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Resumen
Esta tesis de maestría presenta una metodología de aprendizaje profundo multimodal innovadora
que fusiona un modelo de clasificación de emociones con un generador musical, con el propósito
de crear música a partir de señales de electroencefalografía, profundizando así en la interconexión
entre emociones y música. Los resultados alcanzan tres objetivos específicos:
Primero, ya que el rendimiento de los sistemas interfaz cerebro-computadora varía considerable-
mente entre diferentes sujetos, se introduce un enfoque basado en la transferencia de conocimiento
entre sujetos para mejorar el rendimiento de individuos con dificultades en sistemas de interfaz
cerebro-computadora basados en el paradigma de imaginación motora. Este enfoque combina da-
tos de EEG etiquetados con datos estructurados, como cuestionarios psicológicos, mediante un
método de "Kernel Matching CKA". Utilizamos una red neuronal profunda (Deep&Wide) para
la clasificación de la imaginación motora. Los resultados destacan su potencial para mejorar las
habilidades motoras en interfaces cerebro-computadora.
Segundo, proponemos una técnica innovadora llamada "Labeled Correlation Alignment"(LCA)
para sonificar respuestas neurales a estímulos representados en datos no estructurados, como mú-
sica afectiva. Esto genera características musicales basadas en la actividad cerebral inducida por
las emociones. LCA aborda la variabilidad entre sujetos y dentro de sujetos mediante el análisis
de correlación, lo que permite la creación de envolventes acústicos y la distinción entre diferen-
te información sonora. Esto convierte a LCA en una herramienta prometedora para interpretar la
actividad neuronal y su reacción a estímulos auditivos.
Finalmente, en otro capítulo, desarrollamos una metodología de aprendizaje profundo de extremo
a extremo para generar contenido musical MIDI (datos simbólicos) a partir de señales de activi-
dad cerebral inducidas por música con etiquetas afectivas. Esta metodología abarca el preproce-
samiento de datos, el entrenamiento de modelos de extracción de características y un proceso de
emparejamiento de características mediante Deep Centered Kernel Alignment, lo que permite la
generación de música a partir de señales EEG.
En conjunto, estos logros representan avances significativos en la comprensión de la relación entre
emociones y música, así como en la aplicación de la inteligencia artificial en la generación musical
a partir de señales cerebrales. Ofrecen nuevas perspectivas y herramientas para la creación musical
y la investigación en neurociencia emocional. Para llevar a cabo nuestros experimentos, utilizamos
bases de datos públicas como GigaScience, Affective Music Listening y Deap Dataset.
Palabras clave: aprendizaje profundo, señales EEG, clasificación de emociones, generación de música,
interfaz cerebro-computadora (BCI), aprendizaje multimodal, generación de música simbólica, piano
roll, inteligencia artificial

Abstract

This master’s thesis presents an innovative multimodal deep learning methodology that combines
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an emotion classification model with a music generator, aimed at creating music from electroen-
cephalography (EEG) signals, thus delving into the interplay between emotions and music. The
results achieve three specific objectives:
First, since the performance of brain-computer interface systems varies significantly among diffe-
rent subjects, an approach based on knowledge transfer among subjects is introduced to enhance
the performance of individuals facing challenges in motor imagery-based brain-computer interface
systems. This approach combines labeled EEG data with structured information, such as psycholo-
gical questionnaires, through a "Kernel Matching CKA"method. We employ a deep neural network
(Deep&Wide) for motor imagery classification. The results underscore its potential to enhance mo-
tor skills in brain-computer interfaces.
Second, we propose an innovative technique called "Labeled Correlation Alignment"(LCA) to
sonify neural responses to stimuli represented in unstructured data, such as affective music. This
generates musical features based on emotion-induced brain activity. LCA addresses variability
among subjects and within subjects through correlation analysis, enabling the creation of acoustic
envelopes and the distinction of different sound information. This makes LCA a promising tool for
interpreting neural activity and its response to auditory stimuli.
Finally, in another chapter, we develop an end-to-end deep learning methodology for generating
MIDI music content (symbolic data) from EEG signals induced by affectively labeled music. This
methodology encompasses data preprocessing, feature extraction model training, and a feature
matching process using Deep Centered Kernel Alignment, enabling music generation from EEG
signals.
Together, these achievements represent significant advances in understanding the relationship bet-
ween emotions and music, as well as in the application of artificial intelligence in musical genera-
tion from brain signals. They offer new perspectives and tools for musical creation and research in
emotional neuroscience. To conduct our experiments, we utilized public databases such as GigaS-
cience, Affective Music Listening and Deap Dataset.
Keywords: Deep Learning, EEG Signals, Emotion Classification, Music Generation, Brain-Computer
Interface (BCI), Multimodal Learning, Symbolic Music Generation, Piano Roll, Artificial Intelligence
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1 Preliminaries

1.1. Motivation

In recent years, the field of Machine Learning (ML) has witnessed remarkable advancements in
multimodal tasks. Neural network architectures are now being applied to tasks that extend be-
yond single modalities. For example, language and vision are integrated into tasks such as vi-
sual question answering [10], commonsense reasoning [170], dialogue [40], and phrase groun-
ding [121]. Audio signal processing also has advanced in speech recognition and visual speech
synthesis [115]. In addition to the uses listed above, multimodality can be used in brain-computer
interface (BCI) systems. BCI systems use electrical signals from the brain to control external de-
vices, such as wheelchairs, prosthetics, and computers [117]. Multimodality can improve the ac-
curacy and reliability of BCI systems by combining signals from different sources, such as Elec-
troencephalography(EEG), Electromyography(EMG), and Functional Magnetic Resonance Ima-
ging(fMRI). This can allow people with disabilities to control external devices more naturally and
intuitively. [54]
Emotion recognition (or detection) stands as a significant scientific problem in Affective Compu-
ting, an emerging research field proposed by Picart [120], aiming to empower computer systems
with the capacity to accurately process, recognize, and comprehend emotional information ex-
pressed by humans for natural human-computer interactions (HCI) [119]. This paradigm plays
a crucial role in both Artificial Intelligence and Ambient Intelligence [88], attracting researchers
from diverse disciplines, such as Computer Science, Electronic Engineering, Human Factors Engi-
neering, Psychology, Neuroscience, and Medical Science, among others, to collaborate on unders-
tanding and advancing the capabilities of Affective Computing. Concurrently, another influential
paradigm in the field of BCI is Motor imagery (MI). It involves the cognitive process of mentally
generating quasi-perceptual experiences without external stimuli [81]. In practice, MI has been
used as a therapy that contributes to children’s motor learning and improves the motor skills of
children with motor problems [69, 16], evaluates screen-time and cognitive development [144],
and aids in attentional focus and rehabilitation [15, 140, 134]. BCI systems frequently employ
electroencephalography (EEG) to decode MI-based brain signals due to its non-invasiveness, por-
tability, relatively low cost, and high temporal resolution [135]. By merging these two paradigms,
researchers from various domains can further explore the potential of multimodal approaches and
deep learning techniques to foster advancements in both Affective Computing and BCI research,
leading to novel applications in artificial intelligence and human-computer interaction research
[1].
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On the other hand, music synthesis, known for its capacity to create original audio signals by
embedding representations and extracting informative properties from diverse and intricate data,
has found extensive applications. These applications range from fostering artistic innovation to
producing adaptable and copyright-free music for use in games and videos [157]. In the realm of
acoustic representations derived from a variety of audio sources, this serves as the fundamental
basis for music generation [17].
In the domain of music, a related area involves working with symbolic music representations, such
as MIDI (Musical Instrument Digital Interface). MIDI representations encapsulate critical musical
details, including tempo, pitch, dynamics, and duration [103]. These details offer a wealth of data
for in-depth analysis of musical content. While audio and symbolic music generation tasks are dis-
tinct, it’s worth noting that the underlying architectures of deep learning and encoding techniques
share remarkable similarities [21].
However, some approaches to automatic musical composition, such as rule-based methods [147],
address the complexities of musical perception and involve the segregation of complex compo-
sitional structures such as melody, harmony, rhythm, timbre, and even styles. Taking advantage
of improved perception capabilities regarding unstructured data (Multimedia: Images, audio and
video)[79], machine learning (ML) models fed with raw data (without any prepossessing) in the ti-
me domain have shown great promise in sound generation, where architectures are tightly coupled
to audio representations. [20]. Nonetheless, when learning musical features from arbitrary corpo-
ra, the challenge lies in adapting ideas and patterns borrowed from diverse contexts to achieve
a specific objective. This style of learning poses several issues for ML architectures, including
capturing short and long-term music structures, conducting low-level and high-level analysis such
as onset/offset detection, rhythm estimation, harmonic analysis, instrument detection, structural
segmentation, genre, and mood classification, developing models with inherent reasoning to re-
duce training data requirements, and promoting transparent and objective evaluation methodolo-
gies [62]. Through the integration of music generation and emotion recognition paradigms, re-
searchers can harness the potential of ’multimodal’ approaches, which involve the simultaneous
use of multiple types of data or sensory information. By doing so and employing advanced deep
learning techniques, they open up exciting opportunities for the development of interactive ap-
plications that are emotionally enriched. These applications span diverse fields, including virtual
reality, entertainment, and assistive technology, and they are poised to provide novel, immersive
experiences.
In the fields mentioned above, data representation varies as follows:
1.) EEG: The EEG signal directly represents brain activity and is a valuable tool in studying hu-
man brain physiological phenomena. Its primary characteristics include being typically noisy and
susceptible to environmental interference, as it often mixes with other signals like EOG, ECG,
and EMG, along with various artifacts and noises [148]. EEG signals can be categorized as spon-
taneous or evoked, with spontaneous EEG being the rhythmic potential fluctuation generated by
the nervous system without external stimuli and evoked potentials referring to measurable changes
in the cerebral cortex caused by external sensory stimulation. EEG signals are highly nonlinear
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due to human tissue adaptation and physiological regulation. Additionally, these signals are uns-
table, influenced by external environmental factors, and exhibit strong non-stationarity, leading
researchers to employ statistical analytic approaches to discover and recognize their features. In
cognition, the most relevant frequency range for EEG signals is 0.5-30 Hz, which researchers often
decompose into five sub-bands corresponding to distinct cognitive functions [64] 2.) Audio: Audio
signals have been extensively studied, and their representations depend on specific applications. In
Music, raw audio can be dealt with, but due to its high density (up to 44.1 kHz), subsampling or
feature extraction is often employed to represent audio more manageable way [136]. Music Infor-
mation Retrieval, investigates audio features that can be useful in diverse musical applications. 3.)
Symbolic Music: MIDI is one of the most common symbolic music representations, popular for
connecting musical technology devices such as synthesizers, Digital Audio Workstations (DAWs),
and Virtual Studio Technology (VSTs). For machine learning applications, the representation of
Piano Roll is also prevalent, consisting of a matrix where columns represent time and rows repre-
sent pitch [71].
In the local context, the Signal Processing and Digital Signal Group (GCPDS) at the National Uni-
versity of Colombia has been actively engaged in the development of machine learning algorithms
focusing on brain-computer interfaces, computer-assisted diagnosis systems for neurological di-
sorders, and neuro-feedback systems, among others. These research projects have been conducted
with various regional stakeholders, including the Transmedia Research Center of the University
of Caldas. Joint research and development initiatives, such as the project titled "Brain Music:
Prototipo de interfaz interactiva para generación de piezas musicales basado respuestas eléctricas
cerebrales y técnicas de composición atonal” have paved the way for the current investigation. Ad-
ditionally, GCPDS has collaborated with other partners on various projects, fostering a dynamic
research environment:

"Prototipo de interfaz cerebro-computador de bajo costo para la detección de patrones rele-
vantes de actividad eléctrica cerebral relacionados con TDAH"(2021-now)

"Herramienta de apoyo a la predicción de los efectos de anestésicos locales vía neuroaxial
epidural a partir de termografía por infrarrojo"(2020-now)

"Desarrollo de un sistema automático de análisis de volumetría cerebral como apoyo en la
evaluación clínica de recién nacidos con asfixia perinatal"(2019-now)

Çaracterización morfológica de estructuras cerebrales por técnicas de imagen para el trata-
miento mediante implantación quirúrgica de neuroestimuladores en la enfermedad de Par-
kinson"
(2019-now)

"Herramienta de apoyo al diagnóstico del TDAH en niños a partir de múltiples características
de actividad eléctrica cerebral desde registros EEG"(2019-now)
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1.2. Problem statement

Dealing with EEG signals, that measure the brain’s electrical activity captured from the scalp, is
challenging due to their non-stationarity, low signal-to-noise ratio, and complexity, which necessi-
tate extensive preprocessing and feature extraction approaches for accurate analysis. Consequently,
Deep Learning has gained popularity as it has shown great promise in leveraging the characteristics
of EEG signals, allowing it to learn relevant features from raw data [108] autonomously. Similarly,
applications related to music information retrieval face difficulties in handling audio signals due to
their complex structures and the diverse characteristics required for different tasks [38].
Regarding Deep Learning, the primary objectives in Motor Imagery and Emotion recognition are to
achieve accurate predictions while maintaining model interpretability. Conversely, music content
generation focuses on generating high-quality data that preserves the training data’s structures and
exhibits a certain level of creativity [61].
A multimodal approach helps address general challenges in EEG such as: low interpratility, inter-
subject variability (the models are not generalizable to different subjects), among others... [42] and
music generation tasks, specifically the problem of few data, as there is no extensive multimodal
EEG and Music database. For this reason, finding the right databases, such as GigaScience, BCMI-
MIdAS and DEAP, is crucial to allow the correlation of these two fields of research. During the
development of this work, the following specific difficulties were encountered: 1.) Multimodality
of EEG with structured data and transfer learning. 2) Labeled alignment for sonification based on
affective neural responses. 3.) Symbolic music generation from affective neural EEG signals.

1.2.1. Problem 1: EEG + Structured Data

In practice, MI capability can be assessed to determine the extent to which a user engages in a
mental representation of movements, while on the other hand the performance of a machine lear-
ning model in MI is determined by its ability to effectively predict the mental state of the user (if
they are thinking about the movement of a hand, the tongue, a foot...). This EEG paradigm should
collect information from users primarily through self-report questionnaires [96]. Using informa-
tion from these questionnaires is believed to be useful in helping prediction models improve their
performance. However, very little evidence shows a secure correlation between classification ac-
curacy and questionnaire scores. Several reasons may explain this respect [167, 128]: weak and
ambiguous self-interpretation in understanding questionnaire instructions, laboratory paradigms
restricted to a narrow class of motor activity, time limitations that guarantee consistent mental sta-
tes, difficulty in learning characteristics of subjects with illiteracy (refers to subjects who cannot
learn this task despite completing many sessions) BCI, among others. Therefore, although psycho-
logical assessment and questionnaires are probably the most accepted and validated methods in
medical contexts [149], their inclusion in automated prediction of BCI skills remains very rare due
to their questionable reliability and reproducibility. [33].
To improve the predictive utility, the joint analysis of different imaging modalities is achieved that
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can explain the relationships discovered between the anatomical, functional and electrophysiolo-
gical properties of the brain [91, 34]. However, in addition to the problems that may arise from
questionnaire implementation, multimodal analysis research efforts pose a challenging problem
in terms of combining categorical data with imaging measurements, facing the following restric-
tions [50, 37]: Different spatial and temporal sampling rates, non-instantaneous and non-linear
coupling, low signal-to-noise ratio, lack of interpretable results, optimal combination of individual
modalities still undetermined, and effective dimensionality reduction to improve discriminability
of multiple features extracted views [164].
Another improving approach to BCI skills is to perform several training sessions where participants
learn how to modulate their sensorimotor rhythms appropriately, relying on the spatial specificity
of MI-induced brain plasticity [180]. However, collecting extensive data is time-consuming and
mentally exhausting during a prolonged recording session, deteriorating the measurement quality.

