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Abstract

Medical big data is not only enormous in its size, but also heterogeneous and complex

in its data structure, which makes conventional systems or algorithms difficult to process.

These heterogeneous medical data include imaging data (e.g., Positron Emission Tomography

(PET), Computerized Tomography (CT), Magnetic Resonance Imaging (MRI)), and non-

imaging data (e.g., laboratory biomarkers, electronic medical records, and hand-written

doctor notes). Multimodal data fusion is an emerging vital field to address this urgent

challenge, aiming to process and analyze the complex, diverse and heterogeneous multimodal

data. The fusion algorithms bring great potential in medical data analysis, by 1) taking

advantage of complementary information from different sources (such as functional-structural

complementarity of PET/CT images) and 2) exploiting consensus information that reflects

the intrinsic essence (such as the genetic essence underlying medical imaging and clinical

symptoms). Thus, multimodal data fusion benefits a wide range of quantitative medical

applications, including personalized patient care, more optimal medical operation plan, and

preventive public health.

Though there has been extensive research on computational approaches for multimodal fusion,

there are three major challenges of multimodal data fusion in quantitative medical applications,

which are summarized as feature-level fusion, information-level fusion and knowledge-level

fusion:

• Feature-level fusion. The first challenge is to mine multimodal biomarkers from

high-dimensional small-sample multimodal medical datasets, which hinders the

effective discovery of informative multimodal biomarkers. Specifically, efficient di-

mension reduction algorithms are required to alleviate "curse of dimensionality" prob-

lem and address the criteria for discovering interpretable, relevant, non-redundant

and generalizable multimodal biomarkers.
iv



• Information-level fusion. The second challenge is to exploit and interpret inter-

modal and intra-modal information for precise clinical decisions. Although radiomics

and multi-branch deep learning have been used for implicit information fusion guided

with supervision of the labels, there is a lack of methods to explicitly explore inter-

modal relationships in medical applications. Unsupervised multimodal learning is

able to mine inter-modal relationship as well as reduce the usage of labor-intensive

data and explore potential undiscovered biomarkers; however, mining discriminative

information without label supervision is an upcoming challenge. Furthermore, the

interpretation of complex non-linear cross-modal associations, especially in deep

multimodal learning, is another critical challenge in information-level fusion, which

hinders the exploration of multimodal interaction in disease mechanism.

• Knowledge-level fusion. The third challenge is quantitative knowledge distillation

from multi-focus regions on medical imaging. Although characterizing imaging

features from single lesions using either feature engineering or deep learning methods

have been investigated in recent years, both methods neglect the importance of inter-

region spatial relationships. Thus, a topological profiling tool for multi-focus regions

is in high demand, which is yet missing in current feature engineering and deep

learning methods. Furthermore, incorporating domain knowledge with distilled

knowledge from multi-focus regions is another challenge in knowledge-level fusion.

To address the three challenges in multimodal data fusion, this thesis provides a multi-

level fusion framework for multimodal biomarker mining, multimodal deep learning, and

knowledge distillation from multi-focus regions. Specifically, our major contributions in this

thesis include:

• To address the challenges in feature-level fusion, we propose an Integrative Mul-

timodal Biomarker Mining framework to select interpretable, relevant, non-redundant

and generalizable multimodal biomarkers from high-dimensional small-sample ima-

ging and non-imaging data for diagnostic and prognostic applications. The feature

selection criteria including representativeness, robustness, discriminability, and

non-redundancy are exploited by consensus clustering, Wilcoxon filter, sequential
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forward selection, and correlation analysis, respectively. SHapley Additive exPlan-

ations (SHAP) method and nomogram are employed to further enhance feature

interpretability in machine learning models.

• To address the challenges in information-level fusion, we propose an Interpretable

Deep Correlational Fusion framework, based on canonical correlation analysis

(CCA) for 1) cohesive multimodal fusion of medical imaging and non-imaging data,

and 2) interpretation of complex non-linear cross-modal associations. Specifically,

two novel loss functions are proposed to optimize the discovery of informative

multimodal representations in both supervised and unsupervised deep learning, by

jointly learning inter-modal consensus and intra-modal discriminative information.

An interpretation module is proposed to decipher the complex non-linear cross-

modal association by leveraging interpretation methods in both deep learning and

multimodal consensus learning.

• To address the challenges in knowledge-level fusion, we proposed a Dynamic

Topological Analysis framework, based on persistent homology, for knowledge

distillation from inter-connected multi-focus regions in medical imaging and incor-

poration of domain knowledge. Different from conventional feature engineering

and deep learning, our DTA framework is able to explicitly quantify inter-region

topological relationships, including global-level geometric structure and community-

level clusters. K-simplex Community Graph is proposed to construct the dynamic

community graph for representing community-level multi-scale graph structure. The

constructed dynamic graph is subsequently tracked with a novel Decomposed Per-

sistence algorithm. Domain knowledge is incorporated into the Adaptive Community

Profile, summarizing the tracked multi-scale community topology with additional

customizable clinically important factors.
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CHAPTER 1

Introduction

1.1 Motivation

Due to the digital revolution and the advancement of medical technology, increasing amount

of medical data are being generated at an unprecedented speed. The digital healthcare data

have reached 150 exabytes (1018) in 2011 and will exceed yottabytes (1024) in near future [1].

A study from Ponemon Institute estimated that 30 percent of all electronic data generated in

2012 was from the healthcare industry alone [2]. These figures show the promising potential

of medical big data. Medical big data is not only enormous in its size, but also heterogeneous

and complex in its data form, which is difficult for conventional systems or algorithms to

process. These heterogeneous data include various of structured, and unstructured data (e.g.,

biomedical imaging, laboratory biomarkers, electronic medical records, and hand-written

doctor notes [3]). Thus, information fusion in multimodal data are in urgent need to process

such complex, diverse and heterogeneous multimodal data, and has become a vital research

topic.

Multimodal data fusion is an emerging field from data mining, which is aimed to integrate data

from different distributions, sources, and types for more informed decisions. In a narrow sense,

multimodal fusion means the integration of signals and imaging from different devices (multi-

modality) or different imaging modes (multi-parametric). For example, medical imaging

data and non-imaging biomarker status are expected to be used in multimodality fusion [4],

while T1 and T2 Magnetic Resonance Imaging (MRI) data can be used for multi-parametric
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fusion [5]. In a broader sense, multimodal fusion also refers to the integration of different

perspectives of information from the same data (multi-view) or different Region of Interests

(ROIs) from the same data (multi-focus) [6]. For example, shape features and texture features

of tumor on Positron Emission Tomography (PET) images can be regarded as multi-view

inputs providing complementary perspectives [7], while multifocal lesions on the same

imaging could provide comprehensive multi-focus information for more precise diagnosis

and treatment planning [8].

Multimodal data fusion brings enormous benefits to medical data analysis. On the one

hand, multimodal fusion takes advantage of complementary information from different

sources, such as structural-functional complementarity (e.g., fusion of PET and Computerized

Tomography (CT) imaging [7], [9]), physiological-physical complementarity (e.g., fusion

of T1/T2 MRI [5]), resolution complementarity (e.g., fusion of PET/CT imaging [9]), and

spatial-temporal complementarity (e.g., fusion of electroencephalogram (EEG) and functional

MRI (fMRI) [10]). On the other hand, multimodal fusion exploits essential and structural

consensus information from different sources. For example, underlying genetic associations,

pathological alternations could be captured from clinical symptoms, medical imaging, and

laboratory biomarkers.

For quantiative medical applications, multimodal data fusion contributes to the precise medi-

cine, including personalized care, better planned clinical operations, and improve preventional

public health. Firstly, multimodal fusion provides comprehensive information to create pre-

dictive models for personalized care (e.g., genomic deoxyribonucleic acid (DNA) sequence

for cancer care [11]), which improves the best-practice treatments for patient, enables early

detection and diagnosis before symptom signs of patients. Secondly, multimodal data fusion

could be used for improving clinical operations by mining multimodal data for better ways of

diagnosing and treating patients [12]. Thirdly, multimodal health data can be used for timely

diagnosis of the challenging diseases and early prevention of the outbreaks of infectious

diseases, thus creating benefits for all the human being [1].

2
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To summarize, the motivation for multimodal data fusion includes 1) urgent demand in the big

data era for fusing complex heterogenous data, 2) enormous benefits compared with mono-

modal analysis, 3) contributions to medical applications including personalized diagnosis,

prognosis, treatment recommendation and disease prevention.

1.2 Challenges

Although there has been extensive research on computational approaches for multimodal data

fusion, there are three major challenges for data fusion in quantitative medical applications.

The first challenge is high-dimension small-sample multimodal datasets, which may contain a

large number of redundant, irrelavant and noisy information, hindering the effective discovery

of informative multimodal features. The second challenge is to effectively exploit inter-modal

relationships and intra-modal information for precise clinical decisions and interpretation

of complex inter-modal relationships. The third challenge is to integrate information from

multi-focus regions from the same source of data.

1.2.1 Biomarker Discovery from High-dimensional Small-sample

Multimodal Data

The integration of imaging data, which is high dimensional itself, with other modalities

(imaging or non-imaging data) further exacerbates the dimensionality problem, thus hindering

the discovery of effective multimodal biomarkers. The major issue with the high dimensional

data is the "curse of dimensionality" [13], which refers to the phenomenon that the feature

space becomes sparse with the increase of the dimension. The highly sparse feature space

requires to increase the number of samples exponentially for building a precise model [14];

however, large sample sizes are often not available in medical studies due to the confidentiality

issue, law or politic issue, or inconsistency of acquisition protocols [15]. Thus, dimension
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reduction is required to address the high-dimension small-sample multimodality issue in

medical studies.

More specifically, there are four major criteria to reduce dimension and mine multimodal

biomarkers from high-dimensional small-sample data in medical studies.

• The first criterion is interpretability, which means that the discovered biomarkers are

required to be biological meaningful and interpretable. As a counter example, pro-

jection methods such as Principle Component Analysis (PCA) [16] and embedding

methods such as graph embedding [17] are not ideal for the biomarker discovery due

to the lack of interpretability [18].

• The second criterion is relevancy. In other words, the discovered biomarkers are sup-

posed to be relevant with the study outcome, such as diagnostic labels or prognostic

results. This criterion requires the algorithm to remove the noisy and irrelevant

features, while retaining the discriminative information.

• The third criterion is non-redundancy. If the final feature set contains highly correl-

ated features, it not only unnecessarily increases the dimensionality, but also affects

the predictive capability and interpretability.

• The fourth criterion is generalizability. As imaging acquisition protocol tends to be

different in different institute [19], generalizablibility is essential for mined imaging-

centric biomarkers to be reproducible across imaging devices and institutions.

To summarize, the first challenge (in feature-level fusion) is to mine interpretable, relevant,

non-redundant and generalizable multimodal biomarkers from high-dimensional small-sample

multimodal data.

4



1.2. CHALLENGES

1.2.2 Exploitation and Interpretation on Inter-modal and Intra-modal

Information in Multimodal Fusion

Due to the complexity of relationship among different modalities, it is important to exploit

inter-modal and intra-modal information during the fusion process, which is difficult to be

achieved by conventional dimension reduction in feature-level fusion. The challenges of

information-level fusion arise from three perspective:

• In a supervised setting, two major fusion frameworks, radiomics and multi-branch

deep learning integrate information in an implicit way, dependent on label informa-

tion. For example, radiomics mines informative imaging features from regions of

interest in medical imaging, before concatenated with non-imaging features for pre-

dictive modeling using label information [8]. Similarly, multi-branch deep learning

feeds multimodal inputs into the neural network framework with different channels,

supervising the feature learning process using label information. However, the impli-

cit fusion has difficult revealing and modeling complex inter-modal consensus and

intra-modal discriminative information underlying multimodal data.

• Unsupervised multimodal learning is valuable for medical studies because the ac-

quisition of label information is labor-intensive, cost-ineffective, and sometimes

not viable [20]. Unsupervised deep multi-view clustering has been proposed to

mine essential consensus inter-modal information; however, a major limitation of

consensus multi-view clustering algorithms is that multi-view representation learning

and clustering are often decoupled, thus the representations can hardly benefit from

feedback from the clustering process.

• Interpreting the complex nonlinear cross-modal association, especially in deep-

network-based fusion models, remains an unsolved challenge, which is essential

for uncovering the disease mechanism. Early research has investigated methods

to interpret cross-modal associations in linear multimodal fusion models such as

linear CCA [21]. Such interpretation could be achieved through coefficients in
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linear embedding functions [22], canonical loading and cross-loading [23], graph-

ical biplots [24], and probabilistic perspectives [25]. However, linear CCA has

only limited capacity to model complex nonlinear interactions. In contrast, deep

fusion models (such as deep CCA) are equipped with the strong approximation

capability, but are generally more difficult to interpret. The difficulty arises from a

great number of nonlinear transformation and operations in deep networks, such as

nonlinear activation and kernel convolution. Although recent studies investigated

the contribution of input features in deep networks towards classification decision

using perturbation-based [26], [27] or propagation-based models [28]–[30], it is still

an unsolved challenge of interpreting the nonlinear cross-modal association in deep

multimodal fusion.

To summarize, the second challenge (in information-level fusion) is to comprehensively

exploit inter-modal and intra-modal information in the supervised or unsupervised setting,

and to interpret the non-linear complex cross-modal association of multimodal data.

1.2.3 Knowledge Distillation from Multi-ROI Incorporated with

Domain Knowledge

Quantitative knowledge distillation from multi-ROI on a medical imaging is still an unsolved

challenge, although characterizing imaging features from single lesions using feature engin-

eering or deep learning has been widely investigated in more recent years. Current feature

engineering methods integrate multi-ROI features through averaging; however, the contri-

bution of individual lesions is weakened. Deep learning provides a data-driven approach to

learn potential MRI predictors for multi-ROI lesions in MS [31], [32]; however, the extracted

deep features are generally difficult to interpret, hardly biologically meaningful [18] and

usually requires a large amount of data to train the network. More importantly, both feature

engineering and deep learning methods neglect the importance of the inter-lesion spatial

relationship of multi-ROI lesions. Thus, a topological profiling tool for multi-ROI lesions is

6



1.3. CONTRIBUTIONS

in high demand for systematic analysis of lesion spatial patterns and yet missing in current

feature engineering and deep learning methods. Furthermore, there is a lack of method

incorporating domain knowledge into the knowledge distillation process from multi-ROI.

To summarize, the third challenge (in knowledge-level fusion) is to quantitatively distill know-

ledge from inter-ROI relationships with domain knowledge incorporated in the knowledge

distillation process.

1.3 Contributions

To address the current challenges in multimodal data fusion, we propose a Multi-level

Multimodal Data Fusion framework for feature-level fusion, information-level fusion and

knowledge-level fusion.

1.3.1 Feature-level Fusion: Integrative Multimodal Biomarker

Discovery Framework for High-dimensional Small-sample

Multimodal Data in Diagnostic and Prognostic Prediction

The thesis includes the development of Integrative Multimodal Biomarker Discovery frame-

work, equipped with machine learning techniques, for diagnostic and prognostic predictions.

The framework addresses the challenge of mining interpretable, relevant, non-redundant and

generalizble multimodal biomarkers from high-dimensional small-sample multimodal data.

The framework has the following contributions:

• The framework mines diagnostic multimodal biomarkers with high discriminability,

robustness across imaging vendors, from multi-parametric MRI imaging and clinical

factors for differentiating two neurological diseases.
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• The framework mines prognostic multimodal biomarkers, which are highly relevant,

representative and non-redundant from the high-dimensional multimodal feature

pool. The mined multimodal biomarkers were composed of CT radiomic features,

clinical-pathological and hematological factors for survival prediction of lung cancer.

• The interpretability of multimodal biomarkers was further enhanced with SHapley

Additive exPlanations (SHAP) method and nomogram, which has value to permit

non-invasive, objective, and dynamic evaluation of lung cancer and can provide a

practical reference for individualized patient management.

1.3.2 Information-level Fusion: Interpretable Deep Correlational

Fusion Framework for Inter-modal and Intra-modal Information

Analysis

The thesis includes the development an Interpretable Deep Correlational Fusion framework

based on Canonical Correlation Analysis (CCA) for 1) cohesive fusion of imaging and non-

imaging medical data, and 2) assisting with understanding of complex non-linear cross-modal

association. The framework has the following contributions:

• A novel Deep Multimodal Fusion (DMFusion) loss is proposed to optimize discov-

ery of informative multimodal representations in a supervised setting, by jointly

exploiting inter-modal consensus and discriminative intra-modal information.

• A novel Self-supervised Deep Correlation (SDC) loss is proposed to optimize the

unsupervised multi-view clustering, leveraging both multimodal consensus and

clustering-oriented discriminative information. This loss couples multi-view learning

and self-supervised deep clustering in an end-to-end deep learning network.

• A cross-modal interpretation module is proposed to quantify the importance of input

features towards the correlated association.
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1.3.3 Knowledge-level Fusion: Dynamic Topology Analysis Framework

for Graph-based Knowledge Distillation and Domain Knowledge

Incorporation

The thesis includes the development of a Dynamic Topological Analysis framework, based on

persistent homology (a higher-order graph model), for quantitatively analyzing the inter-lesion

graph knowledge from MRI images, including global geometric structures and local lesion

clusters. The framework has the following contributions:

• To distill multi-ROI knowledge based on graph methods, we propose a new K-

simplex Filtration to construct a high-level abstraction of global topology for dynamic

community identification, based on the connectivity of k-simplex structures in the

global Rips complex.

• To quantify the dynamic community structure, we propose a novel Decomposed

Community Persistence algorithm to track the dynamic evolution of communities at

fine-grained scales.

• To incorporate domain knowledge into graph-based knowledge, we summarize the

evolutionary communities incorporated with lesion attributes to integrate community

heterogeneity into dynamic community quantification.

1.4 Thesis Organization

The rest of the thesis is organized as Figure 1.1. Literature reviews on algorithms for

multimodal data fusion are presented and discussed in Chapter 2 as well as its applications.

Our proposed models are presented and discussed in Chapter 3-6. Specifically, feature-level

fusion framework for mining multimodal biomarkers for diagnostic and prognostic tasks

is presented in Chapter 3-4 respectively. Information-level fusion framework to integrate

inter-modal and intra-modal information is presented in Chapter 5. Knowledge-level fusion

to integrate graph-based multi-ROI knowledge with domain knowledge is introduced in
9
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Chapter 6. Finally, Chapter 7 exhibits our conclusions and future prospects of multimodal

data fusion.

• General Fusion Framework
• Biomedical Multimodal Inputs
• Multimodal Fusion Algorithms

- Feature-level Fusion with DimensionReduction
- Information-level Fusion with Multimodal Consensus
- Knowledge-level Fusionwith Graph models

• Medical Applications of Multimodal Fusion

Literature Review
Chapter 2

• Research Motivation and Data Description
• Multi-level Feature Selection for Diagnosis
• Experimental Results and Discussion

Contribution 1 Feature-level
Diagnostic Multimodal Biomarker Mining of 

Relevant, Generalizable and Discriminative 
Features from Multiparametric MRI Imaging 

and clinical Factors 

Chapter 3

• Research Motivation and Data Description
• ICS Feature Selection for Prognosis
• Experimental Results and Discussion

Contribution 1 Feature-level
Prognostic Multimodal Biomarker Mining of 

Reproducible, Representative, Informative 
and Non-redundant Features from CT 

Imaging and Clinical Factors

Chapter 4

• Supervised Deep Multimodal Fusion for Diagnosis
• Unsupervised SDC Multi-view Clustering
• Interpretation on Deep Correlational Fusion
• Datasets and Implementations
• Experimental Results and Discussion

Contribution 2 Information-level
Interpretable Deep Correlational Fusion 

Framework for Inter-modal and Intra-modal
Information Analysis

Chapter 5

7.1 Conclusion
7.2 Future Work

Conclusion and Future Work
Chapter 7

• Dynamic Hierarchical Network Construction
• Dynamic Topology Quantification
• Topological Pattern Analysis
• Experiments and Implementations
• Experimental results and Discussion

Contribution 3 Knowledge-level
Dynamic Topology Analysis Framework for 

Graph-based Knowledge Distillation and 
Domain Knowledge Incorporation

Chapter 6

FIGURE 1.1. The outline of the thesis.
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CHAPTER 2

Literature Review

2.1 Generalized Fusion Framework

In this chapter, we summarize literature review on multimodal fusion related to quantitative

medical applications as a Generalized Fusion Framework, which is illustrated in Figure 2.1.

Literature review starts with a) Multimodal Medical Inputs; followed by three major streams

of b) Multimodal Fusion Algorithms; and wrapped up with current c) Medical Fusion Applic-

ations.

Multimodal Medical Inputs can be categorized into imaging data and non-imaging data, as

shown in Figure 2.1a. In a more generalized form, the concept of multimodal data can be

extended to multi-view features and multi-focus regions because they share the similar aim

of integrating different perspectives of information. For Multimodal Fusion Algorithms,

literature is summarized as three major streams of algorithms including Feature-level Fusion,

Information-level Fusion, and Knowledge-level Fusion. Each level of fusion differs in 1) the

depth of representation to fuse, 2) fusion mechanisms, 3) and interpretation methods, as shown

in Figure 2.1b. More specifically, feature-level fusion focuses on integrating high-dimensional

features extracted from imaging or non-imaging data using carefully designed dimension

reduction methods. Feature-level fusion can be enhanced with feature interpretation modules

by revealing the feature clinical meaning and its importance. By comparison, information-

level fusion focuses on exploiting cross-modal consensus and intra-modal complementary

information using co-regularized fusion methods. The information interpretation majorly

11
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focuses on revealing the relationship between multi-modalities. For knowledge-level fusion,

the major interest is to distill knowledge from inter-connected multi-focus representations

using graph-based methods. The knowledge interpretation majorly focuses on the visualization

and analysis of graph-based vertex relationships. Lastly, Medical Fusion Applications are

summarized into three categories, including diagnostic classification, prognostic regression

and unsupervised clustering, as shown in Figure 2.1c.

This chapter is organized as follows: Multimodal Medical Inputs are summarized in Sec-

tion 2.2. Three-level Multimodal Fusion Algorithms, including feature-level, information-

level and knowledge-level, are introduced in Section 2.3-2.5 respectively. Finally, we present

the Medical Fusion Applications in Section 2.6.

a) Multimodal Medical Inputs

c) Medical Fusion Applications

Multimodal Imaging
and Non-imaging

Multi-view
Features

Multi-focus
Regions

Diagnostic
Classification

Prognostic
Prediction

Unsupervised
Clustering

Feature
Representation

Feature
Interpretation

Dimension-
Reduction Fusion

Feature-level Fusion Information-level Fusion Knowledge-level Fusion

Informational
Representation

Information
Interpretation

Co-regularized
Fusion

Graph Knowledge
Representation

Graph
Interpretation

Graph-based
Fusion

b) Three-level Multimodal Fusion Algorithms

FIGURE 2.1. Generalized multimodal fusion framework.
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2.2 Biomedical Multimodal Inputs

Biomedical multimodality inputs, including imaging and non-imaging modalities, are widely

used to examine body anatomy, functionality, and suspicious symptoms for diagnostic or

prognostic purposes. Medical imaging can be generally divided into anatomical imaging

and functional imaging, to provide structural and metabolic information, respectively. Three

commonly used medical imaging techniques (including CT, PET and MRI) are described in

Section 2.2.1 , with a comparison summarized in Table 2.1. Medical non-imaging that are

commonly used in the clinical practice, include clinicopathological factors, hematological

factors, and other multi-omic factors (Section 2.2.2). The definition of multimodality can be

further extended to multi-view features (such as intensity, texture, shape features of tumors

from imaging and clinical factors from non-imaging) and multi-focus regions (such as multi-

focal lesions, multiple brain regions and multiple cells on imaging). They are described in

Section 2.2.3 and 2.2.4, respectively.

Multimodal Imaging

Extension of Multimodality

Multimodal Non-imaging

PET

CT

MRI

Demographics

Blood biomarker

Genomics

Multi-view Features

Intensity

Texture

Shape

Multi-focus Regions

Multi-focal lesions

Multiple brain regions

Multiple cell structures

Medical Multimodality Inputs

FIGURE 2.2. Medical multimodality inputs.

2.2.1 Medical Imaging

Computerized Tomography (CT). CT deploys a motorized x-ray source to cover multiple

angles and creates cross-sectional images using reconstruction algorithms. The mechanism

underlying CT images is based on X-ray attenuation of tissues, however, it provides more

structural information compared to conventional fixed X-ray source. Other advantages of

CT images include comparatively high resolution, excellent contrast on bones, thus they are

recommended for anatomical imaging of injuries or diseases (such as lung tumours [33], and

13
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CT PET PET/CT

FIGURE 2.3. Medical images: CT, PET and PET/CT (colorectal cancer).

different types of heart diseases [34]). However, the major limitations of CT are the radiation

exposure and low contrast on soft tissues.

Positron Emission Tomography (PET). Different from CT using radioactive substance to

check the tissue functions, PET detects the biochemical changes from positron annihilation in

body tissues. The change of biochemical substances can reveal the metabolic process of the

target body regions; thus helping detect the onset of the disease, which is sometimes even

hardly visible on anatomical imaging. Compared with CT, the major advantage of PET is that

only a small amount of radioactive substance is required to examine targeted regions. And

it has a wide range of diagnostic applications for oncology [35], neurology, and cardiology.

However, the limitations of PET imaging include relatively low resolution and high cost.

Magnetic Resonance Imaging (MRI). MRI uses strong magnetic field to generate anatomic

imaging reflecting the physiological process of the body. The major advantage is that MRI

does not involve any radiation material, which would potentially increase the risk of cancer;

thus, it becomes the safest choice in medical procedures. Another advantage of MRI is its

more apparent contrast on soft tissues and widely used for the diagnosis of body regions (e.g.,

brain, spinal cord, breast, and blood vessels) [36], [37]. However, the limitations of MRI

include expensive equipment, high maintenance cost, and lack of bone contrast.

T1 and T2 MRI. T1 and T2 are two basic types of MRI, which are commonly used in

clinical routines. The images of these two sequences of MRI are illustrated in Figure 2.4.

These two MRI sequences are generated using different pulse sequence using different timing

14
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T2-MRI T1-MRI Multifocal lesions

FIGURE 2.4. Medical images: T2-MRI, T1-MRI, and multi-focal lesions on
T2 (multiple sclerosis).

to highlight different interested regions. T1 MRI relies on the longitudinal relaxation time of

the tissue to generate imaging. The common usage of T1-MRI include fatty tissues, reflecting

anatomical information and examine liver lesions. In contrast, T2 MRI relies on the transverse

relaxation time to generate imaging. The common applications include detecting white matter

lesions in brain, and examining inflammation and edema.

2.2.2 Medical Non-imaging

Clinicopathological factors. Clinicalpathological characteristics are essential for diagnosis

and monitoring the disease progression. These factors include age, sex, tumor location, tumor

size, node metastasis status, histological type, Karnofsky performance scores (KPS), radiation

type and doses, concurrent chemotherapy type, and usage of consolidative chemotherapy,

and pre- and post-therapeutical serum tumor biomarkers. These tumor biomarkers include

Carcinoembryonic Antigen (CEA), Neuron-Specific Enolase (NSE), and cytokeratin 19

fragments (Cyfra 211). KPS is to quantify patients’ ability to tolerate therapy in terms of their

physical function and ability to take care of themselves and to perform daily activities.

Hematological factors. Hemoatological factors, also known as blood biomarkers, are

important indicators for cancer diagnosis and treatment monitoring. The blood biomarkers are

15
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TABLE 2.1. Comparison of medical multimodal imaging.

Modality CT PET MRI

Contrast mech-
anism

X-ray attenuation
of tissues

Photon emmsion after positron
annihilation

Emitted RF signal after nuc-
lear spin excitation

Spatial resolu-
tion

<=100 µm 1-2 mm <=100 µm

Acquisition
time

10-25 min 10-90 min 5-60 min

Advantages 1) Excellent bone
imaging

1) High sensitivity
2) high range of applications

1) Non-ionizing radiation
2) apparent soft tissue con-
trast

Limitations 1) Radiation dose
2) low soft tissue
contrast

1) High cost
2) use of radioactive agents

1) Expensive equipment
2) high maintenance costs
3) lack of bone contrast

Main applica-
tions

1) Anatomic ima-
ging (bone)

1) Diagnostic imaging (onco-
logy, neurology, cardiology)
2) pharmacokinetic imaging

1) Anatomical imaging (soft
tissue)

collected from routine blood tests. They are highly attractive because they provide clinically

relevant noninvaisve predictors, potentially complementary to imaging characteristics. How-

ever, the major weakness of blood biomarkers is the inconsistent and non-standard cut-off

values for dividing the clear boundary of responders, and non-responders [38]. These blood

biomarkers include levels of monocytes, neutrophils, lymphocytes, hemoglobin, and platelet

counts. Also, Neutrophil/ Lymphocyte ratio (NLR), Lymphocyte/ Monocyte ratio (LMR), and

Platelet/ Lymphocyte ratio (PLR) were calculated for each patient.

Other multi-omic factors. Vast amounts of data from other sources (such as DNA, RNA,

and protein) can be mined and analyzed to predict disease risks, treatment response, and

prognosis. Such large data are often referred as multi-omic factors (such as genomics,

transcriptomics, proteomics) [39]. However, the clinical deployment of multi-omic biomarkers

is still hindered by several important factors. Firstly, there are false positive discoveries due

to the large amount of biomarker analysis in global ‘omics’ studies [40]. Secondly, there are

technical reproducibility issue due to non-standard multi-omic data acquisition [41].
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First-order features Shape features Texture features

FIGURE 2.5. Multi-view features: first-order, shape and texture features.

