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Abstract

Since graph features consider the correlations between two data points to provide high-order
information, i.e., more complex correlations than the low-order information which considers the
correlations in the individual data, they have attracted much attention in real applications. The
key of graph feature extraction is the graph construction. Previous study has demonstrated that
the quality of the graph usually determines the effectiveness of the graph feature. However, the
graph is usually constructed from the original data which often contain noise and redundancy.
To address the above issue, graph learning is designed to iteratively adjust the graph and model
parameters so that improving the quality of the graph and outputting optimal model parameters.
As a result, graph learning has become a very popular research topic in traditional machine
learning and deep learning. Although previous graph learning methods have been applied in
many fields by adding a graph regularization to the objective function, they still have some issues
to be addressed.

This thesis focuses on the study of graph learning aiming to overcome the drawbacks in previous
methods for different applications. We list the proposed methods as follows.

• We propose a traditional graph learning method under supervised learning to consider
the robustness and the interpretability of graph learning. Specifically, we propose utiliz-
ing self-paced learning to assign important samples with large weights, conducting fea-
ture selection to remove redundant features, and learning a graph matrix from the low-
dimensional data of the original data to preserve the local structure of the data. As a
consequence, both important samples and useful features are used to select support vectors
in the SVM framework.

• We propose a traditional graph learning method under semi-supervised learning to explore
parameter-free fusion of graph learning. Specifically, we first employ the discrete wavelet
transform and Pearson correlation coefficient to obtain multiple fully connected Functional
Connectivity brain Networks (FCNs) for every subject, and then learn a sparsely connected
FCN for every subject. Finally, the ℓ1-SVM is employed to learn the important features
and conduct disease diagnosis.

• We propose a deep graph learning method to consider graph fusion of graph learning.
Specifically, we first employ the Simple Linear Iterative Clustering (SLIC) method to ob-
tain multi-scale features for every image, and then design a new graph fusion method to
fine-tune features of every scale. As a result, the multi-scale feature fine-tuning, graph
learning, and feature learning are embedded into a unified framework.

All proposed methods are evaluated on real-world data sets, by comparing to state-of-the-art
methods. Experimental results demonstrate that our methods outperformed all comparison meth-
ods.
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Chapter 1

Introduction

1.1 Background
Artificial intelligence (AI) makes machines first learn experience (i.e., the model) from training
data and then apply new inputs (i.e., testing data) in the learned experience to conduct human-
like tasks. In these years, AI has been used for different kinds of real-world applications [45,54],
e.g., electronic commerce, education, healthcare, etc. Different applications usually correspond
to different tasks of AI. In general, the basic tasks of AI have classification, clustering, regres-
sion, and so on [154]. For example, the classification task first trains the model on a set of
labelled transaction data, and then predicts if given unknown transactions are credit card frauds.
Retail companies conduct the clustering task on the information (such as household income and
household size) to identify the household groups which are similar to each other.

In order to solve applications by AI tasks, AI methods usually involve three steps, i.e., feature
learning, model construction, and model evaluation. To be specific, feature learning aims to learn
informative and computer-recognisable features to provide mathematically and computationally
convenient for model construction and model evaluation [26, 116]. Model construction focuses
on learning a set of parameters related to the specific task to fit objective functions for individual
tasks. Model evaluation analyzes the learned features and models by various evaluation metrics.
In general, feature learning is the key step for AI methods [166, 220].

To make AI data available to solve the application issues, different feature learning methods are
designed to have various feature forms include original features, graph features and deep fea-
tures. Original features are extracted from the low-level characteristics (e.g., edges and blobs
of images) by color/texture [38], GIST descriptors [75], Local Binary Pattern (LBP) [56], His-
togram of Oriented Gradient (HOG), and so on [69]. The original feature does not take into
account the correlation between two data samples so that it often achieves worse model perfor-
mance, compared to either graph features and deep features in many real-world applications.
Graph features are extracted by taking into account the correlation between two samples, and
they have been demonstrated to be more discriminative than original features [51]. Deep fea-
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tures are iteratively obtained by performing the final tasks in deep models, but they need a large
number of data to fit deep models. Recently, with the success of deep learning, deep features
are becoming increasingly popular. Graph features have attracted more and more attentions in
real-world applications since they can assist either original features or deep features in model
construction and can be combined with these two kinds of features to learn more representative
features [83, 128].

1.2 Motivations
The key of graph feature extraction is graph construction. The graph construction is to represent
every node with the original feature of the sample and set the edges as the similarity (i.e., correla-
tion) between two nodes. Popular methods of the graph construction include the fully connected
graph, the k-nearest neighbor (kNN) graph, the ε-nearest neighbor graph, etc. The fully con-
nected graph connects every node to all nodes. The kNN graph connects every node to k nodes
with the maximal similarity while the ε-nearest neighbor graph uses the threshold (i.e., ε) to de-
cide the connection number for every node. Obviously, the fully connected graph preserves the
global structure of the data. By contrast, both the kNN graph and the ε-nearest neighbor graph
preserve the local structure of the data by connecting every node with a subset of all nodes only.
Weinberger et al. demonstrate that the local structure preservation is more important than the
global structure preservation in many real-world applications such as manifold learning [165].
Moreover, the local structure preservation of graph features make it very useful for all kinds of
applications. For example, the local structure preservation makes graph features consider the
high-order information (i.e., the correlation between two samples), while original features only
take into account the low-order information, i.e., the individual characteristics of the samples. In
particular, embedding graph features with deep models is available to output deep features that
are discriminative as well as preserve the local structure of the data.

Graph construction outputs a graph storing the similarity between any two data. Obviously, the
quality of the graph directly influences the effectiveness of the graph feature. Many graphs are
constructed from the original data, which often contain noise and redundancy. Hence, the quality
cannot be guaranteed. To address this issue, a popular method is to adaptively update the graph
and the model parameters in a unified framework. Specifically, the graph can be adjusted based
on the update of the model parameters, called graph learning. Moreover, the model parameters
are further adjusted by the optimized graph. As a result, the quality of the graph is improved and
the model parameters are optimized. Hence, graph learning has become a very hot research topic
in traditional machine learning and deep learning.

Previous graph learning methods include traditional graph learning and deep graph learning.
Traditional graph learning aims to learn the graph feature by embedding graph learning with tra-
ditional machine learning models. To do this, it usually adds a graph regularization to the loss
function. For example, Kang et al. propose to conduct graph learning by a low-rank regular-
ization to the classification loss function [84]. Deep graph learning focuses on extracting deep
features by integrating the graph constraint with the loss function in a unified framework. For
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example, Chen et al. propose to iteratively learn graph features and deep features, so that both of
them can be updated by each other [24]. In a word, graph learning in either traditional methods
or deep methods are designed by adding a graph regularization into the loss function. However,
deep graph learning often achieves better performance than traditional graph learning with the
help of large number of training data. In real-world applications, it is difficult to always obtain
a large number of training data. As a result, deep graph learning may be worse than traditional
graph learning due to the over-fitting issue.

Although graph learning has been applied in many fields, it still has many issues to be addressed.

• Robustness and interpretability of traditional graph learning. The quality of original data
influences the graph construction. Besides directly removing noisy samples and redundant
features, the sample importance and the feature importance are possible solutions to im-
prove the quality of the original data, and thus achieving robust graph learning. On the
other hand, interpretability is very important in real-world applications. For example, the
clinicians prefer to obtain effective and interpretable graph learning. Hence, it is highly
desirable to conduct graph learning while taking into account the interpretability.

• Parameter-free fusion of traditional graph learning. Different graphs result in different
graph features. These features are usually heterogeneous and are in different feature
spaces, and thus they are not comparable. Hence, it is straightforward to smooth all graph
features so that they are homogeneous in the common feature space.

• Graph fusion of deep graph learning. Co-saliency detection focuses on simulating the
human visual system to perceive the scene for searching the common and salient regions
from a group of images. To achieve this, previous methods usually extract multi-scale
features to comprehensively characterize the images since multi-scale features can detect
different patterns with different sizes. It is highly demand to investigate a fusion method
to combine multiple dynamic Graph Convolutional Network (GCN) models to explore the
common information among multi-scale features and the complementary information in
individual features.

1.3 Contributions
This thesis aims to investigate different graph learning methods for different applications by
overcoming the issues of previous graph learning methods. The main contributions of this thesis
are summarized as follows:

• Objective 1: To solve the issues of the robustness and the interpretability of graph learning
in a unified supervised framework, by using important samples and useful features to select
support vectors in the Support Vector Machine (SVM) framework.

• Objective 2: To fuse the multi-scale features for functional neuroimaging biomarker iden-
tification by conducting joint graph feature learning and personalized disease diagnosis in
semi-supervised learning.
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• Objective 3: To smooth multiple graph features for co-salience detection by proposing a
graph fusion of deep graph learning in semi-supervised learning.

1.4 Thesis structures
The organization of this thesis is listed as follows.

Chapter 2 proposes a comprehensive survey on the studies of previous graph learning methods,
including traditional graph learning methods and deep graph learning methods.

Chapter 3 proposes a supervised graph learning method to meet Objective 1. The proposed
method outperforms state-of-the-art methods in terms of binary classification tasks and multi-
class classification tasks.

Chapter 4 proposes a semi-supervised graph learning method to meet Objective 2. The proposed
method outperforms both traditional graph learning methods and deep graph learning methods in
terms of disease diagnosis tasks on resting state functional Magnetic Resonance Imaging (fMRI)
data.

Chapter 5 proposes a deep graph learning method to meet Objective 3. The proposed method
outperforms both traditional methods and deep methods in terms of co-saliency detection tasks.

Chapter 6 concludes this thesis and discusses our future works.



Chapter 2

Literature review

2.1 Graph construction revisited
Graphs, also known as networks, can be found in different kinds of real applications, including
traffic network, molecular protein graph, social media network, etc. Moreover, the graph contains
the features of the samples and the local structure (i.e., the correlations) among the data, so it
provides a new way of data representation. As a result, the study on the graph (especially graph
learning) has attracted much attention in data mining and machine learning [172, 207].

2.1.1 Similarity measurements
Graph construction is the key of graph learning, which needs to define the similarity measure-
ment. Popular similarity measurement methods include parameter-free methods and parameter
methods. Parameter-free methods calculate the similarity between two samples by employing
different distance measurements, such as Euclidean distance, Mahalanobis distance, correlation
methods, etc. For example, Mahalanobis distance calculates the distance between two samples
by

(xi − xj)
TΣ−1(xi − xj), (2.1)

where xi represents the feature of the i-th sample.

Cosine similarity calculate the cosine value between xi and xj to obtain the cosine distance by

(xT
i xj)/(

√
xT
i xi

√
xT
j xj). (2.2)

Pearson correlation coefficient is defined as

((xi − x̂i)
T (xj − x̂j))/(

√
(xi − x̂i)T (xi − x̂i)

√
(xj − x̂j)T (xj − x̂j)), (2.3)

where x̂i denote the average value of xi.
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Parameter methods adjust the similarity between two samples by the parameters. For example,
Minkowski metric uses the parameter p to obtain the similarity as

(xi − xjp)
1/p, (2.4)

where p > 0.

Gaussian kernel function utilizes the parameter σ to adjust the similarity as

exp((−||xi − xj||22)/2σ2), (2.5)

where σ is a kernel width.

2.1.2 Graph construction
Given the similarity measurements, the graph construction usually forms two kinds of graphs,
i.e., normal graphs and hypergraphs. Every edge in the normal graph connects two nodes only,
whereas Every edge in the hypergraph connects at least two nodes.

2.1.2.1 Normal graph

The normal graph includes fully connected graphs and sparsely connected graphs. The fully con-
nected graph connects every node to all nodes. It is easy to construct the fully connected graph
which preserves the global structure of the data. However, it does not meet the requirements of
real applications as the full connection makes the optimization of the objective function difficult.
Sparsely connected graph connects every nodes by a part of all nodes so that it easily preserves
the local structure among the data. As a result, sparsely connected graph has been demonstrated
to be more convenient in real applications. Popular methods of sparsely connected graphs in-
clude k-nearest neighbor (kNN) graph, ε-nearest neighbor (ε-NN) graph, etc. The kNN graph
connects every nodes with its top k nearest neighbors and ε-NN graph connects every nodes with
the nodes within the similarity of threshold ε. We visualize the difference between the kNN
graph and the ε-NN graph in Figure 2.1 and list their construction as follows.

The kNN graph employs Gaussian kernel function (i.e., the parameter method) to measure the
similarity between two nodes. Specifically, the similarity between the i-th node xi and the j-th
node xj is defined as

si,j =

{
exp−

||xi−xj ||
2
2

2σ2 , if xi ∈ N (xj),
0, otherwise,

(2.6)

where N (xj) denotes the set of k-nearest neighbors of the j-th node.

The ε-NN graph defines the similarity between two nodes by

si,j =

{
exp−

||xi−xj ||
2
2

2σ2 , if ||xi − xj||22 ≤ ε,
0, otherwise,

(2.7)

where ε denotes the threshold between the i-th node xi and the j-th node xj .
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Figure 2.1: Visualization of the difference between the kNN graph and the ε-NN graph.

Figure 2.2: Visualization of the difference between the normal graph and the hypergraph, where (a)
is the normal graph, (b) is a hypergraph, and (c) is the incidence matrix in the hypergraph.

2.1.2.2 Hypergraph

The correlation among the data is more complex than the case where the edge connects only two
nodes, so hypergraphs with every edge connecting more than two nodes have been proposed and
applied in many applications [175, 213]. We visualize the difference between the normal graph
and the hypergraph in Figure 2.2 and list the details of the hypergraph construction as follows.

Specifically, a hypergraph G = (V,E,W) consists of three parts, i.e., a vertex set V, a hyper-
edge set E and a hyperedge weight matrix W. The weight of hyperedge e is defined as w(e). The
link correlation of the hypergraph G is expressed as an incidence matrix H ∈ R|V |×|E|, which is
defined as follows:

H(v, e) =

{
1, if v ∈ e,
0, otherwise.

(2.8)

According to the definition of the hypergraph, the degree matrix of hypergraph vertices and
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hyperedges can be further expressed as

d(v) =
∑
e∈E

w(e)h(v, e),

δ(e) =
∑
v∈V

h(v, e).
(2.9)

In addition, two diagonal matrices Dv and De are defined to represent the pair angle matrices of
hypergraph vertices and hyperedges, respectively. Based on the spectral graph theory in [213],
the adjacency matrix S of the hypergraph is defined as

S = HWHT −Dv. (2.10)

We use the normalized Laplacian matrix to establish the hypergraph Laplacian matrix by

LH = I−D
− 1

2
v HWD−1

e HTD
− 1

2
v . (2.11)

After constructing the graph, we use the following objective function to conduct graph learning,

L = Loss(·) + λReg(·), (2.12)

where Loss(·) is the loss function and Reg(·) is the graph regularization. Based on Eq. (2.12),
both the graph and model parameters can be iteratively updated by each other until both of them
reach the optimal solution.

In this thesis, previous graph learning methods can be summarized into traditional graph learning
methods and deep graph learning methods.

2.2 Traditional graph learning
Graph learning enhances the model performance by capturing the geometrical information among
samples [95, 194]. Based on the graph variations in the model construction, traditional graph
learning methods include static graph learning and dynamic graph learning.

2.2.1 Static graph learning
Static graph learning [219] first learns the graph from the original data, and then fixes the graph
throughout the whole optimization. The corresponding objective function can be expressed as

L(W) = Loss(W) + tr(XTLX), (2.13)

where L(W) is the loss function with model parameters W and tr(XTLX) is the graph regu-
larization term. L = (D− S) ∈ Rn×n is the Laplacian matrix, where D ∈ Rn×n represents a
diagonal matrix. Eq. (2.13) indicates that the model parameters are learnt based on the graph
constraints. That is, the outputs of Eq. (2.13) should preserve the local structure of the data.
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In real applications, the original data usually contain redundancy and noise, and thus the quality
of the graph will be influenced. To address this issue, Eq. (2.13) is used to preserve the local
structure in the low-dimensional feature space, where redundancy and noise are removed as much
as possible, i.e.,

L(W,Θ) = Loss(W) + tr(ΘTXTLXΘ), (2.14)

where Θ ∈ Rd×c is the projection matrix.

Redundancy and noise in high-dimensional data make them ineffectively construct the model
with the traditional machine learning. Based on the observation that redundancy and noise may
lead to the low rank of the coefficient matrix of the data, reducing the rank of the matrix can
effectively reduce the influence of redundancy and noise [111]. Therefore, a low-rank model for
graph learning can be expressed as:

L(W,Θ) = Loss(W) + tr
(
ΘTXTLXΘ

)
+ rank(Θ), s.t., rank(Θ) < min(d, c), (2.15)

where rank(Θ) is a low-rank regularization. d and c, respectively, indicate the number of the
dimensionality and the class number.

While there are a large number of redundant features in the high-dimensional data, the ℓ1-norm
regularization is a new way for reducing the influence of redundant features, i.e., feature selec-
tion. For example, MCFS [13] employs the ℓ1-norm regularization to conduct feature selection
by removing the influence of redundant features. Although the ℓ1-norm regularization can reduce
the influence of the outlier to some extent, it does not have the rotation invariance characteristics.
Moreover, the ℓ1-norm regularization can not describe the geometric structure of the data, so that
it makes feature selection inaccurate. Hence, Ding et al. [29] replaces the ℓ1-norm regularization
with the square of the original ℓ2-norm regularization to calculate the reconstruction error of the
samples. As a result, it is not only robust to noisy data and outlier, but also can well preserve the
geometric structure of the data with the rotation invariance.

2.2.2 Dynamic graph learning
Both Eq. (2.13) and Eq. (2.15) (i.e., static graph learning) only update the model parameters
with the unchanged graph. That is, graph learning is independent on the model construction. In
particular, static graph learning is sensitive to either noise or redundancy. Therefore, to address
the above issue, dynamic graph learning aims to jointly conduct model parameters and the graph.
Compared to static graph learning, dynamic graph learning [98, 210, 217, 221, 222] iteratively
update the graph in each iteration and the model parameters to reach their individually optimal
solutions. For example, Zheng et al. [210] combine graph learning with feature selection in a
unified framework to dynamically learn the graph from a low dimensional space and conduct
feature selection. The objective function is defined as follows.

L(W,Θ) = Loss(W) + α ∥xiΘ− xiΘ∥22 sij + β ∥S∥2F
s.t.,∀i, sTi 1 = 1, sii = 0, sij ≥ 0, if i ∈ N(j), otherwise 0,

(2.16)
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where α and β are the parameters. Eq. (2.16) iteratively updates the graph S and the parameter
matrix W until both of them reach convergence.

Recently, more and more studies focus on dynamic graph learning. For example, Zhu et al. con-
sider dynamically adjust the similarity among the data and further utilize the nodes for the graph
update [218]. Wu et al. construct the graph by using partial absorption random walk [171]. Wang
et al. propose a joint semi-supervised learning for graph learning and label propagation [163].
Lei et al. extend [210] by considering both the low-rank constrain and subspace learning [98].

2.3 Deep graph learning
In recent years, deep learning methods on graphs (i.e., deep graph learning for short) have gradu-
ally attracted attentions. Different from traditional graph learning methods, deep graph learning
methods first define neural networks on the graph, and then adaptively learn node features and
model parameters of the neural network. Among them, Graph Convolutional Networks (GCN)
is a frontier research topic for deep graph learning.

GCN generalizes traditional deep learning techniques on the graph structured data. It mainly fol-
lows the message-passing framework, which consists of two main steps, i.e., collecting messages
from node neighbors which is the process of propagating information from neighbors to nodes,
and passing messages which uses neural networks to update the node representation which is the
process of aggregation of neighbor (structural) information. Existing methods can be partitioned
into two groups, i.e., statically deep graph learning and dynamically deep graph learning.

2.3.1 Statically deep graph learning
GCN is a well-known statically deep graph learning method, where the graph is used to preserve
the local structure of the data during the process of representation learning. Specifically, given an
initial graph S ∈ Rn×n storing the graph structure of the feature matrix X ∈ {x1, ...,xn} ∈ Rn×d

where n and d, respectively, indicate the number of the samples and the features, the GCN taking
both S and X as the inputs passes several hidden layers and one fully connected layer to output
the new representation. More specifically, the representation learned by the m-th layer of the
GCN can be obtained by:

H(l+1) = ρ(D− 1
2SD− 1

2H(l)W(l)), (2.17)

where H(l) ∈ Rn×dl denotes the output representation in the l-th hidden layer, D ∈ Rn×n is
the diagonal matrix of S where dii is the summation of all elements in the i-th column of S,
W(l) ∈ Rdl−1×dl is the weight matrix which needs to be trained in the l-th layer, dl is the number
of hidden units in the l-th layer, and ρ(·) is the activation function.

