942 research outputs found

    Leakage Current Reduction of Three-phase Z-Source Three-level Four-Leg Inverter for Transformerless PV system

    Get PDF

    Leakage Current Mitigation in Transformerless Z-Source/Quasi-Z-Source PV Inverters:An Overview

    Get PDF

    POWER QUALITY CONTROL AND COMMON-MODE NOISE MITIGATION FOR INVERTERS IN ELECTRIC VEHICLES

    Get PDF
    Inverters are widely utilized in electric vehicle (EV) applications as a major voltage/current source for onboard battery chargers (OBC) and motor drive systems. The inverter performance is critical to the efficiency of EV system energy conversion and electronics system electro-magnetic interference (EMI) design. However, for AC systems, the bandwidth requirement is usually low compared with DC systems, and the control impact on the inverter differential-mode (DM) and common-mode (CM) performance are not well investigated. With the wide-band gap (WBG) device era, the switching capability of power electronics devices drastically improved. The DM/CM impact that was brought by the WBG device-based inverter becomes more serious and has not been completely understood. This thesis provides an in-depth analysis of on-board inverter control strategies and the corresponding DM/CM impact on the EV system. The OBC inverter control under vehicle-to-load (V2L) mode will be documented first. A virtual resistance damping method minimizes the nonlinear load harmonics, and a neutral balancing method regulates the unbalanced load impact through the fourth leg. In the motor drive system, a generalized CM voltage analytical model and a current ripple prediction model are built for understanding the system CM and DM stress with respect to different modulation methods, covering both 2-level and 3-level topologies. A novel CM EMI damping modulation scheme is proposed for 6-phase inverter applications. The performance comparison between the proposed methods and the conventional solution is carried out. Each topic is supported by the corresponding hardware platform and experimental validation

    A 3D Reduced Common Mode Voltage PWM Algorithm for a Five-Phase Six-Leg Inverter

    Get PDF
    Neutral point voltage control converters (NPVCC) are being considered for AC drive applications, where their additional degree of freedom can be used for different purposes, such as fault tolerance or common mode voltage (CMV) reduction. For every PWM-driven converter, the CMV is an issue that must be considered since it can lead to shaft voltages between rotor and stator windings, generating bearing currents that accelerate bearing degradation, and can also produce a high level of electromagnetic interference (EMI). In light of these considerations, in this paper a three-dimensional reduced common mode voltage PWM (3D RCMV-PWM) technique is proposed which effectively reduces CMV in five-phase six-leg NPVCCs. The mathematical description of both the converter and the modulation technique, in space-vector and carrier-based approaches, is included. Furthermore, the simulation and experimental analysis validate the CMV reduction capability in addition to the good behaviour in terms of the efficiency and harmonic distortion of the proposed RCMV-PWM algorithm.This work has been supported in part by the Government of Basque Country within the fund for research groups of the Basque University system IT1440-22 and MCIN/AEI/10.13039/ 501100011033 within the project PID2020-115126RB-I00

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    A comparative review of three different power inverters for DC–AC applications

    Get PDF
    This paper presents a comparative review of three different widely used power inverters, namely the conventional six-switch inverter; the reduced switch count four-switch inverter; and the eight-switch inverter. The later inverter can be reconfigured as a neutral-point diode-clamped inverter at the failure of one inverter leg. The three power inverters are compared and discussed with respect to cost, complexity, losses, common mode voltage, and control techniques. The paper is intended to serve as a guide regarding selecting the appropriate inverter for each specific application. Simulation results are presented to demonstrate the performance of the three power inverters, followed by a comprehensive comparison between the three power inverters

    Towards High Efficiency and High Power Density Converter: System Level Design, Modulation, and Active EMI Filters

    Get PDF
    Power converter exposes strong challenges to its efficiency, power density and reliability. For the grid-connected inverter application, three-level (3-L) T-type neutral-point-clamped (TNPC) inverters has higher efficiency and lower total harmonic distortion (THD) compared to two-level inverter. Hybrid switch concept combines the benefit of both silicon carbide (SiC) MOSFET and Si IGBT. By applying hybrid switch structure in 3-L T-type inverter, the total power density of 3-L TNPC inverter will be higher while the cost will be lower than that of all-SiC 3-L T-type inverter. The hybrid switch based 3-L TNPC inverter also imposes challenge to its modulation and control, a propoer modulation and control shceme need to be chosen to enable better inverter performance in terms of efficiency, neutral point balancing and electromagnetic interference (EMI). Morever, to shrink the EMI filter size for the power converter, an active EMI filter (AEF) structure is proposed. The proposed AEF provides superior performance than any of the conventional passive EMI filter and the existing AEFs. In this work, the system level design and testing of a 30 kW grid-connected 3-L T-type inverter with hybrid switch structure is discussed. Then, an improved space vector modulation (SVM) has been proposed, which enables neutral-point balancing (NPB) control in the proposed hybrid-switch-based TNPC inverters with loss and common-mode voltage reduction. Finally, the design, modelling, and testing of the proposed AEF is demonstrated

