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Abstract

Power converter exposes strong challenges to its efficiency, power density and reliability.

For the grid-connected inverter application, three-level (3-L) T-type neutral-point-clamped (TNPC)

inverters has higher efficiency and lower total harmonic distortion (THD) compared to two-level

inverter. Hybrid switch concept combines the benefit of both silicon carbide (SiC) MOSFET and

Si IGBT. By applying hybrid switch structure in 3-L T-type inverter, the total power density of 3-L

TNPC inverter will be higher while the cost will be lower than that of all-SiC 3-L T-type inverter.

The hybrid switch based 3-L TNPC inverter also imposes challenge to its modulation and control,

a propoer modulation and control shceme need to be chosen to enable better inverter performance

in terms of efficiency, neutral point balancing and electromagnetic interference (EMI). Morever, to

shrink the EMI filter size for the power converter, an active EMI filter (AEF) structure is proposed.

The proposed AEF provides superior performance than any of the conventional passive EMI filter

and the existing AEFs. In this work, the system level design and testing of a 30 kW grid-connected

3-L T-type inverter with hybrid switch structure is discussed. Then, an improved space vector

modulation (SVM) has been proposed, which enables neutral-point balancing (NPB) control in

the proposed hybrid-switch-based TNPC inverters with loss and common-mode voltage reduction.

Finally, the design, modelling, and testing of the proposed AEF is demonstrated.
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1 Introduction

The power converter is heading towards higher power density, higher efficiency while hav-

ing high reliability. Power converters are indispensable in automotive, aerospace, renewable en-

ergy applications as the motor drive inverter or grid-connected inverter. In data-centers and cloud

infrastructure, rectifier and DC-DC converters are an essential part of the power supply. Within

those applications, high power density, high efficiency, reliability are critical factors in the power

architecture design.

Within the inverter topology, 3-L topology gradually draws attention from academia and

industry (automotive, aerospace, renewable energy applications) due to its superior performance

than the conventional two-level (2-L) topology. For the same device and configuration, 3-L topol-

ogy provides higher efficiency, lower THD, and smaller passive filter size. Detailed system-level

modeling and prototype building are available in the literature. The primary design issues for the

3-L inverter include but not limited to semiconductor selection, DC-link capacitor selection, output

and input filter design, and hardware design.

Among wide bandgap (WBG) semiconductor devices, two materials suitable for power

electronic applications are SiC MOSFET and GaN devices. However, the die size is still a bot-

tleneck for WBG devices, which limited its application in high power applications. The benefits

and challenges in paralleling WBG devices are available in the literature. The cost will increase

dramatically if WBG devices are used in parallel. In order to overcome the higher cost, some lit-

erature proposes using the hybrid-switch structure. In the hybrid-switch structure, the principle is

to parallel Si IGBT with SiC MOSFET for higher current rating applications to ensure low cost.

However, the gate driver and the modulation strategy of such paralleling devices are complicated.

Furthermore, in mixed switch combinations, the key idea for mixed switch combinations is to re-

1



place the Si IGBT with SiC MOSFET only in some switch positions within the topology, which

enables the benefit of high efficiency, lower cost, and simple structure.

Furthermore, the combination of 3-L topology with mixed switch structure, features high

efficiency, low cost, and simple structure. However, this structure has not been thoroughly inves-

tigated in 3 phase application yet. Within the 3 phase application, the main challenges will be

system-level optimization and control and modulation. In this study, the system-level optimization

is first introduced and follows the control and modulation of the proposed topology.

Lastly, when power electronics products are sold in the market, the converter or inverter

itself needs to pass specific conducted emission standards. For solving electromagnetic interfer-

ence (EMI) issues within the converter or inverter, EMI filter is introduced. Conventionally, the

EMI filter occupies around 30 % of system volume while it becomes a bottleneck for the converter

to gain higher power density. Thus, active EMI filter (AEF) are used for reducing the filter size.

There are feedforward and feedback types of AEFs. For most of the offshore AEFs, the attenuation

was limited 24 dB. In this study, a resonant controller-based voltage sensing current cancellation

(VSCC) active EMI filter is pushing the attenuation 45 dB, which is 21 dB higher than the offshore

AEFs.

This work is to solve the current issues within 3-L TNPC topology with hybrid-switch

structure and active EMI filter. In Chapter 2, a system-level modeling, design, and testing of 3-

L TNPC topology with hybrid switch structure is carried out. In Chapter 3, the modulation and

control of 3-L TNPC topology with hybrid-switch structure is introduced. The active EMI filter

is discussed, and resonant-controller based VSCC active EMI filter is introduced in Chapter 4.

Finally, Chapter 5 gives the conclusion and future work.
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2 Practical Design and Evaluation of a High Efficiency 30-kVA Grid Connected PV

Inverter with Hybrid Switch Structure

Hongwu Peng, Zhao Yuan, Dereje Lemma Woldegiorgis, Asif Imran Emon,

Balaji Narayanasamy, Yusi Liu, Fang Luo, Alan Mantooth,

Simon S. Ang, and Haider Ghazi Mhiesan

2.1 Abstract

Photovoltaic (PV) grid-connected inverter exposes strong challenges to its efficiency, power

density and reliability. This paper presents the design and test of a 30 kVA grid-connected inverter.

The designed inverter achieved peak efficiency of 99.3% and a specific power of 2 kW/L by us-

ing a hybrid switch based three-level (3-L) T-type neutral point clamped (TNPC) topology. The

hardware prototype presents excellent dynamic current and thermal distribution.

2.2 Introduction

Photovoltaic sources are a promising and emission free renewable energy source [1], and

grid connected inverters are one of the main units within the PV grid connected system. With

the growth of wide bandgap (WBG) devices [2] such as SiC MOSFETs and GaN high-electron-

mobility transistors (HEMT), grid-connected inverters realize benefits of smaller size, lower weight,

and lower loss. Hybrid switch based converters [3–5] have merits of low conduction loss as well

as low cost.

Two-level (2-L) inverters, 3-L neutral-point-clamped (NPC) inverters, and 3-L TNPC in-

verters are three typical inverter topologies for grid-connected application and will be compared in

this paper. a 3-L TNPC with hybrid switch structure is then chosen for its superior performance

3



Fig. 2.1: A hybrid switch based TNPC structure[4]

under high switching frequency scenarios. A 3 phase TNPC with hybrid switch structure is then

built and tested. Dynamic current sharing between devices [6] is ensured by adopting switch-

ing cell method. Continuous test is performed under full power rating for efficiency and thermal

evaluation.

2.3 System Level Design and Optimization

Fig. 2.2 shows the grid connected inverter which is to be designed. The design targets are

shown in Table 2.1. There are 4 major elements in the inverter system, they are semiconductors

(Si IGBTs or SiC MOSFETs), the DC-link capacitor, the output filter, and cooling components. In

order to optimize the inverter system’s performance, system level modeling need to be carried out

in terms of the weight, cost, and loss of the main elements. However, the controller system, sensors,

and gate drivers are ignored in the modeling part since they are similar for different designs. The

design flowchart is shown in Fig. 2.3, which will be extensively discussed in this section.

4



TABLE 2.1: Design targets for 3 phase inverter

Output power Pout 30 kVA DC-link voltage VDC 800 V
Ouput line-to-line voltage VLL,rms 460 V Grid frequency f0 60 Hz

Power factor p f 0.8 to 1 Efficiency η 99%
Switching frequency fsw 70kHz Modulation techniques SPWM

Fig. 2.2: Three phase grid connected inverter

Fig. 2.3: Design methodology

5



2.3.1 Inverter Topology and Semiconductor Stage Evaluation

In this section, four topologies are evaluated: 2-L 3 phase inverter using all-SiC MOSFET,

3-L 3 phase NPC inverter using SiC MOSFET and SiC schottky diode, 3-L 3 phase TNPC inverter

using all-SiC MOSFET, and hybrid switch based 3-L 3 phase TNPC inverter. Schematic of those

three topologies are shown in Fig. 2.4a to Fig. 2.4d, respectively.

[5] presented that for the high power factor application, clamping leg devices of the 3-L

TNPC inverter will be mainly soft switching. For 3-L TNPC inverter, assuming the switching

state 1, 0, and -1 represent the phase leg output being clamped to the input positive rail, the input

middle point, and the input negative rail respectively. The switching loss table of 3-L TNPC can

be given as Table 2.2. When the power factor target of the inverter is high enough, the switching

loss of clamping leg is negligible. The hybrid switch based 3-L TNPC structure, which is shown

in Fig. 2.4d, utilizes Si IGBT and SiC Schottky diode as clamping leg switches and SiC MOSFET

for half-bridge switch positions. With SPWM, the clamping switches are soft-switching under

the unity power factor, and thus, the utilization of Si IGBTs does not increase the switching loss.

Therefore, the total semiconductor cost of this hybrid switch based 3-L TNPC is lower than that

of the all-SiC 3-L TNPC inverter. While the cost is low, the efficiency is higher than that of the

all-SiC 3-L TNPC inverter.

