine whether the clinical factors improve the prognosis of genomic pathway-based model, we re-

normalize the clinical factors and molecular PDS independently to ensure that each factor has the standard 

normal distribution. We then combined the normalized clinical and molecular factors into the LASSO 

penalized step and built the combined model using the optimized lambda through 250 simulations, similar 

to the construction of the genomic model as described earlier. The model performance comparisons were 

also done similarly to those of the genomic model.   

Survival Analysis 

We used survival analysis to compare the relapse-free-survival results in the training and testing data sets. 

Patients without these events during the study were considered censored. We used the Cox-PH model to 

associate the risk of relapse to selected pathway features and clinical features by L1- LASSO. The Cox 

model is a semi-parametric model that is widely used to analyze the survival data. The non-parametric 

portion comes from the fact that no assumptions are made about the form of the baseline hazard. However, 

it has the assumption that the log hazard ratios are constant over the time for each feature. Assume that we 

obtained p features to be related with breast cancer relapse for each patient 1 2 3( , , , ..., )J J J J J

pX X X X X ' , 

Cox-PH model represents the relationship between the risk of relapse and X features as:  

0( | ) h ( )exp( )h t tX Xβ'   

Here 0 ( )h t   is the baseline hazard (instantaneous risk) which only depends on time.  The ratio of hazard 

(HR) between two pathways or two clinical features m
X and nX is: 
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( | )
exp( ( ))

( | )

h t

h t
 m nX Xm

n

X
β'

X
  

The relative hazard between any two features is constant over time and only depends on the differences of 

the values in features. The PI for each patient J’s features is calculated as  

ˆJ J
PI β' X   

This risk factor can be easily transformed to hazard ratio for different features, assuming that we have a 

baseline feature. The weights β̂'  for different features were calculated from the training data set using the 

Cox-LASSO model. 

For the genomic, clinical and combined models, we used Kaplan Meier curves to present the prognosis 

performance in classified high risk and low risk groups. The data set was dichotomized into two groups, 

and the higher risk group is assumed to have higher hazard of relapse compared to the lower risk group. 

We used the Wilcoxon log-rank test to check the survival difference between these two groups. To find the 

significance of an individual factor’s impact on relapse, we fit individual predictor with a univariate Cox-

PH model. We then calculated the hazard ratio by computing the exponential of the coefficients in the Cox-

PH model. All survival analysis was conducted using the R package Survival (Li, 2003).  

 

Sensitivity Analysis of Pathway-based Models 

To examine the effect of input pathways on model performance, We randomly select 1/2, 1/4, 1/8 and 

1/16 of all input KEGG and BioCarta pathways, then generated the PDS Matrices for 18 times under each 

case. For each simulation, we built the model with the workflow in Figure 2 and computed the Wilcoxon 

log-rank test p-value between the survival curves of two risk groups, as well as the AUC of the 

classification results. We then used boxplots to demonstrate the differences of –log10 (p-values) and 

AUCs due to different total pathway counts.  
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To estimate the statistical confidence of comparisons of each model, we used leave one out cross 

validation (LOOCV) to compute p-values and AUCs across all simulations. In the ith simulation 

(i=1,…,total sample size of the data set), we deleted the ith patient sample, modified the PI threshold by 

the remaining sample ratio of recurrence to non-recurrence and finally calculated the Wilcoxon log-rank 

test p-value as well as the AUC of the classification results. We then used boxplots to demonstrate the 

comparisons between the pathway-based and the gene-based models, and among the genomic, clinical, 

and the combined models.  

Comparison to the NKI70 model  

We tested the NKI70 method to our training data set (Miller data). We mapped the NKI70 gene signatures 

from to the genes in the U133A array. We correlated the gene-expression profile with the good-

prognosis/poor prognosis data from the NKI study (van 't Veer et al., 2002), and then classified the samples 

into good and poor clusters as done by others (van de Vijver et al., 2002).  For consistency, we used the 

Wilcoxon log-rank test p-value from survival analysis and the AUC of the ROC classification to assess the 

results.  

Results 

Data Summary 

We used four individual gene expression microarray data sets for the testing and validation of the pathway-

based prognosis model (Table 1), all of which were measured by Affymetrix HG-U133A array and had 

relapse and survival information. We used the data set of 236 patients in Miller et. al.(L. D. Miller et al., 

2005) as the training data mainly because this data set contains the most abundant clinical information, 

including ER status, PG status, tumor size, grade, lymph node status and P53 mutation.   

PAM50 is a list of 50 genes initially proposed to successfully differentiate the breast cancer subtypes and 

it was later found that PAM50 also harbors good prognosis information on breast cancer (Chia et al., 2012). 

Therefore, we first present the testing data summary results and correlate relapse with PAM50 and other 
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clinical factors (Figure 1). Although tumor molecular subtypes are unknown due to the missing Her2 marker 

information, we nevertheless observed a good correlation between PAM50 matrix and relapse. Based on 

the hierarchical clustering results of PAM50 heatmap, we dichotomized the samples into high and low risk 

groups, This grouping approach, without any supervised learning, results in a fairly good association to 

relapse status (Chi-square test p=7.46e-5). Additionally, grade and lymph node have significant 

associations to relapse, with Chi-square test p-values of 0.018 and 9.146e-6 respectively. Single clinical 

factor based survival analysis also confirms such significant relevance to relapse: p-values of Wilcoxon log 

rank tests for the p53, grade, tumor size and lymph node status based survival differences are 0.0152, 

0.00181, 1.92e-7 and 4.93e-8, respectively. Similar to previous observations (C. Fan et al., 2011), ER and 

PG status are not good prognosis indicators, with the log rank test p-values of 0.819 and 0.227, respectively.   

There are a total of around 600 samples in the three testing data sets, 2.5 times the size of samples in the 

training set. Testing set 1 (Ivshina data) (A. V. Ivshina et al., 2006) and testing set 2 (Pawitan data) (Y. 

Pawitan et al., 2005) have very similar distribution pattern to the training data (Miller data) (L. D. Miller et 

al., 2005). However testing set 3 (Desmedt data) (C. Desmedt et al., 2007) has very different distribution 

compared to other three data sets, as the samples were all lymph node negative tumors. We include set 3 as 

an extension to the other two testing data sets to exam the performance of the pathway-based genomic 

model for prognosis.  

Building the pathway-based genomic model 

We have developed a novel pathway-based prognosis prediction model, unlike most other models that are 

gene-based (Figure 2). We transformed a conventional gene-based matrix into a new pathway-based matrix 

of reduced numbers of rows, where each row represents a KEGG or BIOCARTA pathway-based scores 

over all samples (columns).  Instead of using log2 transformed intensities as elements of the matrix, we 

used Pathway Dysregulation Scores (PDS) (Y. Drier et al., 2013) that measure the distance of a particular 

pathway to the “normal condition” curve in a hyperspace. PDS ranges from 0 to 1, and the higher PDS 

score signifies more “abnormity”. This pathway-based PDS matrix was used as the initial input to select 
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featuring pathways that are predictive of survival, based on the multi-variate Cox-PH model (Gill, 1992). 

We used L1-LASSO penalization method (J. J. Goeman, 2009; R. Tibshirani, 1997; Robert Tibshirani, 

2011) to constrain the featuring pathways to be selected. To be consistent, we conducted 250 simulations 

to select the best set of pathways.  

We first evaluated the featuring pathways selected by the model, in relation to other clinical factors and 

relapse status in the training data set (Figure 3). Comparing the heatmap of selected featuring pathways to 

that of the PAM 50 genes (Figure 3A), the selected pathways are more prognostic for relapse. This is 

supported by two observations: (1) Dichotomized samples of high risk and low risk groups through 

hierarchical clustering of PDS scores have a higher correlation to relapse status (Chi-square test p=1.99e-

6), compared to those of PAM50 gene matrix (Chi-square test p=7.46e-5) and (2) The median PDS scores 

over fifteen selected pathways have a correlation coefficient of 0.17 to relapse, in comparison to 0.08 for 

the median expression intensities over PAM50 genes. Thus the selected pathways by our model are better 

prognostic features than PAM50 genes, in terms of the correlation to disease relapse. 

To investigate the performance of the model, we used the PI value which is the logarithm of hazard ratio 

from the fitted Cox-PH model to dichotomize the samples, similar to others (C. Fan et al., 2011) (Sveen et 

al., 2012). We divided the samples into higher and lower risk groups with a 3 to 1 ratio (3rd quartile in PI), 

in order to match the relapse versus non-relapse sample ratio in the training data.  Samples with larger PDS 

scores are expected to have higher PI scores, and are more likely to have relapsed diseases. The same PI 

threshold was applied to dichotomize the training data set as well as multiple independent testing data sets. 

The performance of the genomic model was then evaluated by two approaches: (1) the Wilcoxon log rank 

test p-values of the Kaplan-Meier survival curves from the two risk groups in each data set, and (2) the 

AUCs of ROC curve based on binary classification. 

The pathway-based genomic model is predictive on multiple testing data sets 

Instead of combining all four data sets for meta-analysis, we kept them as individual data sets to validate 

the robustness of our model. As expected, the pathway-based genomic model is highly accurate at 



 

50 

 

differentiating the risks of breast cancer relapse within the training data, with a Wilcoxon log rank p-value 

of 6.25e-12 (Figure 4A).  The model yields very decent predictive results with the p-value of 1.52e-4 in 

testing set 1 and 3.91e-5 in testing set 2 (Figure 4B and 4C). The predictive performances are expected to 

drop in the testing data sets, since they have different patient populations and clinical characteristics from 

the training set (Table 1). Impressively, the model gives a very significant p-value of 3.73e-4 for testing 

data set 3 (Figure 4D), which are all early stage lymph node negative tumors whose prognosis is very 

difficult to predict.  Additionally, we evaluated the performance of models using binary classification. We 

used the relapse/non-relapse information in the data sets as truth measures, and the model’s high vs. low 

risk classification as predictions. As shown in Figure 4E, the ROC curve in the training set gives an AUC 

value of 0.80, and AUCs of 0.73 (testing set 1, Pawitan data), 0.67 (testing set 2, Ivshina data), 0.65 (testing 

set 3, Desmedt data), consistent with the results in Kaplan-Meier curves (Figure 4A-D).   

To examine the effect of total number of input pathways on model performance, we randomly kept 1/2, 1/4, 

1/8 and 1/16 of all input KEGG and BioCarta pathways in the training dataset, and then generated the PDS 

Matrices for 18 simulations under each scenario. For each simulation, we built the model with the same 

workflow as in Figure 2 and computed the Wilcoxon log-rank test p-value between the survival curves of 

the two risk groups, as well as the AUCs of the classification results. The boxplot in Figure S1 shows a 

gradual decrease of AUCs due to the input pathways, in the order of 1/2 > 1/4 > 1/8 > 1/16 pathway-based 

models. The difference between 1/2 and 1/4 pathways is significant (p-value<0.05). All AUCs, 

however, are in the range between 0.69 and 0.81. 

The pathway-based genomic model is superior to the gene-based genomic model 

Our earlier results of selected pathway features vs. PAM 50 genes suggested that pathway-based features 

may be better than gene-based features. To validate this, we trained the four data sets individually and 

compared within the same data set the performance of pathway-based models and gene-based genomic 

models which do not have the PDS matrix generation step (Figure 2). In order to test the risk differentiation 

power of the model, the cutoff PI value in each data set was set to match the ratio of relapse vs. non-relapse 
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patients in that particular set. The results of Kaplan-Meier survival curves and ROC plots based on 

classification all consistently show that pathway-based genomic models are superior to the gene-based 

models (Figure 5A-H).  For example, in Miller data set the log-rank p-value is 6.25e-12 for the pathway-

based model (Figure 5B), compared to that of 1.75e-9 for the gene-based model (Figure 5A). In the Desmedt 

data set, the p-value of the pathway-based model is even more significant than that of gene-based model 

(5.12e-36 vs. 8.84e-12, Figure 5H and 5G). Similarly, pathway-based genomic models have better ROC 

curves than gene-based genomic models (Figure 5I), with AUCs of 0.80 vs. 0.78 in Miller data, 0.85 vs. 

0.77 in Pawitan data, 0.74 vs. 0.70 in Ivshina data, and 0.92 vs. 0.76 in Desmedt data. To estimate the 

statistical significance of comparisons among the pathway-based and gene-based models, we performed 

leave-one-out cross validation (LOOCV) simulations to compute the Wilcoxon log-rank test p-values and 

AUCs of ROC classification curves. The cross validation results show that statistically the pathway-based 

models perform better than the gene-based models (Figure S2, all t-test p-values <0.001). These results are 

consistent with the observations from previous studies (E. Lee et al., 2008; A. E. Teschendorff et al., 2010), 

and support the hypothesis that including higher-order secondary information yields better prognostic 

values.  

NKI70 (Mammaprint) is one of the most commonly used model for breast cancer prognosis prediction, and 

it has been approved by FDA for commercially use in clinics. To demonstrate the potential clinical utilities 

of our model, we compared the NKI70 method with ours, and applied the NKI70 method to our training 

data set (Miller data). We first mapped the NKI70 gene signatures (van 't Veer et al., 2002) to the genes in 

the U133A array, then correlated the gene-expression profile with the good-prognosis/poor prognosis data 

from the NKI study and classified the samples into good and poor clusters as done previously(van de Vijver 

et al., 2002).  The NKI70 test gives a Wilcoxon log-rank test p-value of 2.58e-3 for the survival analysis, 

in contrast to the p-value of 6.25e-12 obtained by our pathway-based model; it only yields an AUC of 0.62 

for classification, in contrast to 0.80 from our model (Figure S3).  
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The combined model with pathway-based genomic and clinical features is superior to the 

genomic or clinical model alone 

Previous studies suggested that clinical information of breast cancers provides additional values to a 

genomic model that was built on lists of genes (C. Fan et al., 2011).  To test if such merit of clinical 

information also applies to our genomic model of fifteen pathway features, we investigated the 

performances of the genomic, clinical and genomic-clinical combined models.  

Since the scales of PDS and clinical features vary significantly, we re- normalized PDS and clinical features 

independently to have the standard normal distribution, so that they are subject to the same selection criteria. 

The resulting clinical model is composed of four selected features:  grade, tumor size, p53 and lymph node. 

This is not surprising, as they are also significant factors in the univariate Cox-PH models (Table 2 and 

Figure 1B-E).  The combined model keeps ten of the fifteen pathways (Table 2) and about 60% of genes 

that were selected by the genomic model. It also selects tumor size and lymph node status as additional 

features (Table 2). This is expected given their highly significant p-values (1.92e-7 and 4.93e-8, 

respectively) in the univariate Cox-PH models (Figure 1B and 1E), as well as relatively large coefficients 

in the clinical model (0.27 and 0.36, respectively). Since only testing data set 2 has both tumor size and 

lymph node information, we used this data set and the testing data set to demonstrate the performances of 

genomic, clinical, and combined models.  

The comparisons present the compelling advantage of combining clinical and genomic information in a 

model (Figure 6). As shown in the training data, selected clinical features are undoubtedly important: the 

Wilcoxon log rank test p-value of the clinical model is 2.21e-10 (Figure 6E), slightly less significant than 

the pathway-based genomic features by two orders of magnitude. Most importantly, the combined model 

is much better than either genomic model (p-value=6.25e-12) or clinical model alone, with a p-value of 

1.88e-24 (Figure 6C). This trend of significances is consistent in the testing set 2, with the p-values of 

1.12e-7 in the combined model (Figure 6D), 1.52e-4 in the genomic model (Figure 6B), and 2.7e-3 in the 

clinical model (Figure 6F). Moreover, the ROC curve comparisons of these three models also show the 
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same order of performances: combined model > genomic model > clinical model , with AUCs of 0.83, 0.80, 

and 0.74 in the training set, and 0.71, 0.68 and 0.65 in the testing set 2 (Figure 6G).  

To demonstrate the statistical significance of comparisons among the pathway-based, clinical and combined 

model in the training set and the testing set 2, we performed leave-one-out cross validation (LOOCV) 

simulations to compute the Wilcoxon log-rank test p-values and AUCs of ROC classification curves. The 

cross validation results show that statistically the combined model performs better than the pathway-based 

model, and the pathway-based model performs better than the clinic model (Figure S4, all p-values <0.001 

between pathway-base/clinical models and combined models). 

Biological relevance of featured pathways and genes 

We expect that the consensus pathways selected both in our genomic model and combined model convey 

important cancer-related functions. To test this we examed the annotations of this subset of ten pathways 

(Table 2). Interestingly, KEGG_MELANOGENESIS is selected as a feature, probably due to inclusion of 

many cancer relevant genes in this pathway: such as protein kinase genes PRKACB, PRKACG, PRKCB, 

PRKCA; phosphorylase kinase genes CALM1, CALM2, CALM3; G-protein related gene GNAQ, HRAS; 

mitogen-activated protein kinases MAPK1, MAPK3, MAP2K1; and other oncogenes like RAS (Tian et 

al., 2013; Yong et al., 2011). Many of these genes have been shown to function in breast cancer 

progression (Yong et al., 2011). Impressively, multiple signaling pathways are selected, including 

BIOCARTA_P53_PATHWAY, BIOCARTA_SRCRPTP_PATHWAY, 

BIOCARTA_PYK2_PATHWAY, BIOCARTA_VIP_PATHWAY, 

BIOCARTA_RARRXR_PATHWAY, and BIOCARTA_AKAP13_PATHWAY.  They are well-known 

to be associated with breast cancers prognosis (Driggers, Segars, & Rubino, 2001; Fu et al., 2014; K. H. 