2.2.3 Multi-view Features

In a broader sense, the definition of multimodality can be extended as different perspectives of

information from the same source, such as different types of features extracted from the same

imaging. Such multiple sets of features are often referred as multi-view features [42], and

are widely used in medical applications to characterize tumor heterogeneity and geometric

properties. The example of multi-view features include first-order (intensity), shape, texture

features and filter-based features, which are usually extracted from a region of interest in

medical imaging. These features are illustrated in Figure 2.5. Specifically, first-order features

are calculated based on the first-order statistics of the image intensity distribution. Shape

features are geometric measurements based on edges, ridge and angle of ROI, including the

calculation of the volume, surface area, compactness, and spherical ratio. Texture features

are computed with higher-order texture matrices such as Gray Level Co-occurrence Matrix

(GLCM) and Gray Level Size Zone Matrix (GLSZM) to quantify lesion heterogeneity. Filter-

based features, including Laplace of Gaussian (LoG) and wavelet features were extracted from

the filtered images to enhance specific parts of images, such as sharp edges or fine texture.

More details on the definition and calculation of intensity, shape and texture features can be

found in [43]. Similar to multimodal fusion, effective integration of multi-view features for

more precise prediction is a still unsolved challenge [42].
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Multifocal lesions Multiple brain regions Multiple cells

FIGURE 2.6. Multi-focus regions: multifocal lesions, multiple brain regions
and multiple cells.

2.2.4 Multi-focus Regions

Multi-focus fusion is another extension of multimodal fusion, aiming to integrate different

region of interest from the same source. Different from conventional single-lesion texture

analysis, the challenge of multi-focus fusion is to integrate potentially heterogeneous in-

formation in different focused regions, such as different texture characteristics in different

lesions. Typical examples of multi-focus fusion include fusion of multi-focal lesions on an

MRI imaging [8], fusion of different brain regions using fMRI or Diffusion-tensor Imaging

(DTI) [44], [45], fusion of different cells using a pathological imaging [46], [47]. The image

examples of multi-focus regions are illustrated in Figure 2.6.

2.3 Feature-level Fusion with Dimension Reduction

In feature-level fusion, high-dimensional data generated in multimodal feature concatenation

is a major challenge, which is further exaggerated by the small sample size in medical

applications. Feature selection has been a promising solution to high-dimensional small-

sample feature fusion problems, because it reduces the effect of the curse of dimensionality

and the computational cost, and more importantly it preserves the physical meaning of features

and helps understanding of data. Generally, feature selection algorithms can be categorized as
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filter, wrapper, and embedded methods. Filtering methods act as a preprocessing, removing

irrelevant features according to certain ranking criteria (Section 2.3.1). Wrapper methods

select features based on their predictive performance given by classifiers (Section 2.3.2).

Embedded methods include the feature selection process inside the classifier training process

(Section 2.3.3).

TABLE 2.2. Comparison of feature selection techniques.

Feature
selection

Advantage Disadvantage Examples

Filter 1) Lower computational cost
2) Fast
3) Generalizability

1) No interaction with
classifiers
2) suboptimal predict-
ive ability

1) Correaltion-
based
2) MI-based
3) Consistency-
based

Wrapper 1) Captures feature interaction
2) Interaction with classifier

1) Computational ex-
pensive
2) Risk of overfitting

1) SFS
2) Genetic al-
gorithm

Embedded 1) Captures feature interac-
tion;
2) Interaction with classifier
3) Relatively low computa-
tional cost

1) classifier-dependent
selection

1) Lasso
2) SVM-RFE

2.3.1 Filter Methods

Filtering methods select highly ranked features and filter out less-relevant features according

to the feature relevancy criteria, as illustrated in Figure 2.7. It is commonly used in practical

applications, especially in the medical domain because of its simplicity, low computational

cost, time-efficiency and more likely to avoid overfitting [48], [49]. Different filter methods

use different criteria to measure feature relevance, which is the capacity of features to differ-

entiate classes. Examples of relevancy measurement include correlation, mutual information,

consistency, and etc.

Correlation-based filter. Correlation-based filter [50] ranks features according to their

correlation with the targeted outcome in a heuristic way. The desired feature subsets, acquired
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algorithms
Prediction
results

Predictors

FIGURE 2.7. Feature selection: filter methods.

by correlation-based filter, are features that are highly correlated with the target class while

remaining uncorrelated within the subset. Irrelevant features (low correlation with the targets)

and redundant features (high correlation within feature sets) should be filtered out. Pearson

correlation, also known as linear correlation is mostly used in clinical applications, which are

defined as:

R(i) =
cov(xi, Y )

var(xi) ∗ var(Y )
(2.1)

where xi is the input features, Y is the output labels, cov denotes the covairance and var

denotes the variance. Non-linear correlation can be assessed with Spearman correlation, by

measuring the monotonic relationship between the features and outcomes.

Mutual Information (MI)-based filter. MI-based filter [51] relies on information the-

oretical measurements to assess the relevance of variables. The definition of MI is given

below:

I(Y,X) = H(Y )−H(Y |X) (2.2)

where H(Y ) = −
∑

y p(y)log(p(y)) represents the entropy in output Y, and H(Y |X) =

−
∑

x

∑
y p(x, y)log(p(y|x)) is conditional entropy of Y by observing X . The computed MI

value I(Y,X) implies the additional information that one variable can offer about the other,

thus it proves dependency. If two variables are independent, MI will be zero; otherwise, MI

will be greater than zero. The above definition of MI is for discrete variables, and it can be

extended to continuous variables if replacing summations with integration.

Consistency-based filter. Consistency-based filter [52] removes irrelevant and redundant

features by finding the minimum number of features to form the feature subset, which has

the same level of consistency in the class values. However, this method does not take the

dependence among features into account.
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RELIEF filter. RELIEF filter [53] is a notably sensitive to feature interaction, which ranks

the irrelevance to the target using feature value differences between the nearest neighborhood

instance pairs. Specifically, if the feature value difference of nearest instance pairs is observed

within the same class, the feature rank decreases; otherwise, the feature rank increases. It has

inspired a family of RELIEF-based algorithms, such as ReliefF [54] and adapted to a wide

range of applications. However, the drawback of the RELIEF filter is that arbitrary threshold

is required for feature selection.

To summarize, filter methods have advantages such as computationally light and less likely

to overfit because they do not rely on learning algorithms. There are several drawbacks: 1)

the predictive performance of selected subset is not optimized [55]; 2) feature interaction is

largely discarded [56]; 3) there is a lack of idea method to select the ideal subsequent learning

algorithm and the optimal dimension of features [50].

2.3.2 Wrapper Methods

Unlike filter methods using relevance criteria for feature selection, wrapper methods (Fig-

ure 2.8) use predictive performance of features given by learning algorithms to select features.

Wrapper methods can be further divided into univariate wrapper and multivariate wrapper.

Univaraite wrapper ranks the predictive capability of individual features based on the classifi-

ers’ results. However, such methods ignore feature interactions. To search for the optimal

feature combination, since evaluating all subset combination of features (2N ) is a NP-hard

problem, wrapper methods often employ search algorithms to reduce complexity, which

can be broadly classified into sequential selection wrapper and heuristic search wrapper.

The sequential selection wrapper starts with an empty or full feature set to search for an

optimal subset by adding or removing features. The heuristic search wrapper evaluates subsets

generated in the search space to optimize the objective function.

Univariate wrapper. Univariate wrapper methods have been widely used in clinical studies

to select predictive prognostic and diagnostic biomarkers based on the predictive performance
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FIGURE 2.8. Feature selection: wrapper methods.

of corresponding regression or classification models. For example, Univariate Cox [57]

is a standard feature selection technique that is widely used in survival analysis. It ranks

features by C-index computed with Cox proportion hazard model, a classic supervised method

designed for time-to-event regression analysis. Another example of univariate wrapper uses

Random Forest [58] to select informative features using the classification results, such as

Area Under the Receiver Operator Characteristic Curve (ROC_AUC). Though univariate

methods are usually efficient and fast compared with multivariate methods, the interaction

among features are not adequately considered for the optimal performance.

Sequential selection wrapper. The sequential selection wrapper [59], [60] is named after

its iterative nature of the algorithm. The most prominent example, Sequential Forward

Selection (SFS), starts the feature selection process with an empty set and then iteratively

adding individual features into the feature set to achieve highest predictive performance in

each step. The process is repeated until the number of features meets the requirement. The

other similar variant, Sequential Backward Selection (SBS), begins the feature selection

process from the complete feature sets and then iteratively removes the feature giving the

lowest decrease of performance at each step. However, SBS is often computational expensive

for high-dimensional feature set to acquire a low-dimensional subset. The other improved

version of SFS is name sequential floating forward selection, which introduces additional

backtracking steps. An additional step is added to SFS to exclude a feature from the selected

subset at each iterate. If the reduced feature set yields better performance, this feature is

permanently dropped for the next round of SFS. The drawback of the SFS and SFFS is that

redundant features (highly correlated) may be included in the final feature set [61].
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Heuristic search wrapper. Compared with the deterministic style used by sequential

selection wrapper, Genetic algorithms [62], [63] employ a randomized heuristic approach to

identify the optimal feature subset using a designed objective function. The parameters in

genetic algorithms can be randomly modified, mimicking the genetic mutation and evolution,

to search for the most predictive feature subset. However, it is computationally expensive,

particularly for high-dimensional multimodal problems [64]. In many problems, genetic

algorithms tend to converge towards local optimal or even arbitrary points rather than the

global optimal [65].

2.3.3 Embedded Methods

The embedded methods, as illustrated in Figure 2.9 combine the merits of filter and wrapper

methods, embedding the feature selection in the learning algorithm as part of the training

process. The main aim of embedded methods is to reduce the computation time evaluating

feature combinations in the wrapper methods. The common strategy of embedded methods

is to leveraging weights in the classifier as criteria to rank and filter out features. Typical

examples include Least Absolute Shrinkage and Selection (LASSO) and Support Vector

Machine (SVM)-Recursive Feature Elimination (RFE).

Multimodal
features

Embedded selection in
learning algorithms

Feature
subsets

Prediction
results

Embedded

FIGURE 2.9. Feature selection: embedded methods.

Lasso. Lasso is an example of embedded feature selection methods based on a linear

model [66]. It penalizes the sum of absolute values of the parameters in the linear model,

thus the sum has to be less than a fixed upper bound. To achieve this goal, a regularization

process is applied on the parameters of the linear model to shrink some parameters to zero.
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These features associated with zero weight will be filtered out, while the non-zero features

will be used to minimize the prediction. In this way, the filter process is embedded in the

linear model to select discriminative features and reduce the complexity of the model. The

cost function for LASSO can be formulated as:

M∑
i=1

(yi − ŷi) =
M∑
i=1

(yi −
p∑
j=0

wj ∗ xij)2 + λ

p∑
j=0

|wj| (2.3)

where x is the input, y is the output, w is the weight and
∑p

j=0 |wj| < t for some t > 0.

SVE-RFE. RFE is an example equipped with non-linear classifier [67]. In RFE, the full

set of features is initially fit with a learning algorithm, and then the least important features

(computed with coefficients in the learning algorithm) will be removed until the desired

number of features is selected. Compared with sequential selection wrapper, RFE is more

computational efficient as less number of feature combination is required to compute.

2.4 Information-level Fusion with Multimodal Consensus

In information-level multimodal fusion, the methods can be categorized into two groups

depending on the availability of the label information - Supervised Multimodal Learning

(Section 2.4.1) and Unsupervised Multimodal Clustering (Section 2.4.2). To better understand

Unsupervised Multimodal Clustering, we briefly introduce a major stream of Multimodal

Clustering algorithm, Correlational Consensus Learning in Section 2.4.3. Furthermore, the

related work for interpreting deep multimodal associations is summarized in Section 2.4.4.

2.4.1 Supervised Multimodal Learning

To address the challenge of fusing multimodalies in a supervised setting, radiomics and

multi-branch deep learning are two mainstream frameworks in current medical applications.
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Case ID Patient affiliationDe-identified age at Histological DiagnosisWeight (lbs)Gender
R01-003 VA 65 Male
R01-010 VA 72 Male
R01-020 Stanford 63 152 Female
R01-029 Stanford 76 249.165 Male
R01-036 VA 43 317.52 Male
R01-054 VA 56 220.5 Male
R01-075 Stanford 86 132.3 Male
R01-082 VA 69 200.655 Male
R01-084 VA 63 200.655 Male
R01-089 Stanford 74 130.0289 Male
R01-108 VA 77 207 Male
R01-114 VA 71 282 Male
R01-117 VA 65 137 Male
R01-122 VA 69 174 Male
R01-126 Stanford 65 128 Female
R01-135 Stanford 69 134.505 Female
R01-149 Stanford 47 165.4 Female
R01-152 Stanford 76 195 Male
R01-154 VA 66 194 Male
R01-156 VA 65 154.4 Male
R01-160 VA 61 231.5 Male

Imaging

Non-imaging

Feature
engineering

Feature
Fusion

Diagnostic
modeling

Concat
+

x x x x

FIGURE 2.10. Supervised multimodal fusion: radiomics framework.

Radiomics framework. Instead of directly using raw images, radiomics adopts ROI-based

handcraft feature extraction and feature selection to preserve informative features, thus nar-

rowing the dimension gap with clinical factors [68], [69]. In radiomics, simple concatenation

with feature selection techniques such as LASSO and RFE [70] is often used to fuse mul-

timodal features for diagnostic prediction. However, handcrafted-based feature engineering

in radiomics has limited capacity to model complex multimodal representations.

Case ID Patient affiliationDe-identified age at Histological DiagnosisWeight (lbs)Gender
R01-003 VA 65 Male
R01-010 VA 72 Male
R01-020 Stanford 63 152 Female
R01-029 Stanford 76 249.165 Male
R01-036 VA 43 317.52 Male
R01-054 VA 56 220.5 Male
R01-075 Stanford 86 132.3 Male
R01-082 VA 69 200.655 Male
R01-084 VA 63 200.655 Male
R01-089 Stanford 74 130.0289 Male
R01-108 VA 77 207 Male
R01-114 VA 71 282 Male
R01-117 VA 65 137 Male
R01-122 VA 69 174 Male
R01-126 Stanford 65 128 Female
R01-135 Stanford 69 134.505 Female
R01-149 Stanford 47 165.4 Female
R01-152 Stanford 76 195 Male
R01-154 VA 66 194 Male
R01-156 VA 65 154.4 Male
R01-160 VA 61 231.5 Male

Imaging

Non-imaging

Multi-branch
deep learning

Diagnostic
modeling

Loss

FIGURE 2.11. Supervised multimodal fusion: deep multi-branch fusion network.
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Multi-branch deep learning framework. In contrast, multi-branch deep learning adopts

a data-driven approach to implicitly model the complex multimodal relationship and learn

a lower-dimensional representation from different channels of inputs. These multi-branch

deep networks adopt supervised architectures such as Multimodal Convolutional Neural

Network [71], Multimodal Deep Polynomial Networks [72]. However, multi-branch deep

learning, which uses implicit fusion, still has difficulty exploiting cross-modal information

caused by large dimension gap between imaging and non-imaging data [73], [74].

2.4.2 Unsupervised Multimodal Clustering

Instead of solely depending on label information to implicitly mine cross-modal associations,

unsupervised multimodal clustering explicitly explores inter-modal common structural inform-

ation through co-regularization for the clustering task. It uses different views of single-source

data to partition samples into different groups in an unsupervised manner, thus it is also

known as Multi-view Clustering (MVC). These algorithms can be divided into conventional

MVC and deep MVC. In addition, an emerging paradigm of deep mono-view clustering for

exploiting intra-modal discriminative information is also summarized.

Conventional MVC. To exploit the essential and intrinsic structure hidden in multi-view

data, consensus MVC algorithms co-regularize different views to a shared common space

for clustering until the consensus is reached. According to the form of the common space,

consensus MVC can be divided to common-matrix-based MVC and correlation-based MVC,

as illustrated in Figure 2.12. The former branch of algorithms co-regularizes multi-views to

a common matrix, which is then used for data partition with an existing clustering method

(e.g., k-means). Examples of consensus matrices include common eigenvector matrix used

by multi-view spectral clustering [75], common coefficient matrix by multi-view subspace

clustering [76] and common indicator matrix by multi-view non-negative matrix factoriza-

tion clustering [77]. The other branch, correlation-based MVC, projects multi-views to a

consensus space by maximizing the correlation between the projected multi-view features

and subsequently employing an existing clustering method. Such projection can be obtained
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through canonical correlation analysis [21] and its variants [78], [79]. However, most of these

conventional MVC algorithms adopt linear or shallow embedding functions to reveal intrinsic

structure underlying multi-view data, which have difficulty well simulating the complex

nonlinear characteristics of large-scale real-world data.

View1

View2

Common
matrix

Multi-view Data Linear/kernel
Transform

Consensus
representation

Clustering

Decoupled with
clustering

Correlation

Y=ax+b

FIGURE 2.12. Unsupervised multimodal fusion: conventional consensus MVC.

Deep MVC. Empowered with strong approximation capacity of neural networks, deep

learning has been introduced to model non-linear relationships among multi-views for the

clustering task. As illustrated in Figure 2.13, deep MVC is extended from conventional

common-matrix-based MVC and correaltion-based MVC. Specifically, conventional common-

matrix-based MVC has been extended as deep multi-view spectral clustering [80], deep

multi-view subspace clustering [81] by non-linearly projecting multi-view data to the latent

common matrix via deep networks constrained with affinity loss or self-representation loss.

However, information from different views is entangled in the latent common matrix, thus it

is usually difficult to interpret. In contrast, more attention has been recently drawn to deep

learning extensions of correlation-based MVC (Deep CCA [82], DCCAE [83], VCCA [84]

and DGCCA [85]), as the correlation of the projected multi-view representations can be

explicitly measured and interpreted. To be more specific, these correlation-based deep

MVC methods non-linearly project multi-view data via deep learning to highly correlated

representations enforced by a CCA loss for subsequent clustering. However, a major limitation

of the aforementioned consensus MVC algorithms is that multi-view representation learning
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and clustering are often decoupled, thus the representations can hardly benefit from feedback

from the clustering process.

View1

View2

Common
matrix

Multi-view Data Deep
Transform Consensus

representation

Clustering

Decoupled with
clustering

Correlation

FIGURE 2.13. Unsupervised multimodal fusion: deep consensus MVC.

Deep mono-view clustering. Recent work shows that the joint optimization of feature

learning and clustering can yield substantial improvement of performance. Xie et al. firstly

proposed deep embedding clustering (DEC), in which feature representations and cluster

assignments were simultaneously learned by iteratively optimizing the clustering objective

[86]. Yang et al. proposed to learn a k-means-friendly deep representation via alternatively

optimizing representation learning and k-means clustering [87]. Afterwards, more efforts

were devoted to improving mono-view deep clustering by adding additional constraints (such

as relative entropy loss [88], information maximization loss [89] and image triplet loss [90])

or improving network structures (such as deploying convolutional neural network [91], [92],

dual autoencoder [93], variational autoencoder [94]). However, few studies have investigated

deep clustering in the multi-view scenario.

2.4.3 Correlational Consensus Learning

To better understand correlation-based MVC (Correlational Consensus Learning), we briefly

introduce its two major branches, linear and non-linear CCA algorithms. Given two views
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of data X1 ∈ Rd1∗N and X2 ∈ Rd2∗N , linear CCA aims to find pairs of linear projections of

views (wT1X1, w
T
2X2) where the correlation is maximized:

max
w1,w2

corr(wT1X1, w
T
2X2)

= max
w1,w2

wT1 Σ12w2√
wT1 Σ11w1wT2 Σ22w2

=

max wT1 Σ12w2

s.t. wT1 Σ11w1 = wT2 Σ22w2 = 1

(2.4)

Σ11 and Σ22 denote the covariance of X1 and X2 respectively, while Σ12 denotes the cross-

covariance of two views. Assuming pairs of projection vectors (wi1, w
i
2) are found, top k

pairs of vectors can be assembled into the projection matrix W1 ∈ Rd1∗k and W2 ∈ Rd2∗k

respectively. After further constraining the pair of projection uncorrelated with previous pairs,

we can obtain the matrix formulation as:

max tr(W T
1 Σ12W2)

s.t. W T
1 Σ11W1 = W T

2 Σ22W2 = I

wi1Σ11w
j
1 = wi2Σ22w

j
2, i < j

(2.5)

Non-linear extensions of CCA, such as KCCA and DCCA aim to find the non-linear projec-

tions of the views with maximized correlation, which can be expressed as:

max
f1,f2

corr(f1(X1), f2(X2))

= max
f1,f2

cov(f1(X1), f2(X2))√
var(f1(X1)var(f2(X2))

(2.6)

where f1(X1) and f2(X2) denotes the non-linear mapping for views X1 and X2.

Compared with linear CCA, non-linear CCA achieved better performance on larger datasets,

as non-linear correlation is more common in real-world datasets. Deep CCA [82] gained

momentum as it addressed the scalability issue of KCCA [79] by replacing the kernel functions

with neural networks. DCCAE [83] and CorrNet [95] extended DCCA by further constraining

DCCA model with autoencoder loss. However, both methods only focused on consensus
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information, neglecting view-specific information among multi-view data. To address this

issue, VCCA [84] was proposed to enhance consensus representations with private variables

extracted from each view using additional autoencoder networks. However, multi-view

learning and clustering in VCCA were still decoupled, and hence there was no guarantee that

the learned multi-view features were discriminative and clustering-relevant.

2.4.4 Deep Multimodal Interpretation

Interpretation on linear canonical correlation. In addition to seeking high predictive per-

formance, there is a surging interest in understanding the complex cross-modal association

in diagnostic decisions [96], thus to further uncover hidden disease mechanisms, facilitate

understanding of the disease and build trust in statistical models. Early research has investig-

ated methods to interpret cross-modal association in linear multimodal fusion models such

as CCA. Such interpretation could be achieved through coefficients in linear embedding

functions [22], canonical loadings and cross-loadings [23], graphical biplots [24], and probab-

ilistic perspectives [25]. However, linear CCA has only limited capacity to model complex

nonlinear interactions. In contrast, deep fusion models (such as deep CCA) are equipped with

the strong approximation capability, but are generally more difficult to interpret. The difficulty

arises from a great number of nonlinear transformation and operations in deep networks,

such as nonlinear activation and kernel convolution. Although recent studies investigated

the contribution of input features in deep networks towards classification decision using

perturbation-based [26], [27] or propagation-based models [28]–[30], it is still an unsolved

challenge of interpreting the nonlinear cross-modal association in deep multimodal fusion.

Interpretation on deep learning. Interpreting Deep Neural Network (DNN) is a challenging

task. Current DNN interpretation methods revealing individual-based importance of input

features can be divided into two major categories. The first category of perturbation-based

methods systematically perturb the input features and then track the change of the output.

Typical examples include occlusion [26] and prediction difference analysis [97]. These

approaches are easy to implement, model-agnostic; however, they are often computational
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expensive [98]. In contrast, propagation-based methods provide computationally trackable

approximations using the gradient of network outputs with respect to inputs in a single

back-propagation pass. In this way, the sensitivity of the output to small perturbations in

input features is conveyed. Typical examples of propagation-based methods include saliency

maps [28], deep lift [30] and integrated gradients [29]. Specifically, saliency maps introduce a

simple gradient method by applying a first-order linear approximation of the model to detect

the sensitivity of the score. However, a major drawback of this simple gradient method is

that it neglects the saturation problem [30], thus breaking the sensitivity axiom. Deep lift

addresses the sensitivity issue by employing a baseline. In other words, it computes discrete

gradients instead of instantaneous gradients at the inputs. However, these two methods

violate the Implementation Invariance axiom [29]. Integrated gradients satisfy both axioms

of sensitivity and implementation invariance. However, the aforementioned interpretation

methods majorly focus on interpreting the contribution of input features in mono-modality

towards the prediction results. It is still an unsolved challenge of how to decipher nonlinear

cross-modal associations embedded in deep fusion networks.

2.5 Knowledge-level Fusion with Graph Models

2.5.1 Graph Basics and Construction

Network science is able to explicitly model the topological structure and provide insights into

the collective behaviour of a complex system, and therefore would be a natural choice when

analyzing multifocal lesions. We have witnessed its success in modeling brain network [99]–

[101] and pathological cell network [46], [102], [103]. In general, in a network science

analysis, firstly a graph model is constructed with vertices and edges depicting the pairwise

relationship, and then followed by quantitative feature extraction with graph theory [100],

[101] or deep graph embedding [104] for subsequent analysis.
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Graph theory is a major stream of network science, which could be used for solving complex

problems based on graph structure in the applications of medical imaging. In this section, we

will introduce the basic concept, notation, followed by graph construction and quantification.

A

B

C

D

A

B

C

D

4

1

6

3

Weighted graph Unweighted graph

1

3

FIGURE 2.14. Graph concept: weighted graphs and unweighted graphs.

Graph concept. Conventionally, a graph is defined as G = (V,E), consisted of a set of

vertices V = {vi|i ∈ [1, Nv]} and their pairwise connection (edges) E = {(vi, vj)|i, j ∈

[1, Nv]}. Depending whether there is a weight associated with each edge, graphs are divided

into weighted graphs and unweighted graphs, as illustrated in Figure 2.14. In a weighted

graph, a weight function W : E −→ R is associated with each edge, representing the strength

of interactions between pairwise vertices. The weights can be computed from Euclidean

space, or other metric space. In an unweighted graphs, edges are either existed or not existed

with no further weighting. In other words, the unweighted graph can be represented as a

adjacency matrix, in which each entry of matrix has value 1 for existed edges and value 0

for non-existed edges. Overall, the weighted graph is a common topological representation

in medical applications; however, it is often difficult to visualize, interpret, and analyze, and

contains suspicious noisy edges [105]. Thus, proper control of the sparsity level of graph

edges is required for informative topology construction, which is a fundamental challenge in

network science.

Graph Construction and Edge Sparsity Control. Current graph methods control the

sparsity of edges majorly based on three different criteria, as illustrated in Figure 2.15. The
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Edge sparsity control
of the weighted graph

3) KNN2) Delaunay triangulation1) Sparsity level

Dense graph Sparse graph

FIGURE 2.15. Graph construction and edge sparsity control.

first category of methods [47], [106] thresholded weighted graphs with user-defined sparsity

values; however, the choice of the sparsity was rather arbitrary although it influenced the graph

topology greatly. Early research [107] also explored the choice of sparsity by statistical tests

over possible scales; however, the sparsity was instead dependent on a user-defined p-value.

The second category of approaches leveraged computational geometrical structures such as

Delaunay triangulation, Voronoi diagram, and minimum spanning tree [46], [102], [103]

to control the edge connectivity. However, the constructed geometrical graphs still tended

to involve noisy edges from a clinical perspective and required further subjective sparsity

thresholding as suggested in a cell graph study [46]. The third category of methods was based

on K-nearest Neighbors (KNN) [44], [104], [108], [109] to control sparsity. However, KNN-

based methods also relied on a user-defined K value that controls the local relationship of

vertices. Until now, there is no widely accepted criterion to define an optimal scale of the edge

sparsity to binarise the weighted networks [105]. Instead of trying to determine the optimal

scale, a multi-scale solution could be used to bypass this challenge, leveraging topological
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information at different scales with a mathematical tool named Persistent Homology, which

will be introduced from Section 2.5.3.

Integration

Centrality

Segregation

FIGURE 2.16. Graph quantification with graph theoretical measurements,
including integration metrics, centrality metrics and segregation metrics.

2.5.2 Graph Quantification.

After graph construction, the next step is to extract quantitative graph features, which is

commonly computed using graph metrics provided by graph theory. Broadly, the graph

metrics can be divided into three groups, including segregation, integration and centrality

measurements, as illustrated in Figure 2.16. Specifically, segregation refers to the graph

metrics covering the processing within densely connected groups or clusters. The examples

of segregation measurements include clustering coefficients, modularity, hubs. Integration

refers to the graph metrics covering the information transmission between vertices. The

measurements are usually based on the concept of communication paths and their path length,

such as characteristic path length, and global efficiency. The third group, centrality, refers to

measurements describing the importance of vertices or edges in the graph. Typical examples

include degree centrality, betweenness centrality. More specific definitions of importance

graph metrics include average clustering coefficients, average vertex degree, characteristic

path length and degree centrality as given below.
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Vertex degree is one of the most elementary and important measurements in graph theory,

which are common bases for other advanced measurements. The degree of a vertex is

defined as the number of edges connecting this vertex with all other adjacent vertices. In an

unweighted network, the degree ki is defined as:

ki =
∑
j 6=i

aij (2.7)

where aij = 1 denotes the existed connection of vertex i and vertex j; otherwise aij = 0.

In segregation measurements, local clustering coefficient is used to measure how densely a

vertex is connected [110]. It is defined as the ratio of the number of actually connected edges

and possibly connected edges:

Ci =
2ti

ki(ki − 1)
(2.8)

where t(i) is the number of the triangles through vertex i and ki denotes the vertex degree

of vertex i. As an extension, global clustering coefficient is defined as the average of local

clustering coefficients of all graph vertices.

In integration measurements, characteristic path length often represents the efficiency of

information transmission and internal structure of the graph. The shorter the path is, the

quicker the information can be transmitted in the graph. The characteristic path length

is a global measurement by taking average of the shortest path between individual edges.