GCN has achieved great success on semi-supervised classification. However, previous methods
only consider nodes that are a few propagation steps. Moreover, the size of the neighborhood
in previous methods is hard to be extended. To deal with these issues, Klicpera et al. use the
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correlation between the GCN and the PageRank to obtain an improved propagation scheme based
on the personalized PageRank [88].

In real applications, either the over-smoothing issue or the over-fitting issue influences the effec-
tiveness of deep graph learning. To deal with these two issues, Rong et al. suggest to randomly
remove some edges from S to reduce the convergence speed of the over-smoothing issue [132].
Chen et al. enable GCN to express a K order polynomial filter with arbitrary coefficients. As a
result, the issue of over-fitting is solved and it takes advantage of the powerful nonlinear capa-
bilities of deep networks [20].

GCNs obtain inspiration from recent deep learning methods, but they may inherit unnecessary
complexity and redundant computation. To deal with the issues, Wu et al. propose a simplifying
GCN to reduce the complexity through successively removing non-linearities and collapsing
weight matrices between consecutive layers [169].

Many variants of the GCN have been proposed. For example, James et al. propose a diffusion
convolutional neural network to consider the difference in the importance of links between two
nodes [5]. Hamilton et al. propose to learn a function that generates embeddings by sampling
and aggregating features from the local neighborhood of the node [59]. Chen et al. propose a
fast learning method with GCN via importance sampling [18]. Huang et al. propose to promote
the message passing over distant nodes by applying skip connections, and thus accelerating the
training process of GCNs [70]. Jin et al. propose to effectively and efficiently preserve node
similarity while exploiting the graph structure [80].

2.3.2 Dynamically deep graph learning
Different from statically deep graph learning, dynamically deep graph learning usually learns
node connections and edge weights automatically from the data. In addition, it can also be
optimized in the same framework with related learning tasks, so as to output an optimal graph
representation suitable for subsequent tasks. To some extent, dynamically deep graph learning
solves the issues of statically deep graph learning, and has been widely used in machine learning.

Many techniques of dynamically deep graph learning have been introduced. For example, Jiang
et al. employ the graph learning technique in traditional machine learning to add one more regu-
larization into the original GCN framework [78], i.e.,

LGL : min
S

n∑
i,j=1

∥xi − xj∥2F sij + λ1∥S∥2F
s.t.,∀i, si1 = 1, sij ≥ 0.

(2.18)

Based on the proposed graph learning regularization, this method updates S via a single-layer
neural network, which is parameterized by a weight vector a = (a1, a2, ..., ap)

T ∈ Rp×1, and
each element of S is defined as
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si,j =
exp(LeakyReLU(aT ||xi−xj ||))

n∑
j=1

exp(LeakyReLU(aT ||xi−xj ||))
. (2.19)

Following [78], Ji et al. propose to introduce a self-expressive layer between the encoder and
the decoder to mimic the self-expressiveness feature [76]. To encode self-expressiveness, Ji et
al. introduce a regularization as follows

∥X−XS∥+ λ∥S∥p, (2.20)

where S is the a trainable parameter.

To further improve the robustness of dynamically deep graph learning, Jin et al. propose to
simultaneously learn the clean graph structure from perturbed graph and GCN parameters to
defend against adversarial attacks [81]. Specifically, this method exploring the low rank and
sparsity properties of the graph is defined as follows,

∥S−A∥2F + λ1∥A∥1 + λ2∥A∥∗, (2.21)

where S is the original graph and A is the updated graph.

Most recently, Fu et al. propose to first constantly optimize the high-order structural correla-
tions between data points and then fit the local geometry information of the data exactly for
semi-supervised classification [40]. Jiang et al. design to conduct graph convolutional learning
and labeling on both the inter-graph and the intra-graph for co-saliency estimation [77]. Li et
al. propose learning a task-driven graph for each graph [101]. Chen et al. propose to search a
hidden graph structure that augments the initial graph structure [24]. Ding et al. present a glob-
ally consistent GCN for hyperspectral image classification [30]. Peng et al. propose a reverse
graph learning to improve the quality of the graph learning for conducting supervised learning
and semi-supervised learning [127].



Chapter 3

Robust SVM with adaptive graph learning

3.1 Introduction
Support Vector Machine (SVM) is one of the classical classifiers since it constructs the classifiers
by finding the trade-off between the model complexity and the learning capability with limited
samples [64, 139]. In the past decades, a large number of SVM methods have been proposed to
solve the practical problems. For example, Zhang et al. propose a cost-sensitive SVM classifier to
achieve the minimal misclassification cost in the multi-classification problem of face recognition
[201]. Mygdalis et al. propose a graph SVM to first obtain the graphs and then to embed them
into the SVM framework [118]. Tang et al. integrate feature selection with the SVM framework
to simultaneously conduct feature selection and support vector selection [149]. However, there
are still limitations in previous SVM methods to be addressed.

First, it is essential to consider the sample importance because different samples show different
contributions to the SVM models. Cost-sensitive SVM in [201] considers the sample importance
by focusing on it in the whole class, aiming at solving the issue of class imbalance rather than
the importance of individual samples. To address the issue of the sample importance, self-paced
learning is designed to automatically learn the sample importance by assigning the important
samples with the large weights and the unimportant samples with small weights. For example,
Zheng et al. apply self-paced learning for conducting unsupervised feature selection [209], while
Zhu et al. investigate the theory of half-quadratic optimization to consider the importance of the
individual sample for the clustering task [217].

Second, the graph matrix measuring the correlations between two samples guarantees the data
structure to be preserved in the process of model construction. The graph SVM in [118] considers
the correlations between data points by ignoring the case where the graph is learned from the
original data which often contains noise and outliers. As a result, the learned graph is incorrect
so that affecting the quality of the SVM classifier [219]. In the literature, dynamic graph learning
[221,222] has been designed to learn the graph based on the data distribution. For example, [98]
and [210] design to learn the dynamic graph from the low-dimensional space of high-dimensional



3.2 Related work 14

data to preserve the data structure for conducting spectral feature selection.

Third, the redundant features has been widely demonstrated to influence the model performance
in real applications [149]. Hence, it is necessary to reduce the influence of redundant features
in the SVM framework. To address this issue, ℓ1-SVM [159, 216] considers to replace the ℓ2-
norm regularization in traditional SVM with an ℓ1-norm regularization [16, 141], by assigning
the important features with large weights and the unimportant features with very small or even
zero weights so that the redundant features are not involved in the process of the model.

In this chapter, we propose a novel robust SVM classifier to simultaneously take into account
the above issues. Specifically, based on the traditional SVM framework in [141], we replace the
ℓ2-norm regularization with an ℓ2,1-norm regularization to conduct both binary classification and
multi-class classification on the low-dimensional space of the original data. The low-dimensional
space is obtained by iteratively learning the low-dimensional space and the graph. Moreover, we
employ self-spaced learning to consider the sample importance for the processes of the classifier
construction, the transformation matrix learning for the low-dimensional space and the dynamic
graph learning. Furthermore, we propose a primal solution to optimize the proposed SVM frame-
work.

3.2 Related work
In this section, we review the basic SVM method and its variants, and both the graph learning
and self-paced learning are introduced in the following.

3.2.1 SVM review
SVM was proposed by Vapnik [158] and was applied for statistical learning theory by Boser et
al. [10]. The standard SVM focuses on binary classification, but it has involved in multi-class
classification [8]. Its purpose is to find the optimal support vector with the maximum distance
and to separate every sample from its nearest training samples within the same class.

Actually, SVM and its variants have been proposed for diverse considerations, and they can be
divided into three groups, i.e., class-based methods, sample-based methods and feature-based
methods. Cost-sensitive SVM is the representative class-based methods which minimizes a sym-
metric hinge loss function with a cost-sensitive perspective, so it can obtain the important sam-
ples for each class and solve the class imbalance problem. For example, Cao et al. construct
a SVM wrapper method integrating cost-sensitive SVM with evaluation measurement to im-
prove classification results, optimizing misclassification cost and model parameters simultane-
ously [14]. Gu et al. present to combine the chunk incremental learning with cost-sensitive SVM
based on hinge loss representation to update the model for each sample and multiple samples si-
multaneously [52]. Arya et al. extend the standard hinge loss function to consider class costs and
imbalance traits in SVM, and integrate the risk minimization with probability elicitation on the
designed cost-sensitive loss. [72]. Masnadi et al. conduct a SVM combining with mathematical-
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optimization-based feature selection by considering accumulating asymmetric misclassification
costs [9]. Gan et al. present a robust cost-sensitive SVM to remove noisy samples and redun-
dant features together [41]. Fu et al. propose a cost-sensitive SVM method by embedding the
asymmetric linear–exponential loss function into the υ-SVM for class imbalance issue [39].

Sample-based methods focus on the correlations between the samples. For example, graph SVM
utilizes the graph structure to express geometric correlations and exploits the intrinsic representa-
tions of data during the optimization process. Singh et al. use the graph formulation of activities
among video data to stand for the information of motion and appearance, and then employ a
graph kernel to conduct activity classification so as to detect abnormal actions [147]. Mygdalis
et al. consider multiplex data correlations based on the SVM framework via combining multi-
ple graph structures with the multi-kernel method [119]. Xie et al. take the intrinsic geometry
correlations among data into account and employ structured output SVM to rake correlations in
the early expression detection model with a graph regularization [173]. Hu et al. propose an im-
proved Laplacian SVM method with semi-supervised learning, where hinge loss is consisted of
unlabelled data and labelled data and Laplacian matrix is conducted to consider the correlations
between the samples [66].

Sparse SVM is an important feature-based method. It extracts the representative feature subset to
replace the original data set and conducts the task of classification based on the SVM framework.
For example, Xu et al. present a scaling factor with a flexible parameter to adaptively adjust
the weights of feature distribution during the step of feature selection, and used the subspace
constraint to obtain the sparsity of weighting matrix [174]. Shao et al. employ sparse ℓq-norm
regularization combined with least square loss into SVM framework for the classification task
[140]. Liu et al. propose the ℓ0-SVM to replace the standard ℓ2-SVM for feature selection and
classification. This way is devised to solve primary and dual variables as well as apply for
biological field [108]. Zhou et al. employ the sparse ℓ0-norm to the kernel SVM and obtain the
important support vectors resulting in the better performance of data reduction [214]. Tanveer
et al. propose a twin multi-class classification SVM which use k-nearest neighbor-based way to
obtain the sparse samples for different categories [151].

3.2.2 Self-paced learning
Self-paced learning (SPL) is designed by Kumar [94] to replace the heuristic strategy. SPL
method defines the significance of the samples with regard to the reconstruction error, i.e., the
value of loss function. If the reconstruction error of one sample is less than a setting parameter,
the sample is important, otherwise it is unimportant. SPL usually selects a part of samples to ini-
tialize the training model, and then it gradually adds more samples to enhance the generalization
ability of the training model until the established model achieves stability.

Many SPL methods have been designed to improve the model performance by considering the
sample importance or the sample diversity. For example, Gan et al. employ the self-paced learn-
ing on the hard weight for conducting supervised feature selection [42]. There are two types
of representations in SPL based on regularization categories, i.e., explicit way [192, 209] and
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implicit way [36, 53]. The explicit way usually updates the regularizer by considering both reg-
ularizer and its derivation. For example, Zheng et al. conduct an unsupervised feature selection
method combined with self-paced learning to select the important samples and features simul-
taneously [209]. Huang et al. utilize self-paced learning to consider the important features and
important samples in multi-view clustering method [71]. Wang et al. conduct a complemen-
tary role of self-paced learning and self-consistency regularization in semi-supervised segmen-
tation [162]. Hence, both of them are necessary for the calculation. In contrast, the implicit way
only focuses on the selected regularizer and its related minimization function so that this way
provides much compact constraints on the self-paced regularizer. As a result, the minimization
function is the essential term. For example, Fan et al. conduct a self-paced learning with implicit
regularization to obtain the better weighting scheme and the robust performance based on convex
conjugacy theory [36]. Zheng et al. propose a robust feature selection method which contains
the loss function by using self-paced implicit way and the sparse learning way to search the
important samples subset and features subset on incomplete data [211]. Yuan et al. employ self-
paced implicit regularization to adaptively learn the correlations of samples and the signification
features [181].

3.3 Method

3.3.1 SVM methods
For n sample-label pairs (xi, yi), xi ∈ R1×d and yi ∈ {−1,+1}, and the conventional ℓ2-SVM
is described as

min
w,b

1
2
||w||22 + λ1

n∑
i

(1− (xiw + b)yi)+, (3.1)

where w ∈ Rd×1 is the coefficient vector, b ∈ R indicates the bias term, λ1 > 0 is a penalty
parameter and it can adjust the importance between the first term and the second term. The aim
of the second term is to measure the difference between two scalars, i.e., xiw + b and yi, and
(1− (xiw + b)yi)+ = max(1− (xiw + b)yi, 0).

In order to remove the noise features, ℓ1-SVM uses an ℓ1-norm to replace the ℓ2-norm on the
regularization term by

min
w,b

1
2
||w||1 + λ1

n∑
i

(1− (xiw + b)yi)+. (3.2)

3.3.2 Local structure preservation
Although ℓ1-SVM can set the weight of useless features to zero, the correlations between samples
cannot be ignored. Specifically, if two samples have a strong connection, it is expected to be
assigned high weight. Hence, we consider to preserve the local importance of the samples. To
do this, Laplacian SVM (LapSVM) which conducts the graph Laplacian matrix to represent the
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correlations between any two samples is the classic method [7]. However, LapSVM belongs
to the fixed graph learning since it constructs the graph matrix from the original data and the
learned graph remains the same throughout the entire process. Besides, the graph structure is
usually changeable due to the updated transformation matrix during the optimization step. Thus,
we employ the dynamic graph learning to replace the fixed graph learning to achieve the optimal
local importance. The details are listed as follows:

min
S

n∑
i,j

||xi − xj||22si,j + γ
n∑
i

||si||22, (3.3)

where si,j is the i-th row and j-th column of the similarity matrix S ∈ Rn×n which indicates the
correlations between the samples.

The first term in Eq. (3.3) denotes the loss function for generating the similarity matrix. The
second term is devised to avoid the trivial solution for the whole equation. However, Eq. (3.3)
has to face the issue that noises and outliers are inevitable in the original data, so we transform
Eq. (3.3) into the low-dimensional subspace to have

min
S,W

n∑
i,j

||xiW − xjW||22si,j + γ
n∑
i

||si||22
s.t., ∀i, sTi 1 = 1, si,i = 0, si,j ≥ 0, if j ∈ N (i), otherwise 0,

(3.4)

where W ∈ Rd×c denotes the transformation matrix. If the sample xi has similar relation to the
sample xj , it is reasonable that their corresponding predictions (i.e., xi = xiW and xj = xjW)
also have the same relation. 1 and N (i), respectively, indicate an all-one-element vector and
the set of nearest neighbors of the i-th sample. The shift invariant similarity is obtained by the
constraint sTi 1 = 1.

Compared with the traditional fixed graph methods, k is the only parameter in Eq. (3.4) since
the similarity matrix is learned from the data, i.e., the more distant samples are, the smaller their
values have, and vice verse. Moreover, the graph matrix is learned from ‘clean’ data by XW in
the low-dimensional space.

3.3.3 Sample importance
Sample importance selects the samples with large weights and the unimportant samples with
small values or even zero. In this chapter, we employ Self-paced Learning (SPL) to consider
the global correlations among samples, by distributing different weights to different samples.
Specifically, this way first selects a part of the samples to build the initial classifier, then gradually
adds partial samples to complete the model.

Generally, SPL methods include two different ways, i.e., explicit methods and implicit methods.
For simplify, in this chapter, we employ the explicit regularizer to mark the important samples
and apply for the ℓ1-SVM to have the following,

min
w,b

1
2
||w||1 + λ1

n∑
i

vi(1− (xiw + b)yi)+ − λ2||v||1, (3.5)
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where v ∈ Rn×1 indicates a vector for diverse samples. λ2 plays an important role in the process
of learning new samples. Specifically, if the value of λ2 is small, only samples with small losses
are considered for the training process. While λ2 grows, more samples with larger losses are
gradually appended to the training process so that Eq. (3.5) results in robust models.

3.3.4 Objective function
Although the graph matrix S learnt from the low-dimensional space is constructed, both the
graph matrix S and the matrix W are not know in advance. Therefore, we combine Eq. (3.4)
with Eq. (3.5) into a unified framework. Besides, we apply the united model for the multi-class
classification analysis, and use the squared hinge loss function to replace the standard hinge loss
function. The details are showed as follows,

min
W,b,v,S

1
2
||W||2,1 + λ1

n∑
i

c∑
j

vi(1− (xiwj + bj)yi,j)
2
+

− λ2||v||1 + λ3

n∑
i,j

||xiW − xjW||22si,j + γ
n∑
i

||si||22
s.t., 0 ≤ vi ≤ 1, ∀i, sTi 1 = 1, si,i = 0,

si,j ≥ 0, if j ∈ N (i), otherwise 0,

(3.6)

where λ1, λ2, λ3, and γ are tuning parameters, respectively, to adjust the magnitude of the squared
hinge loss function, the learning pace, the adaptive structure, and the similarity between the
samples. Specifically, this proposed method can 1) select the robust samples by the second term
and the third term; 2) obtain the graph matrix by the fourth term and the fifth term; 3) tune the
sparsity of the coefficient matrix by the first term.

Eq. (3.6) iteratively updates the transformation matrix W, the bias term b, the graph matrix S and
the vector v. As a result, given the optimal W, we compute the ℓ2-norm of wi, i ∈ [1, 2, ..., d],
and then sort them in the descending order. Finally, we select top r features according to the top
r ranked ℓ2-norm values as the ultimate result of the proposed spectral feature selection method.

3.3.5 Optimization
Eq. (3.6) is not jointly convex to all variables (i.e., W, b, v, and S), but is convex for every
variable while fixing the others. In this chapter, we employ two optimization strategies i.e., Aug-
mented Lagrangian Method (ALM) [46] and Iteratively Re-weighted Least Square (IRLS) [27]
to deal with the problems in Section 3.3.5.1 - 3.3.5.3, respectively. We list the pseudo code in
Algorithm 3.1.

3.3.5.1 Update W and b by fixing v, S

When v and S are fixed, the third term and the fifth term can be ignored in Eq. (3.4). Besides,
with the observation, i.e., 1 − (xiwj + bj) = yi,j(yi,j − (xiwj + bj)), we employ the auxiliary
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Algorithm 3.1: The pseudo code of solving Eq. (3.6).
Input: X ∈ Rn×d, Y ∈ Rn×c, k, λ1, and λ3;
Output: W ∈ Rd×c;
1. Calculate k nearest neighbors of all samples;
2. Initialize W ∈ 1d×c,b ∈ 1d×c,v ∈ 1n×1;
3. Initialize S by Eq. (3.4);
4. Repeat:

4.1 Update W,b via Algorithm 3.2;
4.2 Update S via Eq. (3.21);
4.3 Calculate Ls = Ds − ST+S

2
;

4.4 Update v via Eq. (3.26);
until converge

Algorithm 3.2: The pseudo code of solving W and b .
Input: X ∈ Rn×d, Y ∈ Rn×c, and θ;
Output: W ∈ Rd×c and b ∈ R1×c;
1. Initialize W ∈ 1d×c and b ∈ 1d×c;
2. Initialize µ = 0;
3. Repeat:

3.1 Update E via Eq. (3.12);
3.2 Update W,b via Eq. (3.15);

or Choose the fast method: Update W,b via Eq. (3.16), and q is computed with Eq.
(3.18);

3.3 Update µ via Eq. (3.10);
until converge

variables ei,j = yi,j − (xiwj + bj), 1 ≤ i ≤ n, 1 ≤ j ≤ c to have:

min
W,b,E

1
2
||W||2,1 + λ1

n∑
i

c∑
j

vi(yi,jei,j)
2
+ + λ3

n∑
i,j

||xiW − xjW||22si,j. (3.7)

Based on the ALM method, we construct the Lagrangian function of Eq. (3.7) to have:

L(W,b,E, µ) = λ1

n∑
i

c∑
j

vi(yi,jei,j)
2
+ + viµT ||XW + 1nb−Y + E||2F

+ 1
2
||W||2,1 + λ3

n∑
i,j

||xiW − xjW||22si,j,
(3.8)

where X ∈ Rn×d = [x1, x2, ..., xn], 1n ∈ Rn×1 = [1, 1, ..., 1]T is an all-one-element vector,
Y ∈ Rn×c = [y1, y2, ..., yc], E ∈ Rn×c = [e1, e2, ..., ec]. The third term is the point-wise
multiplication of the amount of violation of the n constraints (xiwj + bj)− yi,j + ei,j = 0 with
the vector µ ∈ Rn consisting of n Lagrangian multipliers.
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By considering the ALM method, the augmented Lagrangian function of Eq. (3.7) is:

AL(W,b,E, µ, θ) = λ1

n∑
i

c∑
j

vi(yi,jei,j)
2
+ + vi θ

2
||XW + 1nb−Y + E+ µ

θ
1||2F

+ 1
2
||W||2,1 + λ3

n∑
i,j

||xiW − xjW||22si,j,
(3.9)

where 1 denotes a matrix and all elements are equivalent to 1, and Eq. (3.9) is close to zero when
θ → ∞, and eventually it becomes negligible.

