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Summary (English)

Electroencephalography (EEG) provides a measure of brain activity and has
improved our understanding of the brain immensely. However, there is still
much to be learned and the full potential of EEG is yet to be realized. In this
thesis we suggest to improve the information gain of EEG using three different
approaches; 1) by recovery of the EEG sources, 2) by representing and inferring
the propagation path of EEG sources, and 3) by combining EEG with functional
magnetic resonance imaging (fMRI). The common goal of the methods, and thus
of this thesis, is to improve the spatial dimension of EEG.

The main topic of this thesis is the localization of the EEG generators. This
entails solving both a forward and an inverse problem. The inverse problem
maps the EEG signal recorded on the scalp to its origin in the brain. It is a highly
ill-posed problem which we tackle by employing a sparsity promoting ’spike and
slab’ like method augmented with physiologically relevant source priors. The
incorporated temporal and spatial priors exploit coherence between neighboring
time samples and between neighboring source locations, respectively. We show
that these augmentations effectively increase the source recovery ability.

The forward problem describes the propagation of neuronal activity in the brain
to the EEG electrodes on the scalp. The geometry and conductivity of the head
layers are normally required to model this path. We propose a framework for
inferring forward models which is based on the EEG signal and a low dimen-
sional representation of forward models. The representation is built by principal
component analysis of a corpus of forward models. The method can be used to
recover subject-specific forward models when structural scans and/or conduc-
tivity estimations are not available.
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Finally, we investigate the extraction of EEG components having bandpower
dynamics correlated with fMRI components. We show that adding anatom-
ical information to the inference scheme improves the recovery of correlated
components compared to only using functional information. The anatomical
information is incorporated through the EEG forward model and assumes that
the activity of the fMRI component overlaps spatially with the origin of the
coupled EEG component.



Summary (Danish)

Elektroencefalografi (EEG) er et mål for hjerneaktivitet og har været med til
at forbedre vores forståelse af hjernen. Meget er dog stadig uvist, og det fulde
potentiale af EEG er endnu ikke realiseret. I denne afhandling foreslår vi at
forbedre informationsudbyttet fra EEG ved tre fremgangsmåder; 1) ved rekon-
struktion af EEG kilderne, 2) ved repræsentation og inferens af EEG kildernes
propagering gennem hovedet, og 3) ved at kombinere EEG og funktionel mag-
netisk resonans-billeddannelse (fMRI). Det fælles mål for metoderne, og således
også for denne afhandling, er at forbedre den rumlige opløsning af EEG.

Hovedemnet for denne afhandling er lokalisering af EEG generatorerne, hvilket
indbefatter at løse både et forward problem og et inverst problem. Det inverse
problem beskriver estimeringen af EEG aktivitetens oprindelse i hjernen. Det
er et meget dårligt specificeret problem, hvilket vi håndtere ved at bruge priors,
der fremmer sparsity ved hjælp af en spike and slab-lignende repræsentation,
samt via relevante fysiologiske priors. De inkorporerede temporale og rumlige
priors udnytter henholdsvis afhængighed mellem nabotidspunkter og afhængig-
hed mellem nabokildeplaceringer. Vi viser at disse augmentationer forbedrer
kilderekonstruktionen.

Forward problemet beskriver propageringen af neuronal aktivitet i hjernen til
EEG elektroderne på hovedbunden. Hovedgeometrien og -konduktiviteten er
normalt påkrævet for at kunne modellere denne sti. Vi foreslår en alternativ
fremgangsmåde, hvor nye forward modeller udledes på baggrund af EEG sig-
nalet samt en lav-dimensional repræsentation af forward modeller. Repræsenta-
tionen er konstrueret ved hjælp af principal komponent analyse af en samling
af forward modeller. Metoden kan således bruges til at finde person-specifikke
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forward modeller, når personens hovedgeometri og konduktivitet ikke er tilgæn-
gelige.

Endelig beskriver vi en metode til at finde koblede EEG og fMRI komponenter.
Koblingen søger efter EEG komponenter hvis energi er korreleret med dyna-
mikken i fMRI komponenterne. Vi viser at evnen til at finde korrelerede kom-
ponenter øges ved at tilføje anatomisk information sammenlignet med kun at
lede efter en funktionel kobling. Den anatomiske information inkorporeres via
EEG forward modellen, og derved antages det, at EEG komponenten er opstået
samme sted i hjernen som fMRI komponenten.



Preface

This thesis was prepared at DTU Compute in the section of Cognitive Systems in
fulfillment of the requirements for acquiring a PhD degree in computer science.

The thesis includes of a summary report of the studied theory, proposed meth-
ods, key findings and perspectives on these. The thesis, furthermore, contains
eight papers of which six are published and two are submitted for publication
(at the time of writing). The thesis work was performed in the period March
15 2013 to March 14 2016.

Lyngby, 14-March-2016

Sofie Therese Hansen
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Chapter 1

Introduction and Motivation

Interest in understanding how the brain functions is the main motivation of this
thesis. Although the general anatomy of the brain has been described in detail,
it is partly unknown how the structure of brain networks translates into compli-
cated human emotions, intelligence and perception. Identifying and alleviating
the causes of neurological diseases such as schizophrenia and Parkinson’s disease
is also an important prospect of understanding the brain more comprehensively.

The neuronal activation has a temporal scale in the order of milliseconds and
since electroencephalography (EEG) is usually recorded with a sampling fre-
quency of around 1,000Hz detailed temporal information can be acquired with
this neuroimaging tool [Nunez and Srinivasan, 2006a]. EEG is consequently
crucial in understanding the timing and temporal dynamics of brain processes.
However, in order for EEG to provide also detailed spatial information, further
higher order analysis must be performed. In this thesis detailed spatio-temporal
information is obtained by localizing the EEG sources, i.e., the EEG signal
measured at the scalp is mapped to the higher dimensional cortex space. This
mapping requires an inverse solver with relevant source priors and a ’forward
model’ describing the reverse mapping, i.e. from cortex to scalp. We propose
to infer the forward model of a subject using their EEG data combined with a
prior over forward models, thus facilitating a highly accessible subject-specific
mapping. We finally explore the combination of the temporally rich EEG and
the spatially rich functional magnetic resonance imaging (fMRI).



2 Introduction and Motivation

Before describing the contribution of this thesis in greater detail Chapter 2
presents fundamental theory on the origins of EEG and fMRI. Chapter 2 also
provides a description of EEG source localization including how EEG sources
propagate to the EEG electrodes and how the inverse mapping can be approxi-
mated. Chapters 3 - 5 contain the contributions of this thesis and are followed
by a conclusion containing perspectives of the presented work.

1.1 Contributions

The common goal of this thesis is to extract detailed information from EEG.
This is approached from three angles:

Chapter 3: Source localization. The Bayesian sparsifying method, ’the Varia-
tional Garrote’ is adapted to solve the EEG inverse problem using relevant mod-
eling assumptions. Both spatial and temporal source priors are implemented to
provide precise EEG based imaging. The spatial source distribution is modeled
as being sparse with smooth and compact source components. The temporal
dynamics of the EEG is modeled assuming coherence between neighboring time
samples. The presented work is contained in contributions [A - E & G].

Chapter 4: Forward models. The conventional approach of mapping brain
activity to EEG electrodes relies on detailed information about the head layers.
This information is at best difficult to obtain and we therefore propose a data
driven approach to estimate the forward model. A forward model for a new sub-
ject is inferred based on a parametrization of forward models and the subject’s
recorded EEG data. The inference procedure optimizes the ’model evidence’
and provides the EEG sources in addition to a forward model. The presented
work is contained in contribution [H].

Chapter 5: Combining EEG with fMRI. Through multimodal imaging multiple
dimensions of brain activity can be considered and integrated. The multimodal
Source Power Co-modulation method (mSPoC) actively searches for correlated
components of the hemodynamic and electrophysical response to brain activa-
tion. The extraction of coupled components is based on functional correlation
between, e.g., fMRI and power dynamics of EEG components. In this thesis we
extend mSPoC to include anatomical information which enters the algorithm
through the forward model. The presented work is contained in contribution
[F].



Chapter 2

Preliminaries

The following sections present fundamental theory of the thesis. The focus is
therefore on the origin of EEG signals (section 2.1) and how the generators of
EEG are localized (section 2.3). The hemodynamic response to brain activity
is also briefly described to further clarify the benefits and drawbacks of EEG
as well as to provide contextual background for the thesis study of correlating
EEG and fMRI (section 2.2).

2.1 Electrophysics of the Brain

Electrical signals of the brain are in general easily collected and EEG was there-
fore one of the earliest techniques to acquire brain activity [Nisar and Yeap,
2014]. However, while human EEG has existed for a century we are still learn-
ing how to interpret the signal. A general consensus on what the EEG generators
are has been established [Nunez and Srinivasan, 2006a] but we are still acquiring
knowledge on how we can exploit the EEG to interpret how the brain functions
in normal and pathological states.

The electrical activity that produces signal measurable at the scalp comes from
the communication between neurons. To transmit information a neuron polar-
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izes or depolarizes a receiving neuron through inhibitory or excitatory postsy-
naptic potentials (I/EPSPs). These synaptic inputs create current flows inter-
nally in the neuron as well as externally which in turn gives rise to an extracel-
lular potential field. Synchronous activation of assemblies of neurons generates
extracellular potentials that are summed into a signal detectable by scalp EEG
electrodes. Summing of potentials is possible when the neurons’ dendrites, where
the PSPs take place, are aligned. As cortical pyramidal cells fulfill this condition
they are believed to be EEG generators [Nunez and Srinivasan, 2006a].

The activity of neuronal assemblies is often described as being oscillatory; having
a frequency, amplitude and phase [Nisar and Yeap, 2014]. These properties can
for example be used to characterize EEG recordings of subjects during sleep
[Borbély et al., 1981; Dang-Vu et al., 2008] or rest [Musso et al., 2010]. EEG
occurring without stimuli is termed spontaneous EEG. In contrast, stimulus-
locked EEG describes the neuronal response to an external stimulus, e.g., visual,
auditory or sensory [Nunez and Srinivasan, 2006a]. The EEG response to a
stimulus is often denoised by repeating the stimulus many times and performing
stimulus-locked averaging [Baillet et al., 2001]. These responses are termed
evoked potentials (EPs) or event-related potentials (ERPs). An ERP (or EP)
has a stimulus dependent waveform which can be modulated by features of the
subject, such as age [Polich, 1997] and disease history [McNeely et al., 2008], or
by external features, such as preconditioning tasks [Schweinberger et al., 1995]
and drug effects [Kähkönen et al., 2001].

A so-called ’differential ERP’ can be used to contrast two different stimuli. It
is computed as the averaged response to one set of stimuli minus the averaged
response to another set of stimuli, e.g., a control task. The EEG response to
seeing faces compared to scrambled faces is an example of a highly studied
differential ERP signal. The ERP is created by showing the subject images of
faces and scrambled faces [Henson et al., 2003]. Averaging of usually hundreds of
trials in each condition is followed by a contrast subtraction of the two computed
averages. The differential ERP is created in an effort to reveal the dynamics
specific to a certain stimulus. In the case of the face-evoked response a larger
negative peak occurs approximately 170 ms after stimulus onset [Bentin et al.,
1996; Henson et al., 2003]. The peak is due to its timing called the N170
component. The face-evoked response is localized primarily to the occipital and
fusiform face areas (O/FFAs) by EEG/MEG [Henson et al., 2009b] and fMRI
[Kanwisher et al., 1997].

The many applications of EEG exploit the high temporal information it of-
fers. Examples, besides the already mentioned, include brain computer inter-
faces (BCIs), e.g., for providing a communication pathway to locked-in patients
[Höhne et al., 2011]. Neurofeedback is another example which facilitates (near)
real time presentation of the current brain state [Mullen et al., 2015] and can
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be used for entraining brain activity, e.g., with the purpose of decreasing symp-
toms of movement disorders [Thompson and Thompson, 2008]. EEG is also well
suited for monitoring patients [Claassen et al., 2004] because of the high tempo-
ral resolution and its relatively portable acquisition system [Modarreszadeh and
Schmidt, 1997]. EEG can therefore be measured without too much discomfort
of the patient. Finally, outside the clinic EEG can facilitate brain scanning in
more natural environments compared to, e.g., fMRI and MEG [Petersen et al.,
2011; Stopczynski et al., 2014; Mullen et al., 2015].

One of the main challenges of EEG is its low spatial resolution. Section 2.3
describes how better spatial resolution can be obtained by source localizing the
EEG generators. However, first a neuroimaging technique that has the inverse
resolution properties of EEG is briefly discussed.

2.2 Hemodynamics of the Brain

The dynamics of cerebral blood flow (CBF) is another quantifying measure of
brain activity [Ogawa et al., 1993]. The mechanism is as follows: When neu-
rons become activated a higher demand of oxygen arises. The oxygen depletion
signals the nearby blood vessels to dilate and thereby increase the blood flow to
this area. The oxygen transporter, hemoglobin, has different magnetic proper-
ties depending on whether it is oxygenated or deoxygenated [Ogawa et al., 1993].
Since fMRI is sensitive to these magnetic properties it can be used to measure
a blood oxygen level dependent (BOLD) signal [Stippich, 2007]. In response
to increased neuronal activation the BOLD will increase due to a higher blood
flow and peak after approximately 5 seconds [Flandin and Novak, 2013]. The
BOLD will then decrease, often undershooting the baseline. In the beginning of
the hemodynamic response there is a short initial dip in blood oxygenation, as
shown in Fig. 2.1. In order to interpret the BOLD signal a baseline (or control)
is needed to show whether a specific stimulus yields an increase or decrease in
BOLD.

fMRI is termed an indirect measure of brain activity as it quantifies how the
cerebral hemodynamics change in response to neuronal activity [Flandin and
Novak, 2013]. Furthermore, while the spatial resolution is quite high in fMRI,
down to millimeters [Baillet et al., 2001], the temporal resolution is limited by
both the acquisition technique and the inherent resolution of the BOLD signal.
The fast neuronal changes that happen on the millisecond-scale will therefore
not be captured by hemodynamic measures which have a temporal resolution
in the second-scale [Mather et al., 2013].
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Figure 2.1: Example of a hemodynamic response function (hrf) with neuronal
activation at time = 0 s.

The high spatial resolution of fMRI has been exploited in an asymmetrical in-
tegration with EEG where the fMRI activated areas act as location priors of
the reconstructed EEG signal [Henson et al., 2011]. The exact relation between
neuronal activity and hemodynamics, i.e., the neurovascular coupling, is how-
ever not fully understood. Several studies have, however, been able to correlate
BOLD signal with EEG activity, see references in [Dähne et al., 2015]. There is
thus growing evidence that fMRI and EEG can provide complementary informa-
tion of the brain activity and that they combined can enhance our understanding
of brain functioning and dysfunctioning.

2.3 EEG Source Localization

What EEG provides in temporal information it lacks in spatial resolution. The
low resolution is partly caused by the low number of measurement points [Baillet
et al., 2001], which usually ranges from 14 [Stopczynski et al., 2014] to 256
[Akalin Acar and Makeig, 2013]. But most importantly it is produced by spatial
smearing of the signal occurring when the neuronal activity propagates from the
brain to the electrodes on the scalp. Spatial smearing is primarily caused by
the low conductivity of the skull as compared to the brain and scalp [Nunez and
Srinivasan, 2006b]. According to Wolters et al. tissue anisotropy of the skull
and white matter also greatly affect the forward fields [Wolters et al., 2006].

EEG source imaging has an unmixing effect of the EEG signal and thus reduces
the blurring caused by volume conduction [Delorme et al., 2012]. In the frame-
work of BCI Besserve et al. showed that decoding is enhanced when the EEG is
source localized [Besserve et al., 2011]. Edelman et al. further showed that the
separability of similar hand movements increases when based on source localized
activity [Edelman et al., 2016]. Finally in [Ahn et al., 2012] it was shown that
source localization can provide information not observable in scalp EEG.
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Forward problem

Inverse problem

Anatomical information

Source priors

Tissue conductivities

Y = A · XEEG scalp map EEG sources

Figure 2.2: The relation between the forward and inverse problems. The for-
ward problem requires prior knowledge of the head tissues, and
the inverse problem is dependent on assumptions of the source
distribution as well as on the accuracy of the constructed forward
model.

The range of frequencies relevant for EEG means that the propagation of the
electric fields is negligible [Hallez et al., 2007]. The quasi-static conditions are
therefore met and the relation between the electrodes Y and the brain sources
X is linear, illustrated in Fig. 2.2. The relation can thus be posed as a linear
regression problem; Y = AX, where A is the forward model. The following
sections explain the process of estimating the forward model and the inverse
solution.

2.3.1 The Forward Problem

A forward model must be available in order to estimate the inverse solution
and the forward problem must therefore be solved as the first step towards
source localization [Hallez et al., 2007]. The forward model describes how a
neuronal source in the brain maps to the electrodes on the scalp, see Fig. 2.3.
It therefore contains the geometry and the electrical properties of the head layers
lying between the sources and the electrodes.

The geometry of the head compartments, e.g., scalp, skull and brain, can be
estimated by segmenting head scans recorded by MRI and/or CT. Several open
source software libraries provide automatic segmentation such as SPM1 [Ash-
burner and Friston, 2005] and FreeSurfer2 [Dale et al., 1999]. However, for a
detailed segmentation manual correction is often needed, e.g., for correcting the
skull thickness [Perdue and Diamond, 2014].

1http://www.fil.ion.ucl.ac.uk/spm/
2https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki

http://www.fil.ion.ucl.ac.uk/spm/
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
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Source signal

Electrodes

Figure 2.3: The forward problem. A forward model maps each source location
in the brain to each electrode.

Compromises and simplifications are frequently made when specifying the for-
ward model parameters. For example, the head is often modeled as containing
only the scalp, skull and brain, and the soft tissues are assumed to have the same
template conductivity [Wang and Ren, 2013]. When making these assumptions,
only the skull:brain conductivity ratio remains to be estimated. This value
is often set to 1:80 following the experimental findings reported in [Rush and
Driscoll, 1968] and [Cohen and Cuffin, 1983]. However the skull:brain conduc-
tivity ratio is crucial for accurate source localization and is furthermore found
to vary between persons [Awada et al., 1998]. In [Akalin Acar and Makeig, 2013]
localization errors up to 30 mm were found when misspecifying the skull:brain
conductivity ratio.

Electromagnetic impedance tomography (EIT) is an alternative to using tem-
plate conductivity ratios. Currents are injected between sets of electrodes and
the resulting potentials are measured [Baillet et al., 2001]. The conductivity
of the head can then be approximated based on the applied currents and the
measured potentials. However inferring the conductivities is an inverse problem
as well as ill-posed [Baillet et al., 2001]. Diffusion tensor imaging (DTI) has also
been suggested for the subject-specific estimation of conductivities [Tuch et al.,
2001]. DTI measures the diffusion tensor of water which is related to the local
conductivity, however the relation is not entirely understood [Plis et al., 2007].
Several other methods or experiments have been suggested for inferring the head
conductivities but have provided different results, see overview in [Hallez et al.,
2007]. In the case of missing or deficient conductivity measurements Plis et al.
suggest to propagate the uncertainty of the skull conductivity to an uncertainty
in the source localization estimates [Plis et al., 2007]. Lew et al. propose to
estimate the skull conductivity from a defined set of values by simulated an-
nealing where the objective function is the l2-norm distance between the true
and predicted EEG signals [Lew et al., 2007, 2009].

Realistic forward modeling is often divided into three types depending on how
the head model is constructed, i.e., using boundary element method (BEM),
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finite element method (FEM) or finite difference method (FDM). In the widely
used BEM the surfaces of usually three to four head compartment are computed,
with e.g. the brain tessellated into 8,196 vertices as a standard setting in SPM8.
Each compartment is modeled as being isotropic and homogeneous [Hallez et al.,
2007]. However as mentioned earlier the white matter of the brain and the skull
have anisotropic conductivities and the skull is an inhomogeneous tissue [Baillet
et al., 2001]. FEM and FDM are more flexible than BEM and can model these
anisotropies. Instead of modeling only the boundaries as BEM does, FEM and
FDM divide the head into many small volumes which within the same head
compartments can have different conductivities.

The work presented in this thesis mainly takes advantage of the SPM8 toolbox
where the more time consuming FEM and FDM models are not available. The
BEM head model is therefore employed in this thesis.

2.3.2 The Inverse Problem

Establishing the anatomical origin of brain processes and functioning is an im-
portant application of EEG [Henderson et al., 1975]. While brain imaging based
on EEG provides a direct measure of the electrical activity of the brain, the in-
verse problem must be solved for EEG to provide ’true’ brain imaging. The
inverse problem localizes the cortical sources that produces the electrical signal
the electrodes measure, see Fig. 2.4.

Source localization methods are roughly divided into two categories; paramet-
ric and distributed (also called imaging) methods. Parametric methods fix the
number of active dipoles and estimate their strengths and locations [Besserve
et al., 2011], examples include equivalent dipole methods [Henderson et al.,
1975; Scherg and Von Cramon, 1985]. Distributed methods fix the locations
of a large number of dipoles and estimate their strengths, common examples

Source signal

Electrodes

Figure 2.4: The inverse problem. All electrode potentials are used in approx-
imating the EEG sources.
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include methods employing lp-norms [Hämäläinen and Ilmoniemi, 1994; Mat-
suura and Okabe, 1995; Gorodnitsky et al., 1995]. The parametric methods
are reliant on a more or less subjective guess on the number of sources, while
distributed methods avoid this they render the source localization problem un-
derdetermined. Depending on the detail of the head model 1,000 to 100,000
sources must be estimated and the inverse problem is therefore very ill-posed
and thus has no unique solution. The quality of a solution thus greatly depends
on the type of regularization or source priors employed. Note that when the
source orientations are free the number of variables to estimate increase three
folds compared to employing fixed orientations [Henson et al., 2009a]. Modeling
the sources as having fixed orientations is based on the assumption that the
sources are oriented perpendicular to the cortex surface [Baillet et al., 2001].

Focal and sparse activation of the brain is often anticipated and assumed in
EEG brain modeling [Gorodnitsky and Rao, 1997; Wipf and Rao, 2007; Friston
et al., 2008; Zhang and Rao, 2011; Montoya-Martinez et al., 2012; Gramfort
et al., 2013]. This assumption is partly based on the anatomy of the brain.
EEG activity is for example believed to arise from assemblies of synchronously
activated neurons. Additionally studies have shown that short ranging cortical
connections are more numerous than long ranging cortical connections [Schüz
and Braitenberg, 2002; Markov et al., 2014]. Further modeling assumptions in-
clude combining the neuron assemblies into bigger functional units thus reducing
the ill-posedness of the problem by limiting the number of effective source lo-
cations to hundreds instead of thousands [Friston et al., 2008; Stahlhut et al.,
2013]. This can for example be achieved by combining the surface elements
of the tesselated cortex into source patches that are modeled as single source
components in the inverse problem. In [Friston et al., 2008] the source patches
have smooth and compact spatial distributions and in [Stahlhut et al., 2013] the
functional units are defined as the Brodmann’s areas of the brain .

Generally the interest of source localization is to examine the source distribution
across time. Temporal properties of the EEG can therefore also be exploited
to improve the inverse solution for example by assuming temporal smoothness.
The generators of the scalp EEG are in ERP studies often believed to be active
for some window of time. Temporal coherency can thus, e.g., be modeled by
fixing the state of activation for each source across time samples, i.e., using
multiple measurements vector (MMV) models [Wipf and Rao, 2007; Zhang and
Rao, 2011; Friston et al., 2008]. These models assume that a source is either
turned off or on for the duration of the investigated time window.

The multiple response sparse Bayesian learning (M-SBL) method [Wipf and
Rao, 2007] is an MMV model providing row sparsity meaning that only a few
sources (rows) are active across time. In M-SBL sparsity is obtained by auto-
matic relevance determination (ARD) [Hansen and Rasmussen, 1994; MacKay,
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1995] where the activity of each source is assigned a Gaussian prior with zero
mean and a variance controlled by a hyperparameter. This hyperparameter is
estimated by evidence maximization and controls whether the associated source
is pruned or not. The T-MSBL [Zhang and Rao, 2011] is an extension to M-
SBL that models temporal correlations within each source. ARD like inference
is implemented in the multiple sparse priors model (MSP) [Friston et al., 2008]
to recover the source components providing optimal free energy (or model evi-
dence). Temporal smoothness is achieved by MSP using singular value decom-
position (SVD) which estimates temporal basis functions, effectively ensuring
row sparsity. M-FOCUSS [Cotter et al., 2005] is an MMV extension to the
focal underdetermined system solver (FOCUSS) (Gorodnitsky and Rao, 1997).
M-FOCUSS (and FOCUSS) employ a re-weighted norm minimization and ob-
tain sparse solutions by regularization of the source estimate’s lp-norm such
that p ≤ 1. The assumption of a common sparsity structure across time as
assumed by M-FOCUSS and the other MMV models might only be valid for a
limited number of time samples. Alternative approaches to modeling temporal
coherence are discussed in Chapter 3.
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Chapter 3

Spatio-Temporal Source
Localization with the

Variational Garrote

Unmixing of the EEG signal is in general ill-posed and therefore requires source
priors based on known properties of the brain dynamics. As we are interested
in reconstructing the time dependent source distribution, we construct source
priors based both on spatial and temporal assumptions.

The variational garrote (VG) introduced in [Kappen, 2011; Kappen and Gómez,
2014] is the starting point of the developed inverse solvers. VG was chosen be-
cause of its high flexibility stemming from a spike and slab like separation of
’what’ happens ’where’. This separation is facilitated by expressing the activa-
tion using two variables; one variable containing the source strengths and one
binary variable controlling the activation states (active or inactive). The infer-
ence procedure of VG furthermore leads to intuitive updates rules of the source
estimates, and finally, its low computational complexity encourages its use in
real time EEG imaging.

In the following it is assumed that the source distribution of interest is sparse,
e.g., because noise sources of biological origin have been removed by averag-
ing and possibly minimized additionally by contrast subtraction of a control
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condition. Further supporting the employment of sparse priors is when used in
conjunction with independent component analysis (ICA). Delorme et al. showed
that ICA can separate the EEG into scalp maps that are well described by dipo-
lar sources [Delorme et al., 2012]. ICA can therefore be used to decompose the
EEG into components having sparse source representations.

We have extended VG in two directions each with different temporal priors. The
time-expanded VG (teVG) assumes a common sparsity profile across time while
MarkoVG relaxes this strict smoothness requirement and allows for transient
activity. Both VG extensions have been augmented to model smooth spatial
source distributions by the incorporation of spatial basis functions.

Reconstruction by VG, teVG and MarkoVG of a synthetic dataset is seen in
Fig. 3.1. The VG correctly located the two sources carrying activity (in blue
and red) and the retrieved activity in these sources were limited to the relevant
time samples (3.1B). However, false positives with low magnitude activity were
also recovered (grey lines). This spurious activity was removed in Fig. 3.1C by
teVG’s prior assumption of temporal smoothness. However the true sources were
now also given non-zero activity outside the relevant time samples. MarkoVG
in Fig. 3.1D is seen to combine the best of VG and teVG by only recovering
activity in the true locations and time samples.

Time samples
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Figure 3.1: Reconstruction of a simulated dataset created using a randomly
generated forward model of size 50× 500. (A) Two out of the 500
sources were given the activity seen in red and blue, the remaining
were set to zero. Noise was added to yield a signal-to-noise ratio
(SNR) of 10 dB. The activity was reconstructed using (B) VG,
(C) teVG and (D) MarkoVG. The true and estimated temporal
dynamics of the two planted sources are seen in red and blue,
while the grey indicate false positives. The black lines in B-D
illustrate the true activation.
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3.1 Validation Methods

The performance of the proposed algorithms is in the following judged based on
simulations and real EEG data. Performance measures are in the simulations
comprised of the localization error and the source retrieval index, i.e., the F1-
measure. The localization error is defined as the average Euclidean distance
from all sources estimated to be active to their respective nearest located ’true’
source. The F1-measure is defined as [Rijsbergen, 1979; Makhoul et al., 1999]

F1-measure =
2 precision · recall
precision + recall

=
2 · TP

TP + FP + P
, (3.1)

where TP, FP and P indicate the number of the true, false and actual positives.
In a system where the solution is sparse the F1-measure effectively emphasizes
the influence of the number of correctly located sources compared to falsely lo-
cated sources. In the same situation, the accuracy, which counts the number of
true predictions, would in contrast be more influenced by the number of true
negatives. Since any sparse estimation has a high number of true negatives the
accuracy is suboptimal in judging the performance in sparse systems. The local-
ization error is often used to estimate source localization performance [Friston
et al., 2008; Akalin Acar and Makeig, 2013] and is a more ’soft’ measure than the
F1-measure since the latter operates by ’all-or-nothing’, i.e., a source is either
correctly or incorrectly placed. The F1-measure has the benefit compared to the
localization error of also being measured in time samples were true activation is
absent. Note that the F1-measure could be augmented to count nearly correctly
located sources as partly successful classifications.

The applied ’real’ EEG data is from a subject included in the multimodal neu-
roimaging dataset [Wakeman and Henson, 2015]. The study paradigm investi-
gated the previously mentioned face-evoked response, see also [Henson et al.,
2003]. The subject thus viewed scrambled, famous and unfamiliar faces. In the
following we use the first run of the data collection from subject 2. In this run
50 scrambled, 49 famous and 47 unfamiliar faces were presented to the subject.
The famous and unfamiliar conditions were averaged and the averaged scram-
bled conditions subtracted, thus creating a differential ERP. Prior to averaging,
preprocessing was performed following the Matlab SPM8 scripts of R. Hen-
son1. The applied paradigm has been highly investigated and there is general
agreement that the occipital/fusiform face areas (O/FFAs) are active during
face processing [Kanwisher et al., 1997; Henson et al., 2009b]. This observation
is further supported by lesion studies [Eimer and McCarthy, 1999; Dalrymple
et al., 2011] and the dataset therefore serves as a benchmark dataset to validate
source localization methods.

1available at ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
SPMScripts/

ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/SPMScripts/
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/SPMScripts/
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In the present chapter the forward model will be considered known and fixed.
However, the proposed teVG also provides the starting point for inferring for-
ward models as presented in Chapter 4. The forward model applied in this
chapter was based on the structural scans of the previously mentioned subject.
The head was segmented into three layers: scalp, skull and brain, and a canon-
ical BEM head model was created using SPM8 [Phillips, 2000; Ashburner and
Friston, 2005]. The cortex mesh consisted of 8,196 vertices. The head scan was
coregistered to the 70 EEG electrodes using fiducials markers, head shape points
and digitized electrode locations. We used the SPM8 template conductivity val-
ues for the head compartments to generate the forward model.

3.1.1 Implementation of Alternative Methods

The proposed VG algorithms are in the following compared to the multiple
measurement vectors (MMV) models described in Section 2.3.2: T-MSBL, M-
FOCUSS and MSP. Matlab code2provided by Z. Zhang was used to implement
the T-MSBL and M-FOCUSS algorithms. The T-MSBL was in this implemen-
tation given the noise level ’mild’ or ’large’ according to the signal-to-noise ratio
(SNR) and M-FOCUSS was given the exact noise variance. The two models,
especially M-FOCUSS, were thus given more information than MSP and the VG
methods. Detailed noise information is not readily available in real data and
M-FOCUSS was therefore not included in the real data examples. The SPM12
implemented version of the MSP algorithm [Friston et al., 2008] was applied in
the ’MSP’ setting providing inference of the sources by a combination of greedy
search and automatic relevance determination (ARD).

3.2 The Variational Garrote

VG promotes sparsity analogously to a spike and slab prior on the source esti-
mates. VG thus shares characteristics with the paired mean field model (PMF)
[Titsias and Lázaro-Gredilla, 2011] and the Bayesian multi-task feature selection
method [Hernández-Lobato et al., 2010], although all have different inference
schemes. An alternative method to recover sparse solutions is by ARD [Hansen
and Rasmussen, 1994; MacKay, 1995] as adopted in, e.g., sparse Bayesian learn-
ing methods (SBL) [Tipping, 2001; Wipf and Rao, 2007; Zhang and Rao, 2011].
A short introduction to Kappen’s VG algorithm [Kappen, 2011; Kappen and
Gómez, 2014] is provided to establish the foundation of the following sections’
extensions.

2http://dsp.ucsd.edu/~zhilin/Software.html

http://dsp.ucsd.edu/~zhilin/Software.html
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As described earlier scalp EEG is a summation of the underlying EEG gen-
erators. The source strengths, xn, in the n = 1..N source locations are thus
mapped to the electrode potentials, yk, of electrode k = 1..K through a design
matrix/input matrix/forward model, Akn. The generative model of EEG can
thus be described as a linear regression problem

yk =

N∑

n=1

Aknxn + ek, (3.2)

where the noise, en ∼ N (0, 1/β), is i.i.d. with variance 1/β.

The VG includes a binary variable, sn, controlling the state of source n. If sn is
0 or 1, source n is inactive or active, respectively. The generative model is now

yk =

N∑

n=1

Aknsnxn + ek. (3.3)

The solution is, as proposed by Kappen et al., found by computing the ex-
pectation of the binary variable, performing cross-validation to estimate the
sparsity hyperparameter and using maximum a posteriori (MAP) to estimate
the remaining variables. Algorithm 1 provides an overview of the VG inference
procedure.

The free energy derived from Algorithm 1G equals the negative bound on the
model evidence and is here presented in a dual formulation (which has reduced
computational complexity compared to the original formulation)

F (m,x, β, z, λ) =− K

2
log

β

2π
+
β

2

K∑

k=1

(zk − yk)2 +
Kβ

2

N∑

n=1

mn(1−mn)x2
nχnn

− γ
N∑

n=1

mn +
N∑

n=1

(mn log(mn) + (1−mn) log(1−mn))

+N log(1 + exp(γ)) +

K∑

k=1

λk

(
zk −

N∑

n=1

mnxnAkn

)
, (3.4)

where zk =
∑N
n=1mnxnAkn and λk are Lagrange multipliers. The free energy is

minimized to find MAP estimates of m, x, z, λ, and β. Our VG extensions pri-
marily involve augmentations of the activation state parameter, sn, we therefore
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Algorithm 1: (A) Posterior probability of VG, where D is the data: A and
y. (B) Prior on s, where the hyperparameter γ controls the degree of sparsity.
(C) The likelihood of the data, where b = yTA/K, χ is the covariance matrix
of A, and σ2

y is the variance of y. (D) The prior p(x, β) is assumed flat and
p(D|γ) is ignored in the optimization of x and β. (E) Posterior probability with
the simplifications. (F) The binary variable is marginalized out. (G) The log
of (F) with variational approximation (H) and lower bounded using Jensen’s
inequality.

(A) PP: p(s,x, β|D, γ) =
p(x, β)p(s|γ)p(D|s,x, β)

p(D|γ)
;

(B) where: p(s|γ) =
∏N
n=1 p(sn|γ), p(sn|γ) =

exp (γsn)

1 + exp (γ)
;

(C) and: p(D|s,x, β) =(
β

2π

)K/2
exp

(
−βK

2

(∑N
n,n′=1 snsn′xnxn′χnn′ − 2

∑N
n=1 xnsnbn + σ2

y

))
;

(D) Simplification: p(x, β) ∝ 1, p(D|γ) is constant in optimizing x, β.;

(E) New PP: p(s,x, β|D, γ) ∝ p(s|γ)p(D|s,x, β);

(F) Marginalization: p(x, β|D, γ) ∝∑s p(s|γ)p(D|s,x, β);

(G) Approximation: log p(x, β|D, γ) ≥ −∑s q(s) log
q(s)

p(s|γ)p(D|s,x, β)
;

(H) where: q(s) =
∏N
n=1 qn(sn), qn(sn) = mnsn + (1−mn)(1− sn);

reprint its expectation

mn = σf

(
βK

2
χnnx

2
n + γ

)
, (3.5)

where σf (a) = (1 + exp(−a))
−1. The variational mean, mn, which describes the

probability of source n being active, is updated by interpolation of Eq. (3.5)
and mn in the previous iteration, i.e.,

mit
n = (1− η1)mit−1

n + η1σf

(
βitp

2
χnn(xitn )2 + γ

)
, (3.6)

where the superscript it indicates iteration number. The equation set with
updates for m, x, z, λ, and β is in [Kappen, 2011; Kappen and Gómez, 2014]
solved by fixed-point iteration until convergence. In the dual formulation of VG
the equation set scales cubic in the number of observations, K, and linear in
the number of sources, N .
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The sparsity controlling hyperparameter, γ, was by Kappen et al. proposed
found by cross-validation in an annealing/reheating process of increasing/decreasing
the applied γ. The maximum value of γ and the step size is heuristically set

while the minimum γ is defined as γmin = minn

(
−pχnnbn

2σy

)
− log

(
1− ε
ε

)
,

where ε is small. Instead of providing ε we propose to estimate γmin empirically
by increasing γ from a very negative value until the VG solution starts to have
non-zero values. It is noted that the solution converges quickly when all elements
are zero and the proposed procedure does therefore not add significantly to the
computation time. Furthermore we find that the annealing/reheating process
traps the VG solution in local minima and we therefore suggest to apply each
value of γ independently by re-initializing mn = 0 for each γ.