Specifically, we first define shortest path between two vertices i and j as li−→j , and its length

is denoted as:

lij =
∑

ast∈li−→j

ast (2.9)

Then, we can define the characteristic path length L of a network as the average of all shortest

paths over all possible pairs of vertices in the graph:

L =
1

N

∑
i

li =
1

N

∑
i

(
1

N − 1

∑
i 6=j

lij) (2.10)

where the average shortest path length li = 1
N−1

∑
i 6=j lij .
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In centrality measurements, degree centrality is most commonly used measurement for

centrality. It uses the degree of the vertex to represent its importance in a graph. Formally, the

degree centrality C(i) for certain vertex i is the degree of this vertex:

C(i) = ki =
∑
j 6=i

aij (2.11)

For a more comprehensive review of all graph metrics for segregation, integration and

centrality, please refer to the review [45], [111], [112].

2.5.3 Persistent Homology Basics

Persistent homology provides a mathematical tool to distill topological knowledge from

higher-order graph structures, which are geometrically invariant across multiple scales. Such

invariant features include persistent connected components and persistent holes. The persistent

homology analysis usually contains three major steps, simplicial complex construction,

persistent diagram generation and persistent homology transformation. In persistent homology,

the first step is to construct simplicial complex, a higher-order graph structure, in a multi-scale

representation using a technique named filtration. Then, topological invariant features are

extracted from the multi-scale graphs and represented as persistent diagram in form of multi-

set points. As multi-set points can not be directly processed by machine learning algorithms,

quantification methods are proposed to bridge persistent homology analysis with machine

learning algorithm using vectorization-based methods or kernel-based methods.

Multi-scale topology construction. In persistent homology, the construction of multi-scale

topology includes firstly defining a simplicial complex as the topological structure and then

expanding to multi-scale via filtration scheme. More specifically, a simplicial complex is a

union of components including not only vertices and edges, but also triangles, tetrahedrons

and higher-order polutopes [113], as illustrated in Figure 2.17. As a higher-order extension

of conventional graphs, a simplicial complex is able to capture interactions beyond pairwise

edges, which accordingly would provide a useful mechanism for analyzing the complicated
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interactions among multifocal lesions. A simplicial complex is constructed from a set of

simplices. A simplex with dimension k (k-simplex) is defined as the convex hull of k + 1

independent vertices. For example, a 0-simplex is a point; a 1-simplex is two points connected

with an edge; a 2-simplex is a filled triangle with three points, as shown in Figure 2.17.

A multi-scale topology then can be constructed from simplicial complexes with filtration

technique [114]. Specifically, a nested family of simplicial complexes Kr (filtered simplicial

complex) can be induced for a range of scale values r ∈ R so that the complex at scale m is

embedded in the complex at scale n for m ≤ n, i.e. Km ⊆ Kn.

FIGURE 2.17. Higher-order graphs: k-simplex and simplicial complex.

Homology and persistent homology. Persistent homology quantifies the global geometrical

structure in the filtered simplicial complex by tracking and recording topological invariants

(homology) across different scales [113]. Specifically, homology is a geometrical concept

measuring the shape property that is invariant under continuous deformation of a topological

object such as a simplicial complex. For instance, a triangle, a square, and a circle are

considered homologically equivalent to each other because they all form a single hole and

therefore can be easily transformed to each other continuously. For a simplicial complex,

homology summarizes the number of connected components as h0, one-dimensional holes

as h1 and two-dimensional voids as h2. Persistent homology computes the birth and death

time of homological objects in the filtered simplicial complex across different scales r and

records these birth-death pairs as a Persistence Diagram (PD) [113]. An example of persistent

homology is provided in Figure 2.18.
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FIGURE 2.18. Global geometric measurements (persistent homology) with
Peristence Barcode.

2.5.4 Advanced Topology Quantification for Machine Learning

Since the multi-set form of PD could not be processed by machine learning for classification

analysis, advanced quantification methods in persistent homology were proposed to address

this issue. Much research focus has been devoted into this area, which is further divided into

two major branches of methods. The first branch of methods leveraged implicit similarity

measures or kernel representations to quantitatively compare PDs, including bottleneck dis-

tance [115], p-Wasserstein distance [115], Persistence Scale Space kernel [116], Persistence

Weighted Gaussian kernel [117] and Persistent Fisher kernel [118]. However, these meth-

ods were limited only to distance-based learning methods (such as KNN) or kernel-based

algorithms (such as SVM). The second branch of methods generated explicit vector represent-

ations for PD, including Betti Curves [119], Persistence Landscape [120], and Persistence

Image [121]. The typical algorithms from kernel-based methods and vectorization-based

methods are introduced as below.
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Notation. The aim of the designed distance, kernels or vectors is to measure the similarity

of two PDs Lk and L′k, in which k denotes kth dimension of homology. lkj denotes the points

in a PD, where j denotes jth point in the PD. Each point lkj is represented as [akj , b
k
j ].

Bottleneck distance. Bottleneck distance [115] is one of the early proposed metrics to

quantify distance between two PDs Lk and L′k, which is defined as below:

dB(Lk, L′
k
) = inf

γ
sup
j
||lkj − γ(l′

k
j )||∞ (2.12)

where γ denotes all bijections between two PDs. In other words, the final bottleneck distance

can be interpreted as ||lkj − l′
k
j ||∞ = max(|akj − a′kj |, |bkj − b′kj |).

p-Wasserstein distance. p-Wasserstein distance [115] between two PDs is defined as

dW,p = inf
γ

(
∑
j

||lkj − γ(l′
k
j )||p∞)1/p (2.13)

where γ still denotes all the bijetions between two PDs and p is a positive number.

Persistence Scale Space kernel. Persistence Scale Space kernel [116] was designed motiv-

ated by a heat diffusion problem with Dirichlet boundary condition. It is defined as

κPSSK(Lk, L
′
k, σ) =

1

8πσ

∑
l∈Lk,l′∈L′k

e−
||l−l′||2

8σ − e−
||l−l̂′||2

8σ (2.14)

where l′ and l̂′ are mirrored across diagonal.

Persistence Weighted Gaussian kernel. Persistence Weighted Gaussian kernel [117] was

proposed based on kernel mean embedding for reproducing kernel Hilbert space, which is

defined as

κPWGK(Lk, L
′
k, σ) =

∑
l∈Lk,l′∈L′k

warc(l)warc(l
′)e−

||l−l′||2

2σ2 (2.15)

where warc = arctan(C(bkj − akj )p) with positive values C and p.
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Persistent Fisher kernel. Persistent Fisher kernel [118] was defined based on Fisher

information distance to preserve the geometrical properties of PD, which is defined as:

κPFK(Lk, L
′
k) = e−t0dFIM (ρ(x,y,Lk),ρ(x,y,L

′
k)) (2.16)

where dFIM is Fisher Information Metrics (FIM) between PDs and t0 is a positive scale

number.

FIGURE 2.19. Advanced topology quantification with vectorization-based
methods.

Different from kernel-based methods, vectorization-based methods transform each PD into a

vector representation, thus could be fit into a more wide range of machine learning applica-

tions.

Betti curve. Betti curve [119] is a one-dimensional piecewise piecewise-constant function

computed from rank function of persistent diagram. It is a vector of points sampled evenly in

a given range.

Persistence Landscape. Persistent Landscape [120] is generated by repeating the binning

process for m times and return m set of sampled values as features.

Persistence Image. Persistence Image [121] computed image-based vector representations

that lived in Euclidean space by generating a weighted sum of Gaussians from PD.
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2.6 Medical Applications of Multimodal Fusion

Multimodality data fusion is a promising research direction with a wide range of practical

applications in the medical domain, especially to support clinical decisions, guide individual-

ized medicine of oncological and neurological diseases. Generally, these applications can

be categorized as three groups, including diagnostic classification, prognostic prediction and

unsupervised biomarker identification. Prognostic prediction can be further divided into

prognostic classification and regression according to the data type of prediction outcome.

2.6.1 Diagnostic Classification

Multimodal fusion can assist with automated diagnostic decisions, such as differential dia-

gnosis, tumor malignancy prediction, tumor staging, tumor subtyping. Specifically, multi-view

connectone data have been utilized to support the differential diagnosis of Autism Spectrum

Disorder (ASD) and Normal Control (NC) patients [122]. PET/CT images are fused for

computer-aided prediction of tumor malignancy of lymphoma [123]. For prediction of tumor

staging, multi-parametric T1/T2 MRI have been fused for head-and-neck cancer [124] while

PET/CT have been integrated for lung cancer [125]. Lastly, PET/CT images have also been

used for tumor subtyping of breast cancer, by predicting the moleduclar characteristics such

as ET, PR, Ki67 and HER4 [126].

2.6.2 Prognostic Classification

Prognostic classification refers to applications of multimodal fusion for predicting categor-

ical labels. Such applications include prognostic marker prediction, recurrence prediction,

metathesis prediction and therapy response prediction. Specifically, radiomics features and

dosiomics features have been utilized for the prediction of acute-phase weight loss [127], an

independent prognostic factor in lung cancer. Other examples of prognostic marker prediction

include rectal toxicity prediction in prostate cancer [128] and Isocitrate Dehydrogenase (IDH)
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prediction in brain cancer [42]. PET/CT radiomics features have been utilized for prediction

of recurrence in head-and-neck cancer [7]. For metathesis prediction, PET/CT have been

used for prediction in soft-tissue sarcomas [129] and PET/MRI have been used for lung

cancer [130]. Lastly, multimodal fusion can be used for predicting response of therapy such as

immunotherapy [131], induction chemotherapy [132] and neoadjuvant chemotherapy [133].

2.6.3 Prognostic Regression

Prognostic regression in medical applications often specifically refers to survival regression

or time-to-event analysis. Different from conventional classification or regression tasks, the

interest of survival regression (time-to-event analysis) not only in whether or not an event

occur, but also when the event occurs. The popularity of survival regression in medical

applications is due to its ability of handling censoring data, a special type of missing data

that do not experience the event during the designed follow-up time. Examples of prognostic

regression in include prediction of Overall Survival (OS), Progression-free Survival (PFS),

Disease-specific Survival (DSS) and Disease-free Survival (DFS). Overall survival is a major

application of prognostic analysis, which focuses on the period of time after the diagnosis or

treatment of a patient until its death. Alternatively, other types of prognostic analysis include

glspfs (the period after treatment until the progression of the disease), DFS (the period after

curative treatment until the recurrence of the disease) and DSS (the period after the treatment

until the death of the patient due to specific disease). The applications of prognostic regression

can be found in various of cancers including brain cancer [134], head-and-neck cancer [135],

[136], breast cancer [137] and colorectal cancer [138].

2.6.4 Unsupervised Clustering

Unsupervised biomarker identification is an emerging stream of medical applications powered

by multimodality fusion. Compared with the aforementioned diagnostic or prognostic pre-

dictions, it does not require large amount of annotated training data, which are sometimes
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TABLE 2.3. Medical applications of multimodality fusion.

Applications Task Multimodality Disease

Diagnostic Differential diagnosis Multi-view connectome ASD/NC [122]

classification Tumor malignancy prediction PET/CT Lymphoma [123]

Tumor staging T1_T2_MRI Head and neck [124]

Tumor staging PET/CT Lung cancer [125]

Tumor subtyping PET/CT Breast cancer [126]

Prognostic
classification

Prognostic marker prediction
(Acute-phase weight loss)

Radiomics and dosiomics Lung cancer [127]

Prognostic marker prediction
(Rectal toxicity)

Clinical and dosimetric
features

Prostate cancer [128]

Prognostic marker prediction
(IDH)

Multi-view features Brain cancer [42]

Recurrence prediction PET/CT Head and neck [7]

Metathesis prediction PET/CT Soft-tissue sarcomas [129]

Metathesis prediction PET/T1, PET/T2 Lung cancer [130]

Therapy response prediction
(immunotherapy)

PET/CT Lung cancer [131]

Therapy response prediction
(induction chemotherapy )

T1_T2_MRI Head and neck [132]

Therapy response prediction
(neoadjuvant chemotherapy)

T1, T2, DWI Breast cancer [133]

Prognostic Overall survial (OS) T1_MRI and Clinical Brain cancer [134]

regression Overall survial (OS) CT and clinical Head and neck [135]

Overall survial (OS) MRI and clinical Breast cancer [137]

Progression-free Survival (PFS) Multiparametric MRI Head and neck [136]

Disease-specific survival (DSS),
disease-free survival (DFS),
and overall survival (OS)

PET/CT Colorectal cancer [138]

Unsupervised
biomarker

Marker identification
(disease detection)

Multi-focus regions Age-related macular
degeneration [20]

identification Marker identification
(tumor subtype)

Multi-view radiomic
features

Breast cancer [139]

Marker identification (survival) Multi-view radiomic Colorectal cancer [140]

Marker identification (survival) PET/CT Lung cancer [141]

Marker identification (diagnosis) Hand-craft and
deep features

Lung cancer [142]

unavailable, or costly to acquire. In addition, it helps to discover new predictive biomarkers in

certain medical domains where no strong predictor has been found. Generally, the discovered
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biomarker can be used to support disease detection, tumor subtyping, survival prediction,

and tumor characterization. Specifically, multi-scale regions on retinal Optical Coherence

Tomography (OCT) imaging has been used for unsupervised identification of disease mark-

ers [20] of Age-related Macular Degeneration (AMD). OCT is an imaging technique that

relies on low-coherence light to capture imaging using optical scattering media. Multi-view

radiomics features have been utilized in marker identification of 1) tumor subtypes of breast

cancer [139] and 2) survival analysis [140]. Hand-craft features and deep learning features

have been used in an unsupervised Tumor characterization task of lung cancer [142].
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CHAPTER 3

Feature-level Fusion: Multimodal Biomarker Mining for Trustworthy

Differential Diagnosis

Multiple Sclerosis (MS) and Neuromyelitis Optica (NMO) are two common demyelinating

diseases in the Central Nervous System (CNS). Misdiagnosis of these two diseases may

delay the treatment, resulting in poor prognosis. MRI is routinely used in the differential

diagnosis of MS and NMO, however, its specificity is limited because partial lesions in brain

white matter of the two diseases share similar lesion appearance, location distribution, and

signal characteristics on MRI [143]–[146]. Therefore, it is in high demand for quantitative,

repeatable, and objective biomarkers for the differential diagnosis.

This chapter presents a feature-level fusion framework for diagnostic multimodal biomarker

mining, from multi-parametric MRI images and clinical non-imaging factors, for the dif-

ferential diagnosis of MS and NMO. A multi-level feature selection algorithm is proposed

to integrate high-throughput radiomic features extracted from T2-MRI imaging, T1-MRI

imaging with non-imaging clinical features as a relevant, generalizable and discriminative

phenotype, based on univariate Wilcoxon filter and multivariate sequential forward selection.

The diagnostic phenotype was used for constructing Multi-parametric Multivaraite Random

Forest (MM-RF) model, and interpreted from both case-level and model-level using SHAP

methods.

This chapter is organized as follows: Research motivation and dataset description are in-

troduced in Section 3.1 and 3.2, respectively. A multi-level feature selection algorithm to

select discriminative and robust features from multi-parametric MRI and clinical modalities
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is presented in Section 3.3. The experimental results and discussion are analyzed in Section

3.4 and 3.5, respectively.

3.1 Research Motivation

MS and NMO are demyelinating diseases of the CNS, which are the most common causes of

neurological disability in young people [147]. In clinical practice, the differential diagnosis

of these two diseases is still challenging. It is reported that around 30% of the misdiagnosed

MS cases were diagnosed as NMO [143]. There are several factors contributing to the

difficulty of differential diagnosis, e.g., they share overlapped features in clinical symptoms

such as myelitis, optic neuritis [147], [148], and laboratory examinations (30% of the NMO

patients had the same negative results of NMO immunoglobulin G as MS patients [149]).

Misdiagnosis can lead to unprecise treatment and sometimes even exacerbation of the disease,

as the treatment for MS differs greatly from that of NMO [150].

MRI is routinely used in the differential diagnosis of MS and NMO, however, its specificity

is limited because partial lesions in brain white matter of two diseases share similar lesion

appearance, location distribution, and signal characteristics on MRI [143]–[146]. In addition

to similar neuroimaging characteristics, another common cause of MS misdiagnosis is the

subjective visual observation and analysis, such as misinterpretation and misapplication of

abnormal MRI findings as suggested by Solomon et al. [143]. Therefore, it is in high demand

for quantitative, repeatable and objective measurements for the differential diagnosis.

Radiomics is an emerging field with a surge of interest due to its capability to extract

quantitative biomedical imaging “markers” for automated objective diagnosis [35], [151], and

potentially to foster individualized diagnosis. Empowered with machine learning, radiomics

methodology mines the valuable underlying information that could be beyond the perception

capacity of human beings and has been successfully applied for differential diagnosis of

other CNS diseases [152], [153]. Although radiomic models are able to produce promising

diagnostic results with higher accuracy, clinicians often find it difficult to interpret the results
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from machine learning models. To be clinically applicable, there is an urgent need to address

the “lacking interpretability” problem [154].

In this study, we aimed to investigate a quantitative and objective MRI-based radiomics plat-

form, equipped with individualized result interpretation, to provide clinicians with trustworthy

assistance for diagnostic differentiation.

3.2 Dataset Description

3.2.1 Patient Characteristics

This study was approved by the institutional review board of Xuanwu Hospital, Capital

Medical University, and written informed consent was obtained from all participants. Totally

116 participants were recruited including 78 relapsing-remitting MS and 38 NMO patients.

The first cohort included patients from April 2004 to December 2004 who underwent brain

scanning on 1.5T MRI (Sonata; Siemens Medical Systems, Erlangen, Germany) with an

8-channel head coil. The second cohort included patients from November 2009 to April

2014 who had brain scanning on 3T MRI (Siemens Magnetom Trio Tim System, Munich,

Germany). As a proportion of patient cohorts were recruited before the introduction of the

new MS and NMO criteria, our diagnosis of MS and NMO was based on the 2010 McDonald

criteria, and the revised NMO diagnostic criteria, respectively [155], [156]. None of these

patients who had been treated with medication within three months before the MRI was

obtained. The demographic and clinical characteristics including Expanded Disability Status

Scale (EDSS) score [157] and Disease Duration of the patients were recorded. Disease

duration is defined by the time since the diagnosis.

Seventy-eight relapsing-remitting MS patients (mean age ± SD: 36.5 years ± 10.0), 38 NMO

patients (mean age ± SD: 40.9 years ± 11.7) participated in this study. The percentages

of males out of all patients were 34.6%, 18.4%, respectively. There were no significant
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differences in sex and age between MS and NMO patients. NMO group showed a trend

towards higher EDSS score than the MS group (p = 0.005). Other demographic characteristics

of the participants were provided in Table 3.1.

TABLE 3.1. Patient characteristics of MS and NMO patients for the diagnostic
task. P values were calculated using Two-sample t-test for continuous variables
(denoted as a), and Chi-squared test for categorical variables (denoted as b).

3T MRI cohort 1.5T MRI cohort

Characteristics
MS NMO MS NMO
(n =38) (n =30) (n =40) (n =8)

Age, year, mean ± SD 35.7±9.5 41.5±10.8 37.4±10.6 38.5±15.4
Female / male 25/13 23/07 26/14 8/0

EDSS, mean ± SD 3.1±1.7 3.8±1.7 2.8±1.4 4.1±1.6
Disease duration, ± SD 62.5±56.4 61.7±56.3 50.8±50.9 84.0±67.0

month, mean

Both cohorts

Characteristics
MS NMO P
(n =78) (n =38)

Age, year, mean ± SD 36.5±10.0 40.9±11.7 0.053a

Female / male 51/27 31/07 0.114b

EDSS, mean ± SD 2.9±1.5 3.8±1.6 0.005a

Disease duration ± SD 56.8±54.1 66.4±58.4 0.396a

month, mean

3.2.2 Imaging Processing and Feature Extraction

For the MRI lesion segmentation, manual segmentation is used for both MS and NMO

patients since there is no public segmentation algorithm for NMO available. More specifically,

segmentation of hyperintense brain lesions volume on T2 sequences was performed by a

neuroradiologist with more than 9 years of experience (Jing Huang, Xuanwu Hospital) using

MRIcro software1, and validated by a senior neuroradiologist (Zhigang Qi, Xuanwu Hospital),

who had more than 20 years of experience. The Volume of Interests (ROIs) delineated on
1https://people.cas.sc.edu/rorden/mricro/
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T2 sequence were mapped to T1-MPRAGE sequence through rigid image registration to

automatically obtain the corresponding VOIs from T1-MPRAGE sequence.

In terms of feature extraction, from the VOIs of both MRI sequences, we extracted 1118

quantitative radiomic features for each sequence that embraced 18 intensity, 68 texture, 344

LoG features, and 688 wavelet features [43]. LoG and wavelet filters were applied before the

texture feature extraction with aims to reduce the impact of noise. After feature extraction,

all features were standardized to be comparable in scale. Intensity features were calculated

based on the first-order statistics of the image intensity distribution. Texture features were

computed with higher-order texture matrices such as GLCM and GLSZM to quantify lesion

heterogeneity. Filter-based features, including LoG and wavelet features were extracted from

the filtered images to enhance specific parts of images, such as sharp edges or fine texture.

3.3 Multi-Level Feature Fusion for Diagnostic Decisions

In addition to image segmentation and feature selection, the rest of radiomics pipeline

includes feature selection (phenotype building), machine learning modeling, and quantitative

interpretation of results. An overview is provided in Figure 3.1.

3.3.1 Multi-Level Feature Selection

Our Multi-level Feature Selection algorithm aims to solve two key challenges in feature

selection in the clinical context, including: 1) selecting relevant and discriminative features

from high-dimensional small-sample multimodal data, and 2) mining robust features across

MRI images with different imaging quality (e.g., MRI images with different magnetic field

strength), which is often neglected by feature selection algorithms [19]. To address these

two challenges, we design a Multi-level Feature Selection algorithm, composed of univariate-

level and multivariate-level module, to jointly explore feature relevancy, robustness and

discriminability.
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FIGURE 3.1. Flowchart of radiomics pipeline for differential diagnosis of MS
and NMO.

In univariate-level module, we design a statistical filter scheme on the basis of Wilcoxon

Rank-sum test to simultaneously select (1) robust features by testing the statistical consistency

across MRI with different image quality and (2) relevant features through calculating statistical

relevancy towards the outcome. Specifically, robust features across different magnet strength

of MRI scanners (1.5T and 3T) were first selected with Wilcoxon [158]. Then, discriminative

features were selected by assessing whether there was a significant distribution difference

between MS patients and NMO patients via Wilcoxon test [159].

In multivariate-level module, we propose a pyramid searching structure to first exploit intra-

modal feature relationships and then explore inter-modality relationships. This pyramid

searching scheme boosts feature discriminability and mining efficiency. In contrast, the

conventional feature selection often uses a flattened search space by concatenating all features

for feature selection. In specific, Random Forest-based sequential forward selection (RF-SFS)

was firstly employed to select discriminative features and construct preliminary phenotypes

50



3.3. MULTI-LEVEL FEATURE FUSION FOR DIAGNOSTIC DECISIONS

from T2, T1-MPRAGE and clinical features separately [160]. Then, a multi-parametric phen-

otype was constructed by further applying RF-SFS to a fused feature set of three preliminary

phenotypes.

Algorithm 1 Multi-level feature selection
Input: Training dataset X ∈ Rp∗q, max number of features d
Output: Selected feature set Fm

Initialize:
Split Train dateset into Xms ∈ Rm∗q and Xnmo ∈ Rn∗q.
Split Xms into Xms1.5 and Xms3.
Split Xnmo into Xnmo1.5 and Xnmo3.
F u ← ∅, Fm ← ∅
Univariate selection of robust features:
for feature f i ∈ all features F q do
sms, pms ← wilcoxon(X i

ms1.5, X
i
ms3)

snmo, pnmo ← wilcoxon(X i
nmo1.5, X

i
nmo3)

if pms > 0.05 and pnmo > 0.05 then
F u = F u ∪ f i

end if
end for
Univariate selection of relevant features:
for feature f i ∈ F u do
s, p← wilcoxon(X i

ms, X
i
nmo)

if p < 0.05 then
F u = F u ∪ f i

end if
end for
Multivariate selection of discriminative features:
while dim(Fm) <= d do
f j+ ← arg max

fj∈Fu
J(Fm ∪ f j)

Fm ← Fm ∪ f j
end while

The mathematical details of multi-level feature selection were summarized in Algorithm 1,

which is composed of univariate selection of robust features, relevant features and multivariate

selection of discriminative features. The feature selection is performed on the training data

X ∈ Rp∗q where p and q are the number of samples and features respectively. A parameter

d is required as the max number of features to select. The specific selection process can be

divided into three separated stages:
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• In univariate selection of robust features, we used Wilcoxon rank-sum test to select

features that were robust across 1.5T MRI and 3T MRI in both MS cohort (Xms1.5

and Xms3) and NMO cohort (Xnmo1.5 and Xnmo3).

• In univariate selection of relevant features, we performed Wilcoxon rank-sum test to

choose features with significant statistical differences between MS cohort (Xms) and

NMO cohort (Xnmo). The cut-off p-value was set to 0.05.

• With selected features F u from univariate analysis, we further applied sequential

forward selection in multivariate analysis to obtain the final feature set Fm.

3.3.2 Multimodal Model Construction and Validation

To compare the diagnostic performance of preliminary phenotypes of T2, T1-MPRAGE and

clinical and the multi-parametric phenotype, three preliminary Multivariate Random Forest

models and Multi-parametric Multivariate Random Forest model (MM-RF) were constructed

based on the corresponding phenotype respectively. To handle data imbalance, balanced

bootstrap mechanism and balanced weighting [161] were incorporated into the Random Forest

model. Common evaluation metrics for imbalanced datasets were used for assessing the

diagnostic performance of models, including ROC_AUC, accuracy, sensitivity, and specificity.

The stability of diagnostic performance was assessed with the mean of Relative Standard

Deviation (RSD) of ROC_AUC. The lower the ROC_AUC value, the higher the stability.

To validate the feature selection, our Multi-level Feature Selection algorithm was compared

with 8 state-of-the-art feature selection algorithms that were commonly used in radiomics

studies [162]–[164]. These algorithms included three Filter Selection methods (Wilcoxon

filter [165], Anova filter [166], mRMR filter [167]), two Wrapper Selection methods (Random

Forest (RF) wrapper [168], and SFS wrapper [59]), and three Embedded Selection methods

(Lasso [66], ElasticNet [169], RFE_SVM [67]).

To rigorously validate the diagnostic performance of the imaging phenotypes, both 10-

fold cross-validation on the training set and independent validation on the testing set were
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computed. From a total of 116 patients, 86 patients were randomly selected to form the

training set, while the rest 30 patients was used for independent testing. Bootstrapping with

1000 times resampling was used in the independent validation.

All statistical analysis was two-sided, with the significance level of 0.05. Multi-level statistical

analysis was performed with “scipy”, “sklearn”, “mlxtend”, “mifs”, “imblearn” modules in

Python 3.6. Correlation analysis was performed in R 3.5.1. Bootstrapping with 1000 times

resampling was used in the independent validation.

3.3.3 Quantitative Interpretation of Results

Lack of interpretability is a key challenge as the basis for for trustworthy decision mak-

ing [170]. To provide quantitative interpretation, we utilized SHAP method [171] to analyse

the differential decisions of our MM-RF model at both individual-level and model-level.

SHAP is an abbreviation of Shapley Additive exPlanations by Lundberg and Lee et al.

designed to explain individual predictions in machine learning. The individual-level interpret-

ation explains the output of an individual prediction by visualizing the important features in

the phenotype and unveiling their importance for discrimination decisions. The model-level

interpretation computed the average feature importance across all patients and revealed the

relationship between the feature value and its importance.

3.4 Experimental Results

3.4.1 Clinical Visual Analysis

Three neuroradiologists with 5, 7, and 10 years of MRI reading experience were involved

in the visual assessment of the brain lesion and differential classification of MS and NMO

patients. The assessment was based on T1-MPRAGE and T2 MRI sequences, while the
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clinical data (age, sex, disease duration and EDSS score) was allowed to refer during the

assessment. Each neuroradiologist provided a diagnostic result for each patient based on

their own clinical experience. In case of any discrepancy, it shall be jointly reviewed to reach

an agreement. The assessments such as Area Under the Curve (AUC), diagnosis accuracy,

sensitivity, and specificity were calculated.

The AUC of the visual analysis was 0.683 with 95% Confidence Interval (CI) 0.571-0.789.

The visual analysis successfully diagnosed 61 out of 86 patients, with accuracy reaching 0.709

(95% CI: 0.616-0.802). In the misdiagnosed 25 cases, 10 NMO patients were misdiagnosed

as MS while 15 MS patients were misdiagnosed as NMO. Its sensitivity and specificity were

0.615 and 0.750 respectively.

3.4.2 Radiomic Feature Selection and Phenotype Construction

Figure 3.2 demonstrates the differentiation ability of top univariately selected features and

clinical factors. It shows that T2 and MPR radiomics features generally achieved higher AUC

than clinical features at univariate level. Figure 3.3 illustrates the process of multivariate SFS

feature selection, which shows multivariate imaging phenotypes had higher discriminability

compared with clinical features. The multi-parametric phenotype was established with three

T2, four T1-MPRAGE, and one clinical feature. These eight features and their corresponding

feature identification number (id) were H-T2-waveletHHL-glcm-Idn (116), H-T2-log2-glcm-

Autocorrelation (18), H-T2-waveletLLH-glcm-JE (551), H-MPR-waveletLHL-glszm-GLNU

(500), H-MPR-log4-gldm-SDLGLE (225), H- MPR-log3-firstorder-Median (95), H-MPR-

log5-glcm-Idmn (287), and EDSS.

