We consider one-dimensional chain of coupled linear and nonlinear oscillators
with long-range power wise interaction defined by a term proportional to
1/|n-m|^{\alpha+1}. Continuous medium equation for this system can be obtained
in the so-called infrared limit when the wave number tends to zero. We
construct a transform operator that maps the system of large number of ordinary
differential equations of motion of the particles into a partial differential
equation with the Riesz fractional derivative of order \alpha, when 0<\alpha<2.
Few models of coupled oscillators are considered and their synchronized states
and localized structures are discussed in details. Particularly, we discuss
some solutions of time-dependent fractional Ginzburg-Landau (or nonlinear
Schrodinger) equation.Comment: arXiv admin note: substantial overlap with arXiv:nlin/051201