Lee et al., 2014; Pham, Angus, & Johnson, 2013; Rubino et al., 1998; Tao et al., 2011; Valdehita et al., 

2010). The best example is BIOCARTA_P53_PATHWAY, the dysregulation of p53 Signaling Pathway 

is well-documented, and the tumor-suppressor gene p53 has one of the highest mutation rates in breast 

cancer (Cancer Genome Atlas, 2012; L. D. Miller et al., 2005).  
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In addition, some pathways related to basic cell functions are selected as prognostic features. For 

example, G1_PATHWAY is selected, and the G1/S cell cycle checkpoint controls are well known to be 

dysfunctional in many cancers including breast cancer (Guille, Chaffanet, & Birnbaum, 2013). 

FATTY_ACID_METABOLISM is also selected by the model, and many studies have showed that fatty 

acid metabolism is involved in breast cancer (Puig et al., 2008). In particular, Fatty acid synthase (FASN) 

is highly expressed in breast cancer with a poor prognosis compared to others (Puig et al., 2008). 

Interestingly, BIOCARTA_RNA_PATHWAY is also selected, largely due to its members TP53 and 

MAP3K14 that are closely related to breast cancer. 

A total of 265 genes are overlapped between the selected pathways of the genomic model and the combined 

model. Table 3 summarizes the top 30 genes that are involved in the selected pathways. They are ranked 

by weighted sum of both occurrences in selected pathways (counts) and weights measured by the hazard 

ratio of each pathway. Among them, many genes encode protein kinases that are well-known to be involved 

in breast cancers, such as PRKACB, PRKACG, MAPK1 and CALM1. Some other genes encode 

transcription factors that are well-known for their close relationship to cancer, such TP53, RB1, HRAS, 

RAF1, GRB2, E2F1, and SRC (Engelmann & Pützer, 2012; Fan et al., 2014; Hagan et al., 2005; Tian et al., 

2013). We therefore conclude that the selected pathways are prognostic features of significant cancer 

relevance. 

Discussion  

The heterogeneity of cancers is being increasingly recognized, suggesting more personalized care decisions 

with treatment for individual patients are needed. As a result, prognosis prediction of breast cancers with 

high-throughput data has been a growing topic in recent years. Many statistical and machine learning 

methods have been developed to analyze various types of high-throughput cancer genomics data, by taking 

advantage of higher-order relationships among genes. The hypothesis is that the highly correlated gene-

based markers often represent identical biological processes; therefore by including higher-order 
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representative features, such as Gene Ontology sets, pathways and network modules, the prediction will be 

more stable (G. Abraham et al., 2010; J. J. Goeman & Buhlmann, 2007; E. Lee et al., 2008; S. Ma et al., 

2011; F. Reyal et al., 2008; A. E. Teschendorff et al., 2010; van den Akker et al., 2013). Our novel method 

of prognosis prediction presented in this study belongs to this class of methods. However, unlike some other 

methods where individual pathway information is lost due to summarization or transformation, the pathway 

features proposed in this study explicitly measure the degrees of pathway dysregulation for cancer 

recurrence. Comparing selected pathways and the PAM50 genes which were demonstrated to be prognostic 

(Chia et al., 2012), the PDS-based pathway approach has better correlation to breast cancer relapses. 

Moreover, when comparing gene-based with the pathway-based genomic models, where the only difference 

between them was the input matrix, pathway-based models uniformly performed better than gene-based 

models in all the data sets we tested. Our results are consistent with several other gene-set/pathway-based 

models (G. Abraham et al., 2010; E. Lee et al., 2008), where different summarization metrics were used. It 

will be very interesting to compare the prediction results based on these different metrics in a follow-up 

study.  

To demonstrate the robustness in predicting differential risks of relapse from the pathway-based genomic 

model, we chose to train and test on independent study samples, rather than combining them together as a 

large data set (C. Fan et al., 2006; C. Fan et al., 2011), which would diminish the effect of population 

heterogeneity. Despite population difference and much bigger testing data size relative to the training data 

size, the method still achieved good performance on all three testing data sets, including a data set of all 

early stage lymph node negative tumors where prognosis is particularly difficult to predict. Another merit 

of our method is that it enables combining the important clinical information with the pathway-based 

genomic information. Even though the clinical model by itself is the least predictive, compared to the 

genomic model and the combined model, it is nevertheless significant and informative, as shown by tumor 

size and lymph node status. The genomic model is better than clinical model alone. However, the combined 

model of clinical and genomic features performs the best. Our conclusions agree and extend the earlier 
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work from Fan et al. (C. Fan et al., 2011) who focused on prognosis prediction of all node-negative and 

systemically untreated breast cancer patients, since we include both node-negative and node-positive 

samples. The results of the genomic model (AUC=0.80 and p-value=6.25e-12 in training data, and 

AUC=0.68 and p-value=1.52e-4 in test data 2) and the combined model (AUC= 0.83 and p-value=1.88e-

24 in the training set, and AUC=0.79 and p-value=1.12e-7 in test data set 2) are better than what was 

recently reported by Vilinia S et al (Volinia & Croce, 2013). They obtained an AUC =0.74 for the training 

set and 0.65 for the testing set, in a model that combined signatures of mRNA and microRNAs deriving 

from the TCGA IDC cohort sequencing data. This suggests the advantages of combining PDS based 

pathway score inputs with a Cox-PH model and LASSO penalization approach: even though the genomic 

data in our study are based on microarrays that have more noise and smaller sample sizes, they still yield 

better predictive results in comparison to the combined mRNA and microRNA sequencing signatures 

obtained from a larger sample size. It will be of great interest to apply our models to the TCGA breast 

cancer mRNA and microRNA sequencing data in the future. 

The pathways selected by the model show biological relevance to breast cancer prognosis. The fatty acid 

metabolism pathway is found to be crucial to maintain the cancer cell malignant phenotype, and higher 

expression of fatty acid synthase has been discovered as a common phenotype in breast cancer with a poorer 

prognosis (Puig et al., 2008); As another example, Src kinase activation by protein tyrosine phosphatase 

alpha (SRCRPTP_PATHWAY), has been discovered in invasive breast cancer with compelling evidences. 

Src inhibitors are being considered as potential therapy to treat invasive breast cancers, as inhibition of c-

src was recently found to be involved in E2-induced stress which would finally result in apoptosis in breast 

cancer cells (Fu et al., 2014). Increasing evidence shows that vasoactive intestinal peptide (VIP) in 

BIOCARTA_VIP_PATHWAY is highly expressed in breast cancer cells along with its receptor (Fu et al., 

2014), and VIP-targeted nanomedicine is under study as therapy for breast cancer (Valdehita et al., 2010). 

Pyk2 in BIOCARTA_PYK2_PATHWAY is linked to map kinases MAPK, which has wealthy records in 

breast cancer studies (K. H. Lee et al., 2014). RARRXR_PATHWAY is the RAR/RAR nuclear receptor 
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complex that is co-activators to facilitate initiation of transcription in carcinoma cells (Tao et al., 2011). 

And BRX, the truncated form of Rho-Selective Guanine Exchange Factor AKAP13 in the 

BIOCARTA_AKAP13_PATHWAY, has been identified to function as an ER cofactor (Driggers et al., 

2001).   

Although the workflow proposed in this study is generic and the pathway features are clearly significant, 

we should point out a few potential limitations of the model. First of all, the pathway-based model is trained 

and tested on gene expression data from the U133A platform. We suspect that direct application of the 

model to other platforms, such as RNA-Seq, is not desirable, and some additional re-processing work has 

to be done additionally. The reason is that data distributions maybe very different between various platforms. 

One notorious example is that biomarkers identified by high-throughput microarray platform often had poor 

correlations in qPCR platform. Thus we recommend that when researchers use the workflow in Figure 2 on 

different data types, they may increase the predictive power by retraining the model with their own data. 

Another limit of our approach is that we only used the information from genes that compose the 403 

pathways that we considered, thus some gene-level information is unavoidably lost.  In our case, over 4500 

genes were enlisted in the pathways, and among them over 3200 genes are probably expressed (averaged 

log 2 expression intensities > 7). On the other hand, the raw U133A array has results of over 14,000 genes 

within which over 10,000 genes are probably expressed. Therefore our model captures about 1/3 of the 

gene-level information overall. One can certainly use other curated gene sets, such as the MsigDB C2 gene 

sets, to increase the coverage of the genes by the pathways. However, from the sensitivity analysis that we 

have performed (Figure S1), we only observed a slight decrease of model performance based on AUCs, 

which are in the range of 0.69 and 0.81. 

In conclusion, we propose a novel pathway-based genomic model that measures the pathway-based 

deregulation score and shows significant prognosis values. This pathway-based genomic model performs 

better than the gene-based genomic model. Additionally, we found that combining the clinical information 

of lymph node status and tumor size improves the performance of the prognosis model. Many selected 
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pathways in our study present values for breast cancer prognosis prediction, and they are also promising 

therapeutic targets for future investigations.  

Appendix D: Chapter 3 Figures 

 
Legends 

Figure 1. The PAM50 gene signatures and their association with clinical information in the training 

data set.  
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A, The heatmap of the log2 transformed gene expression for PAM50 signatures. Green and red colors 

represent higher and lower expression levels, respectively. The samples are further categorized into two 

major groups based on the hierarchical clustering. The p-values of the clinical features such as ER, PG, P53, 

Grade, lymph node (LN) and dichotomized groups with relation to relapse status are calculated using Chi-

square tests. B-E, Kaplan Meier survival estimates of relapse free survivals according to major clinical 
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features: (B) Lymph node status, (C) Grade, (D) P53 mutation status and (E) Tumor size. P-values are 

calculated using Wilcoxon log-rank tests and (+) denotes the censored observations in the study.  

Figure 2. The workflow of the pathway-based genomic model. 

Step 1. Transform the input data in the training set: the gene-based expression data are transformed into the 

pathway-based data input through the pathifier algorithm, using the pathway information from KEGG and 

BIOCARTA. The new input matrix is represented by Pathway Deregulation Scores (PDS). Step 2. Build 

the prognosis prediction model. The PDS matrix is integrated with the survival information via a Cox-PH 

model under penalized feature selection using the L1- LASSO method.  Featuring pathways are selected 

and the coefficients (or weights) of these pathways are estimated using log likelihood cross validation.  Step 

3. Set the relapse risk threshold from the model. The prognostic index (PI) cutoff value is determined from 

the model to match the ratio of relapse/non-relapse in the training set. This PI is used as the relapse risk 

threshold on all the testing sets where the sum of weighted PDS is calculated on the pathways selected in 

Step 2. The input PDS matrices of testing data sets are computed the same as in Step 1. Step 4. Evaluate 

the performance of the prognostic model. The performance is evaluated through Kaplan-Meier curves of 

the dichotomized risk groups by PI scores, as well as the ROC curves and AUC values.  
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Figure 3. The selected pathway signatures and their association with clinical information in the 

training data set.   

The heatmap shows the patterns of Pathway Deregulation Score (PDS) of selected pathways in the genomic 

model. Green and red colors represent higher and lower PDS scores, respectively. The samples are further 

categorized into two major groups from hierarchical clustering, as in Figure 1. The p-values of the clinical 

features such as ER, PG, P53, Grade, lymph node (LN) and dichotomized groups with relation to relapse 

status are calculated using Chi-square tests. 
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Figure 4.  Prognosis performance of the pathway-based genomic model. 

A-D. A prognosis index (PI) is calculated from the training data set and applied to dichotomize samples in 

training (A) and testing data sets (B-D). Higher risk and lower risk groups determined by the PI cutoff are 

compared by Kaplan-Meier curves. P-values of the survival difference between the two groups are 

calculated using Wilcoxon log-rank tests and (+) denotes the censored observations in the study. E. ROC 

curves are generated using PI values as predictions in comparison to the relapse/non-relapse information. 

AUCs are listed as the insert. 
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Figure 5. Comparing the prognosis performance between the gene-based and the pathway-based 

genomic models.  

A-H. Gene-based and pathway-based genomic models are trained individually on the data sets. The PI is 

calculated to match the ratio of relapse to non-relapse on each data set and used to dichotomize the samples 

into higher risk and lower risk groups, similar to Figure 4. The associated p-values in Kaplan Meier curves 

are calculated using the Wilcoxon log-rank tests, as in Figure 4. Pathway-based genomic models 

consistently outperform alternative gene-based genomic models in all data sets. I. ROC curves are generated 

from PI based classification predictions in comparison to reported relapse information, similar to Figure 4. 

AUCs are listed as the insert. The ROC curves and AUC results also show that pathway-based models are 

better than gene-based models.  
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Figure 6. Comparing the prognosis performance from the pathway-based genomic model, the clinical 

model, and the combined model. 

Higher risk and lower risk group are determined by the same PI cutoff as in Figure 4. The p-values in 

Kaplan-Meier curves are calculated using the Wilcoxon log-rank tests. In both the training data set and 

testing data set 2 (Ivshina data) that have full clinical information, the combined models outperform the 

pathway-based genomic model, and the pathway-based genomic model outperform the clinical model. 
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Appendix E: Chapter 3 Supplementary Figures 

Figure S1. The effect of removing pathways on model performance (both P-values and AUCs).  

A fraction (1/2, 1/4, 1/8 and 1/16) of the initial 403 pathways are randomly selected to generate PDS 

matrices over 18 simulations, followed by the flowchart in Figure 2.  Boxplots of AUCs from ROC 

curves are shown.  

 

Figure S2. Cross validation results to compare the pathway-based and gene-based models on the 4 

data sets in Figure 5.   

Leave-one-out cross validation (LOOCV) was performed to compute the Wilcoxon log-rank test p-values 

(A) and AUCs (B) across all simulations.  All pairs have t-test p-values < 0.001. 
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Figure S3. Comparison of ROC performance between the NKI70 method and our method on Miller 

dataset. 
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Figure S4. Cross validation results to compare the genomic, clinical, and combined models on the 2 

data sets in Figure 6.   

Leave-one-out cross validation (LOOCV) was performed to compute the Wilcoxon log-rank test p-values 

(A) and AUCs (B) across all simulations. All pairs have t-test p-values < 0.001. 
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Appendix F: Chapter 3 Tables 
Table Legends 

Table 1. Summary of patient and tumor characteristics of training and validation data sets in this study 

Table 1. Summary of patient and tumor characteristics 

Characteristics Training Miller 
LD 

Testing Set1 
Pawitan Y 

Testing Set2 
Ivshina AV 

Testing Set3 
Desmedt D 

No. of patients 

 236 159 249 198 

Relapse, No. (%) 

Relapse 55 (23%) 40 (25%) 89 (35%) 91 (46%) 

Non-relapse 181 (77%) 119 (75%) 160 (64%) 107 (54%) 

Mean Relapse Free Survival (y) 

 8.167 5.959 7.142 9.312 

Mean Age (year) 

 62.51  62.12 46.39 

ER status, No. (%) 

Positive 201 (85%)  211 (85%) 134 (67%) 

Negative 31 (13%)  34 (13%) 64 (33%) 

NA 4 (2%)  4 (2%) 0 

PG status, No. (%) 

Positive 57 (24%)    

Negative 179 (76%)    

NA 0    

Tumor Size(mm) 

<10 (𝑇1𝑎, 𝑇1𝑏) 13 (6%)  14 (6%) 9 (4%) 

10-20 (𝑇1𝑐) 92 (40%)  95 (38%) 59 (30%) 

20-50 (𝑇2) 123 (52%)  129 (52%) 129 (65%) 

>50 (𝑇3) 5 (2%)  10 (4%) 1 (1%) 

Grade, No. (%) 

1 62 (26%) 28 (18%) 68 (27%) 30 (15%) 

2 121 (51%) 58 (36%) 126 (51%) 83 (42%) 

3 51 (22%) 61 (38%) 55 (22%) 83 (42%) 

NA 2 (1%) 12 (8%) 0 2 (1%) 

Lymph Node Status, No. (%) 

Positive 78 (33%)  81 (32%)  

Negative 149 (63%)  159 (64%) 198 (100%) 

NA 9 (4%)  9 (4%)  

P53 Mutation Status, No. (%) 

Mutated 55 (23%)  58 (23%)  

Wild Type 181 (77%)  189 (76%)  

NA 0  2 (1%)  
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Features 

Coefficients Hazard Ratio p-values in univariate 
COX-PH model 

Pathway-based genomic model 

KEGG_MELANOGENESIS* 1.075908 2.93266 0.00188 

BIOCARTA_SRCRPTP_PATHWAY* 0.914698 2.49602 1.01e-7 

BIOCARTA_AKAP13_PATHWAY* 0.828364 2.28957 0.00351 

BIOCARTA_RARRXR_PATHWAY* 0.670795 1.95579 9.58e-6 

BIOCARTA_VIP_PATHWAY* 0.635108 1.88723 2.15e-5 

KEGG_FATTY_ACID_METABOLISM * 0.520653 1.68313 2.53e-6 

BIOCARTA_G1_PATHWAY* 0.520446 1.68278 2.66e-6 

KEGG_LINOLEIC_ACID_METABOLISM 0.368615 1.44573 3.55e-4 

KEGG_LYSOSOME 0.300587 1.35065 2.2e-6 

BIOCARTA_P53_PATHWAY* 0.239062 1.27006 8.74e-4 

BIOCARTA_PYK2_PATHWAY* 0.158405 1.17164 1.29e-4 

BIOCARTA_GABA_PATHWAY 0.139229 1.14939 0.0162 

BIOCARTA_FEEDER_PATHWAY 0.110334 1.11665 0.0218 

BIOCARTA_RNA_PATHWAY* 0.037978 1.03871 7.67e-5 

BIOCARTA_IL5_PATHWAY 0.012039 1.01211 0.00895 

Clinical model 

Lymph Node Status* 0.375874 1.456264 4.46e-7 

Tumor Size* 0.270893 1.311135 6.03e-7 

Grade 0.126814 1.135206 4.92e-4 

P53 0.043517 1.044478 0.0171 
 

*: these pathways and clinical parameters are also selected by the combined model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Selected features in the genomic, clinical and combined models. 

