
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2014 

USE OF AN ELECTRICAL IMPEDANCE TOMOGRAPHY METHOD USE OF AN ELECTRICAL IMPEDANCE TOMOGRAPHY METHOD 

TO DETECT AND TRACK FRACTURES IN A GELATIN MEDIUM TO DETECT AND TRACK FRACTURES IN A GELATIN MEDIUM 

Evan G. Lucas 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Geophysics and Seismology Commons, Mechanical Engineering Commons, and the 

Radiology Commons 

Copyright 2014 Evan G. Lucas 

Recommended Citation Recommended Citation 
Lucas, Evan G., "USE OF AN ELECTRICAL IMPEDANCE TOMOGRAPHY METHOD TO DETECT AND TRACK 
FRACTURES IN A GELATIN MEDIUM", Master's Thesis, Michigan Technological University, 2014. 
https://digitalcommons.mtu.edu/etds/742 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Geophysics and Seismology Commons, Mechanical Engineering Commons, and the Radiology 
Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/158?utm_source=digitalcommons.mtu.edu%2Fetds%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetds%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/705?utm_source=digitalcommons.mtu.edu%2Fetds%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/158?utm_source=digitalcommons.mtu.edu%2Fetds%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetds%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/705?utm_source=digitalcommons.mtu.edu%2Fetds%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/705?utm_source=digitalcommons.mtu.edu%2Fetds%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

USE OF AN ELECTRICAL IMPEDANCE TOMOGRAPHY METHOD TO DETECT AND 

TRACK FRACTURES IN A GELATIN MEDIUM 

 

 

By  

Evan G. Lucas 

 

 

 

A THESIS 

Submitted in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

In Mechanical Engineering  

 

MICHIGAN TECHNOLOGICAL UNIVERSITY 

2014 

 

© 2014 Evan G. Lucas 

  



 
 

This thesis has been approved in partial fulfillment of the requirements for the Degree of 

MASTER OF SCIENCE in Mechanical Engineering. 

 

Department of Mechanical Engineering – Engineering Mechanics 

 

 

 

Thesis Advisor:  Dr. Jason Blough 

   

Committee Member:  Dr. Roger Turpening 

   

Committee Member:  Dr. James DeClerck 

   

Department Chair:   Dr. William Predebon 

 

 



3 
 

Table of Contents 

Abstract .......................................................................................................................... 5 

1. Introduction ............................................................................................................. 6 

1.1. Problem Statement ........................................................................................... 6 

1.2. Overview of Electrical Impedance Tomography ................................................ 6 

1.2.1. Applications of Electrical Impedance Tomography .................................... 7 

1.2.2. History of EIT ...........................................................................................11 

1.3. Ballistic Gelatin ................................................................................................12 

1.4. Fracture Mechanisms Studied .........................................................................13 

1.4.1. Terminal Ballistic Behavior .......................................................................13 

1.4.2. Hydraulic Fracturing .................................................................................15 

1.5. Objectives .......................................................................................................15 

1.6. Contributions ...................................................................................................15 

1.6.1. Electrical Impedance Tomography ...........................................................15 

1.6.2. Geophysics ..............................................................................................16 

1.6.3. Terminal Ballistics ....................................................................................16 

2. Theory ....................................................................................................................17 

2.1. Physics ............................................................................................................17 

2.1.1. Conceptually understanding Electrical Impedance Tomography ...............18 

2.1.2. Comparison of EIT to Other Tomographic Imaging Methods ....................24 

2.2. Mathematics ....................................................................................................25 

2.2.1. Overview of the reconstruction problem ...................................................25 

2.2.2. Electrical Impedance Tomography and Diffuse Optical Tomography 
Reconstruction Software ........................................................................................26 

2.2.3. The Forward Problem ...............................................................................27 

2.2.4. The Jacobian ............................................................................................27 

2.2.5. The Inverse Problem ................................................................................28 

3. Results and Discussion ..........................................................................................31 

3.1. Test Apparatus ................................................................................................31 

3.2. Data Acquisition and Processing .....................................................................36 

3.2.1. Hardware complications of the system developed for this study ...............36 



4 
 

3.2.2. Data Processing Workflow .......................................................................37 

3.3. Proof of Concept .............................................................................................39 

3.4. Tests performed ..............................................................................................40 

3.4.1. Preparation of Ballistic Gelatin..................................................................41 

3.4.2. Hydraulic Fracture Imaging ......................................................................41 

3.4.3. Discussion of Hydraulic Fracture Imaging Results ....................................53 

3.4.4. Temporary Cavity Fracture Imaging .........................................................54 

3.4.5. Discussion of Temporary Cavity Imaging Results .....................................64 

3.5. Simulation of Circular Array .........................................................................64 

3.6. Sensitivity Analysis ......................................................................................73 

4. Conclusions and Future Work ................................................................................75 

4.1. Conclusions .....................................................................................................75 

4.2. Future Work ....................................................................................................76 

4.2.1. Future Work on Temporary Cavity Imaging ..............................................76 

4.2.2. Future Work on Hydraulic Fracturing Imaging ..........................................76 

References ....................................................................................................................78 

Appendix A: Copyrighted material permission documentation .......................................81 

Permission for Figure 1-1 ...........................................................................................81 

Permission for Figure 1-2 ...........................................................................................84 

Permission for Figure 1-3 and Figure 1-4 ......................................................................90 

Permission for Figure 1-5 ..............................................................................................94 

Appendix B: Previous work .......................................................................................... 100 

 

 



 

  5 
 

Abstract 

Electrical impedance tomography is applied to the problem of detecting, locating, and 

tracking fractures in ballistics gelatin. The hardware developed is intended to be 

physically robust and based on off-the-shelf hardware. Fractures were created in two 

separate ways: by shooting a .22 caliber bullet into the gelatin and by injecting saline 

solution into the gelatin. The .22 caliber bullet created an air gap, which was seen as an 

increase in resistivity. The saline solution created a fluid filled gap, which was seen as a 

decrease in resistivity. A double linear array was used to take data for each of the 

fracture mechanisms and a two dimensional cross section was inverted from the data. 

The results were validated by visually inspecting the samples during the fracture event. It 

was found that although there were reconstruction errors present, it was possible to 

reconstruct a representation of the resistive cross section. Simulations were performed 

to better understand the reconstructed cross-sections and to demonstrate the ability of a 

ring array, which was not experimentally tested.  
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1. Introduction 

1.1. Problem Statement 

The goal of this project is to dynamically detect and track fractures in ballistic gelatin. 

Fractures will be initiated in two ways, by shooting the gelatin with a .22 caliber bullet 

and by injecting a fluid into the gelatin. The fractures will be detected and analyzed by 

using an Electrical Impedance Tomography (EIT) system that will be designed to be 

physically robust and portable.  

