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l QUIBIM, Valencia, Spain 
m Technische Hochschule Ingolstadt, Ingolstadt, Germany 
n GE Healthcare GmbH, Munich, Germany 
o Radiomics (Oncoradiomics SA), Liège, Belgium 
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A B S T R A C T   

Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare 
studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners 
and protocols to improve stability and robustness. Previous studies have described various computational ap-
proaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics 
and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the 
computational data harmonisation approaches for multi-modality data in the digital healthcare field, including 
harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist 
that summarises common practices for data harmonisation studies is proposed to guide researchers to report their 
research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and 
metric selection are proposed and the limitations of different methods have been surveyed for future research.  
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1. Introduction 

Computational biomedical research aims to advance digital health-
care and biomedical studies by developing computational models that 
improve the precise diagnosis of disease spectrum, analysis of gene ex-
pressions or time series data (e.g., electroencephalograms and electro-
cardiograms). These models are designed to discover novel risk 
biomarkers, predict disease progression, design optimal treatments, and 
identify new drug targets for applications such as cancer, pulmonary 
disease, and neurological disorders. Whilst a well-performed model 
should have characteristics of high performance, robustness, explain-
ability, and reproducibility, it faces the issue that the bias of distribution 
between different datasets dramatically increases the difficulty of 
developing models from large-scale studies. Although data harmo-
nisation is needed with almost any kind of medical data, automated 
methods have been extensively used for medical images, gene expres-
sion analysis, with the rest of the modalities being ignored or harmon-
ised manually. Studies have shown that machine learning based 
approaches, especially deep neural networks, are highly sensitive to the 
distribution of training data. Therefore, there is an urgent need to 
develop approaches that can integrate the device/site-invariant infor-
mation from multiple datasets. To address this issue, researchers 
established standard acquisition protocols [1 3] or definitions [4,5] to 
help data collectors to glean standardised data. For instance, Delbeke 
et al. [2] recommended an acquisition protocol for F-FDG Positron 
emission tomography/computerised tomography imaging (PET/CT), 
and Simon et al. [3] presented a standardised MR imaging protocol for 
multi-sclerosis. Schmidt et al. [4,5] mainly focused on integrating the 
data from routine health information systems, including conducting 
manual harmonisation and rule-based alignment of electronic data. 
Although these acquisition protocols could effectively reduce the cohort 
bias (non-biological variances in cross-scanner/site data), they were 
limited in assisting prospective studies because most studies were 
retrospective and could not be re-acquired with the same standard. In 
addition, a non-standardised acquisition protocol is needed for person-
alised digital healthcare sometimes. Therefore, it is imperative to 
explore a computational method to harmonise multicentre datasets. 

Although some surveys of computational data harmonisation have 
been released [6,7,10], such as MRI (magnetic resonance imaging) [11] 
or CT (computerised tomography) harmonisation, these surveys only 
explored methods of single modality or application and rarely focused 
on evaluation metrics and research guidance (shown in Table 1). 
Moreover, there is a lack of a checklist that can summarise the common 
practice and give guidance for methodology selection and development 
for computational data harmonisation studies. This survey summarises 
the computational data harmonisation strategies for multimodal data in 
the digital healthcare field in terms of methodologies, evaluations, and 
applications. Our paper covers three main areas (i.e., gene expression, 
radiomics, and pathology), with over 96 qualified papers published 
within two decades. This is the largest and the most comprehensive 
exploration of the computational data harmonisation strategies to the 
best of our knowledge. To provide a better scientific practice for the 
community working on data harmonisation, a comprehensive checklist 
with all the steps is proposed to guide the researchers on reporting their 

studies more effectively. With this checklist, explorations (what the 
strategy is) and advances (how well the model performs) of the study 
can be clearly illustrated by reporting the items in model and evaluation 
sections. Overall, the main contributions of this survey can be sum-
marised as:  

• A three-fold taxonomy that describes the methodology, evaluation 
and applications of computational data harmonisation strategies.  

• A checklist with all the steps that can be followed in future data 
harmonisation studies.  

• The critique and limitations of the existing data harmonisation 
strategies and potential studies. 

The rest of the manuscript is organised as follows: (1) Section 2 de-
scribes the definition, motivation, utilisation and solution of 
computational data harmonisation issues; (2) Section 3 illustrates 
how this survey is conducted; (3) Sections 4,5, and6 demonstrate the 
three-fold taxonomy of harmonisation strategies; (4) Section 7 de-
scribes the results of the meta-analysis and presents a checklist for 
data harmonisation studies; (5) Section 8 presents the checklist for 
harmonisation studies and summarises the critiques and limitations 
of current strategies; and (6) Section 9 concludes this survey. 

2. Computational data harmonisation: definition, origin, what 
for and how? 

This section illustrates the details of data harmonisation, including 
the definition, origin, purpose and solutions of computational data 
harmonisation tasks. To better describe these characteristics, the ter-
minology of computational data harmonisation is illustrated in Table 2. 

2.1. What? 

Data harmonisation refers to combining the data from different 
sources to one cohesive data set by adjusting data formats, terminologies 
and measuring units [12]. It is mainly performed to address issues 
caused by nonidentical annotations or records of different operators or 
systems, which requires a standard protocol for manual adjustment. The 
conventional approach for data harmonisation is performed by manu-
ally setting rules or terms to integrate multicentre datasets from health 

Table 1 
Comparison of existing data harmonisation review studies.  

Survey [6] [7] [8] [9] Ours 
Period ~2020 ~2019 ~2020 ~2021 ~2021 
# of reviewed studies N/A 23 49 42 96 
Domain Radiomics Radiomics Radiomics Radiomics Radiomics, Gene, Pathology 
Metric × × × × √ 
Checklist × × × × √ 
Guidance × √ × × √ 
Meta-analysis × √ × × √ 

“# of reviewed studies” indicates the number of included papers in the survey. 

Table 2 
Terminology of computational data harmonisation.  

Terminology Definitions 
Cohort A group of data acquired by the same acquisition protocol and 

devices 
Subjects Patients (objects) involved in the study 
Category The classes that were involved in the study, e.g., cancer vs. normal 
Cases Samples (a subject can produce multiple samples with different 

acquisition protocols) involved in the study 
Cohort bias The non-biological related variances caused by acquisition 

protocols (also named as “batch effect” in gene expression studies) 
Source cohorts The cohort that needs to be harmonised from 
Reference 

cohort 
The cohort that needs to be harmonised to  
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information systems. It requires complex mapping of terminologies and 
manual harmonisations. 

Different from manual harmonisation that relies on a standard 

protocol and manual adjustment, computational data harmonisation in 
digital healthcare aims to reduce the cohort bias (non-biological vari-
ances) given by different data acquisition schemes. It applies 

Fig. 1. Visualised differences in (a) radiomics and (b) pathology images. (a) a lung tumour captured on the same CT scanner with 6 different acquisition protocols 
(From [13]). (b) H&E stained tissue images from different sites [14]. 

Table 3 
Summary of the reproducibility/repeatability studies.  

Reference Intra-repro Inter-repro Repeatability Condition Variables Object Modality 
Jha et al. [23], 2021 30.7% 

(332/1080) 
14.3% 
(154/1080) 

82.2% (888/1080) ICC >0.90 Slice Sickness Phantoms CT 

Emaminejad et al. [24], 2021 8.0% 
(18/226) 

/ / CCC>0.90 Reconstruction Patients CT 

7.5% 
(17/226) 

/ / CCC>0.90 Radiation Dose Patients CT 

Kim et al. [25], 2021 11.0% 
(112/1020) 

/ / CCC>0.85 Acceleration Factors Patients MRI 

Ymashita et al. [26], 2020 / 5.6% 
(15/266) 

/ CCC>0.90 Different Scanners Patients CECT 

Fiset et al. [27], 2019 / 22.6% 
(398/1761) 

/ ICC >0.90 Different Scanners Patients MRI 

Saeedi et al. [28], 2019 20.5% 
(8/39) 

/ / CoV< 5% Tube Voltage Phantoms CT 

30% 
(13/39) 

/ / CoV< 5% Tube Current Phantoms CT 

Meyer et al. [29], 2019 20.8% 
(22/106) 

/ / R2 > 0.95  Radiation Dose Patients CT 

52.8% 
(56/106) 

/ / R2 > 0.95  Reconstruction Patients CT 

39.6% 
(42/106) 

/ / R2 > 0.95  Reconstruction Patients CT 

12.3% 
(13/106) 

/ / R2 > 0.95  Slice Sickness Patients CT 

Perrin et al. [30], 2018 24.8% 
(63/254) 

/ / CCC>0.90 Injection Rates Patients CECT 

13.4% 
(34/254) 

/ / CCC>0.90 Resolution Patients CECT 

Midya et al. [31], 2018 11.7% 
(29/248) 

/ / CCC>0.90 Tube Current Phantoms CT 

19.8% 
(49/248) 

/ / CCC>0.90 Noise Phantoms CT 

63.3% 
(157/248) 

/ / CCC>0.90 Reconstruction Patients CT 

Altazi et al. [32], 2017 21.5% 
(17/79) 

/ / Mean difference <25% Reconstruction Patients PET 

Zhao et al. [13], 2016 11.2% 
(10/89) 

/ / CCC>0.90 Reconstruction Patients CT 

/ / 69.7% 
(62/89) 

CCC>0.90 / Patients CT 

Hu et al. [33], 2016 / / 64.0% 
(496/775) 

ICC>0.80 / Patients CT 

Choe et al. [34], 2019 15.2% 
(107/702) 

/ / CCC>0.85 Reconstruction Patients CT 

CCC: concordance correlation coefficient; ICC: intraclass correlation coefficient; CoV: coefficient of variation; R2: R-squared; CT: computed tomography; MRI: 
magnetic resonance imaging; CECT: consecutive contrast-enhanced computed tomography; PET: positron emission tomography. 
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computational strategies (such as machine learning, image/signal pro-
cessing) to integrate multicentre datasets and reduce their non- 
biological heterogeneity. Compared with data cleansing, data normal-
isation, standardisation, etc., data harmonisation has a broader defini-
tion and is a term that represents the strategies of reducing cohort biases 
(caused by different acquisition protocols and devices). It can be con-
ducted by removing outliers (data cleansing), aligning the location-and- 
scale parameters of cohorts (data normalisation), converting multiple 
datasets into a common data format (data standardisation/trans-
formation, referring to manual harmonisation). It is of note that data 
harmonisation is not as same as style transformation (e.g., generating T1 
images using T2 in MRI, or generating CT using X-Ray images), it only 
focuses on intra-modality datasets. 