TABLE 2.2: Switching loss table for 3-L TNPC inverter
Switching action 1 to 0 and 0 to 1 -1 to 0 and 0 to -1

Switching loss (Iph > 0) ET 1, o f f , on = EMos, o f f , on ET 2, on, o f f = EMos/IGBT, on, o f f
ET 3, on, o f f = 0 ET 4, o f f , on = 0

Switching loss (Iph < 0) ET 3, on, o f f = EMos/IGBT, on, o f f ET 4, o f f , on = EMos, o f f , on
ET 1, o f f , on = 0 ET 2, on, o f f = 0

To evaluate the performance of four topology candidates mentioned above, On company’s

semiconductor devices are chosen, detailed devices’ parameters are shown in Table 3.6. Conduc-
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(a) (b) (c) (d)

Fig. 2.4: Evaluated converter topologies: (a) 2-L 3 phase inverter (b) 3-L 3 phase NPC inverter (c)
3-L 3 phase TNPC inverter (d) 3-L 3 phase TNPC inverter with hybrid switch structure

tion and switching characteristics of those devices can be extracted from the datasheet. To achieve

target efficiency (99%) at rated power level (30 kw), 6 SiC MOSFETs, 3 SiC diodes, and 2 Si

IGBTs are used in parallel for each switch position.

TABLE 2.3: Power semiconductors used in the evaluation
Voltage Current Typical switching loss Cost p.u.(Mouser)

SiC MOSFET @ On-Semi 1200 V 31 A Eon = 258 µJ, Eo f f = 52 µJ 7.64 $
NTHL080N120SC1 @800 V, 20 A,Rg = 4.7 Ω

SiC Diode @ On-Semi 650 V 20 A Esw ≈ 0 (Very low 5.91 $
FFSH2065A-D reverse recovery loss)

Si IGBT @ On-Semi 650 V 40 A Eon = 1390 µJ, Eo f f = 541 µJ 2.51 $
FGH40T65SH @400 V, 40 A,Rg = 6 Ω

The power losses of semiconductor devices depend on the voltage/current waveforms and

control methodologies. For simplicity, the SPWM modulation is utilized, and the output current

waveform is assumed to be idealized sinusoidal function. Based on [6–8], the loss information of

different topologies can be calculated as Table 2.5, the parameter which is used in the calculation

is shown in Table 2.4.

The semiconductor stage efficiency for each topology is shown in Fig. 2.5. The cost of

2-L, 3-L NPC, 3-L TPC, and 3-L TNPC with hybrid switch combination are 275.04 $, 656.46 $,

550.08 $, and 411.54 $, respectively. 3-L NPC topology has lowest efficiency due to its largest

conduction loss. At high switching frequency scenario, 2-L inverter’s efficiency drops rapidly due

to its high commutation voltage. For 70 kHz switching frequency application, 3-L TNPC has
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TABLE 2.4: Parameter used in the loss calculation
Parameter Definition

f0 Grid frequency
w Grid angular frequency

Pcond,MOS Conduction loss of MOSFET
Pcond,diode Conduction loss of diode
Pcond,IGBT Conduction loss of IGBT
Psw,MOS Switching loss of MOSFET
Psw,IGBT Switching loss of IGBT

ϕ Power dactor angle

IPK =
√

6Pout
3VLL,rms

Peak phase current

i(k) = Ipk · sin(k· f0
fsw
·2π−ϕ) Transient current

M Modulation index
RMOS,on Conduction resistance of MOSFET
Vf w,diode Forward voltage drop of diode

Rdiode Conduction resistance of diode
Vf w,IGBT Forward voltage drop of IGBT

RIGBT Conduction resistance of IGBT
EMOS,on(v, i) Switching on energy of MOSFET
EMOS,o f f (v, i) Switching off energy of MOSFET
EIGBT,on(v, i) Switching on energy of IGBT
EIGBT,o f f (v, i) Switching off energy of IGBT

highest efficiency among all topologies. Morever, for the unity power factor scenario, efficiency

of 3-L TNPC inverter with hybrid switch combination is comparable with that of all-SiC 3-L

TNPC inverter. While the efficiency comparable, the cost of 3-L TNPC inverter with hybrid switch

combination is much lower than that of all-SiC 3-L TNPC inverter. Thus, 3-L TNPC inverter with

hybrid switch combination topology is chosen for semiconductor stage.

2.3.2 LCL filter Design

The basic LCL structure can be found in Fig. 2.2. Linv, Cout , and Lgrid donate the inverter

side inductor, capacitor, and grid side inductor, respectively. The value selection of Linv depends on

the current ripple limitation of inverter output stage. The capacitor will add to the reactive power

for the inverter system, normally the reactive power consumed by capacitor is limited to 2 ∼ 5%
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TABLE 2.5: Loss calculation for different topologies (single phase)
Topology Conduction loss

2-L inverter Pcond,MOS =
1
π

∫
π

0 i2(k)RMOS,on dwt (2.1)
3-L NPC Pcond,MOS =

1
π

∫
π

0 i2(k) ·RMOS,on · (1+
inverter M|sin(wt)|) dwt (2.2)

Pcond,diode =
1
π

∫
π

0 (1−M|sin(wt)|)·
(|i(k)|Vf w,diode + i2(k) ·Rdiode) dwt (2.3)

3-L TNPC Pcond = 1
π

∫
π

0 i2(k)RMOS,on · (2−
inverter M|sin(wt)|) dwt (2.4)

3-L TNPC Pcond,MOS =
1
π

∫
π

0 i2(k) ·RMOS,on·
inverter M|sin(wt)|) dwt (2.5)

with hybrid Pcond,diode =
1
π

∫
π

0 (1−M|sin(wt)|)·
switch (|i(k)| ·Vf w,diode + i2(k) ·Rdiode) dwt (2.6)

structure Pcond,IGBT = 1
π

∫
π

0 (1−M|sin(wt)|)·
(|i(k)| ·Vf w,IGBT + i2(k) ·RIGBT ) dwt (2.7)

Topology Switching loss

2-L inverter Psw,MOS = 2 f0 ·∑
k= π· fsw

2π· f0
k= 0· fsw

2π· f0

(EMOS,on(VDC, |i(k)|)

+EMOS,o f f (VDC, |i(k)|)) (2.8)

3-L NPC Psw,MOS = 2 f0 ·∑
k= π· fsw

2π· f0
k= 0· fsw

2π· f0

(EMOS,on(
VDC

2 , |i(k)|)+

inverter EMOS,o f f (
VDC

2 , |i(k)|)) (2.9)

3-L TNPC Psw,MOS = 2 f0 ·∑
k= π· fsw

2π· f0
k= 0· fsw

2π· f0

(EMOS,on(
VDC

2 , |i(k)|)+

inverter EMOS,o f f (
VDC

2 , |i(k)|)) (2.10)

3-L TNPC Psw,MOS = 2 f0 ·∑
k= π· fsw

2π· f0
k=ϕ· fsw

2π· f0

(EMOS,on(
VDC

2 , |i(k)|)

inverter +EMOS,o f f (
VDC

2 , |i(k)|)) (2.11)

with hybrid Psw,IGBT = 2 f0 ·∑
k=ϕ· fsw

2π· f0
k= 0· fsw

2π· f0

(EIGBT,on(
VDC

2 , |i(k)|)

switch +EIGBT,o f f (
VDC

2 , |i(k)|)) (2.12)
structure

of converter’s power level. Then, Lgrid need to be designed according to IEEE 1547 and IEEE 519

standard for harmonics of grid-tied inverter.

According to [9], the expression for calculating the minimum value for Linv can be found

in (2.13). Since the output sinusoidal peak current is around IPK = 53.2A, the peak current ripple

can be set to 40% of peak sinusoidal current. Thus, the calculated minimum inductance value for
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Fig. 2.5: Semiconductor stage efficiency comparison

Linv is around 90µH, which will be used for physical design of the inductor. According to (2.13),

the maximum capacitance value Cout is 7.5µH in order to limit the reactive power. Finally, 5µH

MKP386M550125YT4 film capacitor from Vishay is chosen.

∆Imax ≈
VDCTsw

6Linv
, Linv ≈ 90µH (2.13)

Qc ≈ 3wV 2
ph,rmsCout < 0.02Pout , Cout < 7.5µH (2.14)

Based on the designed value of Linv and Cout , the value of grid side inductor Lgrid can be

designed according to IEEE 1547 and IEEE 519 grid-tied inverter harmonics requirement. The

IEEE 1547 and IEEE 519 grid-tied inverter harmonics requirement is shown in Table 2.6. The

phase voltage is a PWM waveform. The filter need to attenuate phase voltage noise to obtain the

output phase current waveform which meet the standard. The required attenuation can be expressed

as (2.15).

TABLE 2.6: IEEE 1547 and IEEE 519 grid-tied inverter harmonics requirement
Harmonic order < 11th 11−17th 17−23th 23−35th > 35th THD

Limit (% of fundamental current) < 4% < 2% < 1.5% < 0.6% < 0.3% < 5%
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Ggrid(s) =
Ig,spec(s)

Vinv,SPWM(s)
(2.15)

Morever, the attenuation (output current to input voltage) of LCL filter is expressed in

(2.16). The attenuation spectrum of LCL filter need to be lower than the spectrum of required

attenuation Ggrid(s). The LCL filter attenuation is plotted based on different value of Lgrid , and

the comparison between LCL filter attenuation and the required attenuation is shown in Fig. 2.6a.