1.2. Overview of Electrical Impedance Tomography 

Electrical Impedance Tomography (EIT) is an imaging technique that has been used in 

the fields of geophysical, industrial, and medical applications. It operates by detecting 

changes in resistivity, which indicate changes in the physical properties of the system. In 

brief, a current is applied between two electrodes and the voltage potential is measured 

between at least two other electrodes[1]. Some advanced systems will inject current into 

more than two electrodes simultaneously, but the majority of systems today use a single 

pair for current injection that cycles through pairs of electrodes[2]. By taking multiple 

measurements with multiple current applications across a system, it is possible to 

estimate the distribution of resistivities within the system. A more detailed explanation of 

how EIT works is included in Chapter 2. By taking these measurements repeatedly, 

resistivity changes with respect to time can be measured. This technique has been 

applied in one, two, and three dimensional cases[3].  

The advantages of EIT are: its nondestructive nature, a relatively low cost to implement 

and operate, physical robustness and portability of the measurement system, and a high 

temporal resolution. Compared to other tomography systems, EIT suffers from having an 
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inferior spatial resolution and computationally intensive data processing and 

interpretation[4]. 

 

1.2.1. Applications of Electrical Impedance Tomography 

In geophysics, EIT has found many uses including aquifer exploration, landfill leak 

detection, agricultural soil testing [5], and has recently been demonstrated effective at 

investigating permafrost in the subsurface [6]. In this area, EIT is also known by the 

names Electrical Resistivity Surveys and DC Resistivity Surveys. Typically, direct current 

(DC) is used for geophysical applications, as it is easier to generate and alternating 

current (AC) offers few advantages for earth materials [3]. An example of the earth 

cross-section from the permafrost investigation can be seen in Figure 1-1. As time 

progresses, the frostline recedes, which can be seen by the increase in conductivity near 

the surface. Here the lighter colors represent higher conductivities. To aid the viewer, a 

dotted line representing the frostline is drawn and can be seen to recede into the earth 

as the atmosphere warms seasonally. Depth and lateral extent is given in meters.  
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Figure 1-1 Resistivity cross section showing receding frost line reproduced from "Electrical 

resistivity tomography monitoring of permafrost in solid rock walls." Journal of Geophysical 

Research: Earth Surface (2003–2012) 112.F2 Copyright 2007 John Wiley & Sons, Inc. This material is 

reproduced with permission of John Wiley & Sons, Inc. See Appendix A for permission documentation. 

In industrial applications, EIT has been used for flow monitoring [7], tank settling [8], and 

a system that is very physically robust has been developed for use in a nuclear fuel 

reprocessing plant[9]. Both DC and alternating current (AC) systems are used in this 

field, with AC sometimes being used at multiple frequencies to allow for simultaneous 

multiple measurements. An example of a tank settling experiment can be seen in Figure 

1-2. Here, the conductive particulate settles, which can be seen by the decrease in 
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conductivity as time progresses. High conductivity is shown as red and low conductivity 

is shown as blue. 

 

Figure 1-2 Time-lapse imaging of tank settling experiment taken from Murphy, S. C., et al. "3D 

electrical tomographic imaging using vertical arrays of electrodes." Measurement Science and 

Technology 17.11 (2006): 3053. © IOP Publishing.  Reproduced with permission.  All rights reserved 

doi:10.1088/0957-0233/17/11/026 Permission documentation in Appendix A 

 

In medicine, an EIT system is commercially available for the monitoring the lungs of 

ventilated patients [7] and research is ongoing to use the technology for a variety of uses 

including tumor detection and measurement of tissue blood perfusion[10]. Typically in 

this field, AC stimulus is used to take measurements, so that the patient will not 

experience discomfort from their tissues being heated [10]. Cheney, Isaacson, and 
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Newell demonstrated the use of the technology for investigating a 2D cross section of an 

individual’s chest. The apparatus and cross section from this study can be seen in 

Figure 1-3 and Figure 1-4. [10]. The lungs, filled with air, are very resistive and are 

depicted as red in Figure 1-4. The heart, filled with conductive blood, has a low resistivity 

and is depicted as blue. 

 

Figure 1-3 Electrical Impedance Tomography Device with electrodes attached to a patient’s 

chest. Taken from Cheney, Margaret, David Isaacson, and Jonathan C. Newell. "Electrical impedance 

tomography." SIAM review 41.1 (1999): 85-101 Copyright ©1999 Society for Industrial and Applied 

Mathematics.  Reprinted with permission.  All rights reserved. See Appendix A for documented 

permission 
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Figure 1-4 Reconstructed resistivity cross-section from patient in Figure 1-3. Taken from 

Cheney, Margaret, David Isaacson, and Jonathan C. Newell. "Electrical impedance tomography." 

SIAM review 41.1 (1999): 85-101 Copyright ©1999 Society for Industrial and Applied Mathematics.  

Reprinted with permission.  All rights reserved. See Appendix A for documented permission 

 

1.2.2. History of EIT 

EIT roots can be traced back to 1912, when the Schlumberger brothers showed that 

resistivity measurements could be used to explore for ore bodies beneath the surface of 

the earth[5]. They found that by varying the spacing of the electrodes, the measured, or 

apparent, resistivity would be indicative of different depths within the earth. By taking 

multiple measurements, they would map out the resistivity of the subsurface. The 

technique found even more use in 1930, when the Schlumberger brothers used it inside 

of an oil well to indicate the well depths from which oil was produced [11]. Over time, this 

specific test grew into the field of resistivity well logging, which is still performed on a 
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large number of gas and oil wells after drilling, as it can be used to estimate porosity as 

well as water and oil saturation levels [12].  

These early forays into electrical resistivity mapping were not tomography in the sense 

that they were reconstructing the subsurface from measurements. Instead, they focused 

on estimating the resistivity at a finite number of specific points in the subsurface. 

Researchers of the time found that as they moved the electrodes applying the current 

further and further apart, the equipotential lines became more affected by deeper 

heterogeneities. They devised a technique that is still in use today where each 

measurement is given a weighting factor based on the electrode positions. The 

technique involves taking each measurement and estimate a "pseudo-resistivity" from it, 

corresponding roughly to the resistivity at a depth and location determined by where the 

measurement took place. These pseudo-resistivities are then stacked together in 

pseudo-sections, which is a technique still used to check data quality during testing.[3] 

1.3. Ballistic Gelatin 

Ballistic gelatin was developed for the study of terminal ballistics (sometimes called 

wound ballistics), the term given to the behavior of a projectile entering, transferring 

energy to, and destroying living tissue or other targets. Ballistic gelatin is a pork gelatin 

engineered for consistent mechanical properties that simulate living tissue and excellent 

optical clarity [13]. It is a well-studied material with papers detailing its properties [14], 

the consistency of those properties [15], the factors that affect the consistency of those 

properties [16], and ways to improve the visualization of the cavities formed among other 

topics [17]. Of particular interest to the problem at hand are the consistency of the 

properties and factors affecting those. In [16], Jussila proposes a method for preparing 
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gelatin that provides repeatable mechanical properties. Ballistic gelatin was selected for 

this study due to its optical clarity, low fracture strength, and conductivity. 