The related PMF method proposed by Titsias et al. also uses variational ap-
proximation [Titsias and Lázaro-Gredilla, 2011]. It deviates from VG in the
inference scheme by estimating all variables using expectation-maximization.
Furthermore the variational approximation is in [Titsias and Lázaro-Gredilla,
2011] defined as a joint distribution of s and x. Kappen et al. showed similar
performance of VG and PMF [Kappen and Gómez, 2014]. However when the
inputs were highly correlated PMF was found to suffer more from local min-
ima. The input matrix in the EEG inverse problem corresponds to the forward
model which indeed has highly correlated columns since neighboring sources
project very similarly to the electrodes. According to the findings in [Kappen
and Gómez, 2014] PMF is therefore not suitable for solving the EEG inverse
problem. Finally VG was shown empirically to be more computationally efficient
compared to PMF.

We applied VG to EEG source localization in contribution [A], where we com-
pared it to forward selection [Draper et al., 1966], the l1-regularizer LASSO
[Tibshirani, 1996] and to a sparse Bayesian learning method [Tipping, 2001].
VG was able to recover the highest number of true positives while also having
no false positives. On the synthetic example in Fig. 3.1 VG was able to recover
the true sources, but did however also have small spikes of activity in other
locations.

3.3 The Time-Expanded Variational Garrote

The original VG considers one sample per observation as seen in Eq. (3.3). We
propose to model multiple time samples and simultaneously exploit the inherent
similarity between activation states in neighboring time samples. Temporal
smoothness naturally occurs in many processes when recorded with sufficient
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sampling rate thus including EEG signals [Cotter et al., 2005]. In teVG we
model temporal coherency by constraining the activation state to be constant
across time for each source location but allow the activity strength to vary. The
problem is thus modeled as being an MMV problem and can be expressed as

Ykt =

N∑

n=1

AknsnXnt + Ekt. (3.7)

As seen, one variable for each source controls the activation state for all time
samples, while the activation strength varies across time. The free energy in
this framework is

F (m,X, β,Z, λ) = −TK
2

log
β

2π
+
β

2

T,K∑

t,k=1

(Zkt − Ykt)2 +
Kβ

2

T,N∑

t,n=1

mn(1−mn)X2
ntχnn

− γ
N∑

n=1

mn +

N∑

n=1

(mn log(mn) + (1−mn) log(1−mn))

+N log(1 + exp(γ)) +

T,K∑

t,k=1

λkt

(
Zkt −

N∑

n=1

mnXntAkn

)
. (3.8)

The inference procedure is only mildly adjusted compared to the original VG,
as presented in contribution [B]. The variational mean updates are also very
similar to the original formulation in Eq. (3.5)

mn = σf

(
βp

2
χnn

T∑

t=1

X2
nt + γ

)
. (3.9)

The updates for the remaining variables can be seen in Appendix I. In contri-
bution [C] we implemented gradient descent (GD) for mn such that the update
rule in iteration it is

mit
n = mit−1

n − η2∇F (mit−1
n ). (3.10)

Where the gradient of the free energy can be seen in Appendix I and where
η2 > 0 is the learning rate which we set heuristically. We find that the VG
solution is more robust to this parameter than the smoothing parameter η1 in
Eq. (3.6).

In most EEG imaging applications sources are predicted among thousands of
possible locations. To decrease this number and at the same time decrease
the computation time, neighboring sources can be combined into spatial basis
functions. In contribution [D] we thus extended teVG to the framework of basis
functions as introduced in the MSP model [Friston et al., 2008]. The basis
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B CA

Figure 3.2: The basis functions in a mesh of 8,196 vertices. (A) The center
vertices of MSP [Friston et al., 2008]; 512 distributed across both
hemispheres (seen in red). (B) The proposed center vertices; 776
based on the connectivity of the mesh (seen in red). (C) The com-
pact spatial extension of one source component. Each component
covers 98-128 vertices. [From D and G].

function locations are in MSP evenly sampled from the source indices under
the condition of left-right hemisphere symmetry. In the cortex mesh of 8,196
vertices 512 locations are chosen as basis function centers (Fig. 3.2A). Bilateral
source components are created by combining the hemispheric symmetrically
located components. In total 768 source components are thus formed. The
spatial extension of each component is determined by the connectivity of the
mesh. The spatial profile of a component thus extends from the center vertex
to its neighbors of maximally eight degrees with smoothly decreasing strength
(Fig. 3.2C).

We propose to place the centers of the source components by exploiting the con-
nectivity of the mesh and thus promote even distribution in space as opposed to
in source indices. In the proposed method we let the adjacency matrix control
whether a randomly sampled vertex will serve as a center of a new source com-
ponent. If a suggested vertex is at most a third degree neighbor to the already
sampled centers it is accepted and included in the basis set. There are thus at
least two vertices between the basis centers. By seeding the random number
generator in Matlab the chosen centers are reproducible. In our implementa-
tion 776 centers are defined in the cortex consisting of 8,196 vertices, see Fig.
3.2B. Each of the 8,196 source locations is a part of 8 to 16 basis functions. In
the original MSP sampling technique the source locations are included in 3 to
17 basis functions.

The spatial basis functions can easily be incorporated into equation (3.7),

teVG with basis functions: Ykt =

C∑

c=1

A′kcs
′
cX
′
ct + Ekt, (3.11)

where A′kc =
∑N
n=1AknBnc, s

′
c =

∑N
n=1 snBnc, X

′
ct =

∑N
n=1BcnXnt and c is
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source component 1 through C.

In the following, teVG is validated through simulations and by the real EEG
data described in Section 3.1.

3.3.1 Evaluation of teVG - Simulations

In Fig. 3.3 the computation time and F1-measure were investigated on simu-
lated data created by a forward model of realistic size with randomly generated
elements. The five active sources were each temporally correlated using an
autoregressive model (AR) of order 1 with AR coefficient 0.9. The teVG is com-
pared to the MMV models, T-MSBL and M-FOCUSS, which are described in
Section 3.1.1.

The computation time of teVG was for runs with less than 45 iterations shorter
than that of M-FOCUSS, as seen in Fig. 3.3A. T-MSBL was for all inves-
tigated number of iterations slower than both methods. Computation time
of M-FOCUSS stabilized already after 5 iterations which is attributed to the
optimized implementation scheme for this algorithm3. Convergence of the M-
FOCUSS solution was however not achieved after this low number of iterations
as seen from Fig. 3.3B. The teVG on the other hand attained (near) optimal
source retrieval after only a few iterations.

The T-MSBL did not perform well on the number of applied iterations presented
in Fig. 3.3B. The number of iterations was too low causing TMSBL to recover
many false sources, thus driving the F1-measure down. However, T-MSBL did
improve upon running more iterations and eventually obtained similar perfor-
mance to teVG and M-FOCUSS (see contribution [B]).

In contribution [C] we showed that the cross-validation scheme for estimating
γ was efficient in providing a suitable sparsity level. The cross-validation pro-
cedure thus generally showed similar performance to an oracle setting of teVG
where the sparsity level was chosen based on optimal source retrieval.

3In the current implementation M-FOCUSS prunes at each iteration the sources found
irrelevant. As the computation time depends on the number of sources the pruning decreases
computation time drastically.
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Figure 3.3: Comparison of teVG, T-MSBL and M-FOCUSS on a simulated
example with a random design matrix of size 128 × 8,196. Five
temporally correlated (AR(1) with AR coefficient 0.9) sources in
three time samples were planted and noise was added to give an
SNR of 3 dB. (A) Computation time and (B) F1-measure as a
function of the applied number of iterations. [From B].

3.3.2 Evaluation of teVG - Real EEG Data

In Fig. 3.4 the sources of the face-evoked EEG response are seen reconstructed
by teVG with GD and the spatial basis functions of [Friston et al., 2008]. The
basis functions including bilateral components were chosen as we in this dataset
expect bilateral activity. The estimated spatial source distribution in Fig. 3.4A
does indeed show high left-right symmetry. The temporal dynamics of the es-
timated sources with highest magnitude activity are seen in Fig. 3.4B. Sources
in the vicinity of the FFAs and OFAs were also recovered by teVG and their
temporal dynamics are shown in Fig. 3.4C. Especially the bilateral activity of
the FFAs (in green) showed the well-known N170 peak.

In contribution [D] we compared the robustness of the teVG and MSP recon-
structed sources of an EEG dataset with the same paradigm as the above. We
applied a so-called split-half resampling setup where we divided both the faces
and scrambled faces epochs into two datasets and calculated the differential
ERP in each split. Reconstruction was then performed on each split with teVG
and MSP. This procedure was replicated 100 times with different splits of data.
The results showed that teVG was more robust than MSP. The teVG estimated
temporal dynamics thus had a smaller variance across datasets and the strongest
sources were more consistently located.
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3.4 MarkoVG

The claim of stationary activity made by teVG is inflexible in settings where the
EEG signal is transient and where the interest is in the timing of the brain source
activation. For example in Fig. 3.1C it is seen how activity outside the relevant
time samples are predicted by teVG. Thus instead of modeling the activation
state as one variable for each source location we in contribution [E] proposed to
have separate but connected state activation variables across time. MarkoVG
controls the activation state by a Markov prior such that the activation state in
one time sample depends on the activation state in the previous.

In MarkoVG the activation state in source location n for time sample t (i.e.
Snt = j) thus depends on the activation state of the same source in the previous
time sample (i.e. Sn,t−1 = i) and on the state transition probabilities. If i, j =
0, 1 indicate the possible states, the transition probability can be formulated as
Γji = P(Snt = j|Sn,t−1 = i). The full 2× 2 transition matrix,

Γ =

[
Γ00 Γ01

Γ10 Γ11

]
=

[
1− Γ10 Γ01

Γ10 1− Γ01

]
, (3.12)

can be parametrized by two parameters, where the relations Γ00 + Γ10 = 1 and
Γ01 + Γ11 = 1 are used.
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Figure 3.4: Source distribution estimated by teVG with GD and spatial bilat-
eral basis functions on the face-evoked EEG response. (A) The
spatial source distribution 151 ms after stimuli onset. The blue
and red circles indicate the strongest and second strongest source
components, which were both bilateral. The green circles indicate
the locations of source components in the proximity of the FFAs
and the yellow in the proximity of the OFAs. (B) The temporal
dynamics of the strongest and second strongest sources. (C) The
temporal dynamics of the FFA and OFA components.
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The dual free energy with the Markov prior is

F =− KT

2
log

β

2π
+
β

2

∑

t,k

(Ykt − Zkt)2
+
Kβ

2

∑

t,n

Mnt(1−Mnt)X
2
ntχnn

−
∑

n,t

[
Mnt log

Γ10

Γ00
+Mn,t−1 log

Γ01

Γ00
+ (MntMn,t−1) log

Γ00Γ11

Γ01Γ10

]

+NT log
1

Γ00
+
∑

n,t

[Mnt log(Mnt) + (1−Mnt) log(1−Mnt)]

+
∑

t,k

λkt

(
Zkt −

∑

n

AknMntXnt

)
. (3.13)

The MAP updates of Zkt, Xkt, λkt and β can be seen in contribution [E] and
Appendix [J]. The update rule for the variational mean is reprinted here

Mnt = σf

(
Kβ

2
χnnX

2
nt + γ1 + γ2 (Mn,t−1 +Mn,t+1)

)
. (3.14)

The hyperparameters are now, γ1 = log

(
Γ10Γ01

Γ2
00

)
which controls the sparsity,

and γ2 = log

(
Γ00Γ11

Γ01Γ10

)
which controls the temporal smoothness. Having Γ01 +

Γ10 = 1 leads to γ2 = 0 and hence a restoration of the original variational
mean as seen in Eq. (3.5). In contribution [E] we found that the optimal values
of the sparsity and smoothness were highly connected. The source retrieval
index suggested that a linear relation between the parameters was appropriate
for optimal performance. More precisely we found that the magnitude of the
smoothness should be slightly smaller than the magnitude of the sparsity. We
therefore in the following implement the relation γ2 = −0.9γ1 and thus avoid
cross-validating over two parameters. By propagating the defined relation to the
transition probability some intuition on its effects can be gained. The relation
γ2 = −γ1 would imply that the probability of switching from an inactive to
an active state is the same as changing from an active to an inactive state,
i.e. Γ10 = Γ01. In this situation smoothness is promoted when Γ10 = Γ01 <
0.5, however sparsity is not encouraged and we thus include a factor in the
smoothness-sparsity relation to ensure sparse solutions. The algorithmic setup
is outlined in Algorithm 2.

As seen from Algorithm 2 we now use the free energy calculated on validation
sets to estimate the optimum parameter setting. We find that this measure
is less prone to overfitting than the originally proposed technique in [Kappen,
2011] where the parameter setting was based on the mean squared validation
error of the predicted EEG signal.
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Algorithm 2: The MarkoVG framework including GD updates for M. The
free energy is presented in Eq. (3.13) and the four fold cross-validation apply
20 combinations of γ1 and γ2. Convergence is based on β and a maximum of
500 iterations are run.
Input: EEG (Y) and forward model (A).
Output: The reconstructed source strengths (X) and the expectation of the

activation states (M).
for each cross fold do

for each iγ do
γ1 = γall(iγ);
γ2 = −0.9γ1;
M = 0N×T ;
iter = 1;
while not converged AND iter ≤ itermax do

[M,X, β]=MarkoVG(Ytrain,Atrain,γ1,γ2);
iter = iter + 1;

end
FEval(iγ)=FreeEnergy(Yvalidation,Avalidation ,γ1,γ2, M, X, β);

end
IDX(ifold) = arg min

iγ
(FEval);

end
γ1,opt = γall(median(IDX));
γ2,opt = −0.9γ1,opt;
[M,X, β]=MarkoVG(Y,A,γ1,opt,γ2,opt);

Spatial smoothness can easily be incorporated into the MarkoVG following the
same procedure as done for the teVG in Eq. (3.11). GD updates are also
similarly introduced for MarkoVG. In the following MarkoVG is evaluated using
simulations and real data.

3.4.1 Evaluation of MarkoVG - Simulations

We demonstrate the influence of the sparsity and smoothness parameters on the
MarkoVG solution in Fig. 3.5. In this example two sources were active and had
the temporal dynamics seen in Fig. 3.5A and the activation states seen in Fig.
3.5B (black/white corresponds to Snt = 0/1). The remaining of the in total
500 sources were inactive for all 25 time samples. The source distribution was
projected to 50 observations through a random forward model and corrupted
with noise to yield an SNR of 10 dB.



3.4 MarkoVG 27

Time samples

Time samples

So
ur
ce

in
de
x

A
m
pl
it
ud

e

Sm
oo

th
ne
ss

Sm
oo

th
ne
ss

Sparsity

Sparsity

A C

D

Activation strength

B

Activation state

1

0

5 10 15 20 25

5 10 15 20 25

1
2
3
4
5

-1

Low High

High

Low

Low High

High

Low

Figure 3.5: Smoothness/sparsity properties of MarkoVG illustrated using sim-
ulated data. The forward model was a randomly generated matrix
of size 50×500. Noise was added to yield an SNR of 10 dB. (A) The
temporal dynamics of the two active sources (red and blue). (B)
The activation states of the source distribution, where white/black
indicate active/inactive. The active sources had source indices
1 and 2. For visualization, only the first five source indices are
shown. (C) Reconstruction of the sources with varying degrees of
sparsity and smoothness. (D) The activation state of these recon-
structions. The parameter setting for the solution in the center
plots of C and D was estimated by cross-validation and corre-
sponds to Fig. 3.1D. [From G].
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Figure 3.6: Example of simulated data constructed using a true forward
model. Here one source is placed in each hemisphere. [From G].

The MarkoVG reconstruction of the signal is seen in Fig. 3.5C-D for different
combinations of low/high smoothness and sparsity. Low sparsity (first column)
yielded activity in other than the true locations and high sparsity (last column)
pruned true activity in time samples of low magnitude activity. Low smoothness
(bottom row) had a similar effect as high sparsity, while high smoothness (top
row) favored more stationary solutions. The center plots of Fig. 3.5C-D, where
the parameters were estimated by cross-validation, show a solution containing
the correct level of sparsity and smoothness.

Next, datasets mimicking EEG activity were investigated. The real forward
model described in Section 3.1 was therefore used in generating datasets from
source distributions similar to that of Fig. 3.6. One to four source components,
each with a spatial profile as seen in Fig. 3.2C, were randomly planted in any
of the 8,196 possible locations. The source components had temporally non-
stationary activity in 25 time samples.

Fig. 3.7 illustrates the behavior of the MarkoVG solution as a function of
smoothness and sparsity on the example shown in Fig. 3.6. The simulated EEG
signal was corrupted with noise to give an SNR of 8 dB. In these simulations
the MarkoVG used the proposed basis function set of 776 basis functions to
reconstruct from. A perfect reconstruction was thus not expected as the planted
source components could be centered in any of the 8,196 vertices. In Fig. 3.7A
it is seen that the averaged free energy of the validation sets was minimum just
above the dashed line which indicate where γ1 = −γ2. As minimum localization
error and maximum F1-measure were also found in this region, the free energy
was seen capable of choosing the optimal parameter setting, and validated our
choice of defining γ2 = −0.9γ1

The performance of MarkoVG is further analyzed in Fig. 3.8 where it is also
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Figure 3.7: Performance of MarkoVG on the example in Fig. 3.6 as a function
of sparsity and smoothness. (A) The averaged free energy of the
four validation sets used in the cross-validation. (B) The localiza-
tion error. (C) The F1-measure. The dashed line indicates where
γ1 = −γ2 and the white space where combinations of γ1 and γ2

are not meaningful. [From G].

compared to MSP, T-MSBL and M-FOCUSS. To obtain a fair comparison we
also implemented these methods with the 776 basis functions. We furthermore
included a version of T-MSBL, ’T-MSBL cross’, for which we performed four-
fold cross-validation to estimate the regularization parameter, as similarly done
for MarkoVG. For each investigated SNR level we generated 100 repetitions of
data with source distributions similar to that of Fig. 3.6. As seen in Fig. 3.8
MarkoVG obtained lowest localization error and T-MSBL and MarkoVG had
similar F1-measure and outperformed MSP and M-FOCUSS. It is furthermore
noted that the cross-validated version of T-MSBL did not perform as well as
the version of T-MSBL which was given the noise level.

3.4.2 Evaluation of MarkoVG - Real EEG Data

The earlier described face-evoked EEG response is in Fig. 3.9 reconstructed by
MarkoVG, MSP and T-MSBL. As similarly done for teVG and this dataset we
applied the spatial basis functions modeling bilateral activity. The source com-
ponents estimated to have highest and second highest magnitude activity were
for all three methods, as teVG, bilateral, see Fig. 3.9. The temporal dynamics
of these source components are seen in the top panel and their locations are
indicated in the bottom panel. The time samples for which the spatial distribu-
tions are shown corresponds to the timing of peak activity as estimated by each
algorithm, corresponding to 151-155 ms after stimulus onset. The strongest
sources exhibited for all methods the N170 peak. MarkoVG displayed a tem-
porally more focal activity around this ERP component compared to the other
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Figure 3.8: Performance of MarkoVG, T-MSBL, M-FOCUSS and MSP on 100
repetitions of data corresponding to Fig. 3.6. In ’T-MSBL cross’
we performed cross-validation to find the regularization parameter.
The errorbars indicate the standard error of the mean (s.e.m). (A)
The localization error. (B) The F1-measure. [From G].

algorithms.

The methods furthermore all recovered activity in vicinity of the OFAs, in fact
the second strongest bilateral source component of the MarkoVG solution was
found in the OFAs. Furthermore both T-MSBL and MarkoVG localized the
strongest components as being in the FFAs. Finally MarkoVG provided a spa-
tially more sparse distribution of sources compared to T-MSBL and MSP.

3.5 Relation to Other Work

Understanding the temporal dynamics of brain activity and materializing the ob-
tained knowledge into source priors is important in EEG imaging and therefore
also highly researched. Suitable temporal priors have the potential to not only
retrieve accurate temporal information but also strengthen the spatial speci-
ficity. Invoking MMV models has, e.g., in convex relaxation methods shown to
decrease the false recovery rate in ill-posed problems [Eldar and Rauhut, 2010].
Furthermore, [Cotter et al., 2005] showed a performance gain of the MMV ex-
tension, M-FOCUSS, relative to the original single measurement vector model,
FOCUSS. However, the assumption of a fixed sparsity profile is not valid when
the source signal is of transient nature. Activity outside the actually activated
time samples might therefore mistakenly be retrieved by MMV models thus
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Figure 3.9: Source distribution estimated using spatial bilateral basis func-
tions on the face-evoked EEG response by (A) MSP, (B) T-MSBL
and (C) MarkoVG. The lower panel shows the spatial source dis-
tribution 151-155 ms after stimuli onset. The blue and red circles
indicate the strongest and second strongest source components,
which are both bilateral. The top panel shows the temporal dy-
namics of these sources. [Modified in G].

leading to wrong estimation of the source signal timing.

The temporal prior was in [Montoya-Martinez et al., 2012; Gramfort et al., 2013]
made more flexible by assuming temporal coherence but not enforcing strict
common support. Montoya-Martinez et al. introduced the term structured
sparsity in the temporal domain where some activation patterns are preferred
over others. Sources that are active/inactive for a number of time samples is,
e.g., favored over sources with highly oscillating activation states. This type
of structured sparsity was in [Montoya-Martinez et al., 2012] achieved by the
sparse group lasso [Friedman et al., 2010].

While [Montoya-Martinez et al., 2012] worked directly in the spatio-temporal
domain [Gramfort et al., 2013] used a combined time-frequency domain. Gram-
fort et al. applied a time-frequency dictionary to achieve structured sparsity.
The temporal dynamics of each source are thus represented as a linear com-
bination of a subset of the time-frequency dictionary atoms. In [Lina et al.,
2014] source localization of oscillatory brain activity was also achieved by time-
frequency analysis. Lina et al. used wavelet representation to model temporal



32 Spatio-Temporal Source Localization with the Variational Garrote

dynamics and spatial regions were controlled by hidden state variables. The
activation state was thus like in VG controlled by a separate variable which in
[Lina et al., 2014] determined the activation states of areas of approximately 6
cm2.

The proposed framework in [Stahlhut et al., 2013] combined spatio-temporal
basis functions with a so-called source correction term. The latter is beneficial
when the basis functions are incapable of modeling all of the source dynamics.
The method, called Aquavit, was adapted to employ spatial basis functions,
either defined by Brodmann’s areas or by the MSP source components. Aquavit
is a hierarchical Bayesian model in which the hyperparameters are estimated by
MAP and the remaining parameters by ARD variational approximation.

The VG sparsity hyperparameter was in [Andersen et al., 2013] proposed in-
ferred, as opposed to estimated by cross-validation. This was achieved by sim-
plifying the prior on the state activation variable (Snt) to a binomial distribution.
The new hyperparameter was assigned a Beta distribution and the hyperparam-
eter was then approximated by MAP after fixing the hyper-hyperparameters.
According to [Kappen and Gómez, 2014] performing inference of the regulariza-
tion parameter leads to suboptimal performance when the columns of the input
matrix are correlated. This was shown for the PMF model where local minima
problems became more severe and deteriorated the PMF performance [Kappen
and Gómez, 2014]. In sparse Bayesian learning identifiability issues arise when
inferring both the regularization parameters and the noise variance because of a
tight coupling between the two [Wipf and Rao, 2007]. A similar phenomenon is
hypothesized to be the cause of the inferior performance of PMF. Kappen et al.
showed that augmenting the PMF algorithm to the same annealing framework
as proposed for VG improved the PMF solution.

In summary we have in this chapter described the implementation of physiologi-
cal relevant priors for the variational garrote and thereby adapted the algorithm
to the inverse problem of EEG. The two extensions, teVG and MarkoVG, differ
in their modeling of the temporal dynamics. The teVG assumes stationarity
of the source locations while MarkoVG allows transient sources. MarkoVG is
thus preferred as it lets the data control the (non-)stationarity. However, it is
hypothesized that teVG by being a less flexible model is more suitable when
the signal-to-noise ratio is low, as well as in scenarios where the signal is truly
stationary. Spatial basis functions were incorporated in both VG versions and
using these we were able to recover both the OFAs and the FFAs.



Chapter 4

Forward Model Inference

High spatial specificity of EEG imaging is contingent on an appropriate forward
model which in turn requires correct modeling of the head compartments and
their electrical properties. As described earlier this normally demands infor-
mation that is either hard or at best difficult to attain. In the following we
attempt to describe the variability among forward models and to facilitate more
accessible construction of person-specific forward models.

The proposed method does not require structural scans or conductivity mea-
surements to estimate the head properties but instead uses the recorded EEG
to optimize over a parametrized space of forward models. This data driven
approach recovers the forward model and EEG sources that combined best ex-
plain the recorded EEG. In the following sections the method is described and
validated on simulated and real EEG data.

4.1 The Method

The estimation of a forward model relies in our approach on a low-dimensional
representation of head anatomy and physiology build using a corpus of forward
models. The parametrization of the corpus of forward models is outlined in Fig.
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Figure 4.1: Forward model representation. (A) Structural scans of the cor-
pus subjects. (B) The segmentations of brain, skull and scalp are
used to construct a three-layered BEM head model. (C) For each
subject 100 forward models are created each with skull:brain con-
ductivity ratios between 1:250 to 1:15. The forward model corpus
is represented using PCA with the locations of the forward models
illustrated as green dots. Each semi-horizontal line corresponds to
one subject. [From H].

4.1. The structural scans of each subject (Fig. 4.1A) are segmented into relevant
head layers (Fig. 4.1B) from which forward models are constructed. Several
replicates of forward models are generated for each subject, each incorporating
different conductivity ratios of the head compartments. As previously noted the
skull has a much lower conductivity than the other head layers and is therefore
expected to greatly affect the accuracy of the forward model [Lew et al., 2009].
Research has consequently been widely focused on this tissue and we also suggest
to in particular examine the effect of the skull conductivity.

A low-dimensional representation of the forward model corpus is obtained by
principal component analysis (PCA) [Jolliffe, 2002]. The constructed forward
models are thus collectively decomposed using PCA and projected onto a subset
of the new basis. This step is exemplified in Fig. 4.1C where the two principal
components explaining most of the forward model variance form the basis. Here
two principal components were chosen for visualization purposes, the optimal
number of components can, e.g., be inferred based on the generalization error
[Hansen et al., 1999].

As PCA is a generative model new forward models can be simulated essentially
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by interpolation of the forward models contained in the corpus. We use the
free energy of teVG in Eq. (3.8) to infer the optimal forward model for a new
subject. Minimizing the free energy corresponds to maximizing the lower bound
on the model evidence and should thus indicate the source configuration and
best suited forward model for the EEG provided. The free energy, as seen in
Fig. 4.2, consists of 1) the goodness of fit between the EEG signal and the
EEG signal as predicted by the model priors and the forward model. And 2)
a penalization term proportional to the degree of prior sparsity and effective
number of non-zero sources, thus promoting sparse relative to dense solutions.

In summary a forward model is inferred for a new subject by optimizing the
free energy in the low-dimensional PCA representation. The EEG data of the
new subject and the forward model parametrization thus provides a data driven
approach to infer both a person-specific forward model and the EEG generators.
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4.2 Evaluation

The following PCA representation was used in validating the proposed method
on both simulated and real EEG data. For visualization purposes we created a
two-dimensional parametrization.

The corpus of forward models was generated as in Section 3.1 using the sMRI
scans of the 16 subjects in the multimodal neuroimaging dataset. The T1-
weighted 1 mm isotropic structural scans seen in Fig. 4.1A were acquired using
a Siemens 3T Tim Trio MRI system [Wakeman and Henson, 2015]. The 70
electrodes and 50-100 head shape points were mapped by a 3D digitizer relative
to three fiducials: the left and right pre-auricular points and the nasion. For
further acquisition details we refer to [Wakeman and Henson, 2015].

The structural scans were in SPM8 segmented into brain, skull and scalp from
which BEM head models [Phillips, 2000] were build, see Fig. 4.1B. The brain
mesh was created by affine transformation of a template mesh to fit the sMRI
of each subject [Ashburner and Friston, 2005]. The forward models were gen-
erated with SPM8 template conductivity values for the brain and scalp, both
corresponding to 0.33 S/m, while the skull:soft tissue conductivity ratio was
drawn from a uniform distribution of 1:250 to 1:15. This interval of ratios
was constructed from the literature values in [Stahlhut et al., 2011; Oostendorp
et al., 2000]. The head model of each subject was combined with 100 samples
of skull:brain (i.e. skull:soft tissue) conductivity ratios from which 100 forward
models were build. In total 1,600 forward models were constructed of which 49
were judged as being outliers based on their high l2-norm1, these were excluded
from further analysis.

The vectorized forward models were placed as rows of a 1,551× 70 · 8,196 sized
matrix from which the average forward model was computed and subtracted.
PCA using eigenvalue decomposition of this matrix provided the principal com-
ponents, which were sorted according to the variance they explained. The two
first principal components contained 73 % of the total forward model variability
and were chosen to form the linear basis of the low-dimensional PCA represen-
tation. The curve describing the cumulative sum over explained variance is in
Fig. 4.3 seen to be quite steep with 25 components explaining 99.9% of the
variance.

The described forward model inference procedure was tested in a leave-one-out
setup, where one subject was excluded from the forward model corpus. The
PCA representation was thus build on 15 of the 16 subjects and a forward

1The l2-norm was computed on the vectorized forward models.
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Figure 4.3: The cumulative sum of the explained variance of the principal
components. The principal components are sorted in decreasing
order relative to how much variance they explain. Only the first
47 principal components are shown, combined these explain (100−
2−52)% of the variance.

model of the held-out subject was inferred.

The projection of the forward models to the constructed PCA space is seen
in Fig. 4.1C. The first principal component was dominated by the skull:brain
conductivity ratio; each semi-horizontal line in Fig. 4.1C thus consists of forward
models belonging to one subject with decreasing conductivity from left to right.
Fig. 4.1C thus confirms that the degree of variability among forward models is
greatly influenced by the skull:brain conductivity ratio.

Subject-specific features of the head geometry also influenced the decomposition.
It was tested whether the brain, skull or head size explained the vertical position
of the subjects in Fig. 4.1C. However only small correlations were seen. Subject
16 is an outlier in Fig. 4.1 and analysis of the subjects’ brain sizes revealed that
subject 16 indeed had the biggest brain by far (Fig. 4.4). However we did not
find a linear correspondence between the brain sizes and the vertical locations
of the subjects in the PCA space. More complex factors of the head anatomy
must therefore be contributing to the variability.

The matrix properties of real and PCA predicted forward models are presented
in Table 4.1. The two types of forward models shared similar matrix coherence
[Donoho et al., 2006] and condition number [Belsley et al., 2005]. Both had high
coherence and condition number indicating that the forward fields in general are
highly correlated and that the forward models are ill-conditioned. Particularly
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Real PCA predicted
1−coh [×10−4] 2.7 (0.95 - 5.5) 2.6 (1.0 - 4.1)

κ 97.3 (59.2 - 795.6) 109.4 (61.5 -281.1)

Table 4.1: Median (and interval) of the matrix properties of the forward mod-
els, where coh is the coherence and κ is the condition number. As
the coherence of all forward models approached 1, we show 1 minus
the coherence. [From H].

high condition numbers were found for the forward models of subject 16 (see
Fig. 4.1C). Without this subject the maximal condition number of the real
forward models was 150.9.

Skull:brain conductivity ratio impacted the matrix coherence of the forward
models as seen in Fig. 4.5. The coherence approached 1 as the ratio numerically
decreased, meaning that decreasing the skull conductivity relative to the brain
conductivity increases the ill-posedness of the problem. In contribution [C] we
furthermore showed that the source localization error in general increases with
decreasing skull conductivity.

4.2.1 Simulations

The simulation study was divided into two parts. In the first study we inves-
tigated whether the free energy could recover the relevant forward model from
the corpus of real forward models. In the second study the PCA representation
was optimized with respect to the free energy to predict new forward models.
Note that in the following the localization error was calculated as the Euclidean
distance between each true source and the estimated source which had maximal
activation in the hemisphere of the true source. The reported error is a sum
across the planted sources.

16 1Subjects

Figure 4.4: The brain meshes of the subjects smoothed/interpolated relative
to their vertical PCA locations (from top to bottom) in Fig. 4.1C.
[From H].
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coherence of 1, for visualization purposes we therefore show 1 mi-
nus the coherence. The default setting of the ratio in SPM8 is
indicated by a dashed line. [From C].

In the first study we simulated two posteriorly located sources (Fig. 4.6A)
having synchronous sinusoidal temporal dynamics (Fig. 4.6B). The constructed
source distribution was projected to sensor space using a forward model from
the test subject (black cross in Fig. 4.7B and 4.8) and corrupted with noise to
an SNR of 5 dB.

The sparsity levels were estimated using four fold cross-validation where the elec-
trodes were divided into folds such that the electrodes in each fold were evenly
spread across the scalp (Fig. 4.7A). The cross-validation mean squared error
(MSE) determined the optimal setting of the sparsity for each of the forward
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Figure 4.6: The planted and estimated activity. (A) The inflated brain show-
ing the locations of the two planted sources (posterior view). The
estimated sources completely overlapped with these. (B) The real
and (C) estimated time courses of the two sources. [From H].
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Figure 4.7: Sparsity estimation. (A) The partitioning of the 70 electrodes
into four folds, each designated one color. (B) Four fold cross-
validation was used to estimate the sparsity levels for the forward
models belonging to the test subject (red crosses), the best F1-
measure performing non-test subject (blue dots), and the remain-
ing subjects (not shown). The data generating forward model is
indicated by a black cross. The estimated sparsity was smoothed
relative to their conductivity ratios (full lines). [From H]

models, shown in Fig. 4.7B for the test subject (red) and the training subject
having best F1-measure (blue). To reduce the noise introduced by the coarse
10-step cross-validation procedure the obtained sparsity levels were smoothed
as a function of the skull:brain conductivity ratio within each subject. The
forward models combined with their smoothed sparsity values were applied to
reconstruct the simulated source distribution in Fig. 4.8.

As seen in Fig. 4.8A the forward models belonging to the test subject with
skull:brain conductivity ratios close to the true value obtained lowest free energy
among all forward models and additionally had low cross-validation error (Fig.
4.8B). The location of the minimum free energy also coincided with optimal
localization error (Fig. 4.8C) and F1-measure (Fig. 4.8D). The reconstructed
source locations corresponded exactly to the planted and had similar temporal
dynamics as seen in Fig. 4.6C. We thus conclude that the free energy is a
viable measure to predict performance of the forward models. We furthermore
note that when the geometry is known but the skull:brain conductivity ratio is
misspecified the summed localization error of the two sources is up to 30 mm,
i.e. on average up to 15 mm (Fig. 4.8C).