Since the switch frequency is as high as 70 kHz, the LCL filter attenuation is much lower than

the grid code requirement in the high frequency range. For the low frequency range, which is

shown in Fig. 2.6b, it can be observed that Lgrid inductance need to be higher than 50 µH. Finally,

Lgrid = 100 µH is chosen for the grid side inductor.

GLCL(s) =
Ig(s)

Vinv(s)
=

1
LinvLgridCouts3 +(Linv +Lgrid)s

< Ggrid(s) (2.16)

(a) (b)

Fig. 2.6: LCL filter design in frequency domain: (a) attenuation of LCL filter comparing to re-
quired attenuation (b) zoom in of low frequency range

The final LCL filter value are: Linv = 90 µH, Lgrid = 100 µH, and Cout = 5 µH. Normally

the resonant frequency of the LCL filter fres need to be higher than 10 times of the grid frequency,
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and lower than half of the switching frequency. The resonance frequency fres of the LCL filter is

given by (2.17). Furthermore, the voltage drop on the filter inductor can be found in (2.18), which

is much lower than the phase voltage. The LCL filter value design meets most of the design criteria

mentioned in the reported literatures.

10 f0 < fres =
1

2π

√
Linv +Lgrid

LinvLgridCout
= 10.34 kHz < 0.5 fsw (2.17)

VL,rms = 2π f0(Linv +(Lgrid) · Irms ≈ 2.7 V <<Vph,rms = 265.6 V (2.18)

The area product Ap design method, which is expressed in (2.19), is used for inductor

design. K0 is the filling factor for the inductor window area, which is normally set at 0.3 to 0.4

with insulation and support consideration. J is the winding current density, which is normally

set as 3.5 A/mm2 under natural air cooling conditions. To further reduce the skin effect in high

switching frequency application, Litz wire (22 AWG with 45 strand, 6 AWG-equivalent) is selected

for inductor winding. Bm is the maximum flux density in the inductor core, which is chosen based

on core material specification. Ae and Aw donates the inductor’s core cross sectional area and

window area, respectively. Magnetic powder core [10] is selected for core design. For inverter

side inductor Linv, MPP 60 µ core with 62 cm outer diameter is chosen, and 22 turns of windings

are implemented. For the grid side inductor Lgrid , high flux 125 µ core with 62 cm outer diameter

is chosen, and 18 turns of windings are implemented.

Ap = AeAw >
LIrmsImax

K0JBm
(2.19)
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2.3.3 DC-link capacitor

The DC-link capacitor volume occupies a large portion of the inverter system’s volume. In

this study, 3 major factors are taken into consideration for the DC-link capacitor selection: DC-link

voltage ripple, neutral point voltage ripple, and capacitor’s current rating.

For 3-L inverter, assuming two capacitors C1 and C2 are in parallel to provide neutral point.

The total DC-link capacitance is given by CDC−link = 0.5C1 = 0.5C2. [8] showed that the ripple

voltage on the DC-link can be obtained by (2.20). The required DC-link capacitor CDC−link to

keep the DC-link voltage ripple ∆Vdc within 0.5% of total DC-link voltage Vdc can be obtained as

24.3 µF , and then C1 =C2 = 48.6µF .

∆Vdc =
Vph,rmsIph,rms

2π fswVDCCDC−link
(
√

3− π

3
)< 0.5%Vdc (2.20)

However, for 3-L inverter, the neutral point voltage Vnp will also have variation due to the

neutral point current. In order to limit the neutral point voltage variation, neutral point balancing

(NPB) control need to be implemented. [11] proposed a NPB control strategy using zero se-

quence injection. Furthermore, [12] gave the analytical relationship between neutral point voltage

variation ∆Vnp and the circuit parameters under the zero sequence injection NPB control frame,

and the expression is given by (2.21). Cnp is the total neutral point capacitance, which satisfies

Cnp = 2C1 = 2C2. k(M,cos(ϕ)) is a parameter associate with worst case power factor and modula-

tion index. For the system parameters in the paper (cos(ϕ) = 0.8−1 and M ≈ 0.94), k(M,cos(ϕ))

is approximately 0.1. To limit the neutral point voltage ripple ∆Vnp to be within 2% of the DC-link

voltage VDC, the neutral point capacitance Cnp can be calculated as Cnp = 651µF . To leave some

design margin, Cnp is finally designed as Cnp = 840µF , and then C1 =C2 = 420µF .
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∆Vnp =
VDCILL,rms

2CnpwVLL,rms
· k(M,cos(ϕ))< 2%VDC (2.21)

The DC-link capacitor suffers both fundamental frequency harmonics current and switch-

ing frequency harmonics current. [13] gave the expression of DC-link capacitor’s current, which

can be found in (2.22)-(2.24). With the system parameter discussed in the paper, the RMS current

of the DC-link capacitor Icap,rms can be calculated as 19 A.

Iavg =
3
4

IPKMcos(ϕ) (2.22)

Irms =

√
3I2

PKM(
√

3+ 2√
3
cos(2ϕ))

4π
(2.23)

Icap,rms =
√

I2
rms− I2

avg (2.24)

In summary, the final DC-link capacitor CDC−link is set to be 210µF , which is composed

of two capacitor C1 = C2 = 420µF in parallel. For each of the C1 and C2, 14 of 30 µF , 800 V

DCP4L053007HD2KSSD film capacitors from WIMA are chosen.

2.4 Hardware Development and Experiment

The final architecture is shown in Fig. 2.7a, on T1 and T4 there are six SiC MOSFETs in

parallel. And for T2 and T3 position, there are two IGBTs in parallel. For D2 and D3 position, there

are three SiC Schottky diodes in parallel. The exact position of devices on hardware is shown in

Fig. 2.7b. Entire 3-phase 3-L inverter prototype with heatsink is shown in Fig. 2.7c.
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(a) (b) (c)

Fig. 2.7: Hardware prototype for 3 phase 3-L inverter with hybrid switch structure: (a) Structure
of 3-L TNPC phase leg (b) Top view of prototype (c) 3-phase 3-L TNPC inverter

First, the double pulse test (DPT) for evaluating the current sharing and switching perfor-

mance is conducted under 800 V DC voltage, 60A load current condition. DPT result for T4 is

shown Fig. 2.9, where dynamic current sharing is excellent for both turn on and turn off transient.

(a) (b)

Fig. 2.8: DPT test waveform for T4 device: (a) Turn on transient of T4 position (b) Turn off transient
of T4 position

A 3-phase test is conducted under a full power rating (30 kVA) in laboratory. The DC-link

voltage is set at 800 V. The fundamental frequency is set to 2 kHz and the power factor (pf) under

test is 0.3 due to the equipment limitation. The switching frequency is set to 70 kHz. The test setup

is shown in Fig. 2.9a, and the line-to-line voltage, phase current waveform is shown in Fig. 2.9b.
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(a) (b)

Fig. 2.9: Continuous test for 3 phase 3-L TNPC prototype: (a) Test setup for 3 phase testing (b)
Testing waveform

Fig. 2.10: Resistive load testing setup

The power testing of the inverter is also conducted under 30 kW resistive load. The basic

test setup is shown in Fig. 2.10. And the schematic can be find in Fig. 2.11a. The testing waveform

for the inverter under rated voltage and power is shown in Fig. 2.11b. As it can be seen from the

figure, the input voltage is set to be 800 V, and the output line-line voltage is 460 V, while the

output current is set to be 52 A.

The thermal information is also captured during the testing after 20 minutes burning. As

it’s shown in the Fig. 2.12b, the higher temperature of the entire prototype is only around 40 degree

C, which might be due to the inaccuracy of the thermal camera. Taking inaccuracy of the thermal
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(a) (b)

Fig. 2.11: Resistive load testing: (a) Resistive load testing schematic (b) Resistive load testing
waveform

camera into account, the converter is still running at a safe temperature range (case temperature

lower than 80 degree C). The thermal image result validate that the thermal design of the prototype

has enough margin, which can ensure the inverter will still be safe operating even under heavy

load.

The efficiency of the entire inverter system is also measured from the test setup, which

is shown in Fig. 2.13a. The input and output power are both obtained from oscilloscope and

Yokogawa WT1600 power analyzer. After comparison of both data, an accurate efficiency curve

is drawn in Fig. 2.13b. As it can be seen from the figure, the highest efficiency of the inverter is

around 99.26 %. At rated power (30 kW), the efficiency of the entire inverter is around 99.07 %.

2.5 Conclusion

Based on efficiency, cost, and weight comparison for different topology options, a 3-phase

3-L TNPC with hybrid switch combination is selected. The hardware prototype is then built and

test. DPT shows good current sharing performance between paralleled devices. Three-phase test-
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(a) (b)

Fig. 2.12: Thermal image of the resistive load test: (a) original test setup (b) thermal image

(a) (b)

Fig. 2.13: Efficiency measurement of the inverter: (a) Efficiency measurement setup (b) Efficiency
measured

ing under full power rating is carried out. The thermal measurement as well as the efficiency

measurement are conducted, which validate the inverter system design.
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3 Space Vector Modulation for Neutral-Point Balancing Control in Hybrid

-Switch-Based T-type Neutral-Point-Clamped Inverters With Loss and Common-Mode

Voltage Reduction

Hongwu Peng, Zhao Yuan, Xingchen Zhao, Balaji Narayanasamy,

Amol Deshpande, Asif Imran Emon, Fang Luo, and Cai Chen

3.1 Abstract

This paper compares different space vector modulation (SVM) strategies for neutral-point

voltage balancing (NPVB) control in three-level (3-L) T-type neutral-point-clamped (TNPC) in-

verters, and proposes an improved SVM trimmed for NPVB control in hybrid-switch-based 3-L

TNPC inverter with the features of loss and common-mode voltage (CMV) reduction. The pro-

posed SVM strategy uses a new principle of small vector selection and vector sequence, and thus,

it can balance the neutral point (NP) potential and achieve soft-switching of clamping leg simulta-

neously. The paper includes detailed analysis for circuit commutation mode, loss breakdown, and

common-mode voltage patterns under different operation conditions. The circuit simulations and

experiments are carried out in the last part of this paper to validate the proposed SVM strategy.