 

1.4. Fracture Mechanisms Studied 

1.4.1. Terminal Ballistic Behavior 

Bullets are often designed to behave a certain way upon entering a target depending on 

the design intent of the bullet. Bullets have been designed that will expand, stay fully 

formed, fragment, intentionally tumble upon entry, or deliver a hardened core. For this 

study, we will focus on full lead .22 caliber bullets. The terminal behavior of these bullets 

is well understood and predictable.[18] The full lead .22 bullet will tumble at least once 

as it travels through the ballistics gel. Tumbling with a full metal bullet often occurs after 

penetration because the stabilizing effect of the bullet’s spin becomes insufficient to 

maintain a point-forward travel after entering the denser medium of the gelatin.[19]  

As the bullet enters the gelatin, it creates an entrance roughly the size of the bullet. As 

the bullet travels into the gelatin, kinetic energy is transferred to the gelatin forming a 

temporary cavity many times larger than the bullet diameter. After the temporary cavity 

reaches its maximum size, it will collapse towards its unstretched state and oscillate 

between states briefly. After the oscillation ends, a permanent cavity with radiating 

fractures will be left to show the path of the bullet. The permanent cavity will be of a 

slightly larger diameter than the projectile. If tumbling occurs, both of the cavities will be 

of a larger diameter than in the non-tumbling case and may not be radially symmetric. 

Additionally, the bullet’s path through the gelatin will typically be linear, but may not be 
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linear if tumbling occurs.[13] The typical behavior of a full metal .22 caliber bullet in 

ballistic gel is show in Figure 1-5.[20] 

 

Figure 1-5 Terminal ballistic behavior of .22 caliber full metal bullet. Figure taken from Fackler, 

MARTIN L., and JOHN A. Malinowski. "The wound profile: A visual method for quantifying gunshot 

wound components." The Journal of Trauma 25.6 (1985): 522. © 1985 Wolters Kluwer Health. 

Reprinted with permission. See Appendix A for permission documentation. 

 

Terminal ballistics is often studied by taking high-speed footage of the bullet-gelatin 

interaction. This allows measurement of temporary cavity formation and bullet behavior 

such as expansion, fragmentation, and tumbling. Permanent cavity diameter and bullet 

track (depth) measurements can be easily taken after the test. To improve visualization 

and allow for better estimation of the temporary cavity after a test, a method involving 

putting a bag of acrylic paint in the front of the gelatin block has been developed.[17, 21] 
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This leaves a path of paint through the gelatin, helping discriminate the temporary cavity 

after it has closed. 

1.4.2. Hydraulic Fracturing 

Hydraulic fracturing is a commonly used method of accessing natural gas reserves that 

are not available through conventional methods. In hydraulic fracturing, fluid is pumped 

into a borehole and exerts pressure on the rock. The pressure causes the rock to 

fracture due to the added stress, which opens up pockets of natural gas that were 

trapped in impermeable rock. Granular sand crystals or small beads made of bauxite or 

ceramic materials, called proppant, are pumped down with the fluid to hold the fractures 

open after they have been opened. This allows the gas to flow more easily into the well. 

[22] Performing hydraulic fracturing experiments in gelatin is not a new concept and was 

first documented in [23]. 

1.5. Objectives 

The objectives of this project are as follows: 

 Develop a dynamic EIT system that is easily transportable and uses relatively 

inexpensive off-the-shelf hardware. 

 Use the developed EIT system to evaluate static and dynamic fracture 

phenomenon as a function of time. 

 Validate the results of the developed EIT system. 

1.6. Contributions 

This project contributes to three different fields: EIT, Geophysics, and Terminal Ballistics.  

1.6.1. Electrical Impedance Tomography 
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The work performed here is directly contributing to the field of EIT by performing EIT on 

a new type of system. It is also contributing to EIT by developing and testing a new EIT 

system based on inexpensive off-the-shelf data acquisition (DAQ) hardware.  

1.6.2. Geophysics 

There is currently a large amount of interest in determining extent of hydraulic fractures. 

[24, 25]The method demonstrated here could be considered a proof-of-concept for future 

work on the use of physical scale models to test electrical resistivity based techniques to 

determine extent of hydraulic fractures. 

1.6.3. Terminal Ballistics 

This work demonstrates a method of high speed imaging in ballistics gelatin across 

planes that are difficult to visually image. This could be used to better understand the 

factors that play into temporary cavity formation. 
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2. Theory 

2.1. Physics 

The two equations governing the physics of the electrical impedance tomography 

problem are Ohms law and Kirchhoff's current law[4, 26]. Ohm's law, stated in Equation 

2.1, tells us that the voltage across a resistive load is proportional to the current flowing 

through it. Voltage is represented as V, current is represented as I and resistance is 

given as R. In a continuum, which is more useful as this is not a one dimensional 

problem, the equation is written as it is in Equation 2.2. Here,  is the current density, σ 

is the conductivity, and  is the electric field. Conductivity and resistivity are inversely 

related to each other, as shown in Equation 2.3, and the terms are used interchangeably 

throughout this section. In Equation 2.3, resistivity is given as . 

 
 

 

(2.1) 

 
 

 

(2.2) 

 
 

 

(2.3) 

 

Kirchhoff’s current law (KCL) states that current is conserved at junctions: in other 

words, the current flowing into a junction must be equal to the current flowing out of a 

junction. If only a finite region is considered, the problem can be explained as the 
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divergence of the charge density being equal to zero. This can be written in equation 

form, as seen in Equation 2.4. 

 
 

 

(2.4) 

2.1.1. Conceptually understanding Electrical Impedance Tomography 

To understand how EIT works, it is useful to gain a conceptual understanding of how the 

governing equations are affected by changes to the system. This section will go through 

a series of simple FEM simulations to qualitatively explain the physics of EIT. Picture a 

two or three dimensional homogenous system, such as the two dimensional one 

pictured in Figure 2-1, which has a voltage applied between two points on the boundary. 

The scales are left dimensionless intentionally, as these diagrams are only meant for 

conceptual understanding. The voltage, or potential, will decrease between the two 

electrodes as it is shown in Figure 2-2. The lines of current flow can be drawn between 

the points that the current is applied between, which is shown in Figure 2-3. Lines of 

constant voltage can be drawn across the system and will lay orthogonal to the current 

flow lines as a consequence of Equation 2.2. Figure 2-4 has the lines of constant voltage 

drawn into the previous picture and the right angled intersections can be seen between 

the constant voltage and current flow lines.  
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Figure 2-1 Finite element mesh used for homogeneous calculations 

 

Figure 2-2 Voltage potential between electrodes for homogeneous model 
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Figure 2-3 Current streamlines between electrodes for homogenous model 

 

Figure 2-4 Current streamlines superimposed on voltage contours for homogeneous model 
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If the system was changed from a homogenous one to one with heterogeneities, such as 

the model shown in Figure 2-5, the lines of current flow would change from the smooth 

curves seen in Figure 2-3 to one where the path of least resistance may involve a 

different path. Figure 2-6 contains a more conductive heterogeneity and Figure 2-7 

contains a less conductive one to demonstrate how the current streamlines will behave 

differently. Figure 2-8 and Figure 2-9 show the effect of a more conductive heterogeneity 

and a less conductive heterogeneity on the voltage potentials. 

 

Figure 2-5 Generic finite element mesh with heterogeneity used for calculations 
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Figure 2-6 Current streamlines showing effect of more conductive heterogeneous inclusion  

 

Figure 2-7 Current streamlines showing effect of less conductive heterogeneous inclusion  
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Figure 2-8 Voltage contours showing effect of more conductive heterogeneous inclusion  

 

Figure 2-9 Voltage contours showing effect of less conductive heterogeneous inclusion 
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As can be seen in the preceding figures, the lines of constant voltage are changed by 

the introduction of the heterogeneity and are disturbed up to the boundary of the system. 