In univariate feature selection, 450 T2 and 117 T1-MPRAGE robust features across 1.5T and

3T MR images were firstly selected from 2236 radiomic features. After that, 313 T2 and 86

T1-MPRAGE discriminative features were identified from robust features for differentiation

of MS and NMO. Seven T2 features, four T1-MPRAGE features, and one clinical feature were

selected from 313 T2, 86 T1-MPRAGE features and four clinical features respectively, to form
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FIGURE 3.2. Results of univariate feature selection and analysis. Top six T2
and T1-MPRAGE features and four clinical factors were selected and ranked
according to AUC. The asterisk (*) represents statistical significance (p<0.05)
with Wilcoxon test.

the corresponding preliminary phenotypes. From 12 fused features from T2, T1-MPRAGE

and clinical phenotypes, the multi-parametric phenotype was established with three T2, four

T1-MPRAGE and one clinical feature.

3.4.3 Discriminability of Multi-parametric Phenotype

The multi-parametric phenotype was evaluated with both 10-fold cross-validation and inde-

pendent testing. In cross-validation, the multi-parametric phenotype achieved AUC 0.826

55



3.4. EXPERIMENTAL RESULTS

FIGURE 3.3. Results of multivariate feature selection. The algorithm selected
a subset of features having the highest AUC. The arrows indicate the stopping
points where the highest AUC was achieved.

(95% CI: 0.732-0.912), which was significantly higher than that of visual analysis (p = 0.016).

The diagnostic accuracy was 0.849 (95% CI: 0.767-0.919), higher than that of visual analysis

(p = 0.008). Its sensitivity and specificity were 0.769 and 0.883 respectively.

In the independent testing, the multi-parametric phenotype based on Random Forest model

achieved AUC 0.902 ± 0.027, which was higher than the performance of preliminary T2,

T1-MPRAGE and clinical phenotypes (Figure 3.4). The diagnostic AUC of T2, T1-MPRAGE

and clinical phenotype was 0.852 ± 0.053, 0.880 ± 0.033 and 0.573 ± 0.055 respectively.

56



3.4. EXPERIMENTAL RESULTS

FIGURE 3.4. Comparison of diagnostic performance of T2, T1-MPRAGE,
clinical phenotypes and the multi-parametric phenotype in the independent
testing.

Figure 3.4 also illustrates that multi-parametric phenotype achieved better stability of dia-

gnostic performance. Other assessments of the multi-parametric phenotype such as diagnostic

accuracy, sensitivity, and specificity were 0.871 ± 0.044, 0.873 ± 0.083 and 0.869 ± 0.051,

respectively, as reported in Table 3.2. To assess the impact of 3T and 1.5T MRI, a further

experiment showed that high diagnostic accuracy were achieved by both 3T (0.856 ± 0.046)

and 1.5T (0.976 ± 0.074) cohort (p < 0.05).

3.4.4 Evaluation of Multi-level Feature Selection Compared with 8

state-of-the-art Methods

Table 2 shows the performance comparison of our Multi-level Feature Selection methods with

8 state-of-the-art methods. From a combined feature pool of T2, T1-MPR and clinical features,
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TABLE 3.2. Diagnostic performance of our method compared with 8 State-of-
the-art (SOTA) feature selection algorithms. Abbreviations: AUC = area under
the curve; Anova = Analysis of variance; mRMR = Maximum Relevance
Minimum Redundancy; RF = Random Forest; SFS = Sequential Forward
Selection; Lasso = Least Absolute Shrinkage and Selection Operator; RFE =
Recursive Feature Elimination.

Category Method Roc_auc Sensitivity Specificity Accuracy

Filter Wilcoxon [165] 0.625 ± 0.120 0.604 ± 0.145 0.585 ± 0.137 0.593 ± 0.104
Filter Anova [166] 0.879 ± 0.037 0.883 ± 0.042 0.726 ± 0.067 0.789 ± 0.036
Filter mRMR [167] 0.846 ± 0.041 0.823 ± 0.091 0.754 ± 0.076 0.782 ± 0.050
Wrapper RF [168] 0.846 ± 0.041 0.828 ± 0.091 0.750 ± 0.075 0.781 ± 0.048
Wrapper SFS [59] 0.858 ± 0.038 0.782 ± 0.073 0.829 ± 0.121 0.810 ± 0.067
Embedded Lasso [66] 0.873 ± 0.050 0.884 ± 0.046 0.737 ± 0.087 0.796 ± 0.056
Embedded ElasticNet [169] 0.850 ± 0.064 0.868 ± 0.070 0.719 ± 0.135 0.779 ± 0.086
Embedded RFE [67] 0.814 ± 0.072 0.846 ± 0.058 0.612 ± 0.141 0.705 ± 0.090

Ours Clinical 0.573 ± 0.055 0.716 ± 0.190 0.446 ± 0.179 0.554 ± 0.070
Ours T2 MRI 0.852 ± 0.053 0.887 ± 0.067 0.733 ± 0.057 0.795 ± 0.045
Ours T1-MPR MRI 0.880 ± 0.033 0.798 ± 0.102 0.859 ± 0.073 0.835 ± 0.060
Ours multimodality 0.902 ± 0.027 0.873 ± 0.083 0.869 ± 0.051 0.871 ± 0.044

these comparison methods selected at most 8 features as in our method, and were evaluated

with the same Random Forest model as ours. The experimental results in Table 2 showed

that our Multi-Level Feature Selection algorithm outperformed these SOTA methods in

comparison. Our multiparametric phenotype achieved highest AUC 0.902 ± 0.027, followed

by our MPR phenotype (AUC 0.880 ± 0.033) and Anova Filter (AUC 0.879 ± 0.037).

3.4.5 Case Studies for Individual-level Interpretation

As illustrated in Figure 3.5-3.6, the two selected cases included (a) an MS case and (b)

an NMO case, whose lesions were difficult to differentiate due to similar lesion location

and signal characteristics. With the extracted phenotype from VOIs in the MR images, our

MM-RF classified the cases correctly with 89% confidence for MS case and NMO case with

86% confidence respectively. For the MS case, our case-level interpretation revealed that H-

MPR-log3-firstorder-Median, H-MPR-waveletLHL-glszm-GLNU, and EDSS were the three

most significant contributors for accurate classification, with 29.86%, 27.61% and 21.07%
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FIGURE 3.5. Results of individual-level interpretation (MS). For each case,
visualization of three key radiomic features were provided. The classification
results were computed with Random Forest model. Lastly, the classification
results were explained by revealing feature contribution.

contribution respectively. As a contrast, for the NMO case, three T1-MPRAGE features

(H-MPR-log3-firstorder-Median, H- MPR-log4-gldm-SDLGLE, H-MPR-waveletLHL-glszm-

GLNU) were three major contributors, contributing 25.06%, 24.78%, 17.46% towards the

correct decision.

3.4.6 Model-level Result Interpretation

Model-level interpretation investigated the feature importance and the relationship between

feature value and its importance from the perspective of all patients. Figure 3.7A shows

case-level interpretation results of all patients in one graph, which visualizes how feature

contributions differ for diverse cases. Of all eight features, H-MPR-log4-gldm-SDLGLE,

H-MPR-log3-firstorder-Median, and H-T2-waveletLLH-glcm-JE were the top three important
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FIGURE 3.6. Results of individual-level interpretation (NMO).

features in the model decision making, as shown in Figure 3.7B and 4C. In terms of relation-

ship between the feature value and its importance, there was a negative linear relationship for

H-T2-waveletLLH-glcm-JE (Figure 3.7D) and H-MPR-log4-gldm-SDLGLE (Figure 3.7E),

and a positive linear relationship for H-MPR-log3-firstorder-Median (Figure 3.7F).

3.4.7 Association of Selected Radiomic Features with Clinical Variables

As shown in Figure 3.8, sex was found significantly negatively correlated with H-MPR-log4-

gldm-SDLGLE (p = 0.008), while positively correlated with H-T2-log2-glcm-Autocorrelation

(p = 0.035). EDSS scores was significantly positively correlated with H-T2-waveletLLH-

glcm-JE (p = 0.036). Age was significantly negatively correlated with H-MPR-waveletLHL-

glszm-GLNU (p = 0.007), and H-T2-waveletHHL-glcm-Idn (p = 0.010), and H-T2-log2-

glcm-Autocoorelation (p = 0.035).
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FIGURE 3.7. Results of model-level interpretation. (A) Visualization of
feature contribution for all individual cases. Each vertical line corresponds to
interpretation for individual diagnosis. Red represents a diagnosis of MS, blue
for NMO (B) Summary plot of feature contribution for all individual cases
(C) Mean contribution of features in the multi-parametric phenotype (D-F)
Relationship between feature value and feature importance. The straight lines
were obtained through curve fitting through linear regression.

3.5 Discussion

In this research, we extracted the imaging phenotype from multi-parametric MRI sequences

with the machine learning framework for automated differentiating MS from NMO to provide

an additional reference for timely differential diagnostic decision making. The major findings

of this study include: (1) our multi-parametric phenotype was able to achieve high differential

diagnostic performance, generalizability and robustness, mined by our designed Multi-level

Feature Selection algorithm; (2) our radiomics platform provided individualized differential
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FIGURE 3.8. Results of correlation analysis. Correlation matrix was com-
puted for seven radiomic features in the multi-parametric phenotype and four
clinical features (age, sex, DD, EDSS). Red and blue bars show the positive
and negtive correlation respectively. The asterisk (*) represents statistical
significance.

diagnosis and interpretation which is illustrated with a case study; and (3) the correlation

between radiomic and clinical features was revealed to enhance trust in radiomic features.

The first finding of our study is that the multi-parametric phenotype demonstrated high

differential diagnostic performance, which statistically outperformed visual analysis in terms

of AUC (0.826 vs. 0.683, p = 0.016), and the diagnosis accuracy (0.849 vs. 0.709, p =

0.008) in 10-fold cross-validation. The accuracy of clinical visual analysis in our study

complied with the studies [172]–[176] with the reported accuracy ranging from 0.573 to

0.739. In this study, doctors misdiagnosed about 25% of patients with MS as NMO, similar

to the previous study [143], which justified the machine learning model can provide valuable

assistance for clinical decisions. Remarkably, the multi-parametric phenotype demonstrated

the highest discriminative ability (0.902± 0.027) in the independent testing, outperforming the

discriminative performance of the T2 (AUC 0.852), T1-MPRAGE (AUC 0.880) and clinical

phenotypes (AUC 0.573). It indicates that the multi-parametric phenotype successfully
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fused pathological characteristics by fusion of information about edema, demyelination in

T2 images, axonal damage in T1-MPRAGE images [177] and clinical information. This

finding is consistent with previous studies in the differential diagnosis of brain tumors where

the model embracing MRI-based radiomic features and clinical features can achieve the

highest classification accuracy [178]. The present study, for the first time, constructs a multi-

parametric phenotype including T2, T1-MPRAGE and clinical information for differentiating

MS from NMO.

Our Multi-level Feature Selection algorithm outperforms SOTA feature selection methods

because the proposed algorithm comprehensively considers 1) feature robustness across MRI

images with different magnetic fields, 2) feature relevancy towards the outcome, and 3) intra-

modal and inter-modal feature discriminability. Comparatively, Filter methods [165]–[167]

select features using the defined feature relevancy such as mutual information; however, these

methods may not take account of the interaction with the learning algorithm, and hence

feature discriminability might not be optimized [55]. To address this issue, both Wrapper [59],

[168] and Embedded [66], [67], [169] methods involve learning algorithms to assess the

predictive performance of feature combinations. However, these methods may be prone to

overfitting due to the dependency of learning algorithm [179]. In contrast, our univariate-level

selection selects robust and relevant features based on Wilcoxon testing, which addresses

feature generalizability issue across different MRI imaging qualities (as analysed in [19])

and facilitates to alleviate the risk of overfitting. Further, our multivariate-level selection

boosts feature discriminability by exploiting intra-modal feature interaction and inter-modality

interaction using a pyramid search structure. Due to the reduced risk of overfitting and boosted

feature discriminability, our algorithm outperforms SOTA methods.

Secondly, individual-level interpretation is provided to articulate machine learning-based

decision making for an individual patient and thus to facilitate the trustworthy and individu-

alized differential diagnosis. It is achieved by graphical visualization of important features

and unveiling of the quantitative contribution of features in the machine learning models to

facilitate understanding on both radiomic features and model decisions, as illustrated in case
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studies (Figure 3.5-3.6). Specifically, for the case in Figure 3.5, this patient was correctly

classified as MS with 89% confidence by our phenotype, in which the top three important

features were two T1-MPRAGE features and EDSS. And for the case in Figure 3.6, three

T1-MPRAGE radiomic features were major contributors. Interpretability enables doctors

to gain insight why those diagnosis is made, thus assisting clinicians to provide precise

differential diagnosis [136], [180].

Furthermore, the trust in radiomic features can be enhanced by revealing its connection with

the clinical information. Mild correlations were observed between the radiomic features

and clinical features (age, sex, and EDSS). Interestingly, we found that one T2 feature

was related to EDSS (Figure 3.8). The reason underlying the correlation between EDSS

and T2, T1-MPRAGE features might be that EDSS was found correlated with lesion load

and brain atrophy [181], [182], while T2 and T1-MPRAGE images could also reflect the

information of lesion and brain structure respectively. As a result, we may potentially use

radiomic features to objectively and conveniently assist EDSS in evaluating treatment and

disability management in the future. Although the above assumptions are preliminary, our

study provides a perspective for understanding the clinical significance of radiomic features,

in response to the urgent clinical need [183].

We suggest that our multi-parametric phenotype may serve as an objective, quantitative tool to

assist the clinical differential diagnosis of MS and NMO. Compared with current diagnostic

criteria of these two diseases using MR, our phenotype holds advantages in three aspects: (1)

Instead of diagnosis by naked eye based on vague clinical experience, our multi-parametric

phenotype provided a quantitative solution by feature extraction of medical images, thus

help complement and clarify the current diagnostic criteria. (2) The phenotype reduces

inter-observer variety and subjectivity because the whole system is highly automated. (3) The

current model was able to achieve high diagnostic accuracy with conventional MR sequence,

which is simple and operable in the clinical practice [184].
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3.6 Chapter Summary

In this chapter, we present a feature-level fusion framework, based on a Multi-level Feature

Selection algorithm, to integrate multiparametric MRI images and clinical non-imaging

factors for differential diagnosis of MS and NMO. The designed multi-level feature selection

mines the multimodal phenotype, which are relevant to the clinical outcome, robust across

1.5T and 3T MRI by leveraging univariate-level statistical analysis and multivariate-level

feature interaction from inter-modalality and intra-modalality. Effective interpretation of

mined multimodal phenotype, coupled with machine learning methods, can be used as an

adjunct to traditional radiology to support the diagnostic process in the clinical practice.
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CHAPTER 4

Feature-level Fusion: Multimodal Biomarker Mining for Prognostic

Survival Analysis

Identifying the high risk of recurrence in patients with lung cancer and death would be valuable

for guiding the enhanced therapy. Therefore, individualized evaluation of the prognosis for

this complex and heterogenous entity is particularly important. Computational feature fusion

maximizes the information obtaining from the diagnostic images acquired in routine clinical

practice and has proven promising results in the diagnosis, response prediction and survival

prognosis for several types of cancer patients [135]–[137]. However, these radiomic models

have not taken into account the clinically indispensable clinico-pathological or hematological

predictors in locally advanced non-small cell lung cancer (LA-NSCLC) studies, and the

prognostic performance of radiomics is yet to further improve.

This chapter presents a feature-level fusion framework for prognostic multimodal biomarker

mining, from high-dimensional CT imaging features, clinical features, and hematological

features, for survival prediction of LA-NSCLC. The proposed integrative feature selection

algorithm is proposed to integrate high-dimensional CT imaging features, clinical features,

and hematological features as a prognostic, representative, and non-redundant radiomic

signature, which is based on consensus clustering and survival regression. The predictive

integrated radiomic signature was subsequently fitted into a final prognostic model using both

the Cox Proportional Hazard (CPH) model and the Random Survival Forest (RSF) model. A

multimodality nomogram was then established from the fitting model and was cross-validated.

Finally, calibration curves were generated with the predicted versus actual survival status.
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4.1. RESEARCH MOTIVATION

This chapter is organized as follows: Research motivation and dataset description are in-

troduced in Section 4.1 and 4.2, respectively. An Integrative Clustering and Supervised

(ICS) feature selection algorithm is presented in Section 4.3. The experimental results and

discussion are analyzed in Section 4.4 and 4.5, respectively.

4.1 Research Motivation

Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases, with approxim-

ately one third of those being defined as LA-NSCLC, classified as stage III NSCLC [185],

[186]. Although concurrent chemotherapy and radiotherapy (CCRT) is considered the stand-

ard treatment, outcomes of LA-NSCLC patients remain poor, with a median survival of

12-23.2 months [187]–[189]. TNM is a cancer staging system, in which T (tumor) indicates

the depth of tumor invasion, N (node) indicates whether lymph nodes are affected, M (meta-

stasis) indicates whether the cancer has spread to other parts of the body. The TNM-based

one-size-fits-all strategy might not be suitable for all patients. Identification of patients at

high risk of recurrence and death would be valuable for guiding the enhanced therapy. There-

fore, individualized evaluation of the prognosis for this complex and heterogenous entity is

particularly important.

Computational radiomics analysis maximizes the information obtaining from the diagnostic

images acquired in routine clinical practice and has proven promising results in the diagnosis,

response prediction and survival prognosis for several types of cancer patients [43], [151],

[190]. In NSCLC, from CT images, the quantitative measure of cancer volume reduction

after chemoradiation provided more clinical information on tumor response than conventional

response assessment (Response Evaluation Criteria in Solid Tumors, RECIST) [191]. In

addition, 18F-fluorodeoxyglucose (FDG) PET features of lung cancer were found to be signi-

ficantly correlated with T stages, N status, pathological stages, as well as tumor grades [192]–

[195]. Several attempts have been made to improve the performance of predictive models. For

instance, a grading system combine neutrophil and SUVpeak in PET images was developed
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by Schernberg et al. , which could effectively stratify patients with better overall survival

(hr = 5.8, p = 0.001) [196]. However, these radiomic models have not taken into account

the clinically indispensable clinico-pathological or hematological predictors in LA-NSCLC

studies, and the prognostic performance of radiomics is yet to further improve.

Emerging evidence demonstrated that hematological inflammatory cells could effectively

predict the survival of patients with LA-NSCLC [197]. The mutual interaction between tumor

and inflammatory cells promoted the evolution and development of cancers. On one hand,

NSCLC could drive the stimulation of inflammatory cells in the tumor microenvironment

as well as that in systemic circulation systems. On the other hand, these inflammatory cells

could play a pivotal role in the initiation and development of NSCLC [198], [199]. Due to

the important roles of systemic inflammatory cells in the biology of NSCLC, our hypothesis

is that the incorporation of these inflammatory parameters with current radiomic imaging

features could improve the predictive capacity.

4.2 Dataset Description

4.2.1 Characteristics of Patients

This study retrospectively includes 118 cases of LA-NSCLC patients from Shandong Can-

cer Hospital between January 2014 and January 2016. The institutional review board of

Shandong Cancer Hospital has approved this retrospective study of these patients. Inclusion

criteria include: patients were aged 18 years or older, were diagnosed as stage III NSCLC

confirmed by histopathology and radiographic exams according to the AJCC 8th edition TNM

classification and staging system; received CCRT without prior therapy or the operations. The

exclusion criteria are patients with 1) autoimmune disease; 2) active lung infections judged by

clinicians with the consideration of fever, rales or the abnormal blood test findings of abruptly

erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and neutrophiles; 3) the
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pneumonitis or abcesses not related to the tumor; or 4) other infections such as gastroenteritis,

appendicitis, and cholecystitis.

For all of the 118 LA-NSCLC cases, 48 patients were TNM stage IIIA (40.7%), 58 cases

were stage IIIB (49.2%) and 12 patients were stage IIIC (10.2%). The median survival of

these patients was 19.8 months (95% confidence interval: 4.0-35.6 months). Other clinico-

pathological characteristics were shown in Table 4.1.

4.2.2 Clinicopathological and Hematological Parameters

For each patient, we collected the clinico-pathological characteristics including age at dia-

gnosis, gender, tumor location, tumor size, node metastasis status, histological type, KPS,

radiation type and doses, concurrent chemotherapy type, usage of consolidative chemother-

apy, pre- and post-therapeutical serum tumor biomarkers including CEA, NSE, and Cyfra

211. KPS is to quantify the patient’s ability to tolerate therapy in terms of their physical

function and ability to take care of themselves, and to perform daily activities. Hematological

inflammatory variables included: levels of monocytes, neutrophils, lymphocytes, hemoglobin,

as well as platelet counts. Also, NLR, LMR, PLR were calculated for each patient. For each

patient, both the pre- and post-therapeutical hematological variables (“1” and “2” were used

as markers, respectively) were obtained.

4.2.3 Follow-up and Prognostic Evaluations

Follow-up data were collected from the most recent medical records of these patients, in-

cluding the information of physical exams, complete blood count, blood biochemistry, tumor

biomarkers, thoracic CT scans, and abdominal ultrasound. In addition, we also acquired the

survival information of these patients through telephone enquiries, medical insurance records

as well as death certificates. Overall survival in this study was defined as the period from the

date of admission to the death date regardless of specific causes of death.
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TABLE 4.1. Patient characteristics of lung cancer for the prognostic task.

Characteristic (N=118) Classification N %

Age (years)
≤60 62 52.5
>60 56 47.5

Gender
Male 104 88.1
Female 14 11.9

KPS
≥80 112 94.9
<80 6 5.1

Location
Central 82 69.5
Peripheral 36 30.5

Histology subtype
SCC 66 55.9
Non-SCC 52 44.1

T stage
T1 8 6.8
T2 37 31.3
T3 21 17.8
T4 52 44.1

N stage
N0 12 10.1
N1 14 11.9
N2 57 48.3
N3 35 29.7

Radiotherapy technique
3D-CRT 50 42.4
IMRT 68 57.6

Radiotherapy doze (Gy)
≤60 96 81.4
>60 22 18.6

Concurrent chemotherapy
EP 13 11
PC 39 33.1
Others 66 55.9
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4.3 Integrative Clutering and Supervised (ICS) Feature

Selection for Prognostic Prediction

The overall workflow of this study is illustrated in Figure 4.1. After Feature Acquisition

of imaging and non-imaging factors (Figure 4.1a), an ICS Feature Selection algorithm

was developed to select the most informative, representative and non-redundant features

from high-dimensional multi-view features (Figure 4.1b). In our method, the unsupervised

clustering contributed to reducing redundancy by exploring the correlation among features,

while supervised learning selects informative and representative features by examining the

relation between features and outputs. The method was separately published as a conference

paper [200]. After feature selection, the prognostic features were fitted into one predictive

model using CPH and RSF models, respectively (Figure 4.1c). Lastly, nomograms for 1-year

and 2-year overall survival were generated for these patients (Figure 4.1d).

4.3.1 Image Segmentation and Radiomic Feature Extraction

For each patient in this study, we collected both pre- and post- CCRT contrast-enhanced

CT images using a Somatom Definition AS (Siemens Healthineers). The CT parameters

were as follows: tube voltage, 120 kVp; tube current, 200 mAs; detector, 64 × 0.625 mm;

beam pitch, 1.5. First of all, three-dimensional Gross Tumor Volume (GTV) was interactively

segmented and delineated using an in-house segmentation software based on Random Walker

algorithm [201], [202]. This delineation procedure was performed twice on all CT images

with the interval about 2 months between the first and second evaluations to reduce the

operator’s biases. Delineation is the action of manually segmenting the regions of interest on

medical imaging.

In total, 1045 comprehensive CT image features, including intensity, shape, texture, and

wavelets [43], were extracted from 118 LA-NSCLC cases. Intensity features were calculated

by the first order statistics through the tumor voxel intensity distributions. Shape features were
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d) Nomogram Generation
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FIGURE 4.1. Workflow of generation of a comprehensive radiomic based
nomogram.

extracted to reflect 3D geometric features of the tumor, such as surface area, compactness,

and tumor volume. Texture features were described using texture matrix such as GLCM and

GLSZM to quantify internal tumor heterogeneity and using Log filters to depict different

tumor coarseness with different sigma values [203]. Wavelet features could extract intensity
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and texture features in the frequency domain using wavelet decomposition on the original

images. Specifically, there were 18 first-order intensity features, 13 shape features, 68 texture

features, 258 log features and 688 wavelet features extracted. For the implementation of

feature extraction, first-order intensity features were extracted with 1000 voxel array shift.

LoG features were extracted with sigma set to 1mm, 3mm, and 5mm. Wavelet features were

extracted using "coif" through 8 channels including LLL, LLH, LHL, LHH, HHH, HLL,

HLH, HHL.

4.3.2 ICS Feature Selection for Prognostic Prediction

The ICS Feature Selection was proposed in our paper [200] and contained four three ma-

jor components: Reproducible Feature Selection, Prognostic Feature Selection, and Non-

redundant Feature Selection. The workflow of ICS Feature Selection was illustrated in

Figure 4.2. Firstly, reproducible features were selected from two batches of features extracted

from two delineations, in which consistency was assessed with Pearson correlation analysis.

Secondly, Prognostic Feature Selection was aimed to select informative and representative

features. To this aim, consensus clustering method, combined with CPH, was then used for

the selection of prognostic features based on the p-value ranking. Clustering combined with

RSF, an ensemble tree method for analyzing right-censored survival data was used to generate

trees, and was performed for comparison. Thirdly, redundancy still remaining in the selected

feature subsets was further eliminated using pairwise correlation analysis.

Reproducible feature selection. Reproducibility refers to the feature characteristic of

retaining high correlation across different batches of delineations, which is important in

clinical tasks where inter-observer variety presents. To select reproducible features, Pearson

correlation was deployed to compute the association of individual features across two batches

of delineations. Pearson correlation is a classic linear correlation measurement. Denote a

certain feature computed from the first delineation as X and the same feature from the second
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delineation as Y, Pearson correlation is formulated as:

r =

∑
i(xi − x̂)(yi − ŷ)√∑

i(xi − x̂)2
√∑

i(yi − ŷ)2
(4.1)

where x̂ and ŷ are the mean values of variables X and Y . The value of r ranges from -1 to 1,

where 1 and -1 means that two variables are totally correlated while 0 means two variables

are completely independent. After computing Pearson correlation for each feature across

delineations, reproducible features were identified using a correlation threshold.

Prognostic feature selection. Prognostic Feature Selection was the most important module

in our ICS Feature Selection algorithm. Two criteria were defined for selecting prognostic

features - informativeness and representativeness. Informative features refer to the features

with the outstanding capability to predict the clinical outcome, i.e. time-to-event survival

label for survival prediction. Representative features are defined as the ability to represent its

natural grouping and predict the output, as well as with low redundancy.

Informative (Prognostic) feature selection. To identify and rank informative features,

supervised feature selection was deployed because of its excellent performance to discover the

feature relevance to the output. In our method, we used univariate Cox selection [57] as our

supervised feature selection method, a classical wrapper technique designed for time-to-event

prediction. The univariate Cox selection was based on CPH model, ranking features by their

statistical significance.

The CPH model is one of the most general regression models because it does not assume the

underlying survival distribution. The CPH uses the hazard function as a response, which is

represented as:

h(t, x) = h0(t)exp(β
′x) (4.2)

where h0 is an arbitrary baseline hazard and β = (β1 , . . . , βp )′ represents an array of un-

known regression coefficients. As h0 is not dependent of covariates, the regression coefficients
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β can be obtained by maximizing the partial log-likelihood as:

L(β) =
k∏
i=1

exp(β′xi)∑
l∈R(ti)

exp(β′xl)
(4.3)

where k denotes distinct ordered survival times and xi denotes the covariate value with distinct

ordered survival times.

In our method, we applied univariate CPH model on individual features to rank the importance

of each feature. The importance score was the p-value computed with Wald test, representing

the statistical significance of the features. Then, feature informativeness rank can be obtained

by sorting the p-values of features ascendingly, where features with low p-values are identified

as informative features.

Representative (Prognostic) feature selection. To select representative features, we firstly

divided the full feature space into several highly correlated feature clusters and assigned

each feature a cluster number using clustering algorithms. The unsupervised clustering is

commonly used to reveal hidden structure based on inherent feature information in the datasets

without labels. Then, the representative features were selected from each cluster according to

the feature informativeness rank obtained by supervised feature selection.

Consensus clustering [204] was adopted in our framework because it could determine the

number of clusters within the algorithm and use resampling to improve the stability, robustness,

scalability of clustering results. This clustering method determined the final clusters using the

consensus across multiple runs of a base clustering algorithm, analogous to ensemble learning

in supervised learning. To fit the consensus clustering algorithm, the data were required to

be pre-processed, including feature omitting and feature standardization. Then, the number

of clusters was computed with the plan that gave the highest median cluster consensus on

all clusters. Cluster consensus was defined as the mean of consensus between all pairs of

features from the same cluster.
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Non-redundant feature selection. Non-redundant feature subsets refer to as small feature

subsets as possible with minimum internal correlation within the subset. Although the

redundancy had been significantly reduced by selecting representatives from highly correlated

feature clusters, there still existed inter-cluster correlation among feature representatives for

each cluster. Therefore, we used pairwise correlation analysis to further remove redundancy.