3.2 Introduction

Three-level T-type neutral-point-clamped (3-L TNPC) inverter has higher efficiency and

lower total harmonic distortion (THD) compared to two-level inverter, and it has become popular

in high-speed motor drives and all-electric aircraft applications[1–5]. Emerging silicon carbide

(SiC) MOSFET has lower losses and high switching speed compared to Si IGBT and enables

higher efficiency and power density in power converters[6–11]. SiC MOSFET is becoming a
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major competitor and replacement for Si IGBT in power electronics systems.

Fig. 3.1: Structure of the hybrid switch

TABLE 3.1: Current dependent operation of the hybrid-switch-based inverter [12]

Conditions: SiC MOSFET voltage drop is Load current is within Load current exceed
lower than Si IGBT threshold SOA of SiC MOSFET SOA of SiC MOSFET

Operations: Only SiC MOSFET is turned on Hybrid switch operation Only IGBT is turned on

Fig. 3.2: T-type inverter with hybrid switch structure 1 [13]

However, the state-of-the-art die size limit and the high cost of SiC MOSFET are the bot-

tlenecks for its high-current commercial applications. Therefore, [13] proposed a hybrid switch

concept, as shown in Fig. 3.1. By adjusting the switching sequence of the two switches, the T-type

inverter with the hybrid switch (hybrid structure 1) [14–16], which is shown in Fig. 3.2, can have

low switching loss from SiC MOSFET switching, and low conduction loss from IGBT conduc-

tion. However, due to the long discharging time of the carriers inside the IGBT, the Si-SiC hybrid

switch operation mode have a minimum duty cycle limitation [17], which deteriorates the output
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total harmonic distortion performance. Furthermore, the hybrid-switch-based 3-L TNPC increases

the system complexity in terms of the gate driver and power loop design [18–20]. Because of more

paralleled semiconductors, more gate drivers and more gating signals are required. [12] mentioned

that the Si-SiC hybrid switch structure should ensure the safe operation area (SOA) of the SiC

MOSFET. Table 3.1 illustrates the current dependent operation in [12].

Fig. 3.3: T-type inverter with hybrid switch structure 2 [21]

To reduce the system complexity as well as improve the output THD performance, M1, M4,

Q2, Q3, D2 and D3 in hybrid structure 1 are selected to operate, and the new structure is shown

in Fig. 3.3 [21]. The hybrid structure 2 utilizes Si IGBT and SiC Schottky diode as clamping leg

switches and SiC MOSFET for half-bridge switch positions. With SPWM, the clamping switches

are soft-switching under the unity power factor, and thus, the utilization of Si IGBTs does not

increase the switching loss. Therefore, the total semiconductor cost of this hybrid switch combi-

nation 3-L TNPC is lower than that of the all-SiC 3-L TNPC inverter. While the cost is low, the

efficiency is higher than that of the all-SiC 3-L TNPC inverter.

Although hybrid structure 2 possesses the merits of low complexity and high efficiency,

it has not been fully validated in the 3-phase 3-L TNPC system yet. One of the main challenges

is to design a proper space vector modulation (SVM) scheme, which needs to consider the soft

switching feature of the clamping leg, neutral point balancing (NPB) [22–25], and the common-
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mode voltage (CMV) performance. This paper provides a criterion to choose the appropriate SVM

for T-type inverter with hybrid structure 2 under different conditions. Firstly, this paper obtains

the switching energy of T-type inverter with hybrid structure 2 by experimental double pulse test

(DPT) result, then 3 different SVM schemes are discussed in terms of switching loss, NPB, and

output CMV voltage performance.

The organization of the paper is as follows. Section II summarizes the soft-switching con-

ditions for 3-L TNPC with hybrid structure 2, then loss analysis, neutral point balancing capability

and common-mode noise voltage comparison of 3 different SVM schemes are discussed. In Sec-

tion III, a 20 kVA hardware is built, the DPT is firstly performed to obtain exact switching loss,

followed by the analysis and comparison of semiconductor loss breakdown, EMI spectrum, and

neutral point voltage ripple for three SVMs. Section IV presents the conclusion of the preferred

modulation scheme.

3.3 Analysis of Different Modulation on Hybrid Switch Based 3-Phase 3-L TNPC

For switching loss reduction [21] and NPB [22–25] in 3 phase 3-L TNPC inverter with

hybrid switch combination, SVM 1 with NPB [23], SVM 2 with NPB [24], and improved SVM

2 with NPB are compared, and 1st sector of the space vector modulation hexagon is given as an

example. The nearest three space vector (NTSV) [26] and discontinuous pulse width modulation

(DPWM) [27] are adopted to track the reference vector and further reduce the switching loss.

In this chapter, switching loss and soft-switching condition of clamping leg is discussed

first in 3-L TNPC with the hybrid switch combination. Then three different SVM schemes are

compared in terms of switching losses, neutral point balancing capability, and CMV performance,

which gives guidance for hardware design and PWM modulation choice.
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(a)

(b)

(c)

(d)

Fig. 3.4: Different switching transitions when the phase output is positive or neutral: (a) Switch
transition 1 (Positive phase current) (b) Switch transition 2 (Positive phase current) (c) Switch
transition 3 (Negative phase current) (d) Switch transition 4 (Negative phase current)

3.3.1 Preferred Switch Pairs in Terms of Switching Loss Reduction

Since switching loss of Si IGBT is much higher than SiC MOSFET, hard switching of Si

IGBT on clamping leg in 3-L TNPC inverter with hybrid switch combination should be avoided

or minimized. As shown in Fig. 3.4(a), when the phase current is positive, and the phase output

voltage is transitioning from positive to neutral, T1 is hard switching off, and then T2 and D3 are

soft switched on. From Fig. 3.4(b) we can know that when phase current is positive, and the phase

output voltage is transiting from neutral to positive, clamping leg devices are soft switched off,
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TABLE 3.2: CMV of space vectors

Space vector V1 V2 V3 V4

CMV −1/3Vdc −1/6Vdc 0 1/6Vdc

Space vector V5 V6 V7 V8

CMV 1/3Vdc −1/6Vdc 1/6Vdc 0

and T1 is hard switched on. Moreover, when the phase current is negative, and phase output is

transitioning from positive to neutral or from neutral to positive, T3 is hard switched on and hard

switched off.

In summary, when phase current is positive, switch pair 1 and 0 is preferred since the

clamping leg is soft-switching, as shown in Fig. 3.4(a) and Fig. 3.4(b). Switch pair 0 and -1 should

be avoided since clamping leg switch T2 is hard switching. Symmetrically when phase current is

negative, switch pair 0 and -1 is preferred to obtain the soft-switching character of clamping leg,

and switch pair 1 and 0 should be avoided or minimized to reduce the switching loss of Si IGBT,

as shown in Fig. 3.4(c) and Fig. 3.4(d). Based on the aforementioned analysis, different SVMs

can be compared in terms of switching loss, more detailed information will be given in the later

section.

3.3.2 Common Mode Voltage of 3L TNPC Inverter

Assuming that only heatsink is grounded, the equivalent model of 3 phase 3-L TNPC [28–

33] is drawn in Fig. 3.5, with the consideration of all the semiconductor’s junction to heatsink and

output to ground capacitance. Also, a simplified model is given in Fig. 3.6, which indicates that

the CMV noise can be modeled through (3.1).

VCM = (VAN +VBN +VCN)/3 (3.1)
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Fig. 3.5: Three-phase 3-L TNPC model with the parasitic capacitor

Fig. 3.6: Three-phase 3-L TNPC CMV path

Space vectors in sector 1 of the modulation hexagon, which are shown in Fig. 3.7, are

given as an example for CMV calculation. As shown in Table 3.2, small vector V1 and V5 have the

largest CMV, while zero vector V8 and medium vector V3 do not contribute to CMV.

3.3.3 Switching Loss Reduction, NPB, and CM Voltage Analysis for Different SVM Schemes

Firstly, space vectors of sector 1 are marked out in Fig. 3.7 and small vectors’ influence on

neutral point potential are stated in Table 3.3. For simplicity, the region 3 and 2 are analyzed and

compared for three kinds of SVM schemes, choices of small vectors and alignment in the region

1 and 4 are similar to the region 3 and 2. From Table 3.2 it is known that small vectors V2 and V4

TABLE 3.3: Small vector’s influence on NP potential

Small Vector Angle Discharge NP Charge NP

0o V4 V1

60o V5 V2
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have lower CM voltage than V1 and V5. Less small vectors like V2 and V4 are chosen, smaller CM

voltage the SVM schemes can get.