This is the key to how electrical impedance tomography works: changes to the resistivity 

of the interior of a system will influence voltage measurements taken on a system 

boundary when a current is applied to the boundary.  

2.1.2. Comparison of EIT to Other Tomographic Imaging Methods 

Because of the multi-path nature of the electrical current, EIT is considered a soft-field 

tomography[7]. Tomography is defined as measuring the propagation of energy or 

particle motion in order to reconstruct information about the interior of the system. 

Usually this information is a reconstruction of a physical property of the system, such as 

density or resistivity. A soft-field tomography technique is defined as being a tomography 

technique that relies on a multi-path propagation. Besides EIT, a common example of a 

soft-field tomography is crosswell seismic tomography. In crosswell seismic tomography, 

a seismic source generates vibrations at various positions in a borehole and a series of 

geophones or hydrophones measure the response in an adjacent borehole. A hard-field 

tomography technique is one where each measurement is influenced by a known, finite 

region. A good example of a hard-field tomography technique is Computed Tomography, 

where an X-ray is shot into a section of a system (generally a human) from a range of 

different angles. By measuring the signal attenuation at the other side and knowing the 

beam width, it is possible to reconstruct a slice of the system's attenuation properties, 

which are related directly to density.  
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2.2. Mathematics 

2.2.1. Overview of the reconstruction problem 

Mathematically, EIT reconstruction generally consists of both an inverse problem and a 

forward problem[7, 27]. The inverse problem relates the measurements to the model. 

The forward problem is used to develop the sensitivity matrix, or Jacobian, that is used 

in solving the inverse problem. A generalized graphical representation of this can be 

seen in Figure 2-10. Specific reconstruction techniques vary in how the inverse and 

forward problems are solved. Additionally, some reconstruction methods are iterative, 

where the Jacobian is recalculated from the updated model.  The equations used for this 

project will be described below in Section 2.23 and Section 2.24. 

Model

Forward 
Problem

Inverse 
Problem

Measured 
DataJacobian

 

Figure 2-10 Graphical representation of general EIT reconstruction method 

Four major classes of imaging in EIT were identified in [4] , with the type encountered 

depending on the project requirements. Time difference imaging, the most common 
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type, involves taking a set of measurements from an undisturbed system and comparing 

them to measurements of a system that has undergone some sort of change. The 

results of this sort of imaging will be the change in resistivities of the system. Results 

from solving the forward model can be used in place of the undisturbed system 

measurements. Time difference imaging is computationally much easier and becomes 

linear in some inversion schemes.  

The other three imaging modalities are: static imaging, multi-frequency imaging, and 

dynamic imaging. Static imaging is used to find the absolute resistivity distribution from a 

set of measurements. Multi-frequency imaging involves performing either time difference 

or static imaging with multiple excitation frequencies. This allows the complex 

impedance distribution of a system to be estimated, which may be advantageous for 

certain medical applications where tissue properties are related to the capacitance of the 

tissue.  Dynamic imaging generally involves the implementation of a Kalman filter to 

make estimates from partial measurement sets, allowing resistivity distribution estimates 

to be made at a faster rate than in other methods.  

2.2.2. Electrical Impedance Tomography and Diffuse Optical Tomography 

Reconstruction Software 

All calculations in the reconstruction problem were performed using EIDORS, which is 

short for Electrical Impedance Tomography and Diffuse Optical Tomography 

Reconstruction Software. EIDORS is a codebase for MATLAB (or Octave) that contains 

code for both the forward and inverse problem of EIT. It is licensed under the GNU 

General Public License and is free to use [28]. Other code for inversion is freely 

available, but is focused on geophysics applications[29, 30]. Additionally, EIDORS has a 

very active community that is continually developing and sharing new code. It supports 
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Netgen and Distmesh for three- and two-dimensional meshing, respectively; both of 

which are freely available online.  

 

2.2.3. The Forward Problem 

The forward problem is concerned with predicting the values of the observable 

parameters given an input. This is accomplished using a Finite Element Method (FEM), 

where each element is assigned a conductivity. The elements are based on the 

predicted change in voltage potential, with more elements placed where voltage 

potential is expected to change faster. Due to the geometrical spreading of the current 

lines combined with Equation 2.2, this means that the areas around the electrodes 

supplying current must have a greater element density. To simplify the problem and 

decrease computational time, the same mesh is used for all sets of measurements.  

Finite Difference Methods (FDM) and Boundary Element Methods (BEM) can also be 

used, but are not preferred. FDM suffers computationally when geometry and boundary 

conditions become complicated. BEM becomes very inefficient when the reconstructed 

resistivity structure is no longer made of smooth surfaces.[1] 

2.2.4. The Jacobian 

The Jacobian, sometimes called the sensitivity matrix, relates the change in conductivity 

of an element to the change of a measurement. With complicated geometries, it is often 

calculated by perturbing each element of the finite element mesh and solving the forward 

problem for the change in the boundary voltage measurement. For the two-dimensional 

finite element models used in this project, the Jacobian was calculated analytically for 

each element using Equation 2.5. 
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(2.5)  

 

2.2.5. The Inverse Problem 

The inverse problem in EIT is particularly difficult, being ill-conditioned, rank-deficient, 

and ill-posed[7].  The rank deficiency can be understood as having an insufficient 

number of measurements. The ill-conditioning refers to the ratio between largest and 

smallest value. The ill-posedness refers to Hadamard’s criteria for well-posed problems. 

The criteria states that a solution must exist, that the solution must be unique and that 

the solution should change continuously with changing conditions.[24] Physically, an ill-

posed problem is highly sensitive to small changes and will require regularization to 

obtain a realistic solution.  [31, 32] 

In generalized terms, the inverse problem is written as it is in Equation 2.6, where G is 

the system, m is the model, and d is the measured data. In the case of the EIT inverse 

problem, m is the resistivity of each finite element, d is the measured data, and G is a 

function of the conductivity of the system. In the case of difference imaging, G is the 

Jacobian of the system and its calculation is discussed in Section 2.2.4.  

 
 

 

(2.6) 

 

Because G will not be a square matrix, it is not possible to directly invert it. The easiest 

approach to this is the Moore-Penrose inverse or pseudo-inverse. Mathematically it is 
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expressed as can be seen in Equation 2.7 and is equivalent to the least-squares 

solution. This is a straightforward solution to the inverse problem and guarantees that a 

solution will be found. It suffers from being susceptible to ill conditioning and may 

provide erroneous results if a problem is very ill conditioned. It will not provide a 

reasonable solution if measurement errors do not follow a normal distribution. [31] 

 
 

 

(2.7) 

 

The most basic improved technique for ill-conditioned systems is the truncated singular 

value decomposition (TSVD) approach. Condition of the system is often quantified by 

the condition number, which is defined as the ratio of the largest singular value to the 

smallest. Singular value decomposition (SVD) is a tool used to break apart matrices and 

analyze the rank, or linear dependency, of them. In this technique, small singular values, 

which are sensitive to noise, are truncated to reduce the condition number. After the 

smaller singular values are truncated, the system matrix is reconstructed in a pseudo 

inverse. Although this improves the conditioning, and hence the stability of the solution, it 

reduces resolution and is not an unbiased estimator.  