1.2.2. Problem 2: EEG + unstructured Data in affective paradigm

Sound synthesis is often based on statistical distributions inferred from training acoustic data or
complementary multimedia information sources depending on different applications, for exam-
ple: speech synthesis (emulating a speaker’s voice) [143], processing multimodal audiovisual and
multi-instrumental configuration [48], text and symbolic transcriptions [106]. Specifically, diffe-
rent complementary data are provided according to the mentioned applications to train the deep
learning models and architectures [109]. For music synthesis applications, the most common deep
learning method requires a large amount of audio data to be added to the input set (a large trai-
ning set), which is taken from vast online music repositories. Nevertheless, conditioning strategies
for low-level music synthesis may include non-acoustic data used to create audible sounds (also
known as sonification [49]), such as speech, images, text, and videos. Moreover, sonification can
be used for more unique sources, such as non-empty objects containing fluids [162], mode vibra-
tions of protein and amino acid building blocks [169], and the silent nature of flames [98]. Other
sources are biosignals captured from the human body, including electromyography [100] and elec-
trocardiographic data [127]. Even so, electroencephalography (EEG) signals reflect emotions more
accurately in real time than other peripheral neurophysiological data. It also offers more reliable
data acquisition hardware with increasing affordability. For example, EEG-based affective brain-
computer interfaces have attracted interest in developing music creation systems [93]. However,
the estimation accuracy of induced affective states using EEG signals might need to be improved
for applying conditioning to ML architectures [139]. Often, the modeling of emotions needs to be
more consistent and is strongly context-dependent [160], not to mention that the brain processes
involved in the induction and mediation of affective states by emotionally evocative stimuli are
poorly understood due to the difficulty [7].
Various feature sets such as mel frequency cepstral coefficients (MFCCs) [56], Log-mel spectrum,
Mel filter bank [43], Constant-Q spectrum are used for feature extraction from audit data [124],
inspired by the human audit system and physiological findings or also modern approaches in which



1.2 Problem statement 7

features are extracted by neural networks and raw input data (raw Audio) is processed. These fea-
tures offer a broad set of possibilities for automatic descriptions of musical signals [123], taking
advantage of the ability to extract acoustic descriptors over a wide dynamic range. Along with
acoustic characteristics, when it comes to tasks related to music, embeddings and symbolic repre-
sentations are found for machine learning [90], one of the most used symbolic representations is
the MIDI format. Regarding obtaining EEG parameters, there are several limitations. Firstly, the
mechanisms that evoke emotions are related to sound perception and are incredibly subjective (in-
formation focus, cultural impact, musical structure orientation) [72, 63], however studies such as
citeloui2021neuroscience, katthi2021deep show us that there is a correlation. On the other hand,
the EEG often contains significant artifacts unrelated to the presented stimulus and caused by other
cognitive tasks or reference noise [163]. Because of this, there are no standard methods for extrac-
ting features from EEG data within machine learning frameworks dedicated to EEG sonification
in recent years [92].
Another issue is integrating data from multiple heterogeneous sensors into a low-dimensional re-
presentation, learning the joint temporally modulated dependencies from both modalities (audio
and EEG) that are assumed to be mutually correlated [45], study like [?] shows several expe-
riments using EEG recordings from subjects listening to speech and music stimuli. In these ex-
periments, they found that the deep models improve the Pearson correlation significantly over the
linear methods (average absolute improvements of 7.4% in speech tasks and 29.3% in music tasks)
they also analyzed the impact of several model parameters on the stimulus-response correlation.
Feature reduction and selection are conducted as a first step to handle the large dimensionality of
the extracted characteristics and increase their interpretability [171].

1.2.3. Multimodal: EEG + Symbolic Music and generative model

The field of computer-Based Music Systems is not new at all, however there is some ambiguity in
what it encompasses [22]. It can include, from the first generation of a computer melody in 1957 by
Newman Guttman to digital sound synthesis in 1983 by the Yamaha DX7. However, the greatest
ambiguity is that it can have two different objectives: to design and construct autonomous music-
making systems [28] or to design and construct computer-based environments to assist human
musicians [114]. In recent years, the application of deep learning and machine learning techniques
in the generation of musical content has gained prominence. These methods offer a distinct advan-
tage in terms of generality compared to traditional, handcrafted models like grammar-based [142]
or rule-based music generation systems [51]. Deep learning models can be trained on diverse mu-
sical corpora, allowing them to learn and adapt to various musical genres.
The versatility of machine learning-based generation systems is especially apparent when large-
scale musical datasets become available [53]. They can automatically learn the intricate nuances
of different musical styles from such datasets and generate new musical content. This capability
is particularly useful in scenarios where the complexity of the desired application surpasses the
boundaries of analytical formulations or manual design. [65]
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Symbolic models, such as rule-based systems and grammars, are utilized in music to represent
harmony, melody, rhythm, structure, and form. In contrast, sub-symbolic models, like machine
learning algorithms embeddings, are employed to learn musical characteristics from a collection of
musical pieces automatically (Sub-symbolic models use numerical values, vectors, or continuous
data representations. They do not rely on explicit symbols or rules to represent information). These
models offer a generative and interactive approach to aid musicians in crafting new music by
leveraging their enhanced ïntelligent"memory, encompassing associative, inductive, and generative
capabilities. This has become achievable due to the increasing availability of music in various
forms, like sound, scores, and MIDI files, which computers can process. However, integrating sub-
symbolic techniques, such as deep learning, with symbolic techniques, including constraints and
reasoning, still needs to be solved. Researchers are actively exploring ways to unite the strengths
of these approaches to develop more sophisticated and comprehensive music generation systems,
enhancing the creative potential for musicians [22].
Articles like [67, 175, 105] are examples among many that One of the approaches in Music Ge-
neration Systems are those related to musical generation and emotions. However, the complexity
of human emotions, particularly in the context of music [24, 161], has led researchers to propose
various definitions for the fundamental types of emotions. For instance, in 1972, Ekman identified
six basic emotions based on the analysis of facial expressions [95]. In 1980, Russell introduced
the emotional circumplex Model, 1-1 to map common emotions and investigate their correlations
[129], In Russel’s circumplex Model, emotions are represented in a two-dimensional space where
the axes correspond to the levels of arousal and valence. Arousal, on one axis, reflects the inten-
sity of emotions, spanning from .excited"to çalm."Valence, on the perpendicular axis, signifies the
evaluation of emotions, ranging from "depressed"to "serene."
For instance, consider "happy.and .angry.emotions; they can both exhibit a high level of arousal, but
they are associated with opposite valence values, resulting in distinct emotional outcomes. This
model also supports the concept of an emotion palette, which includes fundamental emotions like
happiness, sadness, anger, and fear [116]. This two-dimensional plane model has been extensively
utilized to analyze and quantify emotions, leading to its application in diverse fields to explore the
interplay of emotions in different contexts. In 2007, Gomez et al. examined the relationship bet-
ween two-dimensional emotional plans and musical characteristics and found that in distinguishing
between negative and positive valence, the key discriminators were mode, harmonic complexity,
and rhythmic articulation. On the other hand, when distinguishing between high and low arousal,
the most influential factors were tempo, accentuation and rhythmic articulation. Interestingly, tem-
po, stress, and rhythmic articulation were also the features that showed the strongest correlations
with physiological measures [58].
Affective computing, a subset of artificial intelligence, revolves around detecting, processing, in-
terpreting, and emulating human emotions [158]. The burgeoning development of portable, non-
invasive human sensor technologies, including brain-computer interfaces (BCI), has sparked sig-
nificant interest among scholars across various disciplines in emotion recognition. The widespread
availability of electronic devices has recently led to increased engagement in social media, online
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Figura 1-1: Circumplex model proposed by Russel

gaming, e-commerce, and other digital activities [64]. However, most modern human-computer
interaction (HCI) systems need to grasp and comprehend emotional data, needing more emotional
intelligence and the ability to recognize human emotions to inform decision-making and action.
BCIs, as portable non-invasive sensor technologies, capture brain signals and harness them as in-
puts for systems aiming to humanize HCI [60]. Notably, EEG signals generated by the central
nervous system exhibit rapid responses to emotional changes compared to other peripheral neural
signals and have demonstrated their importance in emotional recognition [89].
Finding a suitable representation to match EEG signals and music holds great utility [35], as EEG-
based emotion recognition research has gained significant popularity across multiple disciplines
in recent decades [3]. Although the available scientific data on emotional states and their struc-
ture remain limited, researchers have established a strong correlation between EEG activity and
music-induced emotions. Certain music can alter neural activity and trigger emotional responses
in individuals. Vuilleumier and Trost [153] have demonstrated that emotion recognition in music
occurs rapidly. They suggest that these emotions come to the forefront through a combination of
activation in emotional and motivational brain systems (including reward pathways), which confer
music with its valence. In addition, several other brain regions beyond emotional systems, encom-
passing those related to motor functions, attention, and memory, also exert their influence. As the
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discussion unfolds, they delve into the neural underpinnings responsible for orchestrating the syn-
chronization of cognitive and motor processes by music, elucidating how these mechanisms relate
to one’s affective experience.
Moreover, Nordstrom and Laukka [111] discovered that emotion recognition accuracy improved
as gate duration increased, reaching stability after a certain point. For various emotions, above-
chance accuracy was achieved with very short stimuli, suggesting that emotion recognition is a
rapid process based on low-level physical features, indicating that emotional responses are mul-
tidimensional. This understanding emphasizes the complexity of emotional experiences tied to
music. Functional magnetic resonance imaging (fMRI) studies conducted by Bodner and Shaw
[19] further highlight the influence of music on brain activity. Listening to Mozart’s music resulted
in the expected temporal lobe activation and frontal lobe engagement, accompanied by significant
α −wave changes. This phenomenon may be attributed to the highly organized nature of Mozart’s
music, with its regular repetition of melody aligning with the rhythmic cycle of brain electricity,
impacting the human body.
Furthermore, the reliability of EEG-based emotion recognition is emphasized by its ability to cap-
ture electrical signals produced by neurons, which humans cannot intentionally control. In contrast,
other methods based on body movement, posture, voice, and expression can be deliberately mani-
pulated, leading to potential inaccuracies in emotion recognition [3]. With its inherent capability
to capture genuine physiological signals, the EEG approach offers a more dependable means of
understanding and interpreting emotional responses to music.
Research Question:
How can a multimodal methodology be employed to generate symbolic music compositions by
leveraging EEG-based emotion recognition as a foundational element to ensure emotionally re-
sonant music?

1.3. Literature review

1.3.1. EEG Emotion Recognition review:

The task of recognizing emotions based on EEG signals has been approached through various
methodologies1.3.1, including the utilization of artificial intelligence (AI) and machine learning
techniques [151]. Presented below is a concise overview of notable advancements in this field[36]:
One approach that has been explored involves the application of machine learning algorithms to
classify emotions by utilizing features extracted from EEG signals. In a study by Li et al. [87], dif-
ferent EEG characteristics were examined to enhance the classification of emotions among distinct
subjects. Another conventional method employed is Common Spatial Patterns (CSP), as discus-
sed by Appriou et al. [11], which aims to classify cognitive and affective states based on EEG
signals. Notably, Koelstra et al. [78] contributed significantly by introducing the DEAP database,
this dataset offers a multi-modal approach for studying human affective states. It includes elec-
troencephalogram (EEG) and peripheral physiological data from 32 participants who watched 40
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one-minute music video excerpts. Participants provided ratings on various emotional dimensions,
including arousal, valence, liking, disliking, dominance, and familiarity. In addition, for 22 of these
participants, frontal face video data was also recorded during the experiment, they achieved high
classification accuracy using Support Vector Machines (SVM) and traditional features.
Deep Learning techniques have gained prominence in emotion recognition utilizing EEG signals.
For instance, Asgar et al. [12] employed an extensive neural network, such as AlexNet, to extract
features and classify emotions using SVM, they achieves better classification accuracy compared
to recently reported work when validated on SJTU SEED and DEAP datasets. Alternatively, Ding
et al. [47] developed a network inspired by established EEG processing networks, including Deep-
ConvNet, ShallowConvNet, and EEGNet, and evaluated its performance in emotion recognition
datasets DEAP and MAHNOB-HCI. Moreover, Song et al. [138] proposed an enhanced version
of EEGNet, termed LSDD-EEGNet, a novel framework for depression detection. They combine
CNN and LSTM for feature extraction and utilize a domain discriminator to align data representa-
tion spaces. Their approach outperforms traditional machine learning methods and deep learning
models, particularly in subject-independent evaluation. This suggests that LSDD-EEGNet holds
promise as a robust method for detecting depression.

Review Emotion recognition

1.3.2. Transfer Learning:

To harness the advantages of transfer learning in the examination of EEG signals, it is imperative
to employ tactics that align with individual variances and diminish data prerequisites. These tac-
tics facilitate fine-tuning the model specifically for the intended subject [173]. For example, in the
study conducted by Kant et al. [73], they employ pre-existing models like VGG16 and Alex-net
as a foundation for model adaptation. This technique reduces the amount of training data requi-
red for the MI classification task. In this particular scenario, the EEG signals are transformed into
equivalent image representations using continuous wavelet transform, which are then subjected to
deep network training. Similarly, Zhang et al. propose five distinct approaches to adapt an EEG-
BCI system based on deep convolutional neural networks for MI decoding in their research [172].
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Each approach fine-tunes a pre-existing model that has undergone extensive training, adapting it to
enhance the performance assessment for a specific subject of interest. More recently, researchers
have explored methodologies centered on weighted instances [159] and domain adaptation [178].
In the context of weighted instances, transfer learning is employed to select source domain da-
ta that closely resembles the target domain, aiding in the training of the classification model for
the target domain. In the second scenario, deep transfer learning techniques are expanded to en-
compass multi-subject training in EEG, where the objective is to align the feature distributions
from individual feature extractors in an MI-based BCI system using maximum-mean discrepancy.
Nonetheless, there exist two primary constraints that must be addressed in order to extract sets
of shared features among subjects with analogous distributions: the availability of small-scale da-
tasets and the notable signal variances across subjects [172]. Achieving sufficient consistency in
the feature space and probability distribution of the training and test data, while averting negative
transfer effects, remains a formidable challenge. This encompasses issues such as effective feature
extraction from multimodal data capable of distinguishing between MI tasks, selection of transfe-
rable entities and transferability evaluations, and the assignment of appropriate weights for transfer
learning [145].