In the second simulation study the inferred PCA forward models were validated.
We simulated the EEG for this study by projecting the source distribution seen
in Fig. 4.9 to sensor space using a forward model from the test subject. Again
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Figure 4.8: Reconstruction of simulated data using ’real’ forward models. A
forward model of the subject (black cross) was used to project the
simulated sources in Fig. 4.6A-B to sensor space and noise was
added to yield SNR= 5 dB. The teVG was applied to the smoothed
sparsity levels (Fig. 4.7B) in combination with the corpus forward
models. The performance of the test subject (red), the training
subject with highest F1-measure (blue) and the average across all
training subjects (black with s.d. in grey) is shown. (A) The free
energy. (B) The cross-validation MSE with zoom-in plot. (C) The
summed localization error. (D) The F1-measure. [From H].
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Figure 4.9: The planted and estimated activity in the study of inferred PCA
forward models. (A) The locations of the four planted sources.
The estimated sources completely overlapped with these. (B) The
real and (C) estimated time courses of the four sources. [From H].
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Figure 4.10: Inference of a forward model based on the simulated data of Fig.
4.9 with SNR= 5 dB. (A) The free energy, (B) the localization
error and (C) the F1-measure, calculated in the 2D PCA space
spanned by the training forward models. The forward models
of the test and training subjects are shown in white and black,
respectively. [From H].

noise was added to yield an SNR of 5 dB. The previously described electrode
cross-validation setup was used to estimate the sparsity levels for 250 training
forward models. The sparsity levels were subsequently interpolated to cover
the entire PCA space using kernel regression [Nadaraya, 1964] with a Gaussian
kernel of width 1. The 2D PCA representation was generated as described earlier
and importantly with all of the forward models of the test subject excluded from
the decomposition (Fig. 4.10).

The PCA forward model with minimum free energy, white cross in Fig. 4.10A,
was located close to the data generating forward model. Again optimal free en-
ergy was co-located with optimal localization error and F1-measure (Fig. 4.10B-
C). The estimated sources were thus located in the true source locations and
had comparable temporal dynamics to these (Fig. 4.9C). The performance of
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Table 4.2: Performance of forward models on the simulated data in Fig. 4.9.
The investigated forward models comprise the inferred (white cross in
Fig. 4.10A) and template/subject-specific forward models. The fourth
forward model corresponds to the data generating forward model and
σ =skull:brain conductivity ratio. [From H].

Forward models Inferred from Template MRI, Subject MRI, Subject MRI,
free energy template σ template σ true σ

Free energy 2994 3192 3057 2956
MSE 0.63 0.55 0.93 0.61
F1-measure 1 0 0.44 0.5
Localization error
Left posterior 0 mm 16.7 mm 15.1 mm 0 mm
Right posterior 0 mm 18.4 mm 6.0 mm 6.0 mm
Left anterior 0 mm 19.7 mm 0 mm 5.7 mm
Right anterior 0 mm 23.7 mm 0 mm 0 mm
Sum 0 mm 78.5 mm 21.1 mm 11.7 mm

the optimal PCA forward model is in Table 4.2 compared to that of template
and subject-specific forward models. The performance of the forward model
with true geometry and skull:brain conductivity ratio was comparable to that
of the free energy inferred forward model. Lowest performance was obtained by
the template forward model with which non of the true sources were recovered.

In contribution [H] we repeated the leave-one out setup for five more subjects.
These were in separate turns removed from the PCA representation and used as
test subjects. A reasonable forward model could in general be inferred when the
data generating forward model was contained in the span of training forward
models. For three subjects the performance of the inferred forward models was
comparable to using the subject-specific forward model. For the fourth subject
one of the sources were not recovered and the fifth subject was the outlier in
Fig. 4.1, i.e. subject 16. Indeed only one of the planted sources was recovered
for this ’outlier subject’, indicating the need for a larger forward model corpus.

4.2.2 Real EEG Data

Finally, the forward model inference pipeline was tested on the differential face
ERP [Wakeman and Henson, 2015] described in section 3.1. We maintained
the same test subject as used in the above simulation studies and in Section
3. The inference procedure followed the steps of the second simulation study.
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Figure 4.11: Inference of a forward model based on the face-evoked EEG re-
sponse. (A) The averaged sparsity profile. B) The averaged free
energy and (C) the averaged cross-validation MSE based on the
12 sparsity profiles. The PCA locations of the forward models
belonging to the test and training subjects are shown in white
and black, respectively. The 2D PCA space was based on the
training forward models. [From H].

However, instead of fixing the smoothing parameter for the sparsity interpola-
tion, the bandwidth of the smoothing kernel was assigned a uniform prior and
marginalized numerically in 12 steps from 1/4 to 3. The free energy was thus
calculated for each of the 12 sparsity profiles and evaluated on the average of
these (Fig. 4.11).

The minimum of the averaged free energy (Fig. 4.11B) was found in a location
with low cross-validation MSE (Fig. 4.11C). The inferred forward model com-
bined with teVG gave the source distribution seen in Fig. 4.12. The response
peaked 160 ms after stimulus onset, corresponding to the face-related N170
EEG component, in sources located near the O/FFAs. We recovered similar
locations and time courses when using the forward model derived from the sub-
ject’s MRI scan and template conductivity ratios (see supplementary material
of contribution [H]).

4.3 Relation to Other Work

Studies have shown that uncertainties of the forward model is an important lim-
iting factor in achieving EEG imaging with high spatial specificity [Oostenveld
and Oostendorp, 2002; Plis et al., 2007; Lew et al., 2007, 2009; Stahlhut et al.,
2012; Akalin Acar and Makeig, 2013; Windhoff et al., 2013; Aydin et al., 2014].
Our results add quantitatively to this view, especially regarding the skull:brain
conductivity ratio where we saw the implications of its misspecification.
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activity. Source magnitudes are illustrated by the darkness and
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Whether the skull conductivity can be estimated from the EEG data has been
discussed by Plis et al. who concluded it unfeasible to estimate both the skull
conductivity and the source locations [Plis et al., 2007]. This finding was partly
based on the inability of the goodness of fit between true and predicted EEG
signals to recover a meaningful skull conductivity (figure 8 in [Plis et al., 2007]).
Although not clearly stated in [Plis et al., 2007] the performance measure was
not based on unbiased test estimates perhaps explaining why source locations
and conductivity could not be estimated simultaneously. Lew et al. in contrast
showed that the goodness of fit can be used to estimate both source locations and
the skull:brain conductivity ratio as well as the brain conductivity [Lew et al.,
2009]. This was shown in low noise settings, however reconstruction deteriorated
for larger noise levels, probably caused by overfitting as in [Plis et al., 2007]. An
important dissimilarity of the two studies lies in the inference framework, while
Lew et al. only used the EEG data to find the source strengths, Plis et al. also
used it to estimate the source locations. These were in [Lew et al., 2009] found
by simulated annealing. Compared to [Plis et al., 2007] the source estimates in
[Lew et al., 2009] were thus ’more independent’ of the EEG data which was also
used to infer the conductivity configuration.

Other techniques for inferring the conductivity ratios have more recently been
suggested. Akalin Acar et al., for example, specifically optimized for the skull:brain
conductivity ratio while also estimating the EEG generators in their ’simultane-
ous tissue conductivity and source location estimation’ (SCALE) [Akalin Acar
et al., 2016]. In the optimization scheme SCALE uses a local linearization of
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the forward model with respect to the skull:brain conductivity ratio [Gençer
and Acar, 2004]. Performance is based on the compactness of the reconstructed
independent component (IC) scalp maps and the goodness of fit between the
predicted and actual IC scalp maps. The performance of the forward mod-
els is contingent on having high quality structural scans from which the head
compartments can be derived.

Stahlhut et al. proposed a method, called SOFOMORE, that also approximates
both a forward model and a source distribution. SOFOMORE models the uncer-
tainty of the forward model by a multivariate Gaussian distribution [Stahlhut
et al., 2011]. The mean of this distribution is defined as the conventionally
build forward model with a precision parameter for each forward field estimated
based on the EEG data. SOFOMORE thus relies as SCALE on person-specific
anatomical detail for initialization. In practice the new forward model is only
mildly adapted from the mean, primarily in regions of the estimated activity.
Furthermore, the forward fields are modeled as being statistically independent
and does therefore not optimize the forward model as one entity as SCALE or
our proposed method.

An analog to the free energy we have presented was used in [Henson et al., 2009b]
to compare a small set of forward models. Henson et al. showed that basing the
forward model on anatomical information is far superior to a template forward
model. The method does however not provide the possibility of interpolating
between forward models and thus relies on the optimal model being in the set
of proposed forward models and consequently requires anatomical information.

Our method is, in contrast to [Akalin Acar et al., 2016; Stahlhut et al., 2011; Hen-
son et al., 2009b], data driven and does not require any structural information.
The proposed forward model inference pipeline can therefore be applied when
MRI or CT scans are unavailable. Research or clinical facilities where access to
scanners is limited or non-existing can therefore benefit from such an inference
scheme. Furthermore, the suggested framework enables subject-specific forward
models for children, or people in general with difficulty of being in a scanner,
e.g., because of pain or claustrophobia. If a structural scan is available the free
energy can be optimized with respect to the compartment conductivities such
that the forward model parametrization depends on conductivities alone and
assume the head geometry known.

A further advantage of potentially obsoleting structural scans is the construction
of an adaptive forward model. Rice et al. showed that the EEG signal is
dependent on subject posture because of brain shifting allowed by the CSF
layer [Rice et al., 2013]. A forward model derived from head scans of a subject
lying down in an MRI scanner might therefore be ill-fitted for reconstructing
sources of EEG recorded while the subject was sitting or standing.



Chapter 5

Multimodal Integration of
EEG and fMRI

When the electrophysical and hemodynamic brain signals are both modulated
by a stimulus a synergistic effect can arise from fusing EEG and fMRI and
thereby advance our understanding of the brain [Laufs, 2012]. Decomposition
of electrophysical and hemodynamic signals into correlated components is an
important step towards providing highly detailed information on the temporal
and spatial scale. The multimodal source power comodulation (mSPoC) [Dähne
et al., 2013] provides decomposition by extracting fMRI components which are
maximally correlated with the power dynamics of the extracted EEG compo-
nents. We suggest to augment the coupling recovered by mSPoC to exploit
both the functional and anatomical information of the modalities. We extend
the method with EEG and fMRI in mind and assume that there is a corre-
spondence between the locations of the correlated EEG and fMRI components.
An early multimodal study [Singh et al., 1998] motivates a spatial link between
EEG and fMRI by showing the EEG sources of alpha activity to be located in
areas of fMRI activity.

The following presented method builds on the work performed by Dähne et al.
[Dähne et al., 2014, 2013] and was accomplished through collaboration with
these authors. The framework was first formulated in the precursor to mSPoC,
i.e., the Source Power Comodulation (SPoC) method [Dähne et al., 2014]. SPoC
extracts components from EEG signals having power dynamics which are mod-
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Figure 5.1: The generative model and the mSPoC derived components. A
stimulus generates a brain response which in turn elicits both
electrophysical (Ψω) and hemodynamic components (Ψυ). These
signals are mapped to their respective sensor spaces (Yω/Yυ)
through a forward model (Aω/υ). Maximally correlated EEG and
fMRI source components (Ψ̂ω/υ) are extracted by mSPoC using
spatial activation filters (Wω/υ) and a temporal filter (Wτ ) mod-
eling the time delay between EEG and fMRI.

ulated by a target variable, e.g., changes in auditory intensity [Dähne et al.,
2014]. SPoC thus facilitates a way to isolate the neuronal response to a cer-
tain stimulus. The target stimuli are in mSPoC substituted by another imaging
modality such that the extracted EEG component has power dynamics which
comodulate with, e.g., a component of a hemodynamic signal [Dähne et al.,
2013].

5.1 The Method

Before describing the proposed augmentation a short introduction to mSPoC is
provided for completeness. The mSPoC adopts the model framework illustrated
in Fig. 5.1. We denote the EEG and fMRI related variables by superscript
ω and υ, respectively. In general superscripts are used to indicate variable
relations, while we as previously reserve subscripts for referring to elements or
structures/dimensions of the variables.
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5.1.1 The Generative Model

The assumed generative models of the EEG and fMRI signals are defined as

Yω = AωΨω + Eω, (5.1)
Yυ = AυΨυ + Eυ, (5.2)

where Yω ∈ RKω×Tω/Yυ ∈ RKυ×Tυ are the EEG/fMRI signals as mapped
by the temporal dynamics of the C source components, Ψω/υ ∈ RCω/υ×Tω/υ ,
and the spatial activation patterns of these components, Aω/υ ∈ RKω/υ×Cω/υ .
The generative models are thus very similar to that of Eq. (3.2) but with the
important difference that the component space is now smaller than the sensor
space, i.e. Cω/υ < Kω/υ. E contains the activity not explained by the source
components.

5.1.2 The mSPoC Framework

When the EEG and fMRI are the result of the same stimulus pattern mSPoC
assumes that certain temporal dynamics are shared between the two modalities.
The mSPoC thus extracts an EEG component (ψ̂

ω
) which have bandpower

dynamics (φ̂) that are correlated with an fMRI component (ψ̂
υ
). Note that a

’hat’ on a variable indicates that this is an estimate of the true variable. In
the following it is described how to extract the component pair with highest
correlation. However, the procedure of finding the C ≤ min(Cω, Cυ) coupled
components is the same when the EEG and fMRI signals are deflated with
respect to the previous pairs of components [Householder, 2013], i.e., recovered
component pairs are projected out of the data before a new pair is extracted.

In order to integrate the two modalities the EEG must be aligned with the
more slowly varying fMRI, the EEG is thus divided into epochs each having the
duration of the fMRI sampling interval (TR). The EEG in epoch l = 1..L is in
the following denoted Yω

l and has the covariance Σω
l , while the covariance of

the entire EEG signal is denoted Σω.

Next, the extraction of EEG and fMRI source components is defined

ψ̂
ω

= (wω)>Yω, (5.3)

ψ̂
υ

= (wυ)>Yυ, (5.4)

where wω/υ ∈ RKω/υ

are so-called spatial filters. The power of the EEG com-
ponent in epoch l is approximated by the epoch-wise component variance, i.e.,
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φ̂l = (wω)>Σω
l w

ω. Finally, a temporal filter wτ ∈ RKτ

is employed to model
possible time delays between φ̂ and ψ̂

υ
. The Kτ th order finite impulse response

filter is applied to the EEG component’s bandpower dynamics in epoch l by

h(φ̂l) =

Kτ−1∑

k=0

wτk+1 · φ̂l−k (5.5)

= (wω)>
(
Kτ−1∑

k=0

wτk+1 ·Σω
l−k

)
wω = (wω)>Σh

l w
ω, (5.6)

where Σh
l =

∑Kτ−1
k=0 wτk+1 · Σω

l−k. The temporally filtered power time series
(h(φ̂)) can be re-expressed such that optimization with respect to wτ is sim-
plified. Defining the rows of the matrix Φ̂ ∈ RKτ×L to contain φ̂ temporally
delayed by 1 through Kτ epochs we can now define h(φ̂) = Φ̂>wτ .

Using the above definitions the mSPoC objective is to extract an EEG and
fMRI component pair such that the temporally filtered bandpower dynamics of
the EEG component are maximally correlated with the dynamics of the fMRI
component, i.e.,

max
wω,wτ ,wυ

Cov
(
h(φ̂), ψ̂

υ
)
s.t. Var

(
ψ̂
ω
)

= Var
(
h(φ̂)

)
= Var

(
ψ̂
υ
)

= 1. (5.7)

Optimization proceeds by alternating between optimizing for wτ and wυ solving
a canonical correlation analysis (CCA) problem, and optimizing for wω solving
a generalized eigenvalue problem as illustrated in Algorithm 3.

Algorithm 3: The framework of the mSPoC algorithm.
Input: EEG (Yω) and fMRI (Yυ) signal.
Output: wυ,wτ and wω yielding maximally correlated components.
for each repetition do

Initialize wω randomly;
while not converged do

Calculate Φ;
Solve [wυ,wτ ] = CCA (Yυ,Φ);
Calculate Σhυ =

∑
l ψ̂

υ
l ·Σh

l =
∑
l ψ̂

υ
l ·
∑
k w

τ
k+1 ·Σω

l−k;
Solve for wω in the generalized eigenvalue problem Σhυwω = λΣωwω;
Calculate h(φ) and ψ̂

υ
= (wυ)>Yυ;

Calculate correlation of h(φ) and ψ̂
υ
and check for convergence;

end
Store correlation along with wυ,wτ and wω;

end
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5.1.3 Spatial Augmentation

The mSPoC coupling is as described based on a functional relation between the
bandpower dynamics of the EEG component and the dynamics of the fMRI
component. We propose to extend this relation to include a prior belief of
similar anatomical locations of the correlated components. This is achieved by
correlating the spatial patterns of the EEG and fMRI components. The spatial
patterns can be approximated based on the spatial filters, i.e. âω ∝ Σωwω and
âυ ∝ Συwυ [Haufe et al., 2014]. Now, in order to correlate the spatial patterns
of the fMRI and EEG they must be brought to the same domain. We choose
to work in the EEG sensor domain and thus project the spatial pattern of the
fMRI to this space using a forward model, A ∈ RKω×Kυ

, as found by solving the
EEG forward problem. Thus âυ in the EEG sensor domain becomes ã = Aâυ.

The spatial pattern of the EEG is now set to approach the projected fMRI
pattern, i.e., âω → ã, corresponding to Σωwω → ã. This can be achieved by
following the technique described by the linearly constrained minimum variance
(LCMV) beamformer [Van Veen et al., 1997]. As the name implies the variance is
minimized, i.e., minVar(ψ̂

ω
) = min

(
(wω)>Σωwω

)
, under the linear constraint

(wω)>ã = 1. We modify this expression to facilitate incorporation into the
mSPoC method such that we instead maximize ((wω)>ã)2 and linearly constrain
the variance,

max
wω

(wω)>Σawω s.t. Var
(
ψ̂
ω
)

= 1, (5.8)

where Σa = ãã> is a rank-one matrix. Eq. (5.8) can be formulated as the
generalized eigenvalue problem Σawω = λΣωwω and incorporated into the
mSPoC generalized eigenvalue problem seen in Algorithm (3),

((1− γ)Σhυ + γΣa)wω = λΣωwω. (5.9)

The parameter γ ∈ [0, 1] now determines the weight given the functional in-
formation relative to the anatomical, where if γ = 0 the original mSPoC is
recovered while if γ = 1 only anatomical information is used. We call the
augmented version mSPoCγ and propose to find γ using cross-validation.

We develop an extension to our augmentation which seek to avoid projecting
noise in the fMRI pattern to the EEG space. The fMRI pattern that we project
therefore only contains the single highest magnitude element of the fMRI pat-
tern, i.e., âυ has only one non-zero element. We term this version mSPoCγ̄ .

When the applied forward model contains dipoles of free orientation, i.e., defin-
ing A ∈ RKω×Kυ×3, the projection of the fMRI pattern involves estimating the
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projection orientation. The projection of the fMRI pattern’s element i to EEG
space is computed as a linear combination of the three directions, i.e.,

ã = α1A(:,i,1)â
υ
i + α2A(:,i,2)â

υ
i + α3A(:,i,3)â

υ
i = Ãα, (5.10)

where α ∈ R3×1, Ã ∈ RKω×3, and A(:,i,d) ∈ RKω×1 is the forward field of i
in orientation d = 1, 2, 3. Note that if the fMRI pattern is not thresholded its
projection, ã, will be a sum of each non-zero element’s projection, c.f. Eq. (5.10);
each with separately estimated α. For now we assume that the thresholding is
performed.

We suggest to recover α by minimizing the squared distance between ã and âω,

α = arg min
α
||âω − Ãα||22. (5.11)

The posed least squares problem in Eq. (5.11) has the closed-form solution

α =
(
Ã>Ã

)−1

Ã>âω. (5.12)

5.2 Evaluation

In validating our proposed methods we simulated two datasets which were 1)
based on the forward model introduced in section 3.1 and 2) based on the
forward model described below containing free orientation of the dipoles. The
two datasets were created based on the generative models in Eq. (5.1)-(5.2).
The simulated EEG had a sampling frequency of 200 Hz and the frequency range
of interest corresponded to the alpha range, here defined as 8-12 Hz. The fMRI
had a sampling frequency of 1 Hz, thus each EEG epoch contained 200 samples.
The functional coupling between the fMRI component and the envelope of the
EEG component consisted of a shared oscillation of maximally 1/4 Hz.

In addition to the paired component the EEG and fMRI had 14 and 499 back-
ground sources, respectively. The number of fMRI background sources were
increased to 4999 in dataset 2 as the simulated fMRI had a much higher spatial
resolution in this dataset. The EEG and fMRI were constructed as a weighted
sum of the normalized source and background activity. The ratio of the weights
from this linear combination of activity was used to estimate the SNR. The
degree to which the anatomical information entered the inference scheme of
mSPoCγ and mSPoCγ̄ was estimated by five-fold cross-validation.

The mSPoC versions were finally validated on a combined EEG and fMRI
dataset generously provided by collaborator S. Dähne. In the study an auditory
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ŝx and sx
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âx and Aây
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Figure 5.2: The performance of the original mSPoC (yellow), mSPoCγ (red)
and mSPoCγ̄ (blue) on dataset 1 as a function of (A) SNR, with
250 training epochs, and (B) number of trainings epochs, with
SNR= −12 dB. The average across 500 repetitions is shown with
the errorbars showing s.e.m. [From F].

stimulus signaled a subject to squeeze a ball with the right hand five times with
a frequency of 1-2 Hz. In total 48 stimuli were administered. Simultaneous fMRI
and EEG were recorded using a 3T MRI system (voxel size = 3×3×4 mm, TR
= 2 s) and a 31 electrode EEG set. The data was preprocessed using SPM8 and
Matlab scripts provided by S. Dähne. The preprocessing reduced the number
of EEG electrodes to 25 and the number of fMRI gray matter voxels to 54,590.
For further details please refer to [Dähne, 2015]. A four-layered BEM forward
model was constructed from an SPM8 segmentation of the subject’s structural
scans and by lead field computation done in OpenMEEG [Gramfort et al., 2010]
using FieldTrip [Oostenveld et al., 2011]. The forward model mapped the 54,590
brain grid points to the 25 electrode and was generously provided by D. Miklody.

5.2.1 Simulated Dataset 1

We investigated the original and augmented versions of mSPoC in Fig. 5.2 with
respect to the SNR and the number of epochs used for training.
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Figure 5.3: An example of the true and recovered spatial EEG patterns in
dataset 1. Training was performed on 250 epochs, corresponding
to 4 min, with SNR= −12 dB. The correlation between the true
and estimated spatial patterns are indicated above the scalp maps.
[From F].

The temporal similarity was calculated on a withheld test dataset of 600 epochs.
The first row shows the correlation between the component pairs, the second
and third rows show how the recovered EEG and fMRI components correlated
with the true components.

For SNRs lower than −10 dB or training epochs less than 400 the augmented
mSPoCs, especially mSPoCγ̄ , outperformed the original mSPoC on all perfor-
mance levels. The augmentation thus not only improved the correlation between
the component pair but also their similarity with the true components. The
mSPoCγ provided highest correlation of the EEG and fMRI projected spatial
patterns. However, since these correlation values were not accompanied by high
similarity between the estimated and true components, mSPoCγ might be over-
fitting the EEG pattern (âω) to the noise components in the projected fMRI
pattern (âυ).

Fig. 5.3 illustrates an example of the true and recovered spatial patterns of
the EEG component as estimated by the mSPoC versions. The mSPoCγ̄ recon-
structed the simulated scalp map with highest accuracy and since mSPoCγ̄ in
general yielded better performance we investigated this version more closely. In
Fig. 5.4 we thus evaluated for mSPoCγ̄ what effect the anatomical information
has on the temporal similarity of the extracted component pair. There was
a general tendency that lower SNRs required higher anatomical information.
Furthermore, in regimes of good SNR too much anatomical information dete-
riorated the solution probably caused by the thresholding of âυ, as the same
effect was not seen with mSPoCγ (not shown).
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Figure 5.4: The temporal similarity between h(φ̂) and ψ̂
υ
as a function of

SNR and the anatomical strength in mSPoCγ̄ on dataset 1. The
correlation is an average over 500 runs, each trained on 250 epochs
and reported on a test set of 600 epochs. The white line shows
the γ-value with highest correlation across SNRs. [From F].

5.2.2 Simulated Dataset 2

The forward model with free orientation was in the second dataset used to simu-
late data. We therefore now generated random direction vectors for the planted
source components to describe their 3D orientation. The temporal similarity
was estimated on a test set of 600 epochs.

As seen in Fig. 5.5, mSPoCγ̄ extracted component pairs having higher correla-
tions than the original mSPoC. Note that in order to calculate the cross-modal
similarity of the spatial patterns, the fMRI was projected to EEG space us-
ing Eq. (5.10). For the original mSPoC the direction vector was defined as
α = [1 1 1]>. For mSPoCγ̄ the direction vector was optimized to provide mini-
mum least squares distance between the EEG pattern and the projected fMRI
pattern following Eq. (5.12). The mSPoCγ̄ should therefore at the very least
provide as high similarity of the patterns as the original mSPoC. The cross-
modality spatial similarity will thus naturally be bigger for mSPoCγ̄ , however
importantly this was accompanied by higher performance on all similarity scores.

5.2.3 Real Data

The application of mSPoC and mSPoCγ̄ is exemplified on the combined EEG-
fMRI study described in Section 5.2. We applied mSPoC and mSPoCγ̄ to the
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Figure 5.5: The performance of mSPoC (yellow) and mSPoCγ̄ (blue) on
dataset 2 as a function of the number of trainings epochs and
with SNR= −12 dB. The average across 50 repetitions is shown
with s.e.m. indicated by errorbars.

fMRI and the band passed EEG data (16-22 Hz; corresponding to the sen-
sorimotor rhythm). The anatomical augmentation of mSPoCγ̄ was through
cross-validation estimated to be γ = 0.1. The extracted EEG-fMRI component
pair had a functional correlation of 0.94 for mSPoCγ̄ and 0.82 for mSPoC. The
recovered EEG and fMRI spatial patterns of mSPoC and mSPoCγ̄ can be seen
in Fig. 5.6A and B, respectively. The EEG components were source localized
and overlayed on the fMRI spatial pattern in Fig. 5.6B. As the spatial pattern
is a vector we used the variational garrote (VG) for source reconstruction. The
source reconstructed EEG components were in the visualization thresholded to
retain the same number of voxels as found in the mSPoC extracted fMRI com-
ponent, corresponding to 54 voxels. The average distance between the 54 EEG
sources and their nearest fMRI component activation was 20 mm for mSPoCγ̄
and 33 mm for the original mSPoC. As seen in Fig. 5.6B the mSPoC EEG com-
ponent had some spurious frontal activation explaining the larger localization
difference. Overall mSPoCγ̄ improved the functional correlation between the
modalities and provided more focal activation of the EEG sources.

5.3 Relation to Other Work

As mentioned in Chapter 2 EEG and fMRI measure different features of the
brain activity [Laufs, 2012]. This fact complicates a direct integration of the
two modalities, however it is also what makes a successful integration so attrac-
tive. Multimodal fusion methods are often divided into early and late fusion
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Figure 5.6: Spatial patterns recovered on motor data by mSPoC (left) and
mSPoCγ̄ (right). (A) The spatial pattern of the EEG component.
(B) The spatial pattern of the fMRI component (red) and the
EEG component reconstructed using VG (green). The black circle
indicates the frontal activity of the source localized mSPoC EEG
component. Surface rendering was performed with ’MatCro’1.

approaches. An example of an early fusion approach is, e.g., CCA where filters
are applied to the modalities to extract components that are maximally corre-
lated [Correa et al., 2010]. When the coupling between modalities is non-linear
as for EEG and fMRI CCA is suboptimal. Substituting the EEG signal in the
CCA problem with, e.g., its bandpower leads to problems of interpretability of
the extracted filters as the non-linear transformation of the sensor level EEG
signal does not respect the generative model and because noise will distort the
decomposition. The extracted spatial filters can therefore not be transformed
into spatial patterns and thereby reveal to what degree a component is ex-
pressed. CCA was compared to mSPoC in [Dähne et al., 2013] where it was
found that the components extracted by mSPoC had higher mutual correlation.

ICA can be used to perform both early and late fusion of modalities [Lei et al.,
2012]. The so-called joint ICA is an example of an ICA method providing
early fusion [Calhoun et al., 2006]. The objective of joint ICA is to recover
spatial maps from the fMRI that are coupled with time courses of the EEG
across subjects. Joint ICA thus relies on having multiple subjects to estimate
correlated components. In late fusion independent components are extracted

1http://www.mccauslandcenter.sc.edu/CRNL/tools/surface-rendering-with-matlab
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from each modality separately and the components with high cross-modality
correlations are chosen as the coupled component pair [Eichele et al., 2008].

Late fusion has the drawback of blindly extracting components from one modal-
ity without considering the other modality. The mSPoC has the unique feature
of being an early fusion method, and thereby directly searches for correlated
components, while still respecting the generative models of the modalities. In
[Dähne, 2015] it was shown that mSPoC outperforms the late fusion ICA (which
respects the generative models) and the early fusion CCA (which does not re-
spect the generative models). We have shown that the performance of mSPoC
can be even further improved by the inclusion of anatomical information into
the extraction of correlated components.



Chapter 6

Conclusion

The main focus of this thesis has been on developing methods for acquiring
detailed and accurate spatio-temporal information about brain dynamics. No
existing neuroimaging modality is capable of providing brain scans of both high
spatial and high temporal detail. However high temporal resolution is inherent
to EEG and by using signal processing techniques its spatial resolution can be
improved. We furthermore chose EEG as the starting point of our investigations
because of its accessibility and portability which effectively facilitate naturalistic
brain studies as well as widespread use. We tackled the problem of increasing
the spatial resolution of EEG from three angles.

First, we developed methods for locating the sources of EEG activity using
physiologically relevant a priori knowledge. The ill-posed inverse problem was
solved by a Bayesian procedure having separate parametrization of source lo-
cations and strengths. Effectively this allowed for temporal smoothness to be
imposed on the locations while maintaining a more flexible representation of
the strength. The enforced temporal coherency improved the localization of
sources compared to using a single measurement vector model and compared to
the multiple measurement vectors models MSP, M-FOCUSS and T-MSBL. The
implementation of smooth and compact spatial basis functions provided further
improvements. This was seen on the reconstructed sources of the face evoked
response where the source components corresponding to the fusiform face area
were located deeper and closer to the locations identified by fMRI [Kanwisher
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et al., 1997; Iaria et al., 2008], MEG [Henson et al., 2009b] and multimodal
studies [Henson et al., 2011]. The spatial basis functions were thus seen to in-
crease sensitivity to deep EEG sources as also found in [Friston et al., 2008;
Trujillo-Barreto et al., 2004].

Secondly, we developed a novel method to generate subject-specific forward
models with the aim of increasing source localization accuracy when the head
geometry is unknown. Even the best inverse solver is reliant on a forward model
which adequately describe the geometry and biophysics of the head [Oostenveld
and Oostendorp, 2002; Plis et al., 2007; Lew et al., 2007, 2009; Stahlhut et al.,
2012; Akalin Acar and Makeig, 2013; Windhoff et al., 2013]. The novelty of
our proposed inference procedure lies in the fact that no structural scans are
required. Instead the EEG of a new subject is combined with a low-dimensional
representation of forward models for the recovery of a suitable forward model
and the EEG sources. The proposed forward model inference scheme can be
employed beyond EEG, for example supporting other tools within neuroscience,
e.g., transcranial magnetic stimulation, direct current stimulation and EIT, and
outside the field of neuroscience, e.g., in heart modeling [Rudy, 2015] and seis-
mology [Tommasi, 1998; Klimchuk et al., 2004].

Thirdly, we looked for fMRI components which were comodulated with the
dynamics of the EEG components’ power using the framework in the multimodal
source power comodulation (mSPoC). The extracted spatial distribution of the
fMRI components can thus be used to describe the spatial distribution of the
comodulated EEG component or be used as a prior in source localizing the EEG
component. The original mSPoC only considered temporal/functional coupling
between the two modalities but we showed that by adding spatial information
through the forward model better performance could be achieved.

6.1 Future Directions

6.1.1 Real Time Imaging and Noise Modeling

The inference scheme of VG is of low computational complexity and thus en-
courages use in real time EEG imaging and neurofeedback. In order to reduce
computation time further different time optimization techniques can be em-
ployed. The cross-validation scheme for estimating the sparsity of VG is the
main bottleneck for obtaining very low computation time and should thus be
optimized. Instead of estimating the regularization parameter for each time
sample, cross-validation could, e.g., be performed on EEG recorded prior to the
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actual brain imaging. The estimated parameters could then be held fixed for
a number of time samples during which the regularization parameter could be
optimized again. Another approach is to decrease the computational complex-
ity by introducing a so-called active set as in the applied implementation of
M-FOCUSS [Zhang and Rao, 2011]. The sources found to be inactive are in
this method removed from the set of potential relevant sources, thus iteratively
reducing the source dimension. A final suggestion is to employ ICA as a prepro-
cessing step. Delorme et al showed the ability of ICA to extract components of
near dipolar distribution [Delorme et al., 2012]. ICA can therefore be used to
provide sparse focal distribution thus simplifying the source localization task as,
e.g., proposed in [Pion-tonachini et al., 2015]. It should be mentioned that ICA
in general also provide removal of non-brain electrical activity [Frølich et al.,
2015].

The proposed inverse solvers assumed the data to contain additive uncorrelated
Gaussian noise which is only representative of the truth when certain prepro-
cessing steps are employed. Whitening of the data [Pedersen et al., 2008] is
one commonly used technique [Bolstad et al., 2009; Gramfort et al., 2013]. It
requires the covariance of the data which is often approximated from baseline
data. We tested our solvers on the averaged differential EEG response of two
conditions, the EEG data should thus have a relatively high signal-to-noise ra-
tio. In future extensions we would like to generalize the VG algorithms to be
more invariant to the noise distribution. This would be a requirement for ap-
plying the inverse solvers to real time imaging where (contrast) averaging is not
possible.

6.1.2 More Detailed Forward Models

Forward models are being built with increasing detail, e.g., containing many
tissue types which are meticulously segmented and meshed [Windhoff et al.,
2013; Stenroos and Nummenmaa, 2016]. However these methods demand a high
level of expertise of the user and structural scans of high quality. Whether our
simplified BEM head models are detailed enough to capture the relevant head
geometry could be tested by generating test data based on a detailed forward
model.

A recent study by [Stenroos and Nummenmaa, 2016] showed that including the
CSF layer in a BEM head model improves the solution but also that the lack
of a CSF layer can be partly compensated by decreasing the skull conductivity.
In our study the skull:brain conductivity ratio was adapted to the EEG data
thus allowing for some degree of compensation for the omission of a CSF layer.
However in order to build more accurate forward models the CSF should be
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included. Creating more complex forward models would in general require a
higher dimensional forward model representation thus in effect demanding a
bigger database of corpus subjects. Databases collected under the Biomedical
Informatics Research Network (BIRN) contain structural scans of many subjects
and could for example be used.

The curse of dimensionality complicates a grid search for locating the optimal
forward model when the forward model representation is expanded. Alterna-
tively a forward model can be recovered using optimization tools based on,
e.g., Bayesian optimization schemes, such as BayesOpt [Martinez-Cantin, 2014].
Such optimization tools could also be used for MarkoVG to efficiently estimate
its two parameters (i.e. sparsity and smoothness) separately.

The generated forward model representation relies on a specific configuration
of the EEG electrodes, which however varies across studies. Thus to further
generalize the utility of the proposed forward model inference procedure, the
corpus forward models should contain forward field mappings to many points
on the scalp, i.e., corresponding to high-density EEG systems. In this way
the forward model representation could be applied to new subjects with any
electrode configuration.

The proposed forward model inference pipeline can potentially provide dynamic
forward models and thus offer a framework that respect the head position of the
subject. The importance of considering the head position was shown in [Rice
et al., 2013] where the occipital signal power increased on averaged by 80 %
in supine compared to prone body positions. If the goal of the forward model
inference is to provide a stationary forward model the forward model should
be optimized based on multiple EEG paradigms with EEG sources located in
different brain areas.

6.1.3 Integrating Multiple Modalities

The functional and anatomical relationship between the EEG and fMRI signals
is far from understood. Even though evidence exists that the two modalities
are related during certain brain processes [Moosmann et al., 2003; Singh et al.,
1998] a direct mapping from one to the other is not described [Daunizeau et al.,
2007; Laufs, 2012]. It is thus not guaranteed that correlations between EEG and
fMRI can be found using the EEG source power as assumed in mSPoC or by the
anatomical constraint implemented in this thesis. Focusing on the latter, tests
could be performed to verify that, e.g., the anatomical constraint automatically
adapts to the actual spatial overlap between the anatomical origins of the EEG
and fMRI. Along the same line, useful studies include examining how accurate
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the forward model, which maps fMRI activity to the EEG space, needs to be in
order to improve the correlation. If a template forward model is sufficient, the
augmented mSPoC would hold promise for very widespread use.