Generally, a condition number under 100 is considered desirable. The unconditioned 

Jacobian matrices encountered in this project typically had condition numbers in the 

order of 1016 or 1017. A sample Jacobian mapped onto the finite element model for the 

linear section can be seen in Figure 2-11. The Jacobian indicates the sensitivity of each 

element in terms of measured voltage (at the measurement electrodes) per change in 

conductivity (or resistivity if formulated as such), given a set amount of stimulus current 

between another pair of electrodes. 
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Figure 2-11 Sample Jacobian mapped onto FEM 

 

Another way of handling the ill-posed and very ill-conditioned problem is to impose some 

constraints upon the solution to ensure stability. In the literature, this is referred to as 

regularization. Many regularization techniques exist, each of them optimized for a 

specific type of system. Generally, the regularization technique is chosen based on the 

expected result. For example, in the human body, it is expected that resistivity changes 

will be sudden between organs. For this reason, regularization techniques have been 

developed that favor sudden changes. More common are regularization techniques that 

smooth the reconstruction. These are less computationally intensive and do not always 

require iteration.  

Tikhonov Regularization is the most common regularization method and has been 

applied to EIT by multiple researchers.[33, 34] It aims to improve upon the least squares 
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solution by adding a penalty term that will cause the solution,  to be frequency limited. 

The matrix that provides this is called the Tikhonov matrix and is represented by . 

Often in EIT, the Tikhonov matrix is an identity matrix scaled by a constant. The solution 

form of this equation is given in Equation 2.8. In EIT, the Tikhonov matrix is selected 

based on prior information known about the system’s physical properties. [35] 

 
 

 

(2.8) 

The One-Step Gauss Newton Method is a non-iterative method that was selected for this 

project due to its demonstrated good performance in difference imaging. It performs 

similarly to the Tikhonov Regularization, but is formulated slightly differently as can be 

seen in Equation 2.9. The hyperparameter, λ, controls the smoothing introduced into the 

problem by adding directly to the diagonal elements of the pseudo-square Jacobian. As 

mentioned previously, performing iterations is the only way to determine estimates of 

absolute resistivity, however a one-step approach can be used to achieve 

reconstructions that will have geometrically similar resistivity distributions to the absolute 

resistivity. [24] 

 
 

(2.9)  

3. Results and Discussion 

3.1. Test Apparatus 

Three separate test apparatuses were constructed for this project. The first consisted of 

two electrode arrays built into a polycarbonate pipe. The pipe was used as a water tank 
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and as a mold/test fixture combination with ballistics gelatin. The electrodes were 

constructed from stainless steel cylinder stock and glued into the wall of the pipe with 

silicone caulk. One array was a 16 point ring located a third of the way from the top of 

the pipe and the other array was an 18 point linear array spread across one side of the 

entire 34.5” tall pipe. This test apparatus was only used briefly, as it was found that the 

polycarbonate enclosure was not strong enough to contain the dynamic expansion of the 

ballistics gelatin during testing. A diagram of the initial apparatus can be seen in Figure 

3-1. 

 

Figure 3-1 Diagram of original test apparatus showing electrode locations 
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The other two test apparatuses use strips of non-conductive rubber to hold stainless 

steel carriage bolts onto the test samples. One apparatus was a 16 point ring array and 

the other was a pair of eight point linear arrays to be aligned across from each other. 

See Figure 3-2 and Figure 3-3 for diagrams of how the two arrays were wired.  

The ring array used a stimulation and measurement pattern where electrode pairs were 

chosen as being one electrode less than 180 degrees apart based on the work of []. An 

example of this is in Figure 3-2, although only 8 electrodes are pictured for clarity. The 

actual model includes 16 electrodes. This array configuration was selected as it is a well-

studied array and has a proven ability to resolve resistivity inhomogeneities located 

throughout the plane the array intersects.  
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Figure 3-2 Example stimulation and measurement pattern for eight electrode ring array 

The double linear array uses a stimulation and measurement pattern where opposing 

electrodes are driven and voltage is measured at adjacent electrodes on each side. See 

Figure 3-3 for an example of this. This was shown by [8] to be an effective system for 

resolving centrally located inhomogeneities. A triple linear array was shown to be 

superior in this paper, but due to hardware constraints this was not achievable for this 

study.  
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Figure 3-3 Stimulation and measurement pattern for double linear array 

In both cases, measurements were not used from the drive electrodes. This would skew 

the results, as it would introduce a very sensitive region adjacent to the drive electrodes. 

Instead, data was recorded continuously from the electrode pairs as the drive electrodes 

cycled. This will be explained in more detail in the following section. 
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3.2. Data Acquisition and Processing 

The data acquisition hardware (DAQ) used for this study was a National Instruments (NI) 

9172 chassis with NI-9234 analog input cards and NI-9263 analog output cards. The NI-

9234 input cards were the limiting factor for speed with this test, as they have a 

maximum sampling rate of 51,200 samples per second. The NI-9263 output cards were 

the limiting factor for capture time, as they could only hold 120,000 samples and run at 

the rate the input cards were configured to run at.  

In most situations, EIT is performed using current sources for stimulation and voltage 

measurements. In the place of current sources, voltage sources were used for this 

experiment due to limitations on available hardware. Other researchers have 

experimentally demonstrated a method that allows the use of voltage sources and this 

method has been adopted for this research. The method demonstrated requires an 

iterative approach combined with some assumptions of small changes to the system.[36] 

The approach taken for this work assumed negligible changes in stimulus current (due to 

small changes in the system) and did not iterate. 

 

3.2.1. Hardware complications of the system developed for this study 

The system used for this study was limited by the hardware available, as there was no 

budget to develop a system from scratch or purchase a new system. One complication 

of this is that there were no computer-controllable current sources or sufficiently fast 

multiplexers available. A literature search found that the expense and availability of 

computer-controlled current sources was a problem identified by other researchers, who 

suggested a method by which voltage sources could be used as current sources.[36] To 
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bypass the lack of a multiplexer, the number of electrodes was limited to the number of 

input channels on the available DAQ. To demonstrate the validity of the voltage source 

method, a current source was used to determine if the results would correlate.  

 

3.2.2. Data Processing Workflow 

Data was acquired continuously at the highest acquisition rate available on the selected 

DAQ with each channel measuring the voltage difference between a pair of electrodes. 

