131 research outputs found

    Functional Programming for Distributed Systems with XC

    Get PDF

    Correct-by-Construction Development of Dynamic Topology Control Algorithms

    Get PDF
    Wireless devices are influencing our everyday lives today and will even more so in the future. A wireless sensor network (WSN) consists of dozens to hundreds of small, cheap, battery-powered, resource-constrained sensor devices (motes) that cooperate to serve a common purpose. These networks are applied in safety- and security-critical areas (e.g., e-health, intrusion detection). The topology of such a system is an attributed graph consisting of nodes representing the devices and edges representing the communication links between devices. Topology control (TC) improves the energy consumption behavior of a WSN by blocking costly links. This allows a mote to reduce its transmission power. A TC algorithm must fulfill important consistency properties (e.g., that the resulting topology is connected). The traditional development process for TC algorithms only considers consistency properties during the initial specification phase. The actual implementation is carried out manually, which is error prone and time consuming. Thus, it is difficult to verify that the implementation fulfills the required consistency properties. The problem becomes even more severe if the development process is iterative. Additionally, many TC algorithms are batch algorithms, which process the entire topology, irrespective of the extent of the topology modifications since the last execution. Therefore, dynamic TC is desirable, which reacts to change events of the topology. In this thesis, we propose a model-driven correct-by-construction methodology for developing dynamic TC algorithms. We model local consistency properties using graph constraints and global consistency properties using second-order logic. Graph transformation rules capture the different types of topology modifications. To specify the control flow of a TC algorithm, we employ the programmed graph transformation language story-driven modeling. We presume that local consistency properties jointly imply the global consistency properties. We ensure the fulfillment of the local consistency properties by synthesizing weakest preconditions for each rule. The synthesized preconditions prohibit the application of a rule if and only if the application would lead to a violation of a consistency property. Still, this restriction is infeasible for topology modifications that need to be executed in any case. Therefore, as a major contribution of this thesis, we propose the anticipation loop synthesis algorithm, which transforms the synthesized preconditions into routines that anticipate all violations of these preconditions. This algorithm also enables the correct-by-construction runtime reconfiguration of adaptive WSNs. We provide tooling for both common evaluation steps. Cobolt allows to evaluate the specified TC algorithms rapidly using the network simulator Simonstrator. cMoflon generates embedded C code for hardware testbeds that build on the sensor operating system Contiki

    Agoric computation: trust and cyber-physical systems

    Get PDF
    In the past two decades advances in miniaturisation and economies of scale have led to the emergence of billions of connected components that have provided both a spur and a blueprint for the development of smart products acting in specialised environments which are uniquely identifiable, localisable, and capable of autonomy. Adopting the computational perspective of multi-agent systems (MAS) as a technological abstraction married with the engineering perspective of cyber-physical systems (CPS) has provided fertile ground for designing, developing and deploying software applications in smart automated context such as manufacturing, power grids, avionics, healthcare and logistics, capable of being decentralised, intelligent, reconfigurable, modular, flexible, robust, adaptive and responsive. Current agent technologies are, however, ill suited for information-based environments, making it difficult to formalise and implement multiagent systems based on inherently dynamical functional concepts such as trust and reliability, which present special challenges when scaling from small to large systems of agents. To overcome such challenges, it is useful to adopt a unified approach which we term agoric computation, integrating logical, mathematical and programming concepts towards the development of agent-based solutions based on recursive, compositional principles, where smaller systems feed via directed information flows into larger hierarchical systems that define their global environment. Considering information as an integral part of the environment naturally defines a web of operations where components of a systems are wired in some way and each set of inputs and outputs are allowed to carry some value. These operations are stateless abstractions and procedures that act on some stateful cells that cumulate partial information, and it is possible to compose such abstractions into higher-level ones, using a publish-and-subscribe interaction model that keeps track of update messages between abstractions and values in the data. In this thesis we review the logical and mathematical basis of such abstractions and take steps towards the software implementation of agoric modelling as a framework for simulation and verification of the reliability of increasingly complex systems, and report on experimental results related to a few select applications, such as stigmergic interaction in mobile robotics, integrating raw data into agent perceptions, trust and trustworthiness in orchestrated open systems, computing the epistemic cost of trust when reasoning in networks of agents seeded with contradictory information, and trust models for distributed ledgers in the Internet of Things (IoT); and provide a roadmap for future developments of our research