In future studies simultaneously measured multimodal datasets should be in-
vestigated closer. It would also be interesting to explore whether the same
correlation strengths are recovered when the electrophysical and hemodynamic
signals are not collected simultaneously. The multimodal neuroimaging dataset
studying face perception would be a prime candidate for this study. The dataset
could additionally help investigate the effect of including MEG as well, which
was recorded simultaneously with EEG.
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Abstract—EEG imaging, the estimation of the cortical source
distribution from scalp electrode measurements, poses an
extremely ill-posed inverse problem. Recent work by Delorme
et al. (2012) supports the hypothesis that distributed source
solutions are sparse. We show that direct search for sparse
solutions as implemented by the Variational Garrote (Kappen,
2011) provides excellent estimates compared with other widely
used schemes, is computationally attractive, and by its separa-
tion of ’where’ and ’what’ degrees of freedom paves the road
for the introduction of genuine prior information.
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I. INTRODUCTION

We are interested in real-time imaging of human brain
function by electroencephalography (EEG). The EEG imag-
ing problem is of significant theoretical interest and real-
time EEG imaging has many potential applications includ-
ing quality control, in-line experimental design, brain state
decoding, and neuro-feedback. In mobile applications these
possibilities are attractive as elements in systems for per-
sonal state monitoring and well-being, and indeed in clinical
settings where proper care requires imaging under quasi-
natural conditions [1]. The first real-time mobile systems
are based on reconstruction methods using basic Tikhonov
regularization [1]. However, the computational challenges
induced by the highly ill-posed nature of the EEG imaging
problem escalate in mobile real-time systems and new
algorithms may be necessary [2].

In recent work by Delorme et al. [3] it is argued that
independent components of EEG signals are dipolar in
nature. In particular it was shown that a direct dipolar fit can
explain much of the spatially distributed signal measured in
scalp electrodes. This is in line with a large literature, see
e.g. [4] and references herein, suggesting sparse localized
sources and motivates reconstruction algorithms that empha-
size sparsity, thus contrasting the distributed spatial source
patterns promoted in classical alternatives [5].

Unfortunately, the quest for sparse solutions to the EEG
imaging problem is combinatorial and an exact solution
will not be feasible in realistic real-time systems. Many
promising approximation schemes have been proposed for
the general problem and many have been applied to the EEG
imaging problem. We here investigate a recent alternative for

sparse recovery proposed by Kappen [6]. The soft active set
construction is of particular interest to real-time EEG as it
enables separation of the location and magnitude estimation
aspects of the reconstruction task, and furthermore leads to a
relative low-complexity set of non-linear equations that are
iterated towards the solution.

II. THE EEG INVERSE PROBLEM

In the quasi static approximation the relation between
dipolar sources placed at the cortical surface wi and the
measured potentials at multiple scalp locations yμ is instan-
taneous and linear yμ =

∑n
i=1 wiXiμ+ξμ. We have denoted

the forward model by Xiμ and allowed for measurement
noise ξμ, which is further assumed to be independent of
the source signal. In a typical laboratory setting the number
of measured scalp signals p can be 32 − 256, while the
source distribution can be represented by n = 1000−10, 000
locations. Thus we face a severely underdetermined problem
and regularization is necessary to ensure a well-defined
solution, see e.g., [7] for an early review. As we have noted
key processes appear to be rather dipolar, thus searching for
sparse localized solutions seems well-motivated.

III. THE VARIATIONAL GARROTE

The so-called Variational Garrote (VG) introduces sparse-
ness into the regression problem by adding the binary
’location’ variable si ∈ {0, 1} for absent/present parameters
[6]. Thus, the modified linear problem reads

yμ =
n∑

i=1

wisiXiμ + ξμ. (1)

The location variable is a latent binary variable with a

prior p(s|γ) = ∏n
i=1 p(si|γ) where p(si|γ) =

exp (γsi)

1 + exp (γ)
.

Parameter γ will in general be assumed negative γ < 0,
reflecting a bias towards sparsity.

The optimal solution to (1) can be obtained with a
variational approximation proposed in [6]. First the poste-
rior probability of the model given the data is established
based on a Gaussian noise assumption, ξ ∼ N(0, β−1),
p(s,w, β|D, γ) ∝ p(w, β)p(s|γ)p(D|s,w, β), with D be-
ing the full data set, while the prior over sources and
noise variance is assumed to be uniform p(w, β) ∝ 1. The
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discrete variable s is marginalized out, giving rise to the
marginal posterior, p(w, β|D, γ). The resulting expression
to maximize is now

log p(w, β|D, γ) ∝ log
∑

s

p(s|γ)p(D|s,w, β). (2)

Invoking Jensen’s inequality and a variational posterior over
source locations, q(s), we bound the log-likelihood in (2)
from below by

−
∑

s

q(s) log
q(s)

p(s|γ)p(D|s,w, β)
≡ −F (q,w, β). (3)

The variational free energy F (q,w, β) is minimized, corre-
sponding to maximizing the log-likelihood (2). We assume
q(s) =

∏n
i=1 qi(si) and factors qi(si) = misi+(1−mi)(1−

si), where mi is the probability that si = 1 [6].
As noted, the EEG problem is severely underdetermined,

therefore we can simplify the model using a dual formulation
with update rules for p Lagrange multipliers λμ, ŷν [6]

Aμν =δμν + p−1
n∑

i=1

miXiμXiν/((1−mi)χii), (4)

yμ =

p∑

ν=1

Aμν ŷν , β−1 = p−1

p∑

μ=1

ŷμyμ,

λμ =βŷμ, wi =
1

βpχii(1−mi)

p∑

μ=1

λμXiμ,

m−1
i =1 + exp

(
−βp

2 w2
i χii − γ

)
, vi = miwi.

The computational complexity is dominated by a term∝ np2

(4) which is much lower than the n3 complexity of a direct
implementation.
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Figure 1: Simulated data (p = 50, n = 100, single active source,
SNR= −1.4dB) applied to VG. Activation of the true source (full), sum of
non-sources (dotted). When using minit = 0 the planted source is recovered
in 88.3% of the 1000 repetitions, for minit ∼ U(0, 1) 88.7% and using
winit = b 89.6%. The found sources with mi > 0.5 are considered
recovered.

IV. EVALUATION
We investigate the Variational Garrote in a series of

simulation experiments, and in a benchmark EEG data set.
First we investigate a simple setup based on a random
forward model, while the remaining simulations and the
benchmark data are based on a high-dimensional EEG
Boundary Element Method (BEM) forward model [8]. For
the first set of simulations we form p = 50 measurements
and n = 100 unknown sources and apply the noise precision
β−1 = 1. Here we let a single source element in the ’true’
generating model be set to unity, while the rest are set to
0. VG is run on this data set with γ = −10 (found in pilot
experiment) and m initialized with three different strategies.
The swift convergence of the estimated probabilities of the
location indicators is illustrated in Fig. 1.

Next, VG and three currently used approximate solvers;
least absolute shrinkage and selection operator (LASSO)
[9], Forward selection [10], and Sparse Bayesian Modeling
(SBM) [11], are tested in a more realistic EEG setting using
synthetic sources. The latter consists of 10 sources set to the
value 1, and the rest 0. However, now using a normalized
forward model as X created using OpenMEEG [8] mapping
n = 8196 sources to p = 128 electrodes.

The four methods all have a single hyper-parameter to
tune, in the VG we follow [6] and tune the sparsity parameter
γ. The data set is first split into a training and test set
with ptest = 10 and ptrain = 118. Within the training
set we further perform K-fold cross-validation to tune the
four methods’ hyper-parameters. We use K = 2, ..., 15,
i.e., the training set is subdivided to consist of a training
set ((K − 1)/K) and a validation set (1/K). For each K,
performances are reported in terms of the normalized mean
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Figure 2: Normalized mean squared test error after performing 50 two-level
K-fold cross-validations, K = 2, ..., 15. The algorithms are optimized wrt
one parameter; for VG the sparsity level γ, for Forward selection the size
of the active set, for LASSO the regularization parameter λ and for SBM
the precision of the noise β. The solution of VG is in the form of v, while
the remaining use the weight distributions directly. Ten sources out of 8196
are defined to be active in the ’true’ weight distribution.
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(a) VG (b) Forward selection (c) LASSO (d) SBM (e) True
Figure 3: Sources estimated through ten-fold cross-validation in the context of a 3D cortex structure are compared with the ’true’ distribution. The solution
for VG corresponds to v including a threshold on the activation so that, P (si|D) = mi > 0.5 (maximum marginal posterior). The solutions presented
for the three other algorithms are the weight distributions with a treshold of 10−10. Heavy or light arrows indicate sources with magnitudes larger or less
than 0.5, respectively. Black arrows indicate true sources and red false sources. View is from the back of the left hemisphere. No sources are found in
the right hemisphere for VG, only low-strength sources for LASSO, one low strength for SBM while Forward selection returns many distributed sources.
Note individual color maps are used.

squared error (nMSE). The above procedure is repeated
50 times. Fig. 2 compares the performances of the four
methods. To set a scale we also include the nMSE for the
’true’ source distribution. We find that VG outperforms the
alternatives for all K. It is noted (not shown) that the conver-
gence speed of VG in the applied ’EEG setting’ is similar to
that of the simple setup applied in Fig. 1. Interestingly, the
performances of the methods with their respective optimized
hyper-parameters are stable with respect to fold size K.
Further, inspection of the estimates reveals that, e.g., LASSO
- also referred to as minimum current estimate in the present
context [12] - is less sparse than VG, and in fact has many
small ’false’ sources. Fig. 3 visualizes the spatial structure
of the found sources in the context of a 3D ’cortex’.

For the simulation we also check how well VG with
optimization of sparsity using the electrode cross-validation
procedure is able to identify the actual source locations. For
this experiment we plant 10 sources and estimate source
distributions for a range of sparsity parameters (γ). In Fig.
4 we show that the cross-validation error as function of the
sparsity control parameter indeed is minimized in the same
range as the source retrieval index F1 = 2·precision·recall

precision+recall
[13] is maximized. For comparison we show the similar plot
for SBM (where the cross-validated hyper-parameter is the
noise precision). Here the test error-optimal solution has a
somewhat lower source retrieval index than obtained by VG.

For a final test of the performance of VG in the context of
’real’ EEG we turn to the SPM face recognition benchmark
data [14].We focus on reconstructing the sources and their
activation in a time window 100ms < t < 200ms, at
sampling rate fs = 200Hz. We make a simple extension of
the model to allow for a time constant si with time varying
activation strengths wi, effectively decoupling the ’where’
(s) and ’what’ (w) degrees of freedom which leads to only

minor modifications to the inference scheme [15]. In Fig. 5
we show the resulting activation time courses and in the cor-
tex inset arrows indicate the locations of the corresponding
sources. Both time courses (N170 components) and locations
are consistent with the general findings of [14] and [16].

V. DISCUSSION AND CONCLUSION

EEG imaging is a hard, underdetermined inverse problem.
We hypothesize that solutions of interest are sparse and
note that sparsity constraints can regularize the problem.
We have shown that direct search for sparse solutions
as implemented by Kappen’s Variational Garrote [6] can
outperform solutions based on convex relaxations (LASSO,
minimum current estimate), forward feature selection, sparse
Bayesian learning, both in terms of cross-validation error
on test data, and in terms of quality of the solutions. In a
quasi-realistic setting with an EEG forward model we found
that the VG solution provides an excellent reconstruction of
the planted sources. Finally, we noted that the VG model
allows separation of where and what degrees of freedom, and
used this to analyze a benchmark face recognition data set
assuming that the locations were constant, while activations
change in time. The resulting time courses and locations for
a single trial were found to be consistent with the solutions
proposed earlier based on averaging over multiple epochs.
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Abstract. The recovery of sparse signals in underdetermined systems is the focus
of this paper. We propose an expanded version of the Variational Garrote, origi-
nally presented by Kappen (2011), which can use multiple measurement vectors
(MMVs) to further improve source retrieval performance. We show its superiority
compared to the original formulation and demonstrate its ability to correctly esti-
mate both the sources’ location and their magnitude. Finally evidence is given of
the high performance of the proposed algorithm compared to other MMV models.
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Introduction

Estimation of sparse solutions to underdetermined linear regression problems is a very
active research field and new algorithms are continuously emerging [1][2][3][4]. Impor-
tant modeling tasks where the number of potential explaining features is much higher
than the number of independent responses available for estimation are numerous. A key
example includes locating the magneto-/electroencephalography (M/EEG) generators re-
sponsible for a measured brain wave signal. Here the potential sources are counted in the
thousands while the number of electrodes used to record the signal is typically less, only
a few hundreds or even less [5]. Additional examples are given in [1].

The contribution of the present paper is to expand upon a promising new algorithm,
the so-called Variational Garrote (VG) proposed in [6] which was recently applied to
EEG brain imaging in [5]. Our goal and contribution is to expand the algorithm to work
for a stream of regression problems, also known as the multiple measurement vector
(MMV) problem. Our main result is a sparsity-promoting solver that allows separation
of the where and what degrees of freedom which is highly relevant to the brain imaging
example. We present numerical evidence that the algorithm is competitive with existing
algorithms - both with respect to the source retrieval capability and the computation
time.
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1. The Linear Regression Problem

The starting point of many real world modeling tasks is a linear model describing the
relationship between the input variables and their resulting responses [7]. The linear
regression problem is defined as

yμ =
n

∑
i=1

wiXiμ +ξμ , (1)

where yμ is one of p responses which is related through the weights wi (i = 1..n) to the
input variables contained in the so-called design matrix X. Finally an additive noise term
ξμ is included. The latter is often assumed to be IID and here we assume that it is zero
mean, and normally distributed with precision (inverse variance) β . Eq. (1) can for ex-
ample be solved using ordinary least squares or by invoking sparsity promoting methods
such as Basis Pursuit, or Least Absolute Shrinkage and Selection Operator (LASSO),
which exploits the L1-norm to shrink weights towards zero and set some exactly to zero
[7][8]. Yet other approaches are based on Bayesian inference, such as Sparse Bayesian
Learning (SBL) [1][9].

2. The Variational Garrote

The Variational Garrote (VG) is introduced by Kappen [6] and combines a sparsity pro-
moting representation with a new mean field solution technique to provide a computa-
tionally efficient algorithm with excellent performance [6][5]. It expands the linear re-
gression problem by adding a binary indicator variable s encoding the presence of a given
feature

yμ =
n

∑
i=1

wisiXiμ +ξμ . (2)

The result of introducing this variable (si = 0,1) is effectively implementing the L0-norm,
i.e., a direct search for a solution containing a minimal number of features that is able to
describe the relation between the input and the response. It is formally an extension to
Breiman’s non-negative Garrote [10], however, where the restriction on si is less rigorous
as si can take all non-negative values (up to a predefined bound). The solution scheme
for VG also departs from the one applied to the non-negative Garrote, and we here give
a detailed description for completeness.

The indicator variable s is assigned a prior p(s|γ) = ∏n
i=1 p(si|γ) where p(si|γ) =

exp(γsi)

1+ exp(γ)
[6]. When sparsity is sought the hyperparameter γ will be set to a negative

value, as more negative values promote more sparse solutions. Approximate Bayesian
inference is used to find a solution to Eq. (2) [6]. First the posterior probability of the
model given the data D is written

p(s,w,β |D,γ) =
p(w,β )p(s|γ)p(D|s,w,β )

p(D|γ) , (3)
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and this expression is to be maximized with respect to β and w (a vector containing
the elements wi, i = 1..n). A uniform prior is assigned to these two parameters which
simplifies the above expression. Further simplifications are made by marginalizing s out,
giving rise to the following marginal log posterior

log p(w,β |D,γ) = log∑
s

p(s|γ)p(D|s,w,β )+ constant, (4)

where the constant represents the log of the denominator in Eq. (3). As this constant
will not influence the further maximization it is disregarded in the following. We can
further rewrite Eq. (4) by introducing the variational approximation q(s), which is a fully
factorized distribution and satisfies q(s) =∏n

i=1 qi(si), where qi(si) =misi+(1−mi)(1−
si) [6]. Additionally, Jensen’s inequality [11] is exploited

log∑
s

q(s)
q(s)

p(s|γ)p(D|s,w,β )≥−∑
s

q(s) log
q(s)

p(s|γ)p(D|s,w,β )
≡ F(q,w,β ). (5)

The expression −F(q,w,β ) should now be maximized, hopefully giving a high lower
bound on the log-likelihood. This corresponds to minimizing F(q,w,β ), which by a
physics analogy is termed the variational free energy. First F(q,w,β ) is rewritten

F(m,w,β ) =− p
2

log
β
2π

+
pβ
2

σ2
y

+
pβ
2

(
n

∑
i=1

n

∑
j=1

mim jwiw jχi j +
n

∑
i=1

mi(1−mi)w2
i χii −2

n

∑
i=1

miwibi

)

− γ
n

∑
i=1

mi +n log(1+ exp(γ))

+
n

∑
i=1

(mi log(mi)+(1−mi) log(1−mi)) . (6)

Before continuing with this expression for the variational free energy it is reformulated
following Kappen to reveal the proper low rank of the involved linear system, so to speak
”provided by the underdetermined nature of the problem”. Here this gives rise to the
computational efficient dual formulation

F(m,w,β ,z,λ ) =− p
2

log
β
2π

+
β
2

p

∑
μ=1

(zμ − yμ)
2 +

pβ
2

n

∑
i=1

mi(1−mi)w2
i χii

− γ
n

∑
i=1

mi +n log(1+ exp(γ))

+
n

∑
i=1

(mi log(mi)+(1−mi) log(1−mi))

+
p

∑
μ=1

λμ

(
zμ −

n

∑
i=1

miwiXiμ

)
, (7)
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where the variables zμ = ∑n
i=1 miwiXiμ are included along with the Lagrange multipliers

λ .
Solving equation set (7) by setting the partial derivatives with respect to the param-

eters equal to zero gives the following final equation set

Aμν =δμν +
1
p

n

∑
i=1

miXiμ Xiν

(1−mi)χii
, (8)

yμ =
p

∑
ν=1

Aμν ŷν , (9)

1
β

=
1
p

p

∑
μ=1

ŷμ yμ , (10)

λμ =β ŷμ , (11)

wi =
1

β pχii(1−mi)

p

∑
μ=1

λμ Xiμ , (12)

mi =

(
1+ exp

(
−β p

2
w2

i χii − γ
))−1

, (13)

which is to be iterated to convergence [6]. The implementation of this formulation scales
close to linearly in the number of variables (n), whereas the original implementation
scales cubic in n. Eq. (8) has the highest computational complexity in the above equation
set, by scaling in the order of p2n, here assuming that p is much smaller than n. When
the number of features n is several thousands and the number of observations p is at most
a couple of hundreds, as in the EEG source reconstruction problem, then computation
time is greatly reduced using the dual formulation.

2.1. Multiple Measurement Vectors - the Time-Expanded VG

We suggest expanding the dual formulation of VG to be applicable to predefined time
windows, forming an MMV problem. Several studies have shown that invoking MMV
models may significantly improve the ability to correctly identify relevant variables
[1][14]. For VG the extension, which we call the time-expanded VG (teVG for short),
gives rise to fairly simple revisions to the original formulation presented above. We pro-
pose to keep the location indicator (where), that is the binary variable s, constant within
the time window but allow for the weights w (what) to vary freely. In the context of EEG
this is a natural assumption as a network of sources is active for 10-50ms, representing
10-100 samples depending on sampling frequency, however, the activity of the network
may vary at frequencies up to 100Hz, i.e., fluctuate from sample to sample [12].

Inspecting Eq. (5), the above assumption implies that only minor revisions to the
likelihood p(D|s,w,β ) are necessary. The variational free energy becomes
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F(m,w,β ,z,λ ) =− T p
2

log
β
2π

+
β
2

T

∑
t=1

p

∑
μ=1

(zμt − yμt)
2 +

pβ
2

T

∑
t=1

n

∑
i=1

mi(1−mi)w2
it χii

− γ
n

∑
i=1

mi +n log(1+ exp(γ))

+
n

∑
i=1

(mi log(mi)+(1−mi) log(1−mi))

+
T

∑
t=1

p

∑
μ=1

λμt

(
zμt −

n

∑
i=1

miwitXiμ

)
. (14)

As apparent from Eq. (14) the parameters y, w, z and λ are now functions of time sam-
ples. The resulting equation set is

wit =
1

pβ (1−mi)χii

p

∑
μ=1

λμtXiμ , (15)

Aμν =δμν +
1
p

n

∑
i=1

mi

(1−mi)χii
Xiμ Xiν , (16)

yμt =
p

∑
ν=1

Aμν ŷνt , (17)

1
β

=
1

T p

T

∑
t=1

p

∑
μ=1

ŷμt yμt , (18)

λνt =β ŷνt , (19)

mi =

(
1+ exp

(
−β p

2
χii

T

∑
t=1

w2
it − γ

))−1

. (20)

In the implementation of the above equations, it is again the calculation of A, Eq. (16),
that dominates, and since this is independent of the added dimension of time, the com-
putational complexity is still governed by p2n.

3. Experimental Evaluation

The time-expanded VG (teVG) is investigated in two types of experiments. First a com-
parison is made with the single time-shot dual formulation originally presented by Kap-
pen and then comparisons are made with SBL varieties.

3.1. Comparison of the Original and the Time-Expanded Variational Garrote

To verify the claimed improvement gained from expanding VG a simulation experiment
is performed. A random design matrix is created, where n = 100 and p = 50. The re-
sponse is formed by the design matrix and a weight distribution which contains 10 sine
waves across 25 time samples placed in the weights wi, i = 1...10, additionally noise is

S.T. Hansen et al. / Expansion of the Variational Garrote to a MMVs Model 109



5 10 15 20 25

−1

−0.5

0

0.5

1

Time samples

F
e
a
tu

re
 v

a
lu

e
s

(a) Single time-shot VG.

5 10 15 20 25

−1

−0.5

0

0.5

1

Time samples

F
e
a
tu

re
 v

a
lu

e
s

v
1:10

v
11:100

w
true,1:10

(b) Time-expanded VG.

Figure 1. The feature values, true and estimated, as function of time samples. The actual appearance of the
defined ten equal strength active sources is shown in green. The same ten sources estimated are seen in red,
and the estimated remaining irrelevant variables are seen in blue. The estimated feature values are presented as
v which corresponds to the element-wise multiplication of w and m. For each level of sparsity 100 iterations
are applied. Five-fold cross-validation is used to find an optimum level of sparsity. SNR=10.

added. One sine wave can be seen as the green trace in Figure 1. The single time-shot VG
is run separately on each of the time samples while the entire data is fed to teVG. For both
algorithms an optimum level of sparsity γ is found through five-fold cross-validation.
The results can be seen in Figure 1.

Further comparisons of the two VG formulations can be seen in Figure 2, where they
are compared on the basis of the mean squared error (MSE) on a test set. The algorithms
are compared across 25 levels of signal to noise ratio (SNR) and are presented along
with the MSE obtained when using the true weight distribution. The MSE is defined as
MSE = E[(XT v−y)2], where v is the element-wise multiplication of w and m.

3.2. Comparisons with Sparsity Enforcing MMV Algorithms

The teVG is now compared with algorithms which also exploit multiple time samples
to obtain improved solutions. A toolbox created by Zhang2, is used to investigate the
algorithms T-SBL, T-MSBL, MSBL and MFOCUSS. The two former algorithms, T-
SBL and T-MSBL, were originally presented by Zhang and Rao in [1] and apply a so-
called block sparse Bayesian learning framework (bSBL). It is thus assumed, as with
VG, that a weight’s mode of activity (on/off) is constant within a time window. T-MSBL
is a computationally faster edition of T-SBL. The MSBL is an algorithm similar to T-
MSBL and was introduced by Wipf and Rao in [2]. Finally MFOCUSS is an expanded
version of FOCUSS, which finds a reweighted minimum norm solution [3]. In the current
implementation a noise level (high, medium or low) must be known for the algorithms
T-SBL, T-MSBL and MSBL. MFOCUSS and an additional implementation of MSBL
(called MSBL2 in the following figures) use the actual noise variance. In the following
results teVG is not given any prior knowledge of the noise level. The sparsity level for the
method is found using the following relation, which is inspired by Kappen’s suggestion
of a definition for the minimum sparsity level

2Can be downloaded at http://dsp.ucsd.edu/~zhilin/TMSBL.html
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Figure 2. Test error as function of 25 levels of SNR. The sources’ temporal development are estimated one
time sample at a time (single time-shot VG) and combined (teVG), respectively. The simulated data is the same
as used in Figure 1. The algorithms are compared with applying the ’true’ source distribution. For each level
of sparsity 100 iterations are applied in ten five-fold cross-validations.

γ =−max
i=1:n

(∣∣∣∣∣
pb2

i
2σ2

y χii

∣∣∣∣∣

)
, (21)

where σ2
y is the variance of the response and b is the input-output covariance vector. This

approach of estimating γ is used rather than cross-validation to speed up computation.
The algorithms are compared on the basis of their computation time and their ability

to recover sources through the source retrieval index [13]

F1 =
2 ·precision · recall
precision+ recall

. (22)

A weight is deemed relevant in the model if it has a weight of considerable magnitude,
the cut-off level is here set to 10−5.

First a simulation is made where a random design matrix of size 150×30 is applied
along with a weight distribution where five sources are active and with each source being
an AR(1) process with AR coefficients 0.9. Three time samples are constructed. Noise is
added to the response giving an SNR of 5dB. The results of the experiment can be seen
in Figure 3.

A further simulation is made to mimic an actual application of the time-expanded
algorithms with the application being EEG source reconstruction. Here the design matrix
X would be equal to a forward model of, in this example, size 8196×128, corresponding
to mapping 128 electrodes to 8196 sources. Additionally, the SNR level is reduced to
3dB, as the noise is assumed to be high in EEG settings. The results can be seen in Figure
4. Notice that T-SBL has been left out of these comparisons due to too high computation
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Figure 3. Comparison of MMV algorithms on simulated data with SNR=5dB and five sources temporally
correlated across three time samples as AR(1) processes with AR coefficients of 0.9. A random design matrix
of size 150x30 is applied. T-MSBL, T-SBL and MSBL need a noise level predefined, while MSBL2 and
MFOCUSS is here given the exact noise variance. The teVG is not given information of the noise in the data.

time. In addition to an evaluation of the source retrieval performance and computation
time, Figures 4(a) and (b), the number of false and true positives are also depicted, see
Figures 4(c) and (d).

4. Discussion

The evaluations of teVG confirmed the expected improvement over the original single
time-shot algorithm and furthermore we see evidence of high source retrieval capability
and low computation time when comparing it to other MMV algorithms.

The first statement follows from Figure 1 where teVG finds activity in the correct
weights for all time samples, while the single time-shot VG fails to recover the activity
in some of the time samples and additionally is seen to be more sensitive to noise and
produces spurious sources. Also when comparing the test MSE achieved by the two
formulations, the time-expanded version is clearly superior. The results thus support the
hypothesis that using multiple samples increases the ability to correctly identify variables
as being relevant or irrelevant, as also reported in other studies [14]. The number of
consecutive time samples to apply is important to consider carefully in relation to the
nature of the signal. That is, if a transient signal is expected, the size of the measurement
vectors should be kept as low as possible, while still retaining recovery capability. Zhang
et al. argued that for an EEG signal, as few as 5 time samples should be used [1].

In the comparison with T-MSBL,T-SBL, MSBL and MFOCUSS the teVG is indeed
competitive. In the simulation where the smaller design matrix was used, teVG achieves
the highest source retrieval score when comparing the algorithms run on few iterations
(less than 10), see Figure 3 (a). However beyond this point VG is outperformed by espe-
cially MFOCUSS. It should be kept in mind that in this comparison we favor MFOCUSS
since it is supplied with the actual noise variance, which is not known in most applica-
tions. Turning to the evaluations on the larger design matrix with the dimensions corre-
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Figure 4. Comparison of MMV algorithms on simulated data with SNR = 3dB and five sources temporally
correlated across three time samples as AR(1) processes with AR coefficients of 0.9. A random design ma-
trix/forward model of size 8196×128 is applied. T-MSBL, T-SBL and MSBL needs a noise level predefined,
while MSBL2 and MFOCUSS is here given the exact noise variance. The teVG is not given information of the
noise in the data.

sponding to an EEG forward model, teVG is superior throughout all investigated itera-
tions, see Figure 4(a). Even more importantly it reaches close to perfect source retrieval
after only a few iterations (ca. 5!). From Figure 4(c) it can be seen that the SBL models
are not capable of setting the irrelevant variables to zero but instead retain them in the
model. At the same time they only find about half of the relevant variables as apparent
from figure 4(d).

With respect to computation time, teVG and MFOCUSS are fastest up until applying
100 iterations to reach a solution, see Figure 3(b). Thereafter MFOCUSS is less time
consuming than also teVG. We expect that VG can be made even more effective by using
more specific optimization schemes, e.g., such as to stop updating weights which have
not been changing for a certain number of iterations.
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5. Conclusion

We have presented a time-expanded version (teVG) of the Variational Garrote, originally
proposed by Kappen (2011). The algorithm produces both location indicators as well as
weight magnitude estimates.

The teVG showed excellent performance compared to the original single time-shot
version when data has smooth sparse support. In one of the presented simulations we
used temporal variable weight vectors corresponding to single sine waves across 25 time
samples. In an EEG setting with a sampling frequency of 250Hz these simulated sources
would correspond to alpha brainwaves of 10Hz. Its use in EEG is therefore motivated.
Additional motivation derives from its source retrieval properties and low computational
complexity and the high speed of convergence making it a promising candidate for real-
time EEG source reconstruction.
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ABSTRACT 

Through simulated EEG we investigate the effect of the for
ward model's applied skull:scalp conductivity ratio on the 
source reconstruction performance. We show that having a 
higher conductivity ratio generally leads to improvement of 
the solution. Additionally we see a clear connection between 
higher conductivity ratios and lower coherence, thus a reduc
tion of the ill-posedness of the EEG inverse problem. Finally 
we show on real EEG data the stability of the strongest source 
recovered across conductivity ratios. 

Index Terms- EEG source reconstruction, Inverse prob
lem, Forward models, Sparsity, Variational approximation. 

1. IN TRODUCTION 

The promise of electroencephalography (EEG) based brain 
imaging is high in settings where real-time and quasi-natural 
conditions are required [1]. These situations call for a neu
roimaging technique with high temporal resolution and equip
ment which is portable and lightweight [2]. The span of ap
plications for EEG source reconstruction includes clinical de
ployment where EEG is used in, e.g., diagnosis support [3, 4], 
home use for self-monitoring [2], and cognitive neuroscience 
brain imaging for exploring neural dynamics [1, 5, 6]. 

The EEG inverse problem is straightforward to formulate 
based on the linear relation between EEG sensors and genera
tors provided by the quasi-static approximation of Maxwell's 
equations [1]. However, the problem is highly underde
termined; electrodes are counted in hundreds but potential 
sources in thousands. The solution is therefore non-trivial 
and research in the area is extensive [7, 8, 9, 10, 11]. Several 
studies have shown that invoking multiple measurement vec
tor (MMV) models by assuming common support across time 
improve source recovery [8, 9, 10]. Also beneficial is com
plexity control obtained by enforcing sparsity; warranted by 
the assumption that the activity of interest is focal and by the 
dipolar nature of independent source components [10, 12]. 

The forward models (relating the EEG sources to the elec
trodes) are inherently very coherent and as explained in [13] 
this adds to the ill-posed ness of the inverse problem. Often 
the forward model is assumed fixed and known. The bound
ary element method (BEM) is an efficient way of obtaining a 
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beck Foundation via the Center for Integrated Molecular Brain Imaging 
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forward model where the geometry of the layers between the 
electrodes and sources can be included [1]. For instance, the 
three-layered BEM models the scalp, skull and cortex, with 
information from either structural head scans or through tem
plate models [1]. The used conductivity ratios of these layers 
have been shown to affect the ability to correctly localize the 
EEG sources [14]. Especially the conductance of the skull is 
important and due to its complex structure the conductivity 
differs not only between subjects but also within a single sub
ject [15]. Plis et al. suggest to account for the uncertainty of 
the skull conductance by including uncertainty in the source 
location estimate [15]. In [16] Lew et al. propose to include 
the skull conductivity as a parameter to model. 

In [17] Wang et al. compare the source localization er
ror obtainable with skull:scalp conductivity ratios 1/15, 1120, 
1125 and 1180 using both the data generating ratio and the 
three incorrect ratios. With a signal to noise ratio (SNR) of 
10 dB and one planted source, an error of 9 mm is reported 
when using the true ratio. Single equivalent current dipole 
was used for source localization and the solution is thus bi
ased by the knowledge of the number of planted sources. 

The basic question of this paper is how does the skull con

ductance contrast affect source reconstruction performance? 

We will answer this by systematically investigating the per
formance of the source reconstruction as a function of the 
skull conductivity with several state of the art inverse problem 
solvers. Rather than considering the error introduced when 
using a wrong conductance ratio as in [15, 16], we use the 
same ratio for generating the simulations as we use in the 
reconstruction. We thus demonstrate across 100 ratios the 
inherent variability of the reconstruction performance. For 
one of the solvers we also show that a simple cross-validation 
based optimization of hyperparameters leads to close to ora
cle performance for a large range of conductivities; we thus 
expand on the method used in [17]. This insight we use to 
investigate, in real EEG data, the stability of the recovered 
sources with respect to the applied conductivity ratio. 

2. MATERIALS AND METHODS 

2.1. Neuroimaging data 

Structural magnetic resonance imaging (sMRI) scans from 
a subject participating in a multimodal study exploring 
the neural mechanisms of face perception were acquired 

ICASSP 2015 



Fig. I. MRI scan of a subject (Left) and the segmentation into 
scalp, skull and cortex (Right). The 70 electrodes are placed 
in the standard 10-20 system. 

through the courtesy of Henson and Wakeman [18]; available 
M //ftp.mrc-cbu.cam.ac.uk/personal/rik. 

henson/wakemandg_hensonrn/. The Tl weighted 
images were recorded on a Siemens 3T Trio. We use the EEG 
data, recorded with 70 10-20 arranged Ag-AgCl electrodes, 
to create the average difference between seeing faces and 
scrambled faces. See stimulus design of the study in [5]. 

Preprocessing is done using MATLAB (MathWorks Inc.) 
in part by scripts provided by Wakeman and Henson. Seg
mentation of the subject's sMRI is done using SPM8 [19] and 
co-registration to the EEG electrodes is obtained through fidu
cials placed on the nasion and the left and right pre-auricular, 
together with headshape points. The cortex mesh is set to con
sist of 8196 vertices. The BEM, in the "bemcp " implementa
tion (by Phillips [20]), is used to create 100 forward models 
having the conductivities [1, c, 1] . 0.33 of brain:skull:scalp, 
where 100 samples of c are drawn from a uniform distribu
tion between 11250 and 1115 (in SPM8 default setting is 1180). 
The constructed layers can be seen in Fig. 1 together with the 
electrodes. 

2.2. Synthetic EEG data 

Five synthetic data sets are constructed by planting two active 
sources; for all configurations one source is placed in each 
hemisphere (see Fig. 4). The sources are given the temporal 
dynamics of two synchronous sinusoids across 25 time sam
ples. The synthetic source distributions are projected to the 
70 electrodes through each of the 100 forward models. Ad
ditionally white noise is added to yield SNR= 5 dB in ten 
repetitions (in total 5 x 100 x 10 = 5000 data sets). 

2.3. Source reconstruction methods 

We will apply two source reconstruction methods to investi
gate the generated forward models; MFOCUSS [8] and our 
adapted version of the variational garrote (VG) [21]. The 
methods are similar in three ways. 1) They both have a regu
larization parameter that controls the density of the solution. 
2) They assume common support across time samples. 3) 
Their relation to the go-norm solution. 
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We use the implementation of MFOCUSS as provided by 
Zhang; http://dsp.ucsd.edu/-zhilin/TMSBL. 

html. MFOCUSS by Cotter et al. [8] is an MMV version of 
FOCUSS (FOCal Underdetermined System Solution), which 
finds a reweighted minimum norm (MN) solution [7, 22], and 
thus approximates the go (numerousity) regularizer [10]. FO
CUSS is initialized with the MN solution and then iteratively 
increases large solution values and decreases small [7]. 