    Common-Mode Voltage Elimination in Multilevel Power Inverter-Based Motor Drive Applications

    Get PDF
    [EN] The industry and academia are focusing their efforts on finding more efficient and reliable electrical machines and motor drives. However, many of the motors driven by pulse-width modulated converters face the recurring problem of common-mode voltage (CMV). In fact, this voltage leads to other problems such as bearing breakdown, deterioration of the stator winding insulation and electromagnetic interferences (EMI) that can affect the lifespan and correct operation of the motors. In this sense, multilevel converters have proven to be a useful tool for solving these problems and mitigating CMV over the past few decades. Among other reasons, because they provide additional degrees of freedom when comparing with two-level converters. However, although there are several proposals in the scientific literature on this topic, no complete information has been reviewed about the CMV issues and the different multilevel alternatives that can be used to solve it. In this context, the objective of this work is to determine how multilevel power converters provide additional degrees of freedom to make the reduction of the CMV possible by using specific modulation techniques, making it easier for engineers and scientists in this field to find solutions to this problem. This document consists of a descriptive study that collects the strengths and weaknesses of most important multilevel power converters, with special emphasis on how CMV affects each of them. In addition, the differences of modulation techniques aimed to the CMV reduction are explained in terms of output voltage, operating linear range, and generated CMV. Considering this last, it is recommended to use those modulation techniques that allow the generation of CMV levels of 0 V in order to be able to completely eliminate said voltage.This work was supported in part by the Government of the Basque Country within the Fund for Research Groups of the Basque University System under Grant IT978-16; in part by the Research Program ELKARTEK under Project ENSOL2-KK-2020/00077; in part by the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya; in part by the Ministerio de Ciencia, Innovacion y Universidades of Spain under Project PID2019-111420RB-I00 and Project PID2020-115126RB-I00; and in part by the FEDER Funds

    Common-mode voltage elimination in multilevel power inverter-based motor drive applications

    Get PDF
    The industry and academia are focusing their efforts on finding more efficient and reliable electrical machines and motor drives. However, many of the motors driven by pulse-width modulated converters face the recurring problem of common-mode voltage (CMV). In fact, this voltage leads to other problems such as bearing breakdown, deterioration of the stator winding insulation and electromagnetic interferences (EMI) that can affect the lifespan and correct operation of the motors. In this sense, multilevel converters have proven to be a useful tool for solving these problems and mitigating CMV over the past few decades. Among other reasons, because they provide additional degrees of freedom when comparing with two-level converters. However, although there are several proposals in the scientific literature on this topic, no complete information has been reviewed about the CMV issues and the different multilevel alternatives that can be used to solve it. In this context, the objective of this work is to determine how multilevel power converters provide additional degrees of freedom to make the reduction of the CMV possible by using specific modulation techniques, making it easier for engineers and scientists in this field to find solutions to this problem. This document consists of a descriptive study that collects the strengths and weaknesses of most important multilevel power converters, with special emphasis on how CMV affects each of them. In addition, the differences of modulation techniques aimed to the CMV reduction are explained in terms of output voltage, operating linear range, and generated CMV. Considering this last, it is recommended to use those modulation techniques that allow the generation of CMV levels of 0 V in order to be able to completely eliminate said voltage.This work was supported in part by the Government of the Basque Country within the Fund for Research Groups of the Basque University System under Grant IT978-16; in part by the Research Program ELKARTEK under Project ENSOL2-KK-2020/00077; in part by the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya; in part by the Ministerio de Ciencia, Innovacion y Universidades of Spain under Project PID2019-111420RB-I00 and Project PID2020-115126RB-I00; and in part by the FEDER Funds.Peer ReviewedPostprint (author's final draft
    • 

    corecore