    From head to toe:body movement for human-computer interaction

    Get PDF
    Our bodies are the medium through which we experience the world around us, so human-computer interaction can highly benefit from the richness of body movements and postures as an input modality. In recent years, the widespread availability of inertial measurement units and depth sensors led to the development of a plethora of applications for the body in human-computer interaction. However, the main focus of these works has been on using the upper body for explicit input. This thesis investigates the research space of full-body human-computer interaction through three propositions. The first proposition is that there is more to be inferred by natural users’ movements and postures, such as the quality of activities and psychological states. We develop this proposition in two domains. First, we explore how to support users in performing weight lifting activities. We propose a system that classifies different ways of performing the same activity; an object-oriented model-based framework for formally specifying activities; and a system that automatically extracts an activity model by demonstration. Second, we explore how to automatically capture nonverbal cues for affective computing. We developed a system that annotates motion and gaze data according to the Body Action and Posture coding system. We show that quality analysis can add another layer of information to activity recognition, and that systems that support the communication of quality information should strive to support how we implicitly communicate movement through nonverbal communication. Further, we argue that working at a higher level of abstraction, affect recognition systems can more directly translate findings from other areas into their algorithms, but also contribute new knowledge to these fields. The second proposition is that the lower limbs can provide an effective means of interacting with computers beyond assistive technology To address the problem of the dispersed literature on the topic, we conducted a comprehensive survey on the lower body in HCI, under the lenses of users, systems and interactions. To address the lack of a fundamental understanding of foot-based interactions, we conducted a series of studies that quantitatively characterises several aspects of foot-based interaction, including Fitts’s Law performance models, the effects of movement direction, foot dominance and visual feedback, and the overhead incurred by using the feet together with the hand. To enable all these studies, we developed a foot tracker based on a Kinect mounted under the desk. We show that the lower body can be used as a valuable complementary modality for computing input. Our third proposition is that by treating body movements as multiple modalities, rather than a single one, we can enable novel user experiences. We develop this proposition in the domain of 3D user interfaces, as it requires input with multiple degrees of freedom and offers a rich set of complex tasks. We propose an approach for tracking the whole body up close, by splitting the sensing of different body parts across multiple sensors. Our setup allows tracking gaze, head, mid-air gestures, multi-touch gestures, and foot movements. We investigate specific applications for multimodal combinations in the domain of 3DUI, specifically how gaze and mid-air gestures can be combined to improve selection and manipulation tasks; how the feet can support the canonical 3DUI tasks; and how a multimodal sensing platform can inspire new 3D game mechanics. We show that the combination of multiple modalities can lead to enhanced task performance, that offloading certain tasks to alternative modalities not only frees the hands, but also allows simultaneous control of multiple degrees of freedom, and that by sensing different modalities separately, we achieve a more detailed and precise full body tracking

    Spatiotemporal Event Graphs for Dynamic Scene Understanding

    Full text link
    Dynamic scene understanding is the ability of a computer system to interpret and make sense of the visual information present in a video of a real-world scene. In this thesis, we present a series of frameworks for dynamic scene understanding starting from road event detection from an autonomous driving perspective to complex video activity detection, followed by continual learning approaches for the life-long learning of the models. Firstly, we introduce the ROad event Awareness Dataset (ROAD) for Autonomous Driving, to our knowledge the first of its kind. Due to the lack of datasets equipped with formally specified logical requirements, we also introduce the ROad event Awareness Dataset with logical Requirements (ROAD-R), the first publicly available dataset for autonomous driving with requirements expressed as logical constraints, as a tool for driving neurosymbolic research in the area. Next, we extend event detection to holistic scene understanding by proposing two complex activity detection methods. In the first method, we present a deformable, spatiotemporal scene graph approach, consisting of three main building blocks: action tube detection, a 3D deformable RoI pooling layer designed for learning the flexible, deformable geometry of the constituent action tubes, and a scene graph constructed by considering all parts as nodes and connecting them based on different semantics. In a second approach evolving from the first, we propose a hybrid graph neural network that combines attention applied to a graph encoding of the local (short-term) dynamic scene with a temporal graph modelling the overall long-duration activity. Finally, the last part of the thesis is about presenting a new continual semi-supervised learning (CSSL) paradigm.Comment: PhD thesis, Oxford Brookes University, Examiners: Prof. Dima Damen and Dr. Matthias Rolf, 183 page