Fig. 3.7: Three-phase three-level space vector hexagon

The region 3 of Sector 1

The space vector choice and alignment for SVM 1, SVM 2, and improved SVM 2 are

shown in Table 3.4. For SVM 1 scheme, both of the small vectors V1, V2, V4, and V5 are used for

balancing the neutral point potential, and B phase switching state changes between 1 and 0 plus 0

and -1. Since SVM 1 does not consider the B phase current direction, B phase has hard switching

operations on the clamping leg. For SVM 2 scheme, the region 3 is divided into the region 3.1 and

the region 3.2 according to B phase voltage polarity. In the region 3.1, only V1 and V4 small vectors

are used for balancing the neutral point potential. In the region 3.2, only V2 and V5 small vectors

are used for balancing the neutral point potential. B phase clamping leg is always soft-switching

under unity PF. Improved SVM 2 scheme is proposed to reduce the switching loss under the wider

power factor range. When the B phase current is negative, V1 and V4 small vectors are used for

balancing the neutral point potential. V2 and V5 small vectors are used when the B phase current is
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TABLE 3.4: Space Vector Choice and Alignment in Sector 3

The region 3 of Sector 1 Discharge NP Charge NP

SVM 1 V3-V2-V1-V2-V3 V3-V4-V5-V4-V3

SVM 2 & 0o-30o V1-V2-V3-V2-V1 V2-V3-V4-V3-V2

SVM 2 & 30o-60o V4-V3-V2-V3-V4 V5-V4-V3-V4-V5

Improved SVM 2 & Ib < 0 V1-V2-V3-V2-V1 V2-V3-V4-V3-V2

Improved SVM 2 & Ib > 0 V4-V3-V2-V3-V4 V5-V4-V3-V4-V5

TABLE 3.5: Space Vector Choice and Alignment in Sector 2

The region 2 of Sector 1 Discharge NP Charge NP

SVM 1 V1-V6-V3-V6-V1 V6-V3-V4-V3-V6

SVM 2 V1-V6-V3-V6-V1 V6-V3-V4-V3-V6

Improved SVM 2 V1-V6-V3-V6-V1 V6-V3-V4-V3-V6

positive. Improved SVM 2 scheme is basically the same as SVM 2 scheme under the unity power

factor, and since it considers the phase current direction for choosing the small vector, and thus, it

has lower losses on clamping leg under the non-unity power factor case.

The region 2 of Sector 1

For region 2, modulation strategies of SVM 1, SVM 2, and improved SVM 2 are the same,

which are shown in Table 3.5. V1 and V4 are chosen to discharge and charge the neutral point

voltage, and alignments are V6-V3-V4-V3-V6 and V1-V6-V3-V6-V1 when the neutral point voltage is

lower and higher than half of the DC-link voltage. Soft switching can be achieved on the clamping

leg of B phase under the unity power factor.

Summary of Different SVM Schemes

In general, the improved SVM 2 scheme has the lowest switching loss on clamping leg.

Moreover, under the non-unity power factor condition, SVM 1 has better neutral point balancing
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(a) Switching energy information for SiC MOSFET position (b) Switching energy information for Si IGBT position

Fig. 3.8: Switching loss information for SiC MOSFET position and Si IGBT position

ability than SVM 2 and improved SVM 2. According to Table 3.2, V1 and V5 have the highest

CM voltage. Since SVM 2 and improved SVM 2 exclude V1 or V5 for reducing the switching loss,

and SVM 1 employs both of the V1 and V5 for NPB, SVM 2 and improved SVM 2 have relatively

lower CMV than that of SVM 1.

3.4 Experimental Test and Loss Breakdown

A 6 kVA 3-phase 3-L TNPC prototype is built to evaluate the efficiency and CM voltage

noise spectrum with different SVM, upper and lower DC-link capacitors are 150 µF each. As

shown in Table 3.6, we have chosen 1200 V/ 30 A SiC MOSFET, C3M0075120K from Wolfspeed,

and 600 V/ 30 A Si-IGBT IKZ50N65EH5 from ROHM, and FFSH1665A SiC Schottky diode, for

experiment validation. Top leg and bottom leg switches are rated for 1.2 kV, and DC-link voltage

is set to be 800 V to remain some safety margin. Output RMS voltage is set to 208 V to meet one

of the grid standards. Switching frequency is set to be 70 kHz to reduce the passive components’

volume. The prototype is composed of three 2-kVA single-phase 3-L TNPC, as shown in Fig.3.9.
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Fig. 3.9: Test setup of DPT

TABLE 3.6: Device Parameters

Voltage (V) Current (A)

SiC MOSFET 1200 30
(Wolfspeed-C3M0075120K)

Si IGBT 600 30
(ROHM-RGCL60TS60D)

SiC Shottky diode 650 23
(Wolfspeed-C3M0075120K)

Switching Energy Evaluation of the Three-Level Inverter

Switching energy calculation based on the devices’ voltage and devices’ current waveform

is comprehensively evaluated in [34–36]. DPT is firstly performed to obtain the switching tran-

sitions of both SiC MOSFET and IGBT devices. As mentioned in [37], switching energy in 3-L

phase leg is different from 2L half-bridge due to the device’s junction capacitance, so the double

pulse test in this paper is performed based on the single-phase 3-L TNPC platform. In this way,

loss analysis using switching energy data from the double pulse test on the 3-L TNPC platform

gives more accurate results. The accurate switching energy information for SiC MOSFETs and Si

IGBT switch is shown in Fig. 3.8.
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(a) (b)

(c) (d)

Fig. 3.10: Loss breakdown of semiconductor devices at different power factors: (a) Loss break-
down when PF=1 (b) Loss breakdown when PF=0.9 (c) Loss breakdown when PF=0.8 (d) Loss
breakdown when PF=0.7

Semiconductor Loss Breakdown and EMI Performance Evaluation

Switching energy from DPT and device conduction performance in the component datasheet

are used, and a detailed semiconductor loss breakdown can be obtained in simulation. While the

total power level is 6 kVA, and the switching frequency is 70 kHz.

For the near unity PF case, the loss breakdown for different modulation schemes is listed

in Fig. 3.10(a), and total semiconductor loss using SVM 1, SVM 2, and improved SVM 2 are

respectively 17.1 W, 16 W, and 16 W. As shown in the diagram, under the unity power factor case,
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total loss of the SVM 2 and the improved SVM 2 are 6.4% lower than using SVM 1. All of the

SVMs have the same neutral point voltage ripple, which is around 2 V due to the hysteresis control

algorithm at half of the switching frequency and switching actions at switching frequency.

However, for PF=0.8 (lead or leg) case, loss breakdown for different modulation schemes

are listed in Fig. 3.10(c), and total semiconductor loss using SVM 1, SVM 2 and improved SVM

2 are respectively 22.7 W, 18.9 W, and 17.9 W. It can be seen that by adopting SVM 1, clamping

leg devices have excessive switching loss. In this condition. SVM2 and improved SVM 2 have

respectively 4.2 times and 5.3 times lower clamping leg devices’ switching loss than that of SVM

1. Neutral point ripple voltage using SVM 1, SVM 2, and improved SVM2 are respectively 2.3 V,

8.5 V, and 15 V.

The difference of SVM schemes is the switching transitions and soft-switching conditions

of the clamping leg switches under different conditions, the average duty ratio for each switch does

not change a lot for different SVM schemes. So even the conduction loss of different modulations

have some difference, this difference in conduction loss is not as much as in switching loss, and

it’s not obvious in the figures.

Fig. 3.11: Neutral point ripple voltage

In summary, with the power factor decreasing from 1 to 0.7, SVM 1 has a much higher loss

on clamping leg devices than SVM 2 and improved SVM 2, which may result in device overheat
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(a) (b) (c)

Fig. 3.12: Phase leg output voltage, phase current, NP voltage, and CM voltage waveform when
PF=0.8: (a) Waveform for the SVM 1 (b) Waveform for the SVM 2 (c) Waveform for improved
SVM 2

issue. And it can be seen in 3.10 that under different power factor cases, SVM 2 and improved

SVM 2 have more equal loss distribution among switching devices, so SVM 2 and improved 2 are

preferred in terms of semiconductor loss reduction and the semiconductor loss distribution point

of view.

The neutral point voltage ripple versus power factor relationship is shown in Fig. 3.11. We

can know that when the power factor is in the region of 0.85 to 1 (lead or lag), the SVM 1 and

improved SVM 2 have higher neutral point voltage than SVM 2. When the power factor is high

enough, SVM 2 also has as good clamping leg loss reduction capability as improved SVM 2. So

when the power factor is between 0.85 and 1, it is better to use the SVM 2 modulation scheme for

both clamping leg loss reduction as well as NPB purpose.

When the power factor is in the region of 0.7 to 0.85 (lead or lag), the SVM 1 still possesses
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the best NPB capability, and in the meantime, the improved SVM 2 has better NPB performance

than the SVM 2. Moreover, when the power factor is relatively lower, improved SVM 2 has better

clamping leg loss reduction capability than the SVM 2. When the power factor is between 0.85

and 1, the improved SVM 2 serves better for both clamping leg loss reduction and NPB purpose.