2.2. Why? 

This section first illustrates the motivation of computational data 
harmonisation approaches, then describes the source of non-biological 
variances. Computational methods refer to the automatic analysis of 
digital healthcare data, using machine learning or mathematical 
modelling algorithms. It usually requires the extraction and fusion of 
data-derived features from the raw data. For instance, the grey level co- 
occurrence matrix (GLCM), which is one of the most commonly used 
textual features in radiomics, can be used as an independent prognostic 
factor (representing in F-FDG PET/CT images the metabolic intra- 
tumoral heterogeneity) in patients with surgically treated rectal can-
cer [15]. However, datasets acquired from different sites present sig-
nificant variances (Fig. 1), which can hinder the effectiveness of 
extracted features and lead to unstable performance for both computa-
tional and manual diagnosis. In particular, Zhao et al. [13] found a 
considerable segmentation based inconsistency of lung tumours while 
conducting repeated manual labelling by three radiologists. This 
inconsistency could lead to a significant reduction (from 0.76 to 0.28) of 
concordance correlation coefficients for certain radiomics features. 
Therefore, computational data harmonisation is proposed to eliminate 
or reduce these non-biological variances in multicentre datasets for (1) 
enhancing the robustness and reproducibility of computational mod-
ules; (2) producing the fusion of knowledge captured beforehand with 
knowledge captured over a new task; (3) promoting the comprehensive 
performance of computational modules. 

The non-biological data variances are mainly from hardware (e.g., 
scanners and platforms), acquisition protocols (e.g., signal/imaging 
acquisition parameters) and laboratory preparations (e.g., staining and 
slicing). These variances may lead to the weak reproducibility of 
quantitative biomarkers and limit the time-series studies based on multi- 
source datasets, indicating an urgent need for data harmonisation stra-
tegies to generate reproducible features [15,16]. 

2.2.1. Heterogeneity of acquisition devices (inter-device variability) 
Heterogeneity of acquisition devices leads to the variance of multi-

centre data, which is mainly discovered in signals, CT, MRI, and path-
ological images. This heterogeneity is mainly brought by different 
detector systems of vendors, the sensitivity of the coils, positional and 
physiologic variations during acquisition, and magnetic field variations 
in MRI, amongst others. [17–20]. Studies have shown that even using a 
fixed acquisition protocol for different brands of scanners, some radio-
mics features are still non-reproducible. For instance, Berenguer et al. 
[21] explored the reproducibility of radiomics features on five different 
scanners with the same acquisition protocol and witnessed large dif-
ferences, ranging from 16% to 85% of the radiomics features were 
reproducible. Sunderland et al. [22] explored the large variance of 
standard uptake value (SUV) in different brands of scanners, witnessing 
a much higher maximum SUV of newer scanners compared with old 
ones. 

2.2.2. Heterogeneity of acquisition protocols (intra-device variability) 
The different acquisition protocols are the main reasons for cross- 

cohort variability. They mainly include the scanning parameters (e.g., 
voltage, tube current, the field of view, slice thickness, microns per 
pixel, etc.) and reconstruction approaches (e.g., different reconstruction 
kernels) [35]. To investigate the intra/inter reproducibility of radiomics 
features, several studies have been conducted by test-reset experiments 
(Table 3). In Table 3, a good reproducibility/repeatability is defined as 
the high correlation coefficient (e.g., ICC, CCC, R2) or low difference (e. 
g., mean difference, CoV) between two features. For instance, a certain 
radiomics feature is considered reproducible/repeatable when the CCC 
between features extracted from two repeated scans is larger than 0.90. 
As shown in Table 3, the scanning parameters notably affect the radio-
mics features, making the statistical analysis difficult. For instance, only 
15.2% of radiomics features are reproducible when using soft and sharp 
kernels during the reconstruction [34]. This weak reproducibility 
greatly hinders the large-scale digital healthcare studies and applica-
tions of computational models. Although implementing strict standard 
protocol can reduce non-biomedical variances, the non-standard 
acquisition protocol is needed by physicians for personalised 
centre-based image quality considerations. For instance, the thickness 
and pixel size are regularly adjusted on a case-by-case principle to 
improve the data quality [36]. Therefore, the heterogeneity of acquisi-
tion protocol is unavoidable which requires a general solution. 

2.2.3. Heterogeneity of laboratory preparations (Preparation variability) 
All the gene expression, radiomics, and pathological data heavily 

suffer from laboratory variances, including sample preparation, assay, 
slicing, and staining. For single-cell RNA sequencing (scRNA-seq) and 
microarray data, there are various analysis platforms with different 
biases, making it difficult to integrate and compare results from multi- 
centre/batch of data [37,38]. For radiomics data, variances such as in-
jection rate and radiation dose may also affect the data quality. 
Considering the pathology data, variances are mainly from manual op-
erations [39,40] (e.g., biopsy sectioning, sample fixation, dehydration 
and stain concentration), all these factors result in the variation of pixel 
values and stain consistencies. 

2.3. What for? 

Large scale and longitudinal studies. The challenges of integrating 
and utilising multicentre datasets make researchers realise the impor-
tance of data harmonisation when conducting large-scale studies [41]. 
On the one hand, the information fusion without harmonisation cannot 
achieve reproducible results in large scale and longitudinal studies [13, 
31,42]. Some researchers have advised that the conclusions reached 
must be treated with caution since some features can vary greatly 
against minor non-biomedical changes [43]. Data harmonisation, on the 
other hand, is critical for patients who are monitored longitudinally and 
imaged on different scanners. For instance, the longitudinal PET cannot 
provide helpful information if they are gathered from multi-scanners, 
since the relationship between SUV and outcomes may get concealed 
[16]. 

Transferability of computational models. The unstable perfor-
mance has been found when applying computational models to multi-
centre datasets [44]. To address this issue, transfer learning was 
proposed to enhance the robustness of computational models by holding 
a priori knowledge on the way data can vary. It feeds the model with 
further data which reflects the variability that the model may encounter 
at inference time. However, transfer learning requires extra training 
samples to reduce the uncertainty with respect to the variability of data 
that models can cope with. This could be inapplicable for prospective 
studies in the digital healthcare field. Different from transfer learning, 
computational data harmonisation strategies can process the data 
without extra training or fine-tuning, which provide an applicable so-
lution for multicentre studies. Meanwhile, there has been mounting 
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evidence that combining data harmonisation with machine learning 
algorithms enables robust and accurate predictions on multicentre 
datasets [45]. 

2.4. How? 

The deployment of a computational method includes preparation 
(acquiring datasets such as staining, scanning), pre-processing, model-
ling and analysing, while the data harmonisation can be performed 
through the processing of images/signals/gene matrices (i.e., sample- 
wise) or alignment of data-derived features (i.e., feature-wise). The 
sample-wise harmonisation is usually conducted before modelling, 
aiming to reduce the cohort variance of all training samples and fuse 
multicentre samples as a single dataset. It involves image processing, 
synthesis and invariant feature learning approaches. After acquiring 
cohort-invariant data, a single model can be developed for clinical 
related tasks. The feature-wise harmonisation aims to reduce the bias of 
extracted features, such as the GLCM, convex hull area of the region of 
interest. It is usually performed on extracted feature matrixes, elimi-
nating the cohort variances through fusing the extracted features (shown 

as the left bottom subfigure Fig. 2, the red and blue dots indicate samples 
from different cohorts). Both the sample-wise and feature-wise data 
harmonisation can effectively reduce the variances and improve the 
performance of the analysis. However, the feature-wise harmonisation 
requires several models to extract features of interest, leading to com-
plex model development. Moreover, when the number of samples in 
each cohort is small, it is hard to develop the corresponding models. 

3. Methods 

3.1. Literature search and review 

The literature search, selection and recording were conducted 
independently by two researchers with experience in computer science 
and biomedicine. The agreement was then achieved by a third reviewer 
with the expertise of biomedical data analysis. All these searches were 
performed on Scopus Preview (Elsevier) database for publications up to 
July 10, 2021. To investigate the strategies of harmonisation for infor-
mation fusion, we searched the literature using the keyword of ’batch 
effect removal’, ’deep learning’ and ‘harmonisation’, ‘data 

Fig. 2. Workflow of developing a computational data harmonisation method.  

Fig. 3. Literature selection procedure.  
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harmonisation’, ‘normalisation’ and ‘harmonisation’, ‘colour normal-
isation’, ‘reproducibility’ and ‘radiomics’, ‘image standardisation’. 
These initial keywords were searched both independently and jointly to 
cover more literature. It is of note that both ‘normalisation’ and 
‘standardisation’ are methods of harmonisation. The pre-screening was 
first conducted by viewing the abstract and title to filter those irrelevant 
articles. The eligibility was then checked through our criteria (given in 
Section 3.2) to remove the unqualified works for full-text review. 

A flowchart demonstrating the literature selection procedure is 
presented in Fig. 3. After removing the irrelevant and duplicated articles 
by screening the titles and abstracts, 238 articles were selected for full- 
text screening. Based on eligibility criteria, 139 publications were 
considered unqualified, and 96 papers were included in this systematic 
review. 

3.2. Inclusion and exclusion criteria 

The entry criteria were: (1) original research publications in peer- 
reviewed journals or international conferences; (2) focus on the 
computational data harmonisation of digital healthcare data. The 
excluded criteria were: (1) studies that only applied existing harmo-
nisation strategies without further development; (2) studies that focused 
on manual harmonisation such as regulations; (3) review and literature 
survey studies; (4) studies that only explore the reproducibility or sta-
bility without developing harmonisation approaches. 

3.3. Data collection 

Details of papers for quality review were manually summarised in a 
spreadsheet, including title, modality, methodology, metrics, data scale, 
year of publication, data property (e.g., private or public), applications, 
number of cohorts, and number of cases. 

4. Data harmonisation strategies for information fusion 

In this systematic review, data harmonisation approaches were 
divided into four groups, with the distribution based methods, image 
processing, synthesis, and invariant feature learning. To better illustrate 
the basic idea and relationship of computational approaches, a taxon-
omy is shown in Fig. 4, followed by a detailed description of harmo-
nisation techniques. 

4.1. Distribution based methods 

The distribution based methods estimate/calculate the bias between 
cohorts from the latent space, then match/map the source data to the 
target ones through a bias correction vector or alignment functions. 

4.1.1. Location-scale methods (LS) 
The location-scale methods estimate the location-scale parameters 

(mean and variance) of each cohort and align all data towards the same 
location-scale. 