The regularization parameter of MFOCUSS is the noise 
level of the data. This parameter is in the experiments varied 
from 10-11 to 1 in 100 steps on the 10glO scale. We use MFO
CUSS in an oracle like setup where we report the solution 
with lowest localization error and highest F-measure across 
investigated noise levels. This is of course not applicable to 
real data where we would not have ground truth available. 
However on the synthetic data we want to use this approach 
to find the best possible solution obtainable using MFOCUSS 
and a forward model with a specific skull:scalp conductivity 
ratio. The localization error is the average Euclidean distance 
between the two planted and two estimated strongest sources. 
And F-measure = 2 . TP / (P + TP + FP) [23]; TP, FP and P 
are the number of true, false and all actual positives, respec
tively. Perfect localization yields an F-measure of 1. 

The second source reconstruction method we test is our 
MMV modified version of VG [21]. The go regularization 
is achieved in VG for the single measurement by including 
a binary variable Sn E {O, I} (for electrode n = l..N) in 
the linear relation between electrodes and sources, modelling 
whether a source is active or not. In our modification, detailed 
in [24], we extend VG to MMV by simply fixing this binary 
variable across time; we call it the time-expanded VG (teVG). 
The binary variable has the prior p(sb) = 0:=1 p(snb) 

exp (')'sn) 
where p(snb) = 1 ( ) [21]. The hyperparameter ')' is 

+ exp ')' 
thus sparsity controlling. 

The solution scheme proposed by Kappen et al. is 
based on Bayesian inference by maximizing the posterior 
probability. As this is non-trivial, variational approxima
tion is employed. First a marginalization over s is per
formed and q(s) = 0:=1 qn(Sn) is introduced, where 
qn(sn) = mnSn + (1 - mn)(l - sn) [21]. The parame
ter mn is the variational mean and can be interpreted as the 
probability of Sn being active, thus it has values between 0 
and l. Next, Jensen's inequality is applied giving us the lower 
bound; i.e. the free energy F. We pose the free energy in a 
dual formulation following [21], and minimize it by setting 
the partial derivatives equal to zero, except for,), which we 
estimate through cross-validation. In Fig. 2 we show how 
we split the 70 electrodes into four folds. The partitioning 
is done with the aim of maximizing the spread of the 17-18 
electrodes contained in each fold. 

Kappen et al. suggest to obtain the solution through fixed 
point iteration, which has a computational complexity that 
scales quadratic in the number of electrodes and linearly in 



Fig. 2. Partioning of the 70 10-20 arranged EEG electrodes 
into four folds represented by the coloring. 

the number of sources, thus keeping computation time low 
(further reduced using common support in teVG). As the 
VG solves a non-convex problem a smoothing parameter is 
needed to control the variational mean updates. How to set 
this parameter is non-trivial, therefore we suggest to control 
the updates of m through gradient descent. The update to m 

8F 
will now be m - 7] 8m

' The parameter 7] now needs to be set, 

however the solution is much less sensitive to this parameter, 
than the before mentioned smoothing parameter. A starting 
value of 7]0 = 10-3 is heuristically set. At each iteration 
the decrease or increase in the free energy will increase the 
7]-value by 10 % or reduce it by 50 %, respectively. Addi
tional convergence speed is gained by raising 7] to 7]0 for a 
number of iterations. We call this faster VG version G DteVG 
(Gradient Descent time-expanded Variational Garrote). 

We apply G DteVG in two settings. On the synthetic data 
we 1) run G DteVG in the same oracle setup as MFOCUSS, 
and 2) using cross-validation to find the regularization param
eter, T On the real EEG data we can of course only do the 
latter. In the oracle setup we explore solutions with sparsity 
levels from - 250 to -1 in 100 steps, and we cross-validate 
25 steps of sparsity between -150 and -10. 

3. RESULTS 

We investigate the matrix properties of the forward models 
through their coherence and condition number. The coher
ences of the forward models are shown in Fig. 3. As the for
ward models are very coherent we show ' 1- the coherence' . 
Another matrix characteristic, the condition number, is high 
for these models (between 1.4 .1015 and 2.9 . 1015) but is not 
found to be linked to the conductivity ratio. 

The ability of the forward models to recover the sources 
they themselves have projected to the electrodes is now tested. 
We compare the forward models through localization error 
and F-measure in Fig. 4. MFOCUSS and G DteVG are 
run in the oracle setup described earlier and G DteVGcross 
is G DteVG with cross-validation on the regularization pa-
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Fig. 3. ' 1- the coherence' of the 100 forward models. 

rameter. There is a general trend that forward models with 
lower contrast, i.e., lower conductivity ratios, perform worse 
(source configuration 1, 2, 3 and in part 4). In the the fifth 
source configuration we see relatively limited effects of the 
contrast. Generally the G DteVG solver shows the lowest 
localization error and highest F-measure, and there is a good 
correspondence between the oracle and the cross-validation 
forms of the method, which allows us to make inferences for 
the real EEG data where ground truth is unavailable. 

Finally we investigate the real EEG data described in sec
tion 2.1. As we now do not know the ground truth and can not 
report localization error, we instead track the strongest source 
found as a function of conductivity ratio, see Fig. 5. Across 
the 100 conductivity ratios five different sources dominate the 
source reconstruction solutions. Generally it is agreed that the 
activity happens posteriorly and 87 of the tested conductivity 
ratios place the strongest source in the right posterior inferior 
temporal lobe (red and green in Fig. 5). The solution is rather 
robust with respect to the time of maximum activity; having a 
mean of 154.4 ms with the standard deviation 1.5 ms. 

4. CONCLUSION 

This contribution relies on advances in both EEG forward 
modeling [14, 15, 16, 17, 20] and inverse inference techniques 
[7, 8, 9, 10, 11, 12, 21, 22] to expand on the dependence of 
skull conductivity on the source reconstruction performance. 

For establishing an accurate electrical forward model for 
EEG, the conductivity distribution is needed. Here we have 
investigated the sensitivity of the solution to one important 
aspect herein, namely the skull conductivity contrast. We 
found that increasing the skull conductivity contrast reduces 
the forward model coherence, hence, in this aspect reduces 
the ill-posedness of the linear inverse problem. This relation 
was confirmed in experiments using two different sparse in
verse problem solvers MFOCUSS and the variational garrote 
(VG). Both showed a higher localization error for low con
trasts. We found that a simple cross-validation scheme could 
reliably be used to infer the sparsity level in VG and using 
the cross-validation scheme we showed that the most active 
dipoles found in a real EEG data set was relatively stable to 
the skull conductivity contrast for a wide window of values. 
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Fig. 4. Performance of MFOCUSS, G DteVG and G DteVGcross with forward models of varying skull: scalp conductivity ratios 
on synthetic data. The two former are favored by here reporting the lowest localization error (middle panel) and highest F
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Abstract—State of the art performance of 3D EEG imaging
is based on reconstruction using spatial basis function repre-
sentations. In this work we augment the Variational Garrote
(VG) approach for sparse approximation to incorporate spatial
basis functions. As VG handles the bias variance trade-off with
cross-validation this approach is more automated than competing
approaches such as Multiple Sparse Priors (Friston et al., 2008) or
Champagne (Wipf et al., 2010) that require manual selection of
noise level and auxiliary signal free data, respectively. Finally,
we propose an unbiased estimator of the reproducibility of
the reconstructed activation time course based on a split-half
resampling protocol.

I. INTRODUCTION

We are interested in fast and accurate reconstruction of
the sources of macroscopic EEG signals measured by surface
electrodes. The aim of the reconstruction is to infer the
spatio-temporal structure of the source signals supporting our
long term goal: To combine EEG and behavioral data with
neuroscience databases for real-time annotated and interpreted
brain monitoring. The lack of spatial precision is one of the
major challenges to such a program. The state of the art in high
accuracy spatio-temporal reconstruction is represented by the
multiple sparse priors (MSP) approach [1], [2], based on spatial
basis functions and an approximate inference scheme using so-
called automatic relevance determination (ARD) [3], [4], [5],
and the Champagne framework [6], [7]. These methods are
based on a combination of approximate Bayesian inference and
simple heuristics, such as tuning temporal complexity by the
Kaiser criterion and weakly informative hyper priors [1] or use
noise estimates from other data [6]. The implicit regularization
in ARD, leading to sparse solutions, is implemented by the
divergence of certain precision parameters forming a highly
complex optimization problem [8], [9]. Here we explore an
alternative approach which combines approximate Bayesian
inference and resampling methods for a more automated
approach to source reconstruction in relevant spatial bases -
without sacrificing accuracy or speed. The main contributions
in this work are the following 1) We show that the MSP basis
function approach can easily be adapted to the Variational
Garrote (VG). 2) In the VG an unbiased cross-validation step
is used to optimize and validate sparsity. 3) We introduce an
unbiased measure of the reproducibility of the activation time
course based on a split-half resampling protocol.

II. THE EEG INVERSE PROBLEM

Reconstruction of the EEG source distribution is based on
the well-established linear relation between the measured scalp
EEG potentials and the cortex level EEG generators [10], [11],

[12], [13], [2]. Noting that the inverse mapping from electrodes
to cortical sources is highly ill-posed, regularization is needed.
We follow a Bayesian approach and control complexity by
assigning priors. Sparsity of the solution is a well-known
means for complexity control and at the same time motivated
for EEG by recent work on the dipolar nature of independent
signal components [14]. The Variational Garrote (VG), orig-
inally proposed by Kappen et al. [15] has been adapted to
the EEG reconstruction problem [16]. The approach promotes
sparse solutions by introducing a binary variable for each
potential dipole location, implementing a flexible and adaptive
description of the dipole support. A spatio-temporal multiple
measurements vector approach is obtained by the additional
assumption that the support is constant within a given time
window (time expanded VG, teVG) [17].

The simple VG/teVG modifications to the linear regression
problem, relating the EEG potentials Y ∈ RK×T to the
sources X ∈ RN×T through lead fields A ∈ RK×N , are

Linear reg. Ykt =

N∑

n=1

AknXnt + noise (1)

VG Ykt =
N∑

n=1

AknSntXnt + noise (2)

teVG Ykt =
N∑

n=1

AknsnXnt + noise (3)

where Snt and sn are binary variables ∈ {0, 1} and the
additive noise is assumed to be Gaussian with zero mean.
Using variational approximation, as described by [15] the
solutions to VG and teVG can be found. Note that computation
time is markedly reduced in teVG compared to individual VG
reconstructions for each time point [17]. Furthermore source
recovery is also greatly improved [17]. In the following, teVG
is augmented to incorporate spatial basis functions. In order
to make teVG more comparable with MSP, we assume in
the following constant support across the whole time frame.
It could be argued that dividing the data into smaller time
windows would be more appropriate as brain activity can
happen on short time scales [18].

A. Implementation of Basis Functions

Basis functions are included to model the synchronous
activity seen between neighboring neurons [20]. Following the
framework of constructing spatial source components in MSP
[1], we sample the basis functions from a coherence matrix
based on the Green’s function encompassing the connectivity
of the cortical mesh [1]. The outcome is a set of source basis978-1-4799-4149-0/14/$31.00 c©2014 IEEE



Fig. 1. Projection of the basis functions to the cortex. Left: center vertices
(in red) of the 3×256 source components, and right: the spatial extent of one
component. Note that the 256 bilateral components completely overlap with
the 256 left and 256 right hemisphere components.

functions with compact support, see example in Fig. 1, which
also shows the center vertices of 768 components.

We sample C/3 basis functions per hemisphere and ad-
ditionally create C/3 bilateral functions from the unilateral
functions. The C basis functions can therefore model both
unilateral and bilateral activity. The set of functions, make up
the basis B ∈ RN×C . Transforming the regression problem,
it now relates the observations across time Y ∈ RK×T to
the source functions XC ∈ RC×T through the lead fields
A ∈ RK×N and the basis B

Y = ABXC + noise ⇐⇒ Y = DXC + noise, (4)

where D ∈ RK×C . Following equations (1)-(3) teVG is easily
applied to the constructed basis functions, where we now have
C binary variables. Note, the source functions are projected
back to the original source space by X = BXC . In the
following analyses C = 768 basis functions are applied.

III. SIMULATIONS

Through simulations emulating real EEG the localization
accuracy is investigated. Two areas of activation are simulated
having temporal dynamics as shown in Fig. 2, upper panel.
Their locations correspond to the left and right fusiform face
areas (FFAs) as found by Henson et al. (2003) [19] in an
fMRI study. The peak activity in the left and right FFAs
were reported in MNI space at (−39,−51,−24)mm and
(42,−45,−27)mm, respectively. Each FFA is simulated to
cover seven sources whose locations can be seen in Fig. 3(a).
The forward field matrix employed is described in the next
section where actual EEG source reconstruction is performed
[21], [22]. The dimensions of the current simulation therefore
correspond to the upcoming EEG analysis, where the cortex
is divided into N = 8196 vertices and the EEG is measured
through K = 128 electrodes.

The teVG is compared to MSP across 1000 simulations at
signal to noise ratios (SNRs), 1 and 101. Both methods apply

1SNR = 〈Var(Signal)/Var(Noise)〉 where 〈...〉 is the time average.
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Fig. 2. Simulated data at source level together with noise and simulated data
at sensor level. Seven sources having activity equal to top panel are planted in
the left and right FFA. The location of these two patches can be seen in Fig.
3(a). Signal is projected to sensor space using a forward model and white
noise (middle panel) is added to give the signal in the bottom panel, here
SNR=10.

the described spatial basis functions. The temporal complexity
is controlled in MSP by dimensionality reduction using prin-
cipal component analysis, with a heuristic variance threshold
applied to the time series before applying the ARD inference
scheme. The sparsity level in teVG is selected in four-fold
cross-validation (with resampling of electrodes), while the
noise variance is estimated by the Bayesian scheme.

The mean localization errors are reported in Table I and
the mean solutions for SNR = 10 are visualized in figures
3(b) and (c) using MSP and teVG respectively. The overall
impression from Fig. 3 is that the teVG reconstruction is
more focal, while MSP produces more scattered activity by
reconstructing dipoles further away from the true activity,
i.e. in the mid frontal/parietal and anterior temporal regions.
Comparing in Table I MSP and teVG we find that MSP is
on average 0.3mm more accurate, hence, the more automatic
teVG approach leads to localization results that are close to
state of the art methods. For both methods the time complexity
of reconstruction depends on a number of choices (number of
iterations etc.), here we have tuned these parameters to result
in approximately the same time complexity (a total of Δ = 10-
15 s including cross-validation in teVG).

In a related experiment the FFA patches reported in [19]
are moved to the location of their respective nearest source

TABLE I. LOCALIZATION ERRORS FOR TEVG AND MSP ON SIMULATED LEFT (L) AND RIGHT (R) FFA ACTIVITY. THE ERROR IS MEASURED AS THE
EUCLIDEAN DISTANCE BETWEEN THE CENTER OF THE PLANTED ACTIVITY (IN THE LEFT OR RIGHT HEMISPHERE) TO THE SOURCE ESTIMATED TO HAVE
LARGEST MAGNITUDE (IN THE LEFT OR RIGHT HEMISPHERE). THE MEANS OF 1000 REPETITIONS ARE LISTED. DUE TO THE HIGH NUMBER OF REPEATS,

STANDARD DEVIATIONS OF THE MEANS ARE ALL BELOW 0.4 MM RENDERING ALL POSITIVE AND NEGATIVE DIFFERENCES BETWEEN MSP AND TEVG
LOCALIZATION SIGNIFICANT (p < 0.05). THE OVERALL MEAN LOCALIZATION ERRORS ARE VERY SIMILAR (MSP= 18.3 MM AND TEVG= 18.6 MM).

FFAs from Henson et al. (2003) [19] FFAs from Henson et al. (2003) [19] projected to nearest basis function center

SNR = 1 SNR = 10 SNR = 1 SNR = 10

MSP L: 13.8 mm; R: 14.5 mm L:10.8 mm; R: 31.9 mm L:13.4 ; R: 18.7 mm L: 15.1 mm; R:27.9 mm

teVG L: 19.1 mm; R: 22.8 mm L: 18.0 mm; R: 21.6 mm L: 17.7 mm; R: 21.1 mm L: 16.3 mm; R: 12.2 mm



(a) True (b) MSP (c) teVG

Fig. 3. Glass brain view of the simulated FFA source distribution, and the estimates by MSP and teVG, respectively. The two latter are averages across 1000
repetitions of reconstructions of the true response added with noise yielding an SNR= 10. Shown are 512 dipoles.

function centers. The aim here is to investigate whether the
localization error decreases when the actual sources are close
to a basis function center. The results are seen in Table I. The
relative insignificant changes indicate that selection of basis
functions is not critical to the result.

IV. EEG ANALYSIS

We now test teVG with basis functions on a benchmark
128-channel EEG data set from a subject viewing faces and
scrambled faces. The paradigm of the face perception study
is described in [19] and the data can be accessed via http://
www.fil.ion.ucl.ac.uk/spm/data/mmfaces/. The forward model
used here, is a symmetric BEM head model produced in SPM8
(http://www.fil.ion.ucl.ac.uk/spm/) with the open source plug-
in OpenMEEG [22]. As earlier, the cortex is divided into
N = 8196 vertices which are projected to C = 768 basis
functions. About 150 epochs are recorded of each of the two
conditions. The source reconstructed difference of their means
can be seen in Fig. 4(a) and Fig. 4(b) using MSP and teVG,
respectively. The temporal dynamics of the two strongest
sources at 170ms are shown in Fig. 5. These correspond for
both methods, to one source in the left and one in the right
hemisphere. Fig. 5 shows in three panels the time courses
of these two sources with their: a) 90% posterior distribution
confidence intervals (only shown for MSP), and the resampling
confidence intervals for the MSP (b) and teVG (c). Confidence
intervals in figures 5(b) and (c) are estimated through 100
repetitions of split-half resampling of condition epochs, i.e.
they arise from a total of 2 ·100 = 200 source reconstructions,
see e.g., [23]. The differential responses found are close to
zero in the pre-stimulus time window ([−200, 0]ms) and peak
at around 170ms post-stimulus; the critical time scale for face
perception [19]. The unbiased resampling based confidence
intervals in the range 150-300ms, are seen to be larger for MSP
(5b) compared to teVG (5c). More specifically at t = 170ms
MSP has standard deviations of 0.42 (left dipole) and 0.47
(right dipole), where teVG has respectively 0.29 and 0.23. We
note that the posterior and the resampling based uncertainties
show some similarity although quite different in ’statistical
meaning’ - the former quantifies the uncertainty within the
model given the specific data set, while the latter represents
the expected variability under repeated experiments.

The consistency of the locations of the recovered dipoles
(the strongest left and right) found when using the whole data

(a) MSP

(b) teVG

Fig. 4. Glass brain view of source reconstruction of the differential response
of faces and scrambled faces at 170ms post-stimulus. 512 dipoles are shown
for both methods. The activation found with fMRI of the subject’s face specific
response are illustrated with colored squares, see [21]. The blue are in the FFA,
the red in the OFA, the remaining clusters discovered are shown in green.

set and in the split-halves is examined for the two methods.
Compared to applying MSP to the mean difference across
all epochs, the 2 × 100 splits recover on average the same
left dipole (29 + 43)/2 = 36 times and the right dipole
(12+15)/2 = 13.5 times. For teVG the locations of the splits’
strongest dipoles comply (58+57)/2 = 57.5 times for the left
and (69 + 65)/2 = 67 times for the right. Thus, in general
teVG is more consistent with respect to the recovery of the
strongest dipoles.

Inspecting in Fig. 4 the source locations for MSP and teVG,
MSP seems to have a better overlap with the FFA (blue square
in Fig. 4 as found by fMRI in [21]), whereas teVG seems to
better locate the right occipital face area (red square).



(a) MSP (b) MSP (c) teVG

Fig. 5. Source reconstruction of the face specific response. The two sources with strongest activity are shown, these are for both methods placed in the left
(blue curve) and the right (red curve) hemisphere, respectively. The confidence interval seen in (a) are estimated from the posterior distribution, while they are
in (b) and (c) calculated through 100 split-half resampling of the epochs. The magnitude of the sources have been scaled by the maximum value found in the
source reconstruction on all epochs. Note that the activity of the two sources are very similar, especially for teVG where the two dipoles are exactly bilateral.

V. CONCLUSION

In conclusion we have shown that the MSP spatial basis
function approach can be adapted easily to the Variational
Garrote (VG). The VG applies cross-validation for estimation
of its regularization strength, i.e, the effective sparsity level
while the noise level is inferred, hence it does not require
manual tuning of temporal complexity as in the MSP approach
nor auxiliary signals for noise estimation as in Champagne.
Finally, we used split-half resampling to provide an unbiased
measure of the reproducibility of the activation time courses
of the reconstructed spatial sources. For both MSP and teVG
we found that the differential responses peaked around 170ms
post-stimulus, a timing that is well established for the face spe-
cific response [19]. The unbiased resampling based confidence
intervals were found to be larger for MSP compared to teVG
in the vicinity of this peak activity.
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Abstract. We propose the following generalization of the Variational
Garrote for sequential EEG imaging: A Markov prior to promote sparse,
but temporally smooth source dynamics. We derive a set of modified
Variational Garrote updates and analyze the role of the prior’s hyperpa-
rameters. An experimental evaluation is given in simulated data and in
a benchmark EEG data set.

Keywords: Source reconstruction, Bayesian inference, the Variational
Garrote, EEG, sparse Bayesian learning.

1 Sparse Sequence Reconstruction

The dynamics of electroencephalographic (EEG) sources is an active research
field, see. e.g., [1–6]. We are interested in the spatio-temporal source distribu-
tion under well-defined brain activation. The contribution of the present paper
is to expand upon a promising new algorithm, the so-called Variational Garrote
(VG), first proposed in [7] and recently applied to EEG brain imaging in [8] and
expanded to a fixed sparsity temporal model in [9]. Our goal and main contri-
bution in this presentation is to relax the fixed sparsity model by introducing a
flexible Markov prior forming a new algorithm that we refer to as MarkoVG.

The forward relation between cortical sources and electrode potentials is
linear and we will here assume the forward propagation model known, although
attempts have been made of estimating it from data, see e.g. [5]. Using a ’spike
and slab’ like representation, the linear relation between observations across
time, Y ∈ RK×T , the forward model A ∈ RK×N and the source matrix X ∈
RN×T is modified in the Variational Garrote (VG) [7] as

Yk,t =
N∑

n=1

Ak,nXn,t + Ek,t
V G
=⇒ Yk,t =

N∑

n=1

Ak,nSn,tXn,t + Ek,t , (1)

where Sn,t is a 0, 1 binary variable controlling the spatio-temporal support of
brain activity Xn,t (i.e., at the dipolar location n at time t). The variable Ek,t
is assumed to be i.i.d. normal noise with zero mean and unknown variance 1/β.
Aiming for temporally smooth and spatially sparse configurations we assign a



simple Markov model prior for the binary variables of a specific dipole location
n, represented by a transition matrix Γi,j = Prob(Sn,t = i|Sn,t−1 = j) with two
free parameters, e.g., of the form

Γ =

[
Γ0,0 Γ0,1

Γ1,0 Γ1,1

]
=

[
1− Γ1,0 Γ0,1

Γ1,0 1− Γ0,1

]
. (2)

The stationary distribution of Γ is given by (Γ0,1/(Γ1,0+Γ0,1), Γ1,0/(Γ1,0+Γ0,1)),

thus the ratio
Γ0,1

Γ1,0
controls the prior sparsity.

The VG approach is based on approximate variational inference. Here we de-
rive the modified update rules for the variational approximation. With uniform
priors on X and β we obtain a variational free energy F (q,X, β) which is mini-
mized to obtain the optimal variational distribution q, the source estimates X,
and the noise parameter β. To reduce computation we use the dual formulation
[7] introducing Zk,t =

∑
nAk,nMn,tXn,t and Lagrange multipliers λk,t

F =−KT
2

log
β

2π
+
β

2

∑

t,k

(Yk,t − Zk,t)2 +
Kβ

2

∑

t,n

Mn,t(1−Mn,t)X
2
n,tχn,n (3)

−
∑

n,t

[
Mn,t log

Γ1,0

Γ0,0
+Mn,t−1 log

Γ0,1

Γ0,0
+ (Mn,tMn,t−1) log

Γ0,0Γ1,1

Γ0,1Γ1,0

]
(4)

+NT log
1

Γ0,0
+
∑

n,t

[Mn,t log(Mn,t) + (1−Mn,t) log(1−Mn,t)] (5)

+
∑

t,k

λk,t

(
Zk,t −

∑

n

Ak,nMn,tXn,t

)
, (6)

where χ = ATA/K. The variational estimates satisfy the following equation set
(with σ(x) = (1 + exp(−x))−1)

Xn,t =
1

Kβ

1

(1−Mn,t)χn,n

∑

k

λk,tAk,n , Zk,t = Yk,t −
1

β
λk,t , (7)

β =
1

TK

∑

t,k,c

λk,tλc,tCk,c,t, Ck,c,t≡δk,c+
1

K

∑

n

Mn,t

(1−Mn,t)χn,n
Ak,nAc,n (8)

λc,t = βŶk,t with
∑

c

Ck,c,tŶk,t = Yk,t , (9)

Mn,t = σ

(
Kβ

2
χn,nX

2
n,t + γ1 + γ2 (Mn,t−1 +Mn,t+1)

)
, (10)

solved by iteration. Here the combination of Markov parameters; γ1 = log

(
Γ1,0Γ0,1

Γ 2
0,0

)
,

γ2 = log

(
Γ0,0Γ1,1

Γ0,1Γ1,0

)
determine the sparsity and smoothness of the solution: The

parameter γ2 is seen to control the degree of temporal smoothness, while γ1 cor-
responds to Kappen’s sparsity control parameter (with negative values favoring
sparse solutions). If γ2 = 0 we recover the original VG algorithm.



2 Experimental Evaluation

In the following a simulation example will serve to illustrate the properties of
MarkoVG. We simulate a data set of size N = 150, K = 25 and T = 25. The
weight distribution is controlled as three active sources with sine wave like time
courses active at different time windows. The data are corrupted by normal
additive noise (SNR= 5 dB). An example of the generated sources can be seen
in the left panel of Fig. 1, while the right panel shows the estimated sources
using MarkoVG. Here the parameter Γ0,1 = 0.02 is fixed, while the ratio

Γ0,1

Γ1,0

is estimated through three-fold cross-validation among possible values ranging
from 10−5 to 10, in 50 steps. For each step 25 iterations are performed.

We find that the relevant weights are recovered while one irrelevant weight
(at time t = 11) is mistakenly judged as being relevant. Swift convergence of Mn,t

is seen in Fig. 2 for both the ’true’ locations (depicted in blue, green and red
corresponding to Fig. 1) and for one ’false’ location, chosen as the location with
non-zero activity at time t = 11 (depicted in gray). The color indicates the value
of Mn,t; brightest or darkest indicate Mn,t=0 or 1 (minimal or maximal marginal
posterior probability of activation in location n). In Fig. 2, MarkoVG is further
evaluated using the source retrieval score (F1-measure) and the mean squared
error (MSE) on the estimated sources. A total of 100 randomly generated data
sets similar to that shown in Fig. 1 are drawn. The performance measures are seen
to converge quickly towards their optimum. Note that the iterations minimize
the Free energy whose optimum is not simply related to source retrieval (F1) nor
MSE. Varying both γ1 and γ2 in a grid to inspect the influence of the smoothness
and sparsity parameters on the F1-measure and MSE we obtain Fig. 3. Note ’hot’
colors indicate high values (better performance in F1-measure and worse for the
MSE). A (γ1,γ2)-region exists with high source retrieval ability and low MSE.
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Fig. 1: The source time functions, true (left) and estimated (right). The active sources
are in blue (n=1), green (n=2) and red (n=3) respectively, and the non-active sources
(n=4:150) are all represented as black dotted lines. Three-fold cross-validation is used
to find an optimum level of Γ0,1/Γ1,0. For each investigated level 25 iterations are
applied. SNR= 5 dB.
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Fig. 2: Left: Convergence of Mn,t during 25 iterations for the 3 planted active sources
(blue, green and red) and the strongest false source (gray scale). Example corresponds
to that shown in Fig. 1. Right: Evaluation of MarkoVG with 100 repetitions of data
sets similar to that shown in Fig. 1, all with SNR around 5 dB. Performance shown as
mean ± standard deviation of source retrieval F1-measure and MSE on the weights.
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Fig. 3: Search for optimal smoothness and sparsity. Left: mean F1, right: mean MSE,
across 30 repetitions of data sets similar to Fig. 1(left). For each parameter combination
25 iterations are applied. SNR= 5 dB.

The existence of this region indicates that the MarkovVG representation indeed
allows us to find sparse sources with limited bias on the source magnitudes.

The performance of MarkoVG is next examined on benchmark EEG data
which is part of a multi-modal face response data set, available through the
SPM website1. The data used here are collected from a single subject and used
to demonstrate the modulation in brain activity when seeing faces vs. scrambled
faces. The EEG signals were acquired with a 128 channel ActiveTwo system and
downsampled from 2048 Hz to 200 Hz and averaged across trials, more specifi-
cations on the setup can be found in the SPM manual [10]. For reference we
show the results using Friston et al.’s multiple sparse priors model (MSP) [3] as

1 http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/



Fig. 4: The time evolution of the two strongest sources found in face response. In
the inset of the cortex (posterior view) arrows point to the corresponding locations
180 ms post-stimuli. Left: Sources obtained using SPM’s multiple sparse priors method.
The color coding indicates that the solution obtained is rather dense. Right: Sources
obtained using Zhang et al.’s T-MSBL method. As in MSP, estimate is rather dense.

Fig. 5: The time evolution of the two strongest sources found in face response. In
the inset of the cortex (posterior view) arrows point to the corresponding locations
180 ms post-stimuli. Left: Solution obtained using the temporally expanded VG (teVG)
scheme. The color coding indicates more sparse solution than that obtained by MSP
and T-MSBL. Right: Estimate by MarkoVG. As teVG, MarkoVG is also spatially very
sparse. The time courses are, however, now sparse, thus the difference between face
and scrambled face processing has been localized to focused shorter time intervals.

adopted in the SPM software and the result of Zhang et al.’s multiple measure-
ments vector sparse Bayesian learning model, T-MSBL [4] in Fig. 4 left and right
panels, respectively. These solutions should be compared to two versions of the
VG: Time expanded VG (teVG) [9] and MarkoVG, both shown in Fig. 5. The
MSP and T-MSBL estimates of the sources responsible for the difference between
face and scrambled faces are very smooth in time, in fact resembling standard
ERPs. This is also the case for the window-wise constant support model teVG,
c.f., Fig. 5 (left), while the more flexible support recovery method MarkoVG
finds a smaller number of active sites for the difference signal in Fig. 5 (right).



Also we note that teVG and MarkoVG in general find spatially sparser solutions,
viz., the more extended gray areas in Fig. 4.

3 Conclusion

We have proposed MarkoVG assigning a Markov prior for promotion of tem-
porally smooth sources in the Variational Garrote. We derived the modified
variational update rules and identified the role of the Markov prior parame-
ters. We showed that MarkoVG converges fast, as VG also does, and we found
that sources are reliably estimated both in terms of location and source strength
mean square error. In a benchmark EEG data set we showed that MarkoVG pro-
duced more focused activation than multiple sparse priors and temporal sparse
Bayesian learning, both of which are more similar to our earlier VG generaliza-
tion, teVG, which assumes constant temporal support in specified windows.
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Abstract—Simultaneously measuring electrophysical and
hemodynamic signals has become more accessible in the last
years and the need for modeling techniques that can fuse the
modalities is growing. In this work we augment a specific
fusion method, the multimodal Source Power Co-modulation
(mSPoC), to not only use functional but also anatomical
information. The goal is to extract correlated source components
from electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI). Anatomical information enters our
proposed extension to mSPoC via the forward model, which
relates the activity on cortex level to the EEG sensors. The
augmented mSPoC is shown to outperform the original version
in realistic simulations where the signal to noise ratio is low or
where training epochs are scarce.

I. INTRODUCTION

Multimodal neuroimaging techniques hold promise for en-
hancing our knowledge of the normal and pathological brain
[1], [2]. Integrating electrophysical and hemodynamic neural
responses can facilitate information not obtainable with the
individual techniques [3], [4]. The electrophysical signals, e.g.
magneto/electro-encephalography (M/EEG), have a high tem-
poral resolution but low spatial resolution, whereas the hemo-
dynamic signals, e.g. functional magnetic resonance imaging
(fMRI), have low temporal resolution but high spatial resolu-
tion [5]. A technique that exploits the specific advantages of
the modalities is therefore highly sought, as no gold standard is
established yet. For a more exhaustive overview of multimodal
analysis techniques, the interested reader is referred to [2], [6],
[7]. The fusion of electrophysical and hemodynamical signals
must be approached very carefully as the two categories of
modalities measure different attributes of the brain activity [2],
[8]. Of the many attempts to solve this problem of modeling
the neurovascular coupling and combining the modalities, we
will mention only a few.

In EEG source localization spatial information from fMRI
can be used to guide the reconstruction [3]. This can be done
in the form of a strict or soft prior on where the neural
activity should be located according to the fMRI signal. This
is called asymmetrical integration as one modality is given
preference [8]. An example of symmetrical integration is
given in [9] where Valdes-Sosa et al. describe an approach
to correlate the actual generators of fMRI and EEG, i.e. the
vasomotor feedforward signal and the net primary current
density, respectively. This technique thus rely on both inverse
temporal (of the fMRI) and inverse spatial (of the EEG)

problems. These inverse problems are however very sensitive
to the applied assumptions [8].

As in [9] we are interested in fusing bandpower modulations
contained in the EEG with the dynamics of the fMRI signal.
A recently proposed method attempts to achieve this fusion
by projecting both EEG and fMRI signals into a lower
dimensional source-component space. The method is called
multimodal Source Power Co-modulation (mSPoC)[10] and it
is based on ideas presented in [11]. The mapping to component
space is not to be confused with the previously mentioned
source localization, i.e. the mapping of M/EEG recordings into
a much higher dimensional cortex surface space. Specifically,
mSPoC searches for components that exhibit maximal func-
tional coupling between bandpower modulations (EEG com-
ponent) and the hemodynamic response (fMRI component).
Both modalities are given equal priority, thus making mSPoC
a symmetrical fusion approach. Importantly, mSPoC uses only
the temporal information of the modalities and is thus based
on purely functional assumptions.

In this paper, we suggest to extend mSPoC, when working
with EEG and fMRI, by adding anatomical information that
makes the method asymmetrical in the spatial domain. We
propose to achieve this by projecting the estimated spatial
activation pattern of the fMRI component to the EEG sensor
space and bias the spatial activation pattern of the correspond-
ing EEG component towards this projection. We thereby give
preference to the fMRI in the spatial domain, and thus exploit
the high spatial resolution of the modality.

II. METHODS

A. The Generative Model

Let X ∈ RMx×Tx denote the EEG dataset and Y ∈
RMy×Ty denote the fMRI dataset, where Mx/y and Tx/y

denote the modality specific number of sensors and time
samples, respectively. The central assumption we make is that
both datasets are decomposable into what is called a set of
components (or factors). The component k is identified by a
time course (sk) as well as a spatial activation pattern (ak)
and may thus be regarded as a functional unit. The generative
model for dataset X is then X = AxSx+εx, where εx is IID
noise. Ax contains Kx spatial patterns in the columns and Sx

contains Kx time courses in the rows. The same framework
also holds for Y.
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B. Multimodal Source Power Co-modulation (mSPoC)

For completeness and to facilitate the description of our
expansion in section II-C we now describe mSPoC. For further
information we refer to [10].

mSPoC seeks K ≤ min(Kx,Ky) pairs of functionally
coupled components in X and Y. More specifically, the band-
power dynamics of a component from the EEG are assumed
to co-modulate with the time course of a component in the
fMRI. In the following we assume the EEG to be band-pass
filtered in a frequency range of interest and epoched to match
the fMRI recordings. We use the notation X(e) to refer to the
EEG signal in epoch e and Cxx(e) to denote the covariance
of X(e) while Cxx is the covariance of the full signal X.