Fig. 3.13: Trade-off between NPB and loss performance for improved SVM 2

As shown in Fig. 3.13, comparison is made for evaluating the trade-off between NPB and

loss performance using the improved SVM 2. Hysteresis width for neutral point balancing algo-

rithm is controlled for obtaining different neutral point voltage ripple. It can be seen from Fig. 3.13

that, when neutral point ripple is increasing within a certain range, the total loss is decreasing due

to less number of changing space vector alignment actions. However, when neutral point voltage

ripple increases, the commutation voltage of the device is higher due to the unbalanced neutral

point potential, which deteriorates the loss performance. It is recommended that the hysteresis

width should be kept within 30 V for a neutral point balancing control algorithm.

MATLAB simulation has been conducted to compare EMI performance of different SVM

schemes. In this simulation, Vasw represents the output phase voltage switching waveform, Iph

represents the phase current, Vnp is the NP voltage, and Vcm shows the common-mode voltage. As
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(a) (b)

(c) (d)

Fig. 3.14: CMV and phase voltage spectrum at different power factors: (a) CMV when PF=1
(b) Phase voltage spectrum when PF=1 (c) CMV when PF=0.8 (d) Phase voltage spectrum when
PF=0.8
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shown in Fig. 3.12, when PF=0.8, SVM 1 has a higher CM voltage ripple than SVM 2, and im-

proved SVM 2. Under PF=1 and PF=0.8 case, CM voltage and phase leg output voltage spectrum

are shown in Fig. 3.14. As shown in Fig. 3.14(a) and Fig. 3.14(c), from 10 kHz to 100kHz range

which is of great significance in EMI filter design, SVM 2 and improved 2 have lower CM noise

than SVM 1, especially at relatively low power factor case. It is shown in Fig. 3.14(b) and Fig.

3.14(d), since SVM 2, and improved SVM 2 have higher neutral point unbalanced voltage under

non-unity power factor, their phase leg voltage has slightly larger harmonics (300 Hz, 420 Hz, etc.)

than SVM 1. In terms of common-mode filter and output filter design, SVM 2 and improved SVM

2 are preferred due to their lower common-mode voltage harmonics as well as comparable phase

output voltage spectrum.

In summary, SVM 2 and improved SVM 2 have better performance regarding semiconduc-

tor loss and common-mode voltage reduction than SVM 1, but SVM 1 has the best neutral point

balancing capability. When the power factor is between 0.85 and 1, SVM 2 is adopted for better

overall performance, and when the power factor is between 0.7 to 0.85, improved SVM 2 can be

utilized for its’ overall better loss reduction as well as neutral point balancing performance.

3.5 Conclusion

In this paper, semiconductor losses of different commutation loops in hybrid switch com-

bination TNPC are analyzed and compared. Based on different switching losses of commutation

loops, SVM 1 and SVM 2 themes are utilized and compared in this topology comprehensively in

terms of their influences on switching loss, NPB and EMI spectrum, and then improved SVM 2 is

proposed to further push the converter to higher efficiency at relatively low power factor.

Comparing to SVM 1, SVM 2 and improved SVM 2 schemes have better loss performance
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and CM noise performance, while improved SVM 2 scheme has the lowest power loss and lowest

CM noise. As for neutral point balancing capability, SVM 1 is better than SVM 2 and improved

SVM 2 under non-unity power factor, and their neutral point balancing capabilities are the same

under the unity power factor.

Hybrid-switch-based 3 phase 3-L TNPC is comprehensively studied in this paper, and it

gives guidance for hybrid switch topology design consideration and the choice of SVM strategy.
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4 Selective Digital Active EMI filtering using Resonant Controller

Hongwu Peng, Balaji Narayanasamy, Asif Imran Emon, Zhao Yuan,

Rongxuan Zhang, and Fang Luo

4.1 Abstract

Conventional passive EMI filters are bulky and occupy up to 30% of converter volume and

weight. Active EMI filters are a critical technology that enables a reduction in the size of passive

components. The performance of active EMI filters (AEF) with feedback control for volume re-

duction is limited by relatively low-gain on the feedback loop to ensure stability. A novel digital

active EMI filter (DAEF) with the resonant controller, which provides ultra high-gain at frequen-

cies of interest, is demonstrated for DM noise attenuation in this paper. The filter consists of a

noise sensing circuit, the resonant controller built in the Field Programmable Gate Array (FPGA),

and the noise injection circuit. The experimental test results show that the proposed EMI filter

has 45 dB more attenuation at 150 kHz than the conventional passive EMI filter, which is also the

highest attenuation reported in the DAEF literatures.

4.2 Introduction

Power converters generate conducted EMI noise due to the switching action of the power

semiconductor devices [1–3]. Conventionally, a second-order passive EMI filter using an inductor

and capacitor, is utilized to mitigate this noise. These passive filters tend to be bulky and could

occupy up to 30% of the system volume. Active EMI filters (AEF) could be used to reduce the

volume of the passive components. The AEF provides attenuation up to a few Mega Hz, and

a smaller passive filter is used to provide high-frequency attenuation. The AEF, along with the
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passive filters, is referred to as hybrid EMI filters (HEFs). The AEFs can be classified based on

the methodology of control, the active circuits, noise sensing, and noise cancellation mechanisms

[4]. Previously, AEFs using feedforward[4], feedback[5–7], and a combination of both control

techniques [7] have been demonstrated. Also, AEFs utilizing different voltage or current sensing

and cancellation have been demonstrated [8–12]. All these implementations use analog ICs along

with passive components for the active circuits, and the performance of single-stage AEFs is lim-

ited due to the stability. Recently, DAEFs [13–16] that use DSP/FPGAs in addition to the analog

circuitry have been demonstrated. This paper proposes a new control algorithm for single-stage

DAEF, which demonstrates higher attenuation than any other previous works in the literature.

(a) (b)

Fig. 4.1: Proposed digital active EMI filter with the resonant controller: (a) Digital active EMI
filter based on VSCC topology (b) Resonant controller built in FPGA

A typical implementation of a voltage-sensing current-cancellation (VSCC) digital active

EMI filter (DAEF) is shown in Fig. 4.1aa. It comprises of the noise sensing high-pass filter

(HPF), the Analog-to-Digital Converter (ADC), the DSP/FPGA, the Digital-to-Analog Converter

(DAC), the active circuit, the main passives, and the compensation circuitry. The DSP/FPGA

will not be present in an analog-only implementation. The main limitation to the performance

of any AEF with feedback compensation is stability. The stability is mainly influenced by the
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phase shift introduced by the noise-sensing stage [6] and the noise-processing stage. Particularly,

in converters with ac voltage, a second-order high-pass filter is required to separate the sensed

noise from the fundamental voltage or current signal. This results in reduced attenuation of the

AEF and additional compensation network. Some compensation networks require high-voltage

capacitors, thus reducing the volumetric benefits of using an active EMI filter. This limitation is

applicable to both analog and digital AEF. In [17] showed how the processing delay in digital AEF

affects the attenuation. In [16], it was shown that the previous switching cycle noise could be used

to compensate for noise in the next switching cycle to avoid the delay. However, attenuation of

only 24 dB could be achieved in the process. This paper proposes an improved digital active EMI

filter that uses the resonant controller which achieves improved attenuation without increasing the

volume overhead from additional high-voltage components.

The proportional resonant (PR) controller [18, 19] has been widely used in grid-connected

inverters, which provides superior performance than the conventional proportional-integral (PI)

controller in tracking sinusoidal signals. Ideally, the resonant part of the PR controller provides

infinite gain at the frequency of interest, while providing no gain or phase shift at other frequencies.

Thus, the resonant controller will be perfectly suitable for the VSCC DAEF application. CISPR 22

[20] class B conducted noise limits, defines EMI test frequency range from 150 kHz to 30 MHz. If

the resonant controller is to be implemented in the DAEF system, the resonant frequency should be

set to be a few 100s of kHz, while digital controller discretization frequency should be at least a few

10s of MHz for fulfilling the sampling requirement. Therefore, a FPGA instead of a DSP is used for

control. The structure of the resonant controller is shown in Fig. 4.1b, multiple resonant controllers

are used in parallel at different frequencies for canceling EMI noise at different frequencies.

The contributions of this work are as follows. A novel digital AEF that implements VSCC
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topology using the resonant controller is proposed. The stability analysis of the proposed imple-

mentation is carried out. The discretization and modeling of the resonant controller based VSCC

AEF are demonstrated, and the design methodology for proposed implementation is laid out. By

utilizing the resonant controller in the FPGA, the proposed AEF achieves an attenuation of 46 dB

at around 150kHz, which is 25dB higher than the conventional single-stage active EMI filter. This

is the highest reported attenuation in the literature using single-stage digital or analog AEF.

The organization of the work is as follows. Section II describes the topology that is used

in the implementation. Section III involves the theoretical modeling of proposed VSCC with the

resonant controller. Section IV describes the design example for the proposed concept, and fre-

quency domain measurements using the vector network analyzer (VNA) is performed to verify

the modeling. Section V describes the experimental test setup and discusses the small-signal and

converter test results. Section VI presents the conclusion.