ComBat: ComBat [46] robustly estimated both the mean and the 
variance of each batch using empirical Bayes shrinkage, then harmon-
ised the data according to these estimates. The data was first stand-
ardised to have similar overall mean and variance, followed by the 
empirical Bayes estimation via parametric empirical priors. With these 
adjusted bias estimators, the data could be harmonised by the 
location-scale model based functions [47 66]. For instance, Radua et al. 
applied ComBat to address the heterogeneity of cortical thickness, sur-
face area and subcortical volumes caused by various scanners and se-
quences [53]. Whitney et al. implemented ComBat to harmonise the 
radiomic features extracted across multicentre DCE-MRI datasets [54]. 

ComBat-seq: Researchers have made more extensions based on the 
original ComBat harmonisation. Since the assumption of Gaussian dis-
tribution in the original ComBat made it sensitive to outliers, Zhang 
et al. proposed ComBat-seq [67] by assuming the Negative Binomial 
distribution, which could better address the outlier issues. The 

Fig. 4. Taxonomy of computational data harmonisation strategies.  
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ComBat-seq first built a negative binomial regression model and ob-
tained the estimators of cohort bias, followed by the calculation of ‘batch 
free’ distributions for mapping original data. 

BM-ComBat: Different from the original ComBat that shifted sam-
ples to the overall mean and variance, an M-ComBat [68] was proposed 
to provide a flexible solution, transferring the data to the location and 
scale of a pre-defined “reference”. With these efforts, Da-ano et al. [69] 
proposed a BM-ComBat by introducing a parametric bootstrap in 
M-ComBat for robust estimation, aiming to provide a more flexible and 
robust harmonisation strategy. 

QN–ComBat: Müller et al. [70] applied a quantile normalisation 
before ComBat correction in longitudinal gene expression data to ach-
ieve better performance. 

Distance-Weighted Discrimination (DWD): DWD [71] searched 
the hyperplane where the samples could be well separated and projected 
the different batches on the DWD plane. The data was then harmonised 
by subtracting the DWD plane multiplied by the batch mean. It is of note 
that DWD repeated the translations of samples from different cohorts 
until their vectors were overlapped. 

4.1.2. Iterative clustering methods (IC) 
The iterative clustering methods harmonise the cohort bias by con-

ducting multiple bias correction through repeated clusterings proced-
ures. These methods usually (1) perform cluster to all samples from 
different cohorts, and (2) compute the correction vectors for harmo-
nisation based on cluster centroids. 

Cross-platform normalisation (XPN): XPN [72] took the combined 
standardised sample and median central gene as input to remove gross 
systematic differences, followed by the clusters, aiming to identify ho-
mogenous groups of genes and samples with similar expressions in 
combined data. The gene clusters were then acquired by assignment 
function, which was used to compute estimated model parameters via 
standard maximum likelihood. 

Harmony: Harmony [73] first employed principal components 
analysis (PCA) to reduce the dimension of all samples, and classified 
them into several groups (one centroid per group) through k-means 
clustering. With these centroids, the correction factors for harmo-
nisation were calculated. The above clustering and correction were 
repeated until the convergence. 

4.1.3. Nearest neighbours methods (NNM) 
NNM methods first found the mutual nearest pairs, then computed 

the bias correction vectors based on paired samples and subtracted these 
vectors from the source cohort. Differences in these methods mainly 
refer to the geometry space when locating the mutual nearest pairs. 

Mutual nearest neighbours (MNN): MNN identified nearest 
neighbours between different cohorts and treated them as anchors to 
calculate the cohort bias [74]. It first pre-normalised the gene data with 
cosine normalisation, followed by the estimation of the bias correction 
vector by computing the Euclidean distances between paired samples. 
The bias correction vector was then applied to all samples instead of the 
participated pairs. It required that all participated batches must share at 
least one common type with another. 

Scanorama: Similar to the MNN method, panorama stitching (Sca-
norama) [75] aims at estimating cohort bias from samples across 
batches. It first reduced dimensions of raw data (or source data) using 
singular value decomposition (SVD). Then an approximate nearest 
neighbour was adopted to find the mutually linked samples across co-
horts. Different from MNN, Scanorama checked the priority of dataset 
merging within all batches and acquired the merged panorama based on 
the weighted average of batch correction vectors. At last, the harmo-
nisation was performed with Scanpy [76] workflow. 

Batch balanced k-nearest neighbours (BBKNN): Initially, BBKNN 
[77] found the nearest neighbours in a principal component space based 
on Euclidean distances. Then it built a graph that linked all the samples 
across cohorts based on the neighbour information. These neighbour 

sets were then harmonised by uniform manifold approximation (UMAP) 
[78] algorithms. 

Standard CCA and multi-CCA (Seurat): Different from other NNM- 
methods, Seurat [79] performed canonical correlation analysis to ac-
quire the canonical correlation vectors that could project multi-datasets 
into the most correlated subspace. In this subspace, the mutual nearest 
pairs were located to compute the bias correction vectors to guide the 
data integration. When processing multi-cohort datasets (number of 
cohorts larger than two), the first batch would be set as the reference 
batch for the correction of the second batch. Then the harmonised sec-
ond batch would be appended to the reference batch. This repeated 
procedure stopped when all the batches are harmonised [38, 79]. 

4.1.4. Remove unwanted variations (RUV) 
These methods assumed that the cohort bias was independent of 

those biases refer to biological variances, which could be estimated as 
“unwanted variations”. For instance, the bias of negative control genes 
(prior known genes that would not be affected by biological changes of 
interest) could be regarded as cohort bias. Based on this assumption, the 
raw data could be harmonised by subtracting those “unwanted 
variations”. 

Remove unwanted variations, 2-step (RUV-2): Control variables 
were used by RUV-2 to discover the factors related to cohort bias [80]. 
The negative control (probes that should never be expressed in any 
sample) samples were subjected to component analysis, and the result-
ing factors were incorporated into a linear regression model. Variations 
in the expression levels of these genes thus were considered undesirable. 
To extract low-dimensional features, Risso et al. [81] presented an 
extension of the RUV-2 with a zero-inflated negative binomial model 
that accounted for dropouts, discretisation, and the count character of 
the data. The cohort bias was then subtracted from the raw data to 
generate a gene expression matrix that is harmonised. 

Singular value decomposition harmonic (SVDH): By factorising 
the expression matrix of input data and reconstructing it while taking off 
the elements related to the cohort bias, singular value decomposition 
(SVD) could be used to reduce cohort bias. Alter et al. [82] suggested 
using SVD to harmonise the data by filtering away the eigenarrays that 
lead to noise or experimental artefacts. 

scMerge: scMerge [83] first constructed a graph that connected 
clusterings between cohorts by searching for mutual nearest neighbours. 
The unwanted factors were then estimated using stably expressed genes 
as negative controls. At last, an RUV model was used to collect and 
remove unwanted differences between cohorts. 

Surrogate variable analysis (SVA): SVA [84] aimed to recognise 
and estimate the unwanted variations of data from multiple cohorts. It 
could be performed without any cohort information. The mixed dataset 
was first divided into a collection of n surrogate variables via SVD, fol-
lowed by the clearance of data with large variances. SVA coefficients 
were then calculated for harmonisation by using a linear regression 
function with surrogate variables and raw diffusion intensities. 

Print-tip loess normalisation (PLN): PLN [85] was initially pro-
posed to deal with microarray data. To eliminate the cohort bias, PLN 
employed a blocking term to construct a linear model with the input 
data. The cohort bias was subtracted from the original data to produce 
the batch corrected expression matrix. 

Removal of artificial voxel effect by linear regression (RAVEL): 
RAVEL [86] separated the voxel value into unwanted variation parts and 
biological parts. The unwanted variation factors were estimated from 
the region of interest by SVD, based on the prior knowledge of voxel 
values, which were not related to disease status. 

4.1.6. Spherical harmonics (SH) 
Spherical harmonics approaches were designed to harmonise MRI 

data, aiming to coordinate all data from different cohorts to the same 
spherical harmonic domain, by adjusting the spherical variables. 

Rotation invariant spherical harmonics (RISH): RISH was based 
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on mapping diffusion-weighted imaging data from source cohorts to 
target cohorts [17,66,87,88]. It started with calculating the 
rotation-invariant features from the estimated spherical harmonics co-
efficients (of target and source samples, respectively). These rotation 
invariant features were then mapped from the source cohorts to target 
cohorts through region-specific linear mapping, followed by the 
updating of spherical harmonics coefficients. The harmonised diffusion 
signal was calculated for each subject in source cohorts using the latest 
spherical harmonics coefficients in target cohorts of gradient directions. 

Spherical moment harmonics. Due to the insufficient adjustment 
by location-scale parameters in some cases, researchers proposed the 
spherical moment method (SMM), which utilised the spherical moments 
to map the diffusion-weighted images from source cohorts to reference 
cohorts [89,90]. SMM matches the spherical mean (M1) and spherical 
variance (C2) per b-value (the diffusion weighting) by M1[Tb] =

M1 [f(Sb)] and C2[Tb] = C2 [f(Sb)], where Tb, Sb are data from the target 
and source cohorts under b shell, respectively. The mapping parameters 
for harmonising data from different cohorts were acquired by the linear 
transform f . 

4.1.7. Distribution alignment (DA) 
Distribution alignment methods aim to transform the distribution of 

the source cohort to that of the reference cohort, using cumulative dis-
tribution functions or probability density functions. 

Cumulative distribution functions alignment (CDFA): CDFA [91] 
was first proposed for multisite MRI data harmonisation, which aligned 
the source voxel intensities through an estimated non-linear intensity 
transformation to match the target cumulative distribution functions. 
The estimated intensity transformation defined a one-to-one mapping 
between the voxels in source and target cohorts. 

Gamma cumulative distribution functions alignment (GCDF): 
The voxel intensities were re-parameterised using a mixture model of 
two Gamma distributions that fitted a reference histogram [92]. This 
reparameterisation was based on the CDF of the Gamma component, 
which modelled the particular uptake, and constrained the new feature 
space to [0, 1]. 

Probability density function matching: GENESHIFT [93] esti-
mated the empirical density and measured the distance between prob-
ability density functions. GENESHIFT first picked the common genes 
from different cohorts, then estimated their probability density func-
tions to find the best matching offsets. The harmonised data would be 
acquired by subtracting the estimated offsets from the source cohorts. 

4.2. Image processing 

Image Processing employs digital image processing algorithms to 
harmonise multi-cohort data, including image filtering (also called 
image convolution), registration, resampling and normalisation. 

4.2.1. Image filtering (IF) 
Image filtering (also called convolution) is the process that multiplies 

two arrays to produce a new array of the same dimension. The 2D 
second-order Butterworth low-pass filter was found to be able to elim-
inate cohort bias between CT images with different voxel sizes [94], 
while the local binary pattern filtering could produce stable and 
reproducible radiomic features [95]. 

