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ABSTRACT  

Our bodies are the medium through which we experience the world around us, so human-
computer interaction can highly benefit from the richness of body movements and postures 
as an input modality. In recent years, the widespread availability of inertial measurement 
units and depth sensors led to the development of a plethora of applications for the body in 
human-computer interaction. However, the main focus of these works has been on using 
the upper body for explicit input. This thesis investigates the research space of full-body 
human-computer interaction through three propositions.  

The first proposition is that there is more to be inferred by natural users’ movements and 
postures, such as the quality of activities and psychological states. We develop this 
proposition in two domains. First, we explore how to support users in performing weight 
lifting activities. We propose a system that classifies different ways of performing the same 
activity; an object-oriented model-based framework for formally specifying activities; and 
a system that automatically extracts an activity model by demonstration. Second, we 
explore how to automatically capture nonverbal cues for affective computing. We developed 
a system that annotates motion and gaze data according to the Body Action and Posture 
coding system. We show that quality analysis can add another layer of information to 
activity recognition, and that systems that support the communication of quality 
information should strive to support how we implicitly communicate movement through 
nonverbal communication. Further, we argue that working at a higher level of abstraction, 
affect recognition systems can more directly translate findings from other areas into their 
algorithms, but also contribute new knowledge to these fields. 

The second proposition is that the lower limbs can provide an effective means of interacting 
with computers beyond assistive technology To address the problem of the dispersed 
literature on the topic, we conducted a comprehensive survey on the lower body in HCI, 
under the lenses of users, systems and interactions. To address the lack of a fundamental 
understanding of foot-based interactions, we conducted a series of studies that 
quantitatively characterises several aspects of foot-based interaction, including Fitts’s Law 
performance models, the effects of movement direction, foot dominance and visual 
feedback, and the overhead incurred by using the feet together with the hand. To enable all 
these studies, we developed a foot tracker based on a Kinect mounted under the desk. We 
show that the lower body can be used as a valuable complementary modality for computing 
input.  

Our third proposition is that by treating body movements as multiple modalities, rather 
than a single one, we can enable novel user experiences. We develop this proposition in the 
domain of 3D user interfaces, as it requires input with multiple degrees of freedom and 
offers a rich set of complex tasks. We propose an approach for tracking the whole body up 
close, by splitting the sensing of different body parts across multiple sensors. Our setup 
allows tracking gaze, head, mid-air gestures, multi-touch gestures, and foot movements. We 
investigate specific applications for multimodal combinations in the domain of 3DUI, 
specifically how gaze and mid-air gestures can be combined to improve selection and 
manipulation tasks; how the feet can support the canonical 3DUI tasks; and how a 
multimodal sensing platform can inspire new 3D game mechanics. We show that the 
combination of multiple modalities can lead to enhanced task performance, that offloading 
certain tasks to alternative modalities not only frees the hands, but also allows simultaneous 
control of multiple degrees of freedom, and that by sensing different modalities separately, 
we achieve a more detailed and precise full body tracking. 
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1 INTRODUCTION 

“The human body is the best picture of the human soul.” 

Ludwig Wittgenstein 

 

Since the inception of the field, research on Human-Computer Interaction has strived to find 
more efficient and natural ways of interacting with computing systems. With the advent of 
inexpensive inertial measurement units (IMU) and consumer-ready depth cameras (e.g. 
Kinect), Bodily Interaction has surfaced as a natural, intuitive and highly expressive way of 
providing input to computers. These capabilities are now present in a multitude of devices 
we have at home, including mobile phones, watches and video game consoles. By allowing 
users to freely use their bodies as input, these systems enable interactions using gestures, 
postures and actions that more closely resemble how we manipulate the physical world 
around us. In this thesis, we identified three directions in which the research space of bodily 
interaction can be expanded: implicit interaction, lower body interaction, and multimodal 
interaction. 

One topic in Bodily Interaction that has been widely explored is that of body movements to 
issue commands and manipulate controls—what we refer to as explicit input. Implicit 
interaction represents the other side of explicit input. In the context of bodily interaction, 
this usually leads to systems that observe users’ natural movements and postures and use 
this information to make conclusions about the activities and the context of use. Open 
challenges for implicit interaction include inferring not only which activity is being 
performed, but how it is being performed; inferring deeper insights about users, such as 
their psychological states; and what to do with this information after it has been inferred.  

A considerable amount of work has explored applications for bodily interaction, including 
work on mid-air gestures, multi-touch surfaces and tangible computing. However, most of 
this work concentrated on using the upper body—fingers, hands, arms, torso, head, and 
eyes—for these tasks. Research on lower limbs usually focuses on accessible input (e.g. foot 
mice) or monitoring (e.g. smart trainers). Therefore, whereas we have a thorough 
understanding of the capabilities of the upper body for bodily interaction, the same cannot 
be said about the legs and feet. 



Eduardo Velloso 

 

Introduction   17 

Multimodal systems are those that take input or provide output through multiple channels. 
As the body can offer multiple degrees of freedom of input, different body parts can be 
interpreted as separate input modalities. The wide availability of inexpensive sensors 
created the opportunity for incorporating multimodality in diverse application scenarios. 
The body itself can be seen a source of multiple input channels for systems, making full body 
interactions inherently multimodal. 

We propose to investigate the research space of bodily interaction by tackling open research 
questions in these three directions: implicit interaction, lower limbs and multimodal 
interaction. This thesis is therefore guided by three propositions. The first proposition is 
that there is more to be inferred by natural users’ movements and postures, such as 
the quality of activities and psychological states. Our second proposition is that the 
lower limbs can provide an effective means of interacting with computers beyond 
assistive technologies. Our third and final proposition is that by treating body 
movements as multiple modalities, rather than a single one, we can enable novel user 
experiences. 

Based on these propositions, we derived a series of research questions that we explore in 
the following chapters. The first question is how do we specify movements for quality 
analysis? We propose and evaluate several approaches for this problem in the domains of 
weight lifting and affective computing. The second question is how can the feet be used 
for direct input to interactive systems? To answer this, we not only look at the past 
research on foot-based interaction, but also conduct experiments to characterise foot-based 
input and propose novel interaction techniques. The third question is how can 
combinations of input modalities support complex interactive tasks? We explore this 
question in the domain of 3D user interfaces by investigating several modalities, including 
mid-air gestures, gaze, feet, and touch. 

1.1 Implicit Interaction 

Our first proposition relates to implicit interaction. Schmidt defines implicit human-
computer interaction as “an action performed by the user that is not primarily aimed to 
interact with a computerised system but which such a system understands as input” [232]. 
Several categories of systems take advantage of implicit interaction, including context-
aware systems, human activity recognition systems and affective computing systems. 
Because of the high communicative power of body movements and postures, we are 
particularly interested in systems that capture implicit information from the body. 

Context-aware systems are those that attempt to characterise the situation of a person, place 
or object to provide relevant services to the user [1]. Types of context information include 
location, user identity, activity and time, but the body itself can be a powerful source of 
context information. By monitoring users’ actions and postures, these systems can answer 
questions such as: “Is the user facing a public display?”, “Is the user running?”, and “What is 
the user doing?”  

A subset of context-aware systems are human activity recognition systems. These typically 
receive input from sensors, pre-process the data, segment the data stream, extract features 
from the segment, feed them into a classifier and label each segment according to a set of 
activities the classifier was previously trained upon [39]. The data used to train a classifier 
can be of many types (e.g. users’ routines [26], ambient sensors [263], etc.), but on-body 
sensors can be especially informative for this purpose, as they directly capture movements 
and postures. 

Another category of context-aware systems is affective computing systems—those that 
recognise users’ emotional and psychological states. Several modalities can be used or 
combined to recognise affective states, such as facial expressions, prosodic features of 
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speech, and electro-dermal activity, but little attention has been given to body movements 
and postures. The few works that use body data to recognise affect, do so in a fashion similar 
to affect recognition, by training classifiers on a data-driven feature set.  

The two categories of context-aware systems described above present a common challenge. 
Both tend to take data-driven approaches, often ignoring the underlying meaning of the 
data. This is understandable, considering the high complexity and large number of degrees 
of freedom of human movements and postures. By reducing this complexity into a 
manageable feature set composed of aggregate metrics across multiple degrees of freedom, 
researchers can train classifiers that work with high precision and recall for a wide range of 
applications.  

In this thesis, we address three questions. First, how can we capture and encode body 
movement data? We are interested in discovering novel methods of specifying activities and 
recording movements for posterior analysis. Second, how can we support the inference of 
deeper meanings from body movement data? We are interested of what else can be inferred 
by working on a higher abstraction level beyond aggregate measures of sensor data, such 
as the quality of movement and nonverbal cues. Third, how can we help users in 
communicating movement information and providing feedback to improve different 
movements? 

1.2 Lower-Body Interaction 

In terms of explicit interaction, most of the work in HCI has focused on the upper body. From 
early mouse and keyboard interaction, through multitouch surfaces and mid-air gestures, 
all the way to unconventional input, such as head and gaze gestures, researchers have 
proposed a multitude of ways of using our upper body for computing input. We believe that 
the lower limbs can also provide an effective means of interacting with computers. 