The pairwise correlation analysis assessed the redundancy by constructing a Pearson Correl-

ation Matrix (PCM) for every pair of features in the representative feature subsets. Given

selected variables P and Q from the feature subset, the computation of Pearson Correlation

was similar as Equation 4.1:

r′ =

∑
i(pi − p̂)(qi − q̂)√∑

i(pi − p̂)2
√∑

i(qi − q̂)2
(4.4)

where p̂ and q̂ were the mean values of variables X and Y. As the Pearson correlation

was a symmetrical measure for the two variables, the PCM was simplified by removing the

symmetrical upper triangle in the matrix. Based on the simplified PCM, we further reduced the

redundancy using following criteria: Firstly, identify the feature pairs with Pearson correlation

higher than a threshold. Secondly, preserve the one with higher feature informativeness (low

p-value) in each pair.

4.3.3 Prognostic Model and Nomogram Construction

Prognostic model establishment. Multimodal features and parameters including radiomic,

clinico-pathological, as well as inflammatory features were fused into a single predictive

model based on multivariate CPH model. Performance of this model was evaluated with the

concordance index (C-index). For comparison, in the RSF model, the possible split points for

each variable were examined to find the optimal split method.

Cross-validation. Bootstrap based cross-validation was applied to assess and compare the

discriminative power of CPH model and RSF model. These prediction models were trained

on 10% of total bootstrap samples drawn with replacement from the original data while tested
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in the observations that were not in the training sets. Then, the C-index was computed for

different timepoints (with a constant interval of 1 month) and the mean of those C-indexes

were calculated to represent the model discriminative ability [205].

Nomogram construction. Nomogram, a more interpretable, graphical representation of

predictive models that can include different types of predictive markers, has become the focus

of interest in the cancer research in recent years [206]–[208]. Model with better C-index was

chosen for further nomogram construction. Calibration curves of the nomogram were then

drawn for 1-year and 2-year overall survival of the patients. The calibration curves illustrated

both survival probabilities predicted by the nomogram and the observed probabilities.

All statistical analyses are two-sided, with the significance level of 0.05. Statistical analyses

were performed with “rms”, “Hmisc”, “survival”, “pec”, as well as “randomForestSRC”

modules in R programming language and environment (http://www.r-project.or) as well as

STATA software (version 14.1, College Satation, TX, USA).

4.4 Experimental Results

4.4.1 Result of Feature Selection

In total, 1,045 radiomic features were extracted from the CT images including 70 sets of

pre-CCRT and 97 sets of post-CCRT. We first ranked the stability of the 1045 features using

Pearson correlation coefficients calculated between the two delineations. As a result, 829

stable features were selected for the subsequent analyses (Figure 4.2a). Then, two hybrid

selection methods, i.e., clustering combined with CPH and clustering combined with RSF,

were used and compared in our study. Features selected by clustering combined with CPH

were found to be more predictive with a C-index of 0.699 in comparison to 0.648. Radiomic

features extracted from post-treatment CT images were found to be superior in prediction

than that from pre-treatment CT images (Figure 4.2b). Thus, features from post-treatment
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CT images were selected by the method of clustering combined with CPH and were further

investigated in the following study (Figure 4.2b).

FIGURE 4.2. Integrative Clustering and Supervised (ICS) Feature Selection.
Abbreviation: Corr = Correlation.

With backward elimination algorithm, the least prognostic features were repeatedly removed

from the clustered feature subset until the subset was able to achieve the optimal predictive
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performance. Then, the top eight prognostic features selected from the clusters were analyzed

with further correlation analyses to avoid overfitting (Figure 4.2c). After identifying pairs

of highly correlated features (Pearson Correlation coefficient > 0.9), the one with higher

p-value in each pair was eliminated. Finally, four independent predictive radiomic features

including wavelet-LHL_glcm_JointAverage, wavelet-LLL_glcm_ClusterProminence, ori-

ginal_glcm_ClusterShade, and log-sigma-5-0-mm-3D_firstorder_Maximum, were used to

generate the radiomic signature which also had good predictive capacity in the Kaplan-Meier

analyses of these patients (Figure 4.3).

FIGURE 4.3. Predictive capacity of radiomic signature with Kaplan-Meier curve.

Other validation details of the proposed ICS feature selection can be found in our publica-

tion [200].
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4.4.2 Association of Selected Features with Hematological

Inflammatory Variables

Due to the importance of inflammatory factors in the prognosis prediction of patients with

NSCLC, we further explored the correlation of selected features with the hematological inflam-

matory variables. Two of the four selected features were found to be significantly correlated

with specific inflammatory factors. In particular, the “wavelet_LHL_glcm_JointAverage”

feature was positively correlated with the levels of platelet1 and PLR1 while negatively cor-

related with levels of LMR2 significantly (p = 0.026, p = 0.045, and p = 0.048, respectively).

In addition, the “log_sigma_5_0_mm_3D_firstorder_Maximum” feature was significantly

positively correlated with both pre- and post- therapeutic platelet levels (p = 0.013, and p =

0.049, respectively) (Figure 4.4).

FIGURE 4.4. Correlation analyses of selected radiomic features with hemato-
logical inflammatory cells. Selected radiomic features are also analyzed for
the correlation with inflammatory cells for included patients. Red bars show
the positive correlation while the blue ones denote the negative association.
Bars with asterisk denote the correlation has reached significance.
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4.4.3 Performance of Multimodality Prediction Model

Patient age and lymph node metastases were found to be independent risk factors in our study

using multivariate CPH. In addition, for the inflammatory parameters, lymphocyte2 levels

and NLR1 were found to be independent prognostic factors for our patient cases.

Next, multivariate CPH and RSF were used and compared for assessing the performance of

the predictive model. C-index of CPH and RSF was not stable until 505 days, and C-index

thereafter was selected for our study. The C-index of the CPH model was 0.792 and it retained

0.743 after cross-validation (Figure 4.5-4.6). In comparison, C-index of the RSF model

dropped from 0.891 to 0.647 when cross-validation was performed (Figure 4.5-4.6). Again,

the CPH model was found to be more stable and was ascertained for the further construction

of the nomogram.

FIGURE 4.5. C-indexes of the model including radiomic, clinico-pathological
and inflammatory parameters using CPH and RSF methods.

Importantly, the performance of this integrative model was proven to be superior to radiomic,

clinico-pathological or hematological models alone, with C-indexes of 0.699, 0.618, and

0.653, respectively.
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FIGURE 4.6. Cross-validations are performed using CPH and RSF methods.

4.4.4 Performance Interpretation with Nomogram

Nomogram for prediction performance (Figure 4.7) of 1-year and 2-year survival was gen-

erated on the basis of the selected radiomic signature, patient age, lymph node metastasis,

lymphocyte2 levels, and NLR1.

FIGURE 4.7. A comprehensive nomogram for prediction of 1-year and 2-year
overall survival for patients with LA-NSCLC.
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Furthermore, a calibration curve had been drawn for these patients. The estimated versus

observed 1-year and 2-year survival probabilities intersected the 45-degree line, showing

that the predicted value approximated the observed value within a 95% confidence interval

(Figure 4.8-4.9). This calibration curve shown the agreement between the predicted and actual

values.

FIGURE 4.8. Calibration curve for estimation of 1-year overall survival pre-
dicted by nomogram. Nomogram-estimated overall survival is plotted on the
x-axis; actual overall survival is plotted on the y-axis. Dash line represents the
ideal agreement.

4.5 Discussion

In this study, we incorporated comprehensive multimodal radiomic, clinico-pathological and

hematological factors for the individualized survival prediction of LA-NSCLC patients. To

the best of our knowledge, for the first time, a concise nomogram with only five variables can

provide a feasible and practical reference to clinical professionals for recommending a more

appropriate management for LA-NSCLC patients. We also found that the selected radiomic

features were associated with inflammatory variables in these patients, suggesting that the
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FIGURE 4.9. Calibration curve of 2-year overall survival predicted by nomo-
gram for patients with LA-NSCLC.

inflammatory status may partially account for the poor survival of patients harboring these

radiomic features.

The performance of the integrative model was also shown to be superior to the individual

model alone in our present study, demonstrating powerful predicting capability using different

types of biomarkers. As reported, the C-index of the radiomic model was often between

0.60 and 0.67, which has been improved to 0.72 when combining with clinical and genomic

features [205], [209]–[211]. This improvement due to information integration of the distinct

sources may reflect that multiple factors of the patient characteristics contribute to a more

accurate prediction model. In comparison to using genomic features, our new nomogram

incorporating the clinical, hematological and CT imaging data, which are all routinely

evaluated in clinical settings, could be more feasible in the clinical practice.

Most studies correlating radiomics with survival outcomes in lung cancer analyzed the baseline

features of pre-treatment [212], [213]. However, tumors undergo dynamic changes during

treatment, which would be more informative [214]–[216]. Thus, we further analyzed the CT

features pre- and post- CCRT dynamically. Rather than keeping the same set of important
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radiomic features from baseline for analyzing post-treatment CT data [209], we selected the

important prognostic features of pre- and post-treatment, respectively. Our analysis on these

features found that the performance of the post-treatment features was much higher than that

of the baseline features, which demonstrated that post-treatment features were able to better

reflect the actual response to CCRT and were more informative and accurate for predicting

the patients’ prognosis. This finding suggests that CT scan after CCRT is also recommended

for LA-NSCLC patients.

Interestingly, our selected radiomic features were found to be associated with inflammatory

biomarkers including levels of platelet, LMR and PLR. Platelets play a role in protecting

tumor cells from antitumor-immunity, and releasing cytokines for tumor progression [217];

monocytes have been proven as an important factor in favoring tumor invasion and meta-

stasis by producing protease enzymes [218], [219]. In contrast, lymphocytes are a protective

factor by inducing cytotoxic cell death and inhibiting tumor cell proliferation and migra-

tion [220]. Hence, the elevated platelet or PLR and the decreased LMR are considered to

be associated with worse prognosis of patients due to their important roles in the initiation

and development of cancers [221]–[223]. Our study found that radiomic feature “wave-

let_LHL_glcm_JointAverage” or “log_sigma_5_0_mm_3D_firstorder_Maximum” positively

correlated with the levels of platelet1 or PLR1 while negatively correlated with LMR2. These

radiomic features may indicate the unfavorable immunological status which at least partly

accounts for the prognostic effects of radiomic features in LA-NSCLC patients. Yet, the

mechanism underlying the predictive capacities of the radiomic features and their relationship

with inflammatory biomarkers still need to be further investigated.

We investigated both the effects of CPH and that of RSF for feature selection and model

fitting, and found that CPH was much more stable and reliable than RSF. Although RSF

could reach higher C-index in the primary model establishment analysis, the C-index dropped

remarkably in the subsequent cross-validation stages, which was consistent with the reported

findings in glioblastoma research [203], [224]. We speculate that the selection of algorithms

in the machine learning model establishment stage would be influenced by the sample size of
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the study. Only when the sample size is sufficiently large, could we include a bigger number

of parameters in machine learning models while avoid the risk of overfitting.

There are some limitations in our present study. Firstly, due to 32 patients were not confirmed

the cause of death, we therefore only analyzed OS for evaluating the patient prognosis. In the

future study, it could be better if cancer specific survival is investigated for the prediction of

patients with LA-NSCLC. Secondly, this was a retrospective study, and prospective trials in

different centers and regions could eliminate the selection bias. In addition, the underlying

mechanism for explaining the prognostic role of our nomogram still needs to be further

investigated in the future. The analysis of genomic types with different driving genes might

be helpful for understanding the biological characteristics of the patients with poor outcomes

who harbor the worse integrative features of radiomic, clinico-pathologics and hematology

simultaneously.

4.6 Chapter Summary

In conclusion, we have constructed a simple, yet not trivial, nomogram integrating high-

dimensional CT imaging features, clinicopathological, and hematological factors, which

would have potential as an individualized utility in the clinical practice for LA-NSCLC

patients. This nomogram has value to permit non-invasive, comprehensive, and dynamical

evaluation of the phenotypes of LA-NSCLC and to predict the survival prognostication for

LA-NSCLC patients.
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CHAPTER 5

Information-level Fusion: Interpretable Deep Correlational Fusion

Framework for Inter-modal and Intra-modal Information Analysis

Fusion of multimodal medical data, in the information-level, is critically important for

a more complete understanding of the disease characteristics and therefore essential to

accurate computer-aided diagnosis. Although deep multimodal learning has showed strong

modeling capacity compared with conventional multimodal modeling, there are still three

major challenges, including exploiting inter-modal and intra-modal information in supervised

and unsupervised settings and understanding of complex non-linear cross-modal association.

To address these three challenges in information-level fusion, we propose an Interpretable

Deep Correlational Fusion framework in this chapter, to optimize the discovery of multimodal

biomarkers in both supervised and unsupervised settings and boost the interpretability of

multimodal deep learning.

• For the supervised setting, a novel DMFusion loss is proposed to optimize the

discovery of discriminative multimodal representations in low-dimensional latent

fusion space. It is achieved by jointly exploiting inter-modal correlational associ-

ations via CCA loss and intra-modal structural and discriminative information via

reconstruction loss and cross-entropy loss.

• For the unsupervised setting, a new unified SDC loss function is proposed to in-

corporate consensus information into discriminative representations, in which, the
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former is learnt by maximizing the canonical correlation among multi-view rep-

resentations projected by neural networks, and the later is achieved through using

confident clustering assignments as supervision.

• For interpreting the complex nonlinear cross-modal association in deep fusion net-

work, we propose a cross-modal association (CA) score to quantify the importance of

input features towards the correlated association, by harnessing integrated gradients

in deep networks and canonical loading in CCA projection.

This chapter is organized as follows: Section 5.1 presents a supervised deep multimodal fusion

model with a novel loss for diagnostic predictions. Section 5.2 introduces a unsupervised

deep multi-view clustering model, named self-supervised deep correlational multi-view

clustering for computer vision and audio recognition tasks. Section 5.3 presents a new

interpretation module for understanding complex non-linear cross-modal associations in deep

fusion networks. The experimental implementations and results are sumamrized in Section 5.4

and Section 5.5, respectively.

5.1 Supervised Deep Multimodal Fusion Network for

Diagnostic Decisions

Figure 5.1 illustrates the overview of the proposed Deep Multimodal Fusion network and

Interpretation module on cross-modal association. Firstly, we introduce the novel DMFusion

loss to jointly exploit inter-modal relation-driven association and intra-modal data-driven and

target-driven discriminative information, which are then integrated via DMFusion Layer for

diagnostic decisions. Secondly, we propose a cross-modal association (CA) score to interpret

the importance of input features towards correlational consensus.

The architecture in our DMFusion network consists of three modules: Multimodal Encoders,

Multimodal Decoders and DMFusion Layer. Multimodal Encoders fx(X; θx) and fy(Y ; θy)

project inputs X ∈ Rn∗dx , Y ∈ Rn∗dy to their corresponding representations. Multimodal
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FIGURE 5.1. The flowchart of the proposed interpretable DMFusion network.
The architecture of DMFusion consists of Multimodal Encoders, Decoders and
DMFusion Layer. A novel DMFusion loss optimizes the multimodal represent-
ations with inter-modal common information and intra-modal discriminative
information, which are fused in DMFusion Layer for diagnostic prediction.
Interpretation of deep cross-modal association is achieved by harnessing ca-
nonical loadings from CCA projection and integrated gradients from deep
networks.

Decoders gx(Hx; θ
′
x) and gy(Hy; θ

′
y) project the encoded representations Hx ∈ Rn∗do and

Hy ∈ Rn∗do to reconstructed input features X̂ and Ŷ to learn data-driven structural inform-

ation. Both encoders and decoders are implemented with Multi-layer Preception (MLP)

where θ represents network parameters such as weights and bias. The dimension of the

inputs is denoted as dx, dy, while do denotes the dimension of multimodal representations and

canonical variates. The number of samples is n.
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5.1.1 Multimodal Representations via DMFusion Loss

Our novel DMFusion loss function jointly harnesses relation-driven consensus learning,

target-driven discriminative learning and data-driven distribution learning to exploit inter-

modal common information and intra-modal discriminative information. DMFusion loss is

formulated as:

LDMF = λ1Lcca + λ2Lce + λ3Lre (5.1)

where λ1, λ2 and λ3 are trade-off parameters for inter-modal CCA loss and intra-modal

cross-entropy and reconstruction loss respectively.

Firstly, we concentrate inter-modal common information in multimodal representations via

a deep CCA loss function Lcca. To be more specific, Lcca aims to maximize the pairwise

correlation of canonical variates Zx, Zy [83]. The canonical variates are projected from

multimodal representations Hx, Hy using the linear projection matrix U and V , respectively.

The formulation of Lcca is summarized below:

max
fx,fy

corr(fx(X; θx), fy(Y ; θy))

= max
θx,θy ,U,V

1

N
tr(UTfx(X; θx)f

T
y (Y ; θy)V )

s.t. UT Σ̂xxU = I

V T Σ̂yyV = I

uTi fx(X)fTy (Y )vi = 0, i < j

(5.2)

For accurate covariance estimation, we define Σ̂xx = 1
N
fx(X)fTx (X) + rxI and similarly for

Σ̂yy where regulation parameters rx > 0, ry > 0 are introduced. By negating Formula 5.2,

inter-modal loss Lcca can be obtained:

Lcca = − 1

N
tr(UTfx(X; θx)f

T
y (Y ; θy)V )

s.t. same constraints as Equation 5.2
(5.3)
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As the common representation among multimodalities is not necessarily discriminative, we

seek to capture intra-modal discriminative information via both target-driven and data-driven

approaches. Specifically, target-driven intra-modal loss is formularized as a cross-entropy

loss on the encoded representation Hx, Hy to boost the relevancy between the representations

and the true label:

Lce =
1

N

N∑
i=1

lilog(σ(fx(xi))) + lilog(σ(fy(yi))) (5.4)

where li is the diagnostic ground-truth of ith sample and σ is a probability function imple-

mented as softmax in our method.

To capture the data-driven intra-modal structural information, we encode the hidden informa-

tion underlying data distribution into multimodal representations by enforcing the similarity

between reconstructed multimodal features X̂, Ŷ and input features X, Y via a reconstruction

loss.

Lre =
1

N

N∑
i=1

(||xi − gx(fx(xi))||2 + ||yi − gy(fy(yi))||2) (5.5)

where x̂i = gx(fx(xi)) ∈ X̂ and ŷi = gy(fy(yi)) ∈ Ŷ .

With the formulated DMFusion loss, optimization of the DMFusion network is achieved by

minimizing the loss with RMSprop. The loss is backpropagated to the representation encoders

fx and fy and iteratively tunes the network parameters θx and θy in order to enrich the inter-

modal common information and intra-modal discriminative information in modality-specific

representations Hx and Hy. The fusion scheme for Hx and Hy will be illustrated in the next

section.

5.1.2 Fused Representation via DMFusion Layer

Effective fusion of inter-modal information and modality-specific information is essential for

boosting classification performance. Yuan et al. [225] have investigated two fusion schemes

to fuse the outputs of linear CCA through Serial Feature-level Fusion (SFF) and Parallel
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Feature-level Fusion (PFF). SFF achieved outstanding performance on face recognition. In our

work, we extend SFF as a DMFusion Layer to fuse the correlational outputs from non-linear

CCA network.

For conventional linear CCA, SFF proposed by Yuan et al. [225] are formularized as

SFF =

wTxX
wTy Y

 =

wx 0

0 wy

T X
Y

 (5.6)

For non-linear CCA networks, we extend SFF to a DMFusion Layer to cohesively integrate

modality-specific knowledge and inter-modal common information into a comprehensive

representation P, which is used for diagnostic prediction.

P =

Hx

Hy

 =

fx(X; θx)

fy(Y ; θy)

 (5.7)

where hix ∈ Hx and hiy ∈ Hy are encoded modality-specific representations. The fused

representation P is then leveraged for diagnostic classification.

5.2 Self-supervised Deep Correlational Multi-view

Clustering

In this section, we propose Self-supervised Deep Correlational Multi-view Clustering (SDC-

MVC) network. We firstly introduce a novel SDC loss function. Then, we investigate a feature-

level fusion scheme for multi-view representations followed by the specifics of optimization.

Figure 5.2 shows the architecture of our SDC-MVC network, which is composed of three

modules, including multi-view representation module, DSF fusion layer, and self-supervised

clustering layer.

Notations. For simplicity, the method is demonstrated with two views X1 and X2, which is

extensible to multi-views. In multi-view representation module, the representation of each

view is learnt through a non-linear multilayer perceptron (MLP) neural network, denoted as
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FIGURE 5.2. The overview of the proposed SDC-MVC. Its architecture in-
cludes multi-view representation module, DSF fusion layer and self-supervised
clustering. A novel SDC loss is proposed to jointly optimize consensus and
discriminative representations for multi-view clustering by 1) maximizing
canonical correlation of the projected multi-view representations through
consensus loss; 2) iteratively refining representations and clusters using an
auxiliary target distribution p through self-supervised loss. Deep Serial Feature-
level (DSF) Fusion layer integrates consensus and view-specific discriminative
information in multi-view representations for clustering.

f1(X1; θ1) : X1 → H1 for X1 ∈ Rd1∗N and f2(X2; θ2) : X2 → H2 for X2 ∈ Rd2∗N . θ rep-

resents all learnable parameters including weights and bias. The dimension of representations

H1, H2 ∈ RL∗N is denoted as L and the number of samples is denoted as N .

5.2.1 SDC Loss Function

The major contribution is the novel SDC loss, which enables joint optimization of multi-

view correlational representation and self-supervised deep clustering in a fully unsupervised
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manner. It can be formularized as:

L = λLc + Ls (5.8)

where λ > 0 is a coefficient to balance the multi-view learning and deep clustering. Lc denotes

the correlational loss to constrain multi-view correlation, while Ls denotes the self-supervised

loss to constrain learning from clustering results. This objective function can also be seen

as adding additional regularization to self-supervised clustering. It is important to optimize

correlational representation loss alongside self-supervised loss; otherwise, correlational

consensus would tend to collapse during the optimization of self-supervised loss, even though

the representation is pre-trained.

The correlational loss Lc is implemented with deep CCA. Following the non-linear CCA

formula in Equation 2.6, maximization of CCA can be expressed as:

max
f1,f2

corr(f1(X1; θ1), f2(X2; θ2))

= max
θ1,θ2,U,V

1

N
tr(UTf1(X1; θ1)f

T
2 (X2; θ2)V )

s.t. UT Σ̂11U = I

V T Σ̂22V = I

uTi f1(X1)f
T
2 (X2)vi = 0, i < j

(5.9)

where U ∈ RL∗N and V ∈ RL∗N are projection matrixes for the output of f1(X1; θ1) and

f2(X2; θ2) respectively. For accurate covariance estimation, we define Σ̂11 = 1
N
f1(X1)f

T
1 (X1)+

r1I and similarly for Σ̂22 where regulation parameters r1 > 0, r2 > 0 are introduced. By

negating formula 5.9, Lc can be obtained:

Lc = − 1

N
tr(UTf1(X1; θ1)f

T
2 (X2; θ2)V )

s.t. same constraints as Equation 5.9
(5.10)

In the absence of label information, self-supervised loss Ls enforces the representation

f1(X1; θ1) and f2(X2; θ2) to learn the discriminative information from its high confident
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clustering predictions. In this section, we formulate Ls for the scenario that only a single

view from correlated views is used for clustering, which is commonly used in consensus-

based clustering [83], [226]. To further exploit discriminative view-specific features for

more comprehensive representations, we propose the DSF fusion scheme with a new soft

assignment function in the next section. Ls is illustrated with h1 ∈ f1(X1) and it is similar

for h2. Self-supervised loss Ls takes two steps including soft assignment and KL divergence

minimization. Firstly, soft clustering assignment is calculated by measuring the distance

between an embedded point hi1 and centroids µj1 with Students’ t-distribution [227]:

qij =
(1 + |hi1 − µ

j
1|

2
)−1∑

j′(1 + |hi1 − µ
j′

1 |
2
)−1

(5.11)

where centroid µj1 ∈ RL∗k can be obtained via k-means clustering on the pretrained network.

The number of centroid k is pre-defined.

Secondly, KL divergence of the centroid-based probability and an auxiliary target distribution

is minimized to refine the representation by learning high confidence predictions. Instead of

using a naive delta distribution, we implement Soft Assignment Hardening (SAH) distribution

[86] to improve class separation and imbalanced data prediction. The qij is raised to the

second power to push the network to learn from confident prediction and soft assignment is

normalized to prevent large clusters from distorting the hidden distribution.

pij =
q2ij/

∑
i qij∑

j′ q
2
ij′/
∑

i qij′
(5.12)

Lastly, self-supervised loss Ls can be computed as KL divergence between the soft assignment

qij and target distribution pij:

Ls = KL(P ||Q) =
∑
i

∑
j

pijlog
pij
qij

(5.13)
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5.2.2 DSF Fusion

View-specific components are often neglected in consensus MVC methods. For example,

previous correlation-based MVC only used single view (hi1 or hi2) from correlated space for

clustering, but did not consider small portion of view-specific components in each view [83].

To effectively use discriminative consensus and complementary view-specific information for

a comprehensive representation, we propose a simple yet effective Deep Serial Feature-level

(DSF) Fusion. Detailed reasoning underlying DSF fusion is provided and the performance is

extensively validated in the Experiments. DSF fusion can be formularized as:

zi =

hi1
hi2

 =

f1(X i
1; θ1)

f2(X
i
2; θ2)

 ∈ R2L∗N (5.14)

where hi1 ∈ H1 and hi2 ∈ H2 are representations for different views of the same sample. After

this feature-level fusion, Equation 5.11 in Ls for different views H1 and H2 can be integrated

into one formula:

q′ij =
(1 + |zi − µj|2)−1∑
j′(1 + |zi − µj′|2)−1

(5.15)

where centroids µj =
(
µj1, µ

j
2

)T
. This equation replaces Equation 5.11 and used by Equation

5.12 and 5.13 to calculate Ls.

The reasoning underlying the proposed DSF fusion can be elaborated from two perspectives,

including fusion of consensus information and fusion of view-specific information. Firstly,

previous studies found that fusion of correlated components from linear CCA led to elevation

of clustering performance [225], [228]. Specifically, Sun et al. proposed two fusion schemes,

namely Serial Feature Fusion (SFF) and Parallel Feature Fusion (PFF) for fusion of correl-

ated representations and achieved superior performance on image recognition tasks [225],

[228]. SFF is based union-vector while PFF is based on a complex vector [229], which are

summarized below:

SFF =

wT1X1

wT2X2

 =

w1 0

0 w2

T X1

X2

 (5.16)
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Algorithm 2 Optimization of SDC-MVC
Input: Multi-view data X1, X2, loss weight λ,
number of cluster k
Initialize:
f1, f2 ← pre-trained DCCA model
Z = [f1(X1), f2(X2)]← information fusion
µ← cluster centroids from k-means clustering
Optimize:
while not converged do
X ′1, X ′2 ← a random batch of multi-view data
Lc ← via Equation 5.10
Ls ← via Equation 5.13
Gradient descent on λLc + Ls, update f1, f2

end while
Output: f1, f2

PFF = wT1X1 + wT2X2 =

w1

w2

T X1

X2

 (5.17)

Inspired by this work, we extend SFF to fuse correlated deep features from the multi-view

representation module. SFF is chosen instead of PFF as it achieved better performance than

PFF in previous work [228].

Secondly, the fusion of view-specific components contributes to the clustering performance

in MVC algorithms such as multi-kernel clustering [230], because view-specific information

from different views is potentially complementary to each other. In conventional deep CCA,

the representation of only one view was used for clustering, where the view-specific informa-

tion in the other view was wasted. In our SDC-MVC, although multi-view representations hi1
and hi2 are highly correlated, view-specific components still exist and are potentially discrim-

inative because clustering-related information is boosted by self-supervised loss Ls. Thus, the

fusion of the discriminative view-specific information can assist with the clustering process

and boosting the performance. To conclude, our proposed DSF fusion effectively handles the

fusion of consensus components and view-specific components, with its effectiveness towards

clustering explicitly verified by experiments.
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5.2.3 SDC-MVC Optimization

To calculate the gradient of SDC loss with respect to representation network parameters dL
dθ1

,
dL
dθ2

, we can first compute the gradient with respect to the output of representation networks
dL
dh1

and dL
dh2

, and then pass it back through the DNN using backpropagation. SDC loss gradient

can be expressed as the sum of weighted two sub-loss gradients:

dL

dh1
= λ

dLc
dh1

+
dLs
dh1

(5.18)

The gradient of Correlational Loss Lc with respect to h1 can be computed as:

dLc
dh1

=
1

N
(2 ∗ ∇11h1 +∇12f2)

where ∇12 = Σ̂11

−1/2
UV ′Σ̂22

−1/2

∇11 = −1

2
Σ̂11

−1/2
UDU ′Σ̂11

−1/2

(5.19)

The gradient of Self-supervised Loss Ls with respect to h1 can be computed as:

dLs
dh1

=2 ∗
∑
j

(1 + |hi1 − µ
j
1|2)−1

∗ (pij − qij)(hi1 − µ
j
1)

(5.20)

The gradient of SDC loss with respect to H2 can be calculated similarly. The entire optimiza-

tion process is outlined in Algorithm 1.