4.2.2. Physical-size resampling (Resample) 
Studies have shown that physical size such as pixel/voxel size, mpp 

(microns per pixel of level 0 in digital pathology) can greatly affect the 
radiomic/pathological features. This bias can be reduced using bilinear 
resampling to equalise all the physical sizes [94]. 

4.2.3. Standardisation/normalisation (SN) 
Standardisation/normalisation models were designed to reduce the 

variation and inter-variability in different cohorts by linear transform. 

These methods usually performed location-scale shifts in image spaces 
(e.g., HSV, RGB, αβ, illumination spaces, etc.) or image histograms. 

Global colour normalisation (GCN) transfers the colour statistics 
from the source to the target images by globally altering the image 
histogram [96,97]. A typical representative of GCN is Z-score normal-
isation, assumed the variable from cohort i, subject j as Xij, z-score 
normalisation is conducted through 

Xij =
Xij − μi

σi
(1)  

where μi and σi are the mean and standard deviation of each cohort. 
However, this global alignment may lose some information. 

Local colour normalisation (LCN) transfers the colour statistics of 
the specific regions, e.g., ignoring the background regions, from source 
to target images. In [98], the authors first converted the source and 
target images from the RGB into the lαβ space, and then conducted a 
transformation to harmonise the source image and re-converted it into 
the RGB space. It is of note that the luminance of background regions is 
not involved during the processing. This helped the transformation to 
preserve intensity information within the region of interest while 
requiring the pre-definition of certain regions. 

Histogram matching (HM): HM is a method of contrast adjustment 
using the histogram of images [99]. It adjusts the distribution of images 
by scaling the pixel values to fit the range of specified histogram (i.e., the 
target one): 

f (x, y) =
ITmax − ITmin

ISmax − ISmin
(IS − ISmin) + ITmin (2)  

where IT indicates the target image and IS is the source image. Generally, 
ITmax and ITmin are 0 and 255, respectively. For instance, Shah et al. [100] 
investigated the histogram normalisation on MRI images to harmonise 
cross-cohort data for multiple sclerosis lesion identification. 

Fuzzy based Reinhard colour normalisation (FRCN): To decrease 
the colour variation, Roy et al. [101] applied fuzzy logic to regulate the 
contrast enhancement in l space to adjust the colour coefficients within 
the αβ space. 

Category based colour normalisation (CategoryCN): To reduce 
the variance of global colour normalisation, researchers proposed a 
category based approach for accurate colour normalisation [102]. Cat-
egoryCN first classified each pixel by unsupervised approaches from the 
source and target images, then conducted colour normalisation based on 
the different classes. 

Complete colour normalisation (CCN): The complete colour nor-
malisation included the normalisation of illumination and spectrum, one 
to harmonise the illuminant during imaging and another to reduce 
spectral variation [39,103]. CCN estimated the illuminant and spectral 
matrices from the target cohort, then matched the source illuminant and 
spectral estimations to the target ones. 

4.2.4. Stain separation methods (SS) 
Stain separation approaches separated the input images into distinct 

channels (e.g., the haematoxylin channel, eosin channel, and the back-
ground channel for H&E-stained images) to evaluate the stain feature 
matrix and match these features through certain operations from source 
to target cohort data. The core concept of stain separation was based on 
Lambert Beer’s law [104] (in the RGB space, stain concentrations are 
nonlinearly dependant), shown as 

IC = I0e−ODc (3)  

where I0 was the value of incident light, and ODc was the value of images 
in optical density (OD) space. Most stain separation methods aimed to 
factorise the OD values into two matrices as 

ODc = log
(

I0

IC

)

= S ∗ D (4) 
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where S was the stain depth matrix and D was the stain colour appear-
ance (SCA) matrix. 

Colour deconvolution (CD): These approaches estimated the con-
centration of stains in pixel values and normalised the spectral variation 
in separated stains [105 108]. For example, estimation of the stain 
matrix was first given by evaluating the proportion of RGB channels 
within different cohorts, followed by colour deconvolution [106,107]. 
The inverse of the staining appearance matrix was multiplied with the 
optical density space intensity value to get normalised stain channels 
using non-linear spline mapping. 

Structured-preserving colour normalisation (SPCN): SPCN 
assumed that most tissue regions were characterised by the most effec-
tive stain amongst the used stains [109]. It first converted a given RGB 
image to optical density using the Beer-Lambert Law. After that, SPCN 
decomposed images into several stain density maps using sparse and 
non-negative matrix factorization (SNMF), followed by the combination 
of the stain density map and colour normalisation. 

StainCNNs: Inspired by SPCN, Lei et al. proposed a deep neural 
network for stain separation to reduce the computational consumption 
of SNMF [110]. The proposed stainCNNs approach took the source im-
ages as input and learned to generate the stain colour appearance ma-
trix. It significantly reduced the processing time while retaining the high 
quality of the harmonised images. 

Adaptive colour deconvolution (ACD): ACD first transferred the 
input RGB images to optical density space, then performed stain sepa-
ration with adaptive colour deconvolution matrix to obtain the hae-
matoxylin (H) channel, eosin (E) channel and residual channel [111]. At 
last, the harmonised images were obtained through recombining the H 
and E components with a stain colour appearance matrix of target 
cohorts. 

Rough-fuzzy circular clustering based stain separation (RCCSS): 
In RCCSS, stain separation was carried out using an image model based 
on transmission light microscopy [112]. Initially, each image was 
transferred to OD space and then decomposed to obtain the SCA matrix 
and associated stain depth matrix. Maji et al. [113] presented a circular 
clustering algorithm to find the ‘centroid’, ‘a crisp lower approxima-
tion’, and the ‘fuzzy boundary’, which could be integrated by 
saturation-weighted hue histogram in the HIS colour space. 

4.3. Synthesis 

The objective of synthesis is to precisely reproduce a sample that 
belongs to a missing modality or domain, which harmonises the multi- 
cohort datasets. It relaxes harmonisation tasks as style transfer and 
considers each cohort as a ‘style’ and transfers all samples to the same 
‘style’. Based on the characteristics of the training sample, synthesis 
methods are divided into paired synthesis and unpaired synthesis. 

4.3.1. Paired sample-to-sample synthesis (P-s2s) 
P-s2s methods are trained using paired samples generated from the 

same object acquired using different protocols. These methods aim to 
learn the data transfer between source and reference cohorts, which 
require the repeated acquisition of the same subject under different 
protocols. Therefore, they can only be applied to radiomic data since the 
repeated acquisition for the same subject is impossible for gene 
expression and pathology. 

Multi-layer perceptron harmonic (MLPH): In 2009, a pilot archi-
tecture of the autoencoder-related method was proposed by Cheng et al. 
[114] to generate the harmonised data by learning the nonlinear 
transform function. 

Spherical harmonic network (SHNet): Golkov et al. [115] pre-
sented a cascaded fully connected network that employs ReLU and Batch 
normalisation to harmonise the diffusion MRI scans. Inspired by SHNet, 
Koppers et al. [116] applied the residual structure to improve the 
robustness while avoiding overfitting. 

Deep rotation invariant spherical harmonics (Deep-RISH): Kar-
ayumak et al. [117] proposed a deep learning based non-linear mapping 
approach that utilises RISH features to map the raw signal (dMRI data) 
between scanners with the same fibre orientations. Deep-RISH was 
composed of five convolution layers, which took the 9 × 9 RISH feature 
patches as the input. 

DeepHarmony: DeepHarmony was proposed to produce data with 
consistent contrast within different cohorts [118]. It employed a U-Net 
based architecture, taking data from the source cohort and producing 
harmonised data of the target cohort. 

Deep harmonics for diffusion kurtosis imaging (Deep HDKI): 
Tong et al. [119] carried out a concise architecture with three 3D-convo-
lution layers for diffusion kurtosis images (DKI). The paired data was 
generated using an iterative technique called linear least square and 
were non-linearly registered to diffusion-weighted images acquired on 
the target scanner using the computational tools. Then the neural 
network was trained on the paired samples for harmonisation. 

Deep harmonics for slice thickness (Deep HST): Park et al. [120] 
studied the reproducibility of radiomic features in lung cancer under 
different slice thicknesses and proposed an end-to-end deep neural 
network to generate harmonised CT data between 1-, 3-, and 5-mm slice 
thickness. 

Deep harmonics for reconstruction kernel (Deep HRK): Choe 
et al. [34] explored the influence of different reconstruction kernels on 
radiomic features and presented a CNN with residual learning to transfer 
the data from the soft kernel (B30f) to the sharp kernel (B50f). 

Distribution-matching residual network (MMD-ResNet): Sha-
ham et al. [121] presented a comprehensive multi-layer perceptron for 
harmonisation with residual connection [122] and batch normalisation 
[123] techniques. Given two cohorts of data X [x1, x2,…, xm] ∈ D1 and 
Y [y1,y2,…,yn] ∈ D2. The MMD-ResNet aimed to learn a map φ̂ : Rd→Rd 
by minimising the maximum mean discrepancy [124] between φ̂(X) and 
Y. It is of note that this was a ‘one-way street’ distribution matching for 
harmonisation and required re-training for inverse transformation. 

Pulse sequence information based contrast learning on neigh-
bourhood ensembles (PSI-CLONE): PSI-CLONE [125] first calculated 
sequence parameters ∅s from source cohorts, then applied ∅s to the 
reference cohorts to produce the source-style data. By training a 
regression model to learn the nonlinear mapping between synthesised 
source-style data and reference data, the source cohorts could be 
harmonised effectively. Based on PSI-CLONE, Jog et al. [126] applied 
the multi-scale feature extraction to improve the performance. 

4.3.2. Unpaired sample-to-sample synthesis (Up-s2s) 
Up-s2s approaches generate the harmonised data by cycle-consistent 

generative adversarial networks or conditional variational autoencoder- 
decoder, which require sufficient samples and cohort labels from 
different cohorts for network training. 

Cycle-consistent generative adversarial networks (CycleGAN): 
Most synthesis methods of unpaired sample-to-sample translation were 
based on CycleGAN [127,128] and its derivatives [62,129,130]. In 
[130], a CycleGAN with Markovian discriminator was applied to 
harmonise the diffusion tensor data, which was designed to further 
improve the ability to capture local information. 