This does not mean that interfaces operated by the legs and feet do not exist. In fact, they 
are as old as HCI itself [79]. Pedals, foot mice, balance boards, dance mats, smart trainers—
research prototypes and commercial products of input devices that capture input from the 
lower limbs have existed in a wide range of shapes and sizes. The motivations for these 
works vary substantially: accessible input for users with limb impairment, playful fitness 
exercises, multi-dimensional simultaneous input, navigation in virtual environments, and 
early detection of abnormal gait patterns are just a few examples of the plethora of 
applications for foot input. However, because of this variety, the literature on the topic is 
scattered in journals and conference proceedings of Ergonomics, Accessibility, Wearable 
Computing, among others, with no single resource providing an overview of the field or 
design guidelines for this kind of interaction. 

Further, several of these works tend to be small-scale evaluations and developed from 
diverse backgrounds. This leads to a lack of deep understanding of the fundamentals of the 
human factors of foot-based interaction, such as pointing performance models, the effects 
of direction of movement, and the effect of foot dominance. 

The second direction in which we investigate the research space of body movements is 
towards the lower body, and to do so, we set three goals. Our first goal is to rigorously 
consolidate the history and state-of-the-art of foot-based interaction. Our second goal is to 
fill the gaps in the understanding of human performance with the feet. Our third and final 
goal is to expand the application domains that can benefit from support from the feet as an 
additional input modality. 
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1.3 Multimodal Interaction 

The plethora of input devices now in the market has made it possible to combine interaction 
modalities in a way that was not possible before. Such systems can treat different modalities 
as redundant, offering flexibility in the input choice (e.g. certain tablets allow users to input 
text with an on-screen touch-sensitive keyboard or through a peripheral keyboard 
attachment) or as complementary, combining their inputs to create a richer user experience 
(a process called multimodal fusion). 

The additional degrees of freedom provided by multimodal input offer a solution for 
complex applications that require the simultaneous manipulation of multiple parameters. 
Examples of such applications are performances of electronic music, graphic design and 3D 
user interfaces. In this thesis, we believe that incorporating unconventional body-based 
input modalities, such as gaze and feet, into multidimensional tasks can create novel user 
experiences. This, however, raises many questions: How can the eyes support the hands in 
complex tasks? In which ways such applications can benefit from foot control? How can we 
bring all of these modalities together?  

The third direction we explore in this thesis is towards multimodal interaction. Our first 
goal is to understand how the eyes can support the hands in complex tasks. The second goal 
is to develop novel ways in which the feet can support the hands. Finally, our third goal is 
to explore the kinds of novel multimodal interactions that arise from being able to track the 
whole body. 

1.4 Methodology 

In general, our methodology is based on the design, development and evaluation of 
algorithms, systems and interaction techniques. However, we adapt our methodology to 
each particular proposition investigated in this thesis. 

For our first proposition, we look at implicit interaction, specifically at how to capture, 
analyse and provide feedback on movement data. We focus on two kinds of implicit 
information: the quality of movement and nonverbal cues. Because little work has been 
conducted in both areas, we take an exploratory approach. We conducted several data 
collection studies to inform system implementations and get qualitative opinions from 
users. We investigate novel ways of encoding activities and providing feedback on the 
quality of movement by developing systems to support weight lifting activities; and 
investigate how to extract a higher level of abstraction of movement data in the form of 
nonverbal cues for Affective Computing applications. 

For our second proposition, we look at lower body interaction, specifically at the 
fundamentals of using unconstrained foot movements to support desktop interaction. 
Because of lack of formal knowledge on the topic, we take a focused empirical approach, 
driven by experiments on the human factors of foot interaction. Our first goal was to address 
the problem of the dispersed literature. To do so, we conducted an extensive survey of foot-
based interactions, under the lenses of users, systems and interactions. We used this survey 
to summarise performance studies of foot-based interaction, to compile a dictionary of foot 
gestures, and to understand how to capture input from the feet. To address the gap in the 
understanding of the human factors of foot-based interactions, we built a Kinect-based foot 
tracker and conducted a series of experiments that quantify several aspects of this modality.  

For our third proposition, we look at multimodal bodily interaction, specifically at 
leveraging the richness of human body movements for complex tasks. To create novel 
interactions that use the whole body, we take an application-driven approach, focused on 
developing techniques for specific tasks in the domain of 3D user interfaces. We investigate 
how the eyes can support mid-air gestures in 3D selection and propose foot-based 
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interaction techniques for the canonical 3DUI tasks. Finally, we bring both upper and lower 
body interaction together in a full body sensing arcade machine. 

1.5 Contributions 

The work presented in this thesis makes the following contributions: 

- A formalisation of the concept of quality and qualitative recognition. We 
explore how quality of movement can be extracted from users’ performances of 
weight lifting activities and how that can be communicated back to the user. 

- Systems and algorithms for capturing, encoding, analysis and feedback of 
body movements and postures. We built and evaluated data-driven and model-
driven solutions for assisting weight lifters and for annotating movement and 
postures for Affective Computing. 

- The first extensive literature review on foot-based interactions. We surveyed 
related works that take input from the feet and analysed them under three lenses: 
human factors, sensing mechanisms and types of interactions. 

- A characterisation of unconstrained foot movement for input in a desktop 
setting. We achieve this through four empirical user studies in which we derive 
Fitts’s Law models amongst other quantitative metrics and qualitative insights 
about how users use free foot movement to interact with computers. To enable 
these studies, we built a Kinect-based foot tracker. 

- Novel upper- and lower-body interaction techniques for 3D user interfaces. 
We contribute a selection technique that combines gaze and hand gestures and an 
exploration of how the four canonical 3DUI tasks can be performed by the feet. 

- Explorations on full body interactions for bodily play. We built a multimodal 
sensing platform in the form of an augmented arcade machine (Arcade+) and 
developed games that demonstrate the novel interactions and game mechanics that 
arise from being able to capture input from the whole body. 

1.6 Thesis Roadmap 

This thesis is structured in five chapters. Chapters 2 and 3 focus on extracting implicit 
information from body movements. Chapters 4 and 5 investigate the lower body for explicit 
interaction. Chapter 6 explores different use cases for full body interaction in the domain of 
3D user interfaces. Figure 1 shows a mind map that illustrates the topics investigated in this 
thesis. 

- Chapter 2:  Modelling Body Movements for Activity Analysis and Feedback 
explores systems to support Weight Lifting activities. In this domain, the quality of 
movement execution is crucial for the exercises to have their desired effects, but in 
activity recognition, quality is a concept that is often overlooked. We define and 
discuss quality in activity recognition, and explore how we can support the 
communication of movement quality. We propose three approaches for extracting 
qualitative information from movements. The first is inspired by traditional activity 
recognition systems: we train a classifier by demonstrating the right execution of 
the exercise and the possible mistakes. The second approach is an object-oriented 
framework that enables users to formally specify movement models and generate a 
feedback interface for the exercises. The third approach combines the advantages 
of these two by allowing users to demonstrate the correct execution and extracting 
the model automatically.  
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- Chapter 3: Capturing Nonverbal Cues from Body Movements examines the 
domain of emotion recognition from affective body expressions. In Affective 
Computing, the focus has been on modalities such as facial expressions, speech and 
physiological signals. The few works that attempt to recognise emotions from body 
movements do so in a data-driven fashion, by building classifiers that deal directly 
with sensor data. We propose to support the recognition process by working on a 
higher level of abstraction. We describe AutoBAP, a system that breaks down body 
movements and postures into individual nonverbal cues, which can be used to study 
affective body expressions from a higher level of abstraction.  

- Chapter 4: A Survey of Lower Body Interactive Systems surveys works that take 
input from the legs and feet. As the literature on lower body interaction is scattered 
in different fields, we consolidate them into an extensive literature review. We 
structure our discussion on users’ characteristics and how they affect the 
interaction; systems that capture input from the feet and provide feedback through 
them; and different kinds of foot-based interaction types. 

- Chapter 5: Empirical Investigations of Foot-Based Interaction presents a series 
of focused studies that explore human factors and interaction techniques using free 
foot movement as explicit input for desktop computers. The survey in Chapter 4 
uncovered a need for a fundamental understanding of foot-based interaction, which 
we address in this chapter. To enable our studies, we built a novel foot tracker based 
on a Kinect sensor mounted under the desk. We built performance models based on 
Fitts’s law, tested the effects of the movement direction and the dominance of the 
foot on the performance, and investigated the simultaneous use of the two feet and 
the feet with the hands. 

- Chapter 6: Multimodal Body Movement for 3D Interaction describes studies 
that benefit from the high expressivity and number of degrees of freedom of body 
movements to perform 3D interaction tasks. The studies focus on explicit 
interaction, one with the upper-body and one with the lower-body. In the first one, 
we combine gaze and mid-air hand gestures to enable natural 3D selection and in 
the second, we explore different ways in which the feet can perform the canonical 
3D interaction tasks: navigation, selection, manipulation, and system control. 
Finally, we bring both upper and lower body sensing together in the form of an 
augmented multimodal arcade machine. 
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Figure 1 - This thesis mind map illustrated the themes and studies investigated in this 
thesis.
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2 MODELLING BODY MOVEMENT 

FOR ACTIVITY ANALYSIS AND 

FEEDBACK 

“Your body is the church where Nature asks to be reverenced.” 