5.3 Interpretation on Deep Correlational Fusion

To address the challenge of interpreting complex nonlinear association in the deep multimodal

fusion model, we propose a cross-modal association (CA) score to provide a model-level

interpretation on feature importance of multimodal inputs towards the highly correlated

association. As shown in Fig 5.1, it is achieved by 1) establishing a CA matrix Cx, Cy to

represent the association between highly correlated variates Zx, Zy with respect to their feature

inputs X, Y respectively, and 2) summarizing the CA score for each individual features in X,
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FIGURE 5.3. Interpreting multimodal correlational fusion models.

Y according to their contribution towards canonical variates Zx, Zy based on CA matrices and

strength of cross-modal correlation between Zx, Zy. The difference between our interpretation

module for non-linear association and previous methods for linear association is illustrated in

Figure 5.3.

The computation of CA matrix Cx includes three steps. The first step is to compute CCA

Association matrix Ax ∈ Rdo∗do of canonical variates Zx with respect to multimodal rep-

resentation Hx. The second step is to calculate Deep Association matrix Bx ∈ Rdx∗do of

multimodal representation Hx with respect to input X . Lastly, CA matrix Cx ∈ Rdx∗do of

canonical variates Zx with respect to input X can be obtained based on CCA Association

matrix Ax and Deep Association matrix Bx:

Cx = BxAx (5.21)

To obtain CCA Association matrix Ax, we adopt a correlation-based approach by calculating

canonical loading. Specifically, the canonical loading (also known as structure coefficients)

measures bivariate Pearson correlation between the observed variable (Hx in our case) and
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canonical variates Zx. The canonical loading reflects the variance that Hx shared with

canonical variate Zx, thus can be considered as relative contribution of each variable Hx in

towards the canonical variate Zx. The computation of Ax is formulated as:

Ax = Corr(Zx, Hx) (5.22)

The computation of Deep Association matrix Bx is based on integrated gradients [29]. Differ-

ent from conventional integrated gradients computing contribution towards prediction outputs,

we apply it directly to the output of each neuron in the output layer of fx(X) to assess the

contribution towards multimodal representations Hx. The association of jth neuron with

respect to inputs X can be formulated as:

IGj(X) =
n∑
i=0

(Xi −X ′i) ∗
∫ 1

α=0

∂f jx(X ′ + α(X −X ′))
∂Xi

dα (5.23)

where Xi ∈ X is a sample, and α is a scaling coefficient. By concatenating IGj for all

neurons in the output layers of fx(X), we can obtain Deep Association matrix Bx.

Bx = [IGT
1 , IG

T
2 , ..., IG

T
do ] (5.24)

Lastly, we compute the proposed CA scores using the obtained CA matrix Cx (from Ax and

Bx). Inspired by the squared canonical loading in linear CCA, we compute importance scores

for kth input features considering both squared association value in CA matrix Cx as well as

the strength of canonical variates correlated with each other:

scorek =
do∑
j=1

C2
x;jk ∗ |rj| (5.25)

where rj is Pearson correlation between jth pairs of canonical variables. Similarly, we can

compute CA scores for inputs Y .

100



5.4. DATASETS AND IMPLEMENTATION

5.4 Datasets and Implementation

5.4.1 Datasets

The supervised deep fusion network was validated on the diagnostic differentiation of MS and

NMO, which are the most common causes of neurological disability in young people [184].

The clinical difficulty of differential diagnosis of these two diseases arises from their similar

lesion appearance on MRI and overlapped clinical symptoms [143]. A dataset of 94 patients

(including 66 MS and 28 NMO patients) was collected from Xuanwu Hospital, Capital

Medical University. Each patient had two multi-parametric MRI imaging including T2 and

T1-MPR, and four clinical factors including age, gender, disease duration and EDSS scores.

For each MRI image modality, we adopted ROI-based radiomics quantification to extract

1118 features including intensity, texture, filter-based features. The imbalanced issue in the

dataset was handled by Adaptive Synthetic (ADASYN) oversampling algorithm [231].

The unsupervised deep fusion framework was validated on three public multi-view datasets,

including two relatively large datasets and one small dataset:

• Noisy MNIST 1 is a two-view challenging version of MNIST image dataset [232].

It was proposed by [83] and consisted of a rotation view and a noisy view of 70k

grey-scale 28*28 digit images. The rotation view was obtained by randomly rotating

the images with an angle from [−π/4, π/4], after the pixels were rescaled to [-1, 1].

The noisy view was generated by selecting a random image of the same identity and

then adding independent random noise sampled from [-1, 1] to it. The data was split

to 50k/10k for training and testing, respectively.

• XRMB Vowel 2 is an audio dataset consisting of 273 acoustic features and 112

articulatory features, which has been pre-processed by [83]. It is a subset of XRMB

dataset [233] containing all vowel utterances because most baselines were inefficient
1https://www2.cs.uic.edu/~vnoroozi/noisy-mnist/
2https://ttic.uchicago.edu/~klivescu/XRMB_data/full/README
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to cluster large-scale datasets. The acoustic view was computed with melfrequency

cepstral coefficients (MFCCs) over a 25 ms window while the articulatory view

measures the horizontal and vertical displacement of eight pallets placed on the

speakers’ jaw, lips and tongue. The frames were split to around 100k/12k for training

and testing, respectively.

• Yale Face 3 is a small face-recognition dataset, consisting of 165 images of 15

subjects. Each subject has 11 different face images, such as with/without glasses. We

extracted two feature views from the original images: 3304 Local Binary Patterns

(LBP) features and 6750 Gabor features. The data was split into 120/45 for training

and testing, respectively.

5.4.2 Implementations

Supervised deep Fusion framework. The effectiveness of the proposed DMFusion frame-

work was validated on three specific fusion tasks: 1) T2 imaging with clinical factors, 2)

T1-MPR imaging with clinical factors, and 3) T2 imaging with T1-MPR imaging. The dia-

gnostic performance of the fused representation was assessed with 10-fold cross-validation via

Support Vector Machine (SVM). Four evaluation metrics, including AUC, Accuracy (ACC),

Sensitivity (SEN) and Specificity (SPE) were used and reported as mean values with standard

deviation. We compared the experimental results of the DMFusion with six state-of-the-art

multimodal methods, including two radiomics methods (Lasso and RFS), two multi-branch

deep learning methods (MAE [234], DCCAE [83]) and two CCA-based methods (Linear

CCA and Deep CCA [82]). To verify the effectiveness of DMFusion Layer, we compared the

fused representation with modality-specific representations.

In terms of hyperparameters, the parameters C in SVM for all methods were selected from

[0.01, 0.1, 1]. The dimension of the output layer for all methods was set as four. For deep

learning-based methods, the dimensionality of the intermediate layers was tuned from [256,

512, 1024]. Loss-balancing parameters λ1, λ2 and λ3 for our method and DCCAE were tuned
3https://vismod.media.mit.edu/vismod/classes/mas622-00/datasets/
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from [0.01, 0.1, 1]. The deep networks were trained with RMSprop method with 1e-3 learning

rate and 20 epochs. L2 penalty was applied to weights of the network to reduce the risk of

overfitting.

Unsupervised deep fusion framework. In this section, the implementation of SDC-MVC

for three datasets is introduced. The whole network was deployed with Pytorch framework

and was run with one GPU GeForce RTX 2080 Ti. In a fully unsupervised setting, it was not

applicable to determine hyper-parameters by tuning with the supervision of labels, so we used

commonly reported parameters for each dataset.

The multi-view representation module was implemented with one MLP neural network per

view. Each MLP consisted of three hidden layers with 1024, 1500 and 2000 neurons for

Noisy MNIST, XRMB Vowels and Yale Face datasets respectively. Activation layer was

implemented by either Sigmoid units or ReLU depending on the commonly used setting

for the dataset [83]. The multi-view representation was pretrained with DCCA objective

to generate initialized clustering centroids with the help of k-means clustering. In terms of

optimization, Stochastic Gradient Descent (SGD) with the learning rate ranging from 1e-4

to 5e-3 was used with a momentum of 0.9. The batch size was set as 256 for Noisy MNIST,

XRMB Vowels following Xie’s implementation, and full-batch optimization was performed

on Yale because it is a small dataset. The risk of overfitting was handled by weight decay.

As for comparison methods, the results for Noisy MNIST were acquired from the authors’

reported performance while the methods for the other two datasets were implemented with

the authors’ codes.

5.4.3 Evaluations

For a comprehensive evaluation, clustering performance was assessed with three standard

clustering metrics: clustering accuracy (ACC), normalized mutual information (NMI), and

homogeneity (HOM). All metrics range from 0 to 1 and a higher value indicates better

performance. Clustering ACC is measured by finding best matching m between true labels li
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and predicted clustering labels ci using Hungarian algorithm [235]. It is defined as:

ACC = max
m

∑n
i=1 1{li = m(ci)}

n
(5.26)

NMI is a normalized version of the MI, measuring the similarity between two clustering,

which is defined as:

NMI =
I(l; c)

max{H(l), H(c)}
(5.27)

where I(l, c) denotes mutual information between true label l and predicted clustering label c

while H represents entropy. HOM measures a desirable objective of clustering assignment:

each cluster only contains members of a single class, which is defined by:

HOM = 1−H(l|c)H(l) (5.28)

where H(l|c) denotes the conditional entropy of the true labels given predicted clustering

labels while H(l) denotes the entropy of true labels.

5.5 Experimental Results and Discussion

5.5.1 Diagnostic Results of Supervised Fusion.

Table 5.1-5.2 shows the fusion results of imaging (T2 MRI and T1-MPR MRI) and non-

imaging (clinical factors), while Table 5.3 shows the results of imaging-imaging fusion of

two MRI sequences.

Fusion of T2-MRI and Non-imaging. In terms of fusing T2 imaging features and clinical

factors, Table 5.1 shows that our DMFusion framework outperformed all other methods in

terms of ACC, AUC and SEN. Particularly, our method outnumbered the state-of-the-art

DCCAE method by a large margin in terms of AUC (0.82 vs 0.76) and SEN (0.75 vs 0.60).

As for fusing T1-MPR and clinical factors, Table 5.2 demonstrates that our fusion framework

outperformed all the other methods on ACC, AUC and SPE. The outstanding diagnostic
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TABLE 5.1. Diagnostic results of the fusion of T2 images and clinical factors.

ACC AUC SEN SPE

Concat+Lasso 0.66 ± 0.11 0.73 ± 0.08 0.40 ± 0.21 0.77 ± 0.16
Concat+RFS 0.64 ± 0.06 0.71 ± 0.08 0.51 ± 0.23 0.70 ± 0.17

CCA 0.60 ± 0.06 0.57 ± 0.12 0.43 ± 0.18 0.67 ± 0.06
DCCA 0.73 ± 0.06 0.81 ± 0.07 0.60 ± 0.28 0.79 ± 0.13
MAE 0.69 ± 0.23 0.70 ± 0.23 0.64 ± 0.25 0.72 ± 0.28

DCCAE 0.74 ± 0.09 0.76 ± 0.09 0.60 ± 0.23 0.81 ± 0.14

DMFusion_T2 0.69 ± 0.04 0.82 ± 0.08 0.61 ± 0.26 0.73 ± 0.09
DMFusion_clinical 0.69 ± 0.08 0.72 ± 0.09 0.65 ± 0.20 0.72 ± 0.17

DMFusion 0.77 ± 0.12 0.82 ± 0.09 0.75 ± 0.10 0.78 ± 0.18

performance validated that the proposed DMFusion loss successfully extracted discriminative

multimodal information.

Fusion of T1-MRI and non-imaging. By comparing the performance of variants of

DMFusion in both fusion tasks, the effectiveness of DMFusion Layer was experimentally

verified. In the first task, Table 5.1 shows although AUC of DMFusion_T2 was the same as

DMFusion, fusion of T2 and clinical representations significantly boosted all other metrics

(e.g., ACC from 0.69 to 0.77). For the second task, DMFusion outperformed its modality-

specific representations in terms of ACC, AUC and SPE.

TABLE 5.2. Diagnostic results of the fusion of T1-MPR images and clinical
factors.

ACC AUC SEN SPE

Concat+Lasso 0.71 ± 0.08 0.74 ± 0.13 0.61 ± 0.24 0.76 ± 0.20
Concat+RFS 0.64 ± 0.06 0.66 ± 0.17 0.49 ± 0.37 0.70 ± 0.16

CCA 0.69 ± 0.08 0.66 ± 0.18 0.69 ± 0.17 0.70 ± 0.09
DCCA 0.60 ± 0.18 0.73 ± 0.09 0.57 ± 0.35 0.62 ± 0.37
MAE 0.67 ± 0.16 0.71 ± 0.12 0.75 ± 0.13 0.64 ± 0.23

DCCAE 0.70 ± 0.15 0.77 ± 0.11 0.73 ± 0.22 0.70 ± 0.26

DMFusion_MPR 0.63 ± 0.11 0.67 ± 0.18 0.57 ± 0.34 0.65 ± 0.15
DMFusion_clinical 0.69 ± 0.11 0.69 ± 0.07 0.61 ± 0.24 0.73 ± 0.07

DMFusion 0.73 ± 0.10 0.79 ± 0.08 0.59 ± 0.18 0.79 ± 0.15
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TABLE 5.3. Diagnostic results of the fusion of T1-MPR images and clinical
factors.

ACC AUC SEN SPE

Concat+Lasso 0.72 ± 0.08 0.71 ± 0.13 0.54 ± 0.28 0.81 ± 0.17
Concat+RFS 0.75 ± 0.05 0.74 ± 0.16 0.67 ± 0.26 0.77 ± 0.17

CCA 0.65 ± 0.12 0.70 ± 0.16 0.49 ± 0.30 0.72 ± 0.18
DCCA 0.73 ± 0.06 0.85 ± 0.09 0.72 ± 0.31 0.75 ± 0.16
MAE 0.65 ± 0.18 0.63 ± 0.27 0.47 ± 0.37 0.74 ± 0.31

DCCAE 0.67 ± 0.13 0.86 ± 0.12 0.57 ± 0.37 0.72 ± 0.28
DMFusion 0.75 ± 0.04 0.88 ± 0.06 0.79 ± 0.24 0.75 ± 0.14

Imaging-imaging fusion of T2 and T1. In addition to the fusion of imaging and non-

imaging data, our model also successfully handled the feature fusion between different

imaging modalities. Specifically, Table 5.3 shows that our DMFusion framework achieved

ACC 0.75 ± 0.04, AUC 0.88 ± 0.06, SEN 0.79 ± 0.24 and SPE 0.75 ± 0.14 on fusing

T2 images and T1-MPR images, outperforming all other methods on ACC, AUC and SEN.

Besides, our model shows excellent stability in different train-test split during the 10-fold

cross-validation, which is supported by the lowest standard deviation in all evaluation metrics.

Among the three fusion tasks, the highest AUC (0.88 ± 0.06) for the differential diagnosis of

MS and NMO was achieved by our DMFusion framework by fusing T2 and T1-MPR images.

5.5.2 Clustering Results of Unsupervised Fusion

Compared with 6 SOTA correlational MVC methods, Table 5.4 shows the quantitative

clustering results on the three datasets. The results demonstrate that SDC-MVC outperforms

the compared on all evaluation metrics. In specific, our model achieved ACC 98.0% on Noisy

MNIST, outperforming all the SOTA correlational MVC methods, even a supervised VCCA

method. In addition, our methods achieved a large margin on XRMB Vowel in terms of NMI

and HOM. Lastly, the competitive performance on Yale Face shows SDC-MVC handles not

only large datasets but also small datasets.
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Noisy MNIST XRMB Vowels Yale Faces
Method ACC NMI ACC NMI HOM ACC NMI HOM

CCA 72.9∗ 56.0∗ 51.2 36.7 37.4 57.8 74.2 72.5
FKCCA 94.7∗ 87.3∗ 61.1 55.6 58.7 55.5 72.6 71.4
MVAE 64.0∗ 69.0∗ 56.4 49.3 58.7 53.3 71.3 69.3
DCCA 97.0∗ 92.0∗ 66.7 54.2 46.7 60.0 74.4 72.2
DCCAE 97.5∗ 93.4∗ 73.5 55.0 53.7 62.2 76.1 75.2
VCCA+SVM 97.6+ - - - - - - -
SDC-MVC_view1 95.9 89.7 51.2 41.3 40.9 62.2 75.9 78.4
SDC-MVC_view2 83.1 79.6 68.8 52.9 51.9 42.2 64.3 68.7
SDC-MVC_net 98.0 94.6 75.8 68.8 71.3 64.4 77.6 80.1
TABLE 5.4. Performance of unsupervised MVC algorithms on three public
datasets.

(a) CCA (b) KCCA (c) DCCAE (d) SDC-MVC

FIGURE 5.4. t-SNE plot of multi-view representation acquired by different
multi-view learning methods on the testing set of noisy MNIST dataset.

To visualize the effectiveness of SDC-MVC, we ploted the feature embeddings with t-SNE

method and showed the images with the most confident clustering assignment on the test set

of Noisy MNIST. In t-SNE plots (Figure 5.4), SDC-MVC feature embeddings achieved better

homogeneity compared with other MVC methods.

Contribution of self-supervised loss. To verify the contribution of self-supervised loss Ls,

we visualized the relationship between the assignment confidence and its influence on refining

the representation in the backward path. Figure 5.5 shows that samples with confidence [0.5,

0.8] had more influence on the refinement of representation. Samples with confidence over

0.8 had little space to further contribute to the refining process, while samples with confidence
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FIGURE 5.5. Hypothesis validation of Self-supervised Loss. Figure shows
the impact of different assignment confidence on the gradient of loss L with
respect to representation z. Displayed sample images were selected from
different confident range [m,m+ 0.2] where m ∈ [0, 0.2, 0.4, 0.6, 0.8].

below 0.5 are likely to be wrongly classified as shown in the images of digit number in

Figure 5.5.

Contribution of DSF fusion. The effectiveness of the DSF fusion was verified experiment-

ally, by comparing the performance of SDC-MVC, SDC-MVC_view1, SDC-MVC_view2. As

shown in Table 5.4, SDC-MVC outperforms both SDC-MVC_view1 and SDC-MVC_view2

on three datasets in terms of all evaluation metrics. ∗ result in Table 5.4 was acquired from

[83], while + result from [236]. This indicates that the proposed DSF fusion effectively

integrated discriminative consensus and view-specific information.
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FIGURE 5.6. Loss convergence analysis. (a) Convergence analysis of train
ACC (left vertical axis) and loss L (right vertical axis). (b) Convergence
analysis of Lc (left vertical axis) and Ls (right vertical axis) in loss L. The
horizontal axis for both subfigures is the number of epochs.

Analysis of parameter and convergence. In this section, we present a convergence analysis

followed by parameter analysis on the influence of the loss-balancing parameter λ. In terms

of convergence analysis, Figure 5.6a illustrates that the training accuracy of clustering growed

steadily with the decrease of the SDC loss. The loss declines with a relatively higher speed

until 70 epochs and then starts to approach convergence. To dive deeper into our proposed
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FIGURE 5.7. Parameter analysis of loss balancing parameter λ on Yale.

SDC loss L, we further investigated the convergence of Lc and Ls inside L. Figure 5.6b

shows that both elements of loss L converged gracefully during the training process.

The parameter analysis of λ was conducted on the dataset Yale Face. Figure 5.7 shows

that NMI and HOM remain relatively stable until λ reaches 100 and ACC remains almost

unchanged from 0 to 10.

5.5.3 Interpretation on Deep Multimodal Fusion

We illustrate the interpretation results of our DMFnet based on two imaging-non-imaging

fusion tasks. We firstly evaluated the value of cross-modal correlation that learned by our

DMFnet, and then uncover the cross-modal association of different modalities towards the

correlated space using the proposed CA scores and CA matrices.

Interpreting cross-modal correlation. Figure 5.8a visualized cross-modal Pearson correl-

ation between deep canonical variates projected from T2 images and clinical factors. All

four pairs of deep canonical variates achieved statistically significant correlation (p < 0.05)
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(a) Correlation between canonical variates of T2 and clinical factors.

(b) Correlation between canonical variates of T1-MPR and clinical
factors.

FIGURE 5.8. Cross-modal correlation between imaging and non-imaging.

with high correlation coefficients ranging from 0.74 to 0.96. Similarly, all pairs of canonical

variates projected from T1-MPR images and clinical factors achieved statistical significant

correlation (p < 0.05), in which three of four pairs with correlation coefficients higher than
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0.79. The results indicate that our DMF successfully captured the consensus association

between different modalities.

(c) T2-wavelet-LHH-glszm-LargeAreaLowGrayLevelEmphasis

Cropped Image

Original Image

Wavelet-LHH

Glszm

(a) T2 imaging CA scores (b) Clinical CA scores (d) T1 imaging CA scores (e) Clinical CA scores

(f) T1-MPR-log-5mm-firstorder-90percentile

Original Image

Cropped Image LoG-5mm

First-order

Top-10 T2 features age gender EDSS DD EDSS gender age DDTop-10 T1-MPR features

FIGURE 5.9. CA scores for input imaging and non-imaging features in DM-
Fusion network.

Interpreting cross-modal association scores. Cross-modal association scores were com-

puted to interpret how multimodal input features contributed to the consensus associations.

Figure 5.9a-5.9b illustrate the CA scores of top-10 T2 images features and clinical factors

towards the correlated space respectively. In specific, the imaging feature T2-wavelet-LHH-

glszm-LargeAreaLowGrayLevelEmphasis and clinical factor age contributed most towards

the nonlinear correlational consensus. Figure 5.9c visualizes the extraction of the wavelet

features to aid with interpretation. Similarly, Figure 5.9d-5.9e show that one T1-wavelet

feature and one T1-log feature contributed most towards nonlinear correlation with EDSS and

gender. We also visualizes the extraction of imaging T1-log-feature in Figure 5.9f to further

facilitate the understanding of fusion mechanism.

Interpreting cross-modal association matrix. To gain insights into CA scores, we further

plotted the heatmap of CA matrix to reveal the mechanism of the proposed CA matrix.

Figure 5.10a shows the association between all T2 image features, clinical factors, and their
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(a) CA matrix for fusion of T2 and clinical factors (b) CA matrix for fusion of T1-MPR and clinical factors

age gender EDSS DD age gender EDSS DDT1-MPR image features

FIGURE 5.10. CA matrices for input imaging and non-imaging features in
DMFusion network.

corresponding canonical variates. From the clinical CA matrix, we found that the high CA

score of age feature was dominantly attributed to the association of age and zy2 canonical

variate. Figure 5.10b shows the high CA score of EDSS was primarily contributed by its

association with zy2 and zy4 canonical variables.

5.6 Chapter Summary

In information-level, we propose a new Interpretable Deep Correlational Fusion framework to

optimize multimodal representations with inter-modal consensus information and intra-modal

discriminative information in both supervised and unsupervised settings. To interpret the

nonlinear assoication of input modalities, we propose a new CA score to quantify the feature

importance towards correlated association in deep networks. We validated our framework on

the differential diagnosis task of two clinically challenging demyelinating diseases (MS vs

NMO) as well as on three public datasets, outperforming six state-of-the-art methods. The

results show that our framework can assist clinicians with more accurate diagnostic decisions

and uncovering cross-modal associations during exploring the disease mechanism.
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CHAPTER 6

Knowledge-level Fusion: Dynamic Topology Analysis Framework with

Domain Knowledge for Spatial Lesion Pattern on MRI

Knowledge distillation from multi-focused regions is a challenging topic, because each

focused regions may present heterogeneous information hindering the fusion process. Quant-

itatively analyzing the spatial patterns of multifocal lesions (an example of multi-focused

regions) on clinical MRI is an important step towards a better understanding of the disease

and for precision medicine. However, it is which is yet to be properly explored by feature

engineering and deep learning methods. Network science addresses this issue by explicitly

modeling the inter-lesion topology. However, the construction of the informative graph

with optimal edge sparsity and quantification of community graph structures are the current

challenges in network science.

In this chapter, we address these challenges with a novel Dynamic Topology Analysis (DTA)

framework on the basis of persistent homology, aiming to investigate the predictive values

of global geometry and local clusters of multifocal lesions. Firstly, Dynamic Hierarchical

Network is proposed to construct informative global and community-level topology over multi-

scale network from sparse to dense. Multi-scale global topology is constructed with a nested

sequence of Rips complexes, from which a new K-simplex Filtration is designed to generate a

higher-level topological abstraction for community identification based on the connectivity of

k-simplices in the Rips Complex. Secondly, to quantify multi-scale community structures, we

design a new Decomposed Community Persistence algorithm to track the dynamic evolution

of communities, and then summarize the evolutionary communities incorporated with a

114



6.1. PROBLEM DESCRIPTION AND OVERALL FRAMEWORK

customizable descriptor. The quantified community features are encapsulated with global

geometric invariants for topological pattern analysis.

This chapter is organized as follows: Firstly, more detailed background description on the

fusion of multi-focal lesions and the overall DTA framework are introduced in Section 6.1.

Then, we present each component of Dynamic Topology Analysis framework in different

sections, including Dynamic Hierarchical Network Construction (Section 6.2), Dynamic

Topology Quantification (Section 6.3)m and Topological Pattern Analysis (Section 6.4). The

implementations and results are summarized in Section 6.5-6.6 and discussed in Section 6.7.

6.1 Problem Description and Overall Framework

Clinical challenges. MS is a typical and the most prevalent multifocal demyelinating

disease in CNS, affecting 2.3 million young people globally [237]. This currently incurable

disease [238] causes severe, non-traumatic and enduring physical and cognitive disability

in patients, which is pathologically characterized by multiple white matter lesions. MRI is

a fundamental imaging technique for the identification of demyelinating multifocal lesions,

supporting clinical diagnosis, and monitoring the progression of MS. However, there is a

long-standing discrepancy or the clinico-radiological paradox [239], [240] between common

MRI markers (such as lesion volume) and clinical disability. This paradox may arise from

1) the disparate spatial pattern of lesions in CNS across patients [241] and 2) pathological

heterogeneity of lesions in the same patient [242]. More recently, clinical research suggests

the spatial distribution of MS lesions have neuropathologic [243], diagnostic [175], [244]

and prognostic [245] associations. Thereby, a comprehensive understanding of the imaging

features and patterns, in particular the spatial relationship of multifocal lesions, may poten-

tially contribute to breaking the paradox. Thus, quantitatively profiling the heterogeneity of

multifocal lesions is in demand to better understand the underlying collective pathological

process to support objective and more effective clinical decision making.
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Importance of topological patterns. Such inter-lesion spatial patterns are clinically observ-

able in multifocal demyelinating brain diseases (such as global lesion cycles or local lesion

clusters) and have potential clinical implications [246], [247]. For example, the global cycle

pattern (a group of lesions around a hole) could indicate the incidence of normal-appearing

white matter lesions inside the circle of lesions, which is however not intuitively visible on

conventional MRI used in the clinical routine [248], [249]. For another example, local lesion

clusters may indicate the potentially actively growing lesion regions [250], [251]. Thus, to

quantitatively characterise global and local lesion topology patterns, a graph-based topological

profiling tool for multifocal lesions is in high demand.

Limitation of feature engineering and deep learning. Quantitatively characterizing the

imaging features of single lesions by using feature engineering or deep learning, has been

widely investigated in more recent years. For multifocal lesions, the current feature engin-

eering methods often combine multiple lesion masks as a single entity before mining the

imaging patterns via texture features [8], [252] or clinical MRI markers [253], [254] for

diagnostic or prognostic tasks. However, in such a method, the patterns of individual lesions

are averaged and therefore the contribution of an individual lesion is neglected. Deep learning

provides a data-driven approach to learn potential MRI predictors for multifocal lesions in

MS [31], [32]; however, the extracted deep features are generally difficult to interpret, hardly

biologically meaningful [18] and usually requires a large amount of data to train the network.

More importantly, both feature engineering and deep learning methods neglect the importance

of the inter-lesion spatial relationship of multifocal lesions. Thus, a topological profiling tool

for multifocal lesions is in high demand for systematic analysis of lesion spatial patterns and

yet missing in current feature engineering and deep learning methods.

In this chapter, we aim to comprehensively investigate the spatial patterns of multifocal MS

lesions, including the global geometrical structure and local lesion clusters. To simultaneously

address two challenges in network science including graph construction and topology quanti-

fication, we propose a DTA framework based on persistent homology. Firstly, to bypass the
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challenge of topology construction with the optimal scale, we propose a Dynamic Hierarch-

ical Network to encode both global-level geometrical structure and community-level lesion

proximity in an encapsulated dynamic network. Based on Global-level Network (G-Net)

constructed by Rips complex, we propose a new K-simplex Filtration to create a high-level

abstraction of G-Net using the connectivity of k-simplices for community identification

(Community-level Network). Secondly, to incorporate community heterogeneity into the

quantification of dynamic community topology, we propose a novel Decomposed Community

Persistence algorithm based on union-find data structure to track the evolutionary communities

at fine-grained scales. The tracked dynamic communities incorporated with lesion attributes

are then summarized by the designed Adaptive Community Profile that is equipped with a

customizable community descriptor. Lastly, the quantified community dynamics is fused with

global-level geometrical invariants for subsequent topological pattern analysis and modeling.

The overall framework of DTA is illustrated in Fig 6.1, DTA framework is composed of three

modules, including a) Dynamic Hierarchical Network Construction, b) Dynamic Topology

Quantification, and c) Topological Pattern Analysis.