At the t-th iteration, the Lagrangian multiplier vector µ can be updated by:

µ(t) = µ(t−1) + θ(t)||XW + 1nb−Y + E||2F . (3.10)

The parameter θ which indicates the augmented penalty is monotonically non-decreasing over
the iterative process. Section 3.3.8.1 discusses how to determine the relating series θ(t) in each
iteration t.

At every iteration, we can split the updating of W, b, E into two independent parts: 1) to update
E by fixing W and b, and 2) to update W and b by fixing E.

• 1) Update E by fixing W and b

When W and b are fixed, each ei,j can be computed by:

ei,j = argmin
ei,j

Gi,j(ei,j)

= argmin
ei,j

λ1

n∑
i

c∑
j

vi(yi,jei,j)
2
+

+ vi θ
2
||ei,j − (yi,j − xiwj − bj − µi

θ
)||2

= argmin
ei,j

α
n∑
i

c∑
j

vi(yi,jei,j)
2
+ + 1

2
(ei,j − ti,j)

2,

(3.11)

where α = λ1

θ
and ti,j = yi,j − xiwj − bj − µi

θ
. Eq. (3.11) is easy to be solved because

it only needs to find out the minimum value in both ei,j ≤ 0 and ei,j > 0 when ei,j acts
as the minimizer for the function Gi,j(ei,j). Similarly, when the condition is changed into
yi,jei,j , the result is showed as follows:

– When yi,jei,j ≤ 0, the result is (yi,jei,j)
2
+ = 0, and the smaller value is selected

between Gi,j(0) and Gi,j(ti,j).

– When yi,jei,j > 0, the result is obtained by calculating the partial derivative of ei,j
and let its equation to zero: ∂Gi,j

∂ei,j
= 2αvi(yi,jei,j) + ei,j − ti,j = 0

It is difficult to solve the above condiction because of the arbitrary given α. However, with
the constraint α > 0, ∂Gi,j

∂ei,j
is monotonically increasing and we can use the well-known

binary search method to narrow the possible range of ei,j by half at every operation, and
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obtain an ε-accurate solution in O(log 1
ε
) time. Therefore, the explicit solution can be

derived as: {
ei,j =

ti,j
1+2αvi

, yi,jti,j > 0,

ei,j = ti,j, yi,jti,j ≤ 0.
(3.12)

• 2) Update W and b by fixing E

When E is fixed, we obtain the objective function with respect to W and b as follows:

min
W,b

θ−1||W||2,1 + vi||XW + 1nb− Z||2F + λ3

n∑
i,j

||xiW − xjW||22si,j, (3.13)

where Z = Y − E− µ
θ
1. Besides, different classes are independent to each other, we can

change Eq. (3.13) to:

min
wj ,bj

θ−1wT
j Rwj + vi||Xwj + 1nbj − zj||22 + λ3w

T
j X

TLsXwj, (3.14)

where a diagonal matrix R and its diagonal elements can be defined as ri,i = 1
2||wj ||22

, 1 ≤
i ≤ d, Ls = Ds − ST+S

2
is the Laplacian matrix of graph structure. As a result, Eq. (3.14)

can be converted into a standard Least Square Regression (LSR) problem as follows, by

setting A = [XT ,1n; θ
−1
2R+ λ3

1
2XTLsX,0], m = [wj; bj], u = [zj;0], we have

min ||Am− u||2. (3.15)

Eq. (3.15) can be solved by the default LSQR function in MATLAB [123], and its time
complexity is O(nd̂2) where d̂ indicates the average number of non-zero elements of each
sample. Therefore, we derive the optimal solution of wj and bj as follows,{

wjh = XTV(Xwj + 1nbj − z) + θ−1Rwj + λ3X
TLsXwj,

bjh = 1T
nV1nbj + 1T

nV(Xwj − z).
(3.16)

The optimal step-size q can be obtained by the following quadratic function,

min
q

θ−1(wj − qwjh)
TR(wj − qwjh)

+ vi||X(wj − qwjh) + 1n(bj − qbjh)− z||22
+ λ3(wj − qwjh)

TXTLsX(wj − qwjh).

(3.17)

And it has the explicit solution:

q = (wT
jhwjh + bTjhbjh)((Xwjh + 1nbjh)

TV(Xwjh + 1nbjh)
+ θ−1wT

jhRwjh + λ3w
T
jhX

TLsXwjh)
−1.

(3.18)

The goal of above equality is to simplify the calculation of q. In this way, we can yield
W,b with different methods and the detail of optimizing W and b is listed in Algorithm
3.2.
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3.3.5.2 Update S by fixing v, W and b

If we want to solve S, Eq. (3.6) becomes:

min
S

λ3

n∑
i,j

||xiW − xjW||22si,j + γ
n∑
i

||si||22
s.t., ∀i, sTi 1 = 1, si,i = 0, si,j ≥ 0, if j ∈ N (i), otherwise 0,

(3.19)

where si ∈ Rn×1 indicates a vector with the j-th element as si,j , γ is the tuning parameter. The
optimal solution is that all data points can be the neighbors of xiW with the same probability 1

n
,

which can be viewed as a prior in the neighbors assignment.

We need to obtain k nearest neighbors of all samples via computing their Euclidean distance,
and setting the value of si,j equal to 0 when the j-th sample does not belong to one of k-nearest
neighbors of the i-th sample. Besides, the optimization of S is equal to optimize every vector
si, i ∈ [1, n] independently, we further convert Eq. (3.19) to individual parts as follows:

min
sTi 1=1,si,i=0,si,j≥0

n∑
i,j

(λ3||xiW − xjW||22si,j + γs2i,j). (3.20)

Let di,j = λ3||xiW−xjW||22, and di ∈ Rn×1 as a vector with the j-th element as di,j , Eq. (3.20)
can be written in a vector form as follows:

min
sTi 1=1,si,i=0,si,j≥0

||si + 1
2γ
di||22. (3.21)

Actually, the regularization parameter is usually difficult to tune, in this chapter, we propose an
effective approach to deal with the γ in Eq. (3.21). Specifically, for every i, we conduct the
corresponding Lagrangian function as follows:

||si +
1

2γ
di||22 − σ(sTi 1− 1)− τ T si, (3.22)

where σ ∈ R represents a Lagrange multiplier and τ ∈ Rn
+ denotes non-negative vector La-

grange multipliers.

According to the complementary slackness Karush-Kuhn-Tucker (KKT) conditions [11], for any
si > 0, we have τi = 0 and the followings

si,j = (−di,j
2γi

+ σ)+. (3.23)

The parameter of γ can be adjusted automatically in Section 3.3.8.2.
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3.3.5.3 Update v by fixing S, W, and b

If we want to solve the v, Eq. (3.6) can be converted into:

min
v

λ1

n∑
i

c∑
j

vi((1− (xiwj + bj)yi,j)
2
+)− λ2||v||1 s.t. 0 ≤ vi ≤ 1, (3.24)

where λ2 denotes a parameter for controlling the learning pace. Eq. (3.24) illustrates the loss of
one instance is discounted by one weight.

Defining L =
∑n

i Li =
∑n

i

∑c
j (1− (xiwj + bj)yi,j)

2
+, we have:

min
v

n∑
i

(λ1v
iLi − λ2v

i) s.t., 0 ≤ vi ≤ 1. (3.25)

According to Eq. (3.25), the corresponding global optimum vi can be easily calculated by:

vi =

{
1, Li ≤ λ2,
0, otherwise.

(3.26)

There exists an intuitive explanation behind this alternative search strategy. Specifically, if v is
updated, every sample whose loss is smaller than a certain threshold λ2 is taken as an important
sample while training (i.e., vi = 1), otherwise we do not select it (i.e., vi = 0).

3.3.6 Convergence analysis
By denoting the objective function value of Eq. (3.6) as F (W,b,v,S) and the t-th iteration of
the variables as W(t), b(t), v(t), and S(t), we prove the convergence of our proposed method as
follows.

Based on the literature [27, 174] and the fixed v(t) and S(t) in the process of optimization, we
have:

F (W(t+1),b(t+1),v(t),S(t)) ≤ F (W(t),b(t),v(t),S(t)). (3.27)

While fixing W(t+1),b(t+1), and v(t), the optimization with respect to S has the following in-
equality:

F (W(t+1),b(t+1),v(t),S(t+1)) ≤ F (W(t+1),b(t+1),v(t),S(t)). (3.28)

According to SPL theory [115] and the fixed W(t+1), b(t+1), and S(t+1), we have:

F (W(t+1),b(t+1),v(t+1),S(t+1)) ≤ F (W(t+1),b(t+1),v(t),S(t+1)). (3.29)

By combining Eq. (3.27), Eq. (3.28) with Eq. (3.29), the final inequality is:

F (W(t+1),b(t+1),v(t+1),S(t+1)) ≤ F (W(t),b(t),v(t),S(t)). (3.30)

We proved that the value of objective function in Eq. (3.6) decreases for every iteration.
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3.3.7 Complexity analysis
In every iteration, Algorithm 3.2 only needs three matrix-by-vector multiplications with com-
plexity O(nd̂), where d̂ shows the average number of non-zero elements per instance. In the
classification task, the high-dimensional features are always reduced by the pre-screening pro-
cedure, hereby d̂ is not large. As a result, our proposed algorithm has linear computational cost
with regard to the sample number n.

The time cost of Algorithm 3.1 focuses on the computation cost of di,j in Eq. (3.23) and vi,i in
Eq. (3.26), so their corresponding complexity are O(nd2) and O(n), where n and d denote the
number of the samples and the features, respectively. In our experiments, our method generally
converges within t iterations, e.g., 30, so the total complexity of the proposed method is O(tnd2).

3.3.8 Parameters’ determination
3.3.8.1 The determination of θ(t)

In order to prove the sequence µ(t) in Algorithm 3.2 is bounded, we introduce Lemma 1 [122] as
follows.

Lemma 1. If the sequences {w(t)
j }, {b(t)} and {e(t)j } denote the optimal solution, denoting each

iteration t > 0 and
∑∞

t
θ(t+1)

θ(t)2
< ∞, we have

ϕ(w
(t+1)
j ) + ||λ1v(yje

(t+1)
j )+||2 +

θ(t+1)

2
||Xw

(t+1)
j + 1b(t) − yj + e

(t+1)
j ||2 + φ(w

(t+1)
j )

≤ ϕ(w
(t)
j ) + ||λ1v(yje

(t)
j )+||2 +

θ(t)
2
||Xw

(t)
j + 1b(t) − yj + e

(t)
j ||2 + φ(w

(t)
j ),

where {
ϕ(w

(t)
j ) = 1

2
tr((w

(t)
j )TRw

(t)
j ),

φ(w
(t)
j ) = λ3

∑n
i,j ||xiw

(t)
j − xjw

(t)
j ||22si,j.

By considering Eq. (3.11) and Eq. (3.14), we have the following inequality:

AL(w
(t)
j ,b(t), e

(t)
j , µ(t−1), θ(t))

≤ AL(w
(t−1)
j ,b(t−1), e

(t)
j , µ(t−1), θ(t))

≤ AL(w
(t−1)
j ,b(t−1), e

(t−1)
j , µ(t−1), θ(t)),

(3.31)

which can ensure that the sequence {θ(t)} is non-decreasing.

Hence, based on Lemma 1, we can generate the sequence {θ(t)} and the update method as fol-
lows:

θ(t+1) = (
θ(t)
2
||Xw

(t)
j + 1b(t) − yj + e

(t)
j ||2 + ϕ(w

(t)
j ) + ||λ1v(yje

(t)
j )+||2

+ φ(w
(t)
j )− ϕ(w

(t+1)
j )− ||λ1v(yje

(t+1)
j )+||2

− φ(w
(t+1)
j )(1

2
||Xw

(t+1)
j + 1b(t) − yj + e

(t+1)
j ||2)−1.

(3.32)
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3.3.8.2 The determination of γ

It is not simple using Eq. (3.23) to find all the suitable si. Based on [32], we have Lemma 2 and
Lemma 3 as follows.

Lemma 2. If si achieves the optimal solution in Eq. (3.23) and si = 0, letting i and j be two
indices and βi > βj (β = − 1

2γ
di), sj equals to zero.

Based on Lemma 2, there exist some integers I = [ρ], 1 ≤ ρ ≤ n to meet the non-zero compo-
nents of the sorted optimal solution, so we have

σ =
1

ρ
(

ρ∑
i

βi − 1), (3.33)

As a result, the optimal si can be described as si = max{βi − ρ, 0}. Besides, Lemma 3 is used
to automatically find the optimal ρ.

Lemma 3. Letting η represent the vector after sorting β with a descending order, the number of
strictly non-negative elements in α is ρ = max

{
ηj − 1

j
(
∑j=n

i=1 ηi − 1) > 0
}

.

To consider sTi 1 = 1 and Eq. (3.33) together, γ can be calculated by γ ≤ ρ
2
di,ρ+1 − 1

2

∑ρ
j di,j .

Hence, in order to achieve the final value of the γ, we consider to use the mean-value method of
n subjects to have

γ =
1

n

n∑
i

(
2

ρ
di,ρ+1 −

1

2

ρ∑
j

di,j), (3.34)

where ρ denotes the exact non-zero values and it can be automatically obtained.

3.4 Experiments
We evaluate our proposed method compared with one baseline method and seven state-of-the-
art methods on four synthetic data sets and sixteen public real data sets in terms of different
classification tasks, i.e., binary classification and multi-class classification tasks.

3.4.1 Data sets
We design four synthetic classification data sets based on the scikit-learn (sklearn) toolbox using
the software of python [125], to test our proposed method, i.e., two for binary classification and
other two for multiple categories classification. Specifically, we employ the function1 to generate
synthetic data sets, and then use two same data sets for both binary and multi-class classification,
i.e., one data set has 1500 samples with 500 dimensions for representation, the other has 2000
samples with 1000 dimensions for representation. We set the term ‘redundancy’ as 10% and 40%

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make classification.html

https://scikit-learn.org/stable/modules/generated/sklearn.data sets.make_classification.html
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Table 3.1: The details of synthetic data sets.

Data Sets Synb1 Synb2 Synm1 Synm2
Samples 1500 2000 1500 2000

Dimensions 500 1000 500 1000
Classes 2 2 3 3

Redundancy 10% 40% 15% 45%
Minimum -4.84 -6.20 -6.81 -7.86
Maximum 4.92 6.66 7.47 7.92

Table 3.2: The details of real-world data sets.

Data Sets #(Samples) #(Dimensions) #(Classes) #(Type)
Parkin 1040 26 2 Biology

Spambase 4601 57 2 Email
Hillv 606 100 2 Artificial

German 1000 20 2 Financial
Colon 62 2000 2 Biology

Dbworld 64 4702 2 Text
Madelon 2000 500 2 Artificial
Pcmac 1943 3289 2 Text
Wavef 2746 21 3 Artificial
Lung 203 3312 5 Biology
Ecoli 336 343 8 Biology
Cane 1080 856 9 Text

Warpar 130 2400 10 Image
Yale32 165 1024 15 Image

Coil 1440 1024 20 Image
Isolet 1559 617 26 Text

for binary data sets and 15% and 45% for multi-class classification. The details of synthetic data
sets are listed in Table 3.1 and the classification results are reported in Table 3.3.

We download eight binary-class data sets and eight multi-class benchmark data sets from public
website and listed their details in Table 3.2. In specific, the data sets (such as Parkin, Spam-
base, Hillv, German, Wavef, Ecoli, Cane and Isolet) and the data sets (such as Colon, Dbworld,
Madelon, Pcmac, Lung, Warpar, Yale32 and Coil), respectively, from UCI Machine Learning
Repository2 and the website of Feature Selection Data sets3.

These data sets come from six kinds of applications, such as biological data (such as Parkin,
Colon, Lung and Ecoli), image data (such as Warpar, Yale32 and Coil), artifical data (scuh Hillv,
Madelon and Wavef), text data (such as Dbworld, Pcmac, Cane and Isolet), email data (a mixture
data including text and image e.g., Spambase) and financial data (such as German). Moreover,
the number of samples is from 62 to 4601 and the number of features is from 20 to 4702. In
particular, the number of samples of four data sets is larger than the number of features, such as

2https://archive.ics.uci.edu/ml/index.php.
3http://featureselection.asu.edu/datasets.php.

https://archive.ics.uci.edu/ml/index.php.
http://featureselection.asu.edu/datasets.php.
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Parkin, Spambase, German and Wavef.

3.4.2 Comparison methods
The comparison methods included one Baseline method, three linear SVM methods, and four
feature selection methods.

• Baseline uses all features to conduct the classification tasks with the SVM classifier. Base-
line does not have the process of pre-processing of the original data and can indicate the
initial distribution among the original data.

• SVM with the ℓ1-norm (L1SVM) [182] uses the ℓ1-norm regularization to replace the ℓ2-
norm work on the penalty term (i.e., the squared hinge loss function), and can obtain a
sparse performance and avoid the issue of over-fitting.

• General framework for Sparsity Regularization (GSR) [126] constructs the ℓp2,p-norm to
act on both the least square loss and the regularization term, as well as to flexibly control
different sparse degrees on both the loss function term and the regularization term through
the related parameter.

• Learning Graph and Self-paced method (LGS) [210] integrates diverse techniques, such as
dynamic graph construction, feature selection and a subspace constraint in a unified frame-
work, to synchronously consider the correlations between the samples and the correlations
between the features.

• Multiclass Kernel-based Vector Machines (MKVM) [25] is a classical non-linear SVM
method for the multi-class classification by first developing basic framework for multi-
class SVM and then considering one slack variable for every sample.

• Cost Sensitive with Laplacian svm (CSL) [170] applies the cost sensitivity (i.e., misclassi-
fication cost) for the laplacian SVM model to consider the effectiveness between positive
data and negative data. In this chapter, we do not take into account the cost-sensitive so
that the relevant value is set to one.

• Softmax Regression with Self-paced Learning (SRSL) [130] combines the softmax regres-
sion with the self-paced learning in a unified framework for multi-class classification.

• Risk Minimization Multiclass method (RMM) [99] utilizes the ℓp-norm to control the
complexity of the related data-dependent bound among the classes under the basic multi-
class SVM framework.

The comparison methods include two conventional feature selection methods (such as GSR and
LGS), four multi-class SVM methods with different considerations (such as MKVM, CSL, SRSL
and RMM). We also regard the method (i.e., Baseline) using all features to conduct classification
tasks with the traditional SVM classifier.

Besides, we choose the above comparison methods for two goals, first, as for binary classifica-
tion, the main purpose is to compare the difference between various loss functions (i.e., the hinge
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loss function and the least square loss function), and the dissimilarity among the norm variety
(i.e., ℓ1, ℓ2,1, and ℓp2,p). Second, in terms of multi-class classification, the key goal is to consider
multiple constraints (i.e., self-paced learning, cost-sensitive consideration and risk minimization)
to deal with multi-class problems.

3.4.3 Setting
Our experiments work on CPU W-2104 4 cores and 32G RAM within Win10 system, and MAT-
LAB 2019a. We first utilize all methods to obtain the reconstructed weight matrix, and then run
the SVM classifier on the representative samples and features to conduct the task of classification.