 
 

Table 2. Selected features in the models 
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Table 3. Top 30 most frequent genes in the pathways of the genomic model and the combined model. 

 

Gene ID 
Genomic Model 
Counts 

Combined Model 
Counts 

Weighted 
Genomic Model 
Counts * 

Weighted 
Combined Model 
Counts * 

PRKACB 3 4 7.109452 4.46549683 

PRKACG 3 4 7.109452 4.46549683 

PRKCB 3 6 6.600318 6.54794229 

PRKCA 3 6 6.600318 6.54794229 

CALM1 3 6 5.991523 6.32738762 

CALM2 3 6 5.991523 6.32738762 

CALM3 3 6 5.991523 6.32738762 

GNAQ 3 4 5.991523 4.26250968 

SRC 3 5 4.817049 5.3291015 

GSK3B 2 3 4.615435 3.23989145 

CDC25A 2 2 4.178799 2.25477095 

CDK1 2 2 4.178799 2.25477095 

PRKAR2A 2 3 4.176796 3.26764027 

PRKAR2B 2 3 4.176796 3.26764027 

HRAS 2 4 4.104297 4.27393317 

MAP2K1 2 4 4.104297 4.27393317 

MAPK1 2 4 4.104297 4.27393317 

MAPK3 2 4 4.104297 4.27393317 

RAF1 2 4 4.104297 4.27393317 

MAP2K2 2 4 4.104297 4.27393317 

TP53 3 3 3.991545 3.03875447 

GRB2 2 4 3.667662 4.32604023 

CYCSP35 2 5 3.058867 5.12953106 

PLCG1 2 4 3.058867 4.13411496 

MAP3K1 2 3 3.058867 3.06465312 

E2F1 2 2 2.952836 2.0232666 

RB1 2 2 2.952836 2.0232666 

CCND1 2 2 2.952836 2.0232666 

CDK4 2 2 2.952836 2.0232666 

CCNE1 2 2 2.952836 2.0232666 
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Chapter 4. A nomogram derived by combination of demographic and 

biomarker data improves the non-invasive evaluation of patients at risk for 

bladder cancer 
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ABSTRACT 
 

Purpose: Improvements in the non-invasive clinical evaluation of patients at risk for bladder cancer (BCa) 

would be of benefit both to individuals and to healthcare systems. We investigated the potential utility of a 

hybrid nomogram that combined key demographic features with the results of a multiplex urinary 

biomarker assay in hopes of identifying patients at risk of harboring BCa. If proven accurate and reliable, 

the application of such a nomogram may better inform the decision to perform invasive diagnostic 

procedures.     

 

Patients and Methods: Logistic regression analysis was used to model the probability of BCa burden in a 

cohort of 686 subjects (394 with BCa) using key demographic features alone, biomarker data alone and the 

combination of demographic features and key biomarker data. Demographic data included age, race, and 

tobacco history, and biomarker data included the urinary levels of 10 BCa-associated diagnostic proteins 

that we have previously described. We examined discrimination, calibration and decision curve analysis 

techniques to evaluate prediction model performance.   

 

Results:  Area under the receiver operating characteristic curve (AUROC) analyses revealed that 

demographic features alone predicted tumor burden with an accuracy of 0.806 [95% CI: 0.76-0.85], while 

biomarker data had an accuracy of 0.835 [95% CI: 0.80-0.87]. The addition of molecular data into the 

nomogram improved the predictive performance to 0.891 [95% CI: 0.86-0.92]. Decision curve analyses 

showed that the hybrid nomogram performed better than demographic or biomarker data alone.  

 

Conclusion: A nomogram construction strategy that combines key demographic features with biomarker 

data may facilitate the accurate, non-invasive evaluation of patients at risk of harboring BCa. Further 

research is needed to evaluate the BCa risk nomogram for potential clinical utility.        
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INTRODUCTION 

With an estimated 70,980 newly diagnosed cases of bladder cancer (BCa) and 14,330 deaths from BCa in 

2015, cancer of the urinary bladder is the second most common genitourinary malignancy in the US and 

among the five most common malignancies worldwide (Madeb & Messing, 2008; Messing, 2007). When 

detected early (i.e., non-muscle invasive), the 5-year survival rate of BCa is > 90%, however at later stages 

(i.e., muscle invasive and beyond) the 5-year survival rate is < 50%.  Thus, early BCa identification, both 

at the initial diagnosis and at recurrence can dramatically affect outcomes(Khadra, Pickard, Charlton, 

Powell, & Neal, 2000). Urine based assays that can noninvasively detect BCa have the potential to improve 

the rapid diagnosis of BCa.  As such, several urine-based commercial molecular tests have been FDA-

approved for BCa detection and surveillance. These tests include the measurement of soluble proteins such 

as bladder tumor antigen (BTA), and nuclear matrix protein 22 (NMP22), or proteins detected on fixed 

urothelial cells (ImmunoCyt), and chromosomal aberrations detected by fluorescent in situ hybridization 

(Urovysion) (Edwards, Dickinson, Natale, Gosling, & Mcgrath, 2006).  Because of their marginal detection 

performance, these urine-based assays have a limited role in the management of patients at risk for, or with 

BCa, and thus the search for non-invasive urine-based tests with clinical utility for BCa continues. 

We and others, have described the diagnostic capabilities of urine-based molecular signatures to 

non-invasively detect BCa (Bundix & Wauters, 1997; Elias, Svatek, Gupta, Ho, & Lotan, 2010; Lokeshwar 

et al., 2005; Nakamura et al., 2009; Têtu, 2009; Trivedi & Messing, 2009; Van Rhijn, Van der Poel, & van 

Der Kwast, 2005).  We have refined and validated a multiplex protein biomarker panel (MMP9, MMP10, 

IL8, VEGFA, SERPINE1, SERPINA1, CA9, APOE, ANG and SCD1) in a series of independent cohorts 

(Aaboe et al., 2005; Hanke, Kausch, Dahmen, Jocham, & Warnecke, 2007; Holyoake et al., 2008). Given 

the utility of key demographic features (e.g., age, race, sex, tobacco history) in stratifying patients, in this 

study we investigated the potential utility of a hybrid nomogram that incorporates key demographic features 

with the results of the BCa-associated diagnostic signature in hopes of improving the evaluation of risk for 
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harboring BCa. If proven accurate and reliable, the application of such a nomogram may guide the decision 

to perform invasive diagnostic procedures.   

MATERIALS AND METHODS 

Study Subjects 

Demographic, clinical and biomarker data from 686 subjects (394 BCa subjects and 292 subjects with 

benign urologic conditions) were extracted from our series of independent cohorts previously published, 

Table 1 (Aaboe et al., 2005; Hanke et al., 2007; Holyoake et al., 2008).  All molecular data were normalized 

to creatinine. Based on the total distribution of each biomarker’s concentration, cut-points were identified 

deriving low/high expression status.   

Primary End Point and Baseline Information 

The primary end point of the study was to predict the histologic presence of transitional cell carcinoma of 

the bladder, which was confirmed by biopsy. Tumor grade (2002 WHO classification) (Mengual et al., 

2010) and tumor stage (2002 TNM classification)(Bartoletti et al., 2006)  were noted for each case. No 

central pathology review was obtained.  

Statistical Analysis 

The distributions of the key demographic data as well as molecular data were examined.  Multivariate 

logistic regression analysis was used to examine the association between these predictor variables and 

detection of BCa. All decisions with respect to the coding of the nomogram variables were made prior to 

modeling, as making these decisions afterwards can have deleterious effects on the predictive ability of the 

model (N. Yang et al., 2011). A logistic regression model based on disease status was the basis for our 

nomograms, which included only key demographic data, only key biomarker data and the combination of 

key demographic data and biomarker data.  

Nomogram validation contained two components.  The nomogram was subjected to bootstrapping 

as a means of calculating a relatively unbiased measure of its ability to discriminate among subjects. Briefly, 
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we compared the predicted probability of diagnosis vs. actual diagnosis (i.e., nomogram calibration) on the 

686 subjects, using 200 bootstraps to reduce overfit bias, which would otherwise overstate the accuracy of 

the nomogram. We quantified the discrimination ability of the risk calculator by calculating the 

concordance index (C-index), which is a surrogate of the nonparametric area under the receiver operating 

characteristic curve (AUC)(Urquidi, Goodison, Cai, Sun, & Rosser, 2012). C-index gives the probability 

that, in a randomly selected pair of subjects in which one has BCa and the other does not, the subject with 

the BCa will be assigned the worse predicted risk (Goodison, Chang, Dai, Urquidi, & Rosser, 2012).  C-

index ranges from 0.5 (no discrimination) to 1.0 (perfect discrimination). To test the significance between 

the AUCs of the three nomograms (demographic data only, biomarker data only and combination of key 

demographic data and biomarker data), we created 2,000 C-indices for each model by using bootstrapping 

analysis and then calculated the differences between the paired C-indices. Lastly, nonparametric bootstrap 

test (Rosser et al., 2013) was used to calculate the p-value for each pair of the nomograms.  

The calibration of the three nomograms was compared by plotting the prediction on the X-axis and 

the observed outcomes on the Y-axis in the same plot (L.-M. Chen et al., 2014). In the calibration plot, the 

45-degree line represents the perfect predictions. Due to binary outcomes, a smoothing technique was used 

to generate the observed probabilities of BCa on the X-axis. We also applied the decision curve analysis 

(Rosser et al., 2014) on our proposed nomograms and compared the net-benefits of different examine 

actions. All statistical analyses were performed using S-Plus software (PC Version 3.3, Redmond, WA) 

and R software version 3.2.3 with additional functions. All p values were calculated by two-sided statistical 

tests, unless notified otherwise.   

RESULTS 

Of the 686 subjects available for analysis, 394 had BCa while 292 were healthy volunteers/benign 

controls.  Over 84% of the BCa subjects was >55 years (60% of controls), 92% of the BCa subjects 

were Caucasian (66% of controls), 83% of the BCa subjects were male (79% of controls). Nineteen 
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percent of BCa subjects denied tobacco history while 37% of controls denied tobacco use (Table 

2). Of the subjects with BCa, 240 of the tumors were non-invasive (Ta, Tis, T1) and 147 were 

muscle invasive and 7 did not have a stage reported. In addition, 134 were low-grade, 251 were 

high-grade and 9 did not have a grade reported.    

Logistic regression analysis identified key demographic risk factors (e.g., age, race, sex and tobacco 

use) and molecular biomarkers (MMP9, MMP10, IL8, VEGFA, SERPINE1, SERPINA1, CA9, APOE, 

ANG and SCD1) associated with BCa. The key demographic factors were used to generate a demographic 

only model with AUROC of 0.81 [95% CI: 0.76-0.85]. The key biomarker data were used to generate a 

biomarker only model with AUROC of 0.84 [95% CI: 0.80-0.87]. Under the likelihood ratio test, the 

biomarker model performed better than the demographic model (p = 6.745e-4). Subsequently, these two 

nomograms were combined to create a hybrid nomogram that incorporated key demographic and biomarker 

data (Figure 1). The AUROC of the hybrid nomogram was 0.891 [95% CI: 0.86-0.92], which based on the 

nonparametric bootstrap test, was significantly improved from the demographic model (0.81 [95% CI: 0.76-

0.85], p < 0.0001) and the biomarker model (0.84 [95% CI: 0.80-0.87], p < 0.0001) (Figure 2). Using the 

hybrid nomogram, we were able to calculate the sensitivity and specificity for a range of probability for 

BCa (Table 3). 

Figure 3 illustrates how the predictions from the hybrid nomogram compare with actual outcomes 

for the 686 subjects. The X-axis is the prediction calculated with use of the hybrid nomogram and the Y-

axis is the actual freedom from cancer for our subjects. The dashed line represents the performance of an 

ideal nomogram, in which predicted outcome perfectly corresponds with actual outcome. Our hybrid 

nomogram performance after adjusting the over-fitting bias with bootstrap is plotted as the solid line Note 

that, because the solid line is relatively close to the dashed reference line, the predictions calculated with 

the use of our hybrid nomogram approximate the actual outcomes. In general, the performance of the hybrid 

nomogram appears to be within 10% of actual outcome, and possibly slightly more accurate at very high 
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levels of predicted probability. 

We also applied decision curve analysis to measure the performance of our hybrid nomogram for 

BCa (Figure 4). We tested the theoretical net benefits of all actions in a range of threshold probabilities for 

BCa. Basically, the net benefit is measuring how our action can affect the examined relative value of false 

positives and false negatives, which is, when our hybrid nomogram is compared to cystoscopy and biopsy. 

The decision curve analyses showed that the hybrid nomogram performed better than demographic data 

alone above the risk threshold of 6% as well as biomarker data alone above 24% to 88%.  

 

DISCUSSION 

Predictive and prognostic nomograms in bladder cancer have been published in both nonmuscle-invasive 

(Bossuyt et al., 2003) and muscle-invasive bladder cancer (Edge, 2010; Montironi & Lopez-Beltran, 2005). 

Specifically, non-muscle-invasive nomograms of precystoscopy urinary levels of NMP22 improved the 

ability of age, gender and VUC to predict tumor stage and grade as well as tumor recurrence (Bossuyt et 

al., 2003). While in muscle-invasive nomograms, precystectomy clinical and pathologic factors pT and pN 

stages at the time of cystectomy (Montironi & Lopez-Beltran, 2005) and to estimate the probabilities of 

recurrence and all-cause and bladder cancer-specific survival (Montironi & Lopez-Beltran, 2005) after 

cystectomy.  

To the best of our knowledge, this is the first study to evaluate and internal validate a BCa 

diagnostic nomogram composed of pertinent demographic features and our BCa-associated diagnostic 

signature. Previously, we have reported and confirmed in voided urines our BCa-associated diagnostic 

signature comprised of 10 biomarkers in three separate studies(Aaboe et al., 2005; Hanke et al., 2007; 

Holyoake et al., 2008).  The first study was a case-control study of 127 patients (64 tumor bearing subjects) 

in which we reported a sensitivity of sensitivity 92% and specificity 97%, significantly outperforming 

voided urinary cytology (Aaboe et al., 2005).  Subsequently, in another case-control study, we tested the 
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BCa diagnostic signature in 308 patients (102 tumor bearing subjects and 206 subjects with varying 

urological disorders, e.g., uroilthiasis, gross hematuria, urinary tract infection, moderate to severe voiding 

symptoms), recording a sensitivity of 74% and specificity of 90%, which outperformed voided urinary 

cytology and the UroVysion® cytogenetic test (Holyoake et al., 2008). Recently, we published a 

multicenter, international case control study of 320 patients (183 tumor bearing subjects) and demonstrated 

continued diagnostic performance with a sensitivity of 79% and a specificity of 79%(Hanke et al., 2007) .   

The gold standard for initial clinical diagnosis and staging of BCa involves cystoscopic 

examination of the bladder together with cytologic examination for malignant cells in the urine. Cystoscopy 

is an unpleasant invasive procedure, which may involve anesthetizing the patient and resection of biopsies 

for histopathological diagnosis and staging. Cystoscopy may also have certain side effects such as urinary 

tract infection, voiding symptoms and stenosis of the urethra. Voided urine cytology (VUC) remains the 

method of choice for the noninvasive detection of bladder cancer, with its main use being to recognize the 

presence of recurrence and early progression in stage and grade. VUC can be used to diagnose new 

malignancy, yet while it has a specificity of >93%, its sensitivity is only 25-40%, especially for low-grade 

and low-stage tumors (Edwards et al., 2006; Hanley & McNeil, 1982; Harrell, Lee, & Mark, 1996). Thus, 

current methods to non-invasively detect BCa leave much to be desired.  The inadequate power of these 

single markers must partly explain this.  The concept that the presence or absence of one molecular marker 

will aid diagnostic or prognostic evaluation has not proved to be the case. A number of molecular signatures 

have been derived and are being made commercially available as clinical assays, especially in the breast 

cancer field (Kattan, Eastham, Stapleton, Wheeler, & Scardino, 1998; Vickers & Elkin, 2006).  We have 

employed a range of genomic (C.-L. Chen et al., 2013; Seigel, Naishadham, & Jemal, 2012) and proteomic 

(Ahmedin Jemal et al., 2011; Lokeshwar et al., 2005) profiling approaches to study voided urine samples 

in hopes of identifying a unique, yet accurate, molecular signature associated with BCa. 

In biomarker research, though a variable maybe statistically significant in a multivariate model, it 

does not necessarily equate to the biomarker improving the model's predictive accuracy. For example, a 
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biomarker with an odds ratio of 3 may be a poor classifier and thus an odds ratio of 10 or more may be 

required. In addition, a single measure of association such as an odds ratio may not meaningfully describe 

a biomarker's ability to risk classify patients (Silverman, Hartge, Morrison, & Devesa, 1992). Thus, it is 

critical to determine if the addition of biomarker(s) to an existing clinical and pathologic model possesses 

the ability to improve the predictive accuracy of this model.  The accuracy of the hybrid nomogram 

improved to 0.89 [95% CI: 0.86-0.92] compared to key demographic model (0.81 [95% CI: 0.76-0.85], p 

= 5.886e-8) and biomarker model (0.84 [95% CI: 0.80-0.87], p < 7.707e-5) (Fig. 2). In general, the 

performance of the hybrid nomogram appears to be within 10% of actual outcome, and possibly slightly 

more accurate at very high levels of predicted probability. We also applied decision curve analysis to 

measure the performance of our hybrid nomogram for BCa. The decision curve analyses showed that the 

hybrid nomogram performed better than demographic data alone above the risk threshold of 6% as well as 

biomarker data alone above 24% to 88%.  