6.2 Dynamic Hierarchical Network Construction

Hierarchical Network encodes multi-scale dynamics of both global-level geometrical structure

and community-level lesion proximity to capture the informative topology. As illustrated in

Figure 6.1a, multifocal lesions on MRI are firstly transformed into a point cloud to construct

Global-level Network (G-Net), from which we construct a new Community-level Network

(C-Net) for community structure identification.

6.2.1 Point Cloud Generation from Multifocal Lesion Volumes

From multifocal lesion volumes on MRI, the lesion cloud is generated by representing

individual volumetric lesions in the lesion mask with their corresponding 3-dimensional
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c) Topological PatternAnalysis
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FIGURE 6.1. The proposed DTA framework consists of three major modules.
a) Dynamic Hierarchical Network Construction: From input MRI and
lesion masks, lesion point cloud is generated to construct dynamic Global-
level Network using Rips Filtration and construct dynamic Community-level
Network using K-simplex Filtration. b) Dynamic Topology Quantification:
Global-level Network is quantified as Persistence Image based on persistence
homology to measure the global geometric invariance of homological objects
(such as 1-dimensional holes and 0-dimensional connected components). In the
meantime, Community-level Network is quantified as Adaptive Community
Profile to measure the statistics about community lesion volume and lesion
density during the dynamic graph evolution. c) Topological Pattern Analysis:
Persistence Image and Adaptive Community Profile are concatenated as a
feature pool, from which informative, non-redundant and highly relevant
topological features are selected. The selected features are used to construct
machine learning models for clinical applications.

centroids, same as in the studies [255], [256]. These lesion centroid points approximate the

lesion topology and form a point cloud P = {pi | pi = (xi, yi, zi) ∈ R3, pi = centroid(Vi)},

where R3 denotes 3D physical space and pi is the centroid of the corresponding lesion volume

Vi. To convert the volumetric lesions into point cloud, we firstly separate individual lesions

using disconnected component labeling based on pixel connectivity [257], and then compute

the centroid of each corresponding lesion as the corresponding point of the cloud. As the
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FIGURE 6.2. Dynamic Hierarchical Network Construction. (a) Global-level
Network (G-Net) construction contains two submodules, including simpli-
cial complex construction and Rips Filtration. (b) Community-level Network
(C-Net) construction has two submodules, including K-simplex Graph Con-
struction, and K-simplex Filtration.

resolution of clinical MRI may vary across different patients, we further transform the point

cloud from MRI space pmr to physical space p for uniform comparison using the equation:

p = DSpmr +O (6.1)

where the direction matrix D, spacing S, and origin coordinate O are obtained from MRI

meta-information.

6.2.2 Global-level Network (G-Net)

To encode dynamic geometrical structure in G-Net, we firstly construct a simplicial complex

from the point cloud and then expand it to a multi-scale topology via Rips Filtration (Fig 6.2a).

The theoretical motivations using the simplicial complex instead of the conventional graph

are two-folds. Firstly, simplicial complex models the potential higher-order group-wise

interaction among multiple lesions, while in contrast, the conventional graphs only capture
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pair-wise interaction between a lesion pair [258]. Secondly, simplicial complex, equipped

with filtration techniques, naturally generates multi-scale graphs in contrast to conventional

fixed-scale graphs [105], thus can be used to mine dynamic patterns in the evolutionary

networks and bypass the challenge of determining the optimal sparsity scale of the graph

edges. G-Net also serves as the base for dynamic community identification in Section 6.2.3.

Specifically, to establish the connectivity of the simplicial complex, we use Vietoris-Rips

complex (Rips complex) [113] that is a major algebra representation in persistent homology.

Given a point cloud P = {p1, p2..., pn} ⊂ R3, Rips complex Rr(P ) at scale r > 0 is defined

as:

Rr(P ) = {σ ⊆ P | d(u, v) ≤ 2r,∀u 6= v ∈ σ} (6.2)

where d is the Euclidean distance and r is a scale factor represented as the radius of a

Euclidean ball Br(pi) centered at a point pi. More specifically, points {p1, p2..., pn} ∈ P span

a k-simplex σ if and only if the Euclidean balls Br(p) have pairwise intersection. With the

Rips complex, global topological connections can be modelled at a scale r.

In the second step, Rips complex is expanded to multi-scale topology to encode geometry

dynamics using Rips Filtration [259], which generates a nested family of Rips complexes

(filtered Rips Complex KR). Practically, as illustrated in Fig 6.2a, KR is calculated by firstly

computing Rips complex at a maximum scale rmax and then extract Rips sub-complex at a

lower scale r ≤ rmax. To this aim, a weight function WR is defined for each simplex σ to

represent the minimum scale r of a simplex σ when it is generated in the Rips complex. Given

σ ∈ Rrmax(P ), the discrete weight function WR : Rrmax(P )→ R is defined as:

WR(σ) =


0, dim(σ) ≤ 0

d(u, v), σ = {u, v}

maxN⊂σWR(N), otherwise

(6.3)
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The defined weight WR of a simplex equals to the maximum of the weights of all its edges.

Then, the filtered Rips complex KR can be computed with the tuple (Rrmax(P ),WR), repres-

enting a series of nested Rips complexes:

∅ = Rr0(P ) ⊆ Rr1(P ) ⊆ ... ⊆ Rrmax(P ) (6.4)

where Rr(P ) = {σ | WR(σ) ≤ r, σ ∈ Rrmax(P )} and r0 ≤ r1 ≤ ... ≤ rmax. The filtered

Rips complex KR is the required input of persistence homology algorithm to calculate

global-level geometric invariants and will be illustrated in Section 6.3.1.

6.2.3 Community-level Network (C-Net)

To further capture the spatial patterns of lesion clusters, we propose a C-Net as illustrated in

Figure 6.2b. Firstly, we design a K-simplex Graph as a high-level topological abstraction of

global simplicial complex, from which dynamic community structures are encoded via the

proposed K-simplex Filtration.

The definition of community topology is largely application dependent [260], [261]. As

clinically multifocal lesions on MRI show patterns of densely clustered groups [246], in

which one lesion may pathologically affect more than one lesion community, we model

the lesion community graph based on overlapping communities. Accordingly, we define

k-simplex community to characterise tightly connected k-simplices in Rips Complex from

G-Net, and then extend it to multi-scale community topology using K-simplex Filtration.

Specifically, we firstly define K-simplex Community and its connectivity (the edge connecting

simplices) as:

DEFINITION 1. K-simplex Community is a maximal union of k-simplices that are pairwise

connected with k-simplex connectivity. The k-simplex connectivity is defined as two k-

simplices sharing a (k-1)-simplex.
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For example, two filled triangles (2-simplices) are connected if they share a common edge (1-

simplex). Notably, 0-simplex community is a singleton community as 0-simplex connectivity

is ∅. We include 0-simplex community in the definition of k-simplex community because

isolated lesions are also biological meaningful patterns [112]. Our definition of k-simplex

Community is based on one of the essential principles of graph community that its members

should be reachable through the well-connected subset of nodes (also known as community

connectivity) [262]. When the community connectivity is defined as sharing fully connected k

nodes, as in one of mainstream community detection methods named Clique Expansion [262]–

[265], two communities sharing k-1 nodes would be regarded as two separate communities

due to the lack of sufficiently strong community connectivity.

With the aim to identify the defined k-simplex community, a K-simplex Graph Gk = (Vk, Ek)

is designed to encode k-simplex connectivity in a high-level abstraction of global topology.

This is achieved by simplifying k-simplices σk as vertices Vk and its connectivity (σk, σ′k) as

Ek. As illustrated in Fig 6.2b, the vertices Vk are k-simplices σk extracted from Rips Complex

Rr(P ) at scale r:

V r
k = {σk | σk ∈ Rr(P ), dim(σk) = k} (6.5)

The edges Ek are computed based on the definition of k-simplex connectivity (σk, σ′k):

Er
k = {(σk, σ′k) | σk and σ′k are connected} (6.6)

To encode the community topology at dynamic scales, in the next step, we expand the K-

simplex Graph to a multi-scale network via the proposed K-simplex Filtration. Specifically,

similar to Rips Filtration, we firstly compute K-simplex Graph Grmax
k at the max scale rmax

and then define a weighting function WG : Gr
k → R for vertices V r

k and edges Er
k to generate

the nested sequence of graphs (filtered K-simplex Graph KG). The weight function Wv for

vertices V r
k is defined as:

Wv(σk) = WR(σk) = max
N⊂σk

WR(N) (6.7)
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where WR(σk) is the weight function defined for the filtered Rips complex in Equation 6.3.

The weight function We for the edges Ek of K-simplex Graph is defined as:

We((σk, σ
′
k)) = max(Wv(σk),Wv(σ

′
k)) (6.8)

With K-simplex Graph Grmax
k = (V rmax

k , Ermax
k ) and its weighting functions WG = (Wv,We),

we can compute K-simplex Filtration as:

∅ = Gr0
k ⊆ Gr1

k ⊆ ... ⊆ Grmax
k (6.9)

where Gr
k = {σ̂ | WG(σ̂) ≤ r, σ̂ ∈ Grmax

k } and r0 ≤ r1 ≤ ...rmax. An illustration of K-

simplex Filtration is shown in Figure 6.2b. The filtered K-simplex Graph KG = (Grmax
k ,WG)

is the required input of Decomposed Community Persistence algorithm for computing com-

munity topological features, which will be illustrated in Section 6.3.2.

6.3 Dynamic Topology Quantification

After the construction of Dynamic Hierarchical Network, the next challenge is to quantify

dynamic spatial patterns of the multi-scale network, particularly community topology. Firstly,

we quantify geometrical structure in G-Net as homological invariants based on persistence

homology, and then quantify the characteristics of clustered lesions in C-Net as attributed

community dynamics based on community topology tracking and incorporation of lesion

attributes.

6.3.1 Global Geometrical Invariants

Multi-scale global topology is quantified as geometrical invariants by homology tracking

and persistence vectorization. From the filtered Rips Complex KR, we firstly compute

Persistence Diagram B = (Tb, Td) and record the persistence of homological components

with their birth time Tb and death time Td. The persistence of the homology (Td − Tb) is

defined as the difference between the birth time and death time, which captures the lifetime
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FIGURE 6.3. Multi-scale community topology quantification. (a) Illustration
of Decomposed Community Persistence algorithm. Decomposed Persistence
D = {d1, d2, ...} and decomposed dynamic communities C = {c1, c2, ...} are
outputs of the algorithm. (b) The workflow for Adaptive Community Profile.

of the homological object. As the multi-set form of PD is not compatible with machine

learning models, we vectorize the diagram using Persistence Image. Vector representation

of PD is adopted over the kernel-based representation for easy fusion with our vector-based

community features and compatibility with a broader range of machine learning algorithms.

Given a Persistence Diagram B = (Tb, Td), Persistence Image [121] is a discretization of the

persistence surface ρB : R2 → R, which is generated from the weighted sum of Gaussian

centered at the points of a rotated persistence diagram B′ = (Tb, Tp) = (Tb, Td− Tb). For any

z ∈ R2,

ρB(z) =
∑
u∈B′

α(u)Φu(z) (6.10)

124



6.3. DYNAMIC TOPOLOGY QUANTIFICATION

where α : R2 → R is a non-negative weight function that only depends on the persistence Tp

and Φu(z) = 1
2πτ2

e−
1

2τ2
‖z−u‖2 is the normalized Gaussian. τ and u denote standard deviation

and mean of persistence pairs in Persistence Diagram B, respectively.

6.3.2 Attributed Community Dynamics

Multi-scale community topology is quantified as attributed community dynamics, aiming to

summarize the evolutionary communities in terms of community shapes and lesion attributes.

Different from the previous approach that only tracks the number of communities across

scales [266], the strength of our quantification is that community heterogeneity (such as

community shape and volume) is incorporated into the quantification process. To achieve

this, as illustrated in Figure 6.3, we propose a novel Decomposed Community Persistence

algorithm to track the community evolution for the incorporation of lesion attributes, and then

depict the characteristics of these communities over scales by a designed Adaptive Community

Profile equipped with a customizable descriptor.

To timely incorporate lesion attributes into dynamic communities, Decomposed Community

Persistence algorithm is designed to track every change of community members at fine-

grained scales during the topological evolution. Different from the previous persistence

algorithm [266] that only tracks major merges of communities, we define Decomposed

Persistence of dynamic communities as:

DEFINITION 2. Decomposed Persistence (rb, rd) is defined as the life span of a k-simplex

community C(rb,rd) with the constant community members. C(rb,rd) is created at the scale rb

and ended at the scale rd, at which new members are added in the community.

K-simplex community with Decomposed Persistence c(rb,rd) is denoted as Decomposed

Dynamic Community. Figure 6.3a shows examples of decomposed dynamic communities

such as c0 with its Decomposed Persistence (r0, r1), and c1 with the persistence (r1, r2).

125



6.3. DYNAMIC TOPOLOGY QUANTIFICATION

Algorithm 3 Decomposed Community Persistence Algorithm

1: Input: K-simplex Graph Gk = (Vk, Ek), and its weighting functions WG = {We,Wv}.
2: Initialize:
3: UF← ∅ {Empty Union-Find Structure}
4: D← ∅ {Empty Decomposed Persistence}
5: C← ∅ {Empty Decomposed Dynamic Communities}
6: Sort edges in ascending order of its weight
7: for every edge (u, v) ∈ edges Ek do
8: if k>0 then
9: ru ← UF.find(u), rv ← UF.find(v)

10: cu ← UF.connected_components(ru)
11: cv ← UF.connected_components(rv)
12: if Wv(ru) < Wv(rv) then {Merge the older into the newer}
13: UF.union(rv, ru)
14: else
15: UF.union(ru, rv)
16: end if
17: D← D ∪ (Wv(ru),We(u, v)) ∪ (Wv(rv),We(u, v))
18: C← C ∪ cu ∪ cv
19: else if k=0 then
20: if u/∈C then
21: D = D ∪ (Wv(u), We(u, v))
22: C = C ∪ u
23: else if v/∈C then
24: D = D ∪ (Wv(v), We(u, v))
25: C = C ∪ v
26: end if
27: end if
28: end for
29: Output: C, D

Based on the decomposed persistence, we propose a decomposed community persistence

algorithm to track and record the evolutionary changes of members in k-simplex communities

c ∈ C and its decomposed persistence d = (rb, rd) ∈ D, by tracking the k-simplex con-

nectivity in the filtered K-simplex Graph KG = (Grmax
k ,Wc) based on a Union-Find data

structure [267]. Specifically, as summarized in Algorithm 3, we traverse the k-simplex con-

nectivity (edges) in ascending order of its weight and then record the status of the connected

components in the union-find structure for identification of the k-simplex community C. To

obtain the decomposed persistence d = (rb, rd) ∈ D for these communities, we regard the

newly added component at each merge as roots in the union-find structure and its associated
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weight as birth time rb. The death time rd can be obtained with weight at the next merge

of this community. As singleton communities (k=0) are not associated with k-connectivity

Er
0 = ∅, we explicitly set Er

0 = Er
1 for the computation of the decomposed persistence of

singleton communities, which is also summarized in Algorithm 3. In our study, we tracked

the 0-simplex and 1-simplex communities C and their decomposed persistence D for further

quantification and analysis.

In the second step, we propose Adaptive Community Profile to quantify heterogeneous com-

munity characteristics at difference scales. In the previous approach, Rieck et al. [266]

designed a persistence indicator function ID : R −→ N to summarize the number of com-

munities at different scales, which was formularized as below:

r −→ card{(rb, rd) ∈ D | r ∈ (rb, rd)} (6.11)

As persistence indicator function neglects the heterogeneity of lesion communities, we

improve the previous formulation by incorporating the attributes of individual lesions and a

descriptor function. Specifically, as illustrated in Figure 6.3b, we firstly incorporate lesion

attributes a (such as lesion volume) with each lesion in k-simplex community c(rb,rd) to obtain

the attributed community c′. Then, a customized community descriptor f : C ′ → R is used to

map the community to the community attribute. The descriptor could be a clinical descriptor

fa (such as community lesion volume), but also a topological descriptor ft to describe lesion

shapes (such as community clustering coefficient). The clustering coefficient [110] is a graph

measurement of edge density. Lastly, we capture the heterogeneity of these communities with

descriptive statistics (such as standard deviation, skewness) followed by discretization for

further analysis. The proposed Adaptive Community Profile is summarized as below:

PD : R −→ N

r −→ stats{ f(c′(rb,rd)) | r ∈ (rb, rd)}
(6.12)
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FIGURE 6.4. Topological pattern analysis.

6.4 Topological Pattern Analysis

From the quantified multi-level topological features, topological pattern analysis is performed

to select informative, non-redundant and highly-relevant topological features through feature

fusion and selection. The process of topological pattern analysis is illustrated in Figure 6.4.

Specifically, global-level Persistence Images and community-level Adaptive Community

Profile features are firstly integrated with a feature-level fusion. From the fused feature

pool, we design a feature selection method to obtain the final topologial feature set with

four steps: 1) Informative features are preserved by applying a variance filtering to remove

zero-variance features; 2) redundant features are removed by identifying perfectly correlated

feature pairs and randomly removing one of them; 3) To select task-relevant features, we

perform Wilcoxon filtering to select features with significant distribution difference in two

target classes; 4) lastly, the final feature set is selected via a multivariate sequential forward

selection. During the feature processing, Balanced Random Forest (BRF) [161] is adopted in

the multivariate SFS to select the final discriminative feature set. SFS is a wrapper feature

selection algorithm, searching for the optimal feature combination based on the predictive

performance from the classifier. In the subsequent modelling, the processed features are

validated on two machine learning classifiers, including BRF and Cost-effective Support
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Vector Machine (CE-SVM) [268]. The selected topological features are subsequently modeled

with machine learning algorithms for diagnostic or prognostic applications.

6.5 Experiments and Implementations

The proposed DTA framework was evaluated on both diagnostic and prognostic tasks for

multifocal diseases on two independent datasets. The experiments were comprehensively

evaluated using seven evaluation metrics, including ROC_AUC, balanced accuracy (BAC), f1

score (F1), area under the precision recall curve (PR_AUC), ACC, SEN, and SPE, to avoid

the inflated performance on imbalanced datasets. BAC [269] is defined as the arithmetic mean

of sensitivity (true positive rate) and specificity (true negative rate), which is formulated as:

BAC =
1

2
(SEN + SPE) =

1

2
(

TP

TP + FN
+

TN

TN + FP
) (6.13)

where SEN and SPE are sensitivity and specificity respectively, and TP, TN, FP, FN denote

True Positive, True Negative, False Positive and False Negative respectively.

The results were compared with seven state-of-the-art persistent homology methods, in-

cluding (a) three global kernel-based methods, namely PSSKernel [116], PWGkernel [117],

PFKernel [118], and (b) three global vectorisation-based methods, including Persistent Land-

scape [120], Persistence Image [121], Betti curve [119] and (c) one community vectorisation-

based method Persistent Indicator [266]. Furthermore, our DTA framework was also compared

with the reported performance of six state-of-the-art feature engineering and deep learning

methods, including three methods [8], [31], [270] on the tasks of differential diagnosis and

three methods [271]–[273] on the prognosis for multifocal diseases.

6.5.1 Datasets

We evaluated the proposed DTA framework on two independent datasets for diagnostic and

prognostic tasks respectively, which were collected from Xuanwu Hospital, Capital Medical
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University. The clinical demographics of both datasets are summarized in Table 6.1. The

first dataset was collected to evaluate the value of lesion spatial pattern on brain MRI for the

differential diagnosis of MS from NMO. This dataset contains T2 brain MRI of 97 patients,

including 66 MS and 31 NMO patients. The diagnosis of MS and NMO was based on

respective diagnostic criteria [155], [156]. As there is no public-recognized segmentation

tool for NMO lesions, the marking of hyperintense brain lesions of both MS and NMO was

performed by a neuroradiologist with more than nine years of experience and validated by a

senior neuroradiologist, who had more than 20 years of experience.

The second dataset was collected to evaluate the value of lesion topology on brain MRI

for disability progression prediction of MS patients. In this dataset, we collected T2-Flair

brain MRI from 144 MS patients for prediction of disease progression, in which 90 patients

with follow-up progression and 54 patients without progression. The algorithm was run

on one baseline MR scan for predicting the follow-up disease progression. The follow-up

disease progression was measured by the difference between the baseline EDSS and follow-up

EDSS, according to the prognostic criteria defined in [274]. MS lesions on T2-Flair were

automatically segmented by the lesion prediction algorithm [275] in the LST toolbox version

3.0.0, and then revised by a neuroradiologist with over nine years of experience. P-values for

age, disease duration, EDSS and follow-up time is calculated through t-test, while p-value for

sex is calculated through chi-squared test.

6.5.2 Implementations

In terms of implementation of our method, each lesion was separated from each other using

disconnected component labeling [257] based on six-connectivity in Lesion Cloud Generation.

In global topology quantification, global geometrical invariants were vectorized as Persistence

Image with the resolution of 20*20. The dimension of each Persistence Image (global

topology descriptor) was 400. In community topology quantification, we implemented two

Adaptive Community Profiles with different community descriptors f . The first descriptor fa

was the community lesion volume (abbreviated as cmnt_lv) to capture lesion heterogeneity,

130



6.5. EXPERIMENTS AND IMPLEMENTATIONS

TABLE 6.1. Clinical Demographics of multifocal patients.

Dataset1: MS diagnosis (N=97)
MS (N=66) NMO (N=31) p-value

Age, year 36.5±10.2 40.5±12.0 0.119
Female/male 45/21 24/07 0.486
Disease duration 52.2±52.7 64.1±57.3 0.333
EDSS 2.9±1.5 4.3±1.6 <0.001

Dataset2: MS prognosis (N=144)
NP (N=54) P (N=90) p-value

Age, year 34.9 ±10.1 37.7 ±10.6 0.125
Female/male 35/19 60/30 0.964
Disease duration 9.5±11.1 13±12.1 0.082
EDSS_0 1.2±1.0 1.4±0.7 0.192
EDSS_1 1.6±0.7 3.3±1.2 <0.001
Follow-up 1.7±0.9 2.0±1.0 0.097

while the second descriptor ft was community clustering coefficient (abbreviated as cmnt_cc)

to measure lesion topological shape. Community statistic measures (stats) used in Adaptive

Community Profile included skewness, kurtosis, max, standard deviation. The dimension of

each Adaptive Community Profile (community topology descriptor) was 60. For classification,

we evaluated our DTA framework on two different classifiers that are capable of handling

imbalanced datasets, including BRF classifier [161] and CE-SVM [268] with the linear kernel.

For the implementation of comparison methods, vectorization-based methods were evaluated

with both CE-SVM and BRF while kernel-based methods were only evaluated with CE-SVM

as they are not compatible with non-kernel classifiers such as BRF. SVM was equipped with

linear kernel and one-norm regularization for vectorization-based methods to reduce the

feature dimension [276]. Comparison methods evaluated with BRF used the same feature

selection pipeline as ours for uniform comparison of topology quantification. To ensure the

fair comparison, all vectorisation-based comparison algorithms used 1) the same lesion point

cloud from MRI images, 2) the same feature processing pipeline and 3) the same classifier as

our method; and all kernel-based comparison methods were 1) applied on the same lesion

point cloud, and 2) fitted on the same kernel-based classifier since feature processing was not

needed for kernel-based methods.
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For experimental settings, stratified independent validation was used to evaluate the perform-

ance of the proposed method. Hold-out technique is used to randomly split the dataset into

independent training and testing data. Specifically, both datasets were split into training and

testing sets using a stratified random split with a ratio of 7:3. Homological dimension was

selected from [h0, h1]. In BRF, the n_estimator was tuned from [10, 50, 100, 500, 1000]. In

SVM, parameter C was tuned from [0.1,1,10,100,1000] and class weights were tuned from

[5:3, 6:2, 7:1, ’balanced’] for the diagnostic dataset and [6:4, 7:3, 8:2, 9:1, ’balanced’] for the

prognostic dataset. Hyperparameter tuning was performed with grid search and three-fold

cross-validation on the training dataset.

6.6 Experimental Results

6.6.1 Diagnostic Performance and Case Study

Table 6.2 shows the performance comparison of the proposed DTA framework on the task

of differential diagnosis of MS and NMO with seven state-of-the-art persistent homology

methods. Our DTA framework based on BRF classifier yielded the best performance on

ROC_AUC (0.875), BAC (0.850), F1 score (0.865), PR_AUC (0.930) and ACC (0.833). Our

method based on SVM also outperformed all other methods on ROC_AUC (0.765). Although

our method only achieved the second highest on SEN and SPE, our model demonstrated less

bias towards the minority or majority class and the better balance in results, as supported by

the performance on ROC_AUC, balanced accuracy, f1 score, PR_AUC. These results indicate

that the spatial patterns captured by our method achieved high diagnostic performance for

differentiating MS from NMO, ourperforming other multi-scale topological quantification

methods.

In Figure 6.5, we provided a case study on the differential diagnosis of MS and NMO, to

illustrate the effectiveness of the proposed DTA framework. Two challenging cases (including

one MS and one NMO) with similar lesion volume were selected from the test set, and both
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TABLE 6.2. Performance of DTA framework on differential diagnosis of MS
and NMO, compared with state-of-the-art persistent homology methods.

Method Classifer ROC_AUC BAC F1 PR_AUC ACC SEN SPE

PSSKernel [116] CE-SVM 0.762 0.700 0.706 0.787 0.667 0.600 0.800
PFKernel [118] CE-SVM 0.705 0.675 0.600 0.835 0.600 0.450 0.900
PWGKernel [117] CE-SVM 0.762 0.725 0.687 0.787 0.667 0.550 0.900

BettiCurve [119] CE-SVM 0.758 0.650 0.818 0.860 0.733 0.900 0.400
PersistenceImage [121] CE-SVM 0.670 0.700 0.571 0.866 0.600 0.400 1.000
PersistenceLandscape [120] CE-SVM 0.668 0.625 0.703 0.747 0.633 0.650 0.600
CommunityIndicator [266] CE-SVM 0.555 0.550 0.588 0.719 0.533 0.500 0.600

PersistenceLandscape [120] BRF 0.745 0.750 0.778 0.889 0.733 0.700 0.800
BettiCurve [119] BRF 0.555 0.550 0.320 0.777 0.433 0.200 0.900
PersistenceImage [121] BRF 0.720 0.675 0.600 0.888 0.600 0.450 0.900

Proposed DTA CE-SVM 0.765 0.700 0.757 0.861 0.700 0.700 0.700
Proposed DTA BRF 0.875 0.850 0.865 0.930 0.833 0.800 0.900

were successfully classified by our method. Figure 6.5b shows lesion communities of MS

and NMO across different scales, in which scales 10 and 19 were important scales selected

by our algorithm. At scale 10, MS showed the spatial pattern of scattered lesions with a few

small communities while NMO showed the pattern of a densely connected community. At

scale 19, MS showed the spatial pattern of a large chain-shaped community, while NMO

showed the pattern of a ball-shaped community. The patterns regarding community shapes and

community volumes were quantified in our Adaptive Community Profile (ACP) in Figure 6.5c.

Specifically, ACP cmnt_lv_max shows that MS patients tended to have lesion clusters with

larger volume than NMO in the two cases as well as in the studied population. Similarly,

ACP cmnt_cc_max shows MS tended to have more sparsely connected communities (lower

clustering coefficient) than NMO.

For the diagnostic task, the interpretation of the quantified community features was visualised

in Figure 6.5d. The right-half plane of Figure 6.5d showed lesion communities for the MS and

NMO patients at the important scale r=10 and their corresponding abstracted graphs. At this

scale, the abstract graph showed the NMO patients had more densely connected communities

compared with the MS patients, which was successfully quantified by Adaptive Community

Profile (clustering coefficient). Similarly, the left-half plane of Figure 6.5d showed lesion
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TABLE 6.3. Classification performance of DTA framework on prognostic
prediction of MS, compared with state-of-the-art persistent homology methods.

Method Classifier ROC_AUC BAC F1 PR_AUC ACC SEN SPE

PSSKernel [116] CE-SVM 0.619 0.620 0.653 0.713 0.614 0.593 0.647
PFKernel [118] CE-SVM 0.575 0.561 0.627 0.690 0.568 0.593 0.529
PWGKernel [117] CE-SVM 0.625 0.620 0.653 0.722 0.614 0.593 0.647

BettiCurve [119] CE-SVM 0.454 0.410 0.458 0.663 0.409 0.407 0.412
PersistenceImage [121] CE-SVM 0.636 0.583 0.596 0.758 0.568 0.519 0.647
PersistenceLandscape [120] CE-SVM 0.664 0.569 0.667 0.812 0.591 0.667 0.471
CommunityIndicator [266] CE-SVM 0.619 0.542 0.600 0.718 0.545 0.556 0.529

PersistenceLandscape [120] BRF 0.598 0.539 0.655 0.557 0.568 0.667 0.412
BettiCurve [119] BRF 0.578 0.594 0.578 0.713 0.568 0.481 0.706
PersistenceImage [121] BRF 0.658 0.598 0.679 0.775 0.614 0.667 0.529
CommunityIndicator [266] BRF 0.611 0.612 0.609 0.678 0.591 0.519 0.706

Proposed DTA CE-SVM 0.752 0.716 0.735 0.865 0.705 0.667 0.765
Proposed DTA BRF 0.767 0.686 0.720 0.872 0.682 0.667 0.706

communities of MS and NMO patients at the important scale r=19 and their abstracted

graph. At this scale, the abstracted graph showed the MS patient had a community with

larger community lesion volume compared with the NMO patient, which was successfully

quantified by Adaptive Community Profile (lesion volume).