In mSPoC the extraction of components is parametrized by
means of spatial filters. The time courses of the extracted
components from X and Y are given as ŝx

def
= w�x X and

ŝy
def
= w�y Y for wx ∈ RMx and wy ∈ RMy . Moreover

the filter-pattern relation is âx ∝ Cxxwx and ây ∝ Cyywy

[12]. The bandpower dynamics of an extracted component
from the EEG are given by the variance computed over
the epoch e and is denoted by φ(e), which is defined as
φ(e)

def
= Var

[
w�x X(e)

]
= w�x Cxx(e)wx .

In order to model temporal delays in the coupling between
X and Y, a finite-impulse-response (FIR) filter wτ ∈ RNτ is
applied to the bandpower dynamics φ. Thus, the FIR-filtered
bandpower dynamics are defined as

h(φ)(e)
def
=

Nτ−1∑

i=0

wτ (i+ 1) · φ(e− i) (1)

= w�x

(
Nτ−1∑

i=0

wτ (i+ 1) · Cxx(e− i)

)

︸ ︷︷ ︸
def
=Ch(e)

wx, (2)

Note that h(φ)(e) depends on wx as well as on wτ .
With these definitions, the mSPoC objective function for

functional coupling between X and Y is given by

max
wx,wτ ,wy

Cov(h(φ), ŝy) (3)

s.t. Var(ŝx) = Var(h(φ)) = Var(ŝy) = 1.

Note that if wx is provided, φ can be computed and the
optimization problem (now only for wτ and wy) reduces to
the well known canonical correlation analysis (CCA) with
temporal embedding of φ [13]. If, on the other hand, wτ and
wy are provided, then Ch(e) and ŝy can be computed and the
resulting optimization problem (now only for wx) leads to the
following generalized eigenvalue problem

Czwx = λCxxwx , (4)

where Cz
def
=
∑

e Ch(e) · ŝy(e).
The mSPoC objective is optimized by iterating over:
0) Initialize wx randomly.
1) Given wx, solve for wτ and wy using CCA.
2) Given wτ and wy , solve for wx using Eq. (4).
3) Repeat steps 1 and 2 until convergence.

C. mSPoC With Anatomical Information: mSPoCγ / mSPoCγ̄

We now include the assumption that the extracted compo-
nents should not only be functionally linked but also anatomi-
cally related. Thus we assume the spatial activation pattern
of the EEG component, denoted by âx, to be similar to
the activation pattern of the corresponding fMRI component,
denoted by ây . In order to relate âx to ây , we project ây to
the EEG sensor space using a lead field matrix L ∈ RMx×My ;
i.e.

y→
a x

def
= Lây is the projected fMRI pattern.

Finding the wx that optimally extracts the temporal activity
from the EEG given a spatial pattern, in our case

y→
a x, can be

achieved by the linearly constraint minimum variance (LCMV)
beamformer [14]. In the LCMV approach, the optimal wx is
derived by minimizing w�x Cxxwx = Var(ŝx), subject to the
constraint w�x

y→
a x = 1. Here we find it convenient to modify

[14] to instead maximize (w�x
y→
a x)

2, corresponding to

max
wx

w�x Caawx s.t. Var(ŝx) = 1, (5)

where Caa
def
=

y→
a x

y→
a
�
x is a rank-one matrix. Note that the

solution to this problem is (up to a scaling) identical to the
one of the original LCMV, both satisfying wx ∝ C−1

xx

y→
a x.

These insights now allow us to integrate the anatomical
information contained in the lead field matrix L into the
mSPoC objective. Specifically, we replace Eq. (4) by

((1− γ)Cz + γCaa))wx = λCxxwx , (6)

where γ ∈ [0, 1] allows to smoothly interpolate between
using only functional information (γ = 0, corresponding to
the original mSPoC) and using only anatomical information
(γ = 1). Thus γ is the strength of the spatial constraint. We
refer to this version of mSPoC as mSPoCγ .

As a further variant, we propose to threshold the estimate of
ây prior to the computation of

y→
a x. Specifically, we propose to

set all values in ây to zero, except for the maximum magnitude
value. Thereby, we reduce the influence of noise while at the
same time dealing with a known weakness of beamformers,
namely a performance decrease when the spatial extent of the
source increases [15]. This version of mSPoC will be referred
to as mSPoCγ̄ .

D. Simulated Data

The simulated EEG signal has 70 electrodes and the fMRI
activity is assumed to be projected to the cortical surface
consisting of 8196 vertices. The two modalities are set to
have one source component in common. In addition to sharing
temporal dynamics the component in the two modalities also
share spatial patterns. The spatial pattern of the EEG compo-
nent is thus the projection of the spatial pattern of the fMRI
component through a lead field matrix. The lead field matrix
was generated in SPM8 [16] using the boundary element
method (BEM). Here a structural MRI scan of a subject was
used; dataset was provided by Henson and Wakeman [3].

The generated EEG signal has frequencies between 8 and
12Hz and has a sampling frequency of 200Hz. The sampling
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Fig. 1. Correlations obtained using the original and augmented mSPoCs. a) Training was performed on 250 epochs (∼ 4min) on data with a varying SNR.
b) Training was performed on a varying number of epochs on data with SNR= −12 dB. The time course correlation is reported on a held out test set of
600 epochs (10min data). Patterns are calculated on the training data and L is the lead field matrix. We show the mean of 500 repetitions together with the
standard error on the mean. mSPoCγ and mSPoCγ̄ include crossvalidation to estimate γ.

frequency of fMRI is 1Hz, meaning that the EEG is divided
into epochs of 200 samples each. The fMRI component and
the envelope of the paired EEG component have a frequency
of maximum 1/4Hz, i.e the coupled activity oscillates with
1/4Hz or below. The fMRI signal is temporally delayed using
a Gaussian shaped hemodynamic response function (HRF)
with a length of 15 seconds (Nτ = 15).

The EEG and fMRI additionally have 14 and 499, re-
spectively, background source components. The spatial pat-
tern of each source component is equivalent to a delimited
Gaussian at the cortex level. The simulated EEG signal is
a weighted sum over the Frobenius normalized source and
background activity; i.e. X = λXsource/||Xsource||F + (1 −
λ)Xbackground/||Xbackground||F . The SNR is here defined as
20 log 10 (λ/(1− λ)). Same structure applies for the fMRI.

We vary both the SNR and the number of epochs available
for training, and test the temporal correlation on 600 epochs.
To estimate the level of anatomical information needed (γ) in
mSPoCγ and mSPoCγ̄ we perform five-fold crossvalidation
on the training data with γ = (0, ..., 1) in 25 steps.

III. RESULTS

In Figure 1 we show the performance of the original mSPoC
and the two augmented versions by their dependence on a)
the SNR and b) the number of training epochs. The first
row of Figure 1 shows the intermodal temporal and spatial
similarity, i.e. the correlation between the estimated EEG and
fMRI component. The middle row shows the temporal and
spatial similarity of the true and estimated EEG component.

The same is shown for fMRI in the bottom row. In real data
applications we would only be able to show the top row.

As seen in Figure 1a) mSPoCγ and especially mSPoCγ̄

outperform the original mSPoC for most SNR levels. For
higher SNRs (> −10 dB) the three methods converge to
the same performance. It is evident from the middle and
bottom rows of Figure 1a) that the augmentation improves
the recovery of the true components both on the EEG side
and on the fMRI side.

Superiority of mSPoCγ compared to mSPoCγ̄ is only found
on the correlation of the estimated EEG pattern and the
projected estimated fMRI pattern. This appears to be an
overfitting of the EEG pattern to the noise components in
the estimated fMRI pattern, as the spatial correlations of the
estimated patterns of the two modalities to the true pattens do
not show the same degree of improvement.

Analyzing Figure 1b) shows the same trend as Figure
1a), only now for the number of training epochs. The tem-
poral correlation of the bandpowered EEG and the fMRI
signal is highest using mSPoCγ̄ followed by mSPoCγ . More
specifically mSPoCγ̄ outperforms mSPoC when fewer than
400 epochs (here corresponding to 6.7min) are available for
training.

We investigate mSPoCγ̄ further in Figure 2 where we
explore the influence on the temporal correlation of the SNR
and the strength of the spatial constraint (γ). We see that when
having low SNR mSPoC benefits from anatomical information
and the biggest improvement can be found here compared to
mSPoC (which corresponds to γ = 0). However, for higher
levels of SNR relying too much on anatomical information
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Fig. 2. For mSPoCγ̄ : The influence of γ and the SNR on the correlation
between the temporally convolved EEG component and the fMRI component,
i.e. h(φ) and ŝy . A γ = 0 corresponds to the original mSPoC. The mean test
correlation of 600 epochs across 500 data sets each trained on 250 epochs is
shown. The white line indicates the optimum strength of the spatial constraint.

True mSPoC, 0.67 mSPoC�, 0.80 mSPoC�, 0.92

a.u.

Fig. 3. An example of the estimated EEG patterns, where SNR= −12 dB
and training is performed on 250 epochs (∼ 4min). The correlations between
the true and estimated patterns are shown.

worsen the solution and the spatial constraint should thus be
small here.

An example of the estimated EEG patterns found by the
three mSPoC versions is shown in Figure 3 together with the
true pattern. The scalp map found with mSPoCγ̄ has highest
correspondence with the true scalp map.

IV. DISCUSSION AND CONCLUSION

The original multimodal Source Power Co-modulation
(mSPoC) was in [10] compared to CCA where it was found to
be superior. In this work we have introduced two expansions of
mSPoC that exploit anatomical information. Both improve the
extraction of correlated EEG and fMRI components. However,
mSPoCγ̄ demonstrates higher potential for future use as it
seems to avoid overfitting to noise components.

The next steps include investigating how mSPoCγ̄ reacts
when certain assumptions are violated. We e.g. need to ex-
plore what happens when the paired components which are
temporally correlated do not match spatially. The accuracy
of the lead field matrix’s projection of the fMRI to the EEG
sensors could also be expected to influence the solution. The
method should also be applied to real EEG and fMRI data
to verify its applicability in multimodal neuroimaging. In the
simulations we assumed that the fMRI activity was projected
to the cortex. This projection can be performed with real data
using a Voronöı interpolation scheme [17] or using SPM8 [16].

The preliminary results hold promise to improve the ex-
traction of correlated pairs in situations where the SNR is low
and/or where few training epochs are available. The method
could thus potentially be used to investigate the correlation of
the modalities as a function of time.
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Abstract

Electroencephalography (EEG) can capture brain dynamics in high temporal resolution.
By projecting the scalp EEG signal back to its origin in the brain also high spatial resolu-
tion can be achieved. Source localized EEG therefore has potential to be a very powerful
tool for understanding the functional dynamics of the brain. Solving the inverse problem
of EEG is however highly ill-posed as there are many more potential locations of the
EEG generators than EEG measurement points. Several well-known properties of brain
dynamics can be exploited to alleviate this problem. More short ranging connections
exist in the brain than long ranging, arguing for spatially focal sources. Additionally,
recent work (Delorme et al., 2012) argues that EEG can be decomposed into components
having sparse source distributions. On the temporal side both short and long term sta-
tionarity of brain activation are seen. We summarize these insights in an inverse solver,
the so-called ”Variational Garrote” (Kappen and Gómez, 2013). Using a Markov prior
we can incorporate flexible degrees of temporal stationarity. Through spatial basis func-
tions spatially smooth distributions are obtained. Sparsity of these are inherent to the
Variational Garrote solver. We name our method the MarkoVG and demonstrate its
ability to adapt to the temporal smoothness and spatial sparsity in simulated EEG data.
Finally a benchmark EEG dataset is used to demonstrate MarkoVG’s ability to recover
non-stationary brain dynamics.

Keywords: Source reconstruction, Bayesian inference, the Variational Garrote, EEG,
Inverse problem, Temporal dynamics

1. Introduction

The large body of event-related potential (ERP) studies demonstrates that EEG is a
productive tool for detailed and accurate understanding of brain dynamics. While ERP
studies are typically based on the native scalp electrode measures, imaging of human
brain dynamics is gaining interest. Imaging by source reconstruction solves one of the
main issues with EEG scalp studies, namely the limited spatial specificity due to volume
conduction (Nunez et al., 1997). EEG imaging is obtained by solving an inverse problem,
where the measured EEG scalp data is used to reconstruct the location and strength
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of the signal’s cortical sources. However, the inverse problem is very ill-posed as the
number of possible source locations exceeds the number of EEG electrodes by orders of
magnitude (Hämäläinen and Ilmoniemi, 1994; Pascual-Marqui et al., 1994; Baillet et al.,
2001; Hulbert and Adeli, 2013; De Ciantis and Lemieux, 2013). The inverse problem is
based on a forward model which describes the mapping from a large set of hypothetical
local sources to a smaller number of scalp electrodes. The forward model is constructed
from electrophysiological first principles based on anatomical data and assumed values
of conductivities of the various tissues; scull, scalp, etc. Attempts have been made at
estimating the forward model from the EEG data, see e.g., (Stahlhut et al., 2011; Akalin
Acar et al., 2016; Hansen et al., 2016). However, in the following we will assume the
forward model known and focus on solving the inverse problem.

Although no gold standard EEG inverse solver has been established, the field is con-
verging on methods that employ spatial sparsity (Gorodnitsky and Rao, 1997; Wipf
and Rao, 2007; Vega-Hernández et al., 2008; Friston et al., 2008; Zhang and Rao, 2011;
Stahlhut et al., 2011; Montoya-Martinez et al., 2012; Gramfort et al., 2013; Hansen et al.,
2013c; Hansen and Hansen, 2014; Andersen et al., 2014). Evidence was presented, in re-
cent work (Delorme et al., 2012) that the instantaneous independent components of EEG
signals are dipolar and localized. In particular it was shown that the residual variance
after a dipole fit to the component scalp maps is less than 5% for large fractions of the in-
dependent components. ICA can thus provide sparse source distributions supporting the
search for sets of localized sources, and motivates reconstruction algorithms that empha-
size sparsity in contrast to the distributed spatial source patterns promoted in classical
alternatives (Pascual-Marqui et al., 1994, 2002). The connectivity of the brain tissue
speaks in favor of focal and sparse solutions in general as there exists more short than
long ranging cortical connections (Schüz and Braitenberg, 2002; Markov et al., 2011),
enabling local coordination at typical EEG time scales. Sparsity can furthermore result
from averaging repetitions of stimuli leaving only focal or a sparse network of activity, as
in ERP studies.

Imaging strategies can in general be divided into two categories, each having their
own limitations. Dipole fits assume the number of active dipoles to be fixed and estimate
their locations (Scherg and Von Cramon, 1985). Meaningful solutions thus rely on a qual-
ified guess at the number of active dipoles. In contrast, distributed imaging approaches
estimate the source strength in a large number of source locations (Gorodnitsky et al.,
1995; Friston et al., 2008). These methods thus avoid making subjective assumptions, but
do render the EEG inverse problem underdetermined. Constraints are therefore needed
to obtain unique solutions. These can, however, be formulated based on physiological
assumptions (Haufe et al., 2008) and spatial priors obtained from other neuroimaging
modalities can be incorporated (Henson et al., 2010).

As we are interested in brain dynamics, the goal is to reconstruct not only sources
at a given moment in time, but rather the spatio-temporal source distribution from a
sequence of scalp measurements. To stabilize the solution it is useful to impose some level
of temporal smoothness. A basic scheme is to enforce that the locations of activity are
fixed throughout an analysis window (Wipf and Rao, 2007; Friston et al., 2008; Ou et al.,
2009; Zhang and Rao, 2011; Hansen et al., 2013c). While useful for short time windows,
this may be less appropriate for more extended and non-stationary settings. Recently
proposed methods enforce temporal coherency while also allowing for dynamic activation
patterns (Montoya-Martinez et al., 2012; Gramfort et al., 2013). These methods model
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the temporal dynamics more realistically by assuming brain areas to be sequentially or
simultaneously activated during, e.g. a stimulus after which the activity returns to a
baseline level (Gramfort et al., 2013). Both methods employ a mixed-norm scheme to
recover what is hypothesized to be a structured sparsity pattern across time, see also
(Haufe et al., 2008; Gramfort et al., 2012). These types of convex relaxation schemes are
very interesting and are frequently applied to solve inverse problems in general (Vega-
Hernández et al., 2008). We have started investigations in a recent alternative for sparse
recovery proposed in (Kappen, 2011; Kappen and Gómez, 2013). The approach, called the
Variational Garrote (VG), solves the sparse recovery problem directly without resorting
to convex relaxation. In addition VG enables separation of the variables encoding the
source locations and source magnitudes, which is relevant when a given dipole is active for
an extended period (i.e., location is smooth in time) in which the activation magnitude
involves high-frequency changes. Finally, a Bayesian inference scheme leads to a relatively
low-complexity set of non-linear equations that are iterated towards the solution.

The contribution of the present paper is to advance our understanding of this new
algorithm. VG has been applied to EEG brain imaging, and extended to the spatio-
temporal domain by assuming a fixed sparsity profile in time windows (Hansen et al.,
2013c,b). In this presentation our aim is to replace the fixed sparsity model with a more
flexible Markov prior, which in a preliminary unpublished workshop note was named
“MarkoVG” (Hansen and Hansen, 2013). Here we further develop this model by including
spatial basis functions to obtain focal smooth sources, and improve on the optimization
scheme. In the following sections we analyze our proposed inverse solver and show how
the model’s degree of spatial and temporal sparsity can be adapted to fit the data. Finally
we demonstrate MarkoVG’s application to the spatio-temporal reconstruction of the EEG
response to a face perception task.

1.1. Notation

In the following we have defined X> and Xij as the transpose and the scalar element
in row i and column j of the matrix X, respectively. Capital bold thus indicates a matrix,
a vector is in lower case and in bold font, while a scalar is in normal font, either in lower
or upper case. The L2-norm of x is denoted by ||x||2.

2. Methods

2.1. The Variational Garrote

At the frequencies relevant for EEG acquisition the scalp EEG can be considered
as a linear combination of the underlying brain activity (Baillet et al., 2001). The VG
is therefore immediately applicable as it provides a framework to solve a linear inverse
problem by imposing a “spike-and-slab” like representation (Ishwaran and Rao, 2005).
For T time samples the linear relation between N possible brain sources, X ∈ RN×T , and
K EEG recordings, Y ∈ RK×T , is given by the forward model, A ∈ RK×N . This relation
is modified in VG (Kappen, 2011) by introducing binary variables S ∈ {0, 1}N×T that
dictate the spatio-temporal activation states (inactive or active), i.e.

Ykt =
N∑

n=1

AknSntXnt + Ekt. (1)
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We assume the noise, Ekt, to be i.i.d. with zero mean and normally distributed with
scalar unknown precision β. As seen in eq. (1) there will for each dipolar location n
and time sample t be an estimate of its state Snt and its dipolar strength Xnt. The VG
therefore supplies a framework which is highly flexible for including different priors into
the solver.

2.2. Temporal coherence

We now impose temporal coherence through the binary variable Snt. In a previous
study we suggested to enforce a strict prior on the temporal smoothness by keeping Snt

fixed for each source for a given time window, while allowing for the activity strength,
Xnt, to vary (Hansen et al., 2013c). Here we adapt the VG to provide a data-driven
flexible degree of temporal smoothness of Snt by imposing a Markov prior on this variable
(Hansen and Hansen, 2013; Hansen et al., 2013a). For dipole location n the transition
probabilities of Snt thus depend on the activation state at time sample t− 1 and is given
by Γji = P(Snt = j|Sn,t−1 = i), where i, j = 0, 1. The full transition matrix can be
described by two parameters, as Γ00 + Γ10 = 1 and Γ01 + Γ11 = 1, and is given by

Γ =

[
Γ00 Γ01

Γ10 Γ11

]
=

[
1− Γ10 Γ01

Γ10 1− Γ01

]
. (2)

Through different combinations of Γ10 and Γ01 the Markov prior thus enables flexibility
in both temporal smoothness and spatial sparsity. Temporal smoothness is for example
achieved by having large probabilities of staying in a state, i.e. large Γ00 and Γ11, while
spatial sparsity is achieved by large probabilities of staying in or switching to an inactive
state, i.e. large Γ00 and Γ01.

Lucka et al. suggested to use hierarchical Bayesian methods to solve the inverse prob-
lem of EEG using fully Bayesian inference methods (Lucka et al., 2012). Practically,
Lucka et al. showed these methods’ strengths in the single-measurements setup for es-
pecially deeply located sources. Here we follow Kappen et al., and instead solve the
inverse problem by turning to approximate variational Bayesian inference (Kappen, 2011;
Kappen and Gómez, 2013). First we define the posterior

p(S,X, β|D,Γ) =
p(X, β)p(S|Γ)p(D|X,S,β)

p(D|Γ)
, (3)

where D is the data. Since we intend to optimize the posterior with respect to the source
dipole activations we can ignore the denominator of eq. (3). Next we follow Kappen et
al. by 1) assuming a flat prior on X and β, 2) marginalizing over Snt, and 3) introducing

the variational approximation q(S) =
∏N

n=1 qnt(Snt), where qnt(Snt) = MntSnt + (1 −
Mnt)(1 − Snt). Mnt ∈ [0, 1] describes the posterior probability of source n being active
at time sample t, corresponding to the probability of Snt being 1. The marginal log-
likelihood is by these definitions

log
∑

S

p(S|Γ)p(D|X,S,β) ≥ −
∑

S

q(S) log

(
q(S)

p(S|Γ)p(D|X,S,β)

)
= −F (q,X, β). (4)

where F is an estimate of model evidence and is the so-called “variational free energy”.
As the free energy describes an upper bound on the negative log-likelihood it is minimized
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to find the optimal solution. As suggested in (Kappen, 2011; Kappen and Gómez, 2013)
we apply a dual formulation to reduce the computational complexity by defining Zkt =∑

nAknMntXnt and Lagrange multipliers, λkt. The free energy with the Markovian prior
can be derived from eq. (4) and is given by

F =− KT

2
log

β

2π
+
β

2

∑

t,k

(Ykt − Zkt)
2

+
Kβ

2

∑

t,n

Mnt(1−Mnt)X
2
ntχnn

−
∑

n,t

Mnt log
Γ10

Γ00
+Mn,t−1 log

Γ01

Γ00
+ (MntMn,t−1) log

Γ00Γ11

Γ01Γ10

+NT log
1

Γ00
+
∑

n,t

[Mnt log(Mnt) + (1−Mnt) log(1−Mnt)]

+
∑

t,k

λkt

(
Zkt −

∑

n

AknMntXnt

)
. (5)

Here we define χ ∈ RN×N to be the covariance of the forward model A.
Calculating the partial derivatives of the free energy and equating them to zero, yields

the following equation set

Xnt =
1

Kβ

1

(1−Mnt)χnn

∑

k

λktAkn, Zkt = Ykt −
1

β
λkt, (6)

β =
1

TK

∑

t,k,c

λktλctCkct (7)

where Ckct = δkc +
1

K

∑

n

Mnt

(1−Mnt)χnn
AknAcn, (8)

λct = βŶct def.
∑

c

CkctŶct = Ykt, (9)

Mnt = σ

(
Kβ

2
χnnX

2
nt + γ1 + γ2 (Mn,t−1 +Mn,t+1)

)
, (10)

where σ(x) = (1 + exp(−x))−1 and where the estimated source strength of source n in
time sample t is given by Vnt = MntXnt. While Kappen et al. solve the equation set by
iteration, we implement gradient descent for the variational mean to ensure convergence.
The complexity of the equations set is dominated by the computation of the tensor C
and its inversion; which are of order NK2T and K3T , respectively.

Inspecting the modified VG equations, it is clear that the combination of the Markov

parameters γ1 = log

(
Γ10Γ01

Γ2
00

)
and γ2 = log

(
Γ00Γ11

Γ01Γ10

)
dictates how sparse and smooth

the solution will be. The parameter γ2 thus determines the degree of temporal smooth-
ness, and γ1 corresponds to a sparsity control parameter, where more negative values will
yield more sparse solutions. We note that if Γ01 + Γ10 = 1 then γ2 = 0 and the original
VG formulation of the variational mean is obtained.

In Fig. 1 we show how applying different combinations of sparsity and smoothness
affect the MarkoVG solution in a simulation. In the example we synthesized 25 time
samples containing non-stationary support on the activation for two out of 500 sources
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Figure 1: Example of sparsity and smoothness dependency. A) The simulated signal. Two out of 500
sources are active. These were projected through a random forward model with 50 observations and
added with noise to give a signal-to-noise ratio (SNR) of 10 dB. B) True activation states for five of the
sources. White indicate active state while black illustrates an inactive state. Source 1 and 2 were active
in some time samples, and the remaining 498 were completely turned off. C) and D) The MarkoVG
estimated signal and their activation state for different combinations of sparsity and smoothness degree.
The parameter setting for the solution in the mid insets of C) and D) was found through four-fold
cross-validation on the 50 observations.

(Fig. 1A and B). A random forward model of size 50× 500 was used to project the signal
to 50 observations. From Fig. 1C and D we see that if the sparsity is set too high some
of the relevant time samples are turned off and that this can only be partly remedied
by a high temporal smoothness. If on the other hand the sparsity is too low we obtain
activity in other than the relevant source locations. It is furthermore evident from Fig. 1
that having too little temporal smoothness will cause the solver to miss activation in the
time samples of low magnitude activity. However, the temporal smoothness must not be
too large or activity outside the activated period will emerge. We can therefore conclude
that only the right amount of temporal smoothness improves the solution. Importantly
we also demonstrate that we are able to match the true signal’s properties (Fig. 1A and
B) using four fold cross-validation to find the optimal level of sparsity and smoothness
(mid inset in Fig. 1C and D).

2.3. Spatial coherence

EEG activity arises when regional active neurons are active in synchrony (Baillet
et al., 2001) and therefore many EEG inverse solvers incorporate an assumption of spatial
smoothness (Phillips et al., 2002; Pascual-Marqui et al., 2002; Friston et al., 2008; Haufe
et al., 2008). To obtain a spatially smooth source distribution we introduce spatial basis
functions following the implementation described in the multiple sparse priors model
(MSP) (Friston et al., 2008). The basis functions are based on the adjacency matrix, which
describes how the source space is connected. The connectivity contained in the adjacency
matrix is propagated to neighbors’ neighbors in eight steps and finally a thresholding is
performed. This translates to basis functions extending from their center to maximally
their eighth-order neighbors (Fig. 2A). The degree of smoothness is controlled by a
parameter that is set as suggested in (Friston et al., 2008). With this setting each basis
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Figure 2: The spatial basis functions. A) Example of one basis function’s spatial distribution. Red/blue
indicate high/low numeric activity. B) Centers of the 776 sampled basis functions.

function covers between 98-128 dipoles when the cortex surface has been segmented into
a mesh of 8196 nodes.

In order to reduce the complexity of the inverse solver not all dipoles (or nodes)
in the source space will serve as centers of basis functions. Friston et al. placed the
centers by first sampling 256 evenly spaced source indices (Friston et al., 2008), and then
also included their symmetrically located sources on the other hemisphere. Finally the
hemispherical symmetric centers were paired to create 256 additional basis functions. In
total 768 basis function were created with 512 representing unilateral activity and 256
bilateral activity (Friston et al., 2008).

To ensure an even distribution in space, rather than in the source index, we propose
to sample the basis function centers based on the connectivity of the mesh and thereby
obtain better coverage of the cortex. We thus let the adjacency matrix determine whether
a randomly sampled center should be included. The precise requirement is that there
must be at least three vertices between all centers. By seeding the random generator
the locations of the basis function centers are controlled. With our applied seeding, 776
centers are obtained, shown in Fig. 2B. In both sampling techniques all locations are part
of more than 1 basis function. In the original method each source location is included in
3 to 17 basis functions while in our method each source location is a part of 8 to 16 basis
functions.

2.4. MarkoVG

The inference scheme for VG with a Markovian prior is explained in eqs. (1)-(10) and
seen implemented in https://github.com/STherese/VG_inverse_solvers. The spatial
basis functions are included simply by projecting the forward model A onto these. This
produces the reduced forward model Abasis = AB, where B contains the basis functions
in the columns. The optimum level of sparsity and temporal smoothness is determined
through four-fold cross-validation on the electrodes. The free energy is used to estimate
the optimum setting for each fold, and the median across these defines the parameter
setting. Since we are working with EEG recorded from 70 electrodes 17-18 electrodes are
in each fold, and we therefore believe that it is likely that the brain activity will be seen
to some degree by all four folds. We compare our proposed method with the below three
inverse solvers, which all produce temporally stationary source distributions.
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2.5. Multiple sparse priors

MSP (Friston et al., 2008) specifies another Bayesian approach of finding sparse source
distributions. As previously described, inference is based on a number of spatial basis
functions with compact support, these are pruned or incorporated in the solution through
a restricted maximum likelihood procedure. Smooth temporal source distributions are
obtained by creating temporal projectors from the EEG signal. In effect this creates
rather stationary temporal activation patterns. The implementation used in the following
experiments is from the SPM12 software (Ashburner et al., 2014).

2.6. T-MSBL

T-MSBL (Zhang and Rao, 2011) is an extension of the multiple measurement vectors
(MMV) sparse Bayesian learning (SBL) (Wipf and Rao, 2007) method which exploits
temporal correlation to obtain smooth temporal dynamics. T-MSBL assumes a block-
structure where temporal correlations are modeled in the blocks. Automatic relevance
determination (ARD) (Hansen and Rasmussen, 1994; MacKay, 1995) is applied to identify
the active sources (blocks) and prune the irrelevant. In the following experiments we
employ the implementation provided in the toolbox by Zhilin Zhang http://dsp.ucsd.

edu/~zhilin/TMSBL.html. We apply two versions of T-MSBL. In the first version we
follow the recommendations of the toolbox and set the noise level to “large” if SNR< 6
dB and to “mild” if SNR≥6. These two intervals translate into two numerical noise levels.
We refer to the first version as “T-MSBL” which is partly favored in the simulations as the
true noise level is provided. In the second version we perform four-fold cross-validation
to estimate the regularization parameter, we call this version “T-MSBL cross”.

2.7. M-FOCUSS

The FOCal Underdetermined System Solver (FOCUSS) employs a reweighted norm
minimization and finds sparse solutions by defining the regularization norm to be equal to
or less than 1 (Gorodnitsky and Rao, 1997). M-FOCUSS is an MMV extension developed
in (Cotter et al., 2005) and also here extended to be applicable to noisy data. The latter
version is the so-called regularized M-FOCUSS which performs iterative weighting using
the diagonal matrix W ∈ RN×N to find the dipole estimates X, i.e. in iteration it

W(it)
n,n = ||X(it−1)

n,: ||1−p/22 , with p ∈ [0, 2] (11)

X(it) = W(it)W(it)>A>(AW(it)W(it)>A> + λI)−1Y. (12)

We use the implementation of the regularized M-FOCUSS provided in the same toolbox
as the T-MSBL algorithm. The regularization parameter, λ, can be approximated by the
noise variance of the data (Zhang and Rao, 2011) and in the simulations we therefore
use the exact noise variance for this parameter. The M-FOCUSS is thus favored in the
simulations. As suggested by Cotter et al. we set the norm to be p = 0.8, which should,
according to the authors, provide a reasonable balance between being sparse and not
having to many local minima.
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Figure 3: Example of two simulated sources. In each repetition one to four sources were planted.

2.8. Simulations

We first evaluate MarkoVG in a simulation study. In line with previous EEG simu-
lation studies (Friston et al., 2008; Stahlhut et al., 2011; Montoya-Martinez et al., 2012;
Gramfort et al., 2013) we generated synthetic EEG signals by randomly planting one
to four sources and projecting their temporal dynamics through a forward model. The
sources were modeled as having a spatial distribution given by the earlier described basis
functions where the centers could be placed in any of the dipoles of the mesh (and not
only in the reduced set used for reconstruction). The source signal was projected to scalp
EEG electrodes through a forward model generated for subject ”A” in the real data ex-
periment described below. The forward model contains the projection of 8196 dipoles to
70 EEG electrodes.

The temporal dynamics of the sources were each generated from random white noise
which was low pass filtered to yield frequency content up to 20 Hz. We created a signal of
25 time samples. To obtain varying degrees of non-stationarity we only kept the activity
in the mid section of these time samples. An example of the temporal dynamics of a set
of sources is shown in Fig. 3. Noise was added to yield SNRs of 0 to 14 dB.

Across the applied SNRs 100 data sets were used to compare MarkoVG to MSP, T-
MSBL and M-FOCUSS. All inverse solvers used the 776 earlier described basis functions
in their reconstruction. The performance was judged based on a source retrieval score
called the F1-measure (Rijsbergen, 1979; Makhoul et al., 1999), as well as the source
localization error. The F1-measure is defined as

F1-measure =
2 · precision · recall

precision + recall
=

2 · TP

TP + FP + P
, (13)

where TP , FP and P are the true, false and actual positives, respectively. It is noted
that this is a rather strict measure as only a perfect correspondence between planted and
estimated activity will yield perfect source retrieval, i.e. F1-measure = 1. Since we only
used a subset of the possible basis function centers (776 out of 8196) to reconstruct from,
perfect reconstruction was only obtainable when the planted sources were basis functions
from the subset. However, since the basis functions describe locally coherent activation
some of the actual activity can be recovered even if the planted source component is not
directly contained in the set used for reconstruction.

We defined the localization error as the Euclidean distance between each estimated
source/dipole and the nearest planted source. The reported error is the average over all
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estimated sources at all time samples containing simulated activity. We proceeded in
this way as considering only the maximum magnitude source from the estimation would
disregard any spurious activity located far from the true sources.

2.9. Benchmark EEG data

To further investigate MarkoVG we applied it to EEG recorded during a well studied
paradigm, namely the multi-subject multimodal dataset studying face recognition (Wake-
man and Henson, 2015). Images of famous faces, unfamiliar faces and scrambled faces
were presented to 19 subjects in six runs of 7.5 minutes. We investigated face perception
from the 70-channel EEG data recorded in run 1 for three subjects, here termed ”A”,
”B” and ”C”. In this run the subjects were presented with approximately 50 famous, 50
unfamiliar and 50 scrambled faces. As we are interested in finding the response to faces
we averaged over the two face conditions and subtracted the average of the scrambled face
condition (see EEG sensor data in Supplementary Fig. 1 and 2A). For further informa-
tion on the experimental setup used in the data collection we refer to the documentation
provided by Wakeman et al. (Wakeman and Henson, 2015). We built forward models in
SPM8 using a three layered boundary element method head model (Phillips, 2000). The
head model was the result of segmenting T1-weighted MRI scans of the three investigated
subjects.

It has been shown that face perception exhibits partially bilateral activation (Eimer
and McCarthy, 1999; Henson et al., 2009). In the source reconstruction we therefore
employed the basis functions set described by Friston et al. comprising both unilateral
and bilateral basis functions. For comparison we also show the solutions obtained using
MSP, T-MSBL and M-FOCUSS; also with the basis function set described by Friston
et al. As the EEG signal was averaged over many repetitions we judged the noise level
needed for T-MSBL to be “mild”. For M-FOCUSS an estimate of the noise variance was
calculated based on a 100 ms pre-stimulus window.

3. Results

3.1. Simulations

In Fig. 4 we investigated the effect different combinations of sparsity and smoothness
levels have on the MarkoVG solution. Note that these combinations have to respect the
specification of the prior probabilities, i.e. the columns of the matrix in eq. (2) must
sum to 1 and have elements with values between 0 and 1. The relevant combinations of
sparsity and temporal smoothness were therefore contained in the band shown in Fig. 4.

Fig. 4A demonstrates that low free energy calculated on the validation folds in a cross-
validation scheme coincides with low localization error (Fig. 4B) and high F1-measure
(Fig. 4C). This is evidence that the free energy can be used to optimize parameters for
performance. The optimal solution was located in the vicinity of the dashed line where
γ2 = −γ1 and more precisely just above the dashed line, particularly when considering
the F1-measure. In the following we assumed the relation γ2 = −0.9γ1, and thus reduced
the search space of the optimal parameter setting from two to one parameter. Some
intuition on the implications of the defined relation can be gained by propagating the
relation to the transition probabilities, i.e., setting γ2 = −γ1 implies that the probability
of staying in an inactive and active state are equal (Γ00 = Γ11). Hence, implies that
transitioning from an inactive to an active state is as likely as the reverse. In this case
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Figure 4: Example of the dependence of sparsity and smoothness on the MarkoVG solution illustrated
on simulated data. The simulated source distribution for this example can be seen in Fig. 3 and was
created using an EEG forward model. The black dashed line indicates γ1 = −γ2. White areas in the plots
illustrate where combinations of γ1 and γ2 are not meaningful, see text. A) The free energy calculated
on the validation sets in a four-fold cross-validation scheme. Shown is the mean across these folds. B)
The localization error averaged across time and estimated sources, and C) F1-measure of the MarkoVG
solution; 0 indicates no correct sources are retrieved/many false sources are retrieved and 1 indicates all
correct and no false sources are recovered.

there is no sparsity bias, only temporal smoothness is enforced if Γ00 > 0.5. To promote
sparse solutions we heuristically applied the factor 0.9, based on complete scans of the
parameter space as seen in Fig. 4.