1.3.3. Feature Alignment Strategies:

Regarding the association between music stimuli and evoked neural responses, two distinct ap-
proaches are utilized for music generation assessment: a) A regression-based approach that directly
predicts a real-valued correlation between the coupled sets. b) A recognition-based approach that
couples the feature modalities through a standard set of categorical labels, indirectly evaluating the
relationship by analyzing the contribution learned by each training feature assemblage to classifier
performance [113].
Up to this point, numerous correlation-based techniques that analyze music using EEG data have
been documented. These include Canonical Correlation Analysis (CCA), which transforms two
sets in a way that maximizes their estimated correlation [25]. There have also been advancements
in CCA-variant techniques [181], Multifractal Detrended Cross-Correlation Analysis [122], and
coupled Nonnegative Tensor Decomposition [131]. Additionally, several machine learning (ML)
approaches have emerged. For instance, deep CCA is capable of inferring the optimal feature map-
ping [8], and architectures based on Convolutional Neural Networks (CNNs) have been developed
to calculate space similarity [27], among other methods. However, the effectiveness of these afo-
rementioned feature alignment strategies is compromised when the training data contains noise or
exhibits high variability [66]. EEG recordings often have a poor signal-to-noise ratio due to weak
signals mixed with intrinsic noise that has a much higher amplitude than that produced by biolo-
gical sources. As a result, there is intra-subject and inter-subject variability. Consequently, feature
extraction and alignment strategies necessitate multiple repetitions across numerous runs and trials.
However, stimulus-response paradigms typically have limited auditory datasets per individual due
to participant fatigue, which presents a challenge when attempting to enhance feature alignment
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strategies for measuring the similarity between elicited audio stimuli and evoked EEG responses.

1.3.4. Affective generative music systems:

Affective generative music systems have been explored using various methods and techniques to
create music that elicits specific emotional responses1.3.4. Dash and Agres [42] provide a com-
prehensive review of AI-based affective music generation systems, discussing different methods
and challenges in this domain.
Rule-based Methods: Rule-based methods establish relationships between musical features and
emotion dimensions. Wallis et al. [154] presented a rule-based generative music system controlled
by desired valence and arousal, using an emotion map to depict the feature-to-emotion category of
rules. Picard et al. [118] developed simple rule-based systems that select the tempo and mode of
affective compositions based on target emotion information. More complex rules have also been
employed to manipulate musical features such as harmony, melody, and rhythm.
Data-driven Methods: Data-driven methods utilize music databases to train models for generating
affective music. Hidden Markov models (HMMs) have been employed to select chord progressions
for composing affective music [141]. Neural network-based architectures have also been utilized,
including Long Short-Term Memory (LSTM) networks [52], Recurrent Neural Networks (RNNs)
[177], and Variational Auto Encoder-Generative Adversarial Network (VAE-GAN) [65]. These
models capture the emotional context and generate music accordingly.
Other Approaches: Genetic algorithms have been used to pose affective music generation as an op-
timization problem, aiming to find optimal sets of musical events or generative musical rules[13].
Hybrid AI-AMG systems combine neural network architectures with rule-based methods, levera-
ging context and emotion information to manipulate musical features such as harmony, melody,
and rhythm, often applied to pre-composed melodic themes to create affective music [68].

1.3.5. Multimodal neural networks in music and EEG:

Researchers have been exploring the potential of multimodal neural networks in various domains.
For instance, Vishesh et al. [152] developed a novel approach called DeepTunes, which utilizes
deep learning techniques to generate music based on facial expressions. They leveraged facial
emotion data to synthesize music that resonates with different emotional states, for the facial re-
cognition model, a Convolutional Neural Network (CNN) has been implemented, GPT-2 has been
used to generate lyrics and stacked LSTM networks have been constructed to generate music, the
model produced music for each emotion class, and the resulting piano compositions were assessed
through a questionnaire. The audience provided feedback based on the emotions they experienced
when listening to the generated music. Similarly, He et al. [59] proposed a multimodal multitask
neural network for motor imagery classification using EEG and fNIRS signals. Their model de-
monstrated promising results in classifying motor imagery tasks by integrating information from
both EEG and fNIRS modalities. Moreover, Miyamoto et al. [102] claimed to focus on music gene-
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Affective generative music systems [42]

ration using EEG data. They introduced an online EEG-based emotion prediction system designed
to forecast users’ affective states and generate music accordingly. It’s worth noting that the specific
details of their validation process are not clearly specified in publicly available information.

1.4. Aims:

1.4.1. General aims

This master’s thesis aims to design and develop a novel deep-learning methodology that integrates
an emotion classification model with a musical generation model. The proposed model aims to ge-
nerate musical content directly from EEG signals, to enhance the understanding of the relationship
between emotions and music.

1.4.2. specific aims

Introduces a deep learning model for improving the poor-performing individuals in MI-based
BCI systems, using the advantages of the multimodality between Electroencephalography
data and structured data.
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Proposes a method for sonifying neural responses to labeled affective music listening using
auditory and electroencephalographic features that are maximally congruent with the brain
activity signal, the nonsymbolic data (audio), and the label set.

Develop a deep learning model to generate symbolic music (MIDI) content directly from
brain activity signals elicited by emotions and evaluate the music quality of the generation.

1.4.3. Outline and contributions

Chapter 2 propose a parameter-based approach for cross-subject transfer learning to impro-
ve the performance of individuals with inefficiency in motor imagery-based brain-computer
interface (BCI) systems. The approach involves using kernel embedding to pool data from la-
beled EEG measurements and psychological questionnaires. A Deep&Wide neural network
for MI classification is implemented to pre-train the network from the source domain. The
layer parameters are then transferred to initialize the target network through a fine-tuning
procedure, recomputing the accuracy. Data fusion combines categorical and real-valued fea-
tures through stepwise kernel matching via Gaussian embedding. To evaluate the approach,
paired source-target sets are selected based on inefficiency-based clustering by subjects,
exploring two strategies for choosing the best-performing subjects from the source space:
single-subject and multiple-subjects. Validation results for discriminant MI tasks demons-
trate that the introduced Deep&Wide neural network shows competitive accuracy even after
including questionnaire data, showcasing its potential for improving BCI motor skills.

In the 3th chapter, we propose an innovative approach called Labeled Correlation Alignment
(LCA) to sonify neural responses from affective music listening data, aiming to generate
low-level music based on brain activity elicited by emotions. To address inter/intra-subject
variability, a combination of PhaseLockingValue and Gaussian Functional Connectivity is
employed. The two-step LCA approach involves Centered Kernel Alignment and canoni-
cal correlation analysis to select multimodal representations with higher relationships bet-
ween auditory and neural features. LCA enables a backward transformation to estimate the
matching contribution of each extracted brain neural feature set, facilitating a physiologi-
cal explanation of the generated music. Validation results demonstrate the effectiveness of
the LCA approach in creating acoustic envelopes and distinguishing between acoustic and
acoustic outputs, showcasing its potential for sound synthesis applications in various artistic
and multimedia contexts.

In this chapter4, we propose an end-to-end deep learning methodology for generating sym-
bolic music content based on brain activity signals elicited by emotions. The methodology
comprises three main stages: data preprocessing of the input signals and training of two deep
learning models, namely EEGNet and Autoencoder PianoRoll, for feature extraction from
EEG and symbolic music, respectively. Subsequently, a Pearson-based feature-matching pro-
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cess was conducted to combine the extracted characteristics, ultimately enabling the genera-
tion of content through the electroencephalogram signals.

1.4.4. thesis structure

This thesis is structured as follows: In Chapter 2, we introduce the "Deep&Wide neural network:
EEG and Psychological Questionnaires,"where we explore how transfer learning enhances per-
formance in the Motor Imagery protocol. Particularly in this chapter, we establish the connection
between EEG signals and Psychological Questionnaires, representing this work’s initial foray in-
to multimodality. Here, we relate unstructured data (EEG) with tabular data (Questionnaires). In
Chapter 3, titled "Sonified through Labeled Correlation Alignment,"we continue with the multimo-
dal approach by linking brain activity with audio features. The goal is to sonify neural responses
to labeled affective music listening using auditory and electroencephalographic features strongly
congruent with the label set. In Chapter 4, "Symbolic music (Piano Roll) and EEG Alignment,"we
delve into multimodal end-to-end deep learning methodology, where both symbolic audio and
EEG features are calculated using neural networks, followed by their matching and music gene-
ration. Ultimately, in Chapter 5, we offer our conclusions, delineate potential directions for future
research, and enumerate the academic outputs linked to this thesis.



2 Deep&Wide neural network: EEG
and Psychological Questionnaires

This results where published in the paper "Deep and wide transfer learning with kernel matching
for pooling data from electroencephalography and psychological questionnaires-[33]

2.1. Materials and Methods

2.1.1. Dataset: GigaScience

This dataset 1 contains EEG data recorded during a Brain-Computer Interface (BCI) experimental
paradigm of Motor Imagery (MI) movements from fifty-two subjects (although only data from
fifty subjects are available). The data were acquired using a 10-placement C-electrode system with
64 channels and a sampling rate of 512 Hz. Each subject performed 100 trials lasting 7 seconds
while imagining either left or right-hand movements. The MI paradigm started with a fixation
cross presented on a black screen for 2 seconds. Next, a cue instruction appeared randomly on the
screen for 3 seconds, prompting the subjects to imagine moving their fingers from the forefinger to
the little finger, touching each to their thumb. A blank screen was then shown for a break period,
randomly between 4,1 and 4,8 s. During one testing session, MI tasks were repeated 20 times.
Subjective answers to a psychological and physiological questionnaire were collected by GigaS-
cience a to investigate performance variations and strategies for subject-to-subject transfer in res-
ponse to intersubject variability. Subjects filled out the questionnaire three times during the MI
paradigm timeline: before the experiment began (answering 15 questions), after each run within
the experiment (answering ten questions), and at the end of the experiment (answering four ques-
tions).

2.1.2. Representation of EEG data using 2D features

We construct a single matrix from the EEG database obtained through a C-channel montage. This
matrix represents the n-th trial as {Xn∈RC×T ,λn∈{0,1}Λ}N

n=1, where T denotes the number of ti-
me points sampled at a rate of Fs. In addition to the EEG data, we generate a one-hot output vector
λn with Λ∈N labels. The proposed transfer learning model is evaluated on a trial basis for discrimi-
nating MI tasks. This involves extracting feature sets per trial {X̂r

n∈RC}R
r=1, where we incorporate

1publicly available at http://gigadb.org/dataset/100295
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two EEG-based approaches simultaneously (R = 2): Continuous Wavelet Transform (CWT) and
Common Spatial Patterns (CSP), as suggested by [31] for Deep&Wide learning frameworks. Sub-
sequently, the extracted multi-channel features are transformed into a two-dimensional topographic
interpolation RC→ RW×H to maintain their spatial interpretation. This mapping converts each ex-
tracted trial feature set into a two-dimensional circular view. As a result, we obtain the labeled 2D
data {Yz

n∈RW×H ,λn: n∈N}, where Yz
n represents a single-trial bi-domain t-f feature array called

topogram, extracted from each z-th set. It is important to note that the triplet z={r,∆t ,∆ f (with
z∈Z) indexes a topogram estimated for each included domain principle r∈R at the time-segment
∆t∈T , and within the frequency-band ∆ f∈F . Furthermore, we determine the local spatial patterns
of relationship within the input topographic set using a square-shaped layer kernel arrangement
{Kz

i,l∈R
P×P}Il ,Z , where P represents the kernel size. Consequently, the number of kernels varies

at each layer i∈Il , and the 2D-convolutional operation is performed in a stepwise manner over the
input topogram, Yz, according to the following procedure:

Ŷz
L =

(
ϕ

z
L ◦ · · · ◦ϕ

z
1
)
(Yz), (2-1)

where ϕ
z
l (Ŷ

z
l-1)=γl(Kz

i,l⊗Ŷz
l-1+Bz

i,l) is the convolutional layer, followed by a non-linear activation

function γl:RW z
l ×Hz

l →RW z
l ×Hz

l , Ŷz
l∈R

W z
l ×Hz

l is the resulting 2D feature map of l-th layer (adjusting
Ŷz

0=Yz), and the arrangement Bz
i,l∈R

W z
l ×Hz

l denotes the bias matrix. Notations ◦ and ⊗ stand,
respectively, for function composition and convolution operator [7].

2.1.3. Using a 2D feature representation

We utilize a Multilayer Perceptron (MLP) Neural Network as a deep learning-based classifier fun-
ction ϕ:RW×H 7→Λ . This function predicts the label probability vector ṽ∈{0,1}Λ in the following
manner [32]:

ṽ = ϕ
(
u0,Θ ;φ

z
D ◦ · · · ◦φ

z
1
)
, (2-2a)

s.t.: Θ
∗
0 = arg mı́n

Kz
i,l ,Ad ,Bz

i,l ,αd

{L (ṽn,λn|Θ) ; ∀n∈N} (2-2b)

where φd(ud−1)=ηd(Adud−1+αd) is the fully-connected layer ruled by the non-linear activation
function: ηd: RP′

d→ RP′
d , P′

d∈N is the number of hidden units at d-th layer, d={0, . . . ,D} (d=0
is the initial concatenation before the classification layer), Ad∈RP′

d×P′
d−1 is the weighting matrix

containing the connection weights between the preceding neurons and the hidden units P′ of la-
yer d, αd∈RP′

d is the bias vector, and ud∈RP′
d is hidden layer vector holds the extracted spatial

information encoded by the resulting 2D feature maps in the Q domain [7].
For computation at each layer, the hidden layer vector is iteratively updated by the rule ud=φd(ud−1)

, for which the initial state vector is flattened by concatenating all matrix rows across z and Il do-
mains as u0=[vec(Ŷ z

L ): ∀z∈Z]. The input vector u0 sizes G=W ′H ′Z ∑l∈L Il , holding W ′<W,H<

H ′.
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Besides, the optimizing estimation framework of label adjustment minimizes the training parame-
ter set Θ0={Kz

i,l,Ad,b
z
i,l,αd}, fixing the loss function L : RΛ×RΛ→ R to calculate the gradients

employed to update the weights and bias of the proposed Deep&Wide neural network through a
certain number of training epochs. The solution is implemented by a mini-batch based gradient
descend procedure equipped with automatic differentiation and back-propagation [94].

2.1.4. Transfer learning with added questionnaire data

In EEG analysis applying on Deep Learning for improving the classifier performance, transfer
learning is a typical approach to adjust a pre-trained neural network model equipped with the label
probability vector ṽ, aiming to provide a close domain distance measurement δ (·, ·)R+, lower
than a given value ε∈R+, between the paired domains to approximate the source Y (s) to the target
Y (t) [155, 33], as follows:

δ (Y (s)(Y,S),Y (t)(Y,S)|ṽ)≤ ε (2-3)

s.t.: Θ
∗ = {Kq∗

i,l ,B
q∗
i,l } (2-4)

In this proposal, we suggest utilizing transfer learning to acquire a target prediction function that
is improved by incorporating the personality assessments (questionnaire data matrix, S). Additio-
nally, we employ the stepwise multi-space kernel embedding technique to optimize the network
parameters in Ecuación (2-2b). Moreover, we select the paired source-target sets based on the
clustering of subjects using an inefficiency-based approach for interpretation.
Hence, in order to combine the categorical data, S, with the real-valued feature map set obtai-
ned from EEG, Y , we calculate the tensor product space between the respective kernel-matching
representations, κÛ and κS, as proposed in [137]:

κ̄ = κÛ ◦κS, κ̄∈RJ×J (2-5)

Where J=∑
M
m=1 Nm (Nm holds the trials for m-th subject), κS∈RJ×J is the kernel matrix directly

extracted from the questionnaire data S∈RJ×NQ (NQ is the questionnaire vector lenght), κÛ∈R
J×J

is the estimated kernel topographic matrix from the projected version Û=Uϒϒϒ ∗, with Û∈RJ×G′

(holding that G′ < G), U∈RJ×G U∈RJ×G is the initial data matrix build by concatenating across
the trial and subject sets all flattened vectors u∗

0, which are computed adjusting the optimized
parameters Θ ∗ = {Kq∗

i,l ,B
q∗
i,l }, and ϒϒϒ ∗∈RG×G′

is the projection matrix presented to maximize the
similitude between both estimated kernel embeddings derived from the labeled EEG measurements
of MI responses, namely, one from the one-hot label vectors, κV∈RJ×J , and another from the
topographic features, κU∈RJ×J .
In particular, we match both estimated kernel embeddings through the centered kernel alignment
(CKA), as detailed in [6, 33]:
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ϒϒϒ
∗ = argmáx

ϒϒϒ

CKA(κU,κV) (2-6)

where the kernel κV is obtained from the matrix of predicted label probabilities V∈RJ×Λ build by
concatenating across the trial and subject sets all label probability vectors ṽmn.