We employ the 10-fold cross validation method to conduct experiments for all the methods.
Specifically, in every experiment, we firstly use every dimensionality reduction method to reduce
the dimensions of the training data, and then conduct classification using SVM on the reduced
data. In each experiment, we partition the whole data set into ten subsets where 9 subsets are
used for training and the left one subset is used for testing. During the training process, we use a
5-fold cross validation method to conduct model selection. In model selection, we set the range
of parameters i.e., λ1 and λ3 as (10−3, ..., 103) for all methods to make fair comparison, where
all the methods obtain their best performance. As for the parameter of λ2, for simplify in this
experiment, it can be automatically updated through this way, i.e., λ2 = V (L)/n, where V (L)
denotes the value of L and the definition of L is between Eq. (3.24) and Eq. (3.25). γ can
be adjusted automatically in Section 3.3.8.2. Finally, we repeat each experiment ten times and
report the final results as the average of all ten times.

We evaluate all methods by using classification accuracy (ACC) for both binary classification
and multi-class classification. We also employ other three evaluation metrics (such as sensitivity
(SEN), specificity (SPE) and Area Under Curve (AUC)) to evaluate the performance of binary
classification, i.e., ACC = TP+TN

TP+TN+FP+FN
, SEN = TP

TP+FN
, SPE = TN

TN+FP
, where TP, TN,

FP, FN, respectively, means true positive, true negative, false positive and false negative.

The goal of ACC is to measure the percentage of samples correctly classified among all samples.
SEN and SPE, respectively, indicate the correct results of positive sample among the positive
samples and the correct results of negative sample among the negative samples. AUC denotes
the probability that the classifier assigns a high score to a randomly selected positive sample than
to a randomly selected negative sample.

The higher the result of each evaluation metric is, the better the results of the method is, and vice
versa.

3.4.4 Result analysis
For the synthetic data sets, our proposed method achieve the best results, followed by CSL,
RMM, SRSL, MKVM, LGS, L1SVM, and GSR. This indicates the effectiveness of our pro-
posed method. Specifically, first, multi-class methods (i.e., MKVM, CSL, SRSL and RMM) out-
perform traditional feature selection methods (i.e., GSR and LGS). Second, the graph structure
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Table 3.3: Classification accuracy (ACC) of all methods on four synthetic data sets (%).

Data Sets Synb1 Synb2 Synm1 Synm2
Baseline 94.41 71.55 67.33 54.42
L1SVM 94.67 74.42 72.49 55.00

GSR 66.00 60.19 58.06 46.22
LGS 92.29 91.55 69.29 47.48

MKVM 89.43 85.11 77.64 76.90
CSL 98.27 93.34 88.27 81.16

SRSL 90.56 90.14 87.92 82.99
RMM 98.40 91.85 85.52 81.57

Proposed 98.93 93.40 90.07 84.47

Table 3.4: Classification accuracy (%) of all methods for multi-class classification on eight real data
sets.

Data Sets Wavef Lung Ecoli Cane Warpar Yale32 Coil Isolet
Baseline 74.61 78.67 42.99 77.59 73.27 55.56 93.00 85.17
L1SVM 74.44 79.20 52.78 81.39 74.41 59.78 94.86 88.85

GSR 68.99 79.58 73.59 81.52 83.41 68.10 83.02 85.60
LGS 69.48 91.12 77.49 82.24 93.57 82.01 81.98 90.57

MKVM 83.15 69.98 69.11 87.68 72.91 77.64 85.21 89.51
CSL 79.62 93.03 54.44 94.75 75.26 67.72 83.70 69.74

SRSL 85.94 76.35 83.33 93.33 93.08 86.15 90.63 88.97
RMM 85.95 70.28 71.67 93.87 72.39 81.02 86.42 91.41

Proposed 88.44 98.59 89.96 92.96 98.99 80.99 99.01 96.99

consider the correlation between the samples so that the graph methods achieve better perfor-
mance than other methods. Third, noise seriously affects the classification results of all methods.
For example, the data sets with less noise (i.e., Synb1 and Synm1) outperform the data sets with
more noise (i.e., Synb1 and Synm2), in terms of classification results on all methods.

We conduct experiments with all methods on real data sets to output a part of all the features
(i.e., 10%, 30%, 50%, 70% and 90%) to evaluate the classification results of multi-class classi-
fication and binary classification, respectively. We list the classification accuracy of multi-class
classification of all methods with all features and different ratios of features, respectively, in Ta-
ble 3.4 and Figure 3.1. We also report the classification accuracy of binary classification of all
methods with all features and different ratios of features, respectively, in Table 3.5 and Figure
3.2.

In multi-class classification, firstly, the proposed method achieves the best classification per-
formance, followed by SRSL, LGS, RMM, MKVM, GSR, CSL, L1SVM and Baseline. For
example, the proposed method improved by 6.02% and 17.53% on average, with respect to clas-
sification accuracy(ACC), compared with the best method (i.e., SRSL) and the worst comparison
method (i.e., L1SVM) except the Baseline method. The reason is that our method utilizes both
dynamic graph structure and the self-paced learning together. In detail, there are two meth-
ods (i.e., GSR and LGS) consider one of the former technologies and there are three methods
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Figure 3.1: Classification accuracy (ACC) of all methods at different ratios of selected features.

Table 3.5: The classification results (%) of all methods on binary classification.

Data Sets Parkin Spambase Hillv German
ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

Baseline 56.06 38.27 73.85 72.06 60.60 52.14 63.57 62.47 62.40 57.50 60.52 42.20 70.00 72.50 75.00 66.25
L1SVM 59.75 45.77 81.73 78.92 60.58 53.71 64.76 69.72 66.54 68.11 79.21 70.99 70.02 44.89 72.54 67.57

GSR 47.98 31.73 64.23 86.53 69.98 58.88 68.11 73.54 74.64 71.14 75.47 77.81 69.94 41.57 72.42 81.43
LGS 53.94 75.96 71.92 88.84 77.89 79.22 72.05 78.67 74.76 72.13 79.23 80.37 70.00 79.99 75.17 72.57

MKVM 53.41 75.14 69.47 63.00 59.87 77.48 69.42 68.33 69.84 72.58 72.41 69.80 70.08 65.00 68.91 59.97
CSL 64.88 59.90 62.68 58.88 67.02 67.48 71.02 66.57 64.81 63.58 73.69 68.71 59.51 59.47 65.42 67.15

SRSL 62.50 67.40 63.17 61.08 91.85 79.68 72.11 73.43 65.51 69.90 72.47 67.00 76.20 73.10 68.44 66.50
RMM 61.06 77.12 70.50 65.15 61.17 81.01 71.44 72.09 70.49 78.79 70.51 72.09 70.07 65.96 71.16 62.09

Proposed 67.79 78.10 82.22 90.43 93.56 85.54 73.22 80.59 75.67 73.31 84.74 76.84 75.60 75.50 80.57 82.35

Data Sets Colon Dbworld Madelon Pcmac
ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

Baseline 84.67 80.00 76.67 78.76 86.57 86.67 85.50 84.81 62.25 62.90 61.60 37.41 73.00 76.33 69.17 61.84
L1SVM 84.76 68.51 72.54 72.50 86.81 85.13 85.43 83.33 61.60 60.80 62.40 48.14 70.08 77.76 71.15 62.94

GSR 66.57 73.41 78.19 63.75 75.00 70.40 81.91 69.03 66.43 73.41 75.90 69.99 75.93 75.82 71.20 66.07
LGS 85.43 83.41 87.35 76.49 78.69 69.87 68.54 73.91 67.45 61.30 77.60 69.19 82.21 69.77 75.98 67.40

MKVM 64.44 73.41 74.05 68.88 84.49 69.47 68.09 69.71 65.60 63.57 69.70 58.79 78.41 69.58 72.23 62.87
CSL 78.57 67.99 78.12 74.00 72.62 59.99 73.41 70.04 60.04 61.70 63.47 67.90 77.47 76.12 77.81 70.58

SRSL 70.97 68.42 69.07 69.30 87.50 74.68 76.15 67.30 54.90 49.99 60.01 58.47 90.32 78.08 71.09 67.00
RMM 65.48 75.00 75.07 72.09 90.00 73.33 77.50 72.09 65.30 76.00 74.60 52.09 92.75 76.29 72.19 62.00

Proposed 90.48 84.30 91.18 80.43 94.05 87.54 85.58 86.18 67.79 71.31 74.74 73.37 85.81 75.70 69.48 67.17

(i.e., MKVM, CSL, and RMM) utilize other approaches to improve the SVM. Secondly, Table
3.4 indicate that it may not lead to better result by considering a single technique. Moreover,
different ratios of features reveal diverse results with regard to classification in Figure 3.1. How-
ever, there are comparison methods produce worse results than the Baseline which only use the
conventional SVM. The reason is that all features may provide more comprehensive information
from the original data. Thirdly, two linear SVM (including L1SVM and Baseline) get the worse
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results than other comparison methods since these two methods are designed to deal with the
classical binary classification instead of the multi-class classification.

Similar to the results of multi-class classification, the proposed method obtain the best classi-
fication performance in term of four evaluation metrics compared with comparison methods.
Specifically, as for the classification accuracy(ACC), the proposed method obtain the best per-
formance with five data sets out of eight data sets, followed by SRSL, LGS, RMM, L1SVM,
Baseline, GSR, MKVM, and CSL. For example, the proposed method averagely improved by
6.38%, 7.55%, 9.21%, 9.30%, 11.33%, 11.9%, 13.04%, 13.08%, and 13.23% respectively, com-
pared to SRSL, LGS, RMM, L1SVM, Baseline, GSR, MKVM, and CSL.

Besides, the multi-class methods with other techniques occupy two of the top four among the
comparison methods, and the linear SVM model (i.e., L1SVM and Baseline) is better than the
conventional feature selection methods with the linear kernel function. Moreover, in terms of
sensitivity(SEN), specificity(SPE), and Area Under Curve (AUC), compared to other eleven
comparison methods, the proposed method still could achieve the best results in most of the
data sets. This contributes to the fact that the proposed method utilizes two methods to remove
outliers of the original data in the low-dimensional subspace and employ the robust loss func-
tion to conduct feature selection. On the contrary, other comparison methods may consider one
aspect or use other technology to improve the basic SVM model.
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Figure 3.2: Classification accuracy (ACC) of all methods at different ratios of selected features for
binary classification.
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3.5 Discussion

3.5.1 Parameters sensitivity analysis
Although our objective function in Eq. (3.6) has four parameters to be tuned, there are two
parameters can be adjusted automatically, i.e., γ and λ2. Hence, we tune the parameters λ1 and
λ3 within the range of {10(−3), 10(−2), ..., 103}. Meanwhile, we investigate the variations of the
classification accuracy of our method while keeping the left features as 70% of all the features
and the results on sixteen data sets are showed in Figures 3.3-3.4.

For example, in Figure 3.3, we can find that our method achieves the best performance on the
data sets Cane and Coil while setting λ1 = 10, and λ3 = 0.1. Meanwhile, our method produces the
best ACC 99.01% on Coil for multi-classification data sets. Moreover, for binary classification
data sets in Figure 3.4, the best ACC 94.05% of our method can be found on Dbworld data set.
Furthermore, our method has a higher probability of obtaining the best performance on all binary
classification data sets while λ3 = 103, such as Parkin, German, Dbworld, and Madelon.

(a) Wavef (b) Lung (c) Ecoli (d) Cane

(e) Warpar (f) Yale32 (g) Coil (h) Isolet

Figure 3.3: Classification accuracy (ACC) of the proposed method at different parameters’ setting on
the variables λ1 and λ3 for multi-class classification.

3.5.2 Convergence
We propose a new method to optimize our proposed objective function Eq. (3.6) and theoreti-
cally prove its convergence. We experimentally verify the convergence of objective function by
investigating the variations of the objective function values of Eq. (3.6) at different iterations.
We set the stop criteria of our algorithm as ∥obj(t+1)−obj(t)∥22

obj(t)
≤ 10−5, where obj(t) represents the

value of objective function Eq. (3.6) at the t-th iteration.
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(a) Parkin (b) Spambase (c) Hillv (d) German

(e) Colon (f) Dbworld (g) Madelon (h) Pcmac

Figure 3.4: Classification accuracy (ACC) of the proposed method at different parameters’ setting on
the variables λ1 and λ3 for binary classification.
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Figure 3.5: Objective Function Values (OFV) of the proposed method at different iterations for multi-
class classification.

In Figures 3.5-3.6, we have at least two observations: (1) the proposed algorithm sharply decrease
the objective function values in the first several iterations and then begin to stabilise; and (2)
objective function converges within tens iterations on all the data sets. These conclusions indicate
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Figure 3.6: Objective Function Values (OFV) of the proposed method at different iterations for binary
class classification.

that our method have solved the proposed objective function in Eq. (3.6) and achieved fast
convergence.

3.6 Summary
This chapter has presented a new robust SVM classifier via integrating the hinge loss function,
a self-paced learning, the graph learning with an ℓ2,1-norm regularizer into a unified framework
to simultaneously learn both important samples and features in the robust low-dimensional sub-
space. In this way, it solved the issues of the robustness and the interpretability of graph learning
under the supervised learning. Experimental results on both synthetic data sets and real data sets
verified that our proposed method achieved the best classification performance, compared to the
state-of-the-art classification methods.

This chapter has been published in the CORE rank A journal, i.e., World Wide Web journal [67].



Chapter 4

Multi-band brain network analysis for
functional neuroimaging biomarker

identification

4.1 Introduction
Resting state functional Magnetic Resonance Imaging (fMRI) has been verified to have the po-
tential of improving neuro-disease diagnosis by constructing Functionally Connectivity brain
Networks (FCNs) [55,79]. It results in a comprehensive understanding of neurological disorders
at a whole-brain level by measuring synchronized time-dependent changes in the Blood Oxy-
genation Level Dependent (BOLD) signals [57,90]. Hence, fMRI has been becoming a valuable
technique for identifying biomarkers with neuroimaging data.

Correlation-based methods are commonly used to construct fully connected FCNs, where each
node (i.e., one brain region) connects with all nodes and each edge measures the synchronization
degree of functional activities [133, 144]. Traditional Pearson correlation analysis only captures
pairwise information and thus is vulnerable to spurious or insignificant functional connectivities.
Recently, sparse methods [89, 145, 203] were proposed to construct sparsely connected FCNs
(sparse FCN for short), where each node connects with a part of nodes to reduce the influence
of unreal or unimportant functional connections. However, previous methods for neuro-disease
analysis on fMRI data, such as Pearson correlation analysis and sparse methods, still have to
face many challenges due to the reasons, including heterogeneity across subjects, the curse of
dimensionality, noise influence, inter-subject variability, etc.

In search of significant disease diagnosis, there is a consensus that BOLD signal only contains a
small portion of frequencies (i.e., 0.01HZ-0.08HZ) that are related to neural activity [160, 176].
Based on this observation of fMRI, current computational methods characterize the full con-
nectivity using the filtered BOLD signals where some frequency bands of the signals have been
filtered, with the assumption that the filtered BOLD signals can reflect the complex brain func-
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Figure 4.1: The proposed framework for functional neuroimaging biomarker identification: (1) Orig-
inal Blood Oxygenation Level Dependent (BOLD) signals for M subjects; (2) Each signal was first
partitioned into multi-band signals (e.g., a low frequency signal and a high frequency signal) using
the Discrete Wavelet Transform (DWT) method and the Pearson correlation coefficient was then cal-
culated on each frequency band signal to obtain the fully connected Functionally Connectivity brain
Networks (FCNs); (3) The proposed parameter-free multi-band fusion model is designed to automat-
ically learn a sparse FCN Sm (m = 1, ...,M ) by fusing multiple fully connected FCNs for each
subject, as well as to learn sparse FCNs for all subjects by pulling each sparse FCN to be close to its
k nearest neighbors (kNNs) and pushing each subject to be far away from its k furthest sparse FCNs
(kFSs); (4) A data matrix X is obtained by extracting the upper triangle part of Sm; (5) The ℓ1-SVM
is employed to jointly construct feature selection (i.e., the connection between two brain regions) and
the classification task (i.e., disease diagnosis).

tions for all brain regions [50]. As a complex system, however, each brain region consists of
functionally similar neurons that support differentiable functions. In this regard, one possible
solution would be fine-tuning the BOLD signals into a fine-grained frequency band tailored to
the brain function of subspecialized brain regions. Since the exact definition of brain function
in each region is still largely under debate [161], the alternative solution is to disentangle the
heterogeneity in BOLD signals. Specifically, the BOLD signals are first decomposed into multi-
ple frequency bands (multi-band for short) based on the characteristics of full connectivity. The
multi-band signals are then fused into a unified region with adaptively full connectivity represen-
tation, which can significantly enhance the diagnostic power of connectivity biomarkers for the
computer-assisted diagnosis.

After obtaining multiple fully connected FCNs for each subject, it is necessary to combine them
into a common fully connected or sparse FCN, aiming at learning the most representative fea-
tures across individuals (or subjects). However, different frequency bands of neuronal signals
usually carry unique functional information, which is different from others to support differen-
tiable functions [161], i.e., band diversity for short. Hence, it is unreasonable to construct a
common FCN by averaging different frequency bands for each subject. Moreover, it is difficult
to align FCNs across subjects due to the heterogeneity across subjects.

In this chapter, we hypothesize that the observed brain activity is a mixture of harmonic sig-
nals with different frequency bands and the dysfunction patterns of different brain disorders have
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different responses in different frequency bands, and thus propose a functional connectivity anal-
ysis framework to jointly conduct feature learning and personalized disease diagnosis with fMRI
data in a semi-supervised manner. Specifically, the proposed framework is listed in Figure 4.1 by
involving the following key steps. (1) We first apply the wavelet toward the mean time courses
on each brain region to obtain the wavelet coefficient at each frequency, and further employ the
conventional Pearson correlation analysis to obtain a fully connected FCN for each subject at
the underlying frequency. (2) We investigate a parameter-free multi-band fusion method to au-
tomatically output a sparse FCN by fusing multiple fully connected FCNs for each subject, as
well as to let each sparse FCN be close to its near sparse FCNs and be far away from its furthest
sparse FCNs. (3) We employ the ℓ1-SVM to jointly select brain regions (i.e., feature selection)
and conduct disease diagnosis (i.e., classification).

4.2 Related work
The fMRI is primarily used for the study of early disease diagnosis since it can complement
other brain physiological indicators and can integrate a large number of biomarkers with BOLD
signals [96]. Figure 4.2 indicates four steps in the framework of medical image analysis. (1) Data
pre-processing. The original signals are obtained from fMRI, and it can be dealt with by the steps,
including the sliding window, removing part of data with experience, and multi-band method.
(2) Correlation matrix generation. Every similarity matrix is acquired by the various methods,
i.e., Pearson correlation coefficient (PCC), sparse learning method and graph-based method. (3)
Feature learning. The feature of each vector is obtained by the diverse methods, i.e., dictionary
learning method and the method extracting the upper triangular matrix to represent a subject
with a vector. (4) Disease diagnosis. The task of diagnosis is conducted by the combination of
all vectors through the specific classifier i.e., support vector machine (SVM).
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Figure 4.2: The framework of medical image analysis for disease diagnosis.
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4.2.1 Data pre-processing
There are four traditional methods to deal with the BOLD signals for the fMRI analysis. First, the
original signals is directly used for the next steps. For example, Zheng et al. propose the intensity
transformation to model the enhancement map work on the original MRI data [212]. Shi et
al. utilize specific subject atlas to guide neonatal image segmentation for the original data [143].
Second, the sliding window method partitions the signals into a slice of overlapping segments
[21, 23, 105, 202]. For example, Shakil et al. propose the adaptive window analysis method
[138] and Chen et al. sequentially utilize the sliding window method and the agglomerative
clustering [22]. Third, unnecessary signals are removed with experience by assuming that the
selected signals data between the restricted interval is useful for better explanation. For example,
Macey et al. remove the first volume to prevent the influence of large global BOLD signals [113].
Jarmasz et al. select the specific time series to meet the criterion of certain statistic [73]. Last,
multiple bands methods employ the band-pass filter to divide the original signals into several
bands with frequency-specific. For example, Gao et al. obtain various band-pass dependence
by using discrete wavelet transform [44] and Zhang et al. obtain the sub-band signals from the
original signals [204].