In Fig. 5 we applied the above mentioned sparsity-smoothness relation and per-
formed cross-validation on one parameter for MarkoVG. We compared MarkoVG to MSP,
T-MSBL, T-MSBL with cross-validation, and M-FOCUSS, in 100 simulations across dif-
ferent levels of noise. It can be observed that MarkoVG achieved the best localization
error and that MarkoVG and T-MSBL outperformed the other methods with respect to
the F1-measure. We further observe that cross-validation was not effective for T-MSBL.

3.2. Face perception EEG data

Fig. 6 presents the source distributions of the face perception data as estimated by
MSP, T-MSBL, M-FOCUSS and MarkoVG for three subjects. The temporal dynamics
of the basis function/source component having highest activity in the time interval 130
to 200 ms after stimuli onset is shown in blue in the top panel with the locations marked
in blue in the lower panel. The second largest valued basis function is similarly shown in
red. These basis functions were bilateral in several of the shown examples.

Most solvers recovered contrast activity in or close to the expected areas, i.e. the left
and right occipital face areas (OFAs) and fusiform face areas (FFAs). More specifically
MarkoVG placed the strongest activation (blue circles) in or near the FFA for all sub-
jects. Focusing on subject ”A” the strongest basis function for T-MSBL, M-FOCUSS and
MarkoVG were located in the FFAs, marked with blue circles in Fig. 6A. All four meth-
ods found activation in the OFAs; MSP had its strongest activated sources close to the
OFA, the same for the second strongest activation for M-FOCUSS and finally MarkoVG
had its second strongest activation in the OFA.

The presented inverse solvers generally showed the well-known temporal response to
viewing faces, i.e. the N170 ERP component. The N170 component normally appears
130-200 ms after presentation of a face (Itier and Taylor, 2004). The solvers peaked
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Figure 5: Performance on simulated data; created with a real EEG forward model. For each 11 SNR
levels 100 simulations were run with simulated activity consisting of one to four sources (basis functions)
randomly placed on the cortex, each having non-stationary temporal dynamics, see example in Fig. 3.
Errorbars indicate standard error of the mean. A) Localization error averaged across time and sources.
B) The source retrieval score, F1-measure; 1 indicates optimal retrieval. Note, perfect performance
is not expected as the locations of the planted sources were drawn from the entire mesh and sought
reconstructed based on a subset.

between 150 ms and 170 ms after stimuli, however, the N170 peak was less defined for
MSP, TMSBL and M-FOCUSS for subject ”B”. It is further noted that MarkoVG differed
from the other methods by being temporally as well as spatially more sparse.

In Fig. 7 we show the averaged observed ERP as well as the ERP predicted by
MarkoVG. These are quite similar, however with a slight bias towards zero of the MarkoVG
predicted ERPs. This is similarly demonstrated for MSP, T-MSBL and M-FOCUSS in
Supplementary Fig. 1. To avoid scaling issues in a comparison we show in supplementary
Fig. 2B the temporal correlations across channels between the observed and predicted
EEG signals for subject ”A”. These were again similar for all methods.

4. Discussion

Solving the ill-posed inverse problem of EEG and obtaining detailed spatio-temporal
knowledge of cognitive processes require us to make relevant prior assumptions on the
solution. Such assumptions should be based on prior knowledge of the brain, for example,
from brain anatomy and physiology. Common assumptions include on the spatial side
sparsity and smoothness, meaning that the source distribution of interest is believed to
consist of relatively few source patches, each having temporally coherent source strength.
Sparsity is a common assumption when solving ill-posed inverse problems in general as it
mitigates the non-uniqueness of the problem (Donoho et al., 2006). In EEG imaging it is,
as mentioned earlier, further motivated by the existence of more short ranging connections
than long ranging. Sparsity has previously been obtained through regularization of the
inverse problem, e.g., by imposing the Lp-norm, where p ≤ 1 (Gorodnitsky and Rao,
1997; Matsuura and Okabe, 1995). When p = 1 the problem is still convex however
the correct solution is only guaranteed under certain conditions that are usually not met
because of the highly correlated columns of the EEG forward model (Donoho et al., 2006).
Furthermore, studies have shown that the L1-norm produces spurious sources (Liu et al.,
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Figure 6: Reconstruction of EEG face perception data for subject ”A”, ”B” and ”C”. The two strongest
basis functions’ temporal dynamics (top) and their locations (bottom) for MSP, T-MSBL, M-FOCUSS
and MarkoVG. The highest magnitude source is shown in blue and second highest in red. The highest
magnitude basis functions were for several of the examples bilateral. The glass brains show the activity
for the 512 maximum magnitude dipoles at the time sample with highest magnitude source, here at
151-170 ms after stimuli onset. Source strengths are directly comparable between sources, subjects and
solvers but are in arbitrary unit due to lack of units of the forward model Litvak (2016)
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2004; Hansen et al., 2013c). Employing Lp-norms where p < 1 will produce more sparse
solutions, it however also implies non-convexity.

Bayesian approximations such as SBL (Tipping, 2001) should produce fewer local
minima (Zhang and Rao, 2011) and are therefore also very promising. ARD is in SBL
used to prune away variables by assigning a hyperparameter to each variable dictating
whether to keep or discard the variable. Extending SBL to the MMV framework one
hyperparameter controls all the time samples for each variable (Wipf and Rao, 2007).
As more samples are available in determining whether a variable is relevant in the MMV
model an improved solution is obtained (Wipf and Rao, 2007; Zhang and Rao, 2011).
However, the assumption of common sparsity profile across time does not always hold
physiologically.

More flexible ways of handling and exploiting temporal coherency have been proposed
(Montoya-Martinez et al., 2012; Gramfort et al., 2013), wherein signals are modeled as
being non-stationary. Structured sparsity profiles are achieved by Gramfort et al. by
time-frequency analysis and modeling each active source as a summation of Gabor atoms
(Gramfort et al., 2013) . Montoya-Martines et al. avoid synthesizing a dictionary contain-
ing temporal patterns by using the sparse group LASSO regularizer (Montoya-Martinez
et al., 2012). While these two methods both base their solution on regularization through
the L1/L2-norm, we propose to obtain sparser solutions through the VG (Kappen, 2011)
which approximates the L0-norm regularizer. Furthermore the VG has the favorable trait
of estimating both the state of activation (active/non-active) and the activation strength
of the active sources. This allows for modeling the temporal dynamics in EEG as having
smooth temporal support, while allowing for more rapid changes in the dipole strength,
under the assumption that the location of activation varies slower than the activation
strength. By applying a Markovian prior on the support, the level of smoothness in the
temporal sparsity profile is adapted to the observed EEG data.

We extended MarkoVG by incorporating spatial basis functions inspired by earlier
implementations (Friston et al., 2008). Spatial smooth compact source patches are mo-
tivated by knowledge of the EEG generators’ spatial extension, which is estimated to be
at least 5× 5 mm2 (Baillet et al., 2001) and often extending several centimeters (Michel,
2009). Incorporating spatial basis functions has the additional benefit of reducing the
computational complexity when there are fewer basis functions than original sources.
There is however a risk that the center of a “true” source is a source with low activity
in the basis functions. This is a potential bias that is incurred to counter the uncer-
tainty and ill-posedness of the EEG inverse problem. These assumptions are argued to
impose limited bias as in (Friston et al., 2008). Another related possible concern is the
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use of fixed orientations and simplified forward models in general. Several studies argue
for improving source reconstruction by using as detailed and accurate forward models as
possible (Akalin Acar and Makeig, 2013; Windhoff et al., 2013), and we note that it is
indeed possible to combine MarkoVG with any type of forward model. Incorporation of
both flexible dipole orientations and spatial coherency could, for example, be achieved by
the so-called ‘sparse basis fields’ introduced by Haufe et al. (Haufe et al., 2011). Finally,
increasing the number of spatial basis functions should also be investigated in future work.

In summary we applied the physiological meaningful assumptions that the underlying
EEG generators are spatially smooth and sparse, and temporally variable smooth/sparse.
The effectiveness of implemented assumptions can in general be validated through simu-
lation studies. We therefore tested the performance of MarkoVG in a controlled setting
where we also compared the proposed algorithm to three other solvers. On the synthetic
data we found that MarkoVG was better at identifying the correct active sources and
time samples. MarkoVG was thus more effective in recovering the sparsity level, both
spatially and temporally. Importantly, we showed that even when favoring the T-MSBL
and especially the M-FOCUSS algorithm superior performance to MarkoVG was not
accomplished.

In real data hypothesized assumptions can be validated using other imaging techniques
such as fMRI or through lesion studies which can provide information about the location
of specific information processing in the brain. The estimated temporal dynamics can
be validated through single cell recordings that can indicate when specific brain areas
are involved in an EEG response. We tested our algorithm on the EEG response to
seeing faces as compared to scrambled faces. In this paradigm we know from fMRI
studies (Henson et al., 2003) and combined EEG/MEG studies (Henson et al., 2009) that
the activated areas include the FFA and OFA. Studies of patients with lesions in the
FFA and OFA further validate the importance of these areas in face perception (Eimer
and McCarthy, 1999; Dalrymple et al., 2011). The face/scrambled face contrasted fMRI
recordings included in the multimodal study we extracted EEG from, have been analyzed
at the group level in Fig. 3b in (Wakeman and Henson, 2015). The O/FFAs were also here
dominating the face response as compared to the scrambled face condition. Furthermore,
the face-sensitive response was sparse and largely symmetric across hemispheres.

The MSP, T-MSBL, M-FOCUSS and MarkoVG confirmed the existence of face-
sensitive activity in the FFA and OFA. Frontal activation was also recovered by all al-
gorithms, partly agreeing with the before mentioned fMRI study which also contained
frontal activation. The temporal dynamics recovered by the inverse solvers in the most
strongly activated sources showed focused activity around the N170 component. This
was especially true for MarkoVG. The strongest sources as estimated by MSP, T-MSBL
and M-FOCUSS had activity in the entire time window including peaks around 50 ms.
A study of the single cell recordings from the inferior temporal cortex of the macaque
brain response to faces revealed predictive power in the response after approximately 100
ms (Kiani et al., 2005), thus indicating the relevant face response starts well after 50 ms.
Our study thus indicates that this evidence can be transferred to humans. We also note
that an ERP study on humans has shown that significant differences between faces and
noise textures begins 130 ms after stimuli onset (Rousselet et al., 2008).

The reasoning behind promoting zero activation is a model of focal brain activation,
i.e., specific brain areas become active as a response to given stimuli and then return to
their baseline level. This is for example appropriate when reconstructing contrast EEG
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responses. Furthermore the ill-posedness of the inverse problem and the poor signal-to-
noise levels of EEG in general obstruct accurate recovery of dense source activations. By
sparsity promoting priors we focus on activity in time samples having sufficient evidence.

For reference we provide the computation time required by each inverse solver per
iteration. Computed on a laptop with 2.1-GHz 64-bit i7 processor the time spend per
iteration is 225 ms for MSP, 3 ms for T-MSBL, 0.6 ms for M-FOCUSS and 100 ms for
MarkoVG. We note that MSP in general requires least iterations per inverse problem,
and since MarkoVG performs cross-validation to estimate the sparsity level it is slowest
among the tested algorithms. However, active set based optimization as implemented
in TMSBL and M-FOCUSS (in which inactive variables are pruned), could dramatically
reduce the computation time. This is a current topic of research. Furthermore, we note
that the goal of MarkoVG is to explore the implementation of meaningful physiologically
priors in order to solve the severely ill-posed inverse EEG problem rather than being fast.

In conclusion we have introduced temporal smoothness in the support of the brain
dynamics within the so-called MarkoVG framework, and demonstrated how it can adapt
to the degree of temporal coherency and spatial sparsity underlying the recorded EEG sig-
nal. In simulations and in real data MarkoVG showed promise as a tool for EEG dynamic
imaging. Further improvements on the algorithm involves increasing the flexibility of the
model by optimizing two free parameters instead of working with a fixed relation between
them as here. Such more complex optimization of parameters could be accomplished by
Bayesian optimization methods such as proposed by (Snoek et al., 2012).

Acknowledgements

We thank D. Wakeman and R. Henson for making their multimodal dataset freely
available. We also thank the anonymous reviewers for their constructive comments. The
work was supported in part by the Novo Nordisk Foundation Interdisciplinary Synergy
Program 2014 [“Biophysically adjusted state-informed cortex stimulation (BASICS)”]
(STH) and the Danish Lundbeck Foundation via the Center for Integrated Molecular
Brain Imaging and by the Innovation Fund Denmark project, ”Neuro-technology for 24/7
mental state monitoring” (LKH).

References

Akalin Acar, Z., Acar, C.E., Makeig, S., 2016. Simultaneous head tissue conductiv-
ity and EEG source location estimation. NeuroImage 124, 168–180. doi:10.1016/j.
neuroimage.2015.08.032.

Akalin Acar, Z., Makeig, S., 2013. Effects of forward model errors on EEG source local-
ization. Brain topography 26, 378–396. doi:10.1007/s10548-012-0274-6.

Andersen, M.R., Winther, O., Hansen, L.K., 2014. Bayesian inference for structured
spike and slab priors, in: Advances in Neural Information Processing Systems, pp.
1745–1753.

Ashburner, J., Barnes, G., Chen, C.C., Daunizeau, J., Flandin, G., Friston, K., Kiebel,
S., Kilner, J., Litvak, V., Moran, R., et al., 2014. SPM12 Manual .

16



Baillet, S., Mosher, J.C., Leahy, R.M., 2001. Electromagnetic brain mapping. Signal
Processing Magazine, IEEE 18, 14–30.

Cotter, S.F., Rao, B.D., Engan, K., Kreutz-delgado, K., Member, S., 2005. Sparse Solu-
tions to Linear Inverse Problems With Multiple Measurement Vectors. IEEE Transac-
tions on Signal Processing 53, 2477–2488.

Dalrymple, K.A., Oruc, I., Duchaine, B., Pancaroglu, R., Fox, C.J., Iaria, G., Handy,
T.C., Barton, J.J., 2011. The anatomic basis of the right face-selective N170 in acquired
prosopagnosia: a combined ERP/fMRI study. Neuropsychologia 49, 2553–2563.

De Ciantis, A., Lemieux, L., 2013. Localisation of epileptic foci using novel imaging
modalities. Current opinion in neurology 26, 368.

Delorme, A., Palmer, J., Onton, J., Oostenveld, R., Makeig, S., 2012. Independent EEG
sources are dipolar. PloS one 7, e30135.

Donoho, D.L., Elad, M., Temlyakov, V.N., 2006. Stable recovery of sparse overcomplete
representations in the presence of noise. Transactions on Information Theory, IEEE
52, 6–18. doi:10.1109/TIT.2005.860430.

Eimer, M., McCarthy, R.A., 1999. Prosopagnosia and structural encoding of faces: Evi-
dence from event-related potentials. Neuroreport 10, 255–259.

Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N.,
Henson, R., Flandin, G., Mattout, J., 2008. Multiple sparse priors for the M/EEG
inverse problem. NeuroImage 39, 1104–1120.

Gorodnitsky, I., George, J., Rao, B., 1995. Neuromagnetic source imaging with FOCUSS:
a recursive weighted minimum norm algorithm. Electroencephalography and clini-
cal Neurophysiology 95, 231–251. URL: http://www.sciencedirect.com/science/
article/pii/001346949500107A.

Gorodnitsky, I.F., Rao, B.D., 1997. Sparse signal reconstruction from limited data using
FOCUSS: A re-weighted minimum norm algorithm. Signal Processing, IEEE Transac-
tions on 45, 600–616.
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Figure 1: Observed and predicted ERP for each channel for subject “A”, “B” and “C”.
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Figure 2: Scalp maps belonging to subject “A” (as included in the main paper). A) The face/scrambled
face differential ERP 150 ms after stimuli onset. B) Correlations across time (0-250 ms) between the
observed EEG and as predicted by the inverse solvers.
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Data-driven forward model inference for EEG brain imaging
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Abstract

Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial
resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly
alleviates this problem and effectively turns EEG into a brain imaging device. The quality of the source reconstruction
depends on the forward model which details head geometry and conductivities of different head compartments. These
person-specific factors are complex to determine, requiring detailed knowledge of the subject’s anatomy and physiol-
ogy. In this proof-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward
model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional
parametrization of head geometry and compartment conductivities, built using a corpus of forward models. Combined
with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model
by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specifi-
cation. Our work demonstrates that personalized EEG brain imaging is possible, even when the head geometry and
conductivities are unknown.

Keywords: Forward model, Inverse problem, Free energy, Principal component analysis, EEG

1. Introduction

Functional brain imaging is an important tool for un-
derstanding the computational architectures underlying
behavior and for guiding possible therapies for neuro-
logical diseases [1]. While EEG is growing increasingly
popular for these tasks due to its experimental flexibility
and excellent temporal resolution [2, 3, 4, 5], a direct in-
terpretation of the EEG signal based on the native scalp
electrode measurements is hampered by the confound-
ing effects of volume conduction [6, 7]. However, the
macroscopic EEG signal is generally believed to origi-
nate from well-localized gray matter sources [8, 9], and
therefore makes full 3D spatial reconstruction of the
dipole source distribution a valuable imaging modality.
The source reconstruction process has been shown to
reduce non-brain artifact signal components [10]; it al-
lows incorporation of spatial a priori information from
functional activation databases [11]; and it generally
leads to improved interpretability [12, 13] by reducing
the blurring effects of volume conduction.

∗Corresponding author
Email addresses: sofha@dtu.dk (Sofie Therese Hansen),

sohau@dtu.dk (Søren Hauberg), lkai@dtu.dk (Lars Kai Hansen)

The EEG scalp electrodes measure the aggregate ac-
tivity of a large number of synchronously active neurons
[8, 9]. At the relevant frequencies for EEG, the signal
propagation from cortical sources to scalp can be con-
sidered linear and instantaneous, hence implying a lin-
ear relationship between neural activity, represented by
the set of discrete dipolar sources, and the scalp mea-
surements [6]. This linear relation can be represented
by a so-called ‘forward model’. Source inference is fun-
damentally ill-posed, as we generally have many fewer
electrodes than potential locations of activated dipoles
[14]. Inference is therefore highly dependent on a priori
information to succeed. With a few notable exceptions
to be discussed below, current research almost exclu-
sively focuses on managing a priori information with re-
spect to the source distributions, while considering the
forward model ‘known’ [15]. Here, we challenge the
assumption of the forward model being known and in-
stead suggest learning the forward model from the ac-
tual EEG data, using a new data-driven representation
of the set of feasible forward models.

The forward model summarizes the geometry and
conductances of the various tissue compartments
(skull, scalp, etc.) and is therefore inherently person-

Preprint submitted to NeuroImage July 4, 2016



2 METHODS

dependent. Estimation of the forward model currently
depends on access to anatomical information, e.g. in
the form of computerized tomography (CT) or mag-
netic resonance imaging (MRI) scans of the person’s
head [15, 16, 17]. Such scans are segmented to produce
an anatomical model consisting of nested compartments
[18, 19] and a forward model is then established, essen-
tially by solving Poisson’s equation in the so-defined
geometry [6]. Obtaining a high-quality model of the
head geometry further demands inspection of the seg-
mented head compartments and human intervention to
correct for possible mistakes [20] and thus introduces
variability and complicates the procedure. Knowing the
exact head geometry must be combined with the cor-
rect conductivity values of the head compartments to
yield accurate EEG source localization. Most often,
these values are taken to be population averages or stem
from the experimental findings of e.g. Rush et al. [21]
and Cohen et al. [22]. However, it is known that the
skull:brain conductivity ratio in particular varies greatly
between people, and additionally that a correct specifi-
cation of this ratio is important for accurate EEG imag-
ing [23, 24]. Akalin Acar et al. [25] suggest to optimize
the skull:brain conductivity ratio based on the compact-
ness and focality of the reconstructed sources. The tech-
nique, however, is reliant on the subject’s MRI data.

The lack of a well-specified forward model has led
to an interest in the factors that contribute to its un-
certainty, and the skull shape in particular has been
found to be an important factor [24]. Statistically, the
uncertainty can be represented by treating the forward
model as a stochastic variable to be estimated as part of
the source reconstruction problem. Bayesian evidence
can be used to choose the most likely forward model
among a small set of pre-defined candidates, for exam-
ple [26, 27]. This does not, however, allow interpola-
tion of forward models, i.e. a new subject is handled by
a forward model from a subject in the candidate-set.

In the more general setup [28], the forward model
uncertainty was represented by a multivariate Gaussian
distribution, for which the mean is the conventional
anatomically based estimate of the forward model.
Bayesian inference then allowed for source reconstruc-
tion, where the forward model can be mildly adapted to
the EEG recordings. In practice, the forward models at-
tained were similar to the anatomically based mean, and
limited flexibility was gained. Thus, there is a need for
a flexible prior over forward models that allows genera-
tion of forward models tailored to new subjects.

When structural scans are unavailable, template or
average models can be used. Studies have demonstrated
the usefulness of spherical harmonics to describe the

head anatomy and to generate approximate head mod-
els [29, 30, 31, 32]. In the noise-free case, approx-
imate boundary element method (BEM) head models
based on population averages showed relatively low lo-
calization errors [29]. The averages were suggested to
be either surface-based, where the head geometry was
decomposed using spherical harmonics in order to pro-
vide inter-subject correspondence, or based on averag-
ing lead field matrices. The approximate head mod-
els were further investigated by Valdés-Hernández et
al. who performed Bayesian model averaging (BMA)
based on the recorded EEG to estimate a weighted aver-
age over database head models [30]. López et al. used
spherical harmonics and BMA to infer the cortical sur-
face based on optimization of the model evidence only
given the M/EEG [31].

We propose to extend and combine the previous lit-
erature using a data-driven approach in which a for-
ward model corpus is used as a prior for new subjects.
Combined with the EEG of a new subject, the prior is
optimized to provide an individualized forward model.
In this proof-of-concept-study, we show for synthetic
data that the inferred forward models for unseen sub-
jects provide more accurate source distributions than a
template forward model. We invoke the so-called Varia-
tional Garrote [33, 34]; a Bayesian framework that con-
veniently allows us to integrate a priori information and
in recent work has shown promise for spatio-temporal
source reconstruction [35, 36]. For synthetic and real
EEG data, we further show that the inferred forward
models lead to source reconstructions of similar qual-
ity to those obtained via the unused MRI scan of the
subject. This is evidence that adequate forward mod-
els can be estimated without access to subject-specific
anatomical or biophysical information. As the proposed
method does not require structural scans of the new sub-
ject or the skull:brain conductivity ratio, we believe that
the technique will enable a wider applicability of EEG-
based imaging.

2. Methods

In the following section, we describe the first step
towards a completely data-driven approach for forward
model inference, also visualized in Fig. 1.

We generate a corpus of forward models from struc-
tural scans of 16 participants combined with differ-
ent skull:brain conductivity ratios to produce multiple
forward models for each subject. We represent the
information of this forward model corpus in a low-
dimensional subspace using principal component anal-
ysis (PCA) [37]. PCA representation is a generative
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Figure 1: The process of creating forward models and their projec-
tion to PCA space. (a) For each of the 16 subjects, a T1-weighted
image is used to construct a forward model. (b) The forward model is
here constructed using a three-layered BEM head model (scalp-skull-
brain). For each subject, 100 forward models are created with varying
skull:brain conductivity; from 1:250 to 1:15. (c) 2D PCA projection
of the forward models. The test subject is withheld from the PCA
representation.

model (a probability density function [38]) and it can
therefore be used to simulate or predict new forward
models, effectively interpolating in the corpus of for-
ward models. Based on the suggested data-driven repre-
sentation, it is possible to propose or actively search for
a potential forward model for a person not included in
the database. We suggest to infer a forward model for a
new subject by using this person’s recorded EEG signal
to optimize an estimate of the model evidence, visual-
ized in Fig. 2 and expressed in equation A.6. The main
steps in the proposed forward model inference pipeline
thus include:
• Generate a corpus of P forward models represen-

tative of variations in head geometry and conduc-
tivities. The corpus is contained in a matrix of size
P × (N · K) when defining each forward model to
map N cortical sources to K electrodes.

• Decompose the forward model corpus using PCA
and create a low-dimensional representation of for-
ward models.

• For a new subject, search for a forward model in
the PCA representation which optimizes the free
energy given the EEG data and the source model.
The result is a personalized forward model and a

Candidate sources

Figure 2: The free energy summarizing the ability of a model to de-
scribe the data and its complexity. We calculate the free energy based
on the inference scheme proposed in the Variational Garrote (VG).
Formally, the free energy in VG expresses the Bayesian combination
of data fit (difference in true and estimated signal) which considers
the estimated source density and the forward model, and complexity
through a sparsity-promoting prior on the source density.

source distribution for the new subject.

These steps are more carefully described below together
with the data used for validating the method.

2.1. Neuroimaging Data

We apply the EEG recordings and structural MRI
data from 16 healthy subjects (F=7, M=9, age=23-31
years) from the multimodal dataset acquired by R. Hen-
son and D. Wakeman [39, 40]. Functional MRI (fMRI)
and MEG were also recorded but not applied in this
study. The EEG was recorded with 70 electrodes and
the structural MRIs are T1-weighted images recorded
on a Siemens 3T Trio. The study was originally con-
ceived and carried out to investigate the mechanisms
of face perception [41]. We preprocess the EEG data
following the SPM8 (http://www.fil.ion.ucl.ac.
uk/spm) [18] framework through matlab (Mathworks
Inc.) scripts provided by R. Henson. The data are thus
filtered and averaged across epochs within conditions.
Finally we create the differential event-related potential
(ERP) contrasting ‘faces’ versus ‘scrambled faces’ for
one test subject. We thus follow the common approach
in investigating the face-evoked response, i.e. by creat-
ing the differential response and thereby strengthening
the face-sensitive signal [42, 43].

2.2. Forward Modeling

We employ the widely used software pack-
ages, SPM8 [18] and FieldTrip (http://www.
fieldtriptoolbox.org/) [19] to create a database
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of BEM forward models. The structural MRI of each
subject is thus spatially normalized to a template
(MNI) brain. The inverse of this transformation is
used in warping a template/canonical mesh into a
subject-specific mesh on which a forward model is
generated [44]. Each of the 16 participants’ anatomical
MRI scans (Fig. 1a) are thus segmented into scalp,
skull and brain (Fig. 1b). The BEM, in the ‘bemcp’
implementation [45], is used to create the forward
models with scalp, skull and brain conductivities cor-
responding to [1, c, 1] · 0.33, where c is drawn from a
uniform distribution between 1/250 and 1/15. For each
subject, 100 samples are drawn and combined with
the subject’s segmented skull layer thus generating in
total 1,600 forward models covering the relevant range
of skull:brain conductivity ratios [28]. In contrast,
SPM8 fixes the conductivities to [1, 1/80, 1] · 0.33.
Co-registration to the EEG electrodes is obtained
through fiducials placed on the nasion and the left and
right pre-auricular, and through headshape points. The
cortex mesh is set to consist of 8196 vertices.

Although commonly used, the applied procedure to
generate forward models impose several simplifying as-
sumptions. For example, the head is modeled as con-
sisting of only three head layers and each of these have
isotropic conductivity. According to several studies, a
layer modeling the cerebrospinal fluid (CSF), for exam-
ple, should be included in the head model to obtain ac-
curate EEG imaging [24, 46]. However, a recent study
shows that the omission of a CSF layer can be partly
compensated for by adjusting the skull conductivity ap-
propriately [20]. As we do not fix the skull:brain con-
ductivity ratio in our study, but instead approximate it
based on the EEG data, the influence of the missing
CSF is expected to be reduced. Anatomical compart-
ments with anisotropic conductivities can be achieved
by replacing the BEM head model with finite element
method (FEM) estimations [6]. The BEM head model
is, however, often applied because of its low complex-
ity and high accessibility. A further simplification is the
assumption that the cortical folding of a subject can be
accurately described by a nonlinear warping of a tem-
plate model, as implemented in SPM8. The benefit of
this method is the existence of a direct one-to-one corre-
spondence of brain locations between subjects. Akalin
Acar et al. furthermore showed that a subject-specific
warping of a template head model provides reasonable
source recovery of scalp maps generated by a more re-
alistic BEM forward model [24]. Note that these for-
ward models did not assume fixed dipole orientations,
as we do in this study. As we are aiming at generat-
ing forward models personalized to subjects for whom

the head geometry is unknown, these simplifications are
considered reasonable. We finally note that it is indeed
possible to implement more realistic forward models in
the proposed framework.

2.3. Forward Model Representation

Using PCA [37], we obtain a low-dimensional rep-
resentation of the corpus of forward models (Fig. 1c).
Each forward model is a 70 × 8196 matrix, which we
reshape to produce vectors with 573,720 elements. For-
ward models are removed from the corpus if their l2-
norm deviates by more than two standard deviations
from the average l2-norm. Of the 1,600 forward models,
49 are excluded and the matrix L ∈ R1,551×573,720 thus
contains the forward models used for the PCA analysis.
Eigendecomposition is applied to the inner product of
the corpus (where the average forward model has been
subtracted), i.e.

ΣL = LL> = UΛU>, (1)

where U ∈ R1551×1551 contains the eigenvectors and
Λ ∈ R1551×1551 contains the eigenvalues in the diago-
nal. L can be decomposed by L = UΛ1/2V> mean-
ing that V> = (UΛ1/2)−1L = Λ−1/2U>L, where V ∈
R573,720×1551. A new lead field is given by Anew = wV>,
where w is a row vector containing the position of a for-
ward model in the PCA space. For visualization pur-
poses, we create a two-dimensional PCA representa-
tion. The new basis V̄ ∈ R573,720×2 is thus formed by
the two principal components explaining most variance,
corresponding to the two first columns of the eigenvalue
sorted matrix V. A forward model in PCA position
w ∈ R1×2 can therefore be generated by Anew = wV̄>.
To establish an unbiased estimate of the goodness, we
invoke a leave-one-out cross-validation setup, i.e. we
estimate the forward model PCA representation on all
but one test subject.

The 2D projections of the forward models using the
two first principal components are seen in Fig. 1c.
While the horizontal dimension in Fig. 1c is clearly
dominated by the skull conductivity value (decreasing
from left to right) the interpretation of the vertical di-
mension is less clear. It therefore appears to be a com-
posite of both inter-individual anatomical differences
and the conductivity ratio. Subject 16, for example, has
a bigger sized brain than the other subjects, as seen in
Supplementary Fig. 1, and is also seen to be something
of an outlier in the vertical dimension of the PCA rep-
resentation. However, brain size alone does not explain
the subjects’ locations in the PCA space in Fig. 1c. The
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3 RESULTS 2.5 Synthetic EEG Data

two first principal components explain 73% of the for-
ward model variance, while 99% of the variance can be
explained by the first 18 principal components.

We base our forward model inference on a measure
of statistical goodness. Here, we use the free energy
(see Fig. 2), which provides a bound on the evidence in
Bayesian modeling [47]. When optimized, the free en-
ergy can thus be used to quantify the evidence. As seen
in Fig. 2, the free energy provides optimal data fit while
penalizing complexity. We optimize the free energy
with respect to both the source configuration as well as
the forward model representation, as similarly done in
[48]. We apply a source localization procedure based on
a statistical model whose prior favors sparse solutions;
the so-called Variational Garrote [33, 34, 35, 36], de-
scribed in Appendix A. The source localization proce-
dure is contingent on a single regularization parameter:
the prior sparsity level. Sparsity is a common assump-
tion, employed in estimating ill-posed inverse solutions,
and widely applied in EEG imaging [12, 39, 28, 42]. In
EEG, the sparsity assumption is motivated by the appar-
ently sparse focal nature of brain activation [16].

Cross-validation is a general technique used to esti-
mate how well a model generalizes to new data, and for
independently sampled data, the performance estimator
is unbiased [49]. Here, we apply cross-validation at two
levels: At the forward model level to optimize statisti-
cal regularization parameters (the sparsity level which
determines the number of active dipoles), and at the
corpus level to infer the forward model for a hold-out
subject, as previously mentioned. For the first level of
cross-validation, we split the EEG data into four folds
by partitioning the 70 EEG electrodes (Fig. 3a). Each
fold contains 17-18 electrodes and covers the surface of
the scalp. While, importantly, the overall performance
estimator is unbiased, the correlations among electrode
signals imply that our parameter estimation step may be
suboptimal.

2.4. Sparsity Estimation

In our analysis, the optimal forward model is the one
which yields lowest free energy, as defined in eq. (A.6).
The free energy, however, depends on both the unknown
forward model as well as on the sparsity parameter γ.
The latter is estimated using four-fold cross-validation
at 250 randomly selected training forward models and
interpolated across the PCA space using kernel regres-
sion [50] with a Gaussian kernel. The bandwidth of the
kernel specifies the smoothness with which γ changes.
In order not to depend on a particular choice of the band-
width, we consider a uniform prior on this parameter,
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Figure 3: Estimation of optimal sparsity. (a) Partitioning of the 70
EEG electrodes into four folds. Each fold is represented by one color.
(b) The sparsity levels obtained by cross-validation using the mean
squared error (MSE) between the true and predicted signal. For visu-
alization purposes, we only show the results for the test subject (red
crosses) and the non-test subject who obtained best F1-measure (blue
dots), see also Fig. 5. The black cross indicates the data-generating
forward model. The estimated sparsity levels were smoothed (full
lines) with respect to conductivity ratio within each subject.

which is marginalized numerically such that the free en-
ergy is evaluated and then averaged across a discrete set
of bandwidth values (from 0.25 to 3 in 12 steps). How-
ever, for the simulation studies we investigate only one
bandwidth. For the database forward model prediction,
we smooth the sparsity within each subject across con-
ductivity ratio, see Fig. 3b. The smoothing is in general
performed to reduce the noise introduced by the coarse
four-fold cross-validation procedure.

2.5. Synthetic EEG Data

In the first experiment we construct synthetic data by
positioning two bilateral sources in the occipital lobes
(Fig. 4a-b). In the second simulation study we addition-
ally plant two frontal sources, (Fig. 6a-b). The sources
in the two studies have the temporal dynamics of one or
two pairs, respectively, synchronous sine waves across
25 time samples. Assuming a sampling frequency of
200 Hz, the simulated sine waves have a frequency of
approximately 15 Hz. The created source distribution is
projected to 70 electrodes through the forward model of
a test subject with a specific skull:brain conductivity ra-
tio. We add noise to yield a signal-to-noise ratio (SNR)
of 5 dB.

3. Results

Our analysis of predictive forward model representa-
tions was based in part on simulated data and in part on
real EEG data. For both simulated and real EEG data,
we used the forward models previously described.

To validate the predicted 2D PCA forward models,
we calculated selected summary data; the matrix coher-
ence [51] and the condition number [52], see Table 1.
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Real Predicted
1−coh [×10−4] 2.7 (0.95 - 5.5) 2.6 (1.0 - 4.1)

κ 97.3 (59.2 - 795.6) 109.4 (61.5 -281.1)

Table 1: Matrix properties of the real and PCA-predicted forward
models. Median (and full interval) of the coherence (coh) and condi-
tion number (κ) are shown. As all forward models approach a coher-
ence of 1, we show 1 minus the coherence. Note that by excluding the
‘outlier subject’ (subject 16) the maximum condition number among
the real forward models was 151.
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Figure 4: Source distributions of the planted activity and as estimated
using the free energy-optimal forward model. (a) Posterior view of
the inflated brain showing the locations of the two planted sources.
The locations of the estimated sources were identical to these. (b) The
real and (c) estimated time courses of the two sources.