2.2. Experimental set-up

The proposed Deep&Wide neural network model for transfer learning, aimed at enhancing the
classification of Motor Imagery (MI) responses, involves the following key stages (as depicted
in Figura 2-1):

Preprocessing and Spatial Filtering: EEG signals are preprocessed and spatially filtered. Sub-
sequently, 2D features are extracted from the input topogram set using a convolutional net-
work.

MLP Classification: The extracted 2D feature maps are fed into a Multi-Layer Perceptron
(MLP) for classification.

Cross-Subject Transfer Learning: This stage involves stepwise multi-space kernel embed-
ding of real-valued and categorical variables. It facilitates knowledge transfer between dif-
ferent subjects to improve the model’s performance. The selection of paired source-target
sets is guided by inefficiency-based clustering of subjects, considering their impact on BCI
motor skills.

Despite these steps, the classifier’s performance may decline due to the presence of irrelevant or re-
dundant features in the extracted representation sets. To address this issue and reduce data comple-
xity, a widely-used unsupervised feature extractor, Kernel Principal Component Analysis (KPCA),
is employed. KPCA helps in obtaining a representation of data points’ global structure [168].

2.2.1. Preprocessing

For preprocessing, raw EEG channels were filtered Xn
c ∈ RT within the frequency range of within

[8-30]Hz using a five-order Butterworth band-pass filter. Subsequently, a bi-domain short-time fea-
ture extraction technique, including Continuous Wavelet Transform (CWT) and Common Spatial
Pattern (CSP), was applied as previously done in [30]. The CWT feature extraction yields a time-
frequency map representing the amplitudes of individual frequencies. At the same time, the CSP
aims to enhance class separability by transforming the multi-channel EEG dataset into a lower-
dimensional latent source space. The sliding short-time window length parameter τ∈R+ was set
to 2 seconds with a step size of 1 second, which allows the extraction of 5 EEG segments Nτ=5, as
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Figura 2-1: Guideline of the proposed transfer learning approach, including Stepwise Kernel Mat-
ching to combine data from Electroencephalography and Psychological Questionnai-
res.

performed in [150]. The spectral range of interest was split into ∆ f∈{µ∈[8-12], β∈[12-30]} Hz
rhythms, commonly associated with electrical brain activities during MI tasks [97]. The CWT
feature set was computed using the Complex Morlet function with a fixed scaling value of 32. The
number of CSP components was also set to 3Λ (where Λ∈N is the number of MI tasks) using a
regularized sample covariance estimation.

2.2.2. MLP classifier
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Figura 2-2: Scheme of the proposed Deep&Wide neural network architecture to support MI dis-
crimination. [33]
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We extract 2D feature maps from the input topogram set in this phase using a convolutional net-
work. These extracted 2D features are then used to feed the MLP-based classifier, which undergoes
parameter tuning as indicated in Cuadro 2-1. The implementation employs the Adam algorithm
with fixed parameters, including a learning rate of 1×10−3, 200 training epochs, and a batch size
of 256 samples. The chosen loss function is the mean squared error.
The Deep&Wide neural network framework is implemented using Python code with the Tensor-
Flow toolbox and Keras API to accelerate the learning process. This implementation enables trai-
ning to utilize multiple GPU devices at Google Colaboratory.

Tabla 2-1: Detailed Deep&Wide architecture of transfer learning. Layer FC8 accomplishes the re-
gularization procedure using the Elastic-Net configuration, while layers FC8 and OU10
apply a kernel constraint adjusted to max_norm(1.). Notation O=RN∆Nτ , N∆ denotes
the number of filter banks, P′ – the number of hidden units (neurons), C – the number
of classes and IL stands for the amount of kernel filters at layer L. Notation || · || stands
for concatenation operator.

Layer Assignment Output dimension Activation Mode
IN1 Input ||40×40||
CN2 Convolution ||40×40×2|| ReLu Padding = SAME

Size = 3×3
Stride = 1×1

BN3 Batch-normalization ||40×40×2||
MP4 Max-pooling ||20×20×2|| Size = 2×2

Stride = 1×1
CT5 Concatenation ||20×20×O · IL||
FL6 Flatten 20 ·20 ·O · IL

BN7 Batch-normalization 20 ·20 ·O · IL

FC8 Fully-connected ||P′×1|| ReLu Elastic-Net
max_norm(1.)

BN9 Batch-normalization ||P′×1||
OU10 Output ||C×1|| Softmax max_norm(1.)

Figura 2-2 presents the accuracy results achieved by the MLP-based classifier when fed solely
with the 2D feature set extracted earlier, evaluated on the tested subject set. The obtained accuracy
values lead to performance evaluation, indicating that the classifier’s effectiveness may not be
sufficient for brain-computer interface (BCI) systems, as discussed in [130]. Specifically, the tested
subject set is clustered into three distinct groups based on their BCI skills:
i) A group of individuals exhibiting the highest accuracy with very low variability in neural res-
ponses (colored in green).
ii) A group achieving superior classifier performance but with some response fluctuations (colored
in yellow).
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iii) A group displaying modest performance along with high unevenness in responses (colored in
red).
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Figura 2-3: Partitions of individuals clustered by the MLP-based accuracy. Each subject perfor-
mance is painted by his estimated BCI inefficiency partition: Group I (green), Group
II (yellow), and Group III (red).

2.2.3. Kernel matching

Algoritmo 1 outlines the procedures for validating the proposed transfer learning approach with
multi-space kernel embedding. The Gaussian kernel is employed to represent the available data
due to its capability for universal approximation and mathematical tractability. The length scale
hyperparameter σ ∈ R+, which governs the variance of the data, is adjusted based on its median
estimate. The subsequent steps (3 and 4) involve pairwise kernel matching, initially between the
sets of EEG measurements U and label probabilities V. The CKA matching estimator is applied
to the concatenated EEG features and predicted label probabilities to achieve alignment across the
entire subject set. Empirically, the parameter G′ is set to 50, considering the number of subjects in
this experiment. In the second matching, all available categorical information from the psychologi-
cal and physiological evaluations is encoded using CKA, and the resulting feature set is projected
onto a common matrix space representation through the kernel/tensor product. It is worth noting
that the projected data Û obtained from CKA is also embedded. Moreover, we perform dimensio-
nality reduction on the feature sets generated after the stepwise matching using Kernel Principal
Component Analysis (KPCA) to evaluate their representational ability.
Furthermore, we estimate the subject similarity matrix to calculate the domain distance between
the source-target pairs selected from different clusters of BCI inefficiency. The neighboring simi-
larity matrix ∆̄ξ̂ is introduced, and its pairwise metric elements are computed from the matrices
ξ̂ ≡ ˆ̄κ, κ̂KPCA, as described equation Ecuación (2-7). Here, cov(·, ·) and seq(∆(m,∀m′)) ∈ RM

correspond to the covariance operator and the sequence composed of all elements of row m, ranked
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Algorithm 1 Validation procedure of the proposed approach for transfer learning with stepwise,
multi-space kernel matching. † Dimensionality reduction is an optional procedure performed for
comparison purposes [33].

Input data: EEG measurement U, predicted label probabilities V, questionary data S,∀m∈M
1: INITIAL PARAMETER SET ESTIMATION Θ ∗

0 : Compute the baseline MLP-based accuracy from
U and V by optimizing Θ = {Kq

i,l,Ad,b
q
i,l,αd}

2: for ∀m∈M,n∈N do
3: KERNEL MATCHING between EEG measurement U and labels V,

Compute Kernel embedding of input data ξ={κU,κS,κV}: κξ=Nξ (µξ ,σξ )

Compute Center Kernel Alignment between both spaces:CKA(κU,κV)

4: KERNEL MATCHING on supervised EEG representation for the categorical data

Compute Kernel embedding of projected data Û using κÛ=NÛ(µÛ,σÛ)

Compute tensor product, including the categorical data κ̄=κÛ ◦κS, κ̄∈RJ×J, J=NM

5: end for
DIMENSIONALITY REDUCTION† by Kernel Principal Components: κ̄KPCA∈RJ×J

6: TRANSFER LEARNING OF PAIRED SOURCE-TARGET SUBJECTS: Y (s) and Y (t)

Perform matrix reshaping RJ×J 7→ RM×J: ξ̂={ ˆ̄κ, κ̂KPCA}

Compute the neighboring similarity matrix of individuals: ∆̄, ∆̄KPCA

Compute the intra-subject distance matrix through the domain distance measurement:
δ̄

ξ̂
(m)∈R+,∀m∈M

Select paired subjects for each transfer learning strategy evaluated:

a) one-source versus one-target, b) multiple-source versus one-target

Recompute the MLP-based accuracy of targets, initializing the parameter set as Θ =Θ ∗
0 ,

fixing P′ parameter according to source subject.

7: Output data: Accuracy gain achieved by each individual target, according to the selection
transfer learning strategy evaluated.
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in descending order of the achieved MLP-based accuracy. We were applying covariance to the ran-
ked row vectors of ∆̄

ξ̂
is motivated by preserving the similarity information between neighboring

subjects.

∆̄
ξ̂
(m,m′) = cov(seq(∆

ξ̂
(m,∀m′)),seq(∆

ξ̂
(m′,∀m))), ∆̄

ξ̂
(m,m′) ∈ ∆̄∆∆

ξ̂
∈ RM×M (2-7)

∆
ξ̂
(m,m′) = ∑

∀ j∈J
|ξ̂ (m, j)− ξ̂ (m′, j)|2, ∆

ξ̂
(m,m′) ∈∆∆∆

ξ̂
∈ RM×M

[33]
Figure 2-4 presents the similarity matrix obtained through the tensor product ∆∆∆ξ̂ (left column), re-
vealing some of the relationships between clustered subjects, depending on the evaluated question-
naires. For instance, the dataset Q1 exhibits two distinct groups, while Q4 shows three partitions.
However, Q2 and Q3 do not accurately cluster the individuals. Subsequently, after performing di-
mensionality reduction using KPCA, the proximity assessments ∆̄KPCA tend to strengthen the
neighboring associations, leading to more well-defined clusters of subjects with distinct feature
representations, as shown in the middle column for each questionnaire.
Under the assumption that the closest the association between the paired source-target couples, the
more effective their cross-subject transfer learning is executed, we estimate the marginal distance
δ̄

ξ̂
(m)∈R+ from either version ∆∆∆

ξ̂
,≩̄KPCA by averaging the neighboring similarity of each subject

over the entire set, where the notation 𭟋 : ∀ζ stands for the expectation operator computed across
the whole set {ζ}, as follows:

δ̄
ξ̂
(m) = E

{
|∆̄

ξ̂
(m,m′)| : ∀m′ ∈ M

}
, (2-8)

In the right column, the values of marginal distances δ̄
ξ̂
(m) illustrate that each individual is in-

fluenced differently by the stepwise multi-space kernel matching of electroencephalography to
psychological questionnaires Qi. These findings align with the subject cluster properties analyzed
earlier. Specifically, Q1 and Q4, with more distinct partitions, yield feature representations that are
more evenly distributed within the subject set, while Q2 and Q3 provide irregular representations.
Furthermore, dimensionality reduction enhances the representation of cases in Q1 and Q2, while
using KPCA tends to diminish the overall similarity level among individuals.

2.2.4. Transfer Learning

The next step involves pairing the learned representation from a source subject to a specific target
subject. Based on the subject partitions according to their BCI skills obtained in Apartado 2.2.2,
we choose the candidate sources (i.e., the source space Y (s)(,)) from the best-performing subjects
(Group I), while the target space Y (t)(,) consists of the worst-performing participants (Group III).
We explore two strategies for selecting subjects from the source space (Group I) [33]:
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∆̄ ∆̄KPCA δ̄
ξ̂
(m)
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Figura 2-4: Similarity matrix performed by the tensor product and computed domain marginal
values δ̄

ξ̂
(m). The subjects are ranked in decreasing order of accuracy.

a) Single source – single-target, where we select the subject in Group I that achieves the highest
value of the domain distance measurement in Ecuación (2-9), computed as follows:

máx
∀m∈Group I

δ̄
ξ̂
(m;Qi) (2-9)

Once the source-target pairs are chosen, the pre-trained weights are calculated from each
designed source subject to initialize the Deep&Wide neural network. This approach avoids
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introducing a zero-valued starting iterate and facilitates better convergence of the training
algorithm. It is worth noting that the condition in Ecuación (2-9) depends on Qi, resulting in
distinct selected sources for each questionnaire data.

b) Multiple sources – single-target, where we choose the subjects in Group I with the four highest
domain distance values. In this case, the Deep&Wide initialization procedure utilizes the
pre-trained weights estimated from the concatenation of the source topograms.

Figura 2-5 provides detailed classification performance achieved using the proposed transfer lear-
ning approach for each strategy of selecting candidate sources. The radar diagram includes all
target subjects as axes. For comparison, the graphical representation also shows the MLP-based
accuracy (colored in black) as a reference for assessing the performance gain due to the applied
transfer learning approach. The blue line represents the accuracy achieved by the features extrac-
ted by the tensor product. In contrast, the magenta line corresponds to the accuracy obtained using
KPCA, i.e., ˆ̄κ, κ̂KPCA, respectively.
The odd columns (first and third) show the diagrams for the Single source – Single-target stra-
tegy, while the even columns are for the Multiple sources – Single-target approach. In all cases
of questionnaire data Qi, the stepwise transfer learning, multi-space kernel matching results in an
average increase in the baseline classifier performance for subjects belonging to Group III, who
exhibit modest accuracy and high unevenness of responses. However, there are still some aspects
that require further clarification. The Single source – Single-target strategy achieves a lower ac-
curacy gain than the latter approach, but it benefits a more significant number of subjects. On the
other hand, the Multiple sources – Single-target strategy reduces the number of poor-performing
subjects that show improvement. However, some subjects demonstrate substantial accuracy gains,
such as subject #45 (up to 25%).
The contribution of categorical data to classifier performance is another aspect to address. The
first pair radars in the bottom row (labeled as EEG) show the accuracy improvement achieved
by the features extracted from EEG measurements after CKA alignment (CKA(κU,κV)), which
underperforms the transfer learning when questionnaires are added. Regarding the additional di-
mensionality reduction, its impact on accuracy (shown in magenta) is strongly influenced by the
specific fused data Qi. While Q1 and Q2 benefit from the KPCA procedure, Q4 experiences a de-
crease in performance. This is evident in the two bottom radars (third and fourth) that depict the
averaged effect of transfer learning across the data Qi, demonstrating that the classifier performan-
ce of almost every target individual can be improved by the proposed transfer learning approach,
regardless of the strategy for selecting candidate sources. However, some subjects (#38 and #20)
do not show positive impacts.
Lastly, the topographic maps in Figura 2-6 visually interpret the proposed transfer learning, re-
constructed from the learned network weights according to the algorithm presented in [32]. We
compare the estimated approaches, assuming that the discriminatory ability is proportional to the
reconstructed weight value. Topograms of a Single-source strategy constructed from both band-
widths (/beta and /mu) within different intervals of neural response are shown in the top row.
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Figura 2-5: Achieved accuracy by validated strategies of selecting source subjects from Group I.
a) Single source – single-target, b) Multiple sources – single-target. Individual gain
reports the average accuracy per subject of questionnaire data Qi and EEG.