Deep learning methods have been used to deal with the original BOLD signals. For example,
Nguyen et al. synthesize new fMRI data by the co-registration data augmentation method [121].
Huang et al. propose to reconstruct each original fMRI data [68]. Seeliger et al. propose to
explore the abilities of reconstructing arbitrary fMRI data [137].

4.2.2 Correlation matrix generation
The methods of correlation matrix generation include Pearson correlation coefficient methods,
sparse methods, and graph methods.

Pearson correlation coefficient method is used to obtain the fully connected FCNs in the brain
data analysis due to its ability for the strength of the linear correlation between individual pairs
[3, 202, 204]. For example, Liao et al. employ it to explore the correlations between the value
of regional homogeneity and clinical results in the patient group and calculate the correlations
of scores between the spastic paraplegia rating scale and functional connectivity [104]. Zhang et
al. utilize it to obtain the correlations in the low-order functional connectivity network [202].

Sparse methods not only select the important correlations among the subjects for obtaining the
sparse-connected FCNs, but also obtain the sparse-coding dictionary for predicting the unseen
subject [160]. For example, Zhang et al. compare three variants of sparse methods [198] and
Yu et al. propose to consider the link information, group structure, and sparse representation
simultaneously to calculate the correlations [180].

Graph methods decompose the functional structure into the combination of nodes (i.e., the sub-
jects) and edges (i.e., the correlations between any subjects) [179]. For example, Yuan et al. pro-
pose to represent the spatio-temporal dynamic interactions of brain functional networks [183].

Recently, deep learning methods are designed to find the correlations between the brain regions.
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For example, Suk et al. propose a deep auto-encoder model to search the hierarchical non-linear
functional correlations among the brain regions [148]. Sarraf et al. employ the LeNet-5 to fit
the fMRI data for Alzheimer disease classification [135]. Zhang et al. propose to extract the
informative features from complex neuroimaging data through a hierarchical way [199].

4.2.3 Feature learning
Feature learning not only finds the correlations between brain regions, but also extracts the impor-
tant features (i.e., the connections between two brain regions) to represent the original similarity
matrix. Popular methods have the methods of using the original similarity matrix directly, the
methods of extracting the feature vector from the original similarity matrix, the methods of using
the dictionary learning, and deep methods.

First, the original similarity matrix is used to represent individual brain networks in the brain
graph. Kong et al. set the specific sparsity threshold to cope with the similarity matrix, and
directly apply the similarity matrix to draw the individual brain network for MRI data [91]. An-
gulakshmi et al. employ the spectral clustering work on the constructed similarity matrix to serve
the tumour segmentation [4]. Second, the upper triangular is extracted from the similarity ma-
trix. For example, Khavari et al. vectorize the upper triangular matrix to minimize the effects of
dimensional complexity [85]. Third, the dictionary learning method is designed to find a set of
basic elements (i.e., the dictionary) so that the input data has a sparse representation mapping to
this set of basic elements. For example, Chen et al. employ the weighted-graph local clustering
to extract the feature vector from the correlation between mean correlation time series of clus-
ters [21]. Liu et al. employ the sparse method to conduct the feature selection from the diverse
feature matrix [105]. Last, deep methods are employed to extract the similarity vector. For exam-
ple, Ktena et al. employ the siamese graph convolutional neural network to select the similarity
vector between any two subjects [93]. Yao et al. employ multi-scale templates to obtain multiple
functional connection networks [177].

4.2.4 Disease diagnosis
Disease diagnosis employs or designs classifiers to conduct disease diagnosis. Support Vec-
tor Machine classifier (SVM) is the classical and effective classifier in medical image analy-
sis [21–23]. For example, Zhang et al. employ it for the classification tasks under the multi-
kernel learning manner [202]. Liu et al. employ SVM to examine both low-order and high-order
connections [105]. Deep learning methods usually conduct classification task (i.e., diagnosis)
by fully connected (FC) layers. For example, Ma et al. employ the fully connected layer to
validate the similarity learning [112]. Yuan et al. utilize FC layer as the input for the classifier
(i.e., softmax activation function) [184].



4.3 Method 40

30 60 90

30

60

90

30 60 90

30

60

90

30 60 90

30

60

90

30 60 90

30

60

90

Figure 4.3: Visualization of correlation analysis of a signal from the data set FTD with different
frequency bands, i.e., the original signal, the low frequency band signal, the high frequency band
signal, and the multi-band signal, from left to right.

4.3 Method
Assume we have M subjects and each subject has the BOLD signal Bm ∈ Rn×t (m = 1, ...,M )
where n and t, respectively, represent the number of brain regions and the length of signals, we
denote Am,v ∈ Rn×n (v = 1, ..., V ) as the fully connected FCN of the v-th band signal of the
m-th subject obtained by Pearson correlation analysis on n brain regions, this work investigates
to learn a common sparse FCN Sm ∈ Rn×n for each subject so that Sm could fuse the functional
connectivity from V fully connected FCNs Am,v, as well as is close to its neighbors and is far
away from its furthest sparse FCNs. As a result, it is homogeneous to other sparse FCNs.

4.3.1 Multi-band signals
Conventional methods of functional connectivity using fMRI data focused on characterizing
BOLD signals with low frequency range (generally from 0.01HZ to 0.08HZ) [58, 82, 144]. In
particular, the signals within the frequency range close to 0.00HZ are more likely to be affected
by the periodically noisy signals generated by the undersampled periodic hardware [82, 89], the
signals within the frequency range in 0.00-0.01HZ are significantly related to non-physiologic
origin (i.e., the MRI scanner drift) and are usually treated as covariates of no interest in the statis-
tical analysis [37]. Therefore, the removal of the signals within the frequency range of [0.00HZ,
0.01HZ] ensures that the obtained BOLD signals are predominately related to the physiological
state. Furthermore, the removal of the signals above 0.08HZ can minimize the interference of
other external signals [110]. Recently, studies demonstrated that the dysfunctional patterns af-
fecting the neuro-diseases are the mixture of brain activity with multiple frequency bands [161].
Due to the complexity of human brains, the frequency band usually dominates the subtle func-
tional patterns that are specific to certain disorders. Even under the resting state, the complexity
of brain activity is beyond the power of single frequency band [152]. In addition, the changes
across different frequency bands (i.e., band diversity) have been known little [50,153]. Hence, it
is challenging to consider multiple frequency bands for neuro-disease analysis with fMRI data.
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4.3.2 Sparse FCN learning
We employ Pearson correlation analysis to obtain V fully connected FCNs using multi-band
signals. However, there are at least two issues that need to be addressed, i.e., band diversity and
FCN’s interpretability.

First, band diversity indicates that different band signals contain different characteristics, as
shown in Figure 4.3, where either the low frequency band signal or the high frequency band
signal has different information, compared to the original signal which is a mixture of the low
frequency band signal and the high frequency band signal. Moreover, the low frequency band
and the high frequency band have complementary information to each other. For example, the
solid yellow rectangle in the low frequency band signal (i.e., the second red dot rectangle) is un-
clear as well as small, while the solid yellow rectangle in the high frequency band signal is clear
as well as big, similar to the original signal in Figure 4.3. Both the difference and the comple-
mentary between the low frequency band signals and the high frequency band signals motivate
us to first decompose them and then to fuse them, as shown in Figure 4.3, where our proposed
multi-band signal removes the noise (i.e., correlations are far away from the diagonal) as well as
clearly preserves the local structures (i.e., five red dot rectangles across the diagonal).

The second drawback of the fully connected FCN is the lack of interpretability. Moreover, its
connectivity may contain noise (e.g., either irrelevant or spurious connectivities) to possibly af-
fect the analysis of brain networks [131,167]. Neurologically, a certain brain activity or a specific
disease predominantly interacted with a part of brain regions. Therefore, the sparse connectivi-
ties are preferred to construct brain connectivity networks [203].

Given multiple fully connected FCNs for an individual subject, by considering the band diver-
sity of every signal and the interpretability of every fully connected FCN, in this chapter, we
investigate to fuse the fully connected FCNs of every subject to a sparse FCN by

min
S1,...,SM

M∑
m=1

V∑
v=1

||Sm −Am,v||2F + αR(S1, ...,SM)

s.t., ∀i, smT

i,· 1 = 1, smi,i = 0, smi,j ≥ 0 if j ∈ N (i), otherwise 0,

(4.1)

where ∥·∥F represents the Frobenius norm and α is a non-negative tuning parameter. R(S1, ...,SM)
is the penalty or constraint on Sm (m = 1, ...,M ). smT

i,· and smi,j , respectively, represent the i-the
row of Sm and the i-th row and the j-th column element of Sm. 1 and N (i), respectively, indicate
the all-one-element vector and the nearest neighbor set of the i-th brain region. The constraint
“smT

i,· 1 = 1, smi,i = 0, smi,j ≥ 0 if j ∈ N (i), otherwise 0” implies that each node smi,. is sparsely
represented by other nodes smj,. (i ̸= j, i, j = 1, ..., n).

Compared to previous methods, Eq. (4.1) has the following advantages. First, Eq. (4.1) aims
at obtaining a sparse FCN Sm for the m-th subject based on V fully connected FCNs Am,v

(v = 1, ..., V ) by considering the band diversity. Second, the new representation Sm is iteratively
updated by Eq. (4.1). Specifically, the value of Sm can be adjusted with the updated Sm′ (m ̸=
m′). It is noteworthy that previous methods (e.g., sparse coding [33] and sparse graph [203])
generate unchanged FCNs. Third, the sparse number for each row of Sm varies based on the data
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distribution. Specifically, the connectivity number (i.e., the non-zero number for each row) for
each node is automatically decided by Lemma 5 in Section 4.3.5.

Finally, we list our motivation of fusing information across different frequency bands as well as
different subjects in Eq. (4.1) as follows.

First, different frequency bands of the signals contain different important information and noise,
so it is intuitive and popular to combine multi-source data (i.e., the information across different
frequency bands in this work) together to obtain discriminative representations in the domains
of machine learning and medical image analysis. To achieve this, Eq. (4.1) learns a common
sparse representation Sm (m = 1, ...,M ) for each subject by fusing multiple fully connected
FCNs Am,v (v = 1, ..., V ) collected from different frequency bands.

Second, if the representation of each subject is obtained independently, the obtained representa-
tion Sm for the m-th subject is easily heterogeneous to other representations Sm′ (m ̸= m′). Eq.
(4.1) learns the representations of all subjects in the same framework by using the regularization
term R(S1, ...,SM) defined in Section 4.3.3, aiming at learning homogenous representations for
all subjects. Moreover, minimizing the error across all subjects is to learn a common sparsely
connected representation Sm for each subject as well as to generate homogeneous representa-
tions for all subjects. In the literature, minimizing the error across all subjects is popular. For
example, Hinrich et al. proposed minimizing the error of negative log-likelihood across subjects
to ensure the temporal components from a consistent set of brain regions [62].

As a result, Eq. (4.1) considers the fusion across frequency bands as well as all subjects si-
multaneously to output discriminative and homogenous representations for all subjects. Physi-
ologically, the fusion in Eq. (4.1) can explore the discriminative information implicitly across
frequency bands [200], and can enhance data consistency across subjects [19].

4.3.3 Parameter-free multi-band fusion
Without taking the constraint R(S1, ...,SM) into account, the optimization of Sm is independent
on the optimization of Sm′ (m ̸= m′). This may output trivial solutions for Sm, i.e., the average
of Am,v (v = 1, ..., V ). To solve this issue, we define the constraint R(S1, ...,SM) in Eq. (4.1)
based on the following observations.

First, in real applications, the BOLD signals usually come from different places such as different
hospitals and different machines, so the fully connected FCNs are easily heterogeneous to each
other, i.e., heterogeneity across subjects. It is straightforward to smooth all FCNs so that they are
homogeneous. Second, in our proposed personalized classifier, the training set includes labelled
subjects and unlabelled subjects. Specifically, given a test subject, the personalized framework
makes full use of all labelled subjects and unlabelled subjects to construct the learning model,
and thus it is exactly a semi-supervised manner. Hence, it is very helpful if the outputted Sm has
significant discriminative ability.

Weinberger and Saul proposed a supervised Large Margin Nearest Neighbor (LMNN) to conduct
metric learning by keeping the local neighborhood of the training subjects [165], i.e., the neigh-
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bors of each subject in the new feature space are exactly its original neighbors in the original
feature space. Specifically, the first term of the LMNN penalizes large distances between each
subject and its original neighbors with the same label, and its second term penalizes the small
distances of the subjects with different labels. As a result, the labelled subjects are close to the
subjects with the same label and are far away from the subjects with different labels. In this
way, the LMNN classifier has discriminative ability. However, LMNN was designed for metric
learning and did not consider the discriminative ability of unlabelled subjects.

In this work, considering the semi-supervised scenario where the training subjects include la-
belled subjects and unlabelled subjects, we first have an observation that the k nearest neighbor
(kNN) classifier always classifies subjects to the class of their nearest neighbors. Hence, each
subject (either a labelled subject or an unlabelled subject) should share the same label with its
kNNs and should have different labels to its distant subjects. More specifically, by denoting “k
nearest neighbors” and “k furthest subjects”, respectively, as “kNNs” and “kFSs”, the set of la-
belled subjects and the set of unlabelled subjects, as L and U , respectively, we define the neighbor
set N (i) and the distant set F(i) as follows:

Definition 1. N (i) of the i-th unlabelled subject includes its kNNs in L
⋃
U , and N (i) of the

i-th labelled subject includes its kNNs with the same label in L, i.e.,

N (i) =

{
kNNs in L

⋃
U , i ∈ U

kNNs with the same label in L, i ∈ L (4.2)

Definition 2. F(i) of the i-th unlabelled subject includes its kFSs in L
⋃
U , and F(i) of the i-th

labelled subject includes its kFSs with different labels in L, i.e.,

F(i) =

{
kFSs in L

⋃
U , i ∈ U

kFSs with different labels in L, i ∈ L (4.3)

We then define R(S1, ...,SM) as

M∑
m=1

(
∑

p∈N (m)

||Sm − Sp||2F

+β[1 +
∑

p∈N (m)

||Sm − Sp||2F −
∑

q∈F(m)

||Sm − Sq||2F ]+),
(4.4)

where [ . ]+ = max( . , 0) and β is a non-negative tuning parameter. In Eq. (4.4), the first term
penalizes the large distance between Sm and its nearest neighbors in N (m). Specifically, the
first term pulls Sm to approximate the average of its nearest neighbors or pulls them (i.e., Sm

and its nearest neighbors) together. The second term pushes the Sm against its furthest subjects
in F(m) so that their distance is larger than a fixed margin, i.e., at least a unit “1” in Eq. (4.4),
as shown in the third part of Figure 4.1 . In this way, the sparsely connected representation of
FCN Sm is dependent on others Sm′ (m ̸= m′) as well as contains the discriminative ability,
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i.e., having a fixed margin to its furthest subjects as well as being close to its nearest neighbors
as much as possible, which benefits avoiding the influence of outliers.

Considering Eq. (4.1) and Eq. (4.4), the multi-band fusion model in Eq. (4.1) needs to tune the
parameter α, which is time-consuming and needs prior knowledge. In particular, as a personal-
ized framework which trains a fusion model for every test subject, the tuning of parameters is
time-consuming. To address this issue, we propose a parameter-free multi-band fusion model as
follows:

min
S1,...,SM

M∑
m=1

√
V∑

v=1

||Sm −Am,v||2F +R(S1, ...,SM)

s.t., ∀i, smT

i,· 1 = 1, smi,i = 0,
smi,j ≥ 0 if j ∈ N (i), otherwise 0.

(4.5)

Compared Eq. (4.5) with Eq. (4.1), Eq. (4.5) uses a square root operator on the fusion error of
each subject to replace the parameter α in Eq. (4.1). Specifically, when we conduct the derivative
with respect to Sm, we always get

min
Sm

λm

∂(
V∑

v=1

||Sm −Am,v||2F )

∂Sm
+

∂(R(S1, ...,SM))

∂Sm

s.t., ∀i, smT

i,· 1 = 1, smi,i = 0, (4.6a)
smi,j ≥ 0 if j ∈ N (i), otherwise 0.

λm =
1

2

√
V∑

v=1

||Sm −Am,v||2F

, (4.6b)

where λ = [λ1, ..., λM ]. Eq. (4.6) is equivalent to Eq. (4.5) for the optimization of Sm (m =
1, ...,M ). That is, Eq. (4.5) does not need to tune the parameter by iteratively updating Eq.
(4.6a) and Eq. (4.6b) to automatically obtain λm during the optimization process. λm can be
regarded as an implicit parameter, rather than selecting the best one out of a range of values
with cross-validation methods used in Eq. (4.1). The value of λm is exactly the weight of each
subject, indicating the inter-subject variability of each subject. Compared Eq. (4.6) with Eq.
(4.1), we have λm = 1/α for the optimization of the m-th FCN Sm. Hence, Eq. (4.1) uses a
fixed parameter α while Eq. (4.6) uses a dynamic and data-driven parameter λm based on the
data distribution.

After optimizing Eq. (4.5), we obtain smooth and sparsely connected representation FCNs Sm

(m = 1, ...,M ) by fusing multiple fully connected FCNs Am,v (v = 1, ..., V ) into a common
space. Such a space is spanned by Sm through its first term as well as shrinks the heterogeneity
across subjects through its second term. Moreover, the second term can avoid the influence of
outliers by keeping a margin between the nearest neighbor set and the furthest subject set for each
subject. Furthermore, we transfer the optimization of Eq. (4.5) to Eq. (4.6) to obtain the trade-off
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Algorithm 4.1: The pseudo code of the functional connectivity analysis framework.
Input: Bm (m = 1, ...,M), y, C;
Output: Sm (m = 1, ...,M) and the classifier;

1 Generate Am,v(v = 1, ..., V ) by Bm;
2 Initialize Sm as the average of Am,v(v = 1, ..., V );
3 repeat
4 Update λm via Eq. (4.6b);
5 Optimize Sm via Eq. (4.13);
6 until Eq. (4.5) converges;
7 Generate X by extracting the upper triangle part of all Sm (m = 1, ...,M );
8 Employ ℓ1-SVM on X and y to jointly output top selected brain regions and the classifer;

between two terms by considering the inter-subject variability. Hence, Sm (m = 1, ...,M ) is the
new representation of original BOLD signals.

4.3.4 Joint region selection and disease diagnosis
Since the new representation Sm (m = 1, ...,M ) is the matrix representation, it is difficult for
using traditional classification methods to conduct disease diagnosis. In this work, we first con-
vert Sm to a symmetric matrix through a formula Sm = (Sm + (Sm)T )/2, and then follow [203]
to transfer the matrix representation to its vector representation, i.e., extracting the upper trian-
gle part of the symmetric matrix Sm (m = 1, ...,M ) to form a row vector xm,· ∈ R1×n(n−1)/2.
In this way, we have the data matrix X ∈ RM×n(n−1)/2 and the corresponding label vector
y ∈ {−1, 1}M×1.

Many previous studies (e.g., [100, 203]) employ a two-stage strategy to conduct disease diagno-
sis, i.e., feature selection and disease diagnosis. Specifically, in these methods, feature selection
is separated from disease diagnosis. Moreover, the goal of feature selection is to preserve the
original information as much as possible, rather than to achieve high performance of disease di-
agnosis. As a result, the best results of feature selection are not good for disease diagnosis. On
the contrary, the ℓ1-SVM (optimized by the public toolbox LIBLINEAR [35]) embeds feature
selection by the ℓ1-norm regularization term on the coefficient matrix with the SVM classifier
in the united framework. As a result, the results of feature selection are adjusted based on the
classifier updated in the last iteration, while the classifier is also adjusted by the updated results
of feature selection. In this way, the results of feature selection contribute to the construction
of the classifier. Hence, the ℓ1-SVM can overcome the drawback of the two-stage strategy in
previous methods.

It is noteworthy that the parameter-free multi-band fusion model uses both labelled subjects and
unlabelled subjects while the process of joint feature selection and disease diagnosis uses the
labelled subjects in the training process.
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4.3.5 Optimization, initialization, complexity and convergence
4.3.5.1 Optimization

The proposed objective function in Eq. (4.5) is not convex for all variables, but is convex for any
single variable while fixing other variables. Hence, in this chapter, we employ the alternating
optimization strategy [27] to iteratively update M FCNs Sm (m = 1, ...,M ) in Eq. (4.5) and list
the pseudo of our proposed framework for functional connectivity analysis in Algorithm 4.1.

