8,351 research outputs found

    Numerical solution of fractional Sturm-Liouville equation in integral form

    Full text link
    In this paper a fractional differential equation of the Euler-Lagrange / Sturm-Liouville type is considered. The fractional equation with derivatives of order α(0,1]\alpha \in \left( 0,1 \right] in the finite time interval is transformed to the integral form. Next the numerical scheme is presented. In the final part of this paper examples of numerical solutions of this equation are shown. The convergence of the proposed method on the basis of numerical results is also discussed.Comment: 14 pages, 3 figures, 2 table

    Spectral properties of fractional Fokker-Plank operator for the L\'evy flight in a harmonic potential

    Full text link
    We present a detailed analysis of the eigenfunctions of the Fokker-Planck operator for the L\'evy-Ornstein-Uhlenbeck process, their asymptotic behavior and recurrence relations, explicit expressions in coordinate space for the special cases of the Ornstein-Uhlenbeck process with Gaussian and with Cauchy white noise and for the transformation kernel, which maps the fractional Fokker-Planck operator of the Cauchy-Ornstein-Uhlenbeck process to the non-fractional Fokker-Planck operator of the usual Gaussian Ornstein-Uhlenbeck process. We also describe how non-spectral relaxation can be observed in bounded random variables of the L\'evy-Ornstein-Uhlenbeck process and their correlation functions.Comment: 10 pages, 5 figures, submitted to Euro. Phys. J.

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Fractional Systems and Fractional Bogoliubov Hierarchy Equations

    Full text link
    We consider the fractional generalizations of the phase volume, volume element and Poisson brackets. These generalizations lead us to the fractional analog of the phase space. We consider systems on this fractional phase space and fractional analogs of the Hamilton equations. The fractional generalization of the average value is suggested. The fractional analogs of the Bogoliubov hierarchy equations are derived from the fractional Liouville equation. We define the fractional reduced distribution functions. The fractional analog of the Vlasov equation and the Debye radius are considered.Comment: 12 page

    Fractional dynamics of systems with long-range interaction

    Full text link
    We consider one-dimensional chain of coupled linear and nonlinear oscillators with long-range power wise interaction defined by a term proportional to 1/|n-m|^{\alpha+1}. Continuous medium equation for this system can be obtained in the so-called infrared limit when the wave number tends to zero. We construct a transform operator that maps the system of large number of ordinary differential equations of motion of the particles into a partial differential equation with the Riesz fractional derivative of order \alpha, when 0<\alpha<2. Few models of coupled oscillators are considered and their synchronized states and localized structures are discussed in details. Particularly, we discuss some solutions of time-dependent fractional Ginzburg-Landau (or nonlinear Schrodinger) equation.Comment: arXiv admin note: substantial overlap with arXiv:nlin/051201
    corecore