High correspondence between actual and predicted for-
ward models was found for both measures. In further
studies we found that, while increasing the number of
principal components yielded higher similarity between
the predicted and real forward models, it did not neces-
sarily increase source recovery accuracy (Supplemen-
tary Fig. 2-4).

3.1. Performance of database forward models - Simu-
lations

As a validation step, we investigated whether, from
all of the 1,600 corpus forward models, the free en-
ergy was able to recover an adequate forward model.
The simulated EEG signal for this study arose from two
active sources, see Fig. 4a. In Fig. 3b, we show the
estimated sparsity levels and the smoothed values for
the test subject and the best-performing non-test subject
across skull:brain conductivity ratios.

The forward model with the lowest free energy was
found to be from the test subject and had a conductivity
ratio very similar to the data-generating forward model
(Fig. 5a). This choice of conductivity ratio was fur-
ther supported by also having low cross-validation error
(Fig. 5b). However the cross-validation error seemed to
be more unspecific and did not have an as clearly de-
fined minimum as the free energy. The geometric local-
ization error (Fig. 5c) and a source retrieval index, viz.
the F1-measure [53], balancing the source localization
precision and recall scores (Fig. 5d), attained their opti-
mal values at the conductivity ratio with lowest free en-
ergy. Furthermore, the best-performing training subject
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Figure 5: Forward model prediction among the database test and train-
ing subjects for simulated data. The source signal in Fig. 4a-b was
projected to sensor space with the forward model indicated by the
black cross. The smoothed sparsity levels in Fig. 3b were applied to
the Variational Garrote in combination with the forward models of
the test subject (red) and the training subjects (averaged in black, s.d.
in gray, training subject with highest F1-measure in blue). (a) The
free energy computed on all electrodes. (b) The normalized cross-
validation MSE including zoom inset. (c) The Euclidean localization
error summed across the two sources. (d) The F1-measure.

also had a subset of forward models leading to perfect
source reconstruction. Using the free energy-optimal
forward model from the set of test and training sub-
jects, we obtained a source distribution with the correct
source locations, and temporal dynamics very similar to
the true activity (Fig. 4).

In our example, the consequence of choosing a wrong
conductivity ratio when having a forward model based
on the subject’s structural scan is a summed localization
error of up to 30 mm (Fig. 5c), i.e. an average error of
15 mm. This result is in line with previous studies [24].

3.2. Performance of 2D PCA-generated forward mod-
els - Simulations

Next, we assessed the ability of the free energy to
optimize over the PCA-predicted set of forward mod-
els, i.e., not restricting ourselves to the actual database
of forward models. The simulated source activity is
seen in (Fig. 6a-b). The PCA-projected forward mod-
els (Fig. 1c) of the training subjects spanned our search
space (Fig. 7 and Supplementary Fig. 5). Note that we
withheld the forward models of the test subject from the
PCA decomposition.

The lowest free energy (Fig. 7a) matched the opti-
mal region of the localization error (Fig. 7b) and F1-
measure (Fig. 7c). The sources localized with the for-
ward model having the lowest free energy were thus ac-
curately placed and additionally had similar temporal
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dynamics to the truth (Fig. 6c). In Table 2, we com-
pare the performance of the recovered forward model
with that of template and subject-specific forward mod-
els. The forward model having the correct anatomy and
conductivity is seen to perform similarly to the inferred
forward model. Assuming template conductivity ratio
performed reasonably well, while also using template
anatomy severely impaired the performance.

The inference pipeline was investigated on five more
subjects. In general, we found that a reasonable for-
ward model could be inferred when the requested test
forward model was in the span of the training forward
models (Supplementary Figs. 6-10). For three subjects,
the source densities estimated with the inferred forward
models were of similar high performance as the true
forward models (Supplementary Tables 2-4). For the
fourth subject, one of the sources was not retrieved by
the predicted forward model (Supplementary Table 5).
Finally, when using the ‘outlier subject’ as the test sub-
ject, we were only able to recover one of the simulated
sources (Supplementary Table 6).

3.3. Performance of 2D PCA-generated forward mod-
els - Real EEG data

Finally, we demonstrate the forward model inference
pipeline on a real EEG dataset. We used the differential
EEG response of seeing faces versus scrambled faces
stemming from EEG data recorded from the same test
subject as used in the previous experiments. Again we
created a 2D PCA space using the remaining 15 sub-
jects on which we investigated the free energy, cross-
validation error profile and the sparsity profile (Fig. 8a-
c; see additionally Supplementary Fig. 11).

The free energy-optimal forward model for the left-
out-subject’s EEG data provided a source distribution
(Fig. 8d) with a maximal response at 160 ms, cor-
responding to the N170 face-related EEG component
[41]. The estimated sources were bilaterally located
and four of the dominating sources were in the vicin-
ity of the O/FFA (Fig. 8d, upper panel). The recov-
ered face perception locations were thus consistent with
previous EEG/MEG [43], as well as fMRI [54] stud-
ies. We further compared our results to the source den-
sities obtained when applying a forward model built
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Table 2: Performance of the forward model inferred by lowest free energy (white cross in Fig. 7) and forward models constructed from
template/subject-specific head geometry and skull:brain conductivity ratio (σ). Four sources were planted, one in each half hemisphere, i.e.
left/right and posterior/anterior.
†Calculated as the Euclidean distance between a true source and the strongest estimated source in the same half hemisphere.
‡ Calculated as the sum of the variational mean, m (see Appendix A).

Optimized Template head, Subject head, Subject head,
forward model template σ template σ true σ

Free energy 2994 3192 3057 2956
MSE 0.63 0.55 0.93 0.61
F1-measure 1 0 0.44 0.5
Localization error †

Left posterior 0 mm 16.7 mm 15.1 mm 0 mm
Right posterior 0 mm 18.4 mm 6.0 mm 6.0 mm
Left anterior 0 mm 19.7 mm 0 mm 5.7 mm
Right anterior 0 mm 23.7 mm 0 mm 0 mm
Sum 0 mm 78.5 mm 21.1 mm 11.7 mm

Estimated number of active sources‡ 4.0 4.0 5.1 4.0

using the MRI scan of the subject and the SPM8 de-
fault skull:brain conductivity ratio 1:80 (Fig. 8e), and
obtained when using the canonical/template forward
model (Fig. 8f). The personalized canonical forward
model provided a source distribution similar to the one
of the PCA forward model, however, the estimated
sources were less symmetrically located (Fig. 8e, up-
per panel). The template forward model yielded even
less hemispheric symmetry and more anteriorly located
activity (Fig. 8f, upper panel). The typical face-related
N170 peak was recovered with all three forward models
(Fig. 8d-f, lower panel).

4. Discussion

Functional brain imaging by EEG source localization
poses a highly ill-posed inverse problem due to the low
spatial resolution of the sensors and the high number
of potential locations of the cortical sources. There is
a broad consensus that forward model uncertainty is an
important limiting factor for EEG imaging by source re-
construction [17, 24, 55, 56, 57, 58, 59]. Our results
add quantitative evidence to this view, both in terms of
the tissue conductivity ratio, which is the main source
of uncertainty if the brain topography is correct, and
more broadly when both anatomy and conductivities
are unknown. This evidence is our main motivation for
proposing a data-driven inference scheme for the for-
ward model: Is there a way to reduce the uncertainties
inherent in conventional electrophysiological tools for
estimating forward models, i.e. the uncertainty of brain
topography and conductivity distributions?

Previously, attempts have been made to achieve point
estimates of the conductivity ratio or to model it as
a random variable establishing a posterior distribution
that encodes the uncertainty of the forward models.

However, in the former case the ratio is estimated from
a discrete set of specific values [55]. In the latter study
validation was found to be challenging in real data, and
it was suggested that in future work, the validation could
be assisted by active conductance mapping using elec-
trical impedance tomography (EIT) [56]. These tech-
niques, however, introduce a new set of highly ill-posed
inverse problems. While we here focus on forward
model inference in the setting of EEG, we note that
the methods developed may also assist other important
tools, such as transcranial magnetic stimulation, direct-
current stimulation [57], and indeed EIT.

As a route of reducing forward model uncertainty, we
proposed a data-driven mechanism for building a rep-
resentation of forward models based on the variability
expressed in a large corpus of models. This approach
represents the database as a relatively low-dimensional
manifold, here chosen to be a two-dimensional lin-
ear subspace. Equipped with an appropriate probabil-
ity density function, the representation allowed us to
simulate new forward models and search for the best-
suited forward model for a specific EEG dataset, with-
out involving the subject’s anatomical data. We showed
that the predicted forward models based on the new
representation share important characteristics with the
database models. We opted for a rather simple, two-
dimensional representation, for the sake of visualiza-
tion. However, the complexity of the forward model
representation can be inferred by statistical means: the
more data, the more complex the forward model repre-
sentation [38].

To evaluate the goodness of a given forward model
for a specific EEG dataset, we applied the Varia-
tional Garrote [34]; a Bayesian sparsity-promoting
source reconstruction approach producing two mea-

Postprint. Final version: http://www.sciencedirect.com/science/article/pii/S105381191630252X



4 DISCUSSION

sures of goodness: the ‘free energy’, a measure of the
model evidence, and cross-validation error based on
the scalp electrode measurements. These measurements
were themselves validated in simulation experiments in
which we showed that the free energy identifies forward
models with small source localization errors and general
high accuracy. Future work will investigate whether the
conceptual approach can also be used with other infer-
ential frameworks. The inverse solvers implemented in
SPM, for example, also provide estimates of the model
evidence [60].

The possibility of effectively recovering important as-
pects of the forward model directly from EEG data us-
ing a data-driven approach is the main novelty of our
method. In the state-of-the-art approach [26], the opti-
mal model is selected within a limited set of candidate
models, all based on the given subject’s anatomical data,
i.e. requiring an MRI or CT scan. We presented evi-
dence that our approach can infer the forward model for
a test subject not included in the database. The simula-
tion study indicated that, by optimizing the free energy,
we can identify a set of forward models that have opti-
mal source retrieval. Thus, our results have immediate
consequences for studies for which the brain topogra-
phy is not available, e.g. because MRI or CT scans are
not recorded, or because available scans do not provide
enough detail. Our method also has potential to be bene-
ficial for specific patient groups for which an MRI or CT
scan is practically/ethically unobtainable, e.g. for pa-
tients in pain, with claustrophobia or other factors mak-
ing it difficult for the subject to remain immobile. Fur-
thermore, the EEG is often recorded with the subject be-
ing in a different position than when the structural scans
were recorded, and this could misrepresent the actual
propagation paths from source-to-scalp measures [61].
This could potentially be remedied by adapting the for-
ward model using the free energy, as similarly suggested
for inferring the head position in MEG acquisition [31].
Finally, one may speculate whether the approach can be
generalized to a dynamic scenario in which the subject
is in motion and hence the brain position relative to the
skull and scalp varies, calling for a dynamic forward
model.

The dataset [40] from where we obtained EEG and
the anatomical MRI scans additionally contains MEG
and fMRI datasets for all 16 subjects for the face-
recognition task. This paradigm has previously been
used to test EEG and MEG source reconstruction meth-
ods [26, 59, 42] and thus allowed us to test the forward
model inference hypothesis. The functional data were
acquired to identify the networks involved in human-
face processing, and consist of randomized presenta-

tions of human faces and scrambled faces. On the differ-
ential EEG response, i.e. the signal mean difference for
the two conditions, we found activation located in the
vicinity of the left and right O/FFAs, showing the face-
related N170 component [41]. The most direct com-
parison can be made with a multi-modal fusion study
[43], which compared and fused MEG and EEG data
to investigate the spatial location of sources and the re-
sponse dynamics. When analyzing MEG data alone, ac-
tivations in the vicinity of the left and right FFAs were
found, while when analyzing the EEG data, activations
in the vicinity of the OFAs were found. Combining both
MEG and EEG modalities made it possible to repro-
duce the activation in all four face areas, as also found in
fMRI studies [54]. Our results are thus consistent with
the EEG/MEG-combined findings. It is our experience
that assuming spatial coherency improves source recon-
struction further, e.g. by using spatial basis functions
[42].

While the present study gives evidence that it is in-
deed possible to infer forward models based on a sub-
ject’s EEG data and an external database of general
anatomical information, it should be extended in sev-
eral directions. First, we aim at making the manifold
description richer by using more realistic head models
[57] and representing the information in higher dimen-
sions. The latter would hinder a grid search for the opti-
mal forward model due to the ’curse of dimensionality’
and optimization techniques such as Bayesian schemes,
e.g. BayesOpt [62] or Metropolis search combined with
BMA [48] would become necessary. The database can
be further extended by adding head geometries for more
subjects using large anatomical scan databases such
as the Biomedical Informatics Research Network [63].
The applied database contains healthy subjects of simi-
lar age and the generated forward model representation
is therefore not expected to generalize directly to very
dissimilar subject groups. However, through the cre-
ation of a large and comprehensive database, we would
potentially be able to infer the diverse and complex head
geometry that influences the measured EEG signal and
thereby obtain better source localization results for a
wide group of subjects. By expanding the ability of
EEG to act as a stand-alone brain imaging device, the
presented strategy therefore has potential to play a key
role in understanding the mechanisms of cognitive pro-
cesses.
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Appendix A. The Variational Garrote

As also described earlier, there exists a linear relationship between the cortical sources and scalp EEG [64]. The
mathematical relation is given by the forward model A ∈ RK×N which maps N dipolar sources (X) to K EEG electrode
signals (Y) in T time samples, i.e.,

Y = AX + ε, (A.1)

where ε is noise.
We chose to perform source reconstruction using a modified version of a sparsity-inducing Bayesian-inference

scheme; the Variational Garrote (VG) [33, 34]. VG has been adapted to solve the EEG inverse problem in a multiple-
measurement vectors framework, called time-expanded VG (teVG) [36]. The teVG (and VG) enforces a ’spike-and-
slab’-like representation [65] by including a binary variable for each potential source, thus encoding whether the
source is active or not. The problem to solve is now

Ykt =

N∑

n=1

AknsnXnt + εnt, εnt ∼ N(0, β−1), (A.2)

where sn ∈ {0, 1} which is assigned the prior p(s|γ) =
∏N

n=1 p(sn|γ) where p(sn|γ) =
exp (γsn)

1 + exp (γ)
[34]. The hyperpa-

rameter γ controls the sparsity level. Note that making s independent of time samples corresponds to an assumed fixed
support for all time samples. The solution scheme proposed by Kappen et al. [34] is based on Bayesian inference by
maximizing the following posterior probability

p(s,X, β|D, γ) ∝ p(s|γ)p(D|s,X, β), (A.3)

where D = {A,Y} and p(X, β) is assumed flat. The solution is non-trivial and Kappen et al. suggest marginalizing
over s and employing a variational approximation. When taking the logarithm

log
∑

s
p(s|γ)p(D|s,X, β) = log

∑

s

q(s)
q(s)

p(s|γ)p(D|s,X, β) (A.4)

and using Jensen’s inequality, a bound on the approximation is recovered (reproduced from [34])

log
∑

s

q(s)
q(s)

p(s|γ)p(D|s,X, β) ≥ −
∑

s
q(s) log

q(s)
p(s|γ)p(D|s,X, β)

= −F(q,X, β), (A.5)

where F(q,X, β) is the variational free energy. The variational approximation is defined as q(s) =
∏N

n=1 qn(sn), here
qn(sn) = mnsn +(1−mn)(1−sn) [34]. The parameter mn is the variational mean and can be interpreted as the probability
of sn being active, and therefore has values between 0 and 1. In order to obtain a tight bound −F(q,X, β) should be
maximized or equivalently F(q,X, β) minimized. Posed in a ‘dual formulation’ the free energy is

F(m,X, β,Z, λ) = −T K
2

log
β

2π
+
β

2

T∑

t=1

K∑

k=1

(Zkt − Ykt)2

+
Kβ
2

T∑

t=1

N∑

n=1

mn(1 − mn)X2
ntχnn − γ

N∑

n=1

mn + N log(1 + exp(γ))

+

N∑

n=1

(
mn log(mn) + (1 − mn) log(1 − mn)

)
+

T∑

t=1

K∑

k=1

λkt

Zkt −
N∑

n=1

mnXntAkn

 .

(A.6)

Here, χ is the covariance matrix of the forward model A. The terms λ (Lagrange multipliers) and Zkt =
∑N

n=1 mnXntAkn

both stem from the dual formulation. Finally γ controls the sparsity level and is found through cross-validation [34].
The remaining parameters are found by equating the partial derivatives with zero and solving the resulting equation
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set. The free energy is seen to be determined by the data fit between the observations and their expected values, and
the model priors. The free energy thus considers both the proposed forward model and the source distribution.

Originally, the solution was obtained through fixed-point iterations, which had a computational complexity scal-
ing quadratically with the number of electrodes and linearly with the number of sources; thus computation time
was relatively low [34]. Parameter updating was further improved by using gradient descent [66]; we adopted the
same scheme in this work. matlab code implementing teVG is available at https://github.com/STherese/VG_
inverse_solvers.
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Forward Model Analysis

Locations of subjects in the PCA space

Brains of the subjects as a function of their vertical position in the PCA space

Subject 16 Subject 1

Supplementary Figure 1: The segmented brains of the 16 subjects, smoothed/interpolated as a function of their locations in the
vertical dimension (from top to bottom) of the PCA space in Fig. 1c (main paper). The left-most brain thus belongs to subject 16.

Performance of the PCA projection

We have in the main text used two principal components (PCs) for the projection of the forward models. We now investigate
the influence the number of PCs has on the PCA forward models’ similarity with the real forward models (Supplementary
Fig. 2) as well as their ability to reconstruct sources (Supplementary Fig. 3).

We use the following expression to estimate a Scaled Difference (ScD)

ScD =
||APCA −Atrue||22
||Atrue − µ||22

(1)

between a “true” forward model, Atrue, and its corresponding projection from the PCA space, APCA. Here µ is the average
of the training forward models. We also compute the Relative Difference Measure (RDM) [1] given by

RDM =

∣∣∣∣
∣∣∣∣

APCA

||APCA||2
− Atrue

||Atrue||2

∣∣∣∣
∣∣∣∣
2

. (2)

Supplementary Figure 2a and b show these two measures for a test subject and two training subjects as a function of the
number of PCs used to create APCA. The maximum number of PCs is here 47 which corresponds to the number of PCs
needed to describe (1 − ε)100%1 of the variance in the training data. The ScD (Supplementary Fig. 2a) converges after
applying about ten PCs for the training subjects while the ScD for the test subject decreases in the first 20 PCs but never
reaches the same low level as the training subjects. Note that the high ScD for medium conductivities (especially for few

PCs) is an artifact of the calculation, since when APCA → µ then
||APCA −Atrue||22
||Atrue − µ||22

→ ||µ−Atrue||22
||Atrue − µ||22

= 1. The RDM

converges for the training subjects after 10-15 PCs while again the test subject does not attain zero difference. However the
RDM of the training subject in the lower panel of Supplementary Figure 2b is for the first few PCs higher than the RDM of
the test subject, but this relation quickly reverses.

Supplementary Figure 3 shows the performance of the PCA forward models as reflected by the best obtainable localization
error across applied regularizations. For this experiment we have planted two posteriorly located sources with sinusoidal
activity across 25 time samples. The source distribution is projected to the electrodes through a real forward model with a
specific skull:brain conductivity ratio and finally noise is added. A forward model is extracted from the PCA space in the

1ε = 2.2204 · 10−16 as defined in matlab, MathWorks Inc.

1
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Supplementary Figure 2: Difference between true and simulated forward models as function of principal components used for
the projection. (a) Scaled Difference and (b) Relative Difference Measure. Fifteen training subjects were used to create the PCA
projection, here results from two are shown along with the test subject.
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Supplementary Figure 3: Performance of source reconstruction using the PCA generated forward models of a test subject and two
training subjects. In total fifteen subjects were used to build the PCA forward model space. Different numbers of applied principal
components for the projection are investigated. The first 17 and 47 components contain respectively 99% and (1−ε)100% of the variance
in the training data. For comparison the reconstruction performance of the real forward model (used to generate the simulated data)
is also shown. Here two posterior sources were planted and SNR= 5 dB. The localization error is a sum of the distances between the
two planted and estimated sources.

location corresponding to where the aforementioned real forward model would project to. Using the PCA forward model
source reconstruction is performed. This procedure is repeated for all 100 levels of conductivity ratios. In Supplementary
Figure 3 we thus compare the performance of the PCA reconstructed forward models for subjects included in creating the
PCA space and for a withheld test subject as a function of the conductivity ratio. We additionally investigate the influence
the numbers of PCs used in generating the simulated forward models has on the performance.

We conclude from these initial experiments that a few PCs give a reasonable representation of a test forward model. The
performance of the PCA forward models for the shown test subject do not show a clear tendency that applying more PCs
gives better reconstruction, e.g. 10 PCs are better than 15, 17 and 47 PCs for a wide range of skull:brain conductivity ratios
(Supplementary Fig. 3). However if more than two sources were planted more PCs might be need.

In Supplementary Fig. 3 it is seen that forward models with very low conductivity ratios has poor performance even when
using the correct forward model. The investigated span of ratios was defined by literature values in [2]. The lower ratio of
1:250 is very low compared to experimental findings. We have seen in other studies that the matrix coherence of the forward
models is highest for lower conductivity ratios [3] thus increasing the ill-posedness of the inverse problem. Studies have also

2



shown worse localization performance when the conductivity ratio is low [3, 4]
Note that the PCA forward model from the direct projection of the true data generating forward model does not necessarily

correspond to the optimal model due to loss of information in the projection. Thus other PCA forward models in a relevant
search space could be able to yield a better source reconstruction.

Singular Value Decomposition

The simulated forward models from the 2D PCA projection are compared to the real forward models through their singular
values. Singular value decomposition is performed on each of the forward models in the four groups: 1) real, used for
training, 2) simulated, used for training, 3) real, used for test and 4) simulated, used for test. Other than showing the
difference between the real and simulated forward models the analysis will also reveal any differences in the test and training
sets. The mean and standard deviation of the mean of the four groups can be seen in Supplementary Figure 4. The singular
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Supplementary Figure 4: Singular values of simulated (PCA) and real forward models. Comparisons is done after conversion to
single precision. The ranks of the forward models are 69.

values are very similar both between training and test and between real and simulated forward models.

Performance of the 2D PCA Generated Forward Models

The simulation study in Figure 7 and 8 is here replicated for several subjects. As mentioned we use the free energy to
recover the optimal forward model in a constructed 2D PCA space. Below we show this for six subjects on synthetic data
(Supplementary Fig. 5-10). The test subject of Supplementary Figure 5 is the same as the one used in the paper. The
procedure is as follows: 1) A 2D PCA space is constructed from the 15 training subjects. 2) A real forward model from the
remaining test subject is used to generate the synthetic EEG data together with a source density of four active sources; two
in each hemisphere; one posterior and one anterior. The activity of the sources are sinusoidal and bilaterally synchronized.
3) The sparsity level is estimated through four-fold cross-validation on the electrodes for 250 randomly chosen PCA training
forward models. The sparsity levels are then intra/extrapolated and smoothed to cover the search space. 4) A 100×100 grid
containing all training subjects’ projected forward models is explored. 5) The PCA forward model with lowest free energy
is reported and used for source reconstruction. In Supplementary Figure 11 real EEG is used instead of the synthetic (a
description of preprocessing of the real EEG data can be found in the main paper).
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Supplementary Figure 5: Test subject 2, simulated EEG data: Search for optimum forward model (white cross) in the PCA space created
by 15 training subjects (black dots). The projections of the forward models of test subject 2 are shown in gray, where the larger circle indicate the
forward model used to generate the simulated EEG. The free energy is used to find the optimum forward model. The localization error depicted
is the sum of errors in mm across the four planted sources. F-measure scale: 0 (zero sources are correctly identified) to 1 (perfect correspondence
of planted and recovered locations of sources). MSE: normalized mean square four-fold cross-validation error. The applied sparsity level is found
through four-fold cross-validation on 250 training forward models which were subsequently used to extrapolate the sparsity level of the space of
interest (the kernel bandwidth of the sparsity smoothing was set to 1, see Methods). Finally we show the estimated number of sources.

Supplementary Table 1: Test subject 2: Performance of simulated forward model with lowest free energy (white cross in Supplementary Fig.
5) and template/subject specific forward models. Four sources were planted, one in each half hemisphere, i.e. left/right and posterior/anterior.
†Calculated as the Euclidean distance between a true source and the strongest estimated source in the same half hemisphere.
‡ Calculated as the sum of the variational mean, m.

Optimized Template head, Subject head, Subject head,
forward model template σskull:brain template σskull:brain true σskull:brain

Free energy 2994 3192 3057 2956
MSE 0.63 0.55 0.93 0.61
F-measure 1 0 0.44 0.5
Localization error †

Left posterior 0 mm 16.7 mm 15.1 mm 0 mm
Right posterior 0 mm 18.4 mm 6.0 mm 6.0 mm
Left anterior 0 mm 19.7 mm 0 mm 5.7 mm
Right anterior 0 mm 23.7 mm 0 mm 0 mm
Sum 0 mm 78.5 mm 21.1 mm 11.7 mm

Estimated number of active sources‡ 4.0 4.0 5.1 4.0
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Supplementary Figure 6: Test subject 7, simulated EEG data: Search for optimum forward model (white cross) in the PCA space created
by 15 training subjects (black dots). The projections of the forward models of test subject 7 are shown in gray, where the larger circle indicate the
forward model used to generate the simulated EEG. The free energy is used to find the optimum forward model. The localization error depicted
is the sum of errors in mm across the four planted sources. F-measure scale: 0 (zero sources are correctly identified) to 1 (perfect correspondence
of planted and recovered locations of sources). MSE: normalized mean square four-fold cross-validation error. The applied sparsity level is found
through four-fold cross-validation on 250 training forward models which were subsequently used to extrapolate the sparsity level of the space of
interest (the kernel bandwidth of the sparsity smoothing was set to 1, see Methods). Finally we show the estimated number of sources.

Supplementary Table 2: Test subject 7: Performance of simulated forward model with lowest free energy (white cross in Supplementary Fig.
6) and template/subject specific forward models. Four sources were planted, one in each half hemisphere, i.e. left/right and posterior/anterior.

Optimized Template head, Subject head, Subject head,
forward model template σskull:brain template σskull:brain true σskull:brain

Free energy 3046 3192 3132 3027
Mean cross-val error 0.43 0.38 0.41 0.41
F-measure 1 0 0.25 1
Localization error

Left posterior 0 mm 16.7 mm 11.5 mm 0 mm
Right posterior 0 mm 18.0 mm 0 mm 0 mm
Left anterior 0 mm 19.7 mm 12.1 mm 0 mm
Right anterior 0 mm 54.1 mm 41.9 mm 0 mm
Sum 0 mm 108.4 mm 65.5 mm 0 mm

Estimated number of active sources 4.0 3.3 4.0 4.0
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Supplementary Figure 7: Test subject 9, simulated EEG data: Search for optimum forward model (white cross) in the PCA space created
by 15 training subjects (black dots). The projections of the forward models of test subject 9 are shown in gray, where the larger circle indicate the
forward model used to generate the simulated EEG. The free energy is used to find the optimum forward model. The localization error depicted
is the sum of errors in mm across the four planted sources. F-measure scale: 0 (zero sources are correctly identified) to 1 (perfect correspondence
of planted and recovered locations of sources). MSE: normalized mean square four-fold cross-validation error. The applied sparsity level is found
through four-fold cross-validation on 250 training forward models which were subsequently used to extrapolate the sparsity level of the space of
interest (the kernel bandwidth of the sparsity smoothing was set to 1, see Methods). Finally we show the estimated number of sources.

Supplementary Table 3: Test subject 9: Performance of simulated forward model with lowest free energy (white cross in Supplementary Fig.
7) and template/subject specific forward models. Four sources were planted, one in each half hemisphere, i.e. left/right and posterior/anterior.

Optimized Template head, Subject head, Subject head,
forward model template σskull:brain template σskull:brain true σskull:brain

Free energy 3298 3661 3416 3273
Mean cross-val error 0.47 0.55 0.43 0.63
F-measure 0.75 0 0.57 0.75
Localization error

Left posterior 0 mm 19.7 mm 12.2 mm 0 mm
Right posterior 0 mm 20.2 mm 20.1 mm 0 mm
Left anterior 5.7 mm 13.1 mm 0 mm 5.7 mm
Right anterior 0 mm 23.7 mm 0 mm 0 mm
Sum 5.7 mm 76.7 mm 32.3 mm 5.7 mm

Estimated number of active sources 4.0 3.3 3.0 4.0
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Supplementary Figure 8: Test subject 11, simulated EEG data: Search for optimum forward model (white cross) in the PCA space created
by 15 training subjects (black dots). The projections of the forward models of test subject 11 are shown in gray, where the larger circle indicate the
forward model used to generate the simulated EEG. The free energy is used to find the optimum forward model. The localization error depicted
is the sum of errors in mm across the four planted sources. F-measure scale: 0 (zero sources are correctly identified) to 1 (perfect correspondence
of planted and recovered locations of sources). MSE: normalized mean square four-fold cross-validation error. The applied sparsity level is found
through four-fold cross-validation on 250 training forward models which were subsequently used to extrapolate the sparsity level of the space of
interest (the kernel bandwidth of the sparsity smoothing was set to 1, see Methods). Finally we show the estimated number of sources.

Supplementary Table 4: Test subject 11: Performance of simulated forward model with lowest free energy (white cross in Supplementary Fig.
8) and template/subject specific forward models. Four sources were planted, one in each half hemisphere, i.e. left/right and posterior/anterior.

Optimized Template head, Subject head, Subject head,
forward model template σskull:brain template σskull:brain true σskull:brain

Free energy 3233 3390 3329 3181
Mean cross-val error 0.61 0.40 0.43 0.30
F-measure 0.75 0 0.57 1
Localization error

Left posterior 0 mm 16.7 mm 11.5 mm 0 mm
Right posterior 0 mm 18.0 mm 0 mm 0 mm
Left anterior 5.7 mm 13.1 mm 0 mm 0 mm
Right anterior 0 mm 44.1 mm 35.3 mm 0 mm
Sum 5.7 mm 91.9 mm 46.8 mm 0 mm

Estimated number of active sources 4.0 3.2 3.0 4.0
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Supplementary Figure 9: Test subject 12, simulated EEG data: Search for optimum forward model (white cross) in the PCA space created
by 15 training subjects (black dots). The projections of the forward models of test subject 12 are shown in gray, where the larger circle indicate the
forward model used to generate the simulated EEG. The free energy is used to find the optimum forward model. The localization error depicted
is the sum of errors in mm across the four planted sources. F-measure scale: 0 (zero sources are correctly identified) to 1 (perfect correspondence
of planted and recovered locations of sources). MSE: normalized mean square four-fold cross-validation error. The applied sparsity level is found
through four-fold cross-validation on 250 training forward models which were subsequently used to extrapolate the sparsity level of the space of
interest (the kernel bandwidth of the sparsity smoothing was set to 1, see Methods). Finally we show the estimated number of sources.

Supplementary Table 5: Test subject 12: Performance of simulated forward model with lowest free energy (white cross in Supplementary Fig.
9) and template/subject specific forward models. Four sources were planted, one in each half hemisphere, i.e. left/right and posterior/anterior. *
Estimated source closer to planted right posterior than right anterior.

Optimized Template head, Subject head, Subject head,
forward model template σskull:brain template σskull:brain true σskull:brain

Free energy 3308 3433 3341 3260
Mean cross-val error 0.56 0.46 0.46 0.36
F-measure 0.25 0 0.25 1
Localization error

Left posterior 0 mm 17.3 mm 13.8 mm 0 mm
Right posterior 6.7 mm 18.4 mm 0 mm 0 mm
Left anterior 28.2mm 4.8 mm 15.1 mm 0 mm
Right anterior 96.7 mm* 40.3 mm 42.5 mm 0 mm
Sum 131.6 mm 80.8 mm 71.5 mm 0 mm

Estimated number of active sources 4.0 4.1 4.0 4.0
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Supplementary Figure 10: Test subject 16, simulated EEG data: Search for optimum forward model (white cross) in the PCA space created
by 15 training subjects (black dots). The projections of the forward models of test subject 16 are shown in gray, where the larger circle indicate the
forward model used to generate the simulated EEG. The free energy is used to find the optimum forward model. The localization error depicted
is the sum of errors in mm across the four planted sources. F-measure scale: 0 (zero sources are correctly identified) to 1 (perfect correspondence
of planted and recovered locations of sources). MSE: normalized mean square four-fold cross-validation error. The applied sparsity level is found
through four-fold cross-validation on 250 training forward models which were subsequently used to extrapolate the sparsity level of the space of
interest (the kernel bandwidth of the sparsity smoothing was set to 1, see Methods). Finally we show the estimated number of sources. Note that
the training subjects does not cover the projection of subject 16 thus making the recovery of a good forward model difficult for this test subject.

Supplementary Table 6: Test subject 16: Performance of simulated forward model with lowest free energy (white cross in Supplementary Fig.
10) and template/subject specific forward models. Four sources were planted, one in each half hemisphere, i.e. left/right and posterior/anterior.

Optimized Template head, Subject head, Subject head,
forward model template σskull:brain template σskull:brain true σskull:brain

Free energy 2774 2850 2783 2730
Mean cross-val error 0.41 0.42 0.42 0.64
F-measure 0 0.29 0.75 0.75
Localization error

Left posterior 33.7 mm 26.5 mm 0 mm 0 mm
Right posterior 25.8 mm 14.9 mm 0 mm 0 mm
Left anterior 26.2 mm 54.5 mm 17.6 mm 15.4 mm
Right anterior 5.9 mm 0 mm 0 mm 0 mm
Sum 91.6 mm 95.9 mm 17.6 mm 15.4 mm

Estimated number of active sources 6.0 3.4 4.2 4.0
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Supplementary Figure 11: Search for the forward model best reconstructing the EEG data from test subject 2 in the PCA space created
by 15 training subjects (corresponding to the lines formed by the black dots). The projections of the forward models of test subject 2 are shown
in gray. The free energy is used to find the optimum forward model (white cross). MSE: normalized mean square four-fold cross-validation error
(minimum MSE is found at the black cross). The number of active sources at lowest free energy is estimated to 24.6. The applied sparsity level
is found through four-fold cross-validation on 250 training forward models which were subsequently used to extrapolate the sparsity level of the
space of interest. The kernel bandwidth of the sparsity smoothing was varied between 1/4 to 3 in steps of 1/4, the figures shown are thus averages
over applying these 12 levels of smoothing.

Computational Complexity

Although the forward model inference procedure has not been time optimized we provide some indication of computational
complexity for reference. Computed on a laptop with 2.1-GHz 64-bit i7 processor the sparsity estimation for one forward
model takes approx. 15 min. Computing the sparsity for 250 forward models as we did will thus require approx. 2.5 days.
When having the sparsity it takes approx. 5 min to estimate the source density and free energy for one forward model,
meaning that calculating forward models in a 100 × 100 grid would take approx. 35 days. However, many steps can be
performed in parallel and computation can therefore be distributed to several C/GPUs. Assuming 100 workers the forward
model space can thus effectively be optimized in one day.
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Appendix I

Supplement to teVG

The following provides supporting information for the teVG as presented in
Section 3.3.

Dual representation of the free energy F (same as in eq. (3.8))
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The partial derivatives of the free energy

∂F

∂Xnt
= βKmn(1−mn)χnnXnt −

K∑

k=1

λµtmnAkn (I.2)

∂F

∂Zkt
= β(Zkt − Ykt) + λkt (I.3)

∂F

∂β
= −KT

2β
+

1

2

T∑

t=1

K∑

k=1

(Zkt − Ykt)2 +
K

2

T∑

t=1

N∑

n=1

mn(1−mn)X2
ntχnn (I.4)

∂F

∂mn
=
βK

2

T∑

t=1

(1− 2mn)X2
ntχnn − γ + log

(
mn

1−mn

)
−

T∑

t=1

K∑

k=1

λktXntAkn

(I.5)

∂F

∂λkt
= Zkt −

N∑

n=1

mnXntAkn. (I.6)

Setting the above equal to zero yields the equation set
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where σf (a) = (1 + exp(−a))
−1.



Appendix J

Supplement to MarkoVG

The following provides supporting information for the MarkoVG as presented
in Section 3.4.

Dual representation of the free energy F (same as in eq. (3.13))
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The partial derivatives of the free energy
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Setting the above equal to zero yields the equation set
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