    Quantum-classical generative models for machine learning

    Get PDF
    The combination of quantum and classical computational resources towards more effective algorithms is one of the most promising research directions in computer science. In such a hybrid framework, existing quantum computers can be used to their fullest extent and for practical applications. Generative modeling is one of the applications that could benefit the most, either by speeding up the underlying sampling methods or by unlocking more general models. In this work, we design a number of hybrid generative models and validate them on real hardware and datasets. The quantum-assisted Boltzmann machine is trained to generate realistic artificial images on quantum annealers. Several challenges in state-of-the-art annealers shall be overcome before one can assess their actual performance. We attack some of the most pressing challenges such as the sparse qubit-to-qubit connectivity, the unknown effective-temperature, and the noise on the control parameters. In order to handle datasets of realistic size and complexity, we include latent variables and obtain a more general model called the quantum-assisted Helmholtz machine. In the context of gate-based computers, the quantum circuit Born machine is trained to encode a target probability distribution in the wavefunction of a set of qubits. We implement this model on a trapped ion computer using low-depth circuits and native gates. We use the generative modeling performance on the canonical Bars-and-Stripes dataset to design a benchmark for hybrid systems. It is reasonable to expect that quantum data, i.e., datasets of wavefunctions, will become available in the future. We derive a quantum generative adversarial network that works with quantum data. Here, two circuits are optimized in tandem: one tries to generate suitable quantum states, the other tries to distinguish between target and generated states

    Evaluating network criticality of interdependent infrastructure systems: applications for electrical power distribution and rail transport

    Get PDF
    Critical infrastructure provides essential services of economic and social value. However, the pressures of demand growth, congestion, capacity constraints and hazards such as extreme weather increase the need for infrastructure resilience. The increasingly interdependent nature of infrastructure also heightens the risk of cascading failure between connected systems. Infrastructure companies must meet the twin-challenge of day-to-day operations and long-term planning with increasingly constrained budgets and resources. With a need for an effective process of resource allocation, this thesis presents a network criticality assessment methodology for prioritising locations across interdependent infrastructure systems, using metrics of the expected consequence of an asset failure for operational service performance. Existing literature is focused mainly upon simulating the vulnerability of national-scale infrastructure, with assumptions of both system dynamics and dependencies for simplicity. This thesis takes a data-driven and evidence-based approach, using historical performance databases to inherently capture system behaviour, whilst network diagrams are used to directly identify asset dependencies. Network criticality assessments are produced for three applications of increasing complexity from (i) electricity distribution, to (ii) railway transport, to (iii) electrified railway dependencies on external power supplies, using case studies of contrasting infrastructure management regions. This thesis demonstrates how network criticality assessments can add value to subjective tacit knowledge and high-level priorities both within and between infrastructure systems. The spatial distribution of criticality is highlighted, whilst the key contribution of the research is the identification of high-resolution single points of failure and their spatial correlation across systems, particularly within urban areas. Service-level metrics also have a broad applicability for a range of functions, including incident response, maintenance and long-term investment. The role of network criticality within a holistic and systemic decision-making process is explored, for risk assessment and resilience interventions. The limitations of the research, regarding sample-size caveats and the definition of system boundaries within performance databases, lead to recommendations on cross-system fault reporting and the improvement of information systems

    Failure mode modular de-composition

    Get PDF

    Integrated information theory in complex neural systems

    Get PDF
    This thesis concerns Integrated Information Theory (IIT), a branch of information theory aimed at providing a fundamental theory of consciousness. At its core, lie two powerful intuitions: • That a system that is somehow more than the sum of its parts has non-zero integrated information, Φ; and • That a system with non-zero integrated information is conscious. The audacity of IIT’s claims about consciousness has (understandably) sparked vigorous criticism, and experimental evidence for IIT as a theory of consciousness remains scarce and indirect. Nevertheless, I argue that IIT still has merits as a theory of informational complexity within complexity science, leaving aside all claims about consciousness. In my work I follow this broad line of reasoning: showcasing applications where IIT yields rich analyses of complex systems, while critically examining its merits and limitations as a theory of consciousness. This thesis is divided in three parts. First, I describe three example applications of IIT to complex systems from the computational neuroscience literature (coupled oscillators, spiking neurons, and cellular automata), and develop novel Φ estimators to extend IIT’s range of applicability. Second, I show two important limitations of current IIT: that its axiomatic foundation is not specific enough to determine a unique measure of integrated information; and that available measures do not behave as predicted by the theory when applied to neurophysiological data. Finally, I present new theoretical developments aimed at alleviating some of IIT’s flaws. These are based on the concepts of partial information decomposition and lead to a unification of both theories, Integrated Information Decomposition, or ΦID. The thesis concludes with two experimental studies on M/EEG data, showing that a much simpler informational theory of consciousness – the entropic brain hypothesis – can yield valuable insight without the mathematical challenges brought by IIT.Open Acces
    • …
    corecore