The main clinical utility of a hybrid nomogram in the described setting is to facilitate the decision 

on whether a patient requires cystoscopy with subsequent bladder biopsy.  The hybrid nomogram would 

provide a probability of harboring BCa. For example if the probability of harboring BCa is < 10% perhaps 

the patient and physician would forego an invasive procedure.  However if the risk was substantial (i.e., > 

70%) then mostly likely the patient would be compelled to undergo confirmative diagnostic procedure. In 

the absence of definitive risk thresholds, it would be important to provide a range of threshold probabilities 

(Table 2).  

We acknowledge that this study is limited due to its retrospective design, to the analysis of banked 

urine samples collected from high volume centers and so may not be representative of the general 

population at risk for BCa and to limitations of available data (e.g., tobacco history). Nevertheless, this 

cohort reflects a contemporary cohort of BCa patients, which enabled the derivation of a hybrid nomogram 

for testing in larger, more diverse prospective studies.  

In this study, we developed a hybrid nomogram that facilitates the accurate prediction of the 
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probability of a patient harboring BCa. The hybrid nomogram has been constructed by combining readily 

available key demographic factors with key biomarker data.  If such a nomogram is proven to be reliable, 

adoption may assist the physician and patient in deciding whether or not further evaluation is needed.  

 

Appendix G: Chapter 4 Figures 
 

FIGURE LEGENDS 

Figure 1 Diagnostic nomogram for predicting bladder cancer. 

 

Figure 2 Receiver operating characteristic (ROC) curves for key demographic data, key biomarker 

data, and the combination of both for predicting the presence of bladder cancer.  
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Figure 3 Calibration of the hybrid nomogram for bladder cancer. Dashed line is reference line where 

an ideal nomogram would lie. Dotted line is the performance of hybrid nomogram, while the solid line 

corrects for any bias in hybrid nomogram.   
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Figure 4 Decision curve analysis of hybrid nomogram.  The Y-axis represents the net benefit, which is 

calculated by summing the benefits (gaining true positives) and subtracting weighted harms (deleting false 

positives). A model is of clinical value if it has the highest net benefit.   
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Appendix G: Chapter 4 Tables 
Table 1 Multivariate Logistic Regression Analysis of Factors Associated with Bladder Cancer 

 Frequency Distribution    

 Case Controls    

Factor No. % No. % OR 95% CI p 

Age, years        
< 55 40 16% 79 46% 0.23 (0.15,0.36) 3.17e-11 

56-74 128 51% 75 43% 1.38 (0.94,2.04) 0.104 
> 75 

 
81 33% 

 
19 11% 3.91 (2.27,6.74) 3.16e-07 

Ethnicity        
White 221 89% 95 55% 6.48 (3.95,10.62) 3.33e-15 
Other 28 11% 78 45% 0.15 (0.09, 0.25) 

Sex        
Male 204 81.9% 152 87.9% 0.63 (0.36, 1.09) 0.099 

Female 45 18.1% 21 12.1% 1.60 (0.91, 2.79)  
Tobacco 
history 

       

Absent 75 30.1% 108 62.4% 0.26 (0.17, 0.39) 4.75e-11 
Present 174 69.9% 65 37.6% 3.85 (2.56, 5.81)  

Biomarkers        
IL-8        

Low 75 30.1% 136 71.9% 0.12 (0.07, 0.18) < 2.20e-16 
High 174 69.9% 37 28.1% 8.53 (5.42, 13.42) 

MMP9        
Low 97 39.0% 114 65.9% 0.33 (0.22, 0.50) 5.41e-08 
High 152 61.0% 59 34.1% 3.03 (2.02, 4.54) 

MMP10        
Low 118 47.4% 95 54.9% 0.74 (0.50, 1.09) 0.129 
High 131 52.6% 78 45.1% 1.35 (0.92, 1.99) 

VEGF        
Low 101 40.6% 124 71.7% 0.27 (0.18, 0.41) 3.10e-10 
High 148 59.4% 49 28.3% 3.71 (2.45, 5.62) 

CA9        
Low 118 47.4% 93 53.8% 0.78 (0.53, 1.14) 0.198 
High 131 52.6% 80 46.2% 1.29 (0.88, 1.90) 

APOE        
Low 105 42.2% 106 61.3% 0.46 (0.31, 0.68) 1.16e-04 
High 144 57.8% 67 38.7% 2.17 (1.46, 3.22) 

A1AT        
Low 80 32.1% 131 75.7% 0.15 (0.09, 0.24) < 2.20e-16 
High 169 67.9% 42 24.3% 6.59 (4.25, 10.21)  

ANG        
Low 103 41.4% 108 62.4% 0.42 (0.29, 0.63) 2.13e-05 
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Table 2 Sensitivity, Specificity, PPV, NPV for a Range of Probability for Bladder Cancer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High 146 58.6% 65 37.6% 2.36 (1.58, 3.51) 
Syndecan        

Low 113 45.4% 98 56.6% 0.64 (0.43, 0.94) 2.30e-02 
High 136 54.6% 75 43.4% 1.57 (1.06, 2.32) 

PAI1        
Low 111 44.6% 100 57.8% 0.59 (0.40, 0. 87) 7.60e-03 
High 138 55.4% 73 42.2% 1.70 (1.15, 2.52) 

Nomogram Probability (%) Sensitivity (%) Specificity PPV (%) NPV (%) 

Test Characteristics for Predicting Any 
Cancer 

    

10 0.283 1.000 1.000 0.668 

15 0.376 0.988 0.956 0.695 

25 0.503 0.952 0.879 0.734 

40 0.659 0.912 0.838 0.794 

50 0.775 0.863 0.798 0.846 

75 0.902 0.639 0.634 0.903 

Test Characteristics for Predicting High-
grade or High Stage Cancer 

    

10 0.008 1.000 1.000 0.399 

15 0.057 1.000 1.000 0.411 

25 0.455 0.840 0.812 0.504 

40 0.764 0.667 0.777 0.651 

50 0.862 0.494 0.721 0.702 

75 0.959 0.160 0.634 0.722 
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Chapter 5. More is better:  

Recent progress in multi-omics data integration methods 
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Abstract 

Multi-omics data integration is one of the major challenges in the era of precision medicine. Considerable 

work has been done with the advent of high-throughput studies, which have enabled the data access for 

downstream analyses. To improve the clinical outcome prediction, a gamut of software tools has been 

developed. This review outlines the progress done in the field of multi-omics integration and comprehensive 

tools developed so far in this field. Further, we discuss the integration methods to predict patient survival 

at the end of the review.  

 

Introduction 

A new era of personalized medicine has arrived, which proposes an individualized health care model with 

tailored medical target treatment and management for each patient (Chin, Andersen, & Futreal, 2011). 

Under this regime, not only clinical profiles of patients but also their molecular profiles are personally 

managed to drive for advanced treatment. Cancer studies that are focused on one-dimensional omics data 

have only provided limited information regarding the etiology of oncogenesis and tumor progression. To 

overcome this, tremendous efforts have been made to obtain multi-platform based genomic data from 

biospecimen. 

The Cancer Genome Atlas (TCGA) is by far the largest endeavor in the USA to collect and analyze the 

tumor specimens from over 10,000 cancer patients (Weinstein et al., 2013). Measurements of these 

specimens include tissue exome sequencing, copy number variation (CNV), DNA methylation, gene 

expression and microRNA (miRNA) expression, as well as some physiological and clinical data such as 

race, tumor stage, relapse, and treatment response. However, relative to the genomic data of different levels 

that are available to the public, the clinical information is more limited. A scale-up of TCGA is the 

International Cancer Genome Consortium (ICGC), which provides the information of genomic, 

transcriptomic and epigenomic abnormalities and somatic mutations over 50 different cancer types (Hudson 
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et al., 2010). These consortia have created unprecedented opportunities to reveal underlying oncogenic 

molecular signatures beneath phenotypes. 

However, human genomes are complex and regulated at multiple levels, which can be manifested by 

various genomic assays mentioned above. While each of these assays offers a peek of the complex system, 

these events are rather interdependent (or interactive). Thus, when combining several different omics data 

to discover the coherent biological signatures, it is challenging to incorporate different biological layers of 

information to predict phenotypic outcomes (tumor/normal, early/late stage, survival, etc.). It is herein our 

goal to address the pressing and challenging issues for developing novel algorithms and theoretical methods 

for multi-omics data integration, in the hope to extract biologically meaningful information of clinical 

relevance. 

The outline of this review is as follows. First, we will discuss the unsupervised data integration algorithms. 

Among them, we will highlight matrix factorization methods, Bayesian methods, and network-based 

methods. Next, we will review in-depth the supervised data integration methods, including network-based 

models, multiple kernel learning methods, and multi-step analysis based models. Subsequently, we will 

elaborate semi-supervised data integration methods. Finally, we will discuss the advancement of data 

integration methods for the aim of prognosis prediction and the biological insights underneath the data 

integration methods. 

Unsupervised data integration 

Unsupervised data integration refers to the cluster of methods that draw an inference from input datasets 

without labeled response variables. The different approaches under the umbrella of unsupervised data 

integration are presented in Figure 1 and Table 1. We have categorized them below into five areas: matrix 

factorization methods, Bayesian methods, network-based methods and multiple kernel learning and multi-

step analysis.  

Matrix factorization methods 

NMF (Joint non-negative matrix factorization): The most straightforward method for unsupervised data 
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integration falls into the matrix factorization category, which focuses on the projection of variations among 

data sets onto dimension-reduced space (D. D. Lee & Seung, 2001) . Zhang et al. proposed NMF framework 

for multi-omics data integration(S. Zhang, Li, Liu, & Zhou, 2011; S. Zhang et al., 2012). This method is 

based on decomposing a non-negative matrix into non-negative loadings and non-negative factors:  

𝑚𝑖𝑛‖𝑋 − 𝑊𝐻‖2, 𝑊 ≥ 0, 𝐻 ≥ 0   (1) 

where 𝑋 is the matrix of mRNA transcriptome, methylome or other omics data that has M × N dimensions, 

𝑊 is the common factor for M × K dimension matrix and 𝐻 is the K × N dimension coefficient matrix. 

Rather than simple correlation, the rationale is to project data onto common basis space, so that one can 

detect the coherent patterns among data, by examining the elements having significant z-scores. However, 

NMF is quite time-consuming and requires bulk memory space. For NMF, it is worth noting that not only 

it requires non-negative input matrices, but also proper normalization step for these input data sets as they 

have quite different distributions and variability. 

iCluster: Like NMF, iCluster (R. Shen et al., 2012; R. Shen, Olshen, & Ladanyi, 2009) assumes a 

regularized joint latent variable, which is similar to 𝑊 in NMF but without non-negative constraints. 𝐻 is 

the loading factor (coefficient), the imposed sparsity with different types of penalty functions for various 

data types. iCluster uses 𝐸 to represent the error/noise term, and the underlying decomposition equation is:  

𝑋 = 𝑊𝐻 + 𝐸       (2) 

iCluster+: The upgraded iCluster+ expands iCluster by making the assumption of different modeling 

approaches for the relationships of 𝑋 and 𝑊 within different data platforms. It allows for diverse data types 

including binary, continuous, categorical and sequential data with different modeling assumptions 

including logistic, normal linear, multilogit and Poisson distributions (Mo et al., 2013). The common latent 

variable vector 𝑊 represents the underlying driving factors that can be used for disease subtype assignment. 

Least absolute shrinkage and selection operator (LASSO) penalty is introduced to address the sparsity issue 

in 𝐻 (Robert Tibshirani, 1996) . Since this approach requires high computational complexity, it is necessary 

to preselect the features critical for clustering results (Speicher & Pfeifer, 2015; Wang et al., 2014). Both 
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iCluster and iCluster+ do not require non-negative input data, unlike NMF.  

JIVE (Joint and Individual Variation Explained): Another variation of NMF category is Joint and Individual 

Variation Explained (JIVE) method. JIVE decomposes the original data of each layer into three parts, 

including an approximation of joint variation across data types, approximation of specific structured 

variation for each data type, and residual noise.  In other words, JIVE factors the original data input matrix 

(gene expression etc.) into two lower ranked representative portions 𝑊𝑐  (shared factor) and 𝑊𝑠  (data-

specific factor), dependent on 𝐻𝑐 and 𝐻𝑠 (Lock, Hoadley, Marron, & Nobel, 2013). 𝐻 matrix is contributed 

from one sub-matrix 𝐻𝑐 common for all data types, and the other sub-matrix 𝐻𝑠 specific to each data type. 

𝑋 = 𝑊𝑐𝐻𝑐 + 𝑊𝑠𝐻𝑠 + 𝐸         (3) 

It should be noted that there can be separate loading factors (𝐻𝑐 and 𝐻𝑠) for the shared factor and data-

specific factor (𝑊𝑐 and 𝑊𝑠). The ranks of the two loading factors can be different. An application of JIVE 

on gene expression data and microRNA data on Glioblastoma (GBM) samples provided information to 

better characterize samples into different subtypes and strong clues for associations between each input 

layer (gene expression and microRNA). Based on PCA for factorization, JIVE suffers from outliers, thus 

the robustness of JIVE is a major concern. L1 penalties are also placed to reduce the dimensions in JIVE, 

giving non-zero loadings representing larger and significant contributions to the variation of data.  

Joint Bayes Factor: On the other hand, an alternate called Joint Bayes Factor, assumes a common factor 

loadings 𝐻 for both shared and data-specific factor 𝑊𝑐 and 𝑊𝑠 (Ray, Zheng, Lucas, & Carin, 2014). Like 

JIVE, the original data input (e.g. gene expression data matrix) is decomposed into shared common factors 

across data types, data-type specific factors, and residual noise.  However, unlike JIVE, which introduces 

sparsity using L1 penalties, the Joint Bayes Factor model assumes a beta-Bernoulli process for both the 

common factors and data specific factors (𝑊𝑐  𝑎𝑛𝑑 𝑊𝑠) (Griffiths & Ghahramani, 2005; Thibaux & Jordan, 

2007). For factor loadings (𝐻), the model uses the student-t sparseness-promoting prior, to impose sparsity 

(Tipping, 2001). As a result, both shared features from each data type and unique features for individual 
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layers can be identified for further analysis. One limitation of Joint Bayes Factor lies within the linear 

relationship between the latent space and the observational space, and it also assumes very close 

relationship for different levels of data. Joint analysis of gene expression data with copy number variation 

data through this approach identified experimentally validated key drivers, as well as important candidates 

for further validation for ovarian cancer.  

𝑋 = (𝑊𝑐 + 𝑊𝑠)𝐻 + 𝐸       (4) 

Correlation-based analysis 

CCA (Canonical correlation analysis), a traditional method to investigate the relationship between two sets 

of variables, has been modified and applied to the data integration field. In CCA, two datasets can be 

decomposed as: 

𝑋 = 𝑊𝑥𝐻𝑥 + 𝐸                    (5) 

𝑌 = 𝑊𝑦𝐻𝑦 + 𝐸                    (6) 

𝐻𝑥 and 𝐻𝑦 stand for loading factors for each data set. CCA aims to find the loading factors (ℎ𝑥
𝑖 𝑎𝑛𝑑 ℎ𝑦

𝑖  

representing the ith column for loading factors) which maximize the correlation: 

𝑎𝑟𝑔𝑚𝑎𝑥𝐻𝑥,𝐻𝑦 𝑐𝑜𝑟𝑟(𝑋ℎ𝑥
𝑖  ,   𝑌ℎ𝑦

𝑖 )         (7) 

Traditional CCA doesn’t account for dimension reduction techniques to compute the inverse of a covariance 

matrix. For the integration purpose, penalization and regularization terms are added cooperatively to create 

more stable and sparse solutions of loading factors. L1-penalized sCCA (sparse CCA) together with elastic 

net CCA were proposed to filter the number of variables to make the results more biologically interpretable 

(Parkhomenko, Tritchler, & Beyene, 2009; Witten & Tibshirani, 2009). Recent research on CCA includes 

consideration of grouped effects of features as structures embedded within the data sets, such as ssCCA 

(structure-constrained CCA) and CCA-sparse group (Jun Chen, Bushman, Lewis, Wu, & Li, 2013; Lin et 

al., 2013).  

PLS (partial least squares) is focused on maximizing covariance and can potentially avoid the issue of 
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sensitivity to outliers. It projects variables onto a new hyperplane while maximizing the variance to find 

the fundamental relationship between the two sets of data.  

𝑋 = 𝑊𝑥𝐻𝑥 + 𝐸                    (8) 

𝑌 = 𝑊𝑦𝐻𝑦 + 𝐸                    (9) 

𝐻𝑥 and 𝐻𝑦 stand for loading factors for each data set. The aim of PLS is to find the loading factors which 

maximize the covariance between 𝑊𝑥 and 𝑊𝑦: 

𝑎𝑟𝑔𝑚𝑎𝑥𝐻𝑥,𝐻𝑦  𝑐𝑜𝑣(𝑊𝑥  ,   𝑊𝑦)         (10) 

However, in some cases such as in high dimensional biological omics data, it is desired to obtain sparse 

solutions for better interpretations of the result. More recently, sparse solutions of PLS such as sPLS has 

been shown to perform equivalently with that of the CCA-elastic net (Lê Cao, Martin, Robert-Granié, & 

Besse, 2009). Other implementations of PLS with different objective functions and various constraints were 

also reported. For example, sMBPLS (sparse Multi-Block Partial Least Squares) overcomes the limit of 

two data block computation through redefining the objective function as a weighted sum of latent variables 

in different layers (n>=2)(Ramskold et al., 2012). And SNPLS (Sparse Network regularized Partial Least 

Square) is specialized in identification of gene expression and drug-response relationship co-modules 

through incorporating gene interaction network structures (Jinyu Chen & Zhang, 2016). It showed 

significantly better performance in accuracy compared to sPLS in simulated data. 