Marquis de Sade 

 

In many areas, executing movements in a very specific way is crucial, ranging from the 
millimetric finger movements of surgeons to the highly expansive full body performances 
of gymnasts. In such cases, computers can offer a powerful way of analysing the quality of 
movements and providing feedback to users. Whereas substantial work has been conducted 
in observing movements to infer which activity is being performed, little work has looked at 
inferring how it is being performed. Therefore, the first proposition that we investigate in 
this thesis is that there is more to be inferred by users’ natural movements and postures, 
and in this chapter we focus on their quality.  However, in the context of activity recognition, 
the concept of activity quality is not entirely clear. If we are to analyse the quality of 
movements, we must first define what we mean by quality and understand what its 
consequences for activity recognition are. We propose a definition for the quality of an 
activity as the adherence of the execution of an activity to its specification. This definition 
highlights the fact that in order to measure quality, some benchmark must be specified. 
However, given the high complexity of body movements, this presents a considerable 
challenge. Moreover, the quality of a movement can often be improved with continuous 
feedback from experts, so computing systems should strive to support this communication 
process. In this chapter, we propose several methods of modelling movements for quality 
analysis and of supporting the communication of movement information for feedback 
provision.  

To investigate this problem space, this chapter focuses on the domain of Weight Lifting 
activities. We chose this domain for several reasons. First, there has been an increased 
interest in augmenting sports activities, in the form of mobile phone applications and fitness 
bands that monitor users’ steps and activities. Second, people from all ranges of experience 
perform these movements, so novices can strongly benefit from qualitative feedback on 
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their execution. Third, these exercises are usually performed with a determined set of 
equipment and in a controlled environment, offering great potential for augmenting the 
experience with sensors. 

If computers are to analyse movements, the first challenge lies in capturing this information. 
How to best sense movements: with wearable sensors attached to users’ clothing and 
equipment, or with remote sensors that observe performances unobtrusively? Once this 
information has been captured, how to specify the movement for quality recognition: should 
users explicitly pre-specify the parameters of the exercise or should systems learn from 
observing users’ performances? Finally, how to provide feedback information to the user? 

 

Figure 2 - Chapter outline. We set out with a goal of analysing movement quality. Our 
definition of quality highlights a need for movement specification and we explore 
three ways of accomplishing this: (1) data-driven classification; (2) manual 
specification; and (3) specification by demonstration. 

To address these questions, this chapter begins by overviewing related work (Section 2.1) 
and describing the domain of the qualitative assessment of weight lifting activities (Section 
2.2). We then present several approaches to modelling and analysing movement quality. 
Inspired by work on activity recognition, we first describe a data-driven approach in which 
users train a classifier by showing correct and incorrect ways of performing exercises 
(Section 2.3).  In conventional activity recognition, algorithms look at a sensor stream and 
output a label that corresponds to which activity is being performed. We use a similar 
technique, but our classes reflect different ways in which the same activity can be 
performed, rather than different activities. In a user study, we demonstrate that we can 
successfully classify executions with high precision and recall. 

However, due to the unpredictable number of possible mistakes that users can make, this 
approach does not scale up well. Therefore, for our second approach, we built an object-
oriented, model-based framework for manually specifying exercises (Section 2.4). Our 
framework allows users to translate instructions from weight lifting books into activity 
models that can monitor different body parts and provide feedback on the movement 
quality by generating a feedback interface for it. We conducted two user studies to evaluate 
this approach. In the first study, we demonstrate that given a good model, the system can 
successfully assist users in improving their performance. In our second study, however, we 
show that experts find it difficult to explicitly estimate the parameters of the movements, 
such as the speed and the range of motion. 
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To address this problem, we finally present a system that combines the advantages of both 
approaches, by still using an underlying model, but learning the model parameters by 
demonstration (Section 2.5). We built a system prototype called MotionMA, which allows 
experts to demonstrate the correct execution of the movement, adjust the model 
parameters manually if needed and automatically create a feedback interface that monitors 
the performance. We show that our system can model a wide variety of movements and 
assist users in correcting mistakes. 

2.1 Related Work 

2.1.1 Recognition of Sports Activities 

A large number of researchers have investigated means to provide computational support 
for many sports activities. For example, Michahelles et al. investigated skiing and used an 
accelerometer to measure motion, force-sensing resistors to measure forces on the skier's 
feet and a gyroscope to measure rotation [174]. Ermes et al. aimed to recognize several 
sports activities based on accelerometer and GPS data [80]. In the weight lifting domain, 
Chang et al. used sensors in the athlete's gloves and waist to classify different exercises and 
count training repetitions [46]. More recently, the Microsoft Kinect sensor has been used in 
research and uses a depth camera to extract a skeleton [72], which shows great potential 
for tracking sports activities unobtrusively. 

2.1.2 Qualitative Assessment 

Whereas several works explored how to recognize activities, only few addressed the 
problem of analysing their quality [39]. Haven et al. used cameras for tracking spine and 
shoulders contours, in order to improve the safety and effectiveness of exercises for elder 
people [106]. Moeller et al. used the sensors in a smartphone to monitor the quality of 
exercises performed on a balance board and provided appropriate feedback according to its 
analysis [177]. Similarly, Wii Fit is a video game by Nintendo that uses a special balance 
board that measures the user's weight and centre of balance to analyse yoga, strength, 
aerobics and balance exercises, providing feedback on the screen. With the objective of 
assessing the quality of activities Hammerla et al. used Principal Component Analysis to 
assess the efficiency of motion, but focused more on the algorithms rather than on the 
feedback [103]. Strohrmann et al. used inertial measurement units installed on the users' 
foot and shin to analyse their running technique, but didn't provide feedback to the user 
[257]. 

2.1.3 Model-Based Activity Recognition 

Because sports exercises are often composed of well-defined movements, it is worth 
analysing approaches that leverage the capabilities of a model to analyse activities. For 
example, Zinnen et al. compare sensor-oriented approaches to model-based approaches in 
activity recognition [297]. They proposed to extract a skeleton from accelerometer data and 
demonstrated that a model-based approach can increase the robustness of recognition 
results. In a related work, Zinnen et al. proposed a model-based approach using high-level 
primitives derived from a 3D human model [298]. They broke the continuous data stream 
into short segments of interest in order to discover more distinctive features for Activity 
Recognition. Reiss et al. used a biomechanical model to estimate upper-body pose and 
recognize every day and fitness activities [220]. Finally, Beetz et al. used a model-based 
system to analyse football matches in which players were tracked by a receiver that 
triangulated microwave senders on their shin guards and on ball [17]. 
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2.1.4 User Feedback 

Works that offer feedback to the athlete include displaying performance statistics on a 
screen for rowing, table tennis, and biathlon training [8]. Iskandar et al. proposed a 
framework for designing feedback systems for athletes [125]. Hey et al. used an enhanced 
table tennis practice table to visualize past impact locations by tracking the ball using a 
video camera and a vibration detector [108]. A few works explored how to provide feedback 
on swimming technique using a GUI [181] and a multimodal approach [9]. Several works 
aimed to track exercises to provide feedback and thus increase motivation. Examples 
include the commercial Nike + iPod that combines data gathered from sensors in the user's 
shoes with music, MPTrain that builds a playlist by using the mapping between musical 
features, the user's current exercise level and the physiological response [190], and MOPET 
that uses GPS, acceleration and heart rate data to increase motivation and provide advice to 
the user through a 3D avatar on a mobile device [40]. There has also been work on using 
sensors to provide physical activity energy expenditure, since the amount of calories burnt 
in an exercise is a very important metric for performance evaluation. Approaches in this 
direction include SensVest, a wearable device to record physiological data from children 
playing sports [143] and using artificial neural networks to estimate energy expenditure 
[189]. 

2.1.5 Remote Coaching 

Remote collaboration has been extensively explored in the field of Computer Supported 
Cooperative Work (CSCW). Previous work related to physical activities includes virtual 
reality systems that put the user and trainer side by side for tai chi learning and dancing 
[151]. There’s also been work on how to convey gestures remotely using voice combined 
with a projection [141] and a head-mounted camera and a near field display installed on 
users’ helmets [121]. Video recordings of trainers performing exercises have been used 
extensively in several different mediums, ranging from video tapes to online streaming. 
More recently instructors have been able to recommend sets of exercises remotely using a 
wide range of smart phone apps and services like Fitocracy and Fitlink that enable online 
collaboration among users and between users and trainers. These systems, however, can 
only go as far as routine prescription, without any means for users to assess their 
performances.  

2.1.6 Motion Tracking and Analysis 

In the sport sciences, a common method for analysing performance of exercises is to film 
the athletes and annotate the footage offline using a video digitisation system. An alternative 
is to use a motion tracking system to extract a skeleton of the athlete automatically. Such 
systems can be vision based, usually with passive markers (e.g. Vicon, OptiTrack) or IMU 
(Inertial Measurement Unit)-based (e.g. XSens). More recently, depth cameras such as the 
Microsoft Kinect and the ASUS Xtion enabled consumer-level motion tracking applications, 
including fitness games that guide players and give feedback on their performance, such as 
Nike+ Kinect Training, Your Shape: Fitness Evolved and EA Sports Active 2. A drawback of 
these commercial systems is that their algorithms are hidden from the user and their 
exercises are pre-programmed, without the possibility to tailor the exercises to the user’s 
needs. Technogym’s strength machines can be augmented with the IsoControl hardware 
that provides feedback on range of motion, speed and resting time as well as repetition 
counting. No similar product exists for free weight lifting (i.e. using dumbbells and barbells). 
Several research projects focused on using inertial measurement units to track and 
automatically assess physical exercises. For example, Chang et al. were able to tell weight 
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lifting exercises apart using accelerometers on users’ bodies but did not analyse the quality 
of individual executions [46]. Moeller et al. used the sensors in a mobile phone to analyse 
and provide feedback on exercises performed on a balance board [177]. The Kinect has also 
been used to improve the quality of movements. Kinerehab analyses users’ performances of 
physical rehabilitation movements and provides feedback, but the exercises only included 
lifting both arms to the front, to the side and upwards [47]. Martin et al. developed a system 
that sets out to perform a real-time ergonomic analysis of industrial workers carrying and 
lifting objects in order to prevent musculoskeletal disorders [167]. Their system was limited 
to analysing static positions rather than dynamic movements or gestures. Moreover, neither 
system allows users to specify the movements by demonstration. 