Conditional variational autoencoder-decoder (Conditional 
VAE): Variational Autoencoder (VAE) is commonly used in data syn-
thesis, dimensional reduction, and feature refinement tasks. It employs 
an encoding network Eθ(z|x) to decompose the input high dimensional 
data x into hidden representation z, and a decoding network Dδ(x|z) to 
reconstruct the raw data x, where θ and δ are parameters of E and D. The 
conditional VAE modifies the decoder to a conditional decoder Dδ(x|z, c)
that takes the latent variable z and specified cohort c back to a 
harmonised data x̂. By integrating Conditional VAE with the adversarial 
module, cohort transfer can be performed without paired training 
samples. Several studies have been proposed using Conditional VAE for 
data harmonisation, including: 
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(1) SH-VAE [131] performed cohort bias correction of 
diffusion-weighted MRI by conditional VAE to produce 
cohort-invariant encodings. Different from other conditional VAE 
based methods, SH-VAE took spherical harmonics coefficients as 
input and output.  

(2) stVAE [132] applied Conditional VAE with Y-Autoencoders 
(additional classification head in the encoder) and adversarial 
feature decomposition for single-cell RNA sequencing.  

(3) scAlign [133] performed harmonisation by learning a duplex 
mapping of cell sequences between different cohorts in a low 
dimensional latent space. This mapping enabled the model to 
estimate a representation of certain samples under data from 
different cohorts. Besides, it employed the “association learning” 
method [134] to walk through the embeddings generated by a 
neural network with data from different cohorts. The association 
learning enabled the network to extract the embeddings that can 
capture the essence of the input data, leveraging the lack of an-
notations in paired synthesis. With these essence embeddings, 
scAlign applied a decoder to synthesise the harmonised data.  

(4) iMAP [135] first presented an autoencoder architecture to learn 
the cohort-invariant features, then used these features to set MNN 
pairs by the random walk strategy. This autoencoder included 
one encoder E and two generators G1 and G2, with two inputs 
(gene expression vectors and cohort labels) and outputs (G1 for 
generating the cohort variations and G2 for reconstructing the 
original input), respectively. With the defined MNN pairs, a GAN 
model was used to produce the cohort-invariant samples. 

4.4. Invariant feature learning 

The invariant feature learning techniques are meant to learn the 
cohort-invariant features from different cohorts of data, then apply these 
features for the main task (e.g., segmentation, classification, regression). 
The concept behind representation learning approaches for harmo-
nisation is that if a sparse dictionary/mapping can be built from data of 
different cohorts, these learnt representations will not include inter/ 
intra cohort variability. 

4.4.1. Dictionary learning (DictL) 
Sparse dictionary learning (SDL): SDL [136][137] was a repre-

sentation learning approach that aimed to reduce the complexity of the 
harmonisation task by decomposing the input data as a linear combi-
nation of components. SDL could be applied to identify the 
cohort-invariant features to reconstruct the raw data from a huge 
number of random features [170]. 

Unsupervised colour representation learning (UCRL): UCRL 
[138] first estimated the sparsity parameter based on SPCN, then 
employed a robust dictionary learning method [139] to acquire the stain 
colour appearance matrix. By taking the stain centroid estimation as an 
L1-regularised linear least-squares task, the stain mixing coefficients 
map of the source data was combined with the colour appearance matrix 
of the reference data. 

4.4.2. Autoencoder based methods (AE) 
DESC: DESC [140] trained a VAE to obtain the cohort-invariant 

feature embeddings, then iteratively optimised a clustering loss func-
tion to group the cohort data. The Louvain clustering [141], which 
aimed to improve modularity for community detection, was used to 
initialise the cluster centres. 

BERMUDA: BERMUDA [142] first applied a graph based clustering 
to data from different cohorts individually, followed by a method 
(named MetaNeighbor) to identify similar clusters between cohorts to 
get the initial unaligned comprehensive dataset. An autoencoder was 
then built to reconstruct the input data while producing invariant 
feature embeddings in the low dimensional latent space. These feature 
embeddings were cohort-invariant and can be used for further analysis. 

4.4.3. Adversarial learning methods (AdvL) 
The adversarial learning methods indicate developing a learning 

system that focuses on the scanner/protocol invariant features while 
simultaneously maintaining performance on the main task of interest, 
thus reducing the cohort bias on predictions. These methods [143 146] 
were usually composed of an adversarial module for cohort identifica-
tion, a backbone for feature extraction, and the main task for classifi-
cation, regression, and/or segmentation. 

The adversarial learning methods used for harmonisation mainly had 

Fig. 5. Illustration of adversarial learning methods.  
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two structures, as shown in Fig. 5(a) and (b). For methods such as 
AD2AH (Attention-guided deep domain adaptation harmonics) [143], 
DUH (Deep unlearning harmonics) [144], and scDGN (single-cell 
domain generalisation network) [145], the adversarial module (domain 
classifier) was designed to assist the encoder to learn the cohort 
invariant features by maximising the adversarial loss Ladv while mini-
mising the loss of the main task LT (Fig. 5(a)). To acquire the precise 
feature representation z, methods such as NormAE [146] added a 
decoder to reconstruct the input raw data through minimising the 
reconstruction loss LRC, shown in Fig. 5(b). By incorporating these 
optimisation functions, the main task could achieve stable performance 
when dealing with multi-cohort data. 

5. Evaluation approaches of the data harmonisation strategies 

This section explores evaluation approaches for harmonisation per-
formance and divides them into distribution based, correlation based, 
value based, and task based metrics (Fig. 6). Distribution based metrics 
evaluate the harmonisation performance through assessing the clusters 
or location-scale parameters amongst different cohorts. The correlation 
based and value based metrics assess the variability of data-derived 
features from different cohorts to test the reproducibility. Besides, 
cohort classification is also considered as an evaluation method, aiming 
to demonstrate the harmonisation effect by cohort classification results. 
Visualisation is the commonly used evaluation approach that can 
straight visualise datasets before and after harmonisation. 

5.1. Distribution based evaluation 

Distribution based metrics assess the harmonisation performance via 
calculating the clustering or local-scale parameters. The clustering 
related metrics include adjusted rand index (ARI), k-Nearest neighbour 
batch-effect test (kBET), local inverse Simpson’s index (LISI). The 
location-scale related metrics contain structural similarity families, 
normalised median intensity and KL divergence. 

5.1.1. Adjusted rand index (ARI) 
The adjusted Rand index is the corrected-for-chance version of the 

Rand index (RI) and can be used for harmonisation evaluations [140]. 

Given a set of n elements and their predictions X = {X1, X2, …,

Xi} and Y = {Y1,Y2,…,Yj}, the RI can be calculated through 

RI =
TP + TN

TP + FP + FN + TN
, (5)  

where TP is the number of true positives, TN indicates the number of 
true negatives, FP is the number of false positives and FN is the number 
of false negatives. The ARI is illustrated as 

ARI =
RI − E [RI]

max [RI] − E [RI]
, (6)  

where E(RI) is the expectation of the RI. It ranges from 0 to 1, and a large 
ARI indicates the cluster results are similar to the real labels. 

5.1.2. k-Nearest neighbour batch-effect test (kBET) 
The k-Nearest neighbour batch-effect test was proposed to assess 

whether the distribution based harmonisation method can remove 
cohort bias while preserving biological variability [147]. kBET formu-
lates a null hypothesis that the data is ‘well mixed’. It employs a χ2 based 
test for random fixed-size neighbourhoods to evaluate whether the data 
is well mixed. The low average rejection rate indicates good harmo-
nisation performance and vice versa. As a result, determining whether 
the mean rejection rate surpasses a significance level allows the null 
hypothesis to be rejected for the whole dataset. 

5.1.3. Local inverse Simpson’s index (LISI) 
LISI combines perplexity based neighbourhood construction and the 

Inverse Simpson’s Index (ISI), which is sensitive to local diversity and 
can be well interpreted [73,135]. LISI applies the Gaussian kernel based 
distributions of neighbourhoods via distance based weights and com-
putes the local distributions by fixing perplexity. Meanwhile, it uses the 
ISI to enhance the interpretation, that is 

ISI =
1

∑N
n=1p(x)

, (7)  

where p(x) is the batch probabilities in local distributions. 

Fig. 6. Taxonomy of harmonisation metrics. The visualization and cohort classification assessment are not presented due to their limited subcategory.  
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5.1.4. Structural similarity families 
Structural similarity index measure (SSIM) was designed to evaluate 

the image quality degradation during data transmission by measuring 
the similarity between two samples [148]. It was initially proposed for 
grey level images and has been widely applied to evaluate the harmo-
nisation performance in digital pathology [62,101,108,118,126]. As-
sume μi, σi as the average and variance of sample i, σxy as the covariance 
between sample x and y, and the smooth parameters c1,c2. The SSIM can 
be described as 

SSIM(x, y) =
(
2μxμy + c1

)(
2σxy + c2

)

(
μx

2 + μy
2 + c1

)(
σx

2 + σy
2 + c2

) (8) 

To better assess the similarity for colour images, Kolaman et al. [149] 
proposed quaternion structural similarity (QSSIM) to measure the size 
and direction of chrominance, luminance and degradation [109]. 
Feature similarity index (FSIM) utilises phase congruency and gradient 
magnitude features to evaluate the low-level features of image visual 
quality [150]. The QSSIM and FSIM were employed in [110,138] and 
[105,110], respectively, to assess the structural preserving conditions 
after the harmonisation process. Though most methods applied struc-
tural similarity related metrics for evaluation, studies have shown their 
limitations and weaknesses [151]. For instance, it has been reported that 
these metrics suffer from uniform pooling, distortion and instability, 
especially when measuring samples with hard edges or low variance 
regions. 

5.1.5. Normalised median intensity (NMI) 
Assume the mean of R, G, B values for the i th pixel within the image I 

as Ai, the NMI for assessing the colour consistency is calculated as 

NMI(I) =
Median(Ai)

P95(Ai)
, (9)  

where the P95 denotes the 95th percentile [39,102,108,111,112,138, 
152]. The harmonisation strategy is effective when the median and 
maximum intensity values are close enough. Since the NMI does not 
consider the consistency of the ROI within the same biopsy set of S 
images, Maji et al. [113] presented an extension of NMI, named 
Between-Image colour constancy (BiCC) index, which can be repre-
sented by 

BiCC(I) =
1

2(|S| − 1)
×
∑

J∕=I

Median(Ai) + Median
(
Aj
)

max
[
max(Ai),max

(
Aj
)] , (10)  

where i ∈ ROI(I) and j ∈ ROI(J). The value of BiCC ranges from 0 to 1, an 
efficient harmonisation algorithm for image modality should make the 
value as high as possible. 