  

Bayesian methods 

Bayesian methods have been applied to data integration for over a decade (Imoto et al., 2004; Zhao, 

Rubinstein, Gemmell, & Han, 2012). The main advantage of Bayesian methods in data integration is that 

they can make assumptions not only on different types of data sets with various distributions but also on 

the correlations among data sets. We briefly overview these methods below: 

MDI (Multiple Dataset Integration): It offers to model each data set using the Dirichlet-Multinomial 
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Allocation (DMA) mixture model, thus can explore the shared information through deriving statistical 

dependencies (Kirk, Griffin, Savage, Ghahramani, & Wild, 2012). In this approach, the allocation of genes 

from one data set has an influence on those in another set. Apart from bi-clustering (clustering two 

dimensions from the same data set simultaneously), MDI can cluster a single dimension (e.g. genes) across 

multiple data sets, under the assumption that these genes are measured in all different levels. It can be 

extended flexibly by allowing variable associations from different groups of genes across data types.  This 

method excels in identifying genes having their protein products in the same complex, apart from the co-

regulated genes. Finally, after learning the similarity of clusters in different data sets, MDI obtains a single-

dimension cluster among all the input data sets. 

Prob_GBM is another probabilistic framework to construct patient similarity network, where patients are 

represented by nodes and phenotypic similarities among the patients are edges (Cho & Przytycka, 2013). 

This method uses the genetic phenotype, which is the gene expression data of each patient, to assign 

corresponding disease subtype. Explanatory features (e.g. CNVs, mutations and miRNA expression) are 

used to explain phenotypic similarities constructed from gene expression data, among patients. Thus, each 

disease subtype is modeled by a distribution of these features, and each patient is characterized as the 

mixture of the genetic characteristic of each subtype. Finally, patients are labeled by the most likely subtype 

assignment. This method considers the biological relationships among several genomic layers including 

mutation, CNVs, and miRNA expression data, but it is limited in terms of the types of input data.   

PSDF (Patient-Specific Data Fusion): It is based on a two-level hierarchy of Dirichlet Process model, a 

widely used Bayesian nonparametric model for clustering (Yinyin Yuan, Savage, & Markowetz, 2011). It 

checks the concordance between expression and the copy number variation for each patient. Moreover, it 

also selects informative features and estimates the number of disease subtypes from the given data. 

However, this method limits the input for only two types of data (gene expression and CNV), thus reduces 

its flexibility within multi-platform analysis.  

BCC (Bayesian Consensus Clustering): This method is a flexible clustering approach capable of 
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simultaneously modeling the dependence and the heterogeneity of various data sources (Lock & Dunson, 

2013). It allows for separate clustering of the objects from each data source and performs post hoc 

integration of separated clusters. Consensus clustering is applied to model the source-specific structures as 

well as to determine the overall clustering. 

CONEXIC (COpy Number and EXpression In Cancer): It is a Bayesian network-based method to integrate 

copy number variation and gene expression data (Akavia et al., 2010). A score-guided search is applied to 

identify the combination of modulators (genes). A ranked list of high-scoring modulators (candidate driver 

genes) is produced, representing genes that are both correlated with differential gene expression modules 

across tumor samples and are present in significantly amplified/deleted regions. The key feature of the 

CONEXIC goes beyond identifying mutation drivers, as it provides the insights into the roles of drivers and 

associated genes.  

Network-based methods 

Network-based approaches can identify modules, symbolic representations of the disease-associated 

mechanisms. In this regime, nodes represent genes and edges are links between two genes if there exists 

interaction between them. Under the unsupervised category, network-based methods are mostly applied for 

detecting significant genes within pathways, discovering sub-clusters or finding co-expression network 

modules (Bonnet, Calzone, & Michoel, 2015; Vaske et al., 2010; Wang et al., 2014). 

PARADIGM (PAthway Representation and Analysis by DIrect reference on Graphical Models): It is a 

probabilistic graphical model framework to infer patient-specific genetic variations, with the incorporation 

of curated pathway interactions among genes (Vaske et al., 2010). PARADIGM converts each pathway in 

National Cancer Institute (NCI) Pathway Interaction Database (PID) into a distinct probabilistic model, 

represented as a factor graph with both hidden and observed states. Variables in the graph are used to 

describe molecules, protein-coding genes and complexes (all three assigned as physical entities) apart from 

gene families and abstract processes. A pathway is modeled as a directed acyclic graph where edges are 

defined as either positive or negative influence on the downstream nodes, and the nodes are determined by 
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combining all input signals. The output of PARADIGM includes the integrated pathway activity (IPA) 

score, representing a patient specific measure for the degree of alteration for a specific pathway, through 

summarizing information from input data sets such as gene expression and copy number variations. 

PARADIGM claims to provide more robust and consistent signatures for subgrouping patients through 

demonstration in breast cancer and glioblastoma samples. However, in PARADIGM pathways are 

measured independently, and interactions among pathways are not considered.  

SNF (Similarity Network Fusion): This approach aims at discovering the patient subgroup clusters. SNF 

integrates different data types by constructing a network of samples (rather than genomic features) for each 

data type, and then fusing these networks into one comprehensive network(Wang et al., 2014). It has two 

main steps for data integration: First, it constructs a sample-by-sample similarity matrix for each data type, 

acting as an individual network. Similarity matrices help to identify universal clusters and networks. It also 

detects different types of data that give support to each connection in the network. Then, by using the 

nonlinear method of message passing theory (KNN and graph diffusion), SNF fuses different similarity 

matrices and networks, making the combined networks more coherent during each iteration. As a result, 

weak similarities (e.g. noises) are removed, and strong similarities are added. SNF is relative flexible 

without constraints for input data format and but only matched samples across different omics layers. By 

outputting combined similarities among patients across various layers, SNF offers deeper insight into the 

comprehensive biological relationship, beyond the scope of basic classification and subtyping methods. 

Lemon-Tree: It is another unsupervised method focused on reconstructing module networks (Bonnet et al., 

2015). After finding co-expressed clusters from the expression data matrix, Lemon-Tree helps to identify 

consensus modules and upstream regulatory programs through ensemble methods. First, a gene expression 

matrix is employed to infer co-expressed gene clusters through a model-based Gibbs sampler. Consensus 

modules of co-expressed genes are merged through spectral edge clustering algorithm with an ensemble of 

the gene cluster results. On the other side, additional candidate regulator types of data such as miRNA 
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expression, CNV and methylation data are combined with the consensus module to infer a regulatory score 

calculated by a decision tree structure. The above separation of module learning and regulator assignment 

steps provides much more flexibility allowing combination with the other methods. According to the 

authors, Lemon-Tree has the advantage of inferring more closely related short-path networks with more 

significant gene ontology-related categories, in comparison to CONEXIC. However, it limits the input data 

types to be only gene expression and additional one data type, as it is focused on finding co-expressed 

clusters. 

Multiple kernel learning and Multi-step analysis 

Multi-step (or multi-stage) methods are commonly used to find relationships between the different data 

types first, and then between the data types and the trait or phenotypes (Ritchie, Holzinger, Li, 

Pendergrass, & Kim, 2015). Kernel methods are defined by the use of kernel functions, which enables to 

operate in a high-dimensional feature space by simply computing the inner products among the images of 

all pairs of data in the feature space (Hofmann, Schölkopf, & Smola, 2008). Kernel-based data integration 

methods are usually multi-steps, thus we exemplify multi-kernel and multi-step methods together. 

rMKL-LPP (Regularized Multiple Kernel Learning Locality Preserving Projections): This approach can 

deal with multiple omics data integration such as gene expression, DNA methylation, and microRNA 

expression profiles (Speicher & Pfeifer, 2015). It is an extension of the current MKL-DR (multiple kernel 

learning with dimensional reduction) method, where the data are projected into a lower dimensional and 

integrative subspace. A regularization term is added to avoid overfitting during the optimization procedure, 

and it allows using several different kernel types. The Locality Preserving Projections (LPP) is applied to 

conserve the sum of distances for each sample’s k-Nearest Neighbors. The finalized clustering is done 

through applying k-means on the distance summation. Compared to SNF, rMKL-LPP claims to offer 

comparable results with much more flexibility, as it provides different choices of dimension reduction 

methods and a variety of kernels per data type.  

CNAmet: It is a state-of-the-art multi-step integration tool for CNV, DNA methylation, and gene expression 
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data (Louhimo & Hautaniemi, 2011). The major goal of CNAmet is to identify genes that are both amplified 

and upregulated or both deleted and downregulated. This tool integrates CNV and DNA methylation data 

through their functions on gene regulation. The underlying hypothesis is that the gene upregulation is due 

to both amplified copy number and hypomethylation, whereas gene downregulation is the result of deleted 

copy number and hypermethylation. It uses three steps to detect the significant genes: weight calculation, 

score calculation, and significance evaluation. During the first weight calculation step, the signal-to-noise 

statistics is calculated to measure the copy number and methylation aberrations relative to the expression 

values. In the second score calculation step, the weight values are combined to infer a deterministic score, 

which informs the causes of the alterations in the gene expression. Finally, the permutation test is performed 

on the combined scores and the P-values are corrected. Identification of the genes which are synergistically 

regulated by methylation and copy number variation data leads to better characterization of these genes and 

better understanding of biological process underlying cancer progression.   

iPAC (in-trans process associated and cis-correlated): It is a multi-step method to identify genes that are 

in-cis correlated through integrating gene expression and CNV data, as well as genes that are in-trans 

associated to the biological processes (Aure et al., 2013). The novelty of this method is the capability to 

adjust for confounding effects of co-occurring copy number aberrations. This analysis module combines 

correlation analysis, regression, gene set enrichment, and adjustment for co-occurring copy number 

aberrations with avoidance of confounding effects. In the in-cis correlation, it proposes a linear model where 

log gene expression is a linear function of log copy number and noise. In the in-trans association, it imposes 

a direct integration through a statistical enrichment step to get the confidence level of in-trans associations 

between the genes and biological processes.  

Supervised data integration  

Contrary to the unsupervised data integration methods, the supervised methods consider the phenotype 

labels of samples (disease or normal), and invoke machine training approaches to evaluate the models. 

Supervised data integration methods are built via information of available known labels from the training 
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omics data. In the following section, we enlist representative network-based, multi-kernel and multi-step 

based methods (Figure 2 and Table 1). 

Network-based methods 

ATHENA (Analysis Tool for Heritable and Environmental Network Associations) is a neural network 

approach to integrate different omics data with a supervised model which can further be extended to do 

prognosis analysis (Kim, Li, Dudek, & Ritchie, 2013). In ATHENA, grammatical evolution neural 

networks (GENN) algorithm is utilized to train individual models from different data platforms. Based on 

neural networks, grammatical evolution algorithm is utilized to train the model with selected features that 

are less noisy and significantly associated with clinical outcomes. After selecting the features, individual 

models are summed up to a final integrative model, which can be utilized for multiple purposes including 

diagnosis and prognosis. Overall, ATHENA provides a comprehensive way of visualizing genomics data’s 

correlation with clinical features such as survival outcomes, making it stand out compared to other network-

based integration methods. One limitation of ATHENA lies in lacking interaction terms among different 

layers, as the features are selected from individual data type first and then combined into an integrated 

model.   

jActiveModules: It is another network-based Cytoscape plug-in which seeks underlying network hotspots 

through the integration of gene expression, protein-protein interaction and protein-DNA interaction data 

(Ideker, Ozier, Schwikowski, & Siegel, 2002). This method is based on the hypothesis that molecular 

interactions linking the genes are more likely to correlate expression profiles than randomly chosen genes 

in the network. This method requires an external input of significance measurements over genes for 

significance calculation of sub-networks. The external filtering step is a supervised feature selection for 

genes based on the P-values in the differential expression tests, while the integration method itself doesn’t 

require additional outcomes as inputs. Through random sampling approach and iterative calculations, 

jActiveModules determines the highest-scoring sub-network circuits in a full network of molecular 

interactions, leading to further biologically interesting discoveries (Cline et al., 2007). Compared to other 
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clustering methods, jActiveModules is subject to the molecular interaction network and can include genes 

without dramatically expression fold changes. 

Another network-based integration method (Ruffalo, Koyutürk, & Sharan, 2015) claims to identify key 

proteins at sample-level using propagated protein networks, based on integrated mutation and differential 

gene expression (DGE) data sets. Propagated mutation and DGE profiles for each gene are generated with 

the help of prior knowledge in PPI framework (Schaefer et al., 2012). Feature selection is then done on 

these propagated profiles in a supervised fashion, with top features being most relevant to outcomes, and a 

final set of proteins is selected based on the network proximity across the samples. The final step involves 

logistic regression using the selected genes. This method is useful to find the hidden repertoire of 

genes/proteins at pathway level with impact on tumor progression/clinical outcome, which might be 

overlooked by individual mutational or differential expression analysis.  

Multiple kernel learning 

SDP/SVM (Semidefinite Programming/Support Vector Machine): It offers a pioneering kernel-based 

framework for data integration (Lanckriet, De Bie, Cristianini, Jordan, & Noble, 2004). Each data set is 

represented by a specific kernel function that defines similarity between pairs of entities. Then the kernel 

functions, derived from different omics data, are combined directly using the SDP (Semidefinite 

Programming) techniques to reduce the integration problem to a convex optimization problem. The SDP 

method outperforms the classifier trained with a naïve and unweighted combination of kernels. Different 

kernels correspond to different transformation of the data, with an extraction of a specific type of 

information from each data set. The FFT (Fast Fourier Transform) kernel is specific for the membrane 

protein recognition, by directly incorporating information of hydrophobicity patterns. Higher-order 

polynomials such as radial basis kernels can be used to capture higher-order non-linear associations of a 

trait with genotypes. Diffusion kernels are applied to exploit unlabeled data. SDP/SVM is a prototype work 

for kernel-based data integration methods (published in 2004) and doesn’t include a programming package. 

FSMKL (Feature Selection Multiple Kernel Learning) is another method implementing the multiple kernel 
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learning-based supervised learning (Seoane, Day, Gaunt, & Campbell, 2014). This new scheme uses the 

statistical score for feature selection per data type per pathway. By employing additional kernels based on 

clinical covariates, it improves the prediction accuracy for cancer detection. Multiple kernel learning 

constructs classifiers with a decision function dependent on a variety of different types of input data (gene 

expression & CNV) using pathway-based kernels. Each type of data (omics) is encapsulated into an object 

called base kernel; a composite kernel is built as a linear combination of these base kernels. To further 

incorporate biological information into the algorithm, not only individual feature (such as genes) are 

independently used to construct kernels, but also specific groups of genes, which are known to have 

membership from a KEGG pathway, are combined to derive other base kernels. The most appropriate 

decision function over kernels is finalized after feature selection steps, contributing to an integrative 

function over base kernels. This method stands out among other kernel-based methods with the inclusion 

of pathway-based information to build kernels, as prior knowledge. Pathway membership is a central 

criterion for FSMKL to group samples into different clusters, bringing more biological knowledge 

compared to basic statistical priors from other methods. Combining clinical factors along with high-

throughput profiles into the classifier also brings power for prediction accuracy. FSMKL claimed that this 

method competes with the winner methods from the DREAM challenge for breast cancer prognosis. 

Multi-step analysis 

iBAG (integrative Bayesian analysis of genomics data) is a flexible tool to integrate data from an arbitrary 

number of platforms (Jennings, Morris, Carroll, Manyam, & Baladandayuthapani, 2013). A hierarchical 

model is built to incorporate the information from different genomic layers with biological sense. Basically, 

this multi-step analysis consists of two-stage models. The first-stage mechanistic model is a regression 

model which is constructed to partition gene expression data into small segments including methylation 

principal component, copy number variation principal component and unknown components other than the 

previous two. In the second stage of developing clinical a model, clinical data such as binary outcome and 

survival information is modeled as the response of joint regression from those factors in the previous 
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regression. Normal-Gamma (NG) prior is applied to improve the effect size estimation and address sparsity. 

This study considers gene expression, methylation and CNV data, in specific, to identify genes having a 

significant impact on patient survival. The hypothesis of this research lies in the linear relationship between 

methylation data and copy number variation, together with the effect of gene expression on survival 

outcome. These relationships may not reflect the actual biological process underneath, thus the output 

prognostic genes may not be considered as causal factors. Independent functional experiments and other 

datasets are needed to validate the results. 

MCD (Multiple Concerted Disruption): This method allows to integrate copy number variation, DNA 

methylation, and allelic (loss of heterozygosity) status to find genes representing key nodes in the pathways 

as well as genes which exhibit prognostic significance (Chari, Coe, Vucic, Lockwood, & Lam, 2010). For 

each differentially expressed gene, the copy number variation, methylation and allelic statuses are examined 

for whether the observed expression change would match the expected change in the DNA level. This multi-

step tool can be broken down into several sequential steps: First, a set of most frequent differentially 

expressed genes is identified for each sample with a pre-defined frequency threshold. Next, this subset of 

genes is further checked according to the concerted pattern of the expression change and also in at least 

another DNA dimension (CNV, methylation or loss of heterozygosity). Finally, genes are selected which 

have a role in multiple disruption mechanisms and changes in expression. As a pioneering work in data 

integration field, MCD offers a biologically sensible way to select genes step wisely by incorporating 

parallel analysis in genomic and epigenomic layers. However, it is more like a filtering step to finalize a 

group of genes rather than a systematic way to integrate information embedded from multiple layers.    