2.1.7 Programming by Demonstration  

As the feedback loop between trainers and experts is based on the demonstration of the 
movements, we sought inspiration in the field of Programming by Demonstration (PbD). PbD 
has been an active area of research since the early 80’s [98]. Instead of hard cording a 
system’s behaviour, PbD aims to make it possible to program systems by having a user 
demonstrate to them how they should behave. Such systems aim at making their 
programming easier for the end-user, who does not need to learn a formal language to 
specify the system’s behaviour [57,156]. Application areas include robotics [41], software 
for children [58], text editing, gesture recognition [162], children’s toys [217], and context-
aware computing [68]. In this work, we use a PbD approach to model human movement and 
assess its quality of execution. Researchers in robotics extensively studied training of robots 
with human demonstrating certain activities [130,244]. Hence, while previous works 
focused on using PbD for reproduction, prediction and recognition of movement, we use it 
to specify a model and analyse further performances of the same movement. 

2.2 Understanding the Problem Domain 

In this section we discuss the concepts of quality in the domain of activity recognition, as 
well as approaches to communicate movement and quality information in the domain of 
weight lifting. Our goal is to provide a basis for our approaches in a way that reflects weight 
lifters’ practices, but grounded on a solid understanding of what quality is and how it can 
inform system design. 

2.2.1 Defining Qualitative Activity Recognition 

In order to discuss qualitative activity recognition we first must define what we mean by 
the “quality of an activity". Although a few works in activity recognition explored aspects of 
quality there is still no common understanding in the community as to what defines the 
quality of an activity and particularly what is “high" or “low" quality. 

The term “quality" has been widely discussed in other fields, such as management research. 
The International Standards Association defines quality as the “degree to which a set of 
inherent characteristics fulfils requirements" [250] and Crosby defines it as “conformance to 
specifications" [55]. What these definitions have in common is the fact that one starts with 
a product specification and a quality inspector measures the adherence of the final product 
to this specification. These definitions make it clear that in order to measure quality, a 
benchmark is needed to measure the quality of a product against, in this case its product 
specification. Adapting this idea to the qualitative activity recognition domain it becomes 
clear that if we can specify how an activity has to be performed we can measure its quality 
by comparing its execution against this specification. From this, we define quality as the 
adherence of the execution of an activity to its specification. As a corollary, we define a 
qualitative activity recognition system as a system that observes the user's execution of an 
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activity and compares it to a specification. Hence, even if there is not a single universally 
accepted way of performing an activity, if a manner of execution is specified, we can 
measure its quality. 

Based on the definition of quality and qualitative activity recognition it is worth discussing 
which are its main aspects and challenges. Qualitative activity recognition differs from 
conventional activity recognition in a distinctive way. While the latter is concerned with 
recognising which activity is performed, the former is concerned with assessing how (well) 
it is performed. Once an activity is specified, the system is able to detect mistakes and 
provide feedback to the user on how to correct these mistakes. 

This directly raises three important questions. First, is it possible to detect mistakes in the 
execution of the activity? Traditional activity recognition has extensively explored how to 
classify different activities. Will these methods work as well for qualitative assessment of 
activities? The second question is how we specify activities. Two approaches are commonly 
used in activity recognition: a sensor-oriented approach, in which a classification algorithm 
is trained on the execution of activities and a model-oriented approach, in which activities 
are represented by a human skeleton model. The third is how to provide feedback in real-
time to improve the quality of execution. Depending on how fast the system can make the 
assessment, the feedback will either be provided in real-time or as soon as the activity is 
completed. Real-time feedback has the advantage of allowing the user to correct his 
movements on the go, while an online system might make use of more complex algorithms 
and provide useful information without distracting the user. 

2.2.2 The Importance of Physical Activity 

It is well-agreed among physicians that physical activity leads to a better and longer life. For 
example, a recent consensus statement from the British Association of Sport and Exercise 
Sciences showed that physical activity can reduce the risk of coronary heart disease, obesity, 
type 2 diabetes and other chronic diseases [188]. Moreover, a recent study estimated that 
at least 16% of deaths could be prevented by improving people's cardio-respiratory fitness 
[25]. An effective way of improving cardio-respiratory fitness is to regularly perform muscle 
strengthening exercises. Such exercises are recommended even for healthy adults as they 
were shown to lower blood pressure, improve glucose metabolism, and reduce 
cardiovascular disease risk [188]. 

A key requirement for effective training to have a positive impact on cardio-respiratory 
fitness is a proper technique. Incorrect technique has been identified as the main cause of 
training injuries [87]. Moreover, free weights exercises account for most of the weight 
training-related injuries (90.4%) in the U.S. [138]. The same study states that people using 
free weights are also more susceptible to fractures and dislocations than people using 
machines. The predominant approach to prevent from injuries and provide athletes with 
feedback on their technique is personal coaching by a professional trainer. While highly 
effective, the presence of a trainer may not always be possible due to cost and availability. 
Personal supervision also does not scale well with the number of athletes, particularly 
among non-professionals. This highlights the great potential for automated analysis of such 
movements. 

2.2.3 The Communication Process in Weight Lifting Training 

Physical exercises, such as in sports or physiotherapy, require a specific execution to result 
in the desired training effect. Hence, experts such as personal trainers and physiotherapists 
need to communicate this knowledge to novices so that they can perform these movements 
properly. From informal observations and interviews with trainers we found that the 
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communication between experts and novices can usually be described by a 3-step 
communication loop (see Figure 3): The expert first demonstrates how the movement 
should be performed and gives hints on what the novice should focus on. 

 

Figure 3 - Bidirectional communication loop between expert and novice. The expert 
demonstrates a movement, which is repeated by the novice and improved according 
to the expert's feedback.  

This communication loop works well if the novice is under direct supervision by the trainer, 
i.e. if both of them are co-located, but it breaks if personal supervision it not possible, e.g. at 
home. In these cases, novices have to rely on video recordings or on written descriptions 
and images of the exercises. Whereas training using such descriptions is possible, this 
approach does not allow for real-time feedback and prevents novices to learn how close 
their execution is to the desired one and how they can improve it. In addition, written 
descriptions are typically high-level and qualitative and do not allow novices to 
quantitatively analyse their performance. In this chapter, we look for ways of supporting 
this communication process through an automated system. 

2.3 Detecting Mistakes using a Data-Driven Approach 

The goal of our first experiment was to assess whether we could detect mistakes in weight-
lifting exercises by using data-driven activity recognition techniques. We recorded users 
performing the same activity correctly and with a set of common mistakes with wearable 
sensors and used machine learning algorithms to classify each mistake. From the point of 
view of our definition of activity quality, we used the training data as the activity 
specification and the classification algorithm as the means to compare the execution to the 
specification. 
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2.3.1 Participants and Apparatus 

We recruited six male participants aged between 20-
28 years, with little weight lifting experience. For 
data recording we used four 9 degrees of freedom 
Razor inertial measurement units (IMU), which 
provide three-axes acceleration, gyroscope and 
magnetometer data at a joint sampling rate of 45 Hz. 
Each IMU also featured a Bluetooth module to stream 
the recorded data to a notebook running the Context 
Recognition Network Toolbox [11]. We mounted the 
sensors in the users' glove, armband, lumbar belt and 
dumbbell (see Figure 4). We designed the tracking 
system to be as unobtrusive as possible, as these are 
all equipment commonly used by weight lifters. We 
made sure that all participants could easily simulate 
the mistakes in a safe and controlled manner by 
using a relatively light dumbbell (1.25kg). 

 

Figure 4 - Sensing setup, with inertial measurement units attached to conventional 
weight lifting equipment. 

2.3.2 Procedure 

Participants were asked to perform one set of 10 repetitions of the Unilateral Dumbbell 
Biceps Curl in five different fashions: exactly according to the specification (Class A), 
throwing the elbows to the front (Class B), lifting the dumbbell only halfway (Class C), 

STUDY AT A GLANCE 

Goal: Record data to train a 
mistake classifier 

Method: Data recording 

Participants: 6M (20-28y.) 

Procedure: 10 Biceps Curl reps 
in 5 different ways 

Results: 98% recognition 
performance with a 2.5s window 
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lowering the dumbbell only halfway (Class D) and throwing the hips to the front (Class E). 
Class A corresponds to the specified execution of the exercise, while the other 4 classes 
correspond to common mistakes. Participants were supervised by an experienced weight 
lifter to make sure the execution complied with the manner they were supposed to simulate. 