5.1.6. Coefficient of variation (COV) 
Given the mean μ and standard deviation σ, the coefficient of vari-

ation (COV) is defined as σ/μ, which depicts the degree of variation in 
respect to the population mean [17,28,47, 69,90,103,119,125,153]. The 
Multivariate COV (MCOV) is used to quantify the variability of features 
between different cohorts, with a lower value indicating better repro-
ducibility [154]. Assume μx and μy as the mean of features extracted 
from two different cohorts x and y, 

∑
x,y as the covariance matrix, the 

MCOV is computed via 

MCOV(x, y) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

μT
x,y ∗

∑
x,y ∗ μx,y

(
μT

x,y ∗ μx,y

)2 ,

√
√
√
√
√ (11)  

5.1.7. Kullback-Leibler divergence 
Kullback-Leibler (KL) divergence was proposed to measure how a 

probability distribution is different from another one. Assume two 
discrete probability distributions p and q (each with k samples), the KL 

divergence is given by 

KL =
∑

pklog
pk

qk
(12) 

It was applied as a metric for harmonisation strategies, with 0 indi-
cating identical quantities of information between two distributions 
[113,140]. For instance, Li et al. [140] applied KL divergence to eval-
uate how randomly are samples from different cohorts mixed together 
within each cluster. 

5.2. Correlation based evaluation 

The measurement of reproducible/nonreproducible is usually given 
by statistical analysis via calculating the correlation between data- 
derived features before and after harmonisation, including concor-
dance correlation coefficient, intra-class correlation coefficient etc. 

5.2.1. Pearson correlation coefficient (PCC) 
Pearson correlation coefficient measures the linear correlation be-

tween two groups of variables X and Y, which is presented as 

pX,Y =
cov(X,Y)

σXσY
, (13)  

where cov is the covariance and σ indicates the standard deviation. PCC 
ranges from 0 to 1 where 0 denotes there is no correlation between X and 
Y, and 1 represents a perfect correlation. The PCC was used as an indi-
cator to assess the similarity between the source and harmonised data 
[38,39,49,56,101,108,109]. 

5.2.2. Concordance correlation coefficient (CCC) 
The CCC was proposed by Lin et al. [155] that measured the agree-

ment between two variables and was used to assess the reproducibility 
[34,61,94,95,120]. Different from PCC that can only assess the corre-
lation between two groups of data, CCC measures how large the gap 
between two groups of data is. Assume the two variables X = {x1, x2,…,

xn}, Y = {y1, y2,…, yn} and their mean x, y, and variance s2
x , s2

y , the CCC 
is given by 

ρc =
2sxy

s2
x + s2

y + (x − y)2 (14)  

where sxy = 1
N
∑N

n=1(xn − x)(yn − y). 

5.2.3. Intra-class correlation coefficient (ICC) 
Both PCC and CCC can only assess the correlation between two 

groups of data, which cannot be implemented on multi-cohorts. The ICC 
is utilised for data structured as groups instead of those as paired ob-
servations, it is usually used to assess the variability within different 
protocols, different imaging devices, or different sites [47,91,93,95, 
156]. It interprets on a scale of [0, 1], with 1 illustrating the perfect 
agreement and 0 indicating complete randomness. Essentially, the ICC 
employed for data harmonisation describes the confidence of how 
similar the variables are in different cohorts, which is the one-way 
random model that assumes there is no systematic bias [47]. Data 
from various cohorts are pooled and assessed within or cross operators 
based on the analysis of variance (ANOVA). The one-way random model 
can be given from: 

ICC =
MSB − MSW

MSB + (nG − 1)MSW
(15)  

where MSB is the mean square between groups, MSW is the mean square 
within groups and nG indicates the average group size. 

5.2.4. P-value 
Some studies evaluate the harmonisation effectiveness through 
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computing the P-value given by paired hypothesis tests [17,47,49,51, 
52, 54, 55,66,74,79,80,87,99,102,107,117,120,121,130,157]. This sta-
tistical analysis is often conducted based on the paired region of interests 
before-and-after harmonisation. In particular, there are significant dif-
ferences (corresponding to p-value < 0.05) between the data of different 
cohorts before and after harmonisation, and vice versa. For instance, 
Fortin et al. [58] analysed the number of voxels that are significantly 
related to cohorts, e.g., a voxel is counted when the p-value calculated is 
less than 0.05. 

5.2.5. Percentage of reproducible/nonreproducible features (PRF/PNF) 
The percentage of nonreproducible features was treated as an eval-

uation metric [58,64,65,70,91,158], e.g., Mahon et al. [158] compared 
the percentage of significantly different features before and after con-
ducting ComBat harmonisation. On the contrary, the percentage of 
reproducible features was also considered as an evaluation metric of 
harmonisation performance [61]. 

5.3. Value based evaluation 

The value based evaluation mainly assesses the intensity differences 
between the data or data-derived features before and after harmo-
nisation. This usually requires a “ground truth” that can ideally reflect 
harmonisation results, a low value of intensity differences indicates 
good harmonisation performance. 

5.3.1. Mean absolute error (MAE) 
The average absolute error of features (textual and clinical features) 

can be used to reflect harmonisation effects [52,53,57,58, 62, 63, 66, 
101,114,118,144], this usually requires the extraction of certain ROIs 
from the data before and after harmonisation. For instance, Wachinger 
et al. [63] evaluated the MAE in age prediction on the raw dataset and 
ComBat-harmonised dataset to illustrate the effectiveness of ComBat. 
Dewey et al. compared the MAE between the synthesised and raw im-
ages to demonstrate the harmonisation performance. 

5.3.2. Root-mean square error (RMSE) 
Many researchers measured the RMSE between the harmonised 

samples and the ground truth targets to assess the replicability [49,57, 
81,90, 91, 103, 114,115,117,119,120,125,130,131]. For instance, 
Moyer et al. employed RMSE and mean absolute error to assess the 
harmonisation performance between synthesised diffusion MRI and the 
ground truth. However, this metric requires paired datasets which is a 
heavy burden for digital healthcare research. 

5.3.3. Peak signal to noise ratio (PSNR) 
PSNR illustrates the ratio between the maximum power of a signal 

and the power of noise that influences the integrity of its representation. 
Consider two groups of variables X and Y, the PSNR between X and Y can 
be given as 

PSNR = 20 × log10

(
MAXi
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
MSE(X, Y)

√

)

, (16)  

where MAXi denotes the maximum possible value of the image (255 for 
images) and MSE is the mean squared error. It is commonly used in 
image denoising tasks as an evaluation metric. Some researchers applied 
this indicator to measure the quality of the synthesised images during 
the harmonisation [125,126]. 

5.4. Main task based performance evaluation 

Many studies demonstrated its effectiveness by comparing the per-
formance of the main tasks before and after harmonisation methods. 
Although it is a result-orientated evaluation method and may be affected 
by the random initialisation of the main-task models (machine learning 

models), it can prove the effectiveness of the harmonisation method to 
some extent. The main tasks involved in harmonisation evaluation 
mainly include regression [57,68,91], segmentation, and classification 
[84]. The assessment is usually done by the Dice coefficient (Dice) or the 
intersection over union (IoU) [62,100,106,108,126,129,144]. On the 
contrary, the classification tasks are variously evaluated, e.g., using area 
under the receiver operating characteristics curve (AUC) [50,54,86,92, 
106, 111, 115,138,143,146,154,159], accuracy [38,48,50,59, 60, 62, 
63,69,77,89,99,106,131 133,140,143,145,159], true positive rate [67, 
135], sensitivity [48,143], specificity [48] and Matthews correlation 
coefficient (MCC) [69]. Note that MCC is a balanced measurement for 
the binary classification tasks, with comprehensive evaluations of TP, 
TN, FP, and FN, therefore it is divided into the main task based perfor-
mance evaluation. 

5.5. Cohort classification 

Different from comparing the variety of data or data-derived features 
before and after harmonisation, some studies reported the effectiveness 
of harmonisation strategies through adopting cohort classification [49, 
63,94]. The core idea of this metric is that the cohort should be more 
difficult to identify when an effective harmonisation strategy is 
employed. For instance, Wachinger et al. [63] compared the accuracy of 
cohort identification of the raw dataset, dataset applied with z-score 
normalisation, linear model and ComBat, respectively. The worst results 
were gained by ComBat, which indicates the best harmonisation ability 
since the classifier cannot well identify the cohorts after harmonisation. 

5.6. Visualisation 

Visualisation refers to the techniques that can picture the data dis-
tribution from low dimensional feature space or sample intensities. 
Approaches for harmonisation assessment that visualising the data dis-
tribution in latent space including principal component analysis (PCA) 
[56,57,59,68,70,81,83,146], uniform manifold approximation and 
projection (UMAP) [38,50,77,133,135,142,160], and t-distributed sto-
chastic neighbour embedding (t-SNE) [54,74,75,79, 83, 121,132,133, 
143,145]. These approaches convert different high-dimensional data 
into low-dimensional data and plot them into the same feature space. 
The harmonisation is well performed if the visualisation of data distri-
bution is mixed instead of assembling as different clusters. In addition to 
visualising data distributions, some researchers also plot the intensities 
or location-and-scales (mean and variance) of each sample before and 
after harmonisation to assess the performance [46,83,86,97, 98, 100, 
103,106,107,125]. 

6. Applications of computational data harmonisation 

Data harmonisation has been widely adopted in various fields of 
digital healthcare, including the manual harmonisation of tabular data, 
computational data harmonisation of the gene, radiomics and patho-
logical data. Though there have been many efforts on removing the 
artefacts of time series signal data (such as EEG, ECG) [161], these works 
mainly focus on the removal of noises caused by biological variances. 
For instance, researchers employed filtering [162] and wavelet trans-
form [163] approaches to remove the ocular, muscle and cardiac arte-
facts. However, these studies barely pay attention to the device/site 
variances, indicating the lack of harmonisation studies to these time 
series signal data. This section illustrates the application of computa-
tional data harmonisations in gene expression, radiomics and pathology. 

6.1. Gene expression analysis 

The process of generating a functional gene product from the infor-
mation within a gene is referred to as gene expression, which is one of 
the major research areas in biomedical research. The traditional 
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approach of gene expression analysis is microarray technology, which 
relies on comprehensive chemical reactions to convert RNA to cDNA. 
The latest gene expression analysis method is single-cell RNA 
sequencing (scRNA-Seq). It isolates the single cells and RNA for tran-
scription, library generation and sequencing, using the new generation 
sequencing (NGS) techniques. Unfortunately, due to the various NGS 
platforms and experimental environments (pH, temperature), both 
microarray technology and scRNA-sequencing are highly affected by 
cohort bias. Therefore, computational data harmonisation is widely used 
in microarray [46,71,72,80,82,84,85,89,93] and scRNA-Seq [56,67,68, 
70,73 75,77,81,83, 121, 132, 133,135,140,142,145,160] to remove the 
cohort bias. 