Anduril: It is a bioinformatics workflow proposed to generate integrative results from multiple platforms 

into a report for biologists for better comprehension (Ovaska et al., 2010). It is a flexible and intuitive 

analysis tool, which facilitates the integration of various data formats, bio-databases and analysis techniques 

to identify the genes and loci with high impact on survival. It supports data input including gene expression, 

miRNA expression, methylation, CNV, exome sequencing and array CGH data. The workflow maneuvers 
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to manage and automate the sequence of multi-platform analyses from importing the raw data to reporting 

and visualizing the results. The generated comprehensive website collects all the analyses results and thus 

facilitates the interpretation of the data. However, this framework is more of a platform to collect and 

process multiple types of data, rather than a package that performs data integration with sophisticated 

statistical or machine learning methods. 

Semi-supervised data integration 

Semi-supervised integration methods, lies between supervised and unsupervised methods, takes both 

labeled and unlabeled samples to develop learning algorithm. Most of the semi-supervised data integration 

methods are graph-based, as illustrated with a few examples below (Table 1). 

GeneticInterPred: It is a tool to predict the genetic interactions through combining the protein-protein 

interaction, protein complex and gene expression data (You, Yin, Han, Huang, & Zhou, 2010). This method 

starts with building a high-coverage, high-precision weighted functional gene network by integrating gene 

expression, protein complex, and protein-protein interaction data. The topological properties of the protein 

pairs and gene expression in the function gene network are used as input for the subsequent classification 

step. A weight matrix is built summarizing the information among the edges in the graph, which is made 

symmetric. A similarity matrix is inferred from the weight matrix iteratively, using local connectivity in 

the gene network until convergence. Using connected weighted graph, the graph-based semi-supervised 

learning (SSL) method can infer the information of the unlabeled interactions in the graph. The final product 

is a classification matrix where all the unlabeled interactions are assigned. This method is specifically 

designed for prediction of genetic interaction from integrated functional gene networks. Moreover, the 

semi-supervised idea of inferring unlabeled data from labeled data in the connected graph of similarity 

matrix can be applied to clinical predictions like cancer diagnosis and prognosis.  

Another pilot framework employing graph-based semi-supervised learning uses the multi-level genomic 

data sources (including CNV, gene expression, methylation and miRNA expression) for molecular 

classification of clinical outcomes (Kim, Shin, Song, & Kim, 2012). This method uses the genomic 
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relationship to define the edges (relationship) between the nodes (samples), and the unlabeled samples are 

influenced by the propagation of their annotated neighbors. In the end, diverse graphs from different layers 

are combined by the linear combination of coefficients for the individual graphs. It allows the flexibility to 

extend to integrate multiple levels of genomic data (n>3), while preserving the level-specific properties 

from the different and heterogeneous layers. In summary, this work pioneered in combining genomics, 

epigenomics and transcriptomics data to predict for cancer phenotypes. However, the interaction 

relationships among different layers were not considered, such as the regulatory role of methylation or 

microRNA on gene expression.   

Biological insights from data integration methods 

By now we discussed a variety of integration methods in three categories: unsupervised, supervised and 

semi-supervised. Unsupervised methods recruit different approaches (factorization, Bayesian, network etc.) 

to explore their biological profiles to assign objects into different subgroups (clusters). Supervised methods 

employ the biological information of labelled objects to derive patterns for different phenotypes and assign 

labels to unlabeled data by comparing the patterns. Semi-supervised methods are mostly building object-

wise similarity networks through compiling omics data and assign labels to unknown objects through their 

relationship to labelled objects.  

Interactions among different layers are major concerns for data integration strategies. The corresponding 

mapping relationship among different layers such as methylation to gene expression, microRNA to gene 

expression etc. should not only be considered independently but also together during the integrative process. 

At the initiating stage of data integration, many integrative methods are independently working on different 

layers (such as multi-step analysis) and then find the common subset of biological identities (e.g. 

genes)which are significantly differentially expressed in each layer. The more recent emerging state-of-the-

art integrative tools are considering interactions while integrating different layers. SNF, for example, tries 

to integrate patient-wise similarities as a combined network, which both strengthens the coherent 

relationships from each network and reduces the noise of weak signals from the individual network. 
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iCluster+, on the other hand, aims to discover the common latent variable (structure) from all different 

omics layers with different modeling assumptions. Thus, the internal relationship of different layers is 

considered as the driving factor that acts in a concerted manner from each omics data. 

Data integration for survival prediction  

Nowadays cancer prognosis prediction is a keen point of interest for physicians, cancer patients, and 

healthcare-providers. Information about cancer prognosis helps all kinds of decisions regarding the patient 

management and therapeutic treatments etc. (Hagerty, Butow, Ellis, Dimitry, & Tattersall, 2005; Rabin et 

al., 2013). Prognostic biomarkers have been used for more effective selection of patient subgroups with 

different therapeutic strategies (Huang et al., 2016; S. Huang et al., 2014). Therefore, molecular data with 

increasing power to detect personalized molecular characteristics has been studied widely in the past decade 

(Kim & Ritchie, 2014; Van't Veer et al., 2002). However, methods to integrate multi-omics data optimized 

for prognosis prediction (rather than being post hoc evaluation) are far fewer (Table 1). We enlist some 

representative methods below: 

CoxPath: It is a vector space integration methodology that can handle CNV, gene expression, DNA 

methylation and miRNA expression data (Mankoo, Shen, Schultz, Levine, & Sander, 2011). First, the 

Spearman rank correlations among different data types are computed, and separate cut-offs are used to filter 

the correlated data pairs. After the filtering, L1-penalty is combined with Cox proportional hazards model 

for feature selection and model shrinkage simultaneously. This metric is a typical multi-step analysis 

method to predict survival.  

MKGIs (Metadimensional Knowledge-driven Genomic Interactions): This framework performs 

knowledge-based integration of multi-omics genomics data at pathway level (Kim et al., 2016; Kim & 

Ritchie, 2014), to predict the clinical outcome of patients. The strength of the framework lies in capturing 

genomic interactions by integrating pathways with the metadimensional models to achieve improved 

prognosis and diagnosis. In transformation phase, each genomic layer is converted to pathway-based 

knowledge-driven matrix. In modeling phase, an evolutionary algorithm-based method called grammatical 
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evolution neural networks (GENN) is used to develop knowledge-driven models for predicting clinical 

outcome. GENN is essentially an artificial neural network (ANN) based on grammar rules, which optimizes 

the high-dimensional input features, network structure, and weights. Further, different genomic interaction 

models are integrated to develop MKGI models to predict survival, stage and grade. This method concludes 

that knowledge-driven (pathway-based) genomic models overall perform better than single genomic-based 

models where gene expression is most contributing at the pathway level.  

 

Conclusion 

A plethora of data is accruing with the high-end experimental set-ups in the field of pathology. Advanced 

technologies are coupled with the computational challenges to deliver the most relevant biological 

interpretation of data. In this direction, a considerable number of tools have been developed to make the 

most out of the multi-tier data sets. This review summarizes the diverse computational tools developed over 

the years, their advantages and limitations. As this field flourishes, comparisons among different methods 

will be critical, to aid decision-making by investigators with big data needs. Despite these accomplishments, 

there needs to be more accurate and efficient tools, especially when clinical outcome (e.g. survival) is to be 

modeled. Biological knowledge guided integrative methods will continue to be desirable, with 

consideration of the interactive relationship among different omics layers. Moreover, given that most 

studies have only a single or a few omics layers, integrating heterogeneous data from multiple cohorts, 

rather than coupled samples, will need rigorous investigation (R. Wei et al., 2016). For the purpose of 

precision medicine, additional benefits may be obtained by integrating omics data with other data types, 

such as imaging and electronic health record (EHR) data.  
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Appendix I. Chapter 5 Figures 

Figure 1: Unsupervised data integration methodology. 

 

Figure 2: Supervised data integration methodology. 
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Appendix J. Chapter 5 Tables 

Table 1: Summary of data integration tools. 

Name Category Data Type Output Stats Method FFS Method Reference 

Joint NMF Unsupervised Multi-data subset of genes 

(modules) 

Matrix factorization  NA (Zhang et al., 

2011, 2012) 

iCluster Unsupervised EXP, CNV cluster matrix factorization L1 penalty (Shen et al., 

2012) 

iCluster+ Unsupervised Multi-data cluster matrix factorization L1 penalty (Mo et al., 

2013) 

JIVE Unsupervised Multi-data shared factors 

and unique 

factors 

Matrix factorization L1 penalty  (Lock et al., 

2013) 

Joint Bayes 

Factor 

Unsupervised  EXP, MET, CNV 
 

shared factors 

and unique 

factors 

Matrix factorization Student-t 

sparseness 

promoting prior 

(Ray et al., 

2014) 

ssCCA Unsupervised Sequence data Operational 

taxonomic unit 

and cluster 

Canonical 

Correlation 

Analysis 

L1 penalty (Chen et al., 

2013) 
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CCA sparse 

group 

Unsupervised Two types of data Group of 

features with 

weights 

Canonical 

Correlation 

Analysis 

L1 penalty (Lin et al., 

2013) 

sMBPLS Unsupervised Multi-data Group of 

features as 

modules 

Partial Least 

Squares 

L1 penalty (Li et al., 2012) 

SNPLS Unsupervised EXP, drug response, 
gene network info. 

Gene-drug co-

module 

Partial Least 

Squares 

Network-based 

penalty 

(Chen and 

Zhang, 2016) 

MDI Unsupervised Multi-data Cluster Bayesian  NA (Kirk et al., 

2012) 

Prob_GBM Unsupervised EXP, CNV, miRNA, 

SNP 

Cluster Bayesian NA (Cho and 

Przytycka, 

2013) 

PSDF Unsupervised EXP, CNV Cluster Bayesian Binary indicator-

>likelihood of 

feature 

(Yuan et al., 

2011) 

BCC Unsupervised EXP, MET, miRNA, 
proteomics 
 

Cluster Bayesian NA (Lock and 

Dunson, 2013) 

CONEXIC Unsupervised EXP, CNV Groups of 
genes 

Bayesian NA (Akavia et al., 
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associated with 
modulators 

2010) 

PARADIGM Unsupervised Multi-data gene score and 
significance in 
each pathway 

pathway networks NA (Vaske et al., 

2010) 

SNF Unsupervised EXP, MET, miRNA Cluster similarity network 

fusion 

NA (Wang et al., 

2014) 

Lemon-Tree Unsupervised EXP, 
CNV/miRNA/methyl 
(only one type) 

association 
network 
graphics 

module network NA (Bonnet et al., 

2015) 

rMKL-LPP Unsupervised Multi-data Cluster Multiple kernel 

learning 

Dimension 

reduction metric 

Locality Preserving 

Projections (LPP) 

(Speicher and 

Pfeifer, 2015) 

CNAmet Unsupervised EXP, MET, CNV scores and p-
values of genes 

Multi-step analysis NA (Louhimo and 

Hautaniemi, 

2011) 

iPAC Unsupervised EXP, CNV subset of genes Multi-step analysis Multiple filtering 
steps including 
common aberrant 
genes, in-cis 
correlation and in-
trans functionality 

(Aure et al., 

2013) 

ATHENA Supervised EXP, CNV, MET, 
miRNA 

Final model 
with patient 
index 

Grammatical 

Evolution Neural 

Neural Networks (Kim et al., 

2013) 
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Networks (GENN) 

jActiveModules Supervised EXP, PPI, protein-
DNA interactions 

Subnetwork 
(network 
hotspots) 

Network simulated 

annealing 

NA (Ideker et al., 

2002) 

Network 
propagation 

Supervised Gene expression, 
mutation, PPI 

Propagated 
network relative 
to differential 
expression of 
gene  

Network NA (Ruffalo et al., 

2015) 

SDP/SVM Supervised EXP, protein 
sequence, protein 
interactions, 
hydropathy profile 

Linear classifier 
based on 
combination of 
kernels 

SDP/SVM Recommends CCA 

(canonical 

correlation 

analysis) 

(Lanckriet et 

al., 2004) 

FSMKL Supervised EXP, CNV, Clinic 
feature (ER status) 

Linear classifier 
based on 
combination 
kernel 

Multiple kernel 
learning 

SimpleMKL 

(gradient descent 

method) 

(Seoane et al., 

2014) 

iBAG Supervised Multi-data Subset of 
genes 

Multi-step analysis Bayesian (Jennings et 

al., 2013) 

MCD Supervised MET, CNV, LoH Subset of 
genes 

Multi-step analysis NA (Chari et al., 

2010) 

Anduril Supervised EXP, MET, miRNA, 
exon, aCGH, SNP 

Comprehensiv
e report 

Multi-step analysis  NA (Ovaska et al., 

2010) 
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GeneticInterPred Semi-supervised EXP, PPI, protein 
complex data 

Genetic 
interaction 
labels 

Graph integration NA (You et al., 

2010) 

Graph-based 
learning 

Semi-supervised EXP, CNV, MET, 
miRNA 

Patient scores 
for 
classification 
purpose 

Graph integration NA (Kim et al., 

2012) 

CoxPath Survival-driven EXP, CNV, MET, 
miRNA 

Prognosis 
index for each 
patient 

Multi-step analysis L1 penalty (Mankoo et al., 

2011) 

MKGI Survival-driven EXP, CNV, MET, 
miRNA 

Final model 
with patient 
index 

Grammatical 
Evolution Neural 
Networks (GENN) 

Neural Networks (Kim et al., 

2016) 

 

#FS Method=Feature Selection Method, EXP= Expression, CNV= Copy Number Variation, MET=DNA Methylation, SNP= Single Nucleotide Polymorphism, aCGH= Array 

Comparative Genomic Hybridization, PPI= Protein-Protein Interaction, LoH=Loss of Heterozygosity 
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Chapter 6. Deep learning based pathway level multi-omics integration for 

breast cancer prognosis prediction 
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Abstract 

 

Breast cancer is the most common malignancy in women worldwide. With the increasing awareness of 

heterogeneity in breast cancers, better prediction of breast cancer prognosis is much needed for more 

personalized treatment and disease management. In this chapter, we extend the work from previous chapters, 

and have developed a novel multi-omics computational model for breast cancer prognosis by combining 

the Pathway Deregulation Score (PDS) based pathifier algorithm with an improved deep version of learning 

integration framework DeepProg. We trained the model on METABRIC 2-omics set with gene expression 

and copy number variation (CNV) data, and validated the performance on four diversified independent 

testing data sets from GEO. To evaluate the performance of the model, we conducted survival analysis of 

the dichotomized groups, and compared the Kaplan-Meier curves and C-indexes of our prediction model. 

The resulting prognosis model successfully differentiated relapse in the training set (log rank p-value = 

3.65e-20) and four testing datasets (log rank p-value < 0.05). Moreover, the pathway-based model 

consistently performed better than original data based models on all five data sets. Our deep-learning based 

multi-omics integration method outperforms the current state-of-art method SNF for patient survival 

prediction, on five benchmark datasets. In summary, we propose a novel prognosis model that harnesses 

the pathway-based dysregulation as well as deep-learning integration for breast cancer prognosis prediction. 

Our model is also flexible to predict future fewer-omics or individual omics level breast cancer patients’ 

survival.  

 

 

1 Introduction 

 

Breast cancer (BRCA) is the most frequently diagnosed cancer in women in United States with 30% 

prevalence rate, and it is ranked second (14%) for the deaths among cancer patients in women in 

2017(Society, 2017). It has been increasingly realized that breast cancer is a heterogeneous disease and 
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can’t be simply stratified by molecular subtypes only. More personalized identification and management 

tools are pressingly needed for breast cancer prognosis. Toward this goal, a variety of high-throughput 

based signatures have been explored for breast cancer prediction purposes, and some of the signature panels 

are currently in commercial use (Ma et al., 2004; Paik et al., 2004; Sotiriou et al., 2006; Van't Veer et al., 

2002; Yixin Wang et al., 2005). However, there is consistency problem using the gene-based/ raw data-

based platforms. Ein-Dor et.al showed that the NKI-70 signature is not unique and can be strongly 

influenced by the selection of training subset to derive candidate genes(Ein-Dor, Kela, Getz, Givol, & 

Domany, 2004). These fluctuations in signature genes are mostly due to the large pool of survival-correlated 

genes. The correlation difference among those genes are so small that randomly changing the training sets 

lead to different signature patterns with similar predict performances.  

Moreover, the accumulation of multi-platform based genomic data offers measurements in genomic, 

transcriptomic and epigenomic levels on the same cancer patient. The Cancer Genome Atlas (TCGA) and 

the International Cancer Genome Consortium (ICGC) have created unprecedented opportunities to uncover 

the biological oncogenetic and progression processes underneath cancer phenotypes. The integration of 

multi-omics data has been applied to breast cancer to discover the mechanisms (Mosca et al., 2010). Mosca 

et. al presented a Genes-to-Systems Breast Cancer (G2SBC) Database which integrates all knowledge of 

protein-protein interactions (PPIs), protein structure, molecular pathways and systems modeling to study 

breast cancers(Mosca et al., 2010). However, this multi-level perspective only provides a summarized 

information rather than a quantified personalized measurement which will be more beneficial for 

personalized management. Similarity Network Fusion (SNF) analysis integrates different data platforms by 

constructing a network of samples (rather than genomic features) for each data type, and then fusing these 

networks into one comprehensive network(Wang et al., 2014). SNF helps to define 5 clusters for breast 

cancer with different molecular patterns in gene expression, methylation and miRNA profiles. However, it 

doesn’t allow for new data prediction based on the clustering results. More importantly, few integration 

methods have been proposed to link molecular features to predict survival phenotypes, the molecular 
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dysregulations at multiple levels haven’t been combined systematically to identify the risky pathways in 

breast cancers(Huang, Chaudhary, & Garmire, 2017).  