2.3.3 Feature Extraction and Selection 

For feature extraction we used a sliding window approach with different lengths from 0.5 
second to 2.5 seconds, with 0.5 second overlap. In each step of the sliding window approach 
we calculated features on the Euler angles (roll, pitch and yaw), as well as the raw 
accelerometer, gyroscope and magnetometer readings. For the Euler angles of each of the 
four sensors we calculated eight features: mean, variance, standard deviation, max, min, 
amplitude, kurtosis and skewness, generating in total 96 derived feature sets. 

In order to identify the most relevant features we used the feature selection algorithm based 
on correlation proposed by Hall [101]. The algorithm was configured to use a “Best First" 
strategy based on backtracking. 17 features were selected: in the belt, were selected the 
mean and variance of the roll, maximum, range and variance of the accelerometer vector, 
variance of the gyro and variance of the magnetometer. In the arm, the variance of the 
accelerometer vector and the maximum and minimum of the magnetometer were selected. 
In the dumbbell, the selected features were the maximum of the acceleration, variance of 
the gyro and maximum and minimum of the magnetometer, while in the glove, the sum of 
the pitch and the maximum and minimum of the gyro were selected. 

2.3.4 Recognition Performance 

Because of the characteristic noise in the sensor data, we used a Random Forest approach 
[33]. This algorithm is characterized by a subset of features, selected in a random and 
independent manner with the same distribution for each of the trees in the forest. To 
improve recognition performance we used an ensemble of classifiers using the “Bagging" 
method [32]. We used 10 random forests and each forest was implemented with 10 trees. 
The classifier was tested with 10-fold cross-validation and different windows sizes, all of 
them with 0.5s overlapping, apart from the 0.5s window. The best window size found for 
this classification task was of 2.5s and the overall recognition performance was of 98.03% 
(see Table 1). The table shows false positive rate (FPR), precision, recall, as well as area 
under the curve (AUC) averaged for each of the 5 tested on 10-fold cross-validation over all 
6 participants (5 classes). With the 2.5s window size, the detailed accuracy by class was of: 
(A) 97.6%, (B) 97.3%, (C) 98.2%, (D) 98.1%, (E) 99.1%, (98.2% weighted average). 

Table 1 - Recognition performance 

Window Size FPR Recall AUC Precision 

0.5s 3.9 85.0 97.4 84.9 

1.0s 1.8 93.5 99.5 93.5 

1.5s 1.0 96.5 99.8 96.5 

2.0s 0.7 97.2 99.9 97.2 

2.5s 0.5 98.2 99.9 98.2 

We also conducted a leave-one-subject-out test in order to measure whether our classifier 
trained for some subjects is still useful for a new subject. The overall recognition 
performance in this test was 78.2 %. The result can be attributed to the small size of the 
datasets (approximately 1800 instances each dataset, extracted from 39.200 readings on 
the IMUs), the number of subjects (6 young men), and the difficulty in differentiating 
variations of the same exercise, which is a challenge in Qualitative Activity Recognition. The 
use of this approach requires a lot of data from several subjects, in order to reach a result 
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that can be generalized for a new user without the need of training the classifier. The 
confusion matrix of the leave-one-subject-out test is illustrated on Figure 5. 

 

Figure 5 - Summed confusion matrix averaged over all participants and normalised 
across ground truth rows. 

2.3.5 Discussion 

The advantage of this approach is that no formal specification is necessary, but even though 
our results point out that it is possible to detect mistakes by classification, this approach is 
hardly scalable. It would be infeasible to record all possible mistakes for each exercise. 
Moreover, even if this was possible, the more classes that need to be considered the harder 
the classification problem becomes. 

2.4 Specifying Exercises with a Model-Based Approach 

Due to the inherent problems of the classification approach, we concentrated our efforts 
into formalising a way of specifying activities and recognizing mistakes by looking at 
deviations from the model in the execution. This section outlines our second approach to 
qualitative activity recognition systems for weight lifting that helps minimize the effort of 
translating specifications into systems. We implemented a C# framework for the 
development of such applications tracking body movements with a Kinect sensor. The 
following sections illustrate the conceptual steps of our approach on the example of building 
a feedback system for the Unilateral Dumbbell Biceps Curl and the Unilateral Lateral 
Dumbbell Raise exercises using our framework. We evaluate whether they can assist users 
in correcting mistakes in a user study. Finally, we evaluate how well expert weight lifters 
can estimate the parameters of the movement to configure the specification. 
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2.4.1 Activity Selection 

An activity must have an appropriate granularity to be analysed. If the activity is too 
complex, it is more appropriate to break it down into smaller activities. In our example, even 
though a weight lifting exercise is commonly performed in sets of 6-12 repetitions, for our 
purposes we consider an activity as a repetition of the exercise. This way we can analyse 
each repetition separately. A Biceps Curl repetition involves raising and lowering the 
dumbbell, so we define the beginning of the activity as when the user starts to lift it and the 
end as when it reaches the initial position again. 

2.4.2 Activity Specification 

The activity should be specified as clearly as possible in natural language. The clearer the 
specification is the easier it will be to model the activity. In our example, we used as the 
specification the instructions provided by a weight lifting book [285]. An activity 
specification can be comprised of several instructions. For the Unilateral Dumbbell Biceps 
Curl, the specification we used, adapted from Williams et al. [285], was the following: (1) 
Stand solidly upright; (2) Your feet should be shoulder-width apart; (3) Your shoulders 
should be down; (4) Curl the dumbbell in an upward arc. Curl the dumbbell to the top of the 
movement when your biceps is fully contracted; (5) Elbows pointing directly down and 
return to the start position; (6) Don't lean back and throw your hips to the front. 

2.4.3 Activity Modelling 

For each instruction in the activity specification we create a model of the recognition 
mechanism according to the components in the framework. The components can be of five 
different classes: Joint, Operator, Feature, Counter and Classifier. The model architecture is 
illustrated in Figure 6. Figure 7 shows an example of an instruction modelled accordingly. 

 

Figure 6 - Layered architecture of our model, which receives as input the raw position 
of the joints as provided by a tracking system and outputs a class of quality for the 
instruction 

A Joint in our model is the XYZ position of each of the 20 joints provided by the Microsoft 
Kinect 1.0 Beta2 SDK. Different instructions will make use of different sets of Joints. In the 
example in Figure 7, the joints are the Wrist, the Elbow and the Shoulder of each side. 
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Figure 7 - Example of an instruction specification based on our model. From the 
joints' position coordinates, we extract the angle between them and its range to count 
repetitions. For each repetition, we calculate the overall range and check whether it 
is within the specified limits. 

Operators represent operations performed on top of the raw position coordinates of a 
single joint or a set of joints. The implemented operators include the XYZ coordinates, 
distance and angles between joints. For example, in the modelling of Instruction 4, we could 
describe the movement in terms of the trajectory of the hand, but this wouldn't be ideal 
because it would depend on the length of each user's arms. Hence, we use an Operator to 
convert it to the angle between the Hand, Elbow and Shoulder instead, because this is not a 
user-dependent measure. Feature components buffer the data that is provided by the 
operators and perform statistical analyses (such as mean, standard variation, range, energy, 
etc.) on a dataset when an event is triggered. In the example, because we want to make sure 
the movement is complete, we measure the range of the angle. 

The classification is triggered by Counters. In our approach, we can classify an exercise in 
two ways: continuously (with features being sampled in short intervals) or discretely (with 
features being sampled after every repetition). If you need a feature to be monitored after a 
specified time interval, you can use the Clock Counter. If you want the feature to be 
extracted for each repetition, you can use a Repetition Counter, which triggers events after 
detecting a repetition. Finally, the classification of the quality of the execution of the 
instruction is performed by Classifier components. These can range from performing 
simple thresholding operations to running more complex machine learning algorithms. In 
Figure 4, the Angle between the Wrist, Elbow and Shoulder is fed into the Repetition 
Counter, which uses a strong filter and a peak counting algorithm to detect repetitions. 
When a new repetition is detected, this component trigger the calculation of the range. 

Once the model is complete, the class library we implemented allows the programmer to 
translate directly the components in the model into an object-oriented application. All that 
is required is to input the parameters in the instantiation of the components and to connect 
the components by subscribing to each other's events. We modelled and implemented the 
feedback systems for 3 exercises: Unilateral Dumbbell Biceps Curl, Unilateral Dumbbell 
Triceps Extension and Unilateral Dumbbell Lateral Raise. 
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We tried to keep the Classifiers as simple as possible so they could be easily tweaked on the 
spot. This is useful for a real life scenario where the trainer might want make minor 
alterations in the specification. For example, a general specification for the Biceps Curl says 
that one should curl the Dumbbell all the way to the top. However, it is possible that the 
trainer might want the athlete to perform the exercise only halfway to the top in order to 
stimulate specific muscle fibres. Our system is prepared to allow these parameter 
modifications to be made easily. 

2.4.4 Parameter Adjustment 

There will be times when the available instruction is more qualitative than quantitative, so 
some instructions should be adjusted and parameterised to account for that. For example, 
one of the instructions for the Biceps Curl was to “Curl the dumbbell in an upwards arc 
towards your shoulder". This instruction does not provide the metrics to unambiguously 
build the model. One possible interpretation is: the angle between the wrist, the elbow and 
the shoulder should go from 180 to 0 degrees. However, these values need to be tested and 
adjusted to make sure they correspond to the measurements provided by the Kinect SDK. 
The framework allows you to debug this step using events that let you monitor each step of 
the analysis. 