6.2. Radiomics analysis 

Radiomics refers to the extraction and analysis of a large number of 
quantitative image features from medical images obtained by CT, PET, 
MRI, and other imaging modalities [164]. In addition to the studies on 
phantoms [61,65,94], research refer to MRI mainly focus on the brain 
[17,47 49,51 53,55,57,58, 63,66,86,87,90 92,95,97,99,100,115,117- 
119,125,126,129 131,143,144,157], breast [101,111], while those refer 
to CT focus on ear [60], liver [50,64] and lung [34,120]. In addition to 
CT, PET and MRI, optical coherence tomography also suffers severe 
scanner variability, which can be eased by computational data harmo-
nisation approaches [129]. 

6.3. Pathology analysis 

Most harmonisation strategies (also named stain/colour normal-
isation) in pathology aimed to address the stain variance. These studies 
mainly focused on uterus [108], breast [39,62,102,103,107,110 113], 
lymphoma [103,138], skin [105], liver [106], renal [59], and stomach 
[109]. 

6.4. Other modalities 

Metabolomics is an omics technology that monitors and discovers 
metabolic changes in people in relation to illness state or in reaction to a 
medical or external intervention using current analytical instruments 
and pattern recognition algorithms. The nonlinear cohort bias during 
the liquid chromatography−mass spectrometry can be removed by 
computational methods [146]. 

7. Meta-analysis 

In this review, the methodologies and metrics were grouped based on 
different ideas or theories, and the meta-analysis was conducted and 
reported in three areas/modalities. The reason why the results were 
explored and discussed through different modalities (gene, radiomics, 
and pathology) is that these data have different properties. For instance, 
data of gene analysis are expression matrices, data of radiomics are high- 
dimensional volume array (grayscale image per slice), and data of pa-
thology are colour images with huge sizes. 

7.1. Meta-analysis 

Data properties and study trends. The number of studies and data 
properties for harmonisation approaches from 2000 to 2021 is demon-
strated in the top left in Fig. 8, with the percentage of studies that was 
conducted on the public dataset. The public data can be acquired 
through open source websites or archives while the in-house data cannot 
be acquired. There has been a dramatic increase in the number of har-
monisation studies since 2019, indicating an urgent need to conduct 
large-scale studies and data harmonisation strategies. In addition, we 
demonstrate the number of harmonisation studies on different sub- 
modalities in recent years (Microarray and sRNA-seq for gene 

expression studies, CT and MRI for radiomic studies, and Pathology). In 
terms of gene expression, the harmonisation approaches for microarrays 
were mainly presented before 2015, while that for sRNA-seq have 
become the latest topic in recent years. As for radiomics studies, re-
searchers have realised the importance to improve the reproducibility of 
radiomics features, especially in MRI. Data harmonisation for digital 
pathology has been noted in decades, while it receives more attention in 
recent years. 

Strategies and modalities. Due to the diversity of biomedical data 
modalities, the relationship of different strategies and modalities was 
explored. As shown in Fig. 9, the distribution based methods were 
commonly applied in gene expression and radiomics studies, which 
account for 79% and 59% of the employed approaches, respectively; 
however, only a few of them (5%) were employed in digital pathology. 
The empirical Bayes methods dominated the distribution based methods 
because of their generalisation ability and robustness, while the RUV 
and SH were more commonly used in specific fields. The image pro-
cessing approaches were mainly used in digital pathology, employing 
standardisation/normalisation and stain separation ideas to merge the 
multi-cohort data. Unlike the distribution based and image processing 
based methods, invariant feature learning and synthesis were found to 
be applicable in all three modalities recently, dominated by deep 
learning based algorithms. 

Evaluation metric. The evaluation metric is another crucial aspect 
when developing computational data harmonisation strategies. It de-
scribes the performance of harmonisation methods via analysing the 
distribution, correlation and values between the source and target co-
horts. amongst all evaluation metrics, visualisation was the most 
commonly used method to present harmonisation effects, followed by 
evaluating the main tasks (Fig. 10). Some studies tried to evaluate via 
classifying the cohorts, but this may have a limitation since the inability 
to distinguish cohorts does not mean that all data is well harmonised. 
Overall, even there are many options for the assessment of harmo-
nisation strategies, there still exist some barriers to implementing har-
monisation assessment in clinical flows. The evaluation can only be 
acquired when (1) there are paired datasets (which is inapplicable in 
real clinical settings); (2) there is a certain machine learning-based 
module for performance comparison (demands for well-trained 
computational modules); (3) there are clinicians for visual assessment 
(subjective and time-consuming); (4) there are predefined regions of 
interest (demands for manual annotation or computational modules). 
Moreover, data harmonization is of utmost importance for a seamless 
federation of models (i.e. a naïve federation approach in which no 
additional algorithms are needed to cope with incoherencies in local 
datasets). Therefore, to which extent should local datasets be harmo-
nized not to destroy locally contextual particularities of the data that 
positively contribute to the local generalization of the models. 

In addition to reporting the utilisation of different metrics, details of 
evaluation metrics in terms of different modalities were presented in 
Fig. 10. Visualisation is preferred for gene expression and digital pa-
thology, including the visualisation of data distribution (e.g., using 
UMAP, t-SNE) and samples before and after harmonisation. Many pa-
thology studies applied distribution based metrics, such as structure 
similarity and normalised median intensity. The task based evaluation 
was also considered reliable, which accounts for 19%, 28% and 13% of 
all evaluation metrics. 

Data scale-images. The scale of samples in radiomics and pathology 
is closely related to image resolution and qualities. We analysed the 
variable ε =

̅̅̅̅̅̅̅̅̅̅̅
w ∗ h

√
of studies that involved images with width w and 

height h. Most radiomics studies were performed with 256 pixels while 
some were conducted with 512 and 128 pixels, this was because of the 
shortage of GPU or RAMs especially when dealing with 3D or multi-slice 
datasets. Moreover, it is of note that 69.7% of radiomics studies did not 
report the image size, while that proportion of pathological studies was 
20%. For pathological images, most studies were conducted with large 
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scale images (ε> 500), since the image processing algorithm performs 
better results when considering the larger field of views. 

Data scale-cohort. In addition to the sample (image) scales, the 
scale of cohorts is also important for data harmonisation approaches. For 
gene expression, more than half of the studies were performed on large 
datasets (number of cases per cohort > 5000). Most radiomic studies 
were conducted on small datasets, with the number of cases (scans) per 
cohort < 200. 

7.2. Research directions 

This section first presents research tracks for different kinds of data 
harmonisation approaches based on their limitations, respectively, and 
states the common restrictions of previous studies. 

Directions for distribution based methods. The distribution based 
methods mainly map the source data to the target one through the 
estimation of the cohort variances. This leads to issues that (1) most 
distribution based methods were conducted based on refined feature 
vectors that required prior knowledge of the region of interest. This prior 
knowledge conflicts with the original purpose that harmonisation ap-
proaches are proposed to process multicentre datasets to build robust-
ness and precise computational tools because the region of interest 
cannot be well predicted by models trained without data harmonisation; 
(2) although studies have proved that some distribution based methods 
(such as ComBat) can remove cohort bias while preserving the differ-
ences between radiomics features on phantoms, all these methods 
cannot be well performed to images or high dimensional signals, due to 
demanding computational complexity; (3) the data harmonisation needs 
to be performed to entire datasets again when new data are added; (4) 
some approaches are pairwise (e.g., XPN, DWD, CCA, MNN, Seurat), 
leading to a complex training procedure (repeated training) when they 
are implemented to multicentre datasets (number of cohorts > 2). In 
particular, the first cohort will be considered as the target cohort to 
correct samples in the second one, and these corrected samples are then 
added to the first cohort [140]. 

To overcome these problems, researchers may (1) focus on the har-
monisation of raw datasets, instead of data-derived features; (2) develop 
highly efficient data harmonisation approaches that can deal with a 
large amount of data; (3) enhance the robustness of data harmonisation 
strategies; (4) develop methods that can simultaneously harmonise 
multicentre datasets; and (5) avoid using pair-wise samples for algo-
rithms development. 

Directions for image processing based methods. Image process-
ing based methods can harmonise the image data without complex 
procedures. However, these methods also have limitations as (1) some of 
them (such as stain separation) can be only performed to specific fields; 
(2) some (image filtering) methods heavily rely on empirical settings, 
such as filtering kernel sizes and kernel types, which are less efficient 
and hard to reproduce; and (3) some may lose the information during 
non-linear transforms. To address these issues, researchers should pay 
attention to general data harmonisation approaches that do not heavily 
rely on empirical settings. 

Directions for synthesis. Although deep learning based synthesis 
solutions have advanced rapidly and achieved significant performance, 
these methods still suffer from poor reproducibility and generalisability. 
The obvious limitations are (1) most synthesis methods were built based 
on the existing multicentre datasets, which lack evaluations on new 
datasets; (2) the GAN based models are prone to instability and may 
hallucinate or introduce unrealistic changes; and (3) training a GAN 
based model requires a large amount of training data for all cohorts, 
which may be not feasible for clinical studies. To overcome these 
drawbacks, researchers should (1) report the data harmonisation per-
formance on new datasets that are not involved during model devel-
opment; (2) enhance the stability of data synthesis; (3) build data 
harmonisation strategies using less training data. 

Directions for invariant feature learning. Invariant feature 

learning can reduce the disadvantages of synthesis approaches by 
learning how to extract cohort-invariant features from datasets, but it 
still faces some challenges. For instance, it can only extract invariant 
features for analysis while cannot obtain harmonised data. Therefore, 
future studies should focus on how to generate the harmonised data 
using extracted invariant features. 

Explainable AI and harmonisation studies. Another research 
niche that still remains uncharted in the literature related to data har-
monisation is the use of explainable Artificial Intelligence (XAI) methods 
[165] to identify possible reasons for incoherent data representations. 
We envision that XAI approaches can be exploited to gain insight on 
which visual artefacts are present in data instances that imprint a bias on 
the predicted outcome of a data-based model. This insight can be then 
analysed to decide whether the rooting cause of such biasing artefacts 
correspond to insufficient harmonisation of medical data before the 
learning phase. Furthermore, out of distribution examples can be also 
detected by virtue of local explanatory techniques (e.g., those capable of 
discerning which parts of the input to a model are pushing their output 
towards one class or another), which upon inspection can be attributed 
to other exogenous phenomena that can relate to data harmonisation, 
such as a possible miscalibration of the medical equipment or a change 
in the protocols capturing the data themselves. On the other hand, better 
harmonisation has benefits to XAI, since all the data are harmonised into 
the same standard and no cohort biases would be introduced to the XAI 
system [166,167]. All in all, we foresee an interesting research 
cross-fertilization at the crossroads between harmonisation and XAI. 