4.3 Active EMI filter Topology and System Level Modeling

Different AEF topologies use either current or voltage sensing and compensation. The

AEF topologies that utilize current-sensing or voltage compensation, current transformers (CTs)

or voltage-injection transformers are needed for implementation. For DM noise, CTs and voltage-

injection transformers can be bulky when the line current is high. Therefore, AEF topologies that

do not have transformers are preferred. The voltage-sense current-cancellation topology requires

high voltage capacitors and other low voltage circuitry for noise sensing and cancellation. In

summary, VSCC topology will maximize the volume reduction for AEFs, and will be used in

this paper. Previously, feedback control based voltage-sense current-cancellation topology was

demonstrated in [6]. However, the attenuation of only 12 dB at around 150 kHz is obtained. This
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(a)
(b)

Fig. 4.2: VSCC AEF topology: (a) Simplified VSCC AEF topology (b) Equivalent circuit of
VSCC AEF topology

paper utilizes the resonant controller built in FPGA for the feedback loop of the VSCC AEF and

achieves 46 dB attenuation at around 150 kHz and is the highest attenuation in reported literatures.

The VSCC AEF topology is shown in Fig. 4.1, and the simplified version of VSCC topol-

ogy is shown in Fig. 4.2a, where the feedback loop is collapsed into a transfer function R jt .

Through Norton and Thevenin’s equivalent circuit transformation, the equivalent circuit can be

obtained as Fig. 4.2b. IS is the noise source current, and I′S represents equivalent noise source

current considering the current sharing between the differential-mode noise source impedance (ZS)

and impedance of DM inductor ZDM . The new equivalent noise source (I′S) and noise source

impedance (Z′S) is given by (4.1) and (4.2), respectively. The AEF cancellation current and noise

current on the LISN are represented by ISC and ISL, respectively. The noise voltage on the LISN is

represented by VL.

I′S =
ZS

ZS +ZDM
IS (4.1)

Z′S = ZS +ZDM (4.2)
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(a)

(b)

(c)

Fig. 4.3: Block diagram of the VSCC DAEF system: (a) System block diagram (Sensing and
FPGA processing stage are collapsed into R jt) (b) Equivalent system block diagram (c) Sensing
and FPGA processing stage block diagram

According to Fig. 4.1 and Fig. 4.2b, the block diagram of the VSCC AEF system is

shown in Fig. 4.3a. The equivalent system block diagrams is shown in Fig. 4.3b, where GFW (s)

and GFB(s) donate the transfer function of the forward and backward loop. Sensing and FPGA

processing are collapsed into R jt . The open-loop current gain GFW without the DAEF (R js is

disconnected) is given by (4.3). The feedback loop transfer function is given by (4.4). Close-loop

current gain GCL with active EMI filter is given by (4.5). The insertion gain GIS, which is defined

as the ratio of current flowing through ZLISN with and without active EMI filter, can be derived as

(4.6). The open-loop gain is given by (4.7), which will be used for to define the stability margin.

GFW =
ISL

I′S
=

Z′S ·ZINJ

ZINJ · (Z′S +ZLISN)+ZLISN ·Z′s
(4.3)

GFB =
ISC

ISL
= R js

ZLISN

ZINJ
(4.4)

GCL =
ISL

I′S
=

GFW

1+GFW ·GFB
(4.5)
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GIS =
GFW

GCL
=

1
1+GFW ·GFB

(4.6)

TLG = GFW ·GFB (4.7)

The sensing and FPGA processing transfer function R jt is shown In Fig. 4.3c. THPF denotes

the transfer function of the high pass filter, Tiso denotes the RF transformer transfer function, GADC

and GDAC denotes the transfer function of ADC sampling stage, Rwi,T p(z) denotes the transfer

function of the digitized resonant controller, GZOH denotes the transfer function of transformation

between continuous and discrete domain. Within FPGA, resonant controllers are built in parallel

with each other, and the transfer function of R js is given by (4.8). The resonant controller pro-

vides high gain at frequencies that match the noise source spectrum. This enables the DAEF to

provide high attenuation to the EMI noise at those frequencies. However, the delay introduced by

ADC/DAC and the phase introduced by the resonant controller will give rise to the stability issues

in the feedback loop.

R js = THPF ·T 2
iso ·GADC ·GDAC ·

wi=wn

∑
wi=w1

Rwi,T P(z) (4.8)

4.4 Detailed Modeling of Digital Resonant Controller and Circuit Elements

This section will discuss discretization methods of the resonant controller and detailed

modeling of each circuit elements within the VSCC DAEF system, which will provide a guideline

for the component value design.
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4.4.1 Discretization Methods of Resonant Controller

In [19] showed the influence of different discretization methods on the performance of the

resonant controller. Continuous domain expression of the resonant controller is given by (4.9).

Forward Euler, zero-order-hold, and the Tustin with prewarping discretization expressions for the

resonant controller are given in (4.10), (4.11), and (4.12), respectively. wi denotes the resonant

frequency, and Ts denotes the digitization step.

Rwi(s) =
Krs

s2 +w2
i

(4.9)

Rwi,FE(z) =
KrTs · (z−1− z−2)

1−2z−1 + z−2(1+w2
i T 2

s )
(4.10)

Rwi,ZOH(z) =
Krsin(wiTs)/wi · (z−1− z−2)

1−2z−1cos(wiTs)+ z−2 (4.11)

Rwi,T P(z) =
Krsin(wiTs)/(2wi) · (1− z−2)

1−2z−1cos(wiTs)+ z−2 (4.12)

A comparison of different discretization methods is given in Fig. 4.4, where T s is 10 ns

(corresponding to the sample rate of the FPGA), and the resonant frequency is 150 kHz. Within

a small frequency range, the gain and phase of the resonant controller with continuous domain

function, zero-order-hold, and the Tustin with prewarping discretization are matching well, all of

which provide very high gain at the resonant frequency. However, the resonant controller with the

forward Euler discretization method has minimal gain at the resonant frequency and is therefore
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(a) (b)

Fig. 4.4: Gain and phase comparison of different discretization methods: (a) Comparison within
10 kHz to 10 MHz (b) Comparison within 145 kHz to 155 kHz

not preferred in the real application. At higher frequencies, the resonant controller with zero-order-

hold discretization methods has an undesired phase shift. Whereas, the resonant controller with the

Tustin with prewarping discretization method matches better with continuous domain expression

at all frequencies. Thus, the resonant controller using the Tustin with prewarping discretization

method is chosen for the digital active EMI filter.

4.4.2 Gain Selection for Resonant Controller

As discussed above, the resonant controller using the Tustin with prewarping discretization

methods matches pretty well with the continuous domain expression. The continuous domain

expression will be used in this section to discuss the factors that affect the performance of the

resonant controller.

The selection of gain at different resonant frequencies is dependant on the clock accuracy

for pulse width modulation (PWM), the accuracy of the resonant controller itself within the FPGA,

and the fundamental frequency of output current if the noise source is an inverter. Assuming the

resonant frequency of the resonant controller is wi, and the frequency variation caused by the PWM
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clock accuracy or calculation accuracy is ∆wi (either positive or negative). The amplitude of the

resonant controller at w = wi +∆wi frequency is given by (4.13). The lower limit of gain value

selection is given by (4.14), where dBrsd denotes the desired amplitude residue of the resonant

controller at w = wi +∆wi frequency. The higher limit of gain value is given by (4.15), which

limits the bandwidth of resonance within wi− 0.05wi to wi + 0.05wi. This is essential to ensure

that the resonant controller will not create stability issues when multiple resonant controllers are

used in parallel.

|Rs(wi +∆wi)|= |
Kr,i

−2∆wi +
∆w2

i
wi+∆wi

| (4.13)

|Rs(wi +∆wi)|> 10
dBrsd

20 (4.14)

|Rs(wi±0.05wi)| ≈
10Kr,i

wi
< 2 (4.15)

4.4.3 Modeling of The High Pass Filter

The converter that uses this filter could be fed from ac or dc supply. Either way, the noise-

sensing stage has to sufficiently attenuate any 60 Hz ac voltage and its harmonics, and the high-

frequency currents due to rectifier operation or any other converters connected to the same node.

Otherwise, any low-frequency harmonics can easily saturate the output of the active circuits. Ide-

ally, the output of the high pass filter should only include the switching frequency and its harmonics

in the desired EMI frequency range (150 kHz to 30 MHz). The design of the sensing network re-

quires careful consideration to ensure that it:
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1. has the desired performance throughout the entire frequency range and

2. it does not add too much to the volume of the filter

It is not possible to get high attenuation at 60 Hz with a 1st order high pass filter. Therefore

a 2nd order high pass filter is used as the sensing network. The capacitor Cs1 needs to be rated for

the input voltage and needs to be safety rated (X1Y1 rated). The other components Cs2, Rs1 and

Rs2 are low voltage and low power components. The capacitor Cs2 is a 50 V rated X7R surface

mount capacitor. The transfer function of the filter is given by (4.16) ∼ (4.18). The output of the

high pass filter is buffered (op-amp configured as a voltage follower) and fed to ADC. The selected

op-amp is unity-gain stable with a gain-bandwidth of about 500 MHz. Therefore, the output of the

buffer could be assumed to be the same as that of the high pass filter.