2.4.5 User Feedback 

In the user interface, the system should give feedback for the conformance to each one of 
the instructions in the specification separately. The feedback should be as clear as possible 
using different visual and auditory cues. The classifiers output different classes of quality 
that can be translated into traffic lights that would turn green if the specification was OK 
and red in case of problems in the exercise, for example. Because of the complex nature of 
the exercises, it is also recommended to give feedback on how to improve the technique. 
The focus of this specific work was not on comparing different feedback approaches, but, 
rather to develop a complete pipeline of analysis that was able to analyse movements. 
Nevertheless, we implemented a feedback interface as shown in Figure 8. 

2.4.6 Evaluating the System 

We carried out a user study to evaluate a system developed using our framework to check 
whether our approach to qualitative activity recognition can lead to improvement in the 
quality of exercise performance.  
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2.4.6.1 Procedure 

First, participants were asked to fill in a 
questionnaire regarding their experience with 
weight lifting prior to the execution of the 
exercises. The 8 participants were all male, 20-
28 years old, with little or no experience in 
weight lifting. The feedback systems include a 
traffic light that indicates whether an 
instruction is being performed correctly and 
messages instructing the user on how to 
improve the execution. They also featured a 
range of motion indicator and a repetition 
counter. The user could see himself performing 
the exercise, with the feed from the camera 
built in the Kinect sensor. The interface is 
illustrated in Figure 8. Then the participants 
were asked to perform the Unilateral Biceps 
Curl and the Unilateral Lateral Raise. We 
wanted to compare the execution of these 
exercises with and without the feedback 
system, so we provided them with a written description of the expected execution of the 
exercise and asked them to perform each exercise with a hand while the feedback system 
was turned off. Then, we turned the feedback system on and asked them to perform the 
same exercises but now with another hand, in order to minimize the effects of tiredness. 
Each exercise was performed in three sets of ten repetitions with increasing weights of 
1.25kg, 3.0kg and 7.0 kg. Participants were instructed to stop whenever they felt 
uncomfortable. We recorded data using a Kinect sensor connected to a Windows 7 PC. The 
feedback was provided using a 27-inch LCD display. After the exercises, participants were 
asked to fill in another questionnaire regarding the experience with the feedback system. 

 

Figure 8 - User interface and feedback system for the Unilateral Dumbbell Lateral 
Raise exercise 

STUDY AT A GLANCE 

Goal: Test the effect of feedback on 
weight lifting performance 

Method: Within-subjects experiment 

Participants: 8M (20-28y.) 

Procedure: 3 x 10 reps of 2 exercises 
with 3 different weights 

Independent variable: presence of 
the feedback interface 

Dependent variable: mistake count 

Results: 23.48% fewer mistakes in 
the Lateral Raise and 79.22% in the 
Biceps Curl 
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2.4.6.2 Results 

With the Lateral Raise feedback system users made 23.48% fewer mistakes per repetition, 
while with the Biceps Curl feedback system users made 79.22% fewer mistakes. 
Participants were rank ordered by the number of errors in each of the two conditions. A 
Wilcoxon matched pairs signed ranks test indicated that the number of errors was 
significantly lower when using feedback (median = 4.5) than without using feedback 
(median = 26.5), Z = 2.52, p = .008, r =.63. For the lateral curl exercise a Wilcoxon matched 
pairs signed ranks test indicated no significant difference between the two conditions, Z = 
1.61, p = .125. These results indicate great potential for such systems in correcting mistakes 
and consequently improving the quality of weight lifting activities. 

Table 2 - Questionnaire results 

Question Mean 
Standard 
Deviation 

How helpful do you think such system is in a 
gym environment? 

4.57 0.53 

How clear was the presentation of information? 4.14 0.90 

How much do you believe the feedback 
influenced your performance? 

3.86 0.90 

Did you try to change your movements 
according to the feedback? 

4.71 0.49 

Did the feedback improve your performance? 3.57 0.79 

Table 2 shows the mean and standard deviation of the questionnaire results averaged over 
all participants. Values correspond to responses on a 5-point scale with 5 representing 
strongly positive and 1 strongly negative answers. User responses were generally positive 
regarding doing the exercises with the aid of a feedback system. Some suggestions for 
improvement include making the messages larger and easier to read and trying out different 
feedback visualizations, like video or 3D animation. 

2.4.6.3 Discussion 

Our results showed significant improvement in the Biceps Curl. The Biceps Curl is fairly well 
known exercise, which people perform without taking the time to think about the technique, 
so the system worked well in aiding users correcting mistakes. Only a small improvement 
was detected for the Lateral Raise. Even though users made almost a quarter of mistakes 
made without the system, we can’t say that the results are statistically significant. This 
points out to a potential in the system, but further inspection is necessary. We attribute this 
result to the difficulty of performing this exercise with the provided weights. The Lateral 
Raise stimulates mainly the deltoids, which are significantly weaker muscles than the 
biceps, so a fall in performance was expected. Users were generally very positive about the 
system. Some claimed to be “more conscious about movements due to both the camera 
image and feedback visualisation” and to feel “more confident in the movements I was 
making and able to correct mistakes.” The use of feedback systems was praised: “Without 
the feedback system you cannot be sure whether you are doing the exercise properly”, 
indicating that this field of research deserves more attention. Some participants thought the 
simple interface was good (“simple signals gave exact instructions on what to correct”) 
while others had some suggestions on how to improve it (“red and green could be avoided 
(...) as colour blind people will not be able to see the difference” and “I would prefer images 
that illustrate what to improve”), showing that how to design interfaces for such systems is 
a challenge on its own.  
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2.4.7 Evaluating Experts’ Ability to Estimate Exercise Parameters 

Our model-based approach has the advantage 
of formalising exercise instructions in a 
normative way—you specify the correct 
execution and the model searches for 
deviations of this specification. On one hand, 
this frees the user from having to demonstrate 
mistakes as in our first approach, but on the 
other hand, it requires users to specify the 
quantitative parameters of the movement (e.g. 
the range of motion and the duration of each 
repetition). To investigate how well experts are 
able to formalise a movement description from 
their knowledge and experience, (i.e. to specify 
and estimate angles and speed of movements), 
we conducted a user study.  

For this study, we chose three common weight 
lifting exercises, all of which novices were able to perform and that experts were able to 
instruct others on how to perform. The exercises were the Unilateral Dumbbell Biceps Curl, 
the Unilateral Dumbbell Lateral Raise and the Unilateral Dumbbell Triceps Overhead 
Extension. We recruited 10 male expert weight lifters, aged between 22 and 45 years (mean 
= 31.0, std = 8.38), heights ranging from 1.70 m to 1.89 m and weights ranging from 63.0 kg 
to 90.8 kg. Participants were recruited using posters distributed around the university 
campus and on two gym clubs. We made sure that all participants had at least three years 
of experience with weight lifting, ranging from that up to 25 years. 

The experiment took place in a quiet indoor laboratory setting. Participants were asked to 
wear a belt, armband, gloves and hold a dumbbell on each of which were mounted 5 Xsens 
inertial measurement units as shown on Figure 9. These sensors were connected by wires 
in a daisy chain fashion to an Xsens XBus, which streamed the data over Bluetooth to a Linux 
laptop. Data recording and synchronisation was handled by the Context Recognition 
Network Toolbox (CRNT) [11]. Participants were asked to stand approximately 2 meters in 
front of a Kinect camera. A custom application streamed the skeleton data to the CRNT, as 
well as the labels and the frame number of the RGB camera. As ground truth we recorded 
videos using a camcorder mounted to the right side of the participants. 

STUDY AT A GLANCE 

Goal: Test experts’ abilities in 
estimating exercises’ parameters 

Method: Data recording 

Participants: 10M (22-45y.) 

Procedure: 10 reps of 3 exercises 
with 3 different weights. We also 
asked for their estimates for the 
parameters in their performance 

Results: Estimates are, on average, 
11˚ off from the actual parameters. 
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Figure 9 - Sensing setup. Blue circles indicate the joints tracked by the Kinect and red 
rectangles indicate the position and orientation of the Xsens sensors. 

Upon arrival in the lab all participants were asked to sign a consent form and to answer a 
brief questionnaire regarding their previous experience with the specific exercises and 
weight lifting in general. They were then presented with a written description of the three 
exercises. Afterwards, they were guided through a structured interview by the 
experimenter, in which they were asked to provide the angles for certain joints of the body 
for each step of each exercise. Specifically, our goal was to obtain the values of angles that 
they considered to be ideal for each movement in their own understanding of how these 
movements should be performed when exercising or coaching as defined in the written 
description. We were interested in finding for each joint, whether there was movement 
during the exercise, the initial and final angle, the acceptable tolerance and how long the 
movement should take. These are all standard measures in Kinesiology [22]. Since we are 
focusing on upper body movements, we inquired about arm 
flexion/extension/hyperextension, arm abduction/adduction, arm lateral/medial rotation, 
arm horizontal abduction/adduction, elbow flexion/extension, wrist pronation/supination, 
wrist flexion/extension and ulnar/radial deviation. To make it clear to the interviewee what 
each movement meant, we provided a graphical diagram of each movement along with the 
corresponding angular axes. Also, participants were free to ask questions if in doubt about 
what each movement meant. 