The selected source (subject #3) exhibits a weight set with a spatial distribution related to the sen-
sorimotor area, accurately focusing neural responses within the MI segment. Next to Subject #3,
we present the target’s topograms that help the most from the transfer learning, showing weights
with a slightly blurred spatial distribution. The Single-source transfer learning approach reduces
the weight variability, as observed in the adjacent topograms. However, the source’s effectiveness
in reducing variability is limited in the case of the low-skilled target #38, which presents many
contributing weights spread across the entire scalp area. Furthermore, the weights appear inside
the two intervals (before the cue-onset and ending segment), during which the responses provo-
ked by MI tasks are believed to vanish. As a result, the single-source strategy yields a negative
accuracy gain for Target #38 (it drops from 70% to 65%). This pattern can also be seen in the
second row, which displays the multi-source topograms for the most beneficial target (Target #11)
and the least successful target (Target #22). However, including numerous sources leads to weights
with a sparse distribution, as observed in the topograms of the chosen subjects (Subjects #3, 14,
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Figura 2-6: Topographic maps of representative subjects with and without transfer learning using
just feature map information, presenting the learned weights with meaningful activity
reconstructed within both bandwidths (β and µ) across the whole signal length, Nτ .

41, 28). This effect may explain the small number of targets the multi-source strategy improves.
To explain this point, the bottom row displays the corresponding spatial distribution performed by
the multi-source strategy when including the whole subject set of Group I, resulting in weak and
scattered weights. Moreover, compared with the first two rows, the all-subjects source approach in
the bottom row leads to the worst performance averaged across the target subject set.

2.3. Discussion

The evaluation highlights the following aspects:
Evaluated NN framework: We utilize the Deep&Wide learning framework with 2D feature maps
supporting the MLP-based classifier. Comparison in Table 1 (2-2) shows that our proposed transfer
learning method outperforms several recently published approaches regarding bi-class accuracy on
the GigaScience database.
Challenges and future directions: Despite achieving high accuracy, three aspects require further
development. Firstly, we present the bi-domain extraction (CWT and CSP) to address substantial
intra-subject variability across trial patterns. However, more compact feature representations need
exploration to improve their combination with categorical data, such as using connectivity me-
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Tabla 2-2: Comparison of Bi-class accuracy achieved by state-of-the-art approaches in GigaS-
cience. The best value is marked in bold. Notation * denotes Deep&Wide framework
results with transfer learning (TL). CSP+FLDA: Common spatial patterns and Fisher
linear discriminant analysis, LSTM+Optical: Long-short term memory network and
optical predictor, SFCSP: Sparse filter-bank CSP, DCJNN: Deep CSP neural network
with joint distribution adaptation, MINE+EEGnet: Mutual information neural estima-
tion, MSNN: Multi-scale Neural Network.

Approach Ac Interpretability
CSP+FLDA [26] 67.60 –
LSTM+Optical [80] 68.2±9.0 –
SFBCSP [174] 72.60 –
DCJNN [176] 76.50 ✓
MINE+EEGnet [70] 76.6±12.48 ✓
MSNN [76] 81.0±12.00 ✓
Proposal 79.5±10.80 ✓
Proposal+TL* 82.6± 8.40 ✓

trics as in [99]. Secondly, developing neural network architectures to capture temporal dynamics
and maintain local structures of the time series associated with elicited MI responses, as carried
out in [55]. Lastly, the approach takes longer training hours for multi-source cases than single-
source, which is considerably faster in network training. However, the model exhibits fast test set
classification once fully trained (Table 2, 2-3), and parameter tuning details are provided.

Tabla 2-3: Achieved training and validation time for each subject dataset.
Approach Time per fold Time per training epoch
Proposal (Single-source) ∼ 984s < 1s
Proposal (Multi-source (4)) ∼ 1663s < 1s
Proposal (Multi-source (all)) ∼ 3176s ∼ 1s
Proposal+TL ∼ 341s < 1s

Multi-space kernel matching: We implement stepwise kernel matching via Gaussian embedding
to address the challenges of combining categorical and real-valued features. The similarity matri-
ces obtained reveal relationships with BCI inefficiency clusters of subjects. While the evaluated
questionnaire data influence the association, this result is essential given previous reports stating
no statistically significant differences between questionnaire scores and EEG-based performance
[84, 33]. To improve predicting MI performance based on subjective criteria, two main issues need
addressing: using more appropriate kernel embedding for categorical scores [23] and dimensiona-
lity reduction approaches, such as t-Distributed Stochastic Neighbor Embedding [9].
Cross-subject transfer learning: Our transfer learning infers a target prediction function from the
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embedded kernel spaces, selecting paired source-target sets based on Inefficiency-based cluste-
ring by subjects. This approach increases the baseline classifier accuracy of the worst-performing
subjects. However, the way source selection is performed impacts classifier performance. The
Multiple-source – Single-target strategy yields more significant accuracy improvements than Single-
source – Single-target, but the number of benefited targets decreases. This result suggests the need
for future exploration of more effective transfer learning of BCI inefficiency, aiming to combine
the source domain with each target space as much as possible. This task is also essential to improve
the similarity metric proposed for comparing ordered vectors of different BCI inefficiency clusters
2-7.

2.4. Summary

This chapter proposes a Deep&Wide neural network for motor imagery (MI) classification. The
network is first pre-trained on data from the source domain. The layer parameters are then trans-
ferred to initialize the target network, which is fine-tuned to recompute the Multilayer Perceptron
(MLP)-based accuracy.
We implement stepwise kernel matching via Gaussian embedding to perform data fusion, combi-
ning categorical with real-valued features. Paired source-target sets are selected based on inefficiency-
based clustering by subjects to evaluate their influence on BCI motor skills for evaluation purposes.
We explore two strategies for choosing the best-performing subjects in the source space: single-
subject and multiple-subjects. The validation results achieved for discriminant MI tasks demons-
trate that the introduced Deep&Wide neural network presents a competitive accuracy performance,
even after including questionnaire data [33].



3 Sonification through Labeled
Correlation Alignment

3.1. Materials and Methods

3.1.1. Dataset: EEG data investigating neural correlates of
music-induced emotion (BCMI-MIdAS)

This dataset 1 was collected from a total of NS=31 participants. The experimental setup involved
six runs, capturing neural responses from the brain, divided into two segments. During the baseline
resting recordings, participants remained seated and focused on the screen. Signal acquisition for
each subject was performed from 19 channels based on the 10-20 electrode placement system Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2. Each recording lasted
15 seconds and was sampled at 1000 Hz.
The study utilized music stimuli to investigate how music influences emotions. The dataset inclu-
ded 110 excerpts from various scores, covering a wide range of emotional responses, as described
in [39].
Notably, the auditory data were labeled based on the two-dimensional arousal-valence plane. Af-
fective states were characterized by the combination of arousal (activated-deactivated) and valence
(pleasure-displeasure), resulting in four distinct labeled partitions (NL=4) [126]: High Arousal Po-
sitive Valence states (HAPV), High Arousal Negative Valence (HANV), Low Arousal Negative
Valence (LANV), and Low Arousal Positive Valence (LAPV).

3.1.2. Extraction of (Audio)Stimulus-(EEG)Responses

A piecewise stationary analysis accounts for the non-stationarity behavior inherent to training data
when characterizing the eliciting acoustic stimuli (Y ∈R) and brain neural responses (X ∈R).
Thus, both feature sets (X∈X ,Y∈Y ) are extracted from Mτ overlapping segments framed by a
smooth-time weighting window lasting τm≤ T , with m∈Mτ , where T∈R is the recording length [7].
Specifically, a set of time-windowed neural response features, X → X , is extracted from the EEG
electrode montage using two functional connectivity metrics (FC), Phase Locking Value (PLV)

1publicly available at https://openneuro.org/datasets/ds002721/versions/1.0.2
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and Gaussian FC (GFC), estimated on a trial-by-trial basis, respectively as [57, 7]:

∆φV (xc
m,x

c′
m) = E

{
|exp( j(φ c

m(t)−φ
c′
m (t)))|: ∀t∈τm

}
(3-1a)

∆φG(xc
m,x

c′
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m∥2

2
2σ2
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)
(3-1b)

where xc
m and xc′

m are the real-valued EEG vectors captured at instant m ∈ Mτ from the corres-
ponding electrodes c,c′∈NC; φ c

m(t) and φ c′
m (t) are the corresponding instantaneous phases φ c

m(t)
and φ c′

m (t), with c̸= c′, NC is the number of testing montage channels {xc
m∈[xc

m: m∈M]}∈X , and
σφ∈R+ a length scale hyperparameter. Notations ∥ · ∥2 and E{: ∀ν} stand for ℓ2-norm and expec-
tation operator computed across a variable ν , respectively [7].
In parallel, a set of time-windowed acoustic features, Y → Y , is extracted under the music assess-
ment and music listening paradigms [104]: Zero-Crossing Rate, Zero-Crossing Rate, High/Low
Energy Ratio, Spectral Entropy, Spectral Spread, Spectral Roll-off, Spectral Flatness, Roughness,
RMS energy, Broadband Spectral Flux, and Spectral flux for ten octave-wide sub-bands. The ex-
tracted acoustic features’ descriptions are detailed in [110, 77]. Also, the feature set is completed
by the short-time auditory envelopes extracted as in [74, 7].

3.1.3. Two-step Labeled Correlation Alignment between Audio
and EEG Features

The proposed feature alignment procedure between eliciting audio-stimuli and aroused EEG res-
ponses consists of two steps: Firstly, the similarity of each feature space to the label set is assessed
using Centered Kernel Alignment. This space allows selecting the extracted representations that
match the closest. After selecting the labeled CKA representations, Canonical Correlation Analy-
sis is performed to identify audio and EEG features that are maximally congruent in terms of
estimated correlation coefficients [7].

Supervised CKA-based selection of features. Sonification feature sets must be selected
to create music following brain patterns but according to distinct emotional conditions. Hence, the
alignment is performed separately between each feature set, Ξ={X∈RNR×P, Y∈RNR×Q} being
P and Q the number of EEG and Audio features (NR is the number of trials), to the provided
labels, noted as Λ∈Z, employing the CKA algorithm that includes an additional transformation
to estimate the contribution of every input representation. To be specific, we use the supervised
empirical estimate of CKA derived in [5, 7], as follows:

wΞ
∗ = argmáx

WΞ

⟨K̄Ξ (WΞ ),K̄Λ ⟩F

||K̄Ξ (WΞ )||F ||K̄Λ ||F
; (3-2)

where notation || · ||F stands for Frobenius norm, K̄ ∈ RNR×NR is the centered kernel matrix es-
timated as K̄=ĨKĨ , K ∈ RNR×NR is the kernel matrix, Ĩ=I-1⊤1/NR is the empirical centering
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matrix computed across the trial set that holds NR, and I∈RNR×NR is the identity matrix, 1∈RNR

is the all-ones vector; andKΞ∈RNR×NR and KΛ∈RNR×NR are the kernel matrices that match each
extracted feature set to the labels, respectively.
The kernel matrix elements, ξ ,ξ ′∈Ξ , are computed on a trial-by-trial basis, respectively, as fo-
llows:

κΞ

(
ξ ,ξ ′;Wξ

)
= exp

(
-
(
(ξ -ξ ′)⊤W⊤

ξ
Wξ (ξ -ξ ′)

)
/2
)
, (3-3a)

κΛ

(
λ ,λ ′)= δ

(
λ ,λ ′), λ ,λ ′ ∈ Λ (3-3b)

where Wξ is the matrix linearly transforming the selected ξ̃ and input ξ sets in the form ξ̃=ξWξ ,
with ξ̃∈{X̃ ∈RNR×P,Ỹ ∈RNR×Q}, being WξW

⊤
ξ

the corresponding inverse covariance matrix of
the multivariate Gaussian function as in Ecuación (3-3a) [7].
A Gaussian function is used as the first kernel κΞ (,)∈R+ in Ecuación (3-3a), to assess the pair-
wise similarity between aligned features due to its universal approximation properties and tracta-
bility [156]. The second kernel includes the delta operator δ (·, ·) in Ecuación (3-3b) suitable for
dealing with categorical label values.

CCA-based analysis of multimodal features. This unsupervised statistical technique aims
to assess the pairwise linear relationship between the multivariate projected feature sets Ξ̃={X̃ ,Ỹ}
obtained by supervised CKA-based selection and described in different coordinate systems (EEG
and Audio). To this end, both representation sets are mapped into a common latent subspace to
become maximally congruent. Namely, the correlation between the EEG and auditory features is
maximized across all NR trials within a quadratic framework constrained to a single-dimensionality
latent subspace, as below [166, 7]:

α̂X̃ , α̂Ỹ=argmáx
αX̃ ,αỸ

α
⊤
X̃ ΣX̃Ỹ αỸ (3-4a)

s.t.: α
⊤
X̃ ΣX̃ X̃ αX̃=1, αX̃ ∈ RP (3-4b)

α
⊤
Ỹ ΣỸỸ αỸ=1, αỸ ∈ RQ (3-4c)

where ΣX̃ X̃ ∈ RP×P, ΣỸỸ ∈ RQ×Q, and ΣX̃Ỹ=X̃⊤Ỹ ∈ RP×Q.

3.1.4. Sonification via Vector Quantized Variational AutoEncoders

The feed-forward encoder and decoder network converts an input time-series ξ=[ξt : ∀t], with ξ∈Ξ ,
into a coded form of a discrete finite set (or tokens), z∈{zs: ∀s∈S}, having each element of size K.
To this end, a latent representation hs=θE(ξξξ ) (with H∈{hs}) is encoded to be further element-wise
quantized according to the vector-quantized codebook {ek: ∀k} [7]. The VQ-VAE model noted as
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µ(ξ) is then trained using the minimizing framework, as below [44, 7]:

µ(ξ) : mı́nE
{
∥ξt −θD(ez,t)∥2

2 : ∀t
}

+E
{
∥θSG(hs)− ez,s∥2

2 : ∀k
}
+βE

{
∥hs −θSG(ez,s)∥2

2 : ∀k
}

(3-5)

where the first term is the reconstruction loss that penalizes for the distance between input ξξξ and
decoded output ξ̃ξξ=θD(·), the second term penalizes for the distance between each encoding value
of H and their nearest neighbors ez in the codebook, and the third term prevents the encoding
from strong fluctuations, ruling the weight β∈R[0,1]. Besides, notation θSG(·) stands for the stop-
gradient operation, which passes zero gradients during backpropagation.
Generally speaking, the coding model trained by one auditory signal set ξξξ∈Ξ can be applied to the
generation of acoustic data when feeding to the encoder signals of different nature, ξξξ ′∈Ξ , provided
their homogeneity is assumed. This model is referred to as µ(ξ|ξ′). In light of this, we suggest that
the following conditions be met [7]:

– The VQ-VAE coder includes a parametric spectrum estimation based on regressive genera-
tive models fitted on latent representations [75]. Therefore, both sets of signals (ξ,ξ′) must
have similar spectral content, at the very least, in terms of their spectral bandwidth. That is,

∆Fξ ≃ ∆Fξ′ (3-6)

– In regression models, both discretized signal representations must be extracted using similar
recording intervals and time windows to perform the numerical derivative routines. Further-
more, the VQ-VAE coder demands input representations of fixed dimensions. Hence, the
arrangements extracted from ξ and ξ′ must be of similar dimensions.