First, we obtain the expansion formula about Sm of the first term in Eq. (4.6a) as V SmT
Sm −

2
V∑

v=1

Am,vTSm, and then obtain the expansion result of the second term ∂(R(S1, ...,SM))/∂Sm

about Sm in Eq. (4.6a) as
kSmT

Sm − 2(1 + β)
k∑

p=1

SpTSm + 2βDm, Zm > 0,

kSmT
Sm − 2

k∑
p=1

SpTSm, Zm ≤ 0,

(4.7)

where Zm = 1 +
∑

p∈N (m)

||Sm − Sp||2F −
∑

q∈F(m)

||Sm − Sq||2F , Dm =
k∑

q=1

SqTSm, and k is the

defined number of neighbors for each sample. The optimization of each row smi,· i = 1, ..., n, in
Sm is independent on other rows smi′,· (i ̸= i′), so we list the optimization details of smi,· as follows.

min
sm

T
i,· 1=1,smi,i=0,smi,j≥0

λm(V sm
T

i,· smi,· − 2
V∑

v=1

am,v
i,·

T smi,·) +
n∑

i=1

R(s1i,·, ..., s
M
i,· ), (4.8)

where
R(s1i,·, ..., s

M
i,· ) =

ksm
T

i,· smi,· − 2(1 + β)
k∑

p=1

sp
T

i,· s
m
i,· + 2βdm

i,·, z
m
i > 0,

ksm
T

i,· smi,· − 2
k∑

p=1

sp
T

i,· s
m
i,·, z

m
i ≤ 0,

(4.9)

where zmi = 1 +
∑

p∈N (m)

||smi,· − spi,·||22 −
∑

q∈F(m)

||smi,· − sqi,·||22 and dm
i,· =

k∑
q=1

sq
T

i,· s
m
i,·. After finishing

mathematical transformation, we have

min
sm

T
i,· 1=1,smi,i=0,smi,j≥0

||smi,· − fmi,· ||22, (4.10)

where

fmi,· =


V∑

v=1
am,vT

i,· +(1+β)
k∑

p=1
sp

T

i,· −β
k∑

q=1
sq

T

i,·

λmV+k
, zmi > 0,

V∑
v=1

am,vT

i,· +
k∑

p=1
sp

T

i,·

λmV+k
, zmi ≤ 0,

(4.11)
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Table 4.1: Demographic information for three data sets. FTD: Fronto-Temporal Dementia;
OCD: Obsessive-Compulsive Disorder; ADNI: Alzheimer’s Disease Neuroimaging Initia-
tive; AD: Alzheimer’s Disease; HC: Healthy Controls.

Data sites FTD OCD ADNI
Age range (years) 65-88 18-50 57-82

Subjects 95 FTD; 86 HC 62 OCD; 20 HC 59 AD; 48 HC
Time points (seconds) 230 230 120

Voxel size (mm3) 3×3×3 3×3×3 3×3×3
TR(ms) 2000 2000 2000
Scanner Multi-site Philips Multi-site

Field strength 1.5/3T 3T 1.5/3T

where fmi,· ∈ Rn×1 is a vector. The Lagrangian function with respect to smi,· is

L(smi,·, σ, τ ) = ||smi,· − fmi,· ||22 − σ(sm
T

i,· 1− 1)− τ T smi,·, (4.12)

where σ ∈ R is the Lagrange multiplier and τ ∈ Rn
+ is a non-negative vector. Based on the com-

plementary slackness of the Karush-Kuhn-Tucker (KKT) conditions [11], we have the closed-
form solution of smi,j is

smi,j = (fm
i,j + σ)+, (4.13)

where fm
i,j is the j-th element of fmi,· . The value of the Lagrange multiplier σ can be obtained by

Lemma 4 from [32].

Lemma 4. By denoting sm∗
i,· the optimal solution in Eq. (4.13), letting r and u be two indices,

and fm
i,r > fm

i,u, only if sm∗
i,r = 0, then sm∗

i,u must be equal to zero.

Based on Lemma 4, we can find some integers I = [ρ], 1 ≤ ρ ≤ n to meet the non-zero
components of the sorted optimal solutions, i.e.,

σ =
1

ρ
(

ρ∑
j=1

fmi,j − 1). (4.14)

As a result, the optimal values in sm∗
i,· can be described as sm∗

i,j = max{fm
i,j − σ, 0}, where the

value of the optimal ρ is automatically obtained by Lemma 5 from [32].

Lemma 5. Let η represents the vector after sorting fmi,· in a descending order, the number of

strictly non-negative elements in smi,· is ρ = max
{
ηi − 1

i
(
∑i

l=1 ηl − 1) > 0
}

, i ∈ [n].

Based on Lemma 5, the non-zero number in the i-th row smi,·, i.e., the number of brain regions
connected to the i-th brain region, is different from the non-zero number in the j-th row smj,·
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(i ̸= j). It is noteworthy that previous sparse methods set the same number of brain regions
connected to each brain region. Obviously, our method is more flexible, compared to previous
methods in [33, 215, 224].

Furthermore, Eq. (4.5) iteratively updates Eq. (4.6a) and Eq. (4.6b) based on the alternating
optimization strategy [27], which has been proved to achieve convergence. Hence, the proposed
parameter-free multi-band fusion model converges, while the ℓ1-SVM also converges.

4.3.5.2 Initialization

In Algorithm 4.1, we initialize Sm as the average of Am,v(v = 1, ..., V ), which results in that the
optimization of Eq. (4.5) converges within tens of iterations. Moreover, the result of Eq. (4.5) is
insensitive to the initialization of Sm.

4.3.5.3 Complexity

The generation of both multi-band signals and the fully connected FCNs can be finished offline.
The parameter-free multi-band fusion model takes a closed-form solution to optimize Sm (m =
1, ...,M ). Its time complexity is O(Mn2) where M and n, respectively, represent the number
of the subjects and the number of brain regions. That is, the time complexity of our multi-band
fusion model is linear to the subject size. Moreover, our model only stores Sm (m = 1, ...,M )
in the memory with the space complexity O(Mn2). The time complexity of ℓ1-SVM is linear to
the subject size, while its space complexity is O(Mn(n− 1)/2) [35].

4.3.5.4 Convergence analysis

First, we follow the literature [142, 223] to have the following Lemma:

Lemma 6. The inequality

√
u− u

2
√
w

≤
√
w − w

2
√
w

(4.15)

holds for non-negative values u and w.

Second, Theorem 6 proves the convergence of Algorithm 4.1:

Theorem 1. The objective function value of Eq. (5) monotonically decreases until Algorithm 4.1
converges.

Proof. After obtaining the optimal Sm(t) in the t-th iteration, we need to optimize Sm(t+1) in the
(t+1)-th iteration by fixing other Sm′(t) where m′ ̸= m, m = 1, ...,M .

According to Eq. (13), sm(t+1)

i,j has a closed-form solution for all i, j = 1, ..., n, so we combine
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λm = 1/(2
√∑V

v=1 ||Sm(t) −Am,v||2F ) with Eq. (13) to have:

M∑
m=1

V∑
v=1

||Sm(t+1)−Am,v ||2F

2

√∑V
v=1 ||Sm(t)−Am,v ||2F

+R(S1(t+1)
, ...,SM(t+1)

)

≤
M∑

m=1

V∑
v=1

||Sm(t)−Am,v ||2F

2

√∑V
v=1 ||Sm(t)−Am,v ||2F

+R(S1(t) , ...,SM(t)
)

(4.16)

Based on Lemma 6, we obtain:

M∑
m=1

(

√
V∑

v=1

||Sm(t+1) −Am,v||2F −
V∑

v=1
||Sm(t+1)−Am,v ||2F

2

√∑V
v=1 ||Sm(t)−Am,v ||2F

)

≤
M∑

m=1

(

√
V∑

v=1

||Sm(t) −Am,v||2F −
V∑

v=1
||Sm(t)−Am,v ||2F

2

√∑V
v=1 ||Sm(t)−Am,v ||2F

)

(4.17)

Combining Eq. (4.16) with Eq. (4.17), we have:

M∑
m=1

(

√
V∑

v=1

||Sm(t+1) −Am,v||2F +R(S1(t+1)
, ...,SM(t+1)

)

≤
M∑

m=1

(

√
V∑

v=1

||Sm(t) −Am,v||2F +R(S1(t) , ...,SM(t)
)

(4.18)

Hence, Eq. (4.18) demonstrates Algorithm 4.1 decreases the objective function value of Eq. (4.5)
for every iteration until it converges. Therefore, the proof of Theorem 6 is completed.

4.4 Experiments
We experimentally evaluate our method, compared to four comparison methods, on three real
neuro-disease data sets with fMRI data, in terms of binary classification performance.

4.4.1 Data sets
The data set fronto-temporal dementia (FTD) contains 95 FTD subjects and 86 age-matched
healthy control (HC) subjects, from the recent NIFD database1, managed by the frontotemporal
lobar degeneration neuroimaging initiative. The data set obsessive-compulsive disorder (OCD)
from Guangzhou Psychiatric Hospital [31] has 20 HC subjects and 62 OCD subjects. The data
set Alzheimer’s Disease Neuroimaging Initiative (ADNI)2 includes 59 Alzheimer’s disease (AD)
subjects and 48 HC subjects. The demographic information of all data sets is shown in Table 4.1.

1https://cind.ucsf.edu/research/grants/frontotemporal-lobar-degeneration-neuroimaging-initiative-0.
2http://adni.loni.usc.edu/.
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4.4.1.1 Data set OCD

(i) Imaging data acquisition A 3.0-Tesla MR system (Philips Medical Systems, USA) equip
with an eight-channel phased-array head coil is used for data acquisition. Functional data are col-
lected using gradient echo Echo-Planar Imaging (EPI) sequences (time repetition, TR = 2000ms;
echo time, TE = 60ms; flip angle = 90◦, 33 slices, field of view [FOV] = 240mm × 240mm,
matrix = 64 × 64; slice thickness = 4.0mm). For spatial normalization and localization, a high-
resolution T1-weighted anatomical image is acquired using a magnetization prepared gradient
echo sequence (TR = 8ms, TE = 1.7ms, flip angle = 20◦, FOV = 240mm × 240mm, matrix = 256
× 256, slice thickness = 1.0mm). During the scanning, participants are instructed to relax with
their eyes closed, and stay awake without moving.

(ii) Functional imaging data preprocessing The data are preprocessed using the Statistical Para-
metric Mapping toolbox (SPM12)3 and Data Processing Assistant for resting state fMRI (DPARSFA
version 4.4)4. Image preprocessing consisted of: 1) slice timing correction; 2) head motion
correction; 3) realignment with the corresponding T1-volume; 4) nuisance covariate regression
(six head motion parameters, white matte signal and cerebrospinal fluid signal); 5) spatial nor-
malization into the stereotactic space of the Montreal Neurological Institute and resampling at
3 × 3 × 3mm3; 6) spatial smoothing with a 6-mm full-width half-maximum isotropic Gaussian
kernel; 7) band-pass filtering (0.01HZ−0.08HZ); 8) micro-head-motion correction according to
framewise displacement (FD) by removing the resting state fMRI volume with FD > 0.5 mm
(i.e., nearest neighbor interpolation).

4.4.1.2 Data sets FTD and ADNI

For each resting state fMRI scan, we follow the same data processing pipeline on the data set
OCD to correct motion and filter BOLD signals for the data sets FTD and ADNI, where the
signal bandpass filtering is used to remove the non-brain signal (i.e., beyond 0.01-0.08HZ).

In our experiments, we avoid unnecessary noise of the BOLD signals as much as possible. First,
in the acquisition process of BOLD signals, participants are instructed to relax with closed eyes
and stay awake without moving so that the obtained data can be trusted to eliminate the exter-
nal interference. Second, the bandpass filter is used to keep the BOLD signals in the range of
0.01HZ-0.08HZ, aiming at removing the effects of hardware drift within the ultra-low frequency
(< 0.01HZ) and the noises (i.e., Gaussian noise, respiratory, and cardiac) within the high fre-
quency (> 0.08HZ) [50, 82, 185]. Third, the beginning part of the original signals is removed as
the subjects may not be stable in the rest state at the beginning of the data acquisition [12, 97].
Specifically, we remove the first 30 time points of the signals in the data sets FTD and OCD,
and the first 20 time points of the signals in the data set ADNI. Finally, the length of the signals
in the data sets FTD and OCD is 200 and the length of the signals in the data set ADNI is 100.
As a result, the obtained signals by the above ways can be relevant for brain activity. In this
context, it is reasonable to assume the remaining possible noise fall into the random distribution

3https://www.fil.ion.ucl.ac.uk/spm.
4http://rfmri.org/dpabi.
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that is less likely to present across signal bands in a consistent manner. Thus, all BOLD signals
in our experiments are pre-processed into the range from 0.01HZ to 0.08HZ, i.e., the so-called
original signals in this chapter. The proposed multi-band decomposition is then performed on
these original signals in the following steps.

For all imaging data, we follow the automated anatomical labeling (AAL) template [157] to
construct the functional connectivity network for each subject with 90 nodes. The region-to-
region correlation is measured by Pearson correlation coefficient.

The multi-band is obtained by the following steps. Specifically, the original BOLD data signals
are processed by the Discrete Wavelet Transform (DWT), which turn the original signals into
multi-band signals. Moreover, the single level DWT is applied with the Daubechies wavelet so
that each original data signal will turn into two signals, i.e., the low frequency signal and the high
frequency signal, in this work.

4.4.2 Comparison methods
The baseline ℓ1-SVM (L1SVM) [35] is employed by the public toolbox LIBLINEAR5 and it
uses the least square loss function to conduct the reconstruction error and combines the ℓ1-norm
with the regularization for the final elements selection of feature weight matrix.

High-Order Functional Connectivity (HOFC) [193] learns the correlations across multiple brain
regions (i.e., two areas by similarity method or four areas by dynamics method) to conduct the
high-order FC from the conventional FC.

Sparse Connectivity Pattern (SCP) [33] finds the common sparsely connected pattern that is a
non-negative approximation combination of the fully connected pattern of each subject to all
subjects, and the reason is the small part of brain regions can encode the particular activity due
to the efficient utilization in the brain.

Simple Graph Convolutional networks (SGC) [169] conducts the simplest graph convolution by
removing the non-linear activation (i.e., ReLU [120]) for each graph convolutional layer, and
only applies the softmax function for the final classifier construction.

L1SVM is the baseline method, and both HOFC and SCP are the popular methods in neuro-
disease diagnosis, and SGC is the deep learning method. L1SVM and SGC extract the vector
representation from full FCNs. Other methods (e.g., HOFC, SCP, and our method) design differ-
ent models to transfer full FCNs to sparse FCNs, and then extract the vector representation from
sparse FCNs. Moreover, all methods can be directly applied for supervised learning, while the
methods (e.g., SGC and our method) can be used for personalized classification.

5https://www.csie.ntu.edu.tw/∼cjlin/liblinear/.

https://www.csie.ntu.edu.tw/~cjlin/liblinear/.
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Table 4.2: Classification performance (%) of all methods with four evaluation metrics.

Methods FTD OCD ADNI
ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

L1SVM 67.58 68.06 63.76 60.09 77.38 72.00 76.57 75.11 74.36 73.80 76.48 78.95
HOFC 78.22 74.36 81.86 60.47 85.35 82.50 86.08 79.54 78.67 79.22 76.99 82.63
SCP 82.67 81.36 77.13 80.98 85.59 81.83 87.80 86.93 85.38 84.97 79.26 87.60
SGC 84.45 87.42 85.59 86.33 90.08 86.30 90.92 87.28 89.97 86.48 88.37 90.03

Proposed 86.48 87.50 83.41 86.03 91.51 92.01 91.78 91.40 90.18 88.44 89.27 91.11

4.4.3 Setting
In our experiments, we repeat the 10-fold cross-validation scheme 10 times to report the average
results as the final result, for all methods. In the model selection, we fix k = 10 and β = 0.5 in
Eq. (4.4) because they are insensitive based on our experimental results and the literature [165],
and further set C ∈ {2−6, 2−5, ..., 26} for L1SVM. According to the same testing framework, we
set the parameters of the comparison methods by following the literature so that they outputted
the best results.

We compare our method with the comparison methods by (1) evaluating the performance of su-
pervised learning; (2) evaluating the performance of personalized classification; (3) evaluating
the effectiveness of the sparse FCNs outputted by our method; and (4) evaluating the effective-
ness of the brain regions selected by our method. The evaluation metrics include ACCuracy
(ACC), SPEcificity (SPE), SENsitivity (SEN), and Area Under the receiver operating character-
istic Curve (AUC).

4.4.4 Result analysis
4.4.4.1 Supervised learning

We report the results of all methods in Table 4.2. In particular, both our method and SGC only
use labelled subjects for the training process.

First, our method obtains the best results, followed by SGC, SCP, HOFC, and L1SVM, in terms
of four evaluation metrics. For example, our method improves 18.90%, 19.44%, 19.65%, and
25.94%, compared to the worst method L1SVM, in terms of ACC, SPE, SEN, and AUC, on FTD.
Moreover, our method on average improves 2.03%, compared to the best comparison method,
i.e., SGC, in terms of accuracy. The reason should be that our fusion model takes discriminative
ability and multiple frequency band signals into account, while all comparison methods only use
a single frequency band signal.

Second, L1SVM generates fully connected FCNs, while HOFC and SCP output sparse FCNs.
SGC uses both fully connected FCNs and a sparse graph, while our method first generates multi-
band information and then outputs sparse FCNs. As a result, L1SVM obtains the worst perfor-
mance. This indicates that sparse FCNs are better than fully connected FCNs for medical image
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Figure 4.4: Classification results (mean ± standard deviation) of personalized classification on FTD
(upper row), OCD (middle row), and ADNI (bottom row).

analysis with fMRI data, as demonstrated in [33, 193].

Third, the methods (e.g., HOFC, SCP, and our method) use different models to convert fully
connected FCNs to sparsely connected ones, but our method outperforms the other two. This
demonstrates that our multi-band fusion model is the most effective one, compared to either
HOFC or SCP. It is noteworthy that SGC outperforms our method in some cases. For example,
SGC outperforms our method on the data set FTD, in terms of SPE and AUC. The possible
reason is that fully connected FCNs and the sparse graph provide complementary information to
each other. However, the deep learning method SGC cannot directly conduct feature selection,
so it lacks interpretability.

4.4.4.2 Personalized classification

We randomly select different percentages of labelled subjects from the whole data set (i.e., 20%,
40%, 60%, and 80%) as the training set. In this case, L1SVM, HOFC, and SCP only use the
labelled subjects to train the classifiers, while our method and SGC use both labelled training
subjects and unlabelled test subjects to train the classifier. We report the results in Figure 4.4.

First, our method obtains the best performance at different settings, followed by SGC, SCP,
HOFC, and L1SVM. For example, our method on average improves 3.55%, compared to the
best comparison method SGC, in terms of all four evaluation metrics, on three data sets with
80% labelled subjects for the training process. Moreover, the performance of supervised learning
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methods (e.g., L1SVM, SCP, and HOFC) in Figure 4.4 is worse than their performance in Table
4.2 since the former use less training information, compared to the latter.

Second, all methods receive worse performance when the percentage of labelled subjects is small.
The reason is that inefficient subjects cannot guarantee to construct significant classifiers. How-
ever, the improvement of our method over supervised learning methods (e.g., L1SVM, SCP, and
HOFC) with small percentages of labelled subjects, i.e., 20%, is larger than its improvement with
large percentages of labelled subjects, e.g., 80%, since the former case can use more information
than the latter one. The same case can be found in the comparison between SGC and supervised
learning methods. This demonstrates the advantages of unlabelled data for the training process
again.
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Figure 4.5: Classification results of the comparison methods using the FCNs outputted by our method.
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Figure 4.6: Classification results of L1SVM and SGC using the features selected by our method.

4.4.4.3 Fusion effectiveness

All methods first convert the matrix representation (i.e., either the fully connected FCNs or the
sparse FCNs) to the vector representation, which is further fed to traditional classifiers for dis-
ease diagnosis. The key novelty of our proposed method is the parameter-free multi-band fusion
model using multi-band information. Hence, we feed the sparse FCNs produced by our method
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(with 80% labelled subjects and 20% unlabelled subjects for the training process) into the meth-
ods (e.g., L1SVM and SGC) to verify the effectiveness of our proposed fusion model. We do
not apply our outputted FCNs to either HOFC or SCP due to their model limitations. We list the
results in Figure 4.5.