After equipping our sensing system participants were asked to perform 10 repetitions of 
the Unilateral Dumbbell Biceps Curl, the Unilateral Dumbbell Lateral Raise, and the 
Unilateral Dumbbell Triceps Extension using three different weights (1.25kg, 3kg and 7kg), 
totalling 90 repetitions for each participant. The data was manually annotated according to 
the exercise, weight and participant for post-hoc analysis. 

2.4.7.1 Results 

We analysed the data by manually separating each repetition according to the plots and the 
frames in the video recordings. From each repetition, we extracted different information 
depending on the exercise. For the Biceps Curl, we extracted the maximum and minimum 
of the elbow flexion, the mean of the arm flexion, the mean of the arm abduction, the mean 
of the lateral rotation and the duration of each repetition. For the Lateral Raise, we extracted 
the maximum and minimum of the arm abduction, the mean of the arm flexion, the mean of 
the lateral rotation, the mean of the horizontal abduction, the mean of the elbow flexion and 
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the duration of the repetition. Finally, for the Triceps Extension, we extracted the mean of 
the arm flexion, the mean of the arm abduction, the mean of the lateral rotation, the mean 
of the horizontal abduction, the minimum and maximum of the elbow flexion and the 
duration of the repetition.  

 

Figure 10 - Average difference among all participants of each angle against the value 
suggested by the corresponding participant for that angle. The error bars represent 
standard deviations. For angles that are supposed to remain still, we use the mean 
and for those that are supposed to vary we use the maximum and minimum. 

For each participant, we compared the distribution of measurements for each of these 
values to the answer given in the questionnaire with a one-sample t-test. With very few 
exceptions, the angles suggested in the interview were significantly different (p < .05) to the 
angles in the actual performance. This means that participants’ estimates of the angles don’t 
reflect their performance. Figure 10 shows the consolidated differences for all participants 
between each of the measured angles in the 30 performances of the Biceps Curl and the 
estimate given by the corresponding participant. Differences of the same order of 
magnitude were found for the other exercises. Figure 11 shows the average difference for 
all angles in all movements for each participant. 
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Figure 11 - Average difference for each participant between the estimate and the 
measured angles among all angles. This study shows that users' estimates are on 
average 10.76 degrees off the measured angle, making it hard to rely on these 
estimates to evaluate performances. 

In order to find out whether the performances matched among different participants, we 
ran a One-Way ANOVA Test on each dataset and again the results were significantly 
different (p < .05), even though in a some cases the performance of a few different trainers 
would match within the group, as seen on a post-hoc Tukey analysis. 

2.4.7.2 Discussion 

The results suggest that even experienced weight lifters find it difficult to give an accurate 
estimate of the angles in their own performance, even for movements that are simple and 
very well defined. Indeed, it has been long known that humans tend to overestimate acute 
angles and underestimate obtuse ones [187]. This is evidence that specifying a movement 
by natural language and estimating precise angles by observation is difficult. 

Moreover, even though they all knew the movements rather well from previous experience 
and were provided with a written description of their execution, performances varied 
significantly among different participants. This does not mean, however, that some of them 
did the exercises incorrectly. It highlights that a wide variety of small variations in the 
performance of the same movement are possible, which is evidence for the ambiguities of 
written descriptions of movements. Also, these variations occur according to the goals of 
the weight lifter. For example, whereas the standard description of a Biceps Curl might 
instruct to start the movement with your arm fully extended and to finish the movement 
with your arm fully flexed, a trainer might ask you to flex your arm only halfway to exercise 
specific muscle fibres. This does not make the second execution incorrect, only different to 
the first one, which indicates the need to be able to encode these variations into descriptions 
in a clear way. 

2.5 Mediating Communication with a Modelling by 
Demonstration Approach 

If even experienced users have difficulty in explicitly specifying movement angles, we can 
assume that results would be even worse when considering a wider range of experiences 
and movement complexities. Moreover, even if they accurately provide this information, 
inputting these values into the system would prove to be a tiresome and demanding task, 
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which reinforces the case for a more implicit way to obtain this information. Inspired by the 
observation of how sports trainers and physical rehabilitation professionals communicate 
movement in real-world scenarios, we developed an approach to extract the movement 
model by having the user demonstrate it. We called our system MotionMA. 

2.5.1 MotionMA 

MotionMA is a system to communicate movement information in a way that people can 
convey a certain movement to someone else who is then able to monitor his own 
performance and receive feedback in an automated way (see Figure 12). It allows users to 
model movements and assesses further performances of the same movement in comparison 
to the model. 

In developing a system to support the communication of movement information, we tried 
to emulate the process described on Figure 3. This implies three main functionalities that 
the system should make available: (1) Allow users to specify movements; (2) Analyse 
performances of movements; (3) Provide feedback on performances. 

 

Figure 12 - MotionMA system architecture. Experts specify movements through the 
demonstration interface. The system extracts a model of the movement and stores it 
in a repository. The models can be visualised and edited in the tweaking interface. 
Novice users can then perform the movement, which is then compared with the 
model to provide feedback accordingly. 

All three functionalities are tightly coupled to each other. The feedback provided by the 
system depends on the output of the analysis, which, in turn, strongly depends on the 
movement’s model. At the core of the system is the movement’s internal representation, i.e. 
its model. We wanted our model to be simple enough to be suitable for real-time analysis, 
but be able to convey enough detail to provide an accurate description of the movement. We 
also wanted it to be expressive enough to model a wide variety of movements and to be 
subject-independent, so that the same model can be used by different users. Moreover, we 
wanted it to allow for analysis approaches that provide relevant information, such as 
mistake spotting and improvement guidelines. 

The standard in Kinesiology is to define motion in terms of the angles of each bones in 
relation to reference planes (sagittal, frontal and horizontal), which makes it suitable for 
people with different body measurements. In practice, however, we don’t need all three 
angles, since the direction of a vector can be specified in 3D space with only two. Therefore, 
for each bone we define a spherical coordinate system with the origin at one of the joints 
and the zenith direction as the vertical at the global coordinate system. Our model is defined 
as a set of timestamped characteristic points for each bone in each rotation axis. A set of 



Eduardo Velloso 

 

 Modelling Body Movement for Activity Analysis and Feedback 43 

characteristic points is a minimum collection of points with which you could generate an 
approximation of the time series. The equation below shows the formal representation of 
our model, where the models 𝑀𝜃and 𝑀𝜑for each one of the 19 bones b in a skeleton S are 

the sets of n tuples(𝑡𝜃𝑖,𝜃𝑖) and m tuples(𝑡𝜑𝑖
, 𝜑𝑖) with the timestamped values of the polar θ 

and azimuthal φ angles. 

∀𝑏 𝜖 𝑆 {
𝑀𝜃(𝑏) = {(𝑡𝜃1

, 𝜃1), … , (𝑡𝜃𝑛
, 𝜃𝑛)}

𝑀𝜑(𝑏) = {(𝑡𝜑1
, 𝜑1), … , (𝑡𝜑𝑛

, 𝜑𝑛)}
 

We don’t use tuples with both angles at once, so n can be different than m. This allows us to 
analyse the movement in each axis independently, which makes it easier to provide 
improvement guidelines. For example, if a problem is detected at the azimuthal axis, we can 
guide the user to rotate the corresponding bone up or down, whereas if the problem is at 
the polar axis, the rotation would be in the left or right direction. 

Using this model, we can compare two performances by comparing corresponding sets of 
points. First we need to compute the distances between each point in one set to each point 
in the other to match the points. By looking at each component of the difference vector, we 
can then infer whether each characteristic point was at the correct angle (y axis) at the 
correct time (x axis). Moreover, depending on the direction of this vector and the rotation 
axis, we can infer improvement guidelines. For example, if the difference between a point in 
a given performance and the corresponding point in a baseline performance for the 
azimuthal angle is positive in the x axis and negative in the y axis, we can infer that the user 
got that point too soon and at an angle too large. The magnitude of each component will tell 
how far off was he from the specification and whether an improvement guideline should be 
displayed. Also, we can tell genuine mistakes and normal variability by looking at the 
distribution of values in the demonstration and checking whether the value in the 
performance differs significantly from the ones in the demonstration. 

2.5.2 Modelling Movement by Demonstration 

Our approach to specifying the movement model draws inspiration from Programming by 
Demonstration (PbD) works. Our system allows the movement to be specified by allowing 
the user to demonstrate it, analogous to how professionals do in reality. While this 
minimises users’ effort in inputting information, it creates new challenges, such as detecting 
the beginning and end of the activity, detecting the characteristic points of the movement 
and accounting for variations in the movement. 

A problem shared by many PbD and Activity Recognition systems is segmenting the actual 
activity being demonstrated, i.e. detecting when it begins and when it ends. In order to solve 
this problem, we take as input for our model extraction algorithm a dataset with the 
performance of 10 repetitions of the movement. Once we can detect each repetition, we can 
trim the demonstration data at either end. 