Given the observation that genes and other biological entities involved in the same biological processes are 

often dysregulated together in cancer, we hypothesize that higher-order quantitative representations of 

features, such as pathway-based features, are coherent surrogates of original data biomarkers and add more 

information of biological functions. Previously, we developed a personalized, novel computational pathway 

based model and have applied on transcriptomics and metabolomics data for breast cancer prognosis and 

diagnosis(Huang et al., 2016; Sijia Huang, Cameron Yee, Travers Ching, Herbert Yu, & Lana X Garmire, 

2014). Recently, several studies used deep-learning approach to transform genomics data(Hongzhu Cui et 

al., 2017). In a previous study, we combined autoencoders and Cox-PH models to extract new features 

linked to survival and predict cancer subtypes for Hepatocellular carcinoma (HCC), using mRNA, 

microRNA and DNA methylation data (Chaudhary, Poirion, Lu, & Garmire, 2017). In this chapter, we 

modified this deep-learning based computational pipeline that takes multi-omics input features, and 

extended to the pathway-based level. This new workflow, named DeepProg, first creates an autoencoder 

for each omic to extract omic-specific survival features. Then, the model identifies the cancer subtypes 

using a clustering approach and further builds a machine-learning classification model to predict new 

samples’ survival risks. Other characteristics of DeepProg include adopting a bagging approach that 

increases the robustness of the results and the prediction accuracy of the method. We built a model using 

1981 breast cancer samples and predicted the survival subtypes for four external GEO datasets. Furthermore, 

we show that pathway features are superior to original features (genes, CNV) in predicting breast cancer 

prognosis. We also demonstrate the improved accuracy of survival-risk prediction of DeepProg tool with 

comparison to the current state-of-art SNF method.  
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2 Materials and Methods 

 

2.1 Study Population 

For breast cancer prognosis, we downloaded breast cancer (BRCA) samples from METABRIC data set as 

the training dataset to predict the breast cancer prognosis using our integration pipeline. We used the 

normalized data available from the Synapse repository:  https://www.synapse.org/#!Synapse:syn1688369. 

METABRIC data set consist 1981 breast cancer samples. For each of these patients, matched DNA and 

RNA were extracted from each primary tumor specimen. Subjected copy-number and genotype analysis 

and transcriptional profiling were separately performed on the Affymetrix SNP 6.0 platform and the 

Illumina HT-12 v3 platform (Illumina-Human-WG-v3). High-quality follow-up clinical data including 

disease-free survival information are also available for the 1981 samples. 

We also included four publicly available datasets of breast cancer samples from National Center for 

Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) GSE4922(Anna V Ivshina et al., 

2006), GSE1456(Yudi Pawitan et al., 2005), GSE3494(Lance D Miller et al., 2005) and GSE7390(Christine 

Desmedt et al., 2007). All four data sets are based on Affymetrix HG-U133A microarray platform, and 

have relapse-free survival information, as shown in Table 1. 

 

2.2 Features transformation  

For a given training dataset, we transformed the original omic features into either pathway expression, using 

the Pathifier algorithm, or using a normalization approach based on the Pearson correlation distance.  

2.2.1 Features transformation using pathway dysregulation scores 

To normalize the omic features of a training set, we retrieved the pathway information from broad institute 

GSEA (http://www.broadinstitute.org/gsea) curated gene sets which include a total of 403 pathways from 

KEGG (186 pathways) and Biocarta (217 pathways, http://www.biocarta.com)(Minoru Kanehisa & 

Susumu Goto, 2000; Nishimura, 2001b). We used R package Pathifier to perform pathway-based 

http://www.broadinstitute.org/gsea
http://www.biocarta.com/
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transformation on multi-omics data(Yotam Drier, Michal Sheffer, & Eytan Domany, 2013). The details of 

the usage of Pathifier algorithm is described elsewhere, with applications on transcriptomics level and 

metabolomics level(Huang et al., 2016; Sijia Huang et al., 2014). This algorithm aims to summarize and 

transform information from gene level to pathway level, inferring individualized pathway deregulation 

scores (PDS) for each pathway. The PDS score basically measures the deviation from the normal status in 

each pathway. A principal curve is built summarizing the local average through a p-dimensional principal 

component dimension cluster of samples with smoothing procedures(Hastie & Stuetzle, 1989). Each sample 

point in the p-dimensional principal component dimension is projected onto the principal curve. The 

pathway deregulation score is calculated as the normalized distance of the sample’s projected point to the 

normal centroid point on the curve. Basically, if one sample is more distant to the other samples in one 

specific pathway, the distance of the projected point to the normal centroid is greater and leads to a higher 

PDS score for this sample in this pathway. We transformed each test datasets independently but also fit the 

PDS model on a specific test set 

2.2.2 Feature transformation using normalization 

As an alternative approach to pathway expression, we normalized our features for a given training set and 

for each omic using the following procedure: For each sample, we inversely ranked the features according 

to their raw expression and used this rank as a measurement. We then normed these rank between 0 and 1 

with division by the number of features. Thus the feature with the highest expression had the score 1, the 

second feature had the score 1 * (m-1) / m, with m the number of features, and so on. Then, in a second 

time we computed the per-sample Pearson correlation distance and obtained a squared matrix of size n, 

with n the number of training samples. Finally in a third and last time, we once again inversely ranked the 

n features of each sample, used these rank as new features, and normed these new features between 0 and 

1.  Thus, the final training matrix is a square matrix of size n. To normalize a new sample, with selected the 

common subset of features between the sample and the training set. We then applied the same procedure 

described for the training samples by first used the inverse rank normalization on both the new sample 
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features and for all the samples from the training set. We computed the Pearson distance between the new 

sample and all the training samples and used once again the inverse norm rank on the new sample. Thus, 

the new sample will be a vector of size n, with n the number of training samples. 

2.3 Automatic inference of cancer subtypes and prediction for new sample 

The DeepProg pipeline is a semi-supervised approach which consists in first inferring the cancer subtypes 

of a training dataset and in a second time building a supervised model using the labels inferred. Moreover, 

rather than constructing only one model, we used a boosting-like approach and built a model for different 

random splits of the training set. Finally, we inferred the final cancer subtypes by combining the results of 

all the instances.     

2.3.1 Unsupervised identification of cancer subtypes 

Given a multi-omics dataset, we used an autoencoder for each omic layer, to transform the original features 

(either pathway features or transformed omic features), to new abstract features. We then searched amongst 

these new features those significantly associated to survival. Finally, we stacked these survival features 

together and used them to perform a clustering analysis and identify the cancer subtypes. 

2.3.1.1 Construction of the autoencoders 

An autoencoder is a function f(v) = v’ that reconstruct the original input vector v composed of mm features 

through multiple nonlinear transformations of its features, and such that size(v) = size(v’) = m. For each 

omic, we created an autoencoder with one hidden layer of size h that corresponds to the following equation: 

f(v) = tanh(W’.s(W.v + b) + b’) 

W’ and W are two weight matrices of size h x m and m x h, respectively, and b and b’ are two bias vectors 

of size h and h’. Finally, tanh is a nonlinear, element-wise activation function defined as f(x) = (exp(x) - 

exp(-x)) / (exp(x) + exp(-x)). To train our autoencoders, we searched the optimal W*, W`*, b* and b’* that 

minimizes the logloss function. 

We used the python (2.7) Keras package (1.2.2) with theano as tensor library, to build our autoencoders. 
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We constructed autoencoders with one hidden layer having h=100 and used the adam optimization 

algorithm to find W*, W`*, b* and b’*. We trained our autoencoder on 10 epochs and introduced 50% of 

dropout (i.e. 50% of the coefficients from W and W’ will be randomly set to 0) at each training iteration. 

2.3.1.2 Selection of new features linked to survival 

For each omic, we searched amongst the 100 new features produced by the autoencoder, those significantly 

linked to the survival. For each new feature, we built an univariate Cox-PH model using the R package 

survival and identified features having a log-rank p-value (Wilcoxon test) < 0.01. Patients without relapse 

status events during the study time were considered censored. Moreover, we used Kaplan Meier curves to 

present the survival outcome of each classified/predicted group. We also implemented C-index to measure 

the performance of the prognosis prediction(Harrell et al., 1996). All survival analysis was conducted using 

the R package Survival(Therneau & Grambsch, 2000). 

We finally extracted all the significant new features and stacked them together to form a new matrix Z of 

size n x hs. Here, n corresponds to the number of samples and hs to the total number of significant features 

in all the omics. 

2.3.1.3 Cancer subtype detection 

We then used a gaussian mixture to partition Z into clusters that we defined as the subtypes. We used the 

GaussianMixture function from the scikit-learn package with 1000 iterations, 100 initiations and a diagonal 

covariance matrix. Then, we sorted the clusters according to their median survival. Thus, the cluster labelled 

as “0” has the overall lowest survival while the last cluster “N” has the overall highest survival.    

2.3.2 Supervised cancer subtype assignment 

We used the cluster labels inferred by the gaussian mixture procedure to build several supervised models 

that can assign a label for any new sample having at least a subset of features in common with the features 

from the training set.  

 2.3.2.1 Supervised model construction 
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We computed a Kruskal-Wallis test for each omic and for each feature, in order to detect the most 

discriminative features with respect to the cluster labels. Then, we selected the 10 most discriminative 

features for each omic and stacked them together to form a new training matrix M. Finally, we used the 

Support Vector Machine (SVM) algorithm to construct a predictive model using M as input and the cluster 

labels as targets. To find the best hyper-parameters of the classifier, we performed a grid-search amongst a 

set of hyper-parameter values, using a 5-fold cross-validation on M, and searched to minimize the errors of 

the test folds. The different hyper-parameters tested are summarized in Suppl. Table XXX. We used the 

SVC module of the python scikit-learn library to build the SVM model. Finally, we used the predict_proba 

function from the SVC module to infer the label probability, which implements the Wu et. al. method (Wu, 

Lin, & Weng, 2004). 

 2.3.2.2 Label assignment for a new sample 

To assign the label of new sample having only a subset of common features with the training set, we used 

the following procedure: We first transformed the features of the new sample into pathway features (see 

M&M 2.3.1), or into normalized feature (See M&M 2.3.2). In the case of different omics between the new 

sample and the training sample, we selected the omics having common features and identified the 10 most 

discriminative features using a Kruskal-Wallis test. Then, we used the procedure described above (M&M 

2.4.2.1) to rebuild a classifier and predict the label.  

2.3.3 Boosting procedure 

Rather than building only one instance of the models described in M&M 2.4.1 and 2.4.2, we constructed 

several models using each time a random fraction of the total number of training samples. We constructed 

several instances of the clustering procedure (M&M 2.4.1) and the supervised model (M&M 2.4.2) 

selecting randomly, for each instance, 80% of the whole samples. We eliminated the instances for which 

we didn’t obtain any new features linked to survival,or obtained only one cluster or having cluster labels 

not significantly linked with survival (log-rank p-value > 0.05). For a given sample, the probability to 

belong to a particular cancer subtype is the average of the probabilities given by all the instances. Using 
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this approach, we estimated the labels of all the samples from the training set or any new sample. 

2.3.4 Number of clusters selection 

To decide the number of clusters, we trained our training dataset with different number of clusters (c=2, 3, 

4, 5) with the same seed and compared their performances on training data. We used different metrics 

including log-rank test p-values, C-indexes and Silhouette scores to evaluate and determine the best number 

of clusters.  

2.4 Evaluation metrics 

We used several metrics to evaluate the performances of the survival models. 

2.4.1 Log-rank p-values of Cox-PH regression 

For each experiment and for a given dataset, we used the labels inferred by DeepProg together with survival 

data to build a univariate Cox-PH model. We then computed the log-rank p-value of this model which tests 

the null hypothesis that all the coefficients of the Cox-PH model are zero. Moreover, instead of using the 

cancer subtype directly labels (discrete values), we considered the probability to belong to the cluster with 

the lowest survival median. We used this probability as univariate feature to construct a Cox-PH model and 

compute the log-rank p-value of the model.    

2.4.2 C-indexes 

We also computed C-indexes as a measurement of our model in training set and different validation 

sets(Triantaphyllou, 2000).  C-index helps to measure a probability that given a pair of samples, the one 

with a higher predicted risk will experience the event earlier compared to the other low risk sample. 

2.4.3 Clusters consistency 

We also used adjusted rand index to measure the similarity of clustering during each boosting process(Rand, 

1971). Rand index equals 0 means there is no consistency among clustering of different boosting iterations, 

whereas rand index equals 1 means the clustering results are exactly the same within different iterations. 

We used the adjusted rand indexes to correct for chance, and the adjusted rand index can be negative when 
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the observed consistency is lower than the expected consistency.  

2.5 Survival analysis  

We used survival analysis in both the feature selection step and the model evaluation step, with the 

comparison of relapse free survival in different groups. Patients without relapse status events during the 

study time were considered censored. We used the Cox-PH model to associate the risk of relapse with the 

transformed autoencoder features and predicted subgroups. Cox-PH (proportional hazards) model is a semi-

parametric model. The nonparametric part comes from a time-dependent baseline hazard function where 

no parametric assumptions is made. For the parametric part, each feature (covariate) is multiplicatively 

related to the hazard. Assuming we selected p features from auto-encoders to be highly correlated with the 

risk of relapse in breast cancer. For sample J we have 1 2 3( , , , ..., )J J J J J

pX X X X X ' . In the Cox-PH 

model, we estimate the relationship between the risk and features as:  

                                                     0( | ) h ( )exp( )h t tX Xβ'  

Here 0 ( )h t is the baseline hazard only depending on time. Regarding the hazard ratio (HR) between two 

selected transformed pathway features m
X  and nX , we have: 

( | )
exp( ( ))

( | )

h t

h t
 m nX Xm

n

X
β'

X
 

The relative hazard between any two features is constant over time and depends only on the difference of 

the values of features. 

3 Results 

3.1 The workflow of DeepProg 

After transforming the input features (eg. gene, CNV) into pathway features, we used our DeepProg 

pipeline (Figure 1) to infer the cancer subtypes based on the survival information. DeepProg is basically 

constituted in three steps: (1) Using a set of training samples, it first combines autoencoders with Cox-PH 
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models to transform the input features into new features and selects those linked to survival. Then, using 

these survival features, DeepProg infers the survival subtypes using a clustering procedure. (2) In a second 

step, DeepProg processes the labels inferred in step 1 and the input features to build a supervised model to 

assign a label and its probability to any new sample. If a new label doesn’t share the same omics as the 

training samples or if it only have a subset of common features, then DeepProg rebuilds a supervised model 

and store it. (3) DeepProg adopts a bagging approach by constructing a series of sub-models from random 

subsets of the original training samples. The bagging procedure helps increase the overall robustness of the 

model by tackling the randomness during the construction of individual autoencoders or supervised models. 

Moreover, when increasing the number of sub-models, the bagging procedure helps to produce better results 

in term of the p-value and C-index. 

3.1 Two survival subgroups are detected in METABRIC multi-omics breast cancer 

data 

To determine the best number of clusters from the pathway based DeepProg model, we compared log-rank 

p-value, C-index and the rand index from the training set: METABRIC multi-omics breast cancer data set 

(Curtis et al., 2012). The results are shown in Table 2. It is very clear that when cluster is set to 2, the 

prediction model performs the best (log rank p-value = 3.65e-20, C-index = 0.710) in the training data set. 

When the number of clusters is set to be 3 or higher, the output p-values in separating the training data set 

is less significant and the consistency is lower. Based on these observations, we decided to use the 2-cluster 

prediction model to examine all the validation datasets.  

3.3 The survival subgroups are consistently validated in 4 independent cohorts 

We evaluated the performances of our training model on 4 transcriptomic based microarray validation 

datasets: GSE4922(Anna V Ivshina et al., 2006), GSE1456(Yudi Pawitan et al., 2005), GSE3494(Lance D 

Miller et al., 2005) and GSE7390(Christine Desmedt et al., 2007). According to Figure 2, METABRIC 

pathway based model predicts two classes in training dataset with a separation log-rank p-value of 3.65e-
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20 and C-index of 0.710 (Figure 2B). The predictive performances are expected to drop in the testing data 

sets, since they have different patient populations and clinical characteristics from the training set (Table 

1). Nevertheless, the model yields very decent predictive results with the p-value of 1.91e-5 in Anna dataset 

(Figure 3B), 1.22e-3 in Miller dataset (Figure 3D), 1.9e-6 in Pawitan dataset (Figure 3F) and 1.03e-2 in 

Desmedt dataset (Figure 3H). The C-index results in the validation sets gives C-index of 0.683 (Anna), 

0.725 (Miller), 0.876 (Pawitan) and 0.570 (Desmedt), consistent with the results in Kaplan-Meier curves 

(Figure 3).   

3.4 The pathway-based integration is better than original-data based integration 

To evaluate the usefulness of pathway transformation normalization, we compared the results obtained with 

other types of data normalization on the original data. We evaluated 14 normalization procedures on the 

BRCA training set and reported the p-values of the inferred cluster labels and cluster probabilities. Overall, 

the rank-correlation-rank normalization (see M&M 2.3.2) presents the best performances. However, when 

applied on BRCA datasets, the pathway normalization proved to be much more efficient to highlight 

significant survival subtypes for the training dataset and all the validation datasets (Figure 2 and Figure 3). 

The results of Kaplan-Meier survival curves and C-indexes based on classification all consistently show 

that pathway-based genomic models are superior to the gene-based models (Figure 2 and Figure 3). For 

example, in the training set pathway based model predicts two clusters with log-rank p-value 3.65e-20 

(Figure 2B), whereas the original data based normalization gives a log-rank p-value 3.33e-16 with a 

crossover in the Kaplan Meier curves (Figure 2A).The C-index for pathway based normalization is 0.710 

compared to that of 0.674 in the original data based normalization approach.  