3.2. Experimental set-up

We introduce a novel approach for translating neural responses to affective music listening into au-
ditory signals, leveraging both auditory and electroencephalographic features that align optimally
with the corresponding emotion labels. Our method is evaluated within the stimulus-response pa-
radigm, involving various stages as illustrated in Fig. 3-1:

Preprocessing and extracting time-windowed representations: We estimate acoustic features
from music data that modulate emotions, alongside Functional Connectivity (FC) measu-
res derived from evoked EEG neural responses. To capture diverse FC characteristics, we
explore three strategies: Phase Locking Value, Gaussian Functional Connectivity, and their
combination. Additionally, different time windows are evaluated for feature extraction from
neural brain responses, specifically focusing on low-level music generation.
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Labeled Correlation Alignment: This stage aims to identify EEG features that align most sig-
nificantly with the stimulating auditory data for each emotion. To ensure the interpretability
of the selected arrangements, we employ a two-step procedure: first, a separate Canonical
Correlation Analysis (CCA) is conducted between audio and EEG data using the emotion
labels, followed by CCA analysis of the selected feature sets.

We examine the contribution of electrodes and bandpass-filtered, time-windowed dynamics
to the Labeled Correlation Alignment process, while also considering the impact of indivi-
dual subjects on overall performance.

Generating Labeled audio conditioning content: We utilize the selected brain neural res-
ponses to feed a Vector Quantized Variational AutoEncoder, producing the labeled audio
conditioning content.
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Figura 3-1: Proposed model architecture.

We evaluate the correlation between the captured neural responses and auditory data using Cano-
nical Correlation Analysis (CCA) as a performance measure. The strength of the relationship is
quantified by the r-squared coefficient, with higher values indicating a stronger association bet-
ween brain responses and auditory stimuli. To assess the confidence of CCA correlation estimates,
we employ leave-one-out cross-validation, specifically, leave-one-subject-out, as demonstrated in
a prior study [14].
Furthermore, we assess the discrimination ability of the labeled correlation alignment using a clus-
tering coefficient, denoted as γ and belonging to the positive real numbers (γ ∈ R+). This coef-
ficient represents the quality of the partition obtained from the CCA correlation values and is
computed as follows:

γ =

(
ξ1 −ξ0

máxi ξi
+E(ξn − ξ̄ )2: ∀n ∈ NR

)
, ξi ∈ Ξ
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Here, ξ0 represents the mean distance between a sample and all other points in the same group, ξ1

indicates the mean distance between a sample and all other points in the closest group, ξn denotes
the number of samples within the data set, and ξ̄ represents the center of a group. The clustering
measure γ strikes a balance between inter-class variability (first term) and intra-class variability
(second term). Consequently, larger values of γ indicate more distinct labeled partitions of the
extracted features [29].

3.2.1. Preprocessing

EEG Prepocessing

We performed high-pass filtering on the raw EEG channel set using a 3rd-order zero-phase
Butterworth filter with a relatively high cutoff frequency to eliminate linear trends in all NC

electrodes. The raw signal was bandpass filtered between 1 Hz and 45 Hz. Additionally,
we extracted the FC feature sets within a bandwidth f ∈ NB, where NB = ⌊Fs/2⌋, and Fs

represents the EEG sampling frequency. These bandwidths were chosen to encompass phy-
siological rhythms relevant to music appraisal in EEG paradigms, as reported in previous
studies [85]. Specifically, the following frequency bands were considered: θ [4 Hz to 8 Hz],
α [8 Hz to 12 Hz], and β [12 Hz to 30 Hz].

To address artifacts, we removed data from occipital electrodes (associated with motor con-
trol) that might be highly active due to visual perception of sound stimuli after target pre-
sentation [41]. Additionally, poor occipital signals may result from insufficient electrode
contact [112]. For three subjects, the impedance had outlier values (> 100 kΩ), and as a
result, channels O1 and O2 were excluded from further analysis.

We re-referenced the EEG data to the common-average electrical activity measured across
all scalp channels.

The EEG responses were resampled, divided into trials, using the onset of each music sti-
mulus as a reference point, and then downsampled at a rate of 80 Hz.

Finally, the piecewise stationary analysis of EEG and auditory data was performed over a set
of time segments with testing values [12, 6, 3, 1,5, 0,75, and 0,375] seconds, using a Hann
window with 50% overlap.

Moreover, the FC features were extracted based on ??, where the kernel bandwidth parameter
of GFC was optimized to minimize the variability of the observed data p(X |σφ ) as detailed in
[4]. This resulted in extracting one real-valued FC matrix of size Nφ ×Nφ for each evaluated FC
measure and subject on a single-trial basis at instant τ .

σ̃φ = argmáxvar{p(X |σφ )}
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The FC matrix was then vectorized to have a vector dimension NFC = Nφ · Nφ

2 . Consequently,
the feature vector derived from individuals (NS) across all trials (NR) includes a dimension of
Nλ

X̃ = NFC×Nτ ×NT ×NS ×NL, extracted for each emotion label λ for the purpose of validating
the supervised feature alignment. Note that the extracted EEG feature arrangement doubles in size
when both FC measures are concatenated.

Audio Prepocessing

Regarding the auditory stimuli, all recordings were initially sampled at a rate of 44,100 Hz and then
segmented into Nτ sliding windows with 50% overlap. In addition, the sampled data underwent
a smoothing process by squaring and applying a convolution with a square window. To fulfill the
condition specified in 3-6, the stimuli data were further downsampled to 64 Hz using cubic root
compression. To ensure compatibility with the dimension of the EEG training set, the acoustic set
was adjusted to a similar size, specifically dim(Ỹ ) ≈ dim(X̃). Consequently, within each τ (time
segment), we extracted the first Principal Component Analysis (PCA) component from each of the
20 acoustic features mentioned earlier [179]. This array was then augmented with Nφ ×1 samples
of the acoustic envelope. As a result, we obtained a total of Nτ × (20+Nφ × 1) acoustic features
within each time segment T , which would be utilized in the subsequent alignment procedure.

3.2.2. Results

Electrode Contribution

Initially, we investigate the spatial relevance of each electrode in the scalp EEG montage concer-
ning the relationship between features extracted from neural responses and acoustic stimuli using
Labeled Correlation Alignment (LCA). The r-squared values obtained through Canonical Corre-
lation Analysis (CCA) after applying CKA matching are shown in Fig. 3-2 for various window
intervals Nτ . The correlation estimates are averaged across the label set to provide a comprehensive
interpretation. The heatmaps reveal that the correlation range varies and spreads differently across
the scalp electrodes depending on the feature extraction method used. The top heatmap shows that
Phase Locking Value (PLV) yields the lowest estimates within the range of [0,05-0,59], with only
a few electrodes showing significant contribution. In contrast, Gaussian Functional Connectivity
(GFC) extends the correlation interval to [0,05-0,73] (middle plot). Combining both measures re-
sults in correlation values of [0,10-0,74] (bottom plot), indicating that either strategy of improved
FC extraction leads to distinct brain regions being linked to the acoustic stimuli.
Next, we evaluate the influence of each channel by averaging its correlation performance across all
tested window intervals. The results are displayed in the matrix row for the entire EEG montage
(denoted as {17}). Several electrodes exhibit negligible contribution irrespective of the extraction
method used. We focus on electrodes susceptible to artifacts during music listening paradigms,
particularly those associated with brain neural activity in the frontal cortex [101]. Thus, the bottom
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Figura 3-2: The electrode contribution of r-squared values and clustering coefficients γ (right co-
lumn) obtained by the validated strategies of feature extraction: PLV (Top row), GFC
(middle row), and their combination (Bottom row). Notations E{17} stands for all
EEG channel signals (i.e., NC=17) excluding O1,O2 while E{14} denotes without
frontoparietal (Fp1, Fp2) and Midline Parietal (Pz) electrodes (NC=14), respectively.
The horizontal axis stands for each electrode according to the standard 10− 20 sys-
tem. In the right column, the horizontal axis denotes each considered time-windowed
set, NC.

row (denoted as E{14}) presents the averaged r-squared values and shows that removing Fp1, Fp2,
and Pz electrodes may increase the correlation.
We further assess the discrimination ability of the selected features using the clustering coefficient
γ . The right column of Fig. 3-2 illustrates the partition separability of features extracted by PLV
(top plot), which is relatively modest due to the low r-squared values. In contrast, GFC leads to
more distinct partitions between the extracted EEG features. The combination of GFC and PLV
provides the most accurate and separable clustering performance across the tested values of the
time window τ . This pattern is observed for both evaluated electrode arrangements: NC = 17 (blue
line) and NC = 14 (orange line). Comparing this with a single CCA step (left column) that achieves
significantly lower correlation values, regardless of the extraction method used, emphasizes the
increased association between neural responses and acoustic stimuli achieved through LCA.
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Figura 3-3: Topoplots reconstructed from LCA according to the estimated electrode relationship
with the evoking auditory data. The channels affected by artifacts in gray are removed
from the coupling analysis.

Lastly, for physiological interpretability, Fig. 3-3 presents the topoplots reconstructed from the FC
feature sets according to the correlation with the evoking auditory data performed by LCA. The left
column shows weak r-squared values evenly distributed over the scalp for PLV. In contrast, GFC
increases the contribution from both lobes. This influence is further accentuated by combining
GFC with PLV, highlighting electrodes with powerful relevance (right column) and increasing their
significance in subsequent sonification stages. Notably, when removing artifact-affected electrodes,
the correlation assessments focus more on the frontal and central lobes (painted yellow).

Time-windowed Correlation Estimation

In this study, we explore the impact of time-windowed feature extraction on the performance of
Labeled Correlation Alignment (LCA) and examine how distinct the EEG responses remain over
time, considering the potential role of changing dynamics in music creation. To explain this cha-
racteristic, the upper plot of Fig. 3-4 displays the time-varying clustering coefficient obtained at
different window lengths using each feature extraction method examined in the previous section
(refer to Fig. 3-2). The scatter plots demonstrate that the labeled EEG feature partitions become
more distinguishable when the window length is narrower than τ ≤ 3 seconds. This suggests that
capturing affective neural responses with shorter overlapping time segments in feature extraction
leads to more separable partitions, regardless of the FC metric. The labeled partitions of extracted
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EEG dynamics differ and are more pronounced in GFC than PLV. However, the combination of
GFC and PLV yields the best group separation.
Moving on, we analyze the time evolution of LCA specifically for the best strategy of FC repre-
sentation, i.e., the combination of PLV and GFC. The lower plot in Fig. 3-4 presents the obtained
r-squared values, indicating that the dynamics extracted at longer lengths (τ ≥ 3 seconds) are
weak, resulting in intervals with almost zero-valued correlation. In contrast, the extracted features
at shorter lengths (τ ≤ 3 seconds) exhibit stronger correlations and show fluctuations over time.
Implementing the channel removal strategy improves this behavior. Additionally, the plot on the
right displays the mean estimation of changes in the time-varying dynamic resolution, calculated
as the difference between neighboring correlation values. The results reveal that the separability of
affective labels tends to decrease as τ shortens. However, as mentioned previously, this effect can
be mitigated with a proper channel selection.
Another essential aspect discussed is the bandpass-filtered feature extraction concerning brain osci-
llations, which can have musical relevance. Fig. 3-5 shows the r-squared and clustering coefficient
(γ) values obtained by combining PLV and GFC and extracted at different time windows for three
brain oscillations: θ , α , and β . Filtering the lowest band (θ waveform in the blue line) causes
smoother changes in the obtained time-varying dynamic resolution compared to the baseline sig-
nal encompassing all waveforms (black line). On the other hand, extracting the higher frequency
rhythms (α - orange, β - green) leads to faster time-varying changes in the estimated correlation
values. However, the rapid changes in r-squared imply that the discriminability between affective
neural responses fluctuates over time.
To assess the uniformity of the group of test subjects, we analyze the performance of the Labeled
Correlation Alignment (LCA) implementation individually across the channel set and at the con-
sidered time windows, which were used for feature extraction based on the combination of PLV
plus GFC. In the top plot of Fig. 3-6, we observe an appreciable discrepancy in both mean and
variance values among subjects regarding the r-squared estimation (green line). Furthermore, a
few individuals exhibit a high standard deviation, suggesting that their elicited neural responses
deviate significantly from the typical responses in the subject set. To evaluate the discrimination
ability that motivates the LCA algorithm, we compute the classification of affective feature sets
using a Graph Convolutional Neural Network (GraphCNN) framework, similar to the approach
presented in [133]. The blue line represents the calculated classifier accuracy values (mean and
standard deviation). To provide a better understanding, we rank all subjects in decreasing order of
their achieved mean value, revealing a significant performance gap between the best and lowest
performers [7].
To further illustrate this point, we compute the heatmap of electrode contribution from the r-
squared assessments carried out by both subjects, along with the corresponding reconstructed
neural activity topoplots. As shown in the bottom plot of Fig. 3-6, the best-performing subject
(labeled as #1) exhibits a robust relationship between auditory and EEG responses, with distinct
brain zones of activation. Moreover, this enhanced performance is observed even within the broa-
dest time window. In contrast, the worst-performing subject (labeled as #27) demonstrates a very
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[b] Time-resolution encoded by the extracted EEG feature sets.

Figura 3-4: Effect of time-windowed dynamics on the estimated values of r-squared. [a] Quality
of clustering between labeled affective neural responses depending on the time win-
dow length τm measured in s. Outcomes are presented just for the removal channel
configuration NC=14 since it enhances the γ values. [b] Dynamic resolution of neu-
ral responses encoded by the extracted feature sets. The influence of both channel
removal configurations is evaluated. Of note, only the method combining PLV+GFC
is evaluated, and clustering is performed over the reduced set of EEG features using
Principal Component Analysis separately for each affective label.

sparse correlation heatmap, suggesting a poor contribution from the central brain zone, which is
assumed to be crucial in the Affective Music Listening paradigm [7].
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Figura 3-5: Performance variability over time conditioned by the wavebands θ , α and β . Cluste-
ring coefficient (top row) and correlation (bottom row) are estimated at short lengths
of window τ using the FC extraction combining PLV+GFC. [7]

3.2.3. Generation of Affective Acoustic Envelopes

In the last part of the evaluation, we investigate the ability to create music conditioning content
using brain neural activity selected by LAC. Specifically, the VQ-VAE framework in Ecuación (3-
5) is trained with affective music stimuli, Ỹ , and then applied to create auditory data by feeding
the autoencoder with the most similar representation of aroused brain neural responses, X̃ , i.e.,
using the model µΛ (Ỹ | X̃). Due to the highly complex music structure encoded, additional settings
are required. Only the acoustic envelope is provided to the encoder as auditory training feature
data, without any weighting filter (That is, WỸ=1), omitting the remaining acoustic features and
smoothed to decrease abrupt changes. When providing EEG data to feed the encoder input, the
feature sets have an additional dimension to represent neural activity’s spatial contribution. We
map the EEG feature matrix into a vector representation by adding one convolutional layer to the
VQ-VAE input to reduce dimension [7].
In the top row, the left plot of Figura 3-7 illustrates an example of a multichannel EEG response,
followed by the extracted FC arrangement (middle plot) and applied to the Labeled Correlation
Alignment, estimating the correlation assessments for feeding to the encoder. An example of the
generated acoustic envelope in the output is then presented (right plot), reconstructed using VQ-
VAE. The right plot illustrates how the envelope resulting from the training model µΛ (Ỹ |X̃α̂X̃)

is smooth enough (orange line). As a comparison, we show the acoustic output produced when
encoding the raw EEG set directly (i.e., µΛ (Ỹ |X̃) ), showing more increased variability and abrupt
changes (blue line), which tend to degrade the overall quality of the created music. In the middle
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[a] Estimated values of r-squared, γ , and accuracy.