For the double linear system, this meant that there were 14 channels being recorded 

continuously. A sample of some raw data from a “practice” run can be seen in Figure 

3-4. It can be seen that the stimulation pattern repeats itself over and over as time 

progresses. The data shown here was not taken at the same rate that the other reported 

test data was, but it provides a good example. The large spike in blue seen near the 15 

second mark is the camera trigger, indicating that the high-speed camera had started 

recording. The red box indicates the data that is shown in Figure 3-5, which is a zoomed 

view of the raw data. The measured voltage difference is averaged across each pulse 

and converted to a single number that is tied to specific “measurement number”, which 

indicates which electrodes were stimulated and which electrodes were measured. An 

example of two measurement vectors is given in Figure 3-6. It is also worth noting the 

subtle difference between the two measurement vectors, as this gives an indication of 

what ill-posedness physically means. A significant physical change, a large fracture, 

changes only a handful of the measured voltages and only changes them a small 

amount.   
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Figure 3-4 Typical raw measured data 

 

Figure 3-5 Zoomed section from Figure 3-4 
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Figure 3-6 Processed data from typical run 

 

3.3. Proof of Concept 

As a proof of concept, a 4” diameter PVC pipe that was 30” long was used as an initial 

prototype for testing. Insulated wires ran into the pipe with exposed ends were situated 

along one side and used to measure voltage. A pair of wires that were centrally located 

at each end were used to supply a DC voltage. A wooden block was used as a resistive 

inhomogeneity and moved down and up in the pipe. By measuring voltage between 

adjacent electrodes as a function of time, it was possible to identify the vertical position 

of the wooden block. A plot of the voltage potentials between adjacent electrodes can be 

seen in Figure 3-7. With the success of this test, the decision was made to move forward 

on the main project. 
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Figure 3-7 Voltage potentials between electrodes from proof of concept test 

 

3.4. Tests performed 

The focus of this project was to analyze fractures within ballistics gel. To create the 

fractures, two methods were used. The first was to fire a .22 caliber rifle into the gel. This 

created a dynamic fracture event where the air gap formed will be of a much higher 

resistivity and created an observable contrast. A high speed camera was used to record 

video footage during the test to provide test validation.  

The second method used an injected fluid to create a fracture within the ballistics gel. 

The injected fluid used was salt water, which provided a contrast of lower resistivity than 

the gel. Dye was added to the salt water to provide a visual identification of the fracture 

so that the test data could be validated.  
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3.4.1. Preparation of Ballistic Gelatin 

The ballistic gelatin preparation procedure was based on the work of [16]. Gelatin 

powder was weighed out on a three beam balance and mixed with a measured volume 

of cold tap water to create a 10% by mass mixture of gelatin and water.  The mixture of 

gelatin and water was allowed to sit for two hours while the gelatin hydrated. The mixture 

was then heated slowly on an electric stove while being stirred to prevent scorching. The 

mold was prepared by applying a silicone caulk bead to the seal to ensure that the 

gelatin would not leak out during testing. After the gelatin was poured into the mold, it 

was allowed to solidify over a period of 12 hours. At this point, warm water was used to 

warm the outside of the mold to melt the outside layer of the gelatin and release it from 

the mold. The sample was then put into a plastic bag to prevent it from drying out and 

stored at 45 degrees Fahrenheit until it was fractured. After testing, it was necessary to 

dispose of the sample within a day of testing because the ballistic gelatin provides an 

excellent medium for bacterial growth.   

 

3.4.2. Hydraulic Fracture Imaging 

A cylinder of ballistic gelatin was prepared and fitted with the electrode array. Data was 

recorded while it was in its homogeneous state. Green saline solution was loaded into a 

syringe and the syringe was inserted into a cylindrical gelatin sample in the space 

between electrodes 3,4,11,and 12. A picture of this can be seen in Figure 3-8. The 

entrance point of the syringe was sealed with duct tape and 25 milliliters of saline was 

injected, fracturing the gelatin. The resulting fracture can be seen in Figure 3-9 and 

extends from the space between electrodes 2 and 10 to the space between electrodes 5 
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and 13. It can be seen here that after a few minutes, some of the saline dissolved the 

gelatin and the fracture extended on its own.  

 

Figure 3-8 Syringe inserted in gelatin block with electrode array attached 
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Figure 3-9 Fracture resulting from saline injection 

Data was collected and processed using the method described in Section 3.5. A 

comparison matrix was developed with the One Step Gauss Newton method to 

determine appropriate hyperparameter and Jacobian background values, and is included 

in Table 3.1.  Using this technique, a hyperparameter of 0.1 was selected and used for 

following inversions. A Jacobian background value of 0.1 was also selected to 

accompany the hyperparameter.  
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Table 3-1 Hyperparameter and Jacobian background selection matrix 

 

 

Four types of difference imaging inversion were performed, Truncated SVD (TSVD), 

Conjugate Gradient, Total Variation, and One Step Gauss Newton. These are included 

below as Figure 3-10, Figure 3-11, Figure 3-12, and Figure 3-13 respectively. The One 
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Step Gauss Newton method was selected as the preferred inversion method for the rest 

of this section. 

 

Figure 3-10 Difference image reconstructed with TSVD method 
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Figure 3-11 Difference image reconstructed with Conjugate Gradient method

 

Figure 3-12 Difference image reconstructed using Total Variation method  



 

  47 
 

 

Figure 3-13 Difference image reconstructed with one step Gauss Newton method 

In an attempt to improve the quality of the resulting inverted cross-section, electrode 

measurement error correction based on the method of [37] was applied to the data. This 

method requires the operator to select electrodes that are providing erroneous 

measurements. For this test, electrode 10 was selected due to the large decrease in 

conductivity seen next to it. Only minor differences were noticed in the resulting 

reconstruction, as can be seen in Figure 3-14.  
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Figure 3-14 Difference image reconstructed accounting for error on electrode 10 

 

A significant difference was noticed on the absolute solving of the homogeneous data, 

which is apparent when comparing the absolute images with and without electrode error 

correction.  This can be seen in Figure 3-15 and Figure 3-16. From this, it was 

determined that the electrode error correction was not necessary and probably was 

counter-productive for this data set. Code for an automatic method for detecting and 

accounting for electrode error based on [38] was available within EIDORS, but not 

usable on this data as the method requires reciprocity between measurements and 

stimulus pairs. 
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Figure 3-15 Static image reconstruction of homogeneous model  

 

Figure 3-16 Static image reconstruction of homogeneous model with electrode error correction 
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The results were validated in two ways. First, the sample was cut open at the electrode 

plane and the cross-section was photographed. The unfractured section of the sample 

was cut off first to conserve material and allow for another test. Without this end, the 

sample was weak and fell apart before the camera was readied. The held together 

cross-section can be seen in Figure 3-17 and the fallen apart cross section can be seen 

in Figure 3-18. In Figure 3-17, the approximate location of the electrodes has been 

marked as well as the syringe entrance hole. In Figure 3-18, the syringe entrance hole 

has been marked and the extent of the formed cavity is traced for clarity. 

 

Figure 3-17 Cross-section of fracture along electrode plane 
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Figure 3-18 Split open fracture of gelatin 

 

The second method of validation is intended to validate that the application of voltage 

instead of current allows for a representative cross-section. As mentioned earlier, a 

process based on [36] was used. Without measuring current during the test, it was not 

possible to ensure that the desired current was applied and so it was estimated based 

on preliminary sample measurements. To check whether the resistivity distributions 

determined with the voltage sources were valid, a set of data was taken with a current 

source. The alligator clips used for this can be seen in Figure 3-8. The resulting inverted 

cross-section can be seen in Figure 3-19. It can be seen that although amplitudes are 

different from Figure 3-13, the patterns are the same. Data from the unmodified sample 

were used to construct a static image of the absolute resistivity, which is included as 
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Figure 3-20. The low conductivity near electrode 9 indicates that there may not have 

been a good connection between the gelatin and the electrode. 