THPF =
s2

s2 + k1s+ k2
(4.16)

k1 = (
1

Cs1Rs1
+

1
Cs1Rs2

+
1

Cs2Rs2
) (4.17)

k2 =
1

Cs1Cs2Rs1Rs2
(4.18)

4.4.4 modeling of the ADC and DAC Sampling System

According to [21], the RF transformer used in the sampling system for matching the

impedance on termination, the transfer function can be modeled as (4.19). The characteristic of

the RF transformer is simply a bandpass filter, which has the first corner frequency w1 at around

20 kHz and the second corner frequency w2 at around 200 MHz.
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Tiso =
1

(1+w1/s) · (1+ s/w2)
(4.19)

[22] presented the model of the discrete sampling system, the transfer function of trans-

formation between continuous and discrete domain is given in (4.20), where Ts represents the

digitization step.

GZOH =
1− e−sTs

sTs
(4.20)

The ADC and DAC models are given in (4.21) and (4.22), where m and n denote the bit

width of ADC and DAC, VADC and VDAC denote the range of ADC and DAC, nADC and nDAC donate

the clock latency of ADC/DACs. For most of the off-the-shelf ADC/DACs, there is clock latency

around 5 to 15 clock cycles.

GADC =
2m

VADC
· z−nADC (4.21)

GDAC =
VDAC

2n · z
−nDAC (4.22)

4.5 Design Example of the Proposed Concept and VNA Measurement for Stability Analysis

In this section, the AEF system’s parameters for the design example will be given or derived

based on previous chapters, and then, the open-loop gain and close loop gain modeling and VNA

measurement will be conducted.

The noise source is a DC-DC converter, the output filter components’ parameters are
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L = 70 µH and C = 5 µF . The switching frequency of the DC-DC converter is 50 kHz, and it

realizes 12 to 5V conversion. The inductance value of the DM inductor is LDM = 131 µH, and the

capacitance value of the DM capacitor is CINJ = 470 nF .

The gain for the resonant controller (Kr,i) is selected based on (4.13)∼ (4.15). For example,

for a DC-DC converter, which switching frequency is 50 kHz, and resonant controller at 150kHz is

to be designed for DAEF. Assuming the 150 kHz noise will have ±300Hz variation. Furthermore,

30 dB amplitude residue (dBrsd) at 150kHz± 300 Hz is to be ensured. According to (4.14), the

lower limit of the gain Ki can be calculated as 1.9 · 104. According to (4.15), the higher limit of

Ki can be calculated as 3 · 104. So the value of the resonant controller’s gain Ki should satisfy

1.9 ·104 < Ki < 3 ·104.

For the second order high pass filter, the components’ values are: Cs1 = 4.7 nF , Cs2 =

10 nF , Rs1 = 3.3 kΩ and Rs2 = 3.3 kΩ. According to (4.16) ∼ (4.18), two corner frequencies

of the high pass filter can be calculated as 700 Hz and 7 kHz. The attenuation of 60 Hz signal is

around 35 dB, which will make sure that the line frequency voltage variation will not saturate the

ADC sampling.

The proposed concept is implemented using Intel Cyclone IV FPGA in a Terasic DE2-

115 demo board, and the operating frequency is set to 100 MHz, so the discretization time step

is Ts = 10 ns. In the configuration, the ADC AD9254 [23] has around 4 ns of propagation delay

and 12 cycles of clock latency. Since the ADC is using the same clock as that of the FPGA, the

propagation delay can be ignored, and totally 13 cycles of clock latency exist in ADC sampling.

The same concept can be applied to DAC DAC5672 [24] model. In equation (4.21) and (4.22), the

nADC and nDAC values can be acquired as (4.23).
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nADC = 14, nDAC = 5 (4.23)

Based on (4.3)∼ (4.8), the loop gain of the proposed configuration of AEF without the res-

onant controller can be expressed as (4.24). The first round of loop gain and phase measurement

should be done by replacing the resonant controller with unity gain transfer function, which is de-

scribed as (4.7). The loop gain measured from the circuit under test as well as loop gain calculated

from modeling are shown in Fig. 4.5. From 70kHz to 20MHz, the model matches pretty well with

the measurement, the discrepancy of the low-frequency and high-frequency gain/phase might be

caused by the inaccuracy of the model of the RF transformer.

TLG,w/o res = GFW ·
ZLISN

ZINJ
·THPF ·T 2

iso ·GADC ·GDAC (4.24)

Fig. 4.5: Loop gain without resonant controller

In order to understand each part of the circuit’s effects on stability, the bode plot of each

function is shown in Fig. 4.6. As shown in the figure, in the frequency range of 9 kHz to 300 kHz,
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the GFW ZLISN/ZINJ transfer function and high pass filter THPF transfer function is providing gain

attenuation and phase lead. In the high-frequency range (above 300 kHz), the gain of each transfer

function will be maintaining stable, but the GADC and GDAC will have tremendous phase lag due to

the clock latency.

Fig. 4.6: The bode plot of each transfer function.

Gain and phase of the loop gain without the PR controller is of great significance in deter-

mining where the digital PR controller can be implemented. As shown in Fig. 4.4b, the resonant

controller will introduce 90◦ lead/lag. In order to make sure that the entire loop gain with the res-

onant controller implemented is stable, the original phase of the loop gain without PR controller

should be within ±90◦. Otherwise, phase compensation should be implemented together with

the resonant controller. As shown in Fig. 4.4b, to remain 25◦ phase margin, 65 kHz to 950 kHz

frequency range is available for implementing the resonant controller without any phase compen-

sation.

Assuming the noise source is a converter/inverter operating at 50 kHz switching frequency,
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then the noise source will contain ki · 50 kHz noise and its harmonics. CISPR 22 defined the

conducted emission limit from 150 kHz to 30 MHz, so the resonant controller’s frequencies are

selected as i ·50kHz where i ranges from 3 to 19. Gain selection for the resonant controller is done

by using (4.14) and (4.15). After carefully designing the resonant frequencies and gains, the loop

gain incorporating resonant controller is obtained in Fig. 4.7. As it can be seen from the loop gain

measurement, the phase margin at the highest frequency is exactly 25◦, which matches well with

previous analysis.

Fig. 4.7: Loop gain with the resonant controller

Fig. 4.8: Insertion loss measurement setup

The insertion loss measurement is carried out using a VNA (Bode-100) is shown in Fig.
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Fig. 4.9: Insertion loss measurement of DAEF implementation

4.8, and the measurement result is shown in Fig. 4.9. The figure shows that the insertion loss at

150 kHz is enhanced by about 45 dB using the resonant controller. The insertion loss is high at

harmonics of 50 kHz (n = 3, 4, ..., 19).

4.6 Experimental Results

The filter discussed above is implemented in the experiment. The proposed resonant con-

troller is implemented in the FPGA (Intel Cyclone IV FPGA in a Terasic DE2-115 demo board

along with a Terasic AD/DA daughter card with a sample rate of 100 MHz). Apart from the filter,

the noise is measured at the LISN using an EMI receiver.

4.6.1 Small-Signal EMI Test

In the small-signal measurement, a function generator along with a buffer is used as the

noise source, and D = 0.5 and D = 0.3 are implemented and tested. The EMI receiver measurement

is shown in Fig. 4.11a and the attenuation at 150 kHz with the active EMI filter is about 45 dB,

which is the highest attenuation reported in any active EMI filter literature, both analog and digital

active EMI filters. As for D = 0.3 condition, harmonics of 50 kHz (n = 3, 4, ..., 19) is attenuated
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(a)

(b)

Fig. 4.10: Experiment setup: (a) Equivalent circuit for experiment setup (b) Picture for experiment
setup

down to noise floor as well.

4.6.2 Converter EMI Test Results

In the converter EMI test, the noise source is a buck converter which converts voltage from

12V to 5V , and the switching frequency is 50kHz, the output current is 1A. As shown in Fig. 4.12,

the EMI noise at 150 kHz is attenuated 37 dB by using AEF, and all the other harmonics between

150 kHz to 950 kHz are attenuated to the noise floor. The performance of the proposed DAEF is

the best among all reported literature.

Conclusion

The performance of conventional digital active EMI filters is limited by the delay intro-

duced by the ADC/DAC. The best attenuation reported in the literature is 24 dB at 150 kHz. This
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(a)

(b)

Fig. 4.11: Small-signal test of proposed DAEF under different noise source condition: (a) Test
under D = 0.5 condition (b) Test under D = 0.3 condition

Fig. 4.12: Converter EMI test result
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paper proposes a new method to combine the resonant controller along with the digital active EMI

filter to improve the attenuation by another 20 dB. Design and modeling of the proposed DAEF

are discussed, small-signal experimental results, as well as converter test results, have confirmed

the validity of the proposed method.
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5 Conclusion and Future Work

Based on the work mentioned above, the major challenges of the 3 phase 3-L TNPC system

building and control have been identified. However, for the system level design, the switching loop

optimization and the current sharing strategy have not been discussed. The modulation technology,

which introduced in Chapter 2, has not been implemented into hardware prototype yet. For the

active EMI filter, the proposed configuration has not been implemented into inverter topology, and

a proportional part may also need to be included for better bandwidth. The following are the needs

for future work and research:

1. Extend the system-level optimization to power stage hardware design as well as the

device paralleling design. A thermal solution for the hardware also needs to be investigated.

2. The proposed modulation and control technology needs to be implemented to hardware

for better evaluation and understanding.

3. The active EMI filter needs to be implemented into inverter topology, and proportional

part needs to be introduced.

4. Active EMI filter can be integrated into higher power level converter, further information

for OPAMP selection, high power design needs to be discussed,
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