6,894 research outputs found

    Electrical Resistance Tomography of Conductive Thin Films

    Full text link
    The Electrical Resistance Tomography (ERT) technique is applied to the measurement of sheet conductance maps of both uniform and patterned conductive thin films. Images of the sheet conductance spatial distribution, and local conductivity values are obtained. Test samples are tin oxide films on glass substrates, with electrical contacts on the sample boundary, some samples are deliberately patterned in order to induce null conductivity zones of known geometry while others contain higher conductivity inclusions. Four-terminal resistance measurements among the contacts are performed with a scanning setup. The ERT reconstruction is performed by a numerical algorithm based on the total variation regularization and the L-curve method. ERT correctly images the sheet conductance spatial distribution of the samples. The reconstructed conductance values are in good quantitative agreement with independent measurements performed with the van der Pauw and the four-point probe methods.Comment: IEEE Transactions on Instrumentation and Measuremen

    In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.

    Get PDF
    In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spectrum of blood was predominately uniform. The implications of imaging blood/ischaemia in the brain using electrical impedance tomography are discussed, supporting the notion that it will be possible to differentiate stroke from haemorrhage

    USE OF AN ELECTRICAL IMPEDANCE TOMOGRAPHY METHOD TO DETECT AND TRACK FRACTURES IN A GELATIN MEDIUM

    Get PDF
    Electrical impedance tomography is applied to the problem of detecting, locating, and tracking fractures in ballistics gelatin. The hardware developed is intended to be physically robust and based on off-the-shelf hardware. Fractures were created in two separate ways: by shooting a .22 caliber bullet into the gelatin and by injecting saline solution into the gelatin. The .22 caliber bullet created an air gap, which was seen as an increase in resistivity. The saline solution created a fluid filled gap, which was seen as a decrease in resistivity. A double linear array was used to take data for each of the fracture mechanisms and a two dimensional cross section was inverted from the data. The results were validated by visually inspecting the samples during the fracture event. It was found that although there were reconstruction errors present, it was possible to reconstruct a representation of the resistive cross section. Simulations were performed to better understand the reconstructed cross-sections and to demonstrate the ability of a ring array, which was not experimentally tested

    Mapping Time-Dependent Conductivity of Metallic Nanowire Networks by Electrical Resistance Tomography toward Transparent Conductive Materials

    Get PDF
    partially_open7Metallic nanowire (NW) networks have attracted great attention as promising transparent conductive materials thanks to the low sheet resistance, high transparency, low cost production, and compatibility with flexible substrates. Despite many efforts having been devoted to investigating the conduction mechanism, a quantitative characterization of local electrical properties of nanowire networks at the macroscale still represents a challenge. In this work, we report on the investigation of local electrical properties and their evolution over time of Ag NW networks by means of electrical resistance tomography (ERT). Spatial correlation of local conductivity properties and optical transparency revealed that the nonscanning and rapid ERT technique allows to probe local electrical inhomogeneities in the NW network, differently from conventional measurement techniques such as van der Pauw and the four-point probe. In addition, ERT mapping over time was employed for in situ monitoring the evolution of Ag NW networks conductivity, elucidating the dependence of the degradation of local electrical properties under ambient exposure on the initial conductivity. Our results shed light on the importance of the characterization of local electrical properties of NW networks where uniformity and stability represent the main challenges to overcome for their use as transparent conductive materials.openGianluca Milano; Alessandro Cultrera; Katarzyna Bejtka; Natascia De Leo; Luca Callegaro; Carlo Ricciardi; Luca BoarinoMilano, Gianluca; Cultrera, Alessandro; Bejtka, Katarzyna; DE LEO, Maria; Callegaro, Luca; Ricciardi, Carlo; Boarino, Luc