Limitations for methodology design. Most studies for data har-
monisation did not follow a stepwise design methodology, which cannot 
be reproduced easily by third parties. For instance, as shown in Table 4, 
more than half of the radiomic studies did not report the image scale. 
Moreover, the different definitions of ‘reproducible’ in previous studies 
and various evaluation metrics greatly hinder the method comparison 
for further research. 

8. Checklist and guidance 

To address the issues of methodology design, we presented a 
Checklist for Computational Data Harmonisation in Digital Healthcare 
(CHECDHA) to enhance the reproducibility and methodological princi-
ple, inspired by the Checklist for Artificial Intelligence in Medical Im-
aging (CLAIM) [169]. Furthermore, the guidance on how to choose data 
harmonisation strategies is also presented in this section. 

8.1. Checklist criteria 

The proposed checklist clarifies the common practice for data har-
monisation through data, model, evaluation, result, and discussion, 
shown in Table 5. 

The proposed CHECDHA checklist can greatly standardise the pro-
cess of data harmonisation studies, which comprehensively describe the 
motivation, data, data harmonisation strategy, evaluation and conclu-
sions. Start with a clear motivation (Fig. 12), researchers should first 
emphasise the importance of performing data harmonisation in a certain 
field. Then, the compositions of datasets should be illustrated in detail, 
including the common and specific attributes shown in the checklist. 
When introducing methodologies, the authors should clearly state their 
ideas and implementation details (input domain, architecture, input 

Table 4 
Data scale (image size) in previous studies.   

Small Middle Large N/A 
Radiomics 9.1% (6) 18.2% (12) 3.0% (2) 69.7% (46) 
Pathology 5.0% (1) 15.0% (3) 60.0% (12) 20% (4) 

* The small, middle, large image sizes are defined as ∈ [0, 256), ∈ [256, 512), ε 
> [512,∞), respectively, N/A indicates there is no report of image size. 

Y. Nan et al.                                                                                                                                                                                                                                     



Information Fusion 82 (2022) 99–122

114

size, development platform, etc.). During the evaluation, researchers 
should assess the reproducibility using new/independent data or data- 
derived features before and after data harmonisation by appropriate 
metrics. Meanwhile, the data harmonisation performance of previous 
approaches should be considered as comparisons to reflect the advan-
tages of the proposed method. At last, the novelty, strength, limitations 
and future works should be given in the discussion and conclusion 
sections. 

Table 5 
Checklist for Computational Data Harmonisation in Digital Healthcare 
(CHECDHA) criteria.  

Category Item Explanation Example 
Motivation Background The application field 

of the dataset(s) 
Information fusion 
of DW-MRI data 
from different 
scanners 

Importance Why this study is 
conducted, how 
important it is 

Dramatically 
increase the 
statistical power 
and sensitivity of 
clinical studies 

Data Common Dataset What the dataset(s) is 
(are), how it is (they 
are) collected (details 
of acquisition 
protocols, entry and 
exit criteria) 
How many 
categories, cohorts, 
subjects, and cases 
are included in the 
studies 

m healthy subjects 
under n protocols 
(m × n cases, n 
cohorts) 
Protocol 1: … 
Protocol 2: …  

Property Whether the dataset 
(s) is (are) in-house 
or public, provide the 
access link if 
appropriate 

Public/In-house 

Pre-processing How the dataset is 
pre-processed 

Z-score 
normalisation 

Ground truth What the ground 
truth is and how it is 
generated 

Cohort x under 
protocol i 

Partition For machine 
learning, how the 
dataset is partitioned 
into training, 
validation, and 
testing subsets in 
terms of the number 
of samples, patients 

7:2:1 for training, 
validation and test 

Augmentation For machine 
learning, how the 
dataset is augmented 

Randomized flip, 
rotation 

Specific MRI sequence What the MRI 
sequence is 

Diffusion- 
weighted 

Region Which region(s) of 
the body or the 
subject in the dataset 
is (are) covered 

Brain 

Slice size What the sizes of 
each slice are 

512× 512  

Pixel/Voxel 
size 

What the physical 
length of a pixel/ 
voxel is 

0.25 mm/ 1mm3  

WSI size What the sizes of the 
whole slide images 
are 

12,000× 30,000  

Patch size What the extracted 
image patches are 

256× 256  

mmp What the microns per 
pixel in the level- 
0 scan are 

– 

Model Workflow What the procedures 
of train and inference 
are, illustrated by the 
flow chart(s) if 
appropriate. 

– 

Learning 
approaches 

What the learning 
method is. e.g., 
supervised learning, 
un/semi-supervised 
learning 

Semi-supervised 
learning 

Architecture What the structure of 
the proposed neural 
network is, if 
appropriate 

nnUNet  

Table 5 (continued ) 

Task The description of 
main tasks conducted 
on harmonised 
datasets, e.g., lesion 
segmentation/ 
classification. 

Tumour 
Segmentation 

Input domain What the input 
modality of the 
proposed method is 

3-D images / 2D 
feature vectors 

Input size The input sizes of the 
model 

n× w× h× c  

Loss What the 
optimisation 
functions are during 
the training. 

Dice and cross- 
entropy loss 

Open-source Whether the source 
code is available or 
not, provide the link 
if appropriate. 

Open-source code 
www.github. 
com... 

Platform The learning library 
used to build the 
model 

TensorFlow 2.5.0 

Evaluation Statistical 
Analysis 

What the evaluation 
methods of statistical 
analysis are 

ANOVA-test 

Metric What indicators are 
used to evaluate 
harmonisation 
performance, e.g., 
the ratio of the 
reproducible 
features, coefficient 
of variation, Pearson 
correlation 
coefficient. 

Intra-class 
correlation 
coefficient (>0.9 is 
considered 
reproducible) 

Comparison What existing 
approaches are used 
to compare the 
performance of the 
proposed method 

stVAE 

Visualisation What approaches are 
used to visualise the 
data distribution 
before and after 
harmonisation 
strategies 

t-SNE/UMAP/PCA 

Result Result What the 
quantitative values of 
evaluation metrics 
are. 

– 

Time- 
consuming 

The computational 
time of the proposed 
method and the 
comparisons. 

30 s per case 

Discussion Novelty What the innovation 
of the proposed 
method is. 

– 

Strength The importance/ 
significance of the 
issue addressed by 
the proposed 
method. 

– 

Limitation What remained and 
unsolved issues are. 

– 

Future works Whether there will be 
potential studies in 
the future. 

–  
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8.2. Guidance of data harmonisation strategies and metrics 

Studies have shown that implementing inaccurate data harmo-
nisation strategies may lead to significant bias, which results in more 
inaccurate predictions [168]. To guide the method selection, a flowchart 
presenting possible ways of data harmonisation is presented in Fig. 13. 
As the flowchart illustrates, the distribution based methods can be well 
performed on refined features or gene matrices. For high dimensional 

images, image processing methods are recommended when a 
high-performance GPU is not available. The deep learning based 
methods (including invariant feature learning and synthesis) can be 
applied to all kinds of modalities, while it requires sufficient training 
samples. The invariant feature learning methods are recommended 
when the main task can be integrated with the training process, since the 
synthesis may introduce unrealistic artefacts to the data. 

For evaluation, the selection of metrics can directly affect whether 

Fig. 7. Taxonomy of applications that involved computational data harmonisation strategies.  

Fig. 8. Number of publications and years in terms of data properties and modalities. The public data is the open source data that can be acquired, the in-house data is 
not available from the internet. The percentage in the top left subfigure is the ratio of studies that were conducted on the public dataset. 
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the results are reliable or not. Here we summarise and recommend data 
harmonisation metrics based on different conditions in Fig. 14. Visual-
isation is the most intuitional way to analyse data harmonisation results, 
which can be implemented by visualising the raw data with t-SNE/ 
UMAP/PCA or visualising the data harmonised raw data. Main task 
based evaluation can directly illustrate the effectiveness of the data 
harmonisation strategies, by comparing the main task performance on 
data before and after the data harmonisation. If the harmonised ground 
truth is not available, one can use distribution based metrics to assess the 
degree of sample mixture (although this may require the cohort label). 

When the harmonised ground truth can be acquired, the value based or 
correlation based metrics can precisely present the data harmonisation 
performance. 

9. Conclusion 

Computational data harmonisation has been proposed for digital 
healthcare research studies in decades. However, bridging basic science 
research models and data fusion into multicentre, multimodal and multi- 
scanner medical practice and clinical trials can be challenging unless 

Fig. 9. Harmonisation strategies in terms of different modalities. ‘IFL’ indicates invariant feature learning approaches, “Img Pro” refers to image processing ap-
proaches. The percentage of sub-methods is annotated with the abbreviations of sub-methods in each pie chart. 

Fig. 10. Evaluation metrics in terms of different modalities.  
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data harmonisation can be performed effectively. Furthermore, trans-
fer/federated/multitask learning and other areas wherein knowledge is 
exchanged amongst models only work under ideal conditions, whenever 
the distribution shift is not large enough for the exchange knowledge to 
remain coherent across models/centres working over different data 
sources. Otherwise, data harmonisation is needed. Unfortunately, it is 
unclear which approaches and metrics should be employed when 
dealing with multimodal datasets. Moreover, there lacks a ‘stand-
ardised’ stepwise design methodology, which leads to poor reproduc-
ibility of the existing studies. 

To overcome these issues, this paper summarises and categorises the 
existing data harmonisation strategies and metrics based on different 
theories, and subsequently presents the CHECDHA criteria. The pro-
posed CHECDHA criteria help researchers to conduct data harmo-
nisation studies in a standardised format, which can greatly advance 
academic reproducibility and development. Moreover, data harmo-
nisation approaches and evaluation metrics in terms of three modalities 
are summarised to help researchers to select appropriate strategies 
(Fig. 7 and Fig. 8). In addition to summarising the methodologies, 
guidance of method and metrics selection (Fig. 11 and Fig. 12) is also 
provided according to the different conditions. Last but not least, limi-
tations and directions of different methods are illustrated for future 

Fig. 11. Scales of cohorts in gene expression and radiomics studies.  

Fig. 12. Workflow of conducting data harmonisation studies guided by the checklist.  

Fig. 13. Flowchart of how to select data harmonisation strategies.  
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works. 
Data harmonisation, an important process in large multicentre 

studies, has drawn more and more attention in computational biomed-
ical research. It can be well adapted to a federated learning system to 
promote the development of computational modules and plays an 
important role in biomedical research including radiomic, genetic and 
pathological studies. Due to the lack of criteria when reporting research 
findings of harmonisation studies, we strongly appeal that the re-
searchers should follow and expand the checklist presented in this 
survey. 
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