The performance of both L1SVM and SGC in Figure 4.5 are better than their performance in
the case with 80% labelled subjects in Table 4.2. For example, the result of SGC in Figure 4.5
on average improves 0.88%, 3.53%, and 1.48%, compared to the results in Table 4.2, in terms
of accuracy on data sets FTD, OCD, and ADNI. The result of L1SVM in Figure 4.5 on average
improves 21.19%, 16.70%, and 18.33%, respectively, compared to the results in Table 4.2, in
terms of all four evaluation metrics on FTD, OCD, and ADNI. The reasons are (1) Figure 4.5
used more information (i.e., 20% unlabelled subjects), compared to Table 4.2 for L1SVM; and
(2) Figure 4.5 used sparse FCNs, while Table 4.2 used fully connected FCN. Furthermore, the
performance of L1SVM in Figure 4.5 is very similar to the performance of our method with 80%
labelled data in Table 4.2. The reason is that L1SVM using sparse FCNs produced by our method
is exactly our proposed functional connectivity analysis framework.

Figure 4.7: Visualization of top selected brain regions selected and the connected regions by L1SVM
(top row) and our method (bottom row) on FTD (left column), OCD (middle column), and ADNI
(right column).

4.4.4.4 Feature selection effectiveness

In this section, we design two kinds of experiments to investigate the effectiveness of the features
selected by our method.
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Figure 4.8: Visualization of top selected brain regions selected by L1SVM (top row) and our method
(bottom row) on FTD (left column), OCD (middle column), and ADNI (right column).

In our experiments, the 10-fold cross-validation scheme is utilized to evaluate the hyper-parameter
C of the ℓ1-SVM method by setting the values of C as a list {2−6, 2−5, ..., 26}. Each fold report
the best value of the hyper-parameter C and the corresponding selected features by the ℓ1-SVM,
which result in 10 sets of selected features after the 10-fold cross-validation scheme. These
selected features are the most important features in each fold. We repeat these 10-fold cross-
validation scheme 10 times with different random seeds and collect all the 100 sets of selected
features. The frequencies of the features presented in the 100 sets are then summarized. We
select the features that appear at least 90 times as the final set of selected features. Since the
features input in the ℓ1-SVM are the coefficients of correlation between two brain regions, each
selected feature have two corresponding brain regions. We summarize the frequencies of the
presents of these brain regions in the final set of selected features. Finally, the top 10 brain re-
gions are reported and visualized in this chapter. As a result, our method select 980, 593, and 702
out of 4005 nodes, respectively, on the data sets FTD, OCD, and ADNI, while L1SVM selected
1357, 922, and 970 nodes, respectively. In our experiments, we first apply the nodes selected
from our method to L1SVM and SGC for disease diagnosis, and then plot top selected brain
regions selected by L1SVM and our method. We report the results in Figure 4.6.

The performance of both L1SVM and SGC in Figure 4.6 is better than their performance in
Figure 4.5 because the former use a part of the features (i.e., 980, 593, and 702 out of 4005 nodes,
for FTD, OCD, and ADNI, respectively) while the latter use all 4005 features. This implies the
effectiveness of feature selection in our method. Furthermore, L1SVM use the features selected
by our method means that our method conducts the ℓ1-SVM twice. For example, the second
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Table 4.3: The details of different frequency bands on three data sets.

Band number (g) FTD /OCD /ADNI

2
[0.01HZ, 0.045HZ]
[0.045HZ, 0.08HZ]

3
[0.01HZ, 0.0275HZ]

[0.0275HZ, 0.045HZ]
[0.045HZ, 0.08HZ]

4

[0.01HZ, 0.01875HZ]
[0.01875HZ, 0.0275HZ]
[0.0275HZ, 0.045HZ]

[0.045HZ, 0.08HZ]

feature selection only uses 1357 features, which is selected by the first feature selection from
all 4005 features on FTD. This demonstrates that high-dimensional data may degrade the model
performance due to the issue of the curse of dimensionality.

Based on the visualization of the top selected brain regions, many selected regions from both
L1SVM and our method have been verified to be related to the neuro-diseases. Moreover, the
number of selected brain regions is associated with the neuro-disease with our method is larger
than the number selected by L1SVM. This implies that our method is effective for both feature
selection and disease diagnosis. Specifically, first, in Figure 4.7, most of the nodes selected
by our method occur in the frontal and temporal lobes, which is consistent with the current
neurobiological findings on FTD ( [28]). However, a large portion of nodes identified by L1SVM
located at the occipital lobe and posterior parietal lobe, which are less relevant to FTD ( [28]).
Second, our method finds the brain regions, such as orbital-frontal cortex, caudate, thalamus,
which are included in the cortical-striato-thalamic circuits, and is considered as the theoretical
neuro-anatomical network of OCD ( [47, 48]). Third, Alzheimer’s disease is associated with
whole brain atrophy [136], but our method select the brain regions throughout the whole brain
while L1SVM only select the frontal regions on the data set ADNI.

4.5 Discussion
In this section, we discuss the effectiveness of the multi-band signals, the variations of our pro-
posed method with different k values, and the convergence analysis of our proposed Algorithm
4.1, using our proposed method (with 80% labelled subjects and 20% unlabelled subjects for the
training process) to conduct personalized classification.

4.5.1 Effectiveness of multi-band signals
We utilize the following steps to obtain multi-band frequency signals. First, the signals’ length
is padded into the nearest value of 2 powers, guaranteeing the non-destructive wavelet decompo-
sition [49, 206]. Therefore, the signals’ length in the data sets FTD and OCD is padded to 256,
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Figure 4.9: Classification results (mean ± standard deviation) of our proposed method with different
frequency bands on three data sets, where “low” and “high”, respectively, indicate the single fre-
quency band with the range as [0.01HZ, 0.04HZ] and [0.04HZ, 0.08HZ]. In particular, “Proposed”
is actually the case of g = 2.
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Figure 4.10: Classification results (mean ± standard deviation) of our proposed method with different
values of k on three data sets.
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Figure 4.11: Convergence analysis of our proposed Algorithm 4.1 at different iterations on three data
sets.

and the signals’ length in the data set ADNI was padded to 128. To do this, we use the traditional
zero-padding technique [117] to reduce the edge effect on the wavelet decomposition. Second,
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the Discrete Wavelet Transform (DWT) is performed on the padded signals to decompose them
into multi-bands. In our experiments, we follow the traditional Mallat algorithm to decompose
the signal into a subband tree [114, 186]. As a result, we control the depth of the subband tree to
partition the signals with the frequency range from 0.01HZ to 0.08HZ into four different frequen-
cies, i.e., [0.01, 0.01875], [0.01875, 0.0275], [0.0275, 0.045], and [0.045, 0.08], as shown in Table
4.3. In this chapter, we set experiments to investigate the effectiveness of multi-band signals and
report the experimental results of our proposed method in Figure 4.9.

Figure 4.9 indicates the following conclusions. First, our proposed method with multi-band
signals (i.e., g = 2/3/4) outperforms our method with the single frequency signals (i.e., “low”
and “high”). This verifies that it is reasonable to take into account multi-band signals for the
analysis of fMRI data. For example, the classification results with the setting g = 2 on the data
set FTD on average improves 10.76% and 11.18%, compared to “low” and “high”. Second,
different data sets require various multi-band signal decomposition. For example, the data set
FTD achieved the best classification performance with g = 2. The data sets OCD and ADNI,
respectively, achieve the best classification performance with g = 4 and g = 3. Third, with
the increase of the decomposition times, the information of the signals in the low frequency
bands is gradually diluted and the number of the frequency bands increases. In this manner,
the fusion process is more challengeable, compared to the scenarios with fewer decomposition
times. The effectiveness of the proposed method is thus affected. That is, there exists the optimal
decomposition time. Physiologically, the unsuitable decomposition time (e.g., large values of
g in this work) may weaken the ability to disentangle the complex neural activity [134]. For
example, [134] find that the signal decomposition with two to four decomposition times can
differentiate normal and pathological brain regions.

4.5.2 Effectiveness of k values
Figure 4.10 reports the classification results of our proposed method with different k values on
three data sets. Obviously, our proposed method is insensitive to the variations of k value as
the difference of the classification results between two different values of k on three data sets is
small. For example, our method achieve the best classification result with the k value of 10, 10,
and 5, respectively, for the data sets FTD, OCD, and ADNI. These best classification results only
averagely increase 2.48%, 0.79%, and 3.10%, respectively, compared to the worst results on the
data sets FTD, OCD, and ADNI, in terms of all evaluation metrics.

4.5.3 Convergence analysis
We experimentally analyze the convergence of Algorithm 4.1 in Figure 4.11. Algorithm 4.1
monotonically decreases the objective function values in Eq. (5) until Algorithm 4.1 achieves
convergence. Moreover, Algorithm 4.1 only needs around ten iterations to achieve the conver-
gence. Hence, our proposed Algorithm 4.1 is efficient.
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4.6 Summary
In this chapter, we proposed a new multi-band fusion framework for personalized disease diag-
nosis, by two sequential steps, parameter-free multi-band fusion and joint brain region selection
& disease diagnosis. In this way, it solved the issue of multi-scale features fusion of graph
learning under the semi-supervised learning. Experimental results on three real-world data sets
demonstrated the effectiveness of our proposed framework, compared to state-of-the-art meth-
ods. Moreover, experimental results also verified the effectiveness of each step in our proposed
framework.

This chapter has been published in the CORE rank A* journal, i.e., IEEE Transactions on Medi-
cal Imaging [65].



Chapter 5

Multi-scale graph fusion for co-saliency
detection

5.1 Introduction
Co-saliency detection focuses on simulating the human visual system to perceive the scene for
searching the common and salient prospects from a group of images [188], and has been applied
to improve the understanding of the image or video content in various applications such as image
retrieval [124], images co-segmentation [156], and object co-localization [74]. In the co-saliency
detection task, the semantic category of the common salient objects should be detected from
the specific content of the input image group, involving two key steps, i.e., feature extraction
extracting discriminative features to reliably distinguish the foregrounds from the backgrounds
of each image, and model construction detecting the co-saliency regions from a group of images
based on the extracted features.

Feature extraction is focused on extracting either handcrafted features or deep features based
on image pixel or superpixel. The popular methods for handcrafted feature extraction include
color/texture feature [38], Histogram of Oriented Gradient (HOG) feature [69], GIST descrip-
tors [75], etc. Since handcrafted features are usually difficult to capture the appearance changes
of both common objects and complex background information [159], deep features have been
widely designed to explore the semantic connection of co-saliency objects [156, 188]. For ex-
ample, [164] propose a group-wise deep co-saliency detection method to consider group-wise
features and single image features in the convolutional layers. [129] propose to extract both
deep collaborative features and deep high-to-low features to balance the individual intra-image
information. [159] employ the VGG-19 framework to extract the high-level group-wise seman-
tic feature and the visual feature for co-saliency detection. Although current feature extraction
methods (including handcrafted features and deep features) achieved success in the application of
co-saliency detection, extracting single feature is still a challenging task to detect complex vari-
ations between co-salient objects and backgrounds. To this end, multi-view feature is extracted
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to explore both intra-image and inter-image information for co-saliency detection [77, 196].
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Figure 5.1: The architecture of the proposed framework for co-saliency detection. Specifically, it
involves three key steps. (a) Feature extraction extracts three-scale deep features to represent each
image; (b) Feature Fine-tuning fine-tunes the multi-scale features to obtain discriminative features by
considering their common and complementary information; (c) Detection conducts a binary classifi-
cation task to distinguish the common salient foregrounds from backgrounds.

Given the image features, both traditional machine learning methods and deep learning methods
are designed to detect the co-saliency across a group of images. For example, [191] regard the co-
saliency detection task as multi-instance learning where each image and each superpixel region,
respectively, are regarded as a bag and an instance, and thus the multi-instance classifier is used
to predict the locations of the co-salient objects in the instance level. However, feature extrac-
tion and co-saliency detection are two separated processes in many traditional machine learning
methods. As a result, the feature can not be adjusted based on the result of co-saliency detec-
tion, and thus leading to suboptimal performance of co-saliency detection. To address this issue,
deep learning integrates these two processes in a unified framework so that each other can be
adaptively adjusted by the other, and thus easily outputting optimal performance of co-saliency
detection. For example, fully convolution neural networks are designed to automatically learn
high-level semantic features by modeling collaborative correlations among the images [195].

Recently, Graph Convolutional Network (GCN) was designed to utilize both the feature infor-
mation and the correlation among the images (i.e., the graph) to improve the performance of
co-saliency detection [77]. However, previous deep learning methods suffer from some draw-
backs to severely limit the detection effectiveness. For example, deep learning methods focus
on extracting the self-learnt features from the images without considering the semantic mean-
ing and lacking the interpretability. The convolutional layers and pooling operations in some
deep learning methods decrease the size of feature maps to easily result in the loss of boundary
details [195].

In this chapter, we propose a novel GCN method to fuse multi-scale features based on the su-
perpixel regions/clusters for co-saliency detection. To do this, our proposed method involves
three steps, i.e., feature extraction, feature fusion by the proposed GCN method, and co-saliency
detection, shown in Figure 5.1. In the step of feature extraction, we first employ the Simple
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Linear Iterative Clustering (SLIC) algorithm [2] to obtain superpixel based regions/clusters in-
cluding sub-blocks of the background and saliency regions for each image. The motivation is
that the superpixel representation may adhere to image boundaries better, compared to pixel rep-
resentation [188]. We also employ VGG-16 to generate multi-scale features for each image.
Furthermore, we convert multi-scale features to represent the image with a vector based on the
superpixel clusters. In the step of feature fine-tuning, we design a new graph fusion method
to fine-tune the features of each scale by the help of the information of the features from other
scales. The goal is to comprehensively explore the intra-image correlation within one image
and the inter-region correlation across the images. Finally, the outputted features are concate-
nated together first and then passes a fully connected layer to conduct the binary classification,
i.e., regarding the co-saliency detection task as a classification task.

Compared to previous methods, we list the contributions of our method as follows.

• This chapter first extracts multi-scale features and then designs a new graph fusion method
to fine-tune these features. The multi-scale features can detect different sizes of patterns
of the images and the fusion method fine-tunes the multi-scale features to extract the com-
plementary information and the common information among the features. It is noteworthy
that previous methods [61, 190] extracting handcrafted features are difficult to explore
the comprehensive information among the images. Other methods extract the multi-view
feature to touch the issue of the handcrafted feature, but leaving the correlation among
multiple features alone [77, 107, 196]. Hence, our method is more flexible compared to
these methods.

• This chapter proposes a new dynamic GCN method jointly conducting multi-graph fusion,
graph learning, and feature learning in a unified work. In the literature, [77] and [196]
focused on conducting multi-graph learning on multi-view data by considering the consis-
tency among the graph (i.e., the common information) and ignoring the complementary or
private information across multi-scale features.

5.2 Related work
Different from saliency detection in a single image, co-saliency detection captures salient do-
mains of information that have the common meaning for the recognition of a group of related
images [102, 155]. Usually, co-saliency detection is influenced by saliency factors in individual
images as well as is determined by a consistent saliency map across multiple images. Recently,
many methods have been proposed to solve the co-saliency detection problem [38, 159]. Gen-
erally, existing work is roughly divided into three groups, including bottom-up methods, fusion
methods and learning methods.

Bottom-up method first scores image pixels or super pixels for the co-saliency clues of a group
of manually made images, and then combines the corresponding regions in a bottom-up manner.
In the early work, manually extracted features (i.e., color, texture and sift descriptor) are widely
used [38, 109]. For example, Chang et al. conduct the co-saliency detection at the pixel level by
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exploring reproducibility between related images [17]. Fu et al. [38] propose to mainly explore
the global contrast and spatial distribution on a single frame image. However, due to the extracted
features relied on the subjective ideas of designers, there are many challenges can be found, such
as the clutter of the image background and the appearance square difference of cosine targets
between images. Deep learning methods [159, 191] use neural networks to extract differentiated
visual features to alleviate the shortcomings of traditional methods in feature representation.
For example, Liu et al. use the deep learning framework to obtain the internal similarity of
the image [178]. Zhang et al. use the limited Boltzmann machine to extract the discrimination
information and segment the foreground object of the co-significant images [189]. However,
these previous methods still ignore the correlation between two saliency regions in one image
and the correlation cross images, and neglect plausible saliency proposals that may share high
similarity for the same object.

Fusion method employs existing methods or image saliency detection methods to address the
above issue [15, 155, 197]. For example, Cao et al. use the low rank decomposition to study the
correlations of sub-graphs for obtaining adaptive subgraph weights and generating the final co-
saliency maps [15]. Huang et al. propose integrating multi-scale superpixel to obtain the saliency
clue of each image, and employing Gaussian mixture model and binary segmentation to obtain
the final co-saliency maps [69]. Tsai et al. propose a stacked autoencoder to evaluate the quality
of various saliency maps from multiple saliency methods, and conduct a fusion module and a
self-trained CNN module for generating a convincing co-saliency maps [155].

Learning method is designed to jointly and automatically learn common patterns and signif-
icant clues from image groups, aiming at alleviating the problem that traditional methods in
co-saliency detection rely too much on prior knowledge. For example, Zhang et al. propose
integrating multi-instance learning and self scheduled learning for co-saliency detection [191].
Han et al. embed the metric learning regularization into the objective function for co-saliency
detection [60]. Wei et al. propose to obtain the group interaction information of group images
by learning the semantic perception image representation and adaptively learn the group features
for collaborative significance detection [164]. Zhang et al. use the convolution neural network to
calculate the collaborative significance value of the image [190]. Ren et al. combine multi-layer
features and design an inter image propagation mechanism to generate cooperative co-saliency
maps [129]. Tang et al. conduct a semantic relation graph and a feature selection way, respec-
tively, to search the inter-saliency relations and important features [150].

5.3 Method

5.3.1 Overview
Denoting P = {Pn}Nn=1 as a set of N related images, co-saliency detection is designed to output
the map matrix M = {Mn}Nn=1, which is used for distinguishing the common salient fore-
grounds from backgrounds. To this end, our proposed method includes three steps visualized in
Figure 5.1.
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Given the input image set P , we first employ the SLIC algorithm to conduct superpixel seg-
mentation for obtaining superpixel regions or clusters. Meanwhile, we employ the VGG-16
model [146] to convert each input image to multi-scale images by removing the fully connected
layers and the softmax layer of the VGG-16 model. Specifically, we store the images outputted
at the third pooling layer, the fourth pooling layer, and the fifth pooling layer. After this, we
combine the superpixel regions and the images of each scale to obtain three hierarchical features
X = {Xv}3v=1 as the multi-scale features of P , and thus converting the co-saliency detection
task to the classification task based on superpixel clusters.

5.3.2 Feature extraction
Perceptual and semantic visual features are essential for co-saliency detection [187, 188]. A su-
perpixel is usually defined as a set of pixels with common characteristics such as pixel intensity,
so superpixel based handcrafted features were shown to carry more semantic information and
contain perceptual meaning, compared to either pixel based handcrafted features [43]. How-
ever, handcrafted features are not robust to complex visual scenes [129, 205]. On the contrary,
deep features can capture the changes within one image or across images to produce robust co-
saliency detection models, but lacking semantic meaning. In this chapter, we propose to integrate
superpixel segmentation with deep features to generate multi-scale deep features for each image,
aiming at producing semantic and discriminative features as well as converting the co-saliency
detection task to a classification problem based on the superpixel cluster/region.

Given a set of N related images P = {Pi}Ni=1 (Pi ∈ R224×224×3, we employ the SLIC algorithm
[2] to generate superpixel regions for each image Pi by clustering pixels based on their color
similarity and proximity in the image plane. As a result, we obtain ni superpixels for each
image. For simplicity, we set all nis (i = 1, ..., N ) as the same value for a group of images, i.e., n
and denote N = N × n. Meanwhile, we input each image Pi to the pre-trained VGG-16 model
to generate three images with different scales, i.e., Pi → {P̃1

i , P̃
2
i , P̃

3
i } where P̃1

i ∈ R56×56×256,
P̃2

i ∈ R28×28×512, and P̃3
i ∈ R14×14×512, respectively, denotes the images obtained from the third

pooling layer, the fourth pooling layer, and the fifth pooling layer of the VGG-16 model. We then
upsampling these images to be the equivalent size, i.e., X̃1

i ∈ R224×224×256, X̃2
i ∈ R224×224×512,

and X̃3
i ∈ R224×224×512 where 256 and 512 indicate the filter number, aiming to avoid the loss of

boundary details due to the decrease of the feature map size in {P̃1
i , P̃

2
i , P̃

3
i } [43].