 

Figure 3-19 Difference image reconstructed with current source as stimulus  
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Figure 3-20 Static image of unmodified sample reconstructed with current source as stimulus 

 

3.4.3. Discussion of Hydraulic Fracture Imaging Results 

It was shown in the previous sections that the One Step Gauss Newton method provides 

reasonable looking results for a section of increased conductivity. This was validated by 

examining cross sections of the fracture itself, where it could be seen that the fracture 

spans the distance approximated in the reconstructed resistivity section. It was also 

found that the assumptions made that allowed the use of voltage sources instead of 

current sources do not allow accurate conductivity values to be determined, but can still 

show the distribution of conductivities.  
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3.4.4. Temporary Cavity Fracture Imaging 

In order to use a rifle safely, the temporary cavity imaging tests were performed at 

Michigan Technological University’s rifle range located in the Student Development 

Complex and outdoors at the Keweenaw Research Center. A picture from the test at the 

KRC can be seen below in Figure 3-21. Not pictured is the extra lighting that was used 

to improve image quality or the large sand berm located beyond the target (behind the 

view of the photograph.) The image has also been flipped horizontally so that orientation 

of the gelatin sample matches the orientation of the inverted images shown in the rest of 

the section. 

 A high speed camera was focused onto a cylindrical block of ballistics gelatin that was 

resting on a pallet. One person operated the camera, another operated the DAQ, and a 

third fired the rifle. Two representative video sequences from the high speed camera can 

be seen in Figure 3-22 and Figure 3-23 , with the ring and linear electrode arrays, 

respectively. The terminal ballistic sequence described in Section 1.4 can be seen in 

both of these images, particularly the growth and collapse of the temporary cavity. 
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Figure 3-21 Test setup for temporary cavity imaging 
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Figure 3-22 Representative video sequence of temporary cavity test with ring array 
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Figure 3-23 Representative video sequence of temporary cavity test with linear array (shot 11) 
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In order to correlate the high speed video footage to the EIT imaging, one input channel 

on the DAQ was used to record a trigger input from the camera. Although the DAQ was 

not set up to trigger off of this input, it recorded the input and provided a time reference 

for when camera recording started. An example of this is shown in Figure 3-24, where 

the blue trace that spikes above two volts is the trigger channel indicating that the 

camera has started recording. The change in voltage measurements can be seen as 

well, if one looks closely near the 6.5X104 sample. The video footage was then analyzed 

to determine the time offset between the beginning of camera footage and the impact of 

the bullet. It was found that there was a good correlation between time offset of the 

changing inverted frames and timestamp of bullet impact on camera for shot 11. 

Unfortunately camera data was lost for shot 10 and only one data point was available to 

validate the EIT data. 

 

Figure 3-24 Time history from shot 11 from all input channels 
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Data from the time history was split into frames, as explained in Section 3.2.2, and 

difference data was calculated by comparing the measurements to the measurements 

taken from the unmodified gelatin block. This time series of measurements was then 

inverted using a One Step Gauss Newton reconstruction method and the series of 

reconstructed images were plotted together to observe the change in conductivities with 

time. The image time series for shot 10 can be seen in Figure 3-25 and the series for 

shot 11 can be seen in Figure 3-26. Detailed views of the frames capturing cavities and 

the ones before and after the cavity event can be seen in Figure 3-27 through Figure 

3-33. The slow time resolution of 0.125 seconds used for this step means that a single 

frame eclipses the entire temporary cavity event shown in Figure 3-23.   

 

Figure 3-25 Difference image time series for shot 10 
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Figure 3-26 Difference image time series for shot 11 

 

Figure 3-27 Frame 20 of Shot 11 
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Figure 3-28 Frame 21 of Shot 11 

 

Figure 3-29 Frame 22 of Shot 11 
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Figure 3-30 Frame 23 of Shot 11 

 

Figure 3-31 Frame 24 from Shot 10 
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Figure 3-32 Frame 25 from Shot 10 

 

Figure 3-33 Frame 26 from Shot 10 
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3.4.5. Discussion of Temporary Cavity Imaging Results 

The images above demonstrate that this technique is very good at detecting changes on 

a system level. The images generated from the inversion process appear to include 

centrally located decreases in conductivity, which is indicative of a cavity. There are 

areas of high conductivity immediately adjacent to the areas of low conductivity. These 

could be explained as either being areas of compressed gelatin or being reconstruction 

errors, where the reconstruction algorithm generates a resistivity distribution that 

oscillates spatially while decaying towards zero. 

It is worth noting that when preparing the image series for shot 10 and shot 11, a 

measurement was immediately before each shot to count as the “homogeneous” 

measurement of the difference image, where each other measurement would be 

compared to it. 

 

3.5. Simulation of Circular Array 

Due to an issue with the construction of the circular array, electrical shorts were 

introduced into the wiring, making the data from the physical circular array useless. To 

provide some insight to the capability of the circular array, a simulation was performed 

where the stimulation/measurement series was simulated on the finite element model 

(performing a forward problem) and then inverted. The One-Step Gauss Newton method 

used for the linear array was also used for simulation of the ring array. The finite element 

mesh used for the simulations can be seen in Figure 3-34. First the Jacobians were 

calculated using this mesh with a uniform conductivity applied, a sample of which is 
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included as Figure 3-35. Then three separate geometries of inhomogeneities were 

tested, the first of which is in Figure 3-37.  

 

Figure 3-34 Finite Element Mesh used for simulations 

 

Figure 3-35 Sample Jacobian  
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Figure 3-36 Non Homogeneous FEM 1 

 

The first non-homogeneous finite element mesh used included a highly resistive circular 

inclusion to simulate a small air cavity or plastic straw. A test was then simulated and the 

resulting measurements were inverted using the same method and parameters used in 

the linear array case (difference method using the homogenous case as a reference and 

the One-Step Gauss Newton reconstruction method with the same hyperparameter of 

0.1.) The resulting inversion can be seen in Figure 3-37. There are two things important 

to note in this image. The first is the enlargement of the inclusion and the second is the 

ringing effect around it. Although there was no increases in conductivity, there is an 

apparent increase in conductivity immediately adjacent to the resistive inclusion.  
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Figure 3-37 Resulting Inversion from Non Homogeneous FEM 1 

 

The second geometry tested was a thin, conductive fracture. The finite element model 

used can be seen in Figure 3-38. Again, the same procedure was performed and the 

resulting inversion can be seen in Figure 3-39. Here the same issues as seen in the first 

model are still present. There is an enlargement of the inclusion, which blurs the actual 

fracture-like geometry initially simulated. Again, there is a ringing effect around the 

inclusion, where there appears to be a region of a mild increase in conductivity 

surrounding the inclusion.  



 

  68 
 

 

Figure 3-38 Non Homogeneous FEM 2 

 

Figure 3-39 Resulting Inversion from Non Homogeneous FEM 2 
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The third finite element model tested combined a thin conductive fracture with a resistive 

circular inclusion at the center of the fracture. The idea was to simulate the saline 

fracture with the straw at the center of it. The model used can be seen in Figure 3-40. 