[b] Best-performing subject #1 Worst-performing subject #27

Figura 3-6: Overall subject performance of LCA. [a] Estimated values of r-squared, γ , and classi-
fier accuracy. [b] r-squared heatmaps of electrode contribution and their reconstructed
topoplots for subjects #1 and #27. Outcomes are presented for both removal channel
configurations E{17} and {14} using the FC extraction combining PLV+GFC.

row, we show the clustering results obtained by the sets employed for training: input EEG envelo-
pes (left plot), input FC features (center plot), and generated acoustic envelopes under the model
µΛ (Ỹ |X̃α̂X̃) (right plot), which show a low discriminant between affective labeled sets. On the
other hand, the Labeled Correlation Alignment makes the compared input training sets distinctive.

3.3. Discussion:

Following the evaluation stage, several noteworthy points emerge: Feature extraction: Gaussian
Functional Connectivity, when combined with PhaseLockingValue, enhances the relationship as-
sessment of brain activity triggered by acoustic stimuli. However, both FC measures combined
provide even better associations between neural responses and acoustic inputs, suggesting that
incorporating kernel-based FC can help address inter/intra-subject variability. The validation al-
so underscores the importance of appropriately removing electrodes affected by artifacts to im-
prove EEG feature extraction. Additionally, considering other connectivity measures like Phase-
Amplitude Coupling and entropy-based FC representations, commonly used in music appraisal
paradigms, may be beneficial. Regarding auditory representations, short-time acoustic envelopes
have proven effective in complementing traditional acoustic feature extraction methods. These
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[a] Time representation of training sets; All values are normalized for interpretation.

[b] Clustering before LAC implementation

[c] Clustering performed after LAC implementation

Figura 3-7: Sonification via VQ-VAE based on the features extracted by LAC. [a] Time repre-
sentation of training sets: Input EEG recordings (left plot), extracted FC measures
(central plot), and output acoustic envelopes (right plot); [b] Clustering before LAC
implementation; [c] Clustering performed after LAC implementation. The illustration
is given for the arisen EEG responses (left column), FC measures (central column),
and created acoustic envelopes (right column).

envelopes, capturing relationships between neighboring samples, are utilized in the variational en-
coder network to generate low-level music synthesis. However, for more complex music structures,
more sophisticated representations, such as the Musical Instrument Digital Interface format, may
be required. Labeled Correlation Alignment (LCA): The introduced two-step procedure for alig-
ning multimodal features with the label set is motivated by the limited association observed with
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single-step Canonical Correlation Analysis. The absence of label set information in the explora-
tion of relationships results in inadequate discrimination between affective responses. To address
this, Centered Kernel Alignment is applied before Canonical Correlation Analysis to select the
most relevant representations based on affective labels. The LCA approach allows for greater phy-
siological explanation by incorporating a backward transformation within CKA to estimate the
contribution of each extracted feature set. This provides insights such as the frontal and central
lobes’ increased relevance in the sonification stage due to the focus of correlation estimates on
these areas. Moreover, short-time dynamics for narrow windows (τ ≤ 3 seconds) still deliver se-
parable affective neural responses. However, bandpass-filtered feature extraction based on brain
oscillations may smooth or expedite EEG dynamics, affecting discriminability between affective
neural responses. Furthermore, individual differences are apparent, with varying correlation accu-
racy observed among different subjects. Considering the preceding findings, several factors can
be taken into account to improve the alignment of multimodal features. This includes conducting
group-level analysis to explore collective contributions across individuals and employing correla-
tion methods that seek optimized projections, such as utilizing deepCCA [86].
Generation of low-level music content. an important observation is that the utilized variational au-
toencoder effectively generates distinct acoustic envelopes from the EEG representations selected
through LCA. However, it is important to note that the current encoder network employs a dis-
crete latent representation in combination with an autoregressive decoder specifically designed for
high-quality videos, music, and speech. Consequently, further endeavors are required to address
the challenges associated with discrete neural representation, potentially by adopting the predictive
VQ-VAE model.

3.4. Summary

This chapter presents a novel approach to sonifying neural responses to affective music listening
data using Labeled Correlation Alignment (LCA). The proposed approach addresses inter/intra-
subject variability by employing a combination of Phase Locking Value and Gaussian Functional
Connectivity. The two-step LCA approach first couples the input features to a set of emotion la-
bel sets using Centered Kernel Alignment. This is followed by canonical correlation analysis to
select multimodal representations with stronger relationships. LCA also allows for a physiological
explanation by including a backward transformation to estimate the matching contribution of each
extracted brain neural feature set. Correlation estimates and partition quality are used as perfor-
mance measures.
The evaluation of the proposed approach utilizes a Vector Quantized Variational AutoEncoder to
create an acoustic envelope from the tested Affective Music Listening database. The validation
results demonstrate the ability of the developed LCA approach to generate low-level music based
on neural activity elicited by emotions while still maintaining the ability to distinguish between
acoustic and acoustic outputs.
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EEG Alignment

4.1. Materials and Methods

4.1.1. Dataset: DEAP

EEG data: The evaluated database is publicly available at 1 and contains EEG recordings and
peripheral physiological signals collected from thirty-two participants who viewed 40 one-minute
music video excerpts. After watching each excerpt, each subject rated the video according to the
four emotion conditions: arousal, valence, like/dislike, dominance, and familiarity. As detailed in
[78], the EEG paradigm relies on stimuli selection using retrieval by affective tags, video highlight
detection, and an online assessment tool.

From each subject, the EEG signal at 512 Hz cut-off frequency was recorded by an arrangement
with 32 channels, namely, Fp1, AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz,
Pz, Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6, CP2, P4, P8, PO4, O2. For implementing
the emotion recognition paradigm, the employed musical stimuli were 40 one-minute music video
extracts rated by 14-16 volunteers.

Audio data: This collection holds a set of music video clips selected, taken from YouTube,
to evoke one of the tested mental states related to the emotion space [129]. To start, they initially
picked 120 stimuli, with half being selected through a semi-automated process and the remaining
half chosen manually. Next, a one-minute highlight section was designated for each stimulus.
Ultimately, they employed a web-based subjective assessment experiment to narrow it down to
40 final stimuli. The acquisition protocol started with a 2-minute baseline recording of a relaxing
state. Each participant listened to a one-minute audio recording during a trial. Two sessions were
conducted, each holding 20 trials, and split by a break to check the quality of acquired data and
electrode placement. The participant assessed his emotional levels at the end of each trial, labeled
as arousal, valence, liking, and dominance.

1https://www.eecs.qmul.ac.uk/mmv/datasets/deap/

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/
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4.1.2. EEGNet:

We will consider a training space consisting of two sets X ,Λ, where X = Xr ∈ RC×T : r ∈ R
represents EEG recordings spanning T ∈ N time instants, recorded by a C channel montage. On
the other hand, Λ = λλλ r ∈ [0,1]K is the label set encoding the data capture of R ∈ N single trial
signals performed according to the emotion recognition paradigm, with a fixed number K ∈ N of
emotional states.
In deep learning architectures developed for MI classification, spatial and temporal layers process
the time-series EEG input data to predict one-hot class memberships. This can be expressed as:

λ̂λλ = M (ξL ◦ · · · ◦ξ1)X, (4-1)

where M : RC×T → [0,1]K is the mapping function or Neural Network model that contains a layer
feature map with Pl ∈ N elements at the l-th layer, given by:

X̃l = ξl
(
X̃l −1⊗Wl +bl

)
, X̃l ∈ RPl ,

where ξl : RPl−1 → RPl is a learning function with a non-linear activation, Wl ∈ RPl−1×Pl : l ∈ L
represents a set of layer weights, bl ∈ RPl is a bias term, and L ∈ N is the network depth. The
notations ◦ and ⊗ denote function composition and proper tensor operations.
The estimation framework in Equation 4-1 depends on optimizing the parameter set Θ = Wl,bl
across the trial set using the following objective function:

Θ
∗ = argmı́n

Θ
E
{
L (λr, λ̂r|Θ)+ γΩ(Θ) : ∀r ∈ R

}
, (4-2)

Where L : 0,1K × [0,1]K → R is a loss function, Ω(·) is a regularization function, and γ ∈ R+

is a trade-off term governing. The symbol E denotes the expectation operator. Equation 4-2 can
be solved using mini-batch-based gradient descent and back-propagation. For the implementation
of supervised feature extraction, we set X̃0 = X, X̃L = λ̂λλ , and a sigmoid function is chosen as the
non-linear activation.
Recently, a compact convolutional network called EEG-Net has emerged as a viable solution for
addressing the optimization problem mentioned above in the context of EEG classification [82].
This approach offers convolutional kernel connectivity between input and output feature maps,
making it applicable across various BCI paradigms. The EEGNet pipeline, shown in Figure 4-1,
begins with a temporal convolution to acquire frequency filters, followed by a depth-wise con-
volution connected to each feature map to learn frequency-specific spatial filters. Additionally, a
separable convolution captures a temporal summary, and a point-wise convolution combines fea-
ture maps for class-membership prediction.
In order to have an output that can be directly mapped to the Arousal and Valence plane, the final
layer of the EEGNet was changed to have two outputs with a sigmoid activation, with each output
corresponding to one of the planes. The MSE (Mean Squared Error) cost function was used to treat
the EEGNet as a regressor 4-2.
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Figura 4-1: EEGNet architecture taken from the original paper [82]

Figura 4-2: EEGNet as a regression network

4.1.3. Autoencoder with CKA Loss:

Piano Roll Autoencoder:

The CKA autoencoder was implemented to reconstruct Piano Roll samples. The problem was ap-
proached as a segmentation problem [2], in the sense that the inputs are arrays Y =Yr ∈ RCh×T : r ∈ R
represents the Piano Roll with T ∈N time instants and Ch the pitch notes. This array can be treated
as an image, and the network’s target is the mask Y ∈ {0,1}Ch×T in which it predicts where there
is a note as a 1 and where there is not as a 0.
For the reconstruction of the arrays Y, the Dice coefficient loss is utilized. To induce the labels λλλ

in the embedded space, the CKA cost function is applied, as described below.

CKA Loss function [146]:

Let X ⊂ X and Y ⊂ Y be two pairs of random variables containing samples x ∈ X and y ∈ Y
respectively. The kernels κX : X ×X → R and κY : Y ×Y → R can be defined to represent
nonlinear relationships among the samples through positive definite functions, resulting in:
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Figura 4-3: Piano Roll Autoencoder

For X :

κX(x,x′) = ⟨φX(x),φX(x′)⟩HX , (4-3)

For Y :

κY (y,y′) = ⟨φY (y),φY (y′)⟩HY , (4-4)

In practical applications, when provided with a set of input-output pairs {xn ∈ RP,yn ∈ RQ}N
n=1,

we can calculate kernel matrices KX and KY as:

KX [n,n′] = κX(xn,x′n)

KY [n,n′] = κY (yn,y′n)

Next, we estimate the empirical centered kernel alignment, denoted as ρ̂CKA(KX ,KY ), which lies
within the range of 0 to 1, using the following equation:

ρ̂CKA(KX ,KY ) =
⟨K∼

X ,K∼
Y ⟩F√

∥K∼
X ∥F∥K∼

Y ∥F
, (4-5)

Here, ∥ · ∥F represents the Frobenius norm, and ⟨·, ·⟩F denotes the inner product. Additionally, the
centered kernel matrices in this equation, K∼

X and K∼
Y , are obtained as:
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K∼
X = HKX H

K∼
Y = HKY H

Where H is calculated as IN − 1
N 1N1⊤N , with IN representing the identity matrix and 1N as the all-

one vector of the appropriate size. This alignment estimation process is a data-driven method to
quantify the similarity between the random variables X and Y .

Neighbors Regression:

Using λλλ r as the original labels for arousal and valence, and λ̂λλ as the EEGNet predictions, we
compute the Euclidean distance λλλ dist =

∣∣∣λλλ − λ̂λλ

∣∣∣
2
, which then undergoes softmax activation:

softmax(λλλ dist) =
eλλλ dist

∑
n
i=1 eλλλ disti

(4-6)

With YYY code being the output of the Piano Roll Encoder, we define XXXcode as:

XXXcode = softmax(λλλ dist) ·YYY code (4-7)

4.2. Experimental set-up

We present an end-to-end deep learning approach to generate symbolic music (piano roll) based on
EEG signals associated with induced affective states. The method is assessed within the stimulus-
response paradigm and encompasses different stages, as depicted in Figure 4-4:

Prepossessing: The preprocessing applied to the EEG signals, the audio-to-MIDI conversion
process, and the data segmentation to create the dataset used in the models’ training are
detailed in this description.

Supervised Feature Extraction: The EEGNet was employed for emotion classifications, ser-
ving as an EEG feature extraction network. Additionally, an autoencoder was utilized for
Piano Rolls reconstruction, generating an embedded space that encodes the input signals,
representing the autoencoder features.

Match a generation: The two pre-trained networks were connected through neighbor re-
gression that combines the features of each network. After performing this regression, the
EEG-encoded output from the EEGnet network can be used as input for the Decoder of the
.Autoencoder Piano Roll"network.
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Figura 4-4: scheme of the proposed approach for MIDI generation of EEG data using deep CCA-
based models with following steps: i) Preprocessing, ii) Enhanced Feature Extraction,
iii) Supervised alignment

4.2.1. Prepossessing:

EEG DATA: As the preprocessing step, the data were downsampled to 128Hz, and the ar-
tifacts removed, including EOG, as described in [78]. Then, a band-pass frequency filter from
4-45Hz was applied. Also, the common-reference spatial filtering was performed to reduce the vo-
lume effect. Further, the filtered signals were segmented into trials lasting 60 s trials after removing
a 3-second pre-trial baseline. Lastly, the EEG channels were reordered to follow the Geneva order
for interpretation.

Audio data: All 40 one-minute audio clips from the DEAP dataset are transcribed into MIDI
using an automatic music transcription using the Neural Network developed by Spotify’s Audio
Intelligence Lab [18] with a multi-output structure to improve the resulting frame-level note accu-
racy. Transcription is performed using the default parameters: Note segmentation is fixed to 0.5,
Model Confidence Threshold −− 0,3, minimum note length −− 11, and midi tempo −− 120.
Further, to get the suitable 2D representations needed by Convolutional DL models, we convert a
music score into an image in a tensor (also known as a piano roll or pitch roll) using the package
pretty-midi, as suggested in [125]. As a result, we obtain a target array in the form of a binary-
valued mask by thresholding the input data.
For evaluation, each one-minute trial was split into ten non-overlapped music and EEG data seg-
ments, each lasting six seconds. Note that because we aim at capturing more musical information,
we make this interval longer than the four seconds used in [46]. Besides, nine audio partitions with
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fade-out endings were removed, yielding 391 suitable testing segments instead of 400, then we
ended up working with an array from (400 x 64 x 128).