6.6.2 Prognostic Performance and Case Study

Table 6.3 shows the comparative performance of the proposed DTA framework with other

state-of-the-art persistent homology methods on the task of prognostic prediction of MS.

Our method based on SVM classifier outperformed all other methods on all metrics with

ROC_AUC (0.752), BAC (0.716), F1 score (0.735), PR_AUC (0.865), ACC (0.705), SEN

(0.667) and SPE (0.765). Our method based on BRF also outperformed other methods

on all metrics with ROC_AUC (0.767), BAC (0.686), F1 score (0.720), PR_AUC (0.875),

SEN (0.667), SPE (0.706) and accuracy (0.682). The results indicate that our method

successfully captured lesion spatial patterns for predicting disability progression and achieved

high prognostic performance compared with other multi-scale topological quantification

methods.
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FIGURE 6.5. Case study on the differential diagnosis of MS and NMO. (a)
Input MRI and 3D lesion visualization. (b) Visualization of Community-
level Network (C-Net). (c) Visualization of dynamic community quantifica-
tion. Two Adaptive Community Profiles include one with community volume
descriptor (cmnt_lv_max) and the other with community shape descriptor
(cmnt_cc_max). The red star and circle denote the selected scale. The box
plots show the population distribution of the community features between
MS and NMO patients. (d) Visualization of connectivity and attributes of
lesion communities for interpretation of community features. Abbreviations:
MS=multiple sclerosis; NMO=neuromyelitis optica; C-Net=Community-level
Network; cmnt_lv=community lesion volume; cmnt_cc=community clustering
coefficient.

In Figure 6.6, we provided a case study on the prognostic prediction of MS, to illustrate

the effectiveness of the proposed DTA framework. Two challenging cases with similar
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lesion volume, in which one with progression (P) and one with non-progression (NP), were

selected from the test set, and both were successfully predicted by our method. Figure 6.6b

shows lesion communities of P and NP across different scales, in which scale 14 and 17

were important scales selected by our algorithm. At scale 14, P case showed the spatial

pattern of a relatively large community, while NP showed the spatial pattern of scattered

small communities. At the scale 17, P case showed the spatial pattern of a more densely

connected large community, while NP showed the pattern of several small sparsely connected

communities. The patterns regarding community shapes and community volumes were

quantified in our ACP in Figure 6.6c. Specifically, ACP cmnt_lv_max shows that P patients

tended to have larger lesion communities than NP at scale 14, in the two cases as well as in

the studied population. Similarly, ACP cmnt_cc_std shows NP tended to have more sparsely

connected communities at scale 17 (more communities with 0 clustering co-efficient) than

P. To interpret the quantified characteristics of communities, we visualize the topological

connection and lesion attributes of the communities at the important scale r=14 and r=17 in

Figure 6.6d.

For the prognostic task, the interpretation of the quantified community features was visualised

in Figure 6.6d. The right-half plane of Figure 6.6d showed lesion communities for the

Progression patient (P) and Non-progression patient (NP) at the important scale r=17 and their

corresponding abstracted graphs. At this scale, the abstracted graph showed the P patient had

more densely connected communities compared with the NP patients, which was successfully

quantified by Adaptive Community Profile (clustering coefficient). Similarly, the left-half

plane of Figure 6.6d showed lesion communities of MS and NMO patients at the important

scale r=14 and their abstracted graph. At this scale, the abstracted graph showed the P patient

had a community with larger community lesion volume compared with the NP patient, which

was successfully quantified by Adaptive Community Profile (lesion volume).
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FIGURE 6.6. Case study on the prognostic prediction of MS. (a) Input MRI
and 3D lesion visualization. (b) Visualization of Community-level Network
(C-Net). (c) Visualization of dynamic community quantification. Two Ad-
aptive Community Profiles include one with community volume descriptor
(cmnt_lv_max) and the other with community shape descriptor (cmnt_cc_std).
The red star and circle denote the selected scale. The box plots show the popu-
lation distribution of the community features between P and NP patients. (d)
Visualization of connectivity and attributes of lesion communities for interpret-
ation of community features. Abbreviations: P = Progression Patient; NP=Non-
Progression Patient; C-Net=Community-level Network; cmnt_lv=community
lesion volume; cmnt_cc=community clustering coefficient.
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6.6.3 Comparison With Feature Engineering and Deep Learning

Table 6.4 shows the comparison of DTA with the reported performance of feature engineering

and deep learning methods on the metrics including ROC_AUC, accuracy, sensitivity and

specificity. N/a indicates the metric was not reported. Specifically, for the differential

diagnosis of MS and NMO, Table 6.4a shows that our proposed DTA method achieved

the highest ROC_AUC 0.875, accuracy 0.833 and specificity 0.900, outperforming feature

engineerings [8], [270] and deep learning methods [31]. For the prognostic prediction of MS,

Table 6.4b shows that our proposed DTA method achieved the highest ROC_AUC 0.752, ACC

0.705, specificity 0.765, compared with feature engineering [271], [272] and deep learning

methods [273].

TABLE 6.4. Comparison of the proposed method with six state-of-the-art
computational radiology methods on multifocal diseases for diagnostic and
prognostic tasks.

(a) Differential diagnosis of MS and NMO

Author(year) ROC_AUC ACC SEN SPE
Eshaghi et al. [270] n/a 0.800 0.850 0.760
Liu et al. [8] 0.712 n/a n/a n/a
Yoo et al. [31] 0.801 0.813 0.850 0.750
Proposed DTA 0.875 0.833 0.800 0.900

(b) Prognositic prediction of MS

Author(year) ROC_AUC ACC SEN SPE
Zhao et al. [271] n/a 0.690 0.720 0.670
Law et al. [272] 0.618 n/a 0.583 0.324
Tousignant et al. [273] 0.701 n/a n/a n/a
Proposed DTA 0.752 0.705 0.667 0.765

6.6.4 Comparison with Graph Classification Methods

We compared our method with three state-of-the-art graph learning methods including

graph kernel (Propagation Kernel [277]), graph neural networks (Graph Convolutional Net-

work [278]), and community detection (Community Indicator [266]). The assessment was

conducted on the diagnostic prediction of MS and NMO, evaluated using CE-SVM classifier
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with the same split of training and testing data in the independent validation. For implementa-

tion of graph construction (Table 6.5), both propagation kernel and GCN used KNN method

on Euclidean distance of points to construct a fixed-scale graph [277], while Community

Indicator used its own k-clique graph to construct a multi-scale graph [266]. For the parameter

tuning, Propagation Kernel and Community Indicator used CE-SVM classifier with parameter

C tuned from [0.1, 1, 10, 100, 1000] and class weights tuned from [5:3, 6:2, 7:1, ’balanced’].

For the parameters of GCN, Adam optimiser was used with learning rate tuned from [0.0001,

0.001, 0.01, 0.1] and hidden channels tuned from [128, 256, 512]. The results in Figure 6.7

showed that our DTA framework outperformed the 3 graph learning methods in terms of

AUC, ACC and SEN. A corresponding discussion on the experimental comparison with graph

learning is summarised in Section 6.7.1.

TABLE 6.5. Implementation details for graph learning methods.

Method Implementations

Propagation Kernel
Graph construction: KNN with k=3,
Evaluation: CE-SVM, C ∈ [0.1, 1, 10, 100, 1000],
class weight ∈ [5:3, 6:2, 7:1, ‘balanced’].

GCN
Graph construction: KNN with k=3,
Optimiser: Adam, learning rate ∈ [0.0001, 0.001, 0.01, 0.1],
hidden channel ∈ [128, 256, 512].

Community Indicator
Graph construction: k-clique graph,
Evaluation: CE-SVM, C ∈ [0.1, 1, 10, 100, 1000],
class weight ∈ [5:3, 6:2, 7:1, ‘balanced’].

Our DTA Evaluation: CE-SVM, C ∈ [0.1, 1, 10, 100, 1000],
class weight ∈ [5:3, 6:2, 7:1, ’balanced’May].

6.6.5 Importance Analysis of Topological Features

To investigate the feature importance of global and community topological features in the

final feature set, we assessed the impurity-based feature importance and univariate predictive

ability based on BRF model. Univariate analysis is to separately investigate the predictive

performance of each feature in the final feature set. For the diagnostic task, Figure 6.8
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FIGURE 6.7. Comparison experiments with the state-of-the-art graph learning
methods on the diagnostic task.

shows that only six community features and no global features were selected, including three

features with lesion volume descriptor and the other three features with clustering coefficient

descriptor. Figure 6.8 also shows that community features based on lesion volume yielded

higher importance (28.9%, 27.5% and 21.7%) compared with community features based on

clustering coefficient (9.9%, 7.6%, and 4.4%). This finding was consistent with the univariate

analysis, in which the highest ROC_AUC was achieved by three community features based

on lesion volume (0.805, 0.775 and 0.770).

For the prognostic task, Figure 6.9 shows that the selected nine topological features con-

sisted of seven community features and two global features. In terms of feature importance,

community features collectively made up 74.7% feature importance compared with 25.3%

occupied by global features. As for univariate analysis, the three highest performance was all

achieved by community features (0.773, 0.705 and 0.692).
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FIGURE 6.8. Feature importance and univariate results for the diagnostic task.
Abbreviations: cmnt_lv=community lesion volume; cmnt_cc=community clus-
tering coefficient; pi=persistence image; FI=Feature Importance; AUC=Area
Under the receiver operating characteristic Curve.

FIGURE 6.9. Feature importance and univariate results for the prognostic task.
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6.6.6 Generalizability Analysis with Leave-one-out Validation

We conducted leave-one-out validation for both diagnostic and prognostic tasks to validate

the generalizability of our DTA framework. As shown in Figure 6.10, the experimental results

of leave-one-out validation of our method showed comparable results as hold-out independent

validation for both diagnostic and prognostic tasks, which were not statistically significant

(p > 0.05) with McNemar’s test [279]. Specifically, for the prognostic task, leave-one-out

validation achieved ACC 0.694 compared with hold-out validation (ACC 0.682), with a slight

increase of 1.76% (p=0.25). Similarly, for the diagnostic task, our method with leave-one-out

validation achieved ACC 0.804 compared with independent hold-out validation ACC 0.833,

with a slight decrease of 3.48% (p=1.00).

0.833 0.804

0.682 0.694

0.000

0.200

0.400

0.600

0.800

1.000
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Diagnosis Prognosis
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FIGURE 6.10. Comparison of leave-one-out validation (LOO) and independ-
ent hold-out validation.
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FIGURE 6.11. Experimental results on partially public datasets for differential
diagnosis.

6.6.7 Generalizability Analysis with Public Datasets

It is challenging to find large public MRI data of multifocal diseases for both diagnostic

and prognostic tasks, because 1) NMO data are not publicly available for the diagnostic

task, 2) and progression labels (e.g., EDSS) of MS data are not publicly available for the

prognostic task. As a result, we collected additional 35 MS public data from two datasets

and combined with our 31 inhouse NMO data for the diagnostic validation. The public

datasets include MICCAI 2008 challenge data with 20 samples [280] and MICCAI 2016

challenge data with 15 samples [281]. For MICCAI 2008 dataset, 20 training samples with

T2 weighted MRI acquired from 3T Siemens scanners in two centers were used. Manual

segmentation of MS lesions was provided from clinical experts. The data is publicly avail-

able at https://www.nitrc.org/frs/?group_id=745. For MICCAI 2016 data-

set, 15 training samples with T2 slides were used acquired from 1.5T and 3T scanners.

Manual lesion delineations were provided by independent experts. MICCAI 2016 dataset is

publicly available at http://portal.fli-iam.irisa.fr/msseg-challenge/
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english-msseg-data/.We implemented our DTA framework on this partial public

dataset using BRF classifier. The experimental results in Figure 6.11 showed that our DTA

framework retained high diagnostic performance, achieving ROC_AUC 0.973, ACC 0.905,

SEN 1.00, and SPE 0.800.

6.7 Discussion

The proposed DTA framework provides the first topological modeling tool, based on persistent

homology, for systematically profiling the spatial patterns of multifocal lesions, which fills

the blank in current feature engineering and deep learning methods. In our DTA framework,

we quantify the constructed hierarchical multi-scale network as global geometrical invariants

and attributed community dynamics to capture the geometrical structure and local clusters

of multifocal lesions. The experimental results demonstrated the discriminability of the

quantified spatial patterns on both diagnostic and prognostic tasks, outperforming the seven

state-of-the-art multi-scale topology quantification methods based on persistent homology

and six reported performance of feature engineering and deep learning methods. We also

illustrated the visual interpretability of our DTA framework with two case studies, showing

the potential for trustworthy clinical assistance.

6.7.1 The Value of Inter-lesion Spatial Patterns Captured by DTA

Our first finding is that the inter-lesion spatial patterns, which are neglected by current fea-

ture engineering and deep learning methods, have strong predictive value towards clinical

classification tasks. This finding was validated by the experimental results in Table 6.4 on

both diagnostic and prognostic tasks through comparisons with feature engineering and deep

learning methods. For the differential diagnosis of MS and NMO, the topological patterns

that were extracted with our DTA framework achieved ROC_AUC 0.875 (Table 6.4a), which

demonstrated a 9.2% increase of ROC_AUC performance compared with state-of-the-art

feature engineering and deep learning methods. On the task of prognostic prediction, the
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topological patterns achieved ROC_AUC 0.767, a 7.4% increase of ROC_AUC compared

with other methods (Table 6.4b). These results indicate that our DTA framework is able to

capture not only the spatial lesion patterns of different multifocal diseases for diagnostic dif-

ferentiation, but also predictive spatial patterns with the prognostic value. The discriminative

spatial patterns were mined in our DTA framework by 1) integrating dynamic topological

information from the multi-scale network and 2) exploiting both global-level geometrical

structure and community-level spatial proximity. In terms of clinical significance, the mined

topological patterns potentially reflect spatial heterogeneity of multifocal lesions, which is

in accordance with the clinical findings that the spatial distribution of multifocal lesions is

important for diagnostic and prognostic tasks [244], [245]. It also suggests that our method

has the potential to explain the clinico-radiological paradox, to assist with patient counseling

about long-term prognosis and personalized treatment plans.

Comparison with graph topology learning. Graph topology learning, which is related

to our work, has achieved attractive performance on classification tasks in social network,

economic network, and more recently in medical data analysis. For example, SIGN [282] is

a graph neural network algorithm intended for node classification problems and its variants

Inception GCN [283] and Latent Graph Learning [284] have been used for the diagnostic

classification such as AD/MCI/NC to classify the patient nodes in one patient population

graph. However, these node-classification methods do not fit our objective of classifying

multiple lesion graphs from different patients, which should belong to graph-classification

tasks. On the other hand, Graph classification methods, including graph kernels and graph

neural networks, exploit latent graph embedding for classification tasks, which are related

to our methods. Specifically, graph kernels (such as Propagation Kernel [277]) are mostly

designed to capture only global properties of a whole graph [285]; in contrast, Graph neural

networks (such as GCN [278]) is a data-driven embedding method requiring no feature

engineering. However, both graph kernels and graph networks are usually based on a fixed

scale of the graph, while our DTA framework exploits dynamic multi-scale community and

global graphs. Furthermore, our DTA framework is 1) trainable based on the limited number
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of samples (as showed in Figure 6.7), 2) conveniently handles data imbalance with well-

established studies in machine learning [286] and 3) well preserves the topological feature

meaning and interpretability as shown in case studies (Figure 6.5-6.6).

6.7.2 The Value of Attributed Community Dynamics

The second finding of our study is that the proposed attributed community dynamics are more

discriminative than global geometric invariants on both diagnostic and prognostic tasks, which

provides further insights into the quantified topological features. This finding was validated

by the experimental results in Table 6.2-6.3 and feature importance analysis in Figure 6.8-6.9.

As demonstrated in Table 6.2-6.3, our DTA framework outperformed all global geometrical

quantification methods on both diagnostic and prognostic tasks, indicating that additional

information of lesion clusters captured by our Adaptive Community Profile boosted the pre-

dictive performance. Furthermore, feature importance analysis in Figure 6.8-6.9 also provided

supporting evidence: 1) the cumulative feature importance of community features was much

higher than global features on both tasks; 2) the univariate performance of community features

was generally higher than global features. To account for the discriminability of the proposed

community features, there were two underlying reasons: Firstly, we considered the heterogen-

eity of lesions in communities by incorporating the lesion attributes into the quantification

of dynamic communities, which outperformed the community persistence indicator [266]

that only based on the number of communities (Table 6.2-6.3). Secondly, the inclusion of

singleton communities in our method also contributed to the classification performance, such

as the pattern of singleton community with large volume captured in Figure 6.6d.

Contributions of Decomposed Community Persistence. While conventional persistence

homology aims to track geometrical invariants by recording the overall persistence of ho-

mological objects, in contrast, our persistence algorithm is designed to track the detailed

evolution of dynamic community characteristics by recording the decomposed persistence

of dynamic communities. The decomposed persistence is essential for incorporating the

domain community knowledge in the subsequent quantification. Due to the difference in the
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algorithm objective, technical details of our Decomposed Community Persistence differs from

conventional counterpart including 1) the definition of birth and death time, 2) the merging

rules, and 3) the recorded persistent pairs during the merging, with the rationale elucidated as

below:

(1) The conventional persistent homology mainly tracks the birth and death of homolo-

gical objects and thereby ignoring the intermediate states of dynamic community

evolution. However, these intermediate states are essential to monitoring the evol-

ution of the dynamic communities and enabling the incorporation of community

domain knowledge in the subsequent quantification (Adaptive Community Profile).

Thus, we give different definitions on birth and death time to capture the intermediate

states during the evolution (decomposed persistence).

(2) Conventionally, merging the younger to the older only captures the overall persist-

ence, discarding all the intermediate states. In contrast, in our method, we merge the

older to the younger to technically track the newly added members, thus recording

the decomposed persistence.

(3) During the merging of two components in conventional persistent homology, only

one homological object is considered dead while the other continues to grow. Thus,

only one persistence pair is added while the intermediate states of the other would

be missing until its death. In contrast, in our new mechanism, both persistence pairs

are recorded at the merging, because both communities are considered dead after the

merging and the merged community is considered new-born. This enables tracking

and recording of all the intermediate states of both communities.

Invariance of Adaptive Community Profile. In the design of community-based topology

measures (Adaptive Community Profile), we have incorporated both intra-community in-

variance and inter-community invariance to fortify invariance of the community dynamics.

Firstly, to enhance intra-community invariance, non-topology domain knowledge (e.g., in the

clinical practice, the lesions with negligible volumes ≤ 3 voxels are considered not important

and can be ignored [287]) is incorporated to minimise the effects of noise and uninformative
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nodes when characterising the community topology. More specifically, the incorporation

of community lesion volume measures would reduce the influence of the irrelevant noise

pixels with negligible volume size, which could otherwise potentially affect the community

topology. Secondly, to enhance inter-community invariance, statistical measurements of

different communities (e.g., mean and standard deviation) are adopted to further reduce the

influence of outliers and noise.

Comparison with community quantification methods. Clique Expansion is a common

approach to identify community topology in fixed-scale graphs and has been recently extended

to multi-scale graphs. Specifically, [288] used the densely connected substructures called

maximal cliques to study local clusters in a fixed-scale graph, and loop-shaped cavities to

study parallel computations in the brain structural architecture. Different from this method

using the static graph to study local clusters, we proposed a dynamic k-simplex community

graph to capture the multi-scale community topological features. Community Indicator [266]

is one of few multi-scale community detection methods, equipped with a quantification

mechanism, for graph classification tasks. It quantifies the number of communities during

the evolution as its community features; however, it neglects the heterogeneity of different

lesion communities. In contrast, our DTA method 1) considers the heterogeneity of lesion

communities by incorporating the lesion attributes into the quantification of dynamic com-

munities; furthermore, 2) our method incorporates the singleton communities, a clinically

meaningful pattern to represent isolated lesions [112], in our quantification, which is however

neglected by Community Indicator. Thus, our methods outperform Community indicator in

the performance comparison on both diagnostic and prognostic tasks (Table 6.2-6.3).

6.7.3 Interpretability of DTA for Trustworthy Clinical Decisions

Thirdly, our DTA framework demonstrated visual interpretability to facilitate clinical un-

derstanding of multifocal lesions and to assist with trustworthy clinical decisions. This

finding was supported by the graphical visualization of multi-scale network construction

and interpretation on the topology quantification, which were illustrated with case studies
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in Figure 6.5-6.6. Specifically, for the diagnostic task, Figure 6.5b shows that MS tended to

have chain-shaped lesion communities with larger community volume while NMO tended to

have ball-shaped community with smaller volume in multi-scale network. It was captured

by Adaptive Community Profile in Figure 6.5c, which showed that communities of MS had

lower clustering coefficient and larger community volume. In addition to the visualization

of network construction and feature quantification, we provided further interpretation on the

quantified features in Figure 6.5d by revealing the details of lesion connection and lesion

attributes of the communities. As the other example, Figure 6.6b showed patients with progres-

sion (P) tend to have more densely connected communities than patients with non-progression

(NP) at scale 17. It was quantified by Adaptive Community Profile in Figure 6.6c, which

showed that lesion communities in P had more communities with higher clustering coefficient.

Figure 6.6c also showed that patients with progression tended to have lesion communities

(including singleton communities) with large volumes, which is in line with the previous

clinical study that larger T2 lesions are more likely related to disease progression [289]. To

sum up, our DTA framework could provide intuitive visualization of spatial lesion patterns

in multi-scale network and interpretation of the pattern quantification, thus could facilitate

clinical understanding of lesion spatial pattern, assist with clinical decision making, and

subsequently exploit it for the therapeutic gain.

Topological feature description and its biological interpretation. Topological feature

description and its biological interpretation of community and global topological features

are summarised in Table 6.6. Adaptive Community Profile is community-level topological

features designed to measure the statistics of community lesion volumes and community

lesion density across dynamic graph sparsity by incorporating the lesion volume (lv) and

clustering coefficient (cc) into community topology. In accordance with biology, for instance,

larger community volume, as measured by ACP_lv, may indicate more severe damage to

the structure and functionality of the brain [250], [251]. The denser lesion connectivity, as

measured by ACP_cc, in the community may indicate stronger interaction among lesions and

more active lesion development. In contrast, Persistence Image is global-level topological

features generated to measure the invariant persistence of lesion cycles and lesion connections
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TABLE 6.6. Feature description and biological meaning of topological features.

Topological features Feature description Biological meaning

Adaptive Community
Profile (lesion volume)

The community features describe
statistics about community lesion
volumes across graph scales.

The larger community lesion
volume may indicate more severe
damage to both structure and
functionality of the brain.

Adaptive Community
Profile (clustering
coefficient)

The community features describe
statistics about community lesion
density across graph scales.

The denser lesion community may
indicate stronger interaction among
lesions and involvement of more
active development.

Persistence Image
(1-dimensional homo-
logy)

The global features describe 1-
dimension homology (persistence
of all lesion cycles across graph
scales).

The persistence of global lesion
cycles (group of lesions around a
hole) may indicate the incidence of
normal-appearing white matter le-
sions inside the circle of lesions.

Persistence Image
(0-dimensional homo-
logy)

The global features describe 0-
dimension homology (persistence
of all connected components across
graph scales).

The persistence of global lesion con-
nections may help to identify the
lesion pathway.

across dynamic graph sparsity through 1-dimensional homology (h1) and 0-dimensional

homology (h0). In correspondence to biology, for example, the persistence of lesion cycles

(h1) may indicate the incidence of normal-appearing white matter lesions inside the circle of

lesions, which are not perceptible in conventional MRI for the clinical routine [248], [249].

The persistence of lesion connections (h0) may help to identify the lesion pathway.

Future work. In our future work, in addition to inter-lesion topological relationships, we

will consider further incorporating the absolute position of lesions for comprehensive spatial

evaluation of multifocal lesions. Also, we will explore the relationship and interaction between

topological features and other hand-craft features (e.g., radiomic features) to improve the

classification performance. Furthermore, we will investigate the adaption of DTA framework

to graph analysis in other domains such as brain connectome network.
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6.8 Chapter Summary

In this chapter, we proposed DTA framework to characterize the global geometry and local

clusters of multifocal lesions on MRI. In particular, we addressed the sparsity control challenge

in graph construction with Dynamic Hierarchical Network and addressed the challenge of

multi-scale community quantification via the proposed Decomposed Community Persistence

algorithm and Adaptive Community Profile. Our DTA framework achieved high predictive

performance on two independent clinical challenges of multifocal diseases, including dif-

ferential diagnosis of MS and NMO and prognostic prediction of MS, which outperformed

seven state-of-the-art persistent homology based methods and six feature engineering or deep

learning methods. To summarize, the proposed DTA framework provides a platform for better

understanding a wide spectrum of multifocal diseases and effectively spotting discriminative

biomarkers for improving diagnosis and prognosis.
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CHAPTER 7

Conclusion

7.1 Conclusions

This thesis provides Three-level Multimodal Fusion framework for quantitative analysis in the

medical domain, including feature-level, information-level and knowledge-level fusion. Our

framework tackles the challenges of 1) multimodal biomarker mining from high-dimensional

small-sample multimodal data, 2) integration and interpretation of inter-modal and intra-modal

information in multimodal deep learning, and 3) knowledge distillation from graph-based

multi-focus regions incorporated with domain knowledge. The framework can be leveraged

to support a wide range of medical applications including diagnostic classification, prognostic

prediction, and unsupervised biomarker discovery.

In feature-level fusion, to address the challenge of biomarker discovery from high-dimensional

small-sample multimodal data, we proposed an Integrative Multimodal Biomarker Mining

framework to select interpretable, relevant, non-redundant and generalizable multimodal bio-

markers. The framework leverages consensus clustering, Wilcoxon filter, sequential forward

selection, and correlation analysis to explore the feature criterion of representativeness, robust-

ness, discriminability, and non-redundancy. The feature selection framework was validated

on two essential clinical tasks and successfully mined diagnostic and prognostic biomarkers

from medical imaging data (such as CT, T1-MRI and T2-MRI) and non-imaging data.

In information-level fusion, to integrate and interpret inter-modal association and intra-modal

information, we proposed a Interpretable Deep Correlational Fusion Framework based on
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canonical correlation analysis. Two novel fusion loss functions are proposed for supervised

multimodal learning and unsupervised clustering, jointly exploiting inter-modal consensus and

intra-modal discriminative information. Furthermore, an interpretation module is proposed

to decode the complex non-linear cross-modal association, leveraging both deep learning

interpreability and multimodal consensus interpretability. Our Deep Fusion Framework was

validated on tasks in three different domains including clinical diagnosis, computer vision,

and audio recognition, outperforming the state-of-the-art consensus-based multi-view learning

algorithms in terms of supervised classification and unsupervised clustering.

In knowledge-level fusion, to distill knowledge from multi-focus regions and incorporated

with domain knowledge, we proposed a DTA framework based on a graph-based mathematical

tool named persistent homology. Different from conventional feature engineering and deep

learning techniques which often focused on texture features from single-focused regions, our

DTA framework is able to quantify global geometrical structure and local clustered groups

from multi-focused regions. In our method, higher-order graph named simplicial complex is

constructed to represent the graph structure, from which topological features are quantified

and incorporated with domain knowledge. The framework was validated on diagnostic

and prognostic tasks of diseases with multifocal lesion on MRI with high performance,

and provided a computational tool to extract new perspective topological information for

multi-focus fusion.

7.2 Future Outlook

Future research on multimodal fusion should focus on incorporating more comprehensive

information for precise decision and enhancing the interpretability of extracted multimodal

information. Thus, the multimodal data fusion in the medical domain could better assist

clinicians with more accurate and trustworthy decisions and improve the treatment procedure

and patient care.
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Personalized multimodal biomarkers. In feature-level fusion, personalized medicine is one

of the ultimate goals for multimodal data fusion. The major goal of personalized medicine is to

tailor and optimize medical decisions (including diagnosis, prognosis, and treatment plans) for

individual patients, by leveraging multimodal imaging and and non-imaging modalities. More

comprehensive medical modalities should be considered, including genomics, proteomics

to enhance the ability of fusion models to exploit deep pathological associations and make

accurate decisions. Robustness and reproducibility should be considered for personalized

multimodal biomarkers to be used in clinical practise.

Disentangled multimodal network. In information-level fusion, integration and inter-

pretability of deep multimodal networks could be further improved by seeking disentangled

consensus and complementary information. As current deep multimodal networks often

non-linearly project the multi-view information in a entangled latent low-dimensional space,

it is difficult to interpret the computed multimodal representations, understand the essence

representations (whether it is consensus or complementary). The identified disentangled

multimodal representations could facilitate the understanding of the fusion process, help

explore the disease mechanism, and further improve the fusion performance based on newly

acquired information.

Deep topological knowledge. In knowledge-level fusion, distilled graph knowledge from

multi-focused regions could provide more value if it is equipped with the strong ability of

statistical learning in deep learning or integrated other perspectives of information (such as

conventional radiomics). The current dynamic topological model focuses on the construction

and quantification of dynamic graph models for extracting topological features; however,

the topological feature learning process could be coupled with deep learning framework

to enhance the learning of more complex deep topological knowledge. In addition, the

interaction between our topological perspective of knowledge and conventional perspectives

of knowledge (such as texture perspective of lesions) should be further assessed for a more

comprehensive knowledge-level fusion model.
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