The same procedure as used in the previous models was repeated and the resulting 

inversion can be seen in Figure 3-41. The same issues arise again, with one additional 

issue. The resistive inclusion is completely unseen and its existence can only be inferred 

by the strange shape seen in the reconstruction.  

 

Figure 3-40 Non Homogeneous FEM 3 
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Figure 3-41 Resulting Inversion from Non Homogeneous FEM 3 

 

To further understand the inverted images from the experimental portion of the work, an 

effort was made to make the simulation more realistic and noise was added to the 

simulated measurements. Noise at three different signal to noise ratios (SNR) was 

simulated using MATLAB’s additive white Gaussian noise function: 80 dB, 70 dB, and 60 

dB.  The resulting inversions can be seen in Figure 3-42 through Figure 3-44. The 

quality of the reconstruction can be seen to degrade with the decrease in SNR. At the 60 

dB point, it is no longer clear that the reconstructed image is representative of the 

original finite element model. 
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Figure 3-42 Resulting Inversion from Non Homogeneous FEM 3 with 80 dB SNR 

 

Figure 3-43 Resulting Inversion from Non Homogeneous FEM 3 with 70 dB SNR 
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Figure 3-44 Resulting Inversion from Non Homogeneous FEM 3 with 60 dB SNR 
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3.6. Sensitivity Analysis 

To better understand the sensitivity of the technique, a sensitivity analysis was 

performed. The absolute value of all calculated Jacobians for a given geometry were 

summed and plotted. The results of this for the linear and ring arrays can be seen in 

Figure 3-45 and Figure 3-46, respectively. It can be observed that in both cases, the 

areas near the surface are far more sensitive to changes than the interior of the system. 

This makes sense, when thinking back to the physics of the problem, because the 

current density will be greater near the surface. The asymmetry seen in Figure 3-45 is 

not as easily explained. 

 

Figure 3-45 Sum of absolute values for all Jacobians for linear array geometry 
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Figure 3-46 Sum of absolute values of all Jacobians for ring array geometry 

 

  



 

  75 
 

4. Conclusions and Future Work 

4.1. Conclusions 

It was demonstrated that EIT is a suitable technique for imaging fractures in ballistic 

gelatin, however many further steps must be taken to improve the resolution, both 

temporally and spatially. The use of more specialized equipment, including constant 

current drivers and faster DAQs will help improve both of these. 

The simulation work performed is immensely helpful in helping understand the 

experimental results. By simulating a representative geometry, it was demonstrated that 

a ringing effect was common and exacerbated by noise.  
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4.2. Future Work 

4.2.1. Future Work on Temporary Cavity Imaging 

Future work on imaging the terminal ballistics cavity should focus on improving the 

temporal resolution of the EIT. This could be achieved by using a faster DAQ and using 

AC currents that may not be as affected by the capacitive effects of the gelatin. Having a 

higher channel count would also allow the imaging to move into three dimensions by 

allowing the electrodes to be placed in an array format that is not planar. If electrodes 

were placed more densely, it would also improve the spatial resolution.  

A correlation study between a simulation and experimental results would also help aid 

interpretation of the experimental results. This would also give the researcher an 

opportunity to attempt using reconstruction techniques that favor the sharp changes 

seen in fracture events. 

4.2.2. Future Work on Hydraulic Fracturing Imaging 

There are two major areas where future work could be performed on using EIT on 

hydraulic fractures. The first is to perform the calculations necessary to create a scale 

model and re-perform the experiment in a way that would be representative of a real-life 

test. This is a method that was popular before the advent of powerful computer 

simulations and gelatin has a history of being used as a medium for studying fracture 

propagation [39].  

The second place future work is needed is in testing different inversion techniques in 

experimental crosswell resistivity tomography. Some work has already been performed 

on crosswell resistivity tomography, however the focus of the most thorough one was on 

natural fractures, including [40] and [41]. In the unconventional resources field, where 
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hydraulic fracturing is currently seeing a lot of use, the fractures are man-made and 

usually in shales, a “soft” sedimentary rock. There has been some work on simulating 

the ability of crosswell resistivity tomography to image man-made shale fractures, 

including [37], that show promising results but experimental work will be needed to prove 

it out. 
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Appendix B: Previous work 

The initial attempts to solve the problem of detecting fractures in a visco-elastic medium 

during dynamic events followed more traditional Structural Health Monitoring (SHM) 

methods utilizing wave propagation techniques. Due to the damping properties of the 

visco-elastic materials being used, detecting fractures using these methods that depend 

were not very successful.   

The first methods proposed and tested involved acoustic methods. This can be easily 

understood by thinking of a source-path-receiver system. By considering the defect’s 

scattered energy as the source and measuring the response, the source location can be 

estimated if there is some a priori knowledge of the path. The prior knowledge in this 

case is the speed of sound in the material. To accurately measure velocity, two 

accelerometers were mounted on either end of the sample and one end was excited. 

Both hammers and shakers were tested in the role of the excitation source. Time delay 

was estimated in two ways – from phase information [42] and from cross correlating. [43] 

The next proposed method was to employ source-receiver SHM techniques. This would 

involve having a source excite the structure with a known waveform. Receivers attached 

to the structure would use the measured response to detect and locate damage to the 

system. There is a large amount of research existing in this area, generally using 

piezoelectric sources and receivers. A proof of concept test was developed using a fish-

finder to look for discontinuities in the visco-elastic system. This test ended in a complete 

failure for reasons unknown at the time.  

Following the same concept, a small piezoelectric shaker designed for active vibration 

control was used as a source. Inspired by standard seismic acquisition and active radar 
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techniques, a frequency modulated input (linear chirp) was used. This allowed 

separation of direct and reflected arrivals by cross-correlating with the input signal. While 

varying the frequency content of the chirp inputs, it was found that higher frequencies 

were greatly attenuated. This was confirmed by taking coherence measurements 

between a load cell at the source and an accelerometer at the opposite end of the 

structure. This helped explain the issues experienced with the fish-finder, as the fish-

finder operated in a high frequency range where great attenuation was experienced. 

Consideration was also given to a fully passive SHM method, using transmissibility 

functions between receivers on the structure to detect and locate fractures and other 

damage to the structure. This was based on the work of Johnson. [25]This was 

significantly more successful, giving us a reliable indicator that damage had occurred. 

Unfortunately, magnitude and location of the damage that occurred were not 

successfully determined using this method. 

Another proposed method in this area was exploiting the acoustic emission (AE) that 

occurs during material failure to provide information on the failure mode, magnitude, and 

position. During plastic deformation and material failure, there are two primary modes of 

AE grain boundary slip and grain resonance. Although the boundary slip is a broad 

spectrum emission, the grain resonance is a predictable narrow band event. The grain 

resonance is excited more strongly in high strength brittle materials, which indicates that 

the AE in a viscoelastic system will be smaller. This method is commonly used in many 

fields of study, including mining, gas and oil, and composites SHM. Tension testing on 

visco-elastic samples yielded characteristic AE signatures. However, due to the same 

attenuation issues previously encountered, this method was also abandoned. [44] 
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