For each image X̃j
i (i = 1, ..., N and j = 1, 2, 3), we use the result of the superpixel segmentation

to partition it into n regions. The representation of each superpixel region is a scalar, which is
the average values of the activation maps of all pixels within the same superpixel. Hence, each
image is represented by three matrices with different scales of the image size, e.g., X1

i ∈ Rn×256,
X2

i ∈ Rn×512, and X3
i ∈ Rn×512, i = 1, ..., N . Furthermore, we use X = {X1,X2,X3} to

represent the feature matrices of relevant images, where X1 ∈ RN×256, X2 ∈ RN×512, and
X3 ∈ RN×512. Finally, the initial graph matrix Av (v = 1, 2, 3) for Xv is constructed by the
formulation: Av = XvXvT ∈ RN×N [77].
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5.3.3 Feature fine-tuning
In this section, we first review the classical GCN model and then propose our proposed graph
fusion method in details.

5.3.3.1 Graph convolutional network

The GCN method aims to learn a latent representation Ov = f(Xv,Gv; Θv) of the original
feature matrix Xv (v = 1, 2, 3) while preserving the graph structure of all data points [87].
Generally, GCN includes one input layer, two hidden layers, and one perceptron layer. Given the
input matrix Xv ∈ RN×dv which has N superpixel regions (or samples) and dv features for each
sample, Av denotes the pair-wise correlation between any two samples. Hence, the layer-wise
propagation in the k-th hidden layer of GCN is

Fv
k+1 = σ(D̃v−

1
2 ÃvD̃v−

1
2Fv

kΘ
v
k), (5.1)

where k = (0, 1, ..., K − 1) and K is the number of layers. Fv
0 = Xv is the initial feature

matrix, Fv
k is the output feature map of the k-th layer, Ãv = Av + In is the adjacency matrix of

the undirected graph, and In is the identity matrix. D̃v = diag(d̃v
1, ..., d̃

v
n) is a diagonal matrix

with d̃v
i =

∑n
j Ã

v and σ(·) is an activation function such as ReLU. The last perception layer is
defined as:

Ov = softmax(D̃v−
1
2 ÃvD̃v−

1
2Fv

KΘ
v
K), (5.2)

Ov is the prediction matrix, Θv = (Θv
0, ...,ΘK

v) which are trainable parameters and can be
learned by minimizing the cross-entropy loss function over the labeled samples.

LGCN : −
∑
i∈L

c∑
j

yijlno
v
ij, (5.3)

where L denotes the set of labelled samples, c is the number of classes, yij is the ground truth,
and ovij is the corresponding predictions.

Different from Convolutional Neural Network (CNN) [92] regarding the feature matrix as the
input, GCN regards both the feature matrix and the graph as the inputs to generate deep features
by preserving the local structure in the graph. As a result, GCN has been demonstrated to out-
perform CNN in many real applications [87]. Moreover, previous studies (e.g., [24, 78]) showed
that the quality of the graph is the key issue for the effectiveness of the GCN method. In the
literature, many methods can be used for constructing the graph, i.e., k-nearest neighbor (kNN)
graph, ε-nearest neighbor graph, fully connected graph, etc. The graph construction by many
previous GCN methods is independent of the feature learning process, so that easily resulting in
the sub-optimal feature learning. To address this issue, dynamic GCN methods focus on jointly
conducting graph learning and feature learning, where the graph can be updated by the optimal
features and the features are also adjusted by the updated graph. As a result, the quality of the
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Figure 5.2: The structure of the proposed graph fusion, which conducts feature fine-tuning by explor-
ing the common and complementary information of multi-scale features.

graph can be improved by a data-driven way, and thus the outputted feature is discriminative. To
this end, the following objective function of the graph learning is:

LGL : min
Av

∑n
i,j=1 ∥xv

iQ
v − xv

jQ
v∥22avij + ∥Av∥2F

s.t.,
∑n

j=1 a
v
ij = 1, avij > 0, i, j = 1, ..., n,

(5.4)

where Qv ∈ Rdv×r (r ≤ dv) and avij denote the similarity between xv
i and xv

j . Finally, the dy-
namic GCN method adds the constraint of the graph learning (i.e., Eq. (5.4)) as the regularization
of the GCN model to have:

L = LGCN + γLGL, (5.5)

where γ is a tuning parameter.

Similar to the literature [77, 101] that approximately optimizes a new variable with less tuning
parameters rather than directly optimizing the variable Qv in Eq. (5.4) with expensive time cost,
this chapter designs to optimize Qv by the following objective function:

Av = σ(XvQv(XvQ)T ), (5.6)

where σ(·) is the sigmoid activation function and Qv is learnable projection matrix.

5.3.3.2 Proposed graph fusion

In this work, we design a new dynamic GCN in Eq. (5.5) and Eq. (5.6) to fine-tune the features
of each scale, which was obtained from VGG and superpixel segmentation. Thus we obtain a
dynamic GCN model for the features from each scale. However, each GCN model is indepen-
dently trained from other two. Hence, we propose a fusion method to combine three dynamic
GCN models to explore the common information among three models and the complementary
information in each model. We list the proposed fusion structure in Figure 5.2.
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Specifically, given the feature matrix Xv and the corresponding graph Av, the layer-wise propa-
gation in the hidden layer of our proposed GCN method is defined as:

Fv
t = ReLU(ÂvF̂v

(t−1)Θ
v
t ), (5.7)

where Fv
t ∈ RN×dtv is the new representation of F̂v

(t−1) in the t-th layer, Âv = Dv−
1
2 (Av +

IN )Dv−
1
2 is normalized adjacency matrix, and Dv is the diagonal matrix of (Av + IN ). IN is an

identity matrix and ReLU(·) is an activation function. Θv
t is a trainable projection matrix for the

v-th superpixel feature.

Since we have multi-scale features to describe the same patterns on a group of images. The
features with different sizes/scales can capture the common foregrounds with different scales.
Moreover, the features of each scale has the complementary information (or private information,
e.g., different foregrounds) different from the features from other scales, while all features should
have the common information (i.e., the common foregrounds with different scales) as they are
assumed to contain the same foregrounds. If the common information is detected, these features
will be discriminative for the co-saliency detection. Meanwhile, the difference among the fea-
tures can also benefit the learning of discriminative features. To this end, we have the definition
of F̂v

(t−1) as follows:

F̂v
(t−1) =

V∑
v=1

αv
(t−1)F

v
(t−1), (5.8)

where αv
(t−1) indicates the contribution or the weight for Fv

(t−1) to its v-th final features F̂v
(t−1) in

the (t-1)-th layer. Moreover, αv
(t−1) = [α1

(t−1), ..., α
V
(t−1)] is a trainable vector. Specifically, our

GCN method outputs Fv
(t−1), which will be combined with all other Fv′

(t−1) (v ̸= v′) to generate
the v-th final features F̂v

(t−1) in the (t-1)-th layer. As a result, the feature learning in each scale
have the complementary information (i.e., Fv

(t−1)) and the common information from other scales
F̂v′

(t−1) (v ̸= v′).

After the new presentation Fv
t is obtained, its final output is defined as:

Ov = softmax(ÃvFv
tΘ

v
t ), (5.9)

After conducting Eq. (5.9), we obtain three outputs and then concatenate them to have:

Z = FC([O1,O2,O3]), (5.10)

where FC denotes the fully connected layer and Z is the predicted label.

Co-saliency detection is designed to propagate information from intra-superpixel correlations
across the relevant images. Hence, we only consider the prediction performance by employing
the cross-entropy loss function to obtain:

Lcos = − 1
N

N∑
i=1

n∑
j=1

ηi(zi(j)logzi(j)

− (1− ηi)(1− zi(j))log(1− yi(j))),

(5.11)
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Table 5.1: Results of all methods on three image data sets.

Methods iCoseg Cosal2015 MSRC
AUC ↑ Fβ ↑ Sα ↑ AP ↑ AUC ↑ Fβ ↑ Sα ↑ AP ↑ AUC ↑ Fβ ↑ Sα ↑ AP ↑

CBCS 0.9315 0.7301 0.6707 0.7958 0.8077 0.5489 0.5439 0.5859 0.8083 0.6563 0.4959 0.6992
ESMG 0.9317 0.7094 0.7436 0.7728 0.7687 0.4803 0.5524 0.5111 0.7875 0.6111 0.5452 0.6112
UMLF 0.9108 0.7262 0.6829 0.7842 0.9011 0.6956 0.6648 0.7398 0.9441 0.8512 0.7982 0.8990
EGNet 0.9598 0.8651 0.8365 0.8751 0.9303 0.7909 0.8206 0.8077 0.8624 0.7714 0.7183 0.7618

MGLCN 0.9671 0.8912 0.8355 0.8263 0.9534 0.8845 0.8142 0.8519 0.9415 0.8559 0.8001 0.8427
GCAGC 0.9711 0.8433 0.8334 0.8813 0.9676 0.8322 0.8225 0.8765 0.9419 0.8483 0.7904 0.9060
Proposed 0.9727 0.8787 0.8391 0.8742 0.9716 0.8928 0.9341 0.8817 0.9515 0.8565 0.8212 0.9158

 !

"#$%$&'(

)*)+

,+- 

.-/0

, 1'2

 )3 )

%45(4

6)$&'7

(''#

)$&489:;<

46#%845'

-+=)

- /)1

Figure 5.3: Visualization comparisons of all methods on three data sets.

where yi(j) and zi(j) is the ground truth and predicted result of the j-th superpixel of the i-th
image, respectively. ηi is the ratio of salient superpixel cluster in all superpixel clusters and can
be calculated by applying the same superpixel partition for ground truths in advance.

5.4 Experiments
We experimentally evaluate our method, compared to six comparison methods, on three image
data sets, i.e., iCoseg, Cosal2015, and MSRC, in terms of six evaluation metrics.

5.4.1 Data sets
The data set iCoseg [6] contains 643 images within 38 different categories. Each image has a
manually labeled pixel-wise ground truth for evaluation.

The data set Cosal2015 [190] consists of 2015 images of 50 categories, and each group suffers
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Figure 5.4: ROC and PR curves of all methods on three image data sets.

from various challenging issues such as complex environments, occlusion issues, target appear-
ance variations, and background clutters.

The data set MSRC [168] contains 233 images within 7 categories. The images in the data set
are complicated as the common objects are vary unpredictable in color and shape appearance.

5.4.2 Comparison methods
In this chapter, we use six state-of-the-art methods of co-saliency detection to evaluate the ef-
fectiveness of our proposed framework, i.e., Cluster-Based Co-Saliency detection (CBCS) [38],
Efficient Saliency-Model-Guided co-saliency detection (ESMG) [103], United Metric Learning-
based Framework (UMLF) [60], Edge Guidance Network (EGNet) [208], Multiple Graph Learn-
ing and Convolutional Network (MGLCN) [77], and Graph Convolutional network with Atten-
tion Graph Clustering (GCAGC) [196]. The methods (e.g., CBCS, ESMG, and UMLF) are
traditional machine learning methods and the methods (e.g., EGNet, MGLCN, GCAGC, and our
method) are deep learning methods.

5.4.3 Setting
In our experiments, we reshape the size of all images to 224 × 224 and set the number of su-
perpixel regions as 5000. For deep learning methods (i.e., EGNet, MGLCN, GCAGC, and our
method), we select the data set MSRAB in [106] to train deep models. In our method, we set
the maximal number of epochs as 10000 using the Adam optimizer [86], and set the initial learn-
ing rate and the weight decay, respectively, as 0.00005 and 0.005. We set stopping criterion as
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no decreasing of the objective function for 100 consecutive epochs in the training process. For
fair comparison, we obtained the source codes by online or from the authors. The experimen-
tal settings of all comparison methods are followed the corresponding literature to make all of
them output their best performance. All experiments are conducted on a server with 4 NVIDIA
Quadro P4000 8G.

The evaluation metrics include Precision-Recall (PR) curve, Receiver Operating Characteristic
(ROC) curve, Area Under the Curve (AUC) score , Fβ score, Sα score, and Average Precision
(AP) [34]. Specifically, Fβ score is defined as:

Fβ = (1+β2)Precision×Recall
β2Precision+Recall

, (5.12)

where precision and recall are obtained using a self-adaptive threshold T = µ + ε. µ and ε are
the mean and standard deviation values of the saliency map, respectively. We followed [1] to set
β2 as 0.3.

Sα score describes the structural similarity between the ground truths and the corresponding
co-saliency maps, and we follow the literature [34] to set all hyper-parameters as 0.5.

5.4.4 Result analysis
We list the results of all methods on three benchmark data sets in Table 5.1, where the bold
number stands for the best result in one column. We also report the ROC and PR curves of all
methods on all data sets in Figure 5.4.

First, our proposed framework obtain the best performance, followed by GCAGC, MGLCN,
EGNet, UMLF, CBCS, and ESMG. For example, our method improved on average by 0.17%,
1.18%, 1.65%, and 0.88%, compared to the best comparison method (i.e., GCAGC), and aver-
agely improved by 4.53%, 9.19%, 8.37%, and 8.63%, compared to the worst comparison method
(i.e., ESMG), in terms of AUC, Fβ , Sα, and AP, respectively, on three data sets. This indicates
the success of our two strategies for co-saliency detection, i.e., generating multi-scale images for
every image, and fusing multi-scale features to produce discriminative features. In particular,
deep learning methods (i.e., EGNet, MGLCN, GCAGC, and our method) outperform traditional
methods (i.e., CBCS, ESMG, and UMLF) as the former methods extract more informative fea-
tures to describe the salient region than the latter ones. This indicates that deep features are
suitable for co-saliency detection.

Second, by comparing with four deep learning methods, EGNet achieve the worst performance
as the methods (such as GCAGC, MGLCN, and our method) extract multiple deep features for
co-saliency detection. For example, GCAGC improved on average by 1.42%, 1.07%, 0.79%, and
2.44%, respectively, on three data sets, for the evaluation metrics such as AUC, Fβ , Sα, and AP,
compared to EGNet. This implies that multiple features are reasonable for co-saliency detection.
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Figure 5.5: Comparison of our framework with different numbers of superpixels on three data sets.
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Figure 5.6: Results of our model without/with the process of feature fusion on three data sets.
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Figure 5.7: Visual comparisons between the classification task (left) and the regression task (right)
using our framework on three images for the used data sets.

5.5 Discussion
In this section, we verify the effectiveness of our model from the following aspects: (1) the
number of superpixels for feature extraction; (2) the effectiveness of our fusion method; and (3)
regression performance of our method.

5.5.1 Superpixel cluster number
Superpixel segmentation provides a more convenient and compact representation of image rep-
resentation, compared with the pixel segmentation. Previous studies demonstrated that the per-
formance of co-saliency detection is sensitive the number of superpixel clusters. To this end, we
investigate the performance of co-saliency detection with varied number for superpixel clusters,
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i.e., 1000, 2000, 3000, 4000, and 5000, and report the corresponding results of our method in
Figure 5.5.

Our model obtain the best performance when the superpixel division number is set as 5000. For
example, our method with 5000 superpixel clusters improved on average by 10.42%, 7.86%,
6.71%, and 9.13%, respectively, on MSRC data set, in terms of AUC, Fβ , Sα, and AP, compared
to our method with only 1000 superpixel clusters. Moreover, the more the number of superpixel
clusters, the better the performance of the co-saliency detection is. Moreover, the computation
cost increases with the increase of the superpixel cluster number. Hence, it is reasonable for us
to set superpixel cluster number as 5000 in our experiments by taking into account the trade-off
between the effectiveness of co-saliency detection and the computation cost and the effectiveness
of our method to detect the common and complementary information from multi-scale features.

5.5.2 Graph fusion effectiveness
In our framework, we fuse the features from multiple scales to explore the complementary in-
formation in each scale and the common information among all scales. However, we can also
ignore the fusion process, i.e., separately conducting 3 dynamic models and then concatenate 3
outputs to conduct co-saliency detection, Proposed-s for short. We reported the results of both
Proposed and Proposed-s in Figure 5.6.

Obviously, Proposed outperformed Proposed-s on all data sets in terms of different evaluation
metrics. For example, Proposed improved by on average 9.4%, 11.32%, 8.93%, and 9.29%,
respectively, compared to Proposed-s, in terms of AUC, Fβ , Sα, and AP. This indicates the
importance for feature fusion on multi-scale features.

5.5.3 Regression effectiveness
In this chapter, we regard the co-saliency detection task as a binary classification task, and report
the visualization of all methods in Figure 5.3. Actually, we can also regard the co-saliency
detection task as a regression task, whose visualization can easier detect the edge boundary
compared to the classification task. This is because that the regression task assigns the edge
boundary with continuous values and the classification task assigns it with binary values. To this
end, we report the visualization of our method on the regression task in Figure 5.7.

Compared the regression task to the classification task in terms of the visualization, the edge
boundary produced by the regression task is more blur by considering the pixel graph-scale
values, compared to the one in the classification task. Hence, the proposed framework can be
designed for both the classification task and the regression task.

5.6 Summary
In this chapter, we proposed a new co-saliency detection framework by designing two strate-
gies to generate discriminative features, i.e., multi-scale features to capture the patterns with
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different sizes across the images, and feature fusion to extract the common and complementary
information among the multi-scale features. Moreover, we embedded these two strategies into
our designed dynamic GCN model to jointly conduct feature fusion, graph learning, and feature
learning. In this way, it solved the issue of multiple graph fusion of graph learning within deep
learning. Experimental results on three benchmark data sets demonstrated that our framework
outperformed the state-of-the-art methods of co-saliency detection in terms of several evaluation
metrics. Moreover, experimental results also verified the effectiveness of each strategy in our
co-saliency detection framework.

This chapter has been published in the CORE rank A* conference, i.e., The AAAI Conference
on Artificial Intelligence 2021 [63].



Chapter 6

Conclusion and future work

6.1 Conclusion
Graph learning method is one of the most popular methods in machine learning and computer
vision. Based on the analysis of previous graph learning methods, this thesis focused on the
issues of graph learning under supervised learning and semi-supervised learning, including the
robustness, the interpretability, the graph fusion for traditional machine learning and deep learn-
ing.

Chapter 3 proposed a robust SVM classifier with different constraints, i.e., the hinge loss func-
tion, the self-paced learning and the ℓ2,1-norm sparse learning, to obtain important samples and
features in the low-dimensional subspace, aiming at solving the issues of robustness and the
interpretability of traditional graph learning. As a result, the proposed method outperformed
both classical graph learning methods and dynamic graph learning methods, in terms of binary
classification tasks and multi-class classification tasks.

Chapter 4 proposed a multi-band fusion framework under semi-supervised learning to conduct
joint graph learning and personalized disease diagnosis, aiming at solving the issues of multi-
scale feature fusion. As a result, the proposed method achieved superior performance, compared
with both traditional graph learning methods and deep graph learning methods, in terms of func-
tional neuroimaging biomarker identification.

Chapter 5 proposed a deep learning framework by considering multi-scale features extraction,
feature fusion, graph learning, and feature learning, to obtain homogeneous graph features in the
common feature space, aiming at solving the issues of smoothing multiple graph features. As
a consequence, the proposed method outperformed the state-of-the-art traditional methods and
deep methods for the co-saliency detection task.
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6.2 Future work
Although graph learning has been widely applied in real applications and we also solve some is-
sues in previous graph learning methods, there are still spaces to improve previous graph learning
methods to meet the requirements of the real applications.

• Feature learning is the key for deep learning over traditional machine learning because
deep learning outputs useful features than traditional machine learning methods with the
help of the large number of training data. Graph feature learning is designed to conduct
feature learning while preserving the structural information of the data, and thus has at-
tracted much attention. However, this thesis focused on graph learning from supervised
learning and semi-supervised learning, while graph feature learning focuses on unsuper-
vised learning and self-supervised learning. Hence, in the future work, we plan to focus
on the study of graph feature learning.

• The key component for graph feature learning is the local structure preservation which
contains the correlations (i.e., social networks) among the samples. Usually, different local
structures explore different correlations of the data. Multiple local structures may enrich
the information of the data or even improve the effectiveness of graph feature learning
if the multiple local structures provide complementary information to each other. In this
way, multiplex graph feature learning uses multiple graph to capture multiple complex
correlations of the data, and thus has been attracting much attention. Hence, in the future
work, we plan to conduct multiplex graph learning.
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