    Conditioning electrical impedance mammography system

    Get PDF
    A multi-frequency Electrical Impedance Mammography (EIM) system has been developed to evaluate the conductivity and permittivity spectrums of breast tissues, which aims to improve early detection of breast cancer as a non-invasive, relatively low cost and label-free screening (or pre-screening) method. Multi-frequency EIM systems typically employ current excitations and measure differential potentials from the subject under test. Both the output impedance and system performance (SNR and accuracy) depend on the total output resistance, stray and output capacitances, capacitance at the electrode level, crosstalk at the chip and PCB levels. This makes the system design highly complex due to the impact of the unwanted capacitive effects, which substantially reduce the output impedance of stable current sources and bandwidth of the data that can be acquired. To overcome these difficulties, we present new methods to design a high performance, wide bandwidth EIM system using novel second generation current conveyor operational amplifiers based on a gyrator (OCCII-GIC) combination with different current excitation systems to cancel unwanted capacitive effects from the whole system. We reconstructed tomography images using a planar E-phantom consisting of an RSC circuit model, which represents the resistance of extra-cellular (R), intra-cellular (S) and membrane capacitance (C) of the breast tissues to validate the performance of the system. The experimental results demonstrated that an EIM system with the new design achieved a high output impedance of 10MΩ at 1MHz to at least 3MΩ at 3MHz frequency, with an average SNR and modelling accuracy of over 80dB and 99%, respectively

    Investigation of 3D electrical impedance mammography systems for breast cancer detection

    Get PDF
    Breast cancer is a major disease in women worldwide with a high rate of mortality, second only to lung cancer. Hence, there is considerable interest in developing non-invasive breast cancer detection methods with the aim of identifying breast cancer at an early stage, when it is most treatable. Electrical impedance mammography (EIM) is a relatively new medical imaging method for breast cancer detection. It is a safe, painless, non-invasive, non-ionizing imaging modality, which visualizes the internal conductivity distribution of the breast under investigation. Currently some EIM systems are in clinical trials but not commercialized, as there are still many challenges with sensitivity, spatial resolution and detectability. The research in this thesis aims to enhance and optimize EIM systems in order to address the current challenges. An enhanced image reconstruction algorithm using the duo-mesh method is developed. Both in simulations and real cases of phantoms and patients, the enhanced algorithm has proven more accurate and sensitive than the former algorithm and effective in improving vertical resolution for the EIM system with a planar electrode array. To evaluate the performance of the EIM system and the image reconstruction algorithms, an image processing based error analysis method is developed, which can provide an intuitive and accurate method to evaluate the reconstructed image and outline the shape of the object of interest. Two novel EIM systems are studied, which aim to improve the spatial resolution and the detectability of a tumour deep in the breast volume. These are: rotary planar-electrode-array EIM (RPEIM) system and combined electrode array EIM (CEIM) system. The RPEIM system permits the planar electrode array to rotate in the horizontal plane, which can dramatically increase the number of independent measurements, hence improving the spatial resolution. To support the rotation of the planner electrode array, a synchronous mesh method is developed. The CEIM system has a planar electrode array and a ring electrode array operated independently or together. It has three operational modes. This design provides enhanced detectability of a tumour deep within the tissue, as required for a large volume breast. The studies of the RPEIM system and the CEIM system are based on close-to-realistic digital breast phantoms, which comprise of skin, nipple, ducts, acini, fat and tumour. This approach makes simulations very close to a clinical trial of the technology

    Design and Development of a Microscopic Electrical Impedance Tomography System

    Get PDF
    Basically, Electrical impedance tomography is a new technique in monitoring and imaging cross sectional images and physical state of objects by measuring the internal impedance distribution. This paper presents the design of a microscopic electrical impedance tomography system, which is a non-destructive approach that has the capability to interpret and analyze the internal impedance distribution of a medium (the system) and reconstruct its image as a tomogram, where any object inside the system can be shown in a 2D (two-dimension) image. A current source circuit was constructed and studied by injecting 5 mA of current to an array of electrodes (3*3 array). Moreover, the conditional measurement circuit is going to receive voltage from measurement electrodes array of 8*16 in each plane.  The data was obtained from both planes as a matrix of 8*16 electrodes using multiplexers which was transferred serially to the PC to be analyzed and to reconstruct the image/tomogram. The image reconstruction process and algorithms were engaged in the calculation to reconstruct the image based on the voltage collected. Finally, interpolation is conducted to improve the quality and increase the resolution of the image
    corecore