4.2.2. Supervised Feature Extraction

EEG Features: Because deep learning models with different connective structures may re-
sult in distinct sets of extracted EEG features, we evaluate three deep learning models widely
used for EEG-Based Brain-Computer Interfaces [82, 107, 132]: EEGnet is a compact convolu-
tional neural network combining depthwise and separable convolutions; TCFussionnet is a fixed
hyperparameter-based CNN model that utilizes multiple techniques, such as temporal convolutio-
nal networks, separable convolution, depth-wise convolution, and the fusion of layers; and Deep
& Shallow ConvNet is a deep convolutional network.
Table 4-1 shows the parameter set-up for the tested EEGNet model, including the used filters F1,
F2, and the Depth Multiplier (D). Network architecture is described in detail in 2 and omitted due
to its extension.

Tabla 4-1: Detailed EEGnet architecture for MI classification
Layer Output Dimension Parameters
Input Layer Nc ×Nt ×1 ·

Conv2D Nc ×Nt ×F1
Temporal filter (F1) = 4, Kernelsize = (1,4)

Padding = same,Bias = False
BatchNormalization · ·

DepthwiseConv2D 1×Nt ×16
Depth Multiplier (D) = 2,kernelsize = (Nc,1)

Bias = False
BatchNormalization · ·
Activation · Activation = ELU
AveragePooling2d 1×32×16 Pool size = (1,4)
Dropout · DropoutRate = 0,6

SeparableConv2D 1×32×32
Temporal filter (F2) = 32, Kernelsize = (1,16)

Padding = same, Bias = False
batch Normalization · ·
activation · Activation = ELU
AveragePooling 2d 1×4×32 Pool size=(1, 8)
Dropout · Dropout Rate = 0.6
flatten 128 ·
Dense units units = Nclasses
Activation units Activation = So f tmax

2publicly available at https://github.com/hdperezn/Tesis_codes.git

https://github.com/hdperezn/Tesis_codes.git
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Music Features: On the other hand, MIDI segmentation is performed as suggested in [47],
using a variation of the Unet neural networks termed autoencoder piano roll. This network has
architecture parameters shown in Table 4-2. The programming code for implementing the autoen-
coder piano roll can be accessed at 3, where the residual layer is not connected sequentially, but to
the Add layer.

4.2.3. Match Networks and generation:

Once the EEGNet was trained as a regression model and the piano roll autoencoder using CKA
loss was trained, a test data partition was selected for EEGNet prediction. The EEGNet predictions
underwent a softmax activation, as shown in Equation 4-6. From this resulting array, the top 5
highest values were extracted. Finally, the product was computed as demonstrated in Equation 4-7.
This new array, denoted as XXXcode, derived from the training data, is used as input in the decoder of
the Piano Roll Autoencoder.

4.2.4. Results

Symbolic music data labels exploration:

Initially, we investigated whether the Piano Roll representation of the musical stimuli by itself was
separated following any relationship with the subjects’ labels. In Figure 4-5, part (a) shows how
Subject #1 labeled the audio stimuli, with arousal on the X-axis and valence on the Y-axis. Part
(b) of the figure plots the two-dimensional reduction (ncomponents = 2 and perplexity = 5) using
t-SNE of the Piano Roll arrays. In both figures, colors represent the class of each audio stimulus,
and (c) shows the bottleneck of the Piano Roll Autoencoder with CKA loss, the dots represent the
training data, and the xs are the test data.

EEG emotion classification

Figure 4-6 illustrates the accuracy results obtained by EEGNET when using EEG signals as input
and subject-specific labels as targets. The reported training and testing data are acquired through
a 5-fold cross-validation approach, with 80% of the signals used for training and 20% for testing.
Two class classifications are performed, one for arousal and the other for valence. Additionally, a
four-label multiclass paradigm is implemented by combining the labels from valence and arousal.
The upper figure was sorted in descending order based on the accuracies in valence and is repre-
sented by the orange line. At the same time, the bars indicate to what extent the multiclass accuracy
is better or worse for each subject. Similarly, the same procedure is applied to the arousal feature
in the lower figure.
The best parameters for the EEGNetThe EEGNet as a classifier training where kernelLength =

128, F1= 4, D= 4, F2= 32, normrate= 0,5 and the drop type was "Dropout"with DropoutRate=

3publicly available at https://github.com/hdperezn/EEG_PianoRoll

https://github.com/hdperezn/EEG_PianoRoll
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(a) Emotion labels set by Sub #1 (b) MIDI TSNE clustering

(c) Embedding space autoencoder + CKA

Figura 4-5: (a) figure is the audio labeled by subject, figure (b) is the piano roll cluster by TSN
and (c) shows the embedding space of the Autoencoder Piano Roll with the CKA loss.
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Tabla 4-2: Autoencoder Piano Roll - Encoder
Layer Output Dimension Parameters
InputLayer Np ×Nt ×1 ·

Conv2D Np
2 × Nt

2 ×F1
F1 = 32, Kernelsize = 1

Padding = same, strides = 2
BatchNormalization · ·
Activation · Activation = relu

Residual(Conv2D) Np
4 × Nt

4 ×F2
F2 = 64, Kernelsize = 3

Padding = same, strides = 2
Dropout · Dropout Rate = 0.5
Activation · Activation = relu

SeparableConv2D Np
2 × Nt

2 ×F2
F2 = 64,Kernelsize = 3

Padding = same,Bias = False
BatchNormalization · ·
Activation · Activation = relu

SeparableConv2D Np
2 × Nt

2 ×F2
F2 = 64,Kernelsize = 3

Padding = same,Bias = False
BatchNormalization · ·
MaxPooling2D Np

4 × Nt
4 ×F2 poolsize = 3,strides = 2

Add[MaxPooling2D, Residual] · ·

Residual(Conv2D) Np
8 × Nt

8 ×F3
F2 = 128,Kernelsize = 3

Padding = same,strides = 2
Dropout · Dropout Rate = 0,5
Activation · Activation = relu

SeparableConv2D Np
4 × Nt

4 ×F3
F2 = 128,Kernelsize = 3

Padding = same,Bias = False
BatchNormalization · ·
Activation · Activation = relu

SeparableConv2D Np
4 × Nt

4 ×F3
F2 = 128,Kernelsize = 3

Padding = same,Bias = False
BatchNormalization · ·
MaxPooling2D Np

8 × Nt
8 ×F3 poolsize = 3,strides = 2

Add[MaxPooling2D, Residual] · ·

0,6. In addition to validating our performance with respect to the state of the art, this network was
used to refine the time windows in which the classification gave a higher probability. For the rest
of this experiment, the MIDI stimulus windows were used where the emotion classification gave a
probability greater than 70%.
Finally, to predict the emotion labels as a range between 0 and 1, the classification layer was
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Figura 4-6: Accuracy curves from the emotion recognition paradigm. The upper figure compares
the subject-wise accuracy values in multiclass classification versus binary classifi-
cation for Valence. The lower figure compares the multiclass accuracy with binary
classification for Arousal. In both figures, the subjects are sorted in descending order
based on their binary classification accuracy.

changed in the network to two regression outputs, one for arousal and the other for valence. As a
prediction of network two, this gives us a pair of coordinates that can be mapped in the arousal and
valence plane.

Auto-encoder Piano Roll

Figure 4-7 depicts the reconstruction ability of the PianoRoll Autoencoder network for the input
data. Panel (a) shows one of the training samples, while panel (b) displays the corresponding
prediction generated by the network. The Dice coefficient in the test phase reached 0,902, the
recall achieved 0,8911, and the specificity sensitivity attained 0,9988.
Additionally, Figure 4-5 (c) shows the bottleneck of this network. It is important to note how the
reconstruction loss plus the CKA loss allows the network to perform well in reconstructing the
piano roll arrays. At the same time, The embedded space, the Encoder prediction, maintains an
inevitable separation between classes.
Classes separate this embedded space according to the emotion, and the EEGNet prediction in the
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(a) Piano Roll sample (b) Piano roll reconstruction

Figura 4-7: (a) Piano Roll sample from the training dataset (b) Is the corresponding reconstruction
performed by the Autoencoder PianoRoll

plane of arousal and valence allows us to later make a match between these two spaces.

Match and Generation

Figure 4-8 shows the distance between λ̂λλ predict with test data and λλλ labels of train data for the
subject #1. (a) the figure is the single quadratic distance, (b) is the softmax operation applied to the
distance, and (c) shows the top 5 highest closest distances for each piano roll sample. The networks
was trained using 5− f old cross-validation with an 80/20 data split
A matrix like the figure in the figure is generated for each of the five folds, so five different pre-
dictions were generated for each training. It is important to remember that for each fold, the data
generated with the test set never looked at the train set, even though all the data has been reviewed
in the cross-validation.

Generation

The arrangement that was calculated in figure 4-8 (c) with the test data is the one that, according
to equation 4-7, multiplies the prediction of the encoder of the Autoencoder Piano Roll network
with the Test data. This resulting matrix will be used as input for the Decoder of the Autoencoder
Piano Roll network, and its prediction will result in a Piano Roll array corresponding to each EEG
trial used as input.
In figure 4-9, four characteristics were computed (pitch count, pitch range, average inter-onset-
interval, total pitch class transition histogram) for the MIDI signals following the approach in
[165]. Their intraset metrics methodology was also adopted to evaluate generative models. The
blue line in each figure represents the measurement of a specific characteristic in the training data
(it is a constant line because all subjects listened to the same stimuli). At the same time, the orange
bars show the performance of the dataset generated for each subject. The subjects were ordered in
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(a) Distance matrix

(b) Softmax distance

(c) Top 5 closest distances

Figura 4-8: Distance matrices of EEGNet-regressor predictions

descending order according to the MSE they had in the EEGNet regression.

4.3. Discussion

Subsequently, during the evaluation phase, the following key observations should be highlighted:
Reprocessing and Data: Concerning the databases, there was a need for a larger dataset since, as
observed during training, a set of 400 samples may not be sufficient to utilize large generative
models like transformers effectively. The lack of a widely used public multimodal database that
incorporates symbolic, audio, and EEG data was also noticed.
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Figura 4-9: Evaluation Features Generated MIDI

Supervised Feature Extraction: In the emotion classification paradigm, we used the EEGNet, as
shown in Figure 4-6, significant accuracy values were achieved, matching or even surpassing some
of the state-of-the-art results (see [47]). Although our main goal was not specifically classification,
this accuracy demonstrates that the network extracts the necessary features to identify the subject’s
emotions based on their neural activity. Meanwhile, the Autoencoder PianoRoll achieved outstan-
ding results in its task of reconstructing symbolic musical representations 4-7. Furthermore, when
using the CKA loss in conjunction with the autoencoder 4-3, the features of the network were se-
parated into different classes, indicating that some label information can indeed be observed in the
training data Piano Roll.
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Figura 4-10: Visualization of model characteristics through the PDFs, all subjects fold 1

Match Network: Correlation based on distances to the nearest samples has proven to be an effective
technique for matching both spaces. Previously, more complex models were attempted; however,
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due to the limited data, finding a tool that did not suffer from overfitting issues became necessary.
One of the main disadvantages of this technique is that if two samples share the same neighbors, the
resulting generated array will be very similar for these two samples, as each generation is a conse-
quence of the linear combination of embedded codes from the most similar samples. Furthermore,
it is crucial to understand that generative models depend entirely on the training data quality. For
this reason, MIDI metrics are compared with the same training dataset. This implies that datasets
generated by each subject will face the same challenges and deficiencies as the training set. This
has a significant impact on databases like this one, where we have limited data, and they were not
designed initially as MIDI stimuli; instead, we had to transform raw audio to obtain Piano Roll
arrangements.

MIDI Metrics: In the case of the first two characteristics, pitch count and pitch range, the expecta-
tion was that the ideal generative model would closely mirror the mean of the training data (repre-
sented by the blue line) and maintain a similar variance as indicated by the shaded area. However,
accurate generative models will inevitably exhibit discrepancies compared to the training set. We
achieved competent results in our case, suggesting that our models do not deviate significantly
from the mean regarding the range of generated notes and the number of notes. Nevertheless, the
lower standard deviation implies a reduced variety of notes in our compositions.
Concerning rhythm-based features, such as the Average Inter-Onset-Interval, our generated sets did
not quite capture the intricacies of the training set’s dynamics. This suggests that our generative
models faced challenges in rhythm aspects.
The final metric summarizes the models’ performance concerning pitch. We have included this
figure to illustrate the metrics in which the model competes effectively.
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5.1. Conclusions

In this study, we propose a cross-subject transfer learning approach to enhance the classi-
fication accuracy of elicited neural responses. Our method involves pooling data from la-
beled EEG measurements and psychological questionnaires using a stepwise multi-space
kernel embedding. To validate our approach, we implement the transfer learning within a
Deep&Wide framework, pairing the source-target sets based on the BCI inefficiency. The
results demonstrate that our method significantly improves the classifier performance for
most target individuals when using single or multiple sources.

In this chapter, a method is presented to convert neural responses from affective music liste-
ning data into sound. The approach utilizes Labeled Correlation Alignment (LCA) to identify
EEG features that are most congruent with auditory data, based on a given set of emotions.
LCA involves two main steps: Supervised Centered Kernel Alignment (CKA)-based feature
selection and Canonical Correlation Analysis (CCA)-based analysis. The results obtained
from the validation on real-world data demonstrate the effectiveness of the LCA approach in
generating low-level music content using neural activity associated with specific emotions,
while also being able to distinguish between the produced acoustic envelopes

We have made significant progress in developing an end-to-end deep learning methodo-
logy for generating symbolic music (MIDI) content directly from EEG. Although the model
displayed promising potential, it fell short of achieving competitive metrics in some of our
rhythm-based evaluations of music quality. To further enhance the music-generation process,
we are actively working on refinements and improvements.

5.2. Future work

In the future, in relation with the multimodality with structured data, we intend to validate
the cross-subject transfer learning approach in applications that involve the combination of
two or more databases, thereby increasing the number of individuals tested significantly. For
example, we aim to include the dataset collected by the Department of Brain and Cognitive
Engineering, Korea University in [83], as it contains valuable questionnaire data related
to the physiological and psychological condition of subjects. This will enable us to assess
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classification performances based on transfer learning at both the intra-subject and inter-
dataset levels.

In future work, we plan to address the necessity of creating a dedicated dataset tailored
specifically for EEG-based symbolic music generation. This dataset will encompass a wide
range of musical styles, complexities, and emotional nuances, enhancing the training and
evaluation of generative models.

Additionally, we aim to further enhance the End-to-End methodology for symbolic music
generation through EEG. To achieve this, we will explore alternative metrics for matching
between networks, striving to improve model performance and achieve satisfactory metrics
in our evaluations.

5.3. Academic products

5.3.1. Academic papers:

Alvarez-Meza, A. M., Torres-Cardona, H. F., Orozco-Alzate, M., Perez-Nastar, H. D., &
Castellanos-Dominguez, G. (2023). Affective Neural Responses Sonified through Labeled
Correlation Alignment. Sensors, 23(12), 5574.

Collazos-Huertas, D. F., Velasquez-Martinez, L. F., Perez-Nastar, H. D., Alvarez-Meza, A.
M., & Castellanos-Dominguez, G. (2021). Deep and wide transfer learning with kernel mat-
ching for pooling data from electroencephalography and psychological questionnaires. Sen-
sors, 21(15), 5105.

5.3.2. Others:

Software registration N: 13-95-219, ÜNET-LIKE FOR PIANO ROLL"

National invention patent NC2022-0005981, "Sistema y método para generación de piezas
musicales basado en respuestas eléctricas cerebrales y técnicas de compocición musical"
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