Among the transcriptomics based testing sets, the pathway-based normalization is also validated to improve 

the prediction of separate clusters compared to the original level normalization. In Anna data set, the log-

rank p-value is 1.91e-5 for the pathway-based model, compared to that of 9.72e-4 for the gene-based model 

(Figure 3A and Figure 3B). In the Miller data set, the p-value of the pathway-based model is also more 

significant than that of gene-based model (1.22e-3 vs.2.67e-2, Figure 3C and 3D). In the Pawitan data set, 
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again the prognosis prediction of the pathway-based model is more significant than that of gene-based 

model (1.9e-6 vs. 7.74e-6, Figure 3E and 3F). In the Desmedt data set, with the fact that all the samples are 

lymph node negative, which is very different from other datasets, the p-value of the pathway-based model 

is still significant (p=1.03e-2), compared to the non-significant result of the gene-based model (0.192, 

Figure 3G and 3H). The C-index comparisons between pathway vs. original-data based models on these 

data sets are: 0.683 vs. 0.632 in Anna data, 0.725 vs. 0.720 in Miller data, 0.876 vs. 0.725 in Pawitan data 

and 0.570 vs. 0.558 in Desmedt data.  

 

3.5 The DeepProg methodology outperforms alternative data integration approaches 

Similarity network fusion (SNF) is a state-of-art genomics data integration method, which constructed 

patient-patient similarity networks from each omics and then efficiently fuses the networks into one that 

represents the consensus underlying structure(Wang et al., 2014). This method has been proved to 

outperform a variety of integration methods including iCluster. We downloaded the 5 benchmark TCGA 

datasets from SNF paper including glioblastoma (211 samples), breast cancer (105 samples), colon cancer 

(92 samples), kidney cancer (122 samples) and lung cancer (106 samples). The details of the datasets are 

described in the SNF work.  

We performed comparison of our DeepProg framework and SNF on the 5 benchmark datasets. We trained 

DeepProg in each dataset with 5-fold cross validation and decide the best number of clusters based on 

certain criteria including C-index, log-rank p-value and adjusted rand-index (Supplementary Figure 1-5, 

Supplementary Table 1-5). Then we compared the DeepProg predicted clusters to those from SNF in Figure 

4 and Supplementary Figure 6. DeepProg achieved significance in survival analysis compared to SNF. In 

glioblastoma dataset, SNF predicts 3 clusters with p-value 3.87e-3. DeepProg predicts 2 clusters with p-

value 1.3e-5, and it is clear from the Kaplan Meier curve that two cluster prediction is superior (Figure 4A 

and Figure 4B). In breast cancer dataset, DeepProg gives a prediction of 2 classes with p-value 1.37e-4, 

whereas SNF predicts 5 classes with p-value 1.35e-3, and their subclasses is too small with cross-overs in 
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Kaplan Meier curves (Figure 4C and Figure 4D). In colon cancer dataset, DeepProg  and SNF both gives a 

prediction model of 3 clusters but DeepProg outperforms SNF with a more significant p-value 1.75e-4 

compared to 3.6e-2 (Supplementary Figure 5A and 5B). In kidney cancer dataset, DeepProg outputs a 4 

cluster model with p-value 1.86e-5, whereas SNF outputs a 3 cluster model with p-value 3.11e-3 

(Supplementary Figure 5C and 5D). Finally, in lung cancer dataset, DeepProg predicts a 2 cluster model 

with p-value 2.09e-4. However, SNF predicts a 4 cluster model with p-value 1.78e-2 and the survival curves 

cross-over among 3 clusters at the beginning of the Kaplan-Meier curve, which indicates bad survival 

grouping (Supplementary Figure 5E and 5F). 

4 Discussion 

4.1 Pathway transformation is an efficient normalization to predict BRCA survival 

subtype 

Our results show that pathway transformation infers BRCA survival subtypes better, compared to any other 

standard normalizations at the original data level (without pathway transformation). The results confirm the 

assumption that higher-order representative features, such as Gene Ontology sets, KEGG pathways and 

other network modules, allows better prediction of patient survival, compared to the original level 

information (Gad Abraham, Adam Kowalczyk, Sherene Loi, Izhak Haviv, & Justin Zobel, 2010; Akker et 

al., 2014; Jelle J Goeman & Bühlmann, 2007; E. Lee, H.-Y. Chuang, J.-W. Kim, T. Ideker, & D. Lee, 2008; 

Shuangge Ma, Michael R Kosorok, Jian Huang, & Ying Dai, 2011; Fabien Reyal et al., 2008; Andrew E 

Teschendorff et al., 2010). However, unlike some other methods in this category, where individual pathway 

information is lost due to summarization or transformation, the pathway features proposed in this study 

explicitly measure the degrees of pathway dysregulation for cancer recurrence. As demonstrated by our 

previous work in transcriptomics data, pathway-based feature transformation uniformly performs better 

than gene based models in breast cancer prognosis(Sijia Huang et al., 2014).  

4.2 Multi-omics integration framework provides flexible prediction  
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To demonstrate the robustness in predicting differential risks of relapse from the pathway-based integration 

model, we chose to train and test on independent study samples representing population heterogeneity. 

Despite population difference and much diversified testing data platforms, the method still achieved good 

performance on all four data sets of microarray platform where prognosis is particularly difficult to predict 

from RNA-Seq training data.  

Another merit of our method is that it enables to predict future single-omics samples. Our prognosis model 

provide independent submodels for each omics data, thus greatly generalize our model to predict future 

samples with fewer features compared to the multi-omics data. We include four validation sets from single-

level transcriptomics data, and the prognosis prediction is very significant (Figure 3). Thus it greatly reduces 

the cost of multi-omics model measurement for clinical practice. 

 

4.3 TCGA breast cancer dataset issue  

At the initiate stage of this project, we considered using The Cancer Genome Atlas dataset as the training 

dataset as it includes around 1000 patients with more than two omics levels of data. We downloaded The 

Cancer Genome Atlas data  with gene expression (UNC IlluminaHiSeq_RNASeqV2; Level 3), methylation 

and copy number variation data (SNP 6.0) using R package TCGA-assembler (v2.0.1) on 01/31/2017(Zhu, 

Qiu, & Ji, 2014). 793 samples from the BRCA dataset have survival information. We divided the 793 

samples into training set with 680 samples and testing set with 213 samples. The training set (680 samples) 

methylation data is generated from Infinium HumanMethylation27 BeadChip Kit and the testing set (213 

samples) is generated from Infinium HumanMethylation450 BeadChip Kit.  

However after we trained the TCGA model on the 680 sample training set, the original level integration 

model was found not predictive of any other dataset. We did many parallel comparison of our DeepProg 

pipeline to other integration tools on original level data (5 benchmark datasets from TCGA), all of those 

experiments showed that DeepProg is a decent tool to predict prognosis at the original data level. Those 

experiments led us to suspect the quality of TCGA Breast Cancer samples may not be as good as some 
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other cohorts we used. Supporting this, other researchers also proposed that directly usage of TCGA 

molecular data is not very predictive of cancer prognosis (Yuan Yuan et al., 2014).  

 

4.4 Limitations of our work and conclusion 

A major limitation of our approach is that we only used the information from genes that compose the 403 

pathways that we considered, thus some gene-level information is unavoidably lost. In our case, over 4500 

genes were enlisted in the pathways. On the other hand, we only considered the methylation sites and CNV 

regions that are mappable to these 4500 genes, which also leads to a reduced level of features from other 

omics. Therefore our model captures about 1/3 of the gene-level information overall. One can certainly use 

other curated gene sets, such as the MsigDB C2 gene sets or self-defined sets, to increase the coverage of 

the genes by the pathways. Future work will be done in expanding the current defined pathway features to 

detection of consensus network modules from different omics levels.   

Another limitation of our work is that our pathway based pipeline is currently limited to the mapping 

relationship among the molecular features. The features are firstly mapped to genes, and then genes are 

mapped to pathways. Currently microRNA features are not included in the pathway pipeline, as each 

microRNA feature has potentially multiple targeted genes and therefore it is not straightforward to 

determine the pathway assignment for the these features. We plan to integrate some target-prediction 

methods with our pathway based pipeline to evaluate the contribution of microRNA information. 

In conclusion, we propose a novel pathway-based deep-learning integration multi-omics framework to 

predict breast cancer prognosis. This pathway-based genomic model performs better than the original level 

based model. Moreover, we found that our deep-learning based integration method outperforms the current 

state-of-art method SNF in five benchmark datasets from TCGA. This framework is very flexible and 

allows to predict individual-omics measurement of patients in the future.  
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Appendix K: Chapter 6 Figures 

Legends 

Figure 1. Workflow of pathway based DeepProg integration for breast cancer data 

A) Using a subset of the training set, the input omic features are transformed using pathway and 

autoencoders. New features linked to survival are selected. Then a clustering procedure is conducted to 

identify the subtypes. B) For each omic, a supervised classification model is constructed on the top of the 

inferred label by A, which allows classifying any new sample having common features. C)  The final model 

is a consensus of several models from steps A and B, and constructed each time using a different subset of 

the training sample. 
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Figure 2.  Comparing the prognosis performance between raw level and pathway based model in 

training dataset 

The raw model and pathway model are independently built on METABRIC training dataset. The trained 

DeepProg model assigns training and validation multi-omics patients into higher risk and lower risk groups. 

The two groups are compared by Kaplan-Meier curves. P-values of the survival difference between the two 

groups are calculated using Wilcoxon log-rank tests and (+) denotes the censored observations in the study. 
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Figure 3.  Comparing the prognosis performance between raw level and pathway based model in 

single-omics testing sets 

The trained DeepProg model assigns the validation single-omics patients into higher risk and lower risk 

groups. The two groups are compared by Kaplan-Meier curves. P-values of the survival difference between 

the two groups are calculated using Wilcoxon log-rank tests and (+) denotes the censored observations in 

the study. 
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Figure 4.  Comparing the prognosis performance between deepprog and SNF in two benchmark 

datasets from SNF: glioblastoma and breast cancer 

For the TCGA glioblastoma dataset and breast cancer dataset, we built independent model by DeepProg 

and SNF to cluster the samples into two groups. The trained DeepProg/SNF model assigns the validation 

single-omics patients into higher risk and lower risk groups. The two groups are compared by Kaplan-Meier 
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curves. P-values of the survival difference between the two groups are calculated using Wilcoxon log-rank 

tests and (+) denotes the censored observations in the study. 

 

Appendix L: Chapter 6 Tables 
 

Table 1. Datasets summary: breast cancer 

  



 

134 

 

Dataset METABRIC 

validation 

Miller  

validation 

Pawitan  

validation 

Anna  

validation 

Desmedt  

validation 

Platforms                               

  EXPR, 

CNV 

EXPR 

(microarray) 

EXPR 

(microarray) 

EXPR 

(microarray) 

EXPR 

(microarray) 

# of Patients             

  1981 236 159 249 198 

Relapse (%) 

Relaps

e 

623 (31%) 55 (23%) 40 (25%) 89 (35%) 91 (46%) 

Non-

Relaps

e 

1358 (69%) 181 (77%) 119 (75%) 160 (64%) 107 (54%) 

Mean Relapse Free Survival (y) 

  8.085 8.167 5.959 7.142 9.312 

  

 

 

Table 2. Selection of best cluster in METABRIC training dataset 

 

Metrics C=2 C=3 C=4 C=5 

Metabric training 3.65e-20 2.59e-14 2.46e-13 1.20e-9 

C-index training 0.710 0.668 0.657 0.651 

Adjusted Rand  0.031 0.021 0.021 0.097 

 

Appendix M: Chapter 6 Supplementary Figures 

 
Supplementary Figure 1. Selection of clusters in glioblastoma dataset 
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Supplementary Figure 2. Selection of clusters in breast cancer dataset 
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Supplementary Figure 3. Selection of clusters in kidney cancer dataset 
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Supplementary Figure 4. Selection of clusters in colon cancer dataset 
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Supplementary Figure 5. Selection of clusters in lung cancer dataset 
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Supplementary Figure 6. Comparing the prognosis performance between deepprog and SNF in three 

benchmark datasets from SNF: kidney cancer, colon cancer and lung cancer 
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Appendix N: Chapter 6 Supplementary Tables 
Supplementary Table 1. Glioblastoma cluster performance comparison 

glioblastoma C=2 C=3 C=4 C=5 

p-value 1.30e-5 7.26e-5 3.31e-4 5.24e-5 

C-index 0.625 0.603 0.597 0.604 

Rand score 0.023 0.015 0.015 0.014 

 

 

Supplementary Table 2. Breast cancer cluster performance comparison 

 Breast cancer C=2 C=3 C=4 C=5 

p-value 1.37e-4 1.91e-4 4.39e-6 6.72e-4 

C-index 0.848 0.778 0.767 0.715 

Rand score 0.180 0.122 0.182 0.098 

 

 

Supplementary Table 3. Kidney cancer cluster performance comparison 

Kidney cancer C=2 C=3 C=4 C=5 

p-value 5.65e-3 1.41e-3 1.86e-5 5.27e-3 

C-index 0.738 0.699 0.674 0.655 

Rand score 0.072 0.041 0.028 0.026 

 

 

Supplementary Table 4. Colon cancer cluster performance comparison 

 Colon cancer C=2 C=3 C=4 C=5 

p-value 2.34e-3 1.75e-4 1.61e-4 1.53e-4 

C-index 0.710 0.920 0.912 0.910 

Rand score 0.425 0.437 0.337 0.311 

 

 

Supplementary Table 5. Lung cancer cluster performance comparison 

 Lung cancer C=2 C=3 C=4 C=5 

p-value 2.09e-4 9.28e-4 7.62e-6 1.85e-6 

C-index 0.785 0.715 0.685 0.689 

Rand score 0.182 0.136 0.113 0.123 
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Chapter 7. Conclusions 
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Objectives 

This project had three primary aims 1) To discover pathway-based metabolomic biomarkers for breast 

cancer diagnosis 2) To identify pathway-based transcriptomic biomarkers for breast cancer prognosis and 

3) To extend to multi-omics data based on pathways and predict for breast cancer prognosis. 

 

Completion of specific aims 

I got interested in breast cancer research from a class project in epidemiology in University of Florida, 

which leads me to the current state. At the beginning on my doctoral project, I first researched the current 

state in breast cancer biomarkers discovery through next generation sequencing. For Aim I, I 

comprehensively compared the current identified metabolite biomarkers in breast cancer and found the 

result is so heterogeneous among different study groups. In the pathway-based metabolomics prediction 

paper (Chapter 2), I proposed a pathway-based diagnosis model which emphasizes on individualized 

pathway-based risk measurement using the pathway dysregulation score (PDS). I evaluated the 

performance of the pathway-based model compared to raw metabolite based model and found the pathway 

based model is more accurate and robust in breast cancer diagnosis prediction.   

In Aim 2, to apply the pathway-based prediction approach on NGS data, we started to work on 

transcriptomics data to predict for the breast cancer prognosis (Chapter 3). Using several public datasets, I 

evaluated the performance of pathway-based prognosis model compared to gene-based model, and found 

that combining clinical information to the prediction model helps to differentiate the risk groups of breast 

cancer recurrence. 

Following Aim 1 and Aim 2, as I found the integration of biomarkers and clinical traits helps to gain a 

better prediction, I did an investigation in bladder cancer looking into the combined benefit of gene 

biomarkers and demographic characteristics (Chapter 4). This experiment validates the value of looking 

into cancer subjects with multiple perspectives, which establish the direction of aim 3, multi-omics data. 
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For Aim 3 of this project, I firstly did a comprehensive collection of the current progress done in the field 

of multi-omics integration and computational tools developed so far (Chapter 5). I categorized the methods 

into unsupervised, supervised and semi-supervised subgroups. I compared the advantages and limitations 

for each method and found that there are few integration methods linking to survival analysis and making 

predictions of future dataset. The discovery leads me to the latest work for my project, based on multi-

omics pathway-based data integration for breast cancer prognosis prediction (Chapter 6). I employ auto-

encoders, a framework from deep-learning, to extract the information out from multi-layered pathway-

based data from breast cancer and identify the survival-relevant features to classify the patients into 

subgroups. Those extracted and survival-relevant features will be used to predict for future samples. 

 

Future work and directions 

Overall, the proposed pathway-based approach is very promising to predict for breast cancer occurrence 

and recurrence both accurately and consistently. Regardless, more  

Specifically, for Aim 1, we have received numerous feedbacks asking for a complete computational tool of 

our experiment. Further work will be building up a package performing the integrative analysis of 

metabolomics data, mapping the metabolites to pathways and predicting subgroups or survival.  

To follow-up with Aim 2, the pathway-based model is trained and tested on gene expression data from the 

U133A platform. We suspect that direct application of the model to other platforms, such as RNA-Seq, is 

not desirable, and some additional re-processing work has to be done additionally. There is a need to 

compare the distribution of RNASeq data and microarray based data, and performing appropriate 

normalization methods to extract the critical information embedded within the data. 

Aim 3 currently targets multi-omics on 3 levels: gene expression, methylation and copy number variation. 

We haven’t looked into microRNAs because the mapping relationship between microRNAs and genes are 

very complex, leading to confusion of assigning microRNAs to pathways. Future work shall be using 
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model-based method to assign scores to the each microRNAs to different pathways and collectively 

compute the pathway dysregulation scores for miRNA-based data. 

Another key limitation of our research is that the pathways in our research are already established and 

experimentally validated. Given the fact of heterogeneity of cancer development, there is a pressing need 

to identify novel modules or networks of biological entities (genes, metabolites etc.) for more personalized 

cancer occurrence and progression mechanism discovery. Through the incorporation of different biological 

entities dysregulated together, there is a new direction of subgrouping breast cancers and also for 

personalized therapeutics. Moreover, investigating the relationship of the effect of medications with 

pathway biomarkers in breast cancer will be another further step to go. 
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