Detecting the repetitions, however, is not a trivial task. Chang et al. counted repetitions of 
free-weights exercises by applying a strong low-pass filter and extracted features to train a 
Hidden Markov Model for individual exercises [47]. Because at demonstration time there is 
no previous data to be used for training, a machine learning approach is unsuitable for our 
goal. Instead, we ask the user to perform 10 repetitions of the movement and assume that 
we will find 10 cycles of a pattern in the data. Because during the movement some bones 
might be static while others move, we pick one axis of a bone to count the repetitions in all 
of them. We choose the bone and axis by counting peaks and valleys in every axis of every 
bone and looking for a dataset that gives us 10 repetitions with the largest amplitude of 
angles. The peak counting algorithm uses a strong low pass filter combined with an 
autocorrelation algorithm that looks for zero-derivatives on the data, with the mean of 
values as a threshold to eliminate noise and small variations. Once we have the repetition 
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separation, we automatically have the duration of the movement, which we use in the 
analysis algorithm to analyse speed. 

In order to find the characteristic points of the movement, our algorithm analyses each 
repetition separately. We do this by using a weaker low pass filter in every dataset and by 
looking at zero-derivatives in the data. This gives us peaks, valleys and inflexion points, 
which works well to provide a general shape of the curve. At the end of this step, we have 
10 sets of points that describe the same movement. We merge these sets to get a 
consolidated model. We accomplish this by looking for the centroids in the merged data 
using a k-means clustering algorithm. By using a consolidated model, we account for 
variations in individual repetitions of the movement. With this set of points at hand, we can 
make the distinction between static and dynamic axes and tag them accordingly. This 
information will be used in the analysis to analyse each dataset appropriately. Figure 13 
shows the complete process for an example dataset. 

 

Figure 13 - Model extraction from demonstration performance. The raw data (a) is 
filtered and by counting repetitions, the data is segmented (b). We then find the 
characteristic points for each repetition (c), merge them (d) and look for the 
centroids of the data clusters (e). 

The demonstration user interface is shown in Figure 14. The main application was 
programmed in C# and receives the data from the Kinect sensor directly through its SDK 
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(version 1.5). From the main menu, the user selects ’Demonstrate’ and is presented with the 
demonstration interface. Here he can see his own image in a virtual mirror overlaid with 
the skeleton tracked by the Kinect sensor. The user then stands in the starting position and 
issues a voice command to start the recording. He proceeds to perform 10 repetitions of the 
movement as consistently as possible. When he is finished he issues another voice command 
to stop the recording. The system then uses the extraction algorithm described in the 
previous section to generate a motion model. The user can then save or discard the 
generated model. The demonstration modelling is done in Matlab, using a COM automation 
interface to transfer data between the two applications. 

 

Figure 14 - Demonstration interface. The user can see his skeleton overlaid on top of 
the colour image recorded by the Kinect. The recording is controlled by voice 
commands. 

In order to correct eventual mistakes in the extracted model and to improve its overall 
accuracy, the user can choose to tweak the model. The ’Tweak’ interface is shown in Figure 
15. The system displays a skeleton figure on which the user can select the bone he wishes 
to visualise. When a bone is selected, the system displays the plots of the model for each axis 
of the bone as well as whether each axis is dynamic or static. In this step, the user also selects 
which bones he would like to see in the feedback interface. This allows users to tailor the 
system to specific goals, such as balance or range of motion. He can then save or discard the 
changes. 

 

Figure 15 - Tweaking interface. In this step, the user can visualise the extracted model 
for each bone and select what is to be monitored in the performance interface. 
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In the example of the biceps curl, a user could use this step to make sure the model for both 
arms are the same as well as adjusting the range of motion in the y-axis. Also, he could make 
sure that the duration of the flexion and extension during the movement are correct by 
adjusting the position of the characteristic points in the x-axis. 

2.5.3 Model Analysis and Feedback 

Once a motion model is extracted from a demonstration, we can use it to analyse further 
performances of this movement. Since the relevance of the feedback is tightly coupled to the 
analysis outputs, we analyse each performance in different levels to allow for different kinds 
of feedback. Even though further research is necessary into how to actually provide this 
feedback, we tried to make our analysis approach as comprehensive as possible. 

The input for our analysis algorithm is the same as in the demonstration, i.e. the spherical 
coordinates of each bone in the skeleton as well as the model extracted at the demonstration 
step. We analyse the data at three separate points in time, giving feedback accordingly: 
continuously, at the end of a repetition and at the end of a set of repetitions. Continuous 
feedback is given for rotation axes that are supposed to remain static. This means that the 
angles at these axes should remain still around a predetermined value, so they are 
monitored continuously looking for deviations that are flagged as soon as they are found. 
Dynamic axes are monitored at the end of each repetition. These datasets require the 
complete analysis, which is described in the introduction. The system buffers the values 
from the skeleton and runs the analysis when it detects the completion of an instance of the 
movement. After the user completes all repetitions, the system can analyse the dataset as a 
whole and provide a more detailed evaluation of the performance due to the reduced 
attention overload. In this work, we focus on the real-time feedback, i.e. the continuous 
analysis for static axes and the repetition analysis for dynamic bones. 

 

Figure 16 - Analysis architecture. Data from the tracking system is converted to 
spherical coordinates, analysed by the appropriate component and the final analysis 
is displayed on the interface. 

The architecture of the analysis is comprised of the elements shown in Figure 16. The raw 
data from the tracking system is converted into spherical coordinates and depending on 
whether the dataset is static or dynamic it is analysed by a Pose Analyser or a Movement 
Analyser, respectively. The Movement Analyser is triggered by the Repetition Extractor. The 
analysis outputs are then showed in the feedback interface. 
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Much more work is needed to investigate what and when to display to the user. In this first 
attempt to answer this question we tried out different approaches to communicate 
movement: video recording of the demonstration; moving dials to monitor the adequate 
range of motion; traffic lights to monitor static axes and to indicate how to correct them; 
coloured skeleton, that changes the colour of each bone from green to red depending on its 
score; speed warning lights, that tells the user to speed up or slow down accordingly; 
repetition counter, that shows how many instances of the movement have been performed. 
The design of these interface elements was based on our previous work, described in the 
previous sections in this chapter and on the feedback provided by other systems (e.g. the 
range of motion dial is similar to how TechnoGym’s equipment displays it). The overall 
theme of our design was industrial-like, similar to how other products are portrayed in this 
market. 

 

Figure 17 - Performance interface. Information regarding static bones is displayed on 
traffic lights whilst the ranges of motion of dynamic bones are displayed on dials. The 
user can see the video recording of the demonstration and his own skeleton as 
tracked by the Kinect with each bone in a different colour depending on its score. The 
interface also displays the repetition count and warnings when the speed is too fast 
or too slow. 

Figure 17 shows the user interface for the feedback system we implemented. The systems 
loads the model, as well as the interface elements selected by the user in the ’Tweak’ step. 
If this step was skipped, the system selects the information to be displayed automatically, 
based on the variation detected in the model. The user stands in the starting position and 
issues a voice command to start the analysis. Even though further research into how to 
convey movement information in a meaningful way is necessary, we took the first steps in 
that direction by trying out different approaches. Information regarding static axes can be 
visualised in traffic lights that indicate whether the pose is correct and how to correct it. 
Dynamic axes can be visualised in dials that move together with the performance. The 
system also displays warnings when the performance is too fast or too slow and displays 
the repetition count. Also, the system displays the video feed as recorded in the 
demonstration session and the skeleton of the user as currently tracked. Each bone in this 
skeleton is coloured differently according to its score. 
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2.5.4 System Evaluation 

2.5.4.1 Participants and Apparatus 

With a working prototype that implements our 
approach at hand, we could evaluate it in a user 
study. The goals of this study were to evaluate 
the modelling and analysis. For this purpose, 
we recruited 10 participants aged between 24 
and 41, of which one was female. They had 
different levels of experience with weight 
lifting ranging from ‘none’ to ‘experienced’. 
This was to ensure that the modelling system 
was robust enough to handle different 
consistencies of performance. The study was 
carried out in two steps, each one of which was 
designed to evaluate each of our goals. This section describes our experimental procedure 
and results. The study took place in a quiet laboratory setting and each session was carried 
out with a single participant. The experimental setup consisted of a 27” display with a Kinect 
sensor mounted on a tripod behind it. When using the system, participants would stand on 
a previously marked cross on the floor, approximately 2m away from the display and 
sensor. The system uses the Kinect as a recording device, so no experience with gestural 
interfaces was needed. Even though we record participants’ perceptions about the user 
interface, our goal was not to evaluate the effectiveness of the feedback provided. 

2.5.4.2 Procedure 

We first evaluated the expressiveness and accuracy of our modelling approach. Each user 
was asked to think of a controlled and repeatable movement which they would model using 
our system. Before performing the actual movement, they were asked to provide a detailed 
written description of it, give it a name and describe five possible mistakes or variations 
that a person trying to learn the movement would most likely make. They were also asked 
which bones could be used to count the repetitions of this movement. Then, each participant 
recorded their movement using the demonstration interface. 

We then displayed the extracted model in the “Tweak” interface and went through the 
model for each axis of each bone together with the participant in a structured interview 
fashion. We selected each bone, and the corresponding plots of each angle would appear on 
the screen, as well as the values for each step of the model. The user would then fill in a 
qualitative questionnaire where he would rank the accuracy of the model for each axis of 
each bone as well as whether the system marked the bone as static or dynamic correctly. 
They were also asked to rank the axis and bone that the model extraction algorithm used in 
order to count repetitions. 

When evaluating the analysis, we wanted to find out (1) whether the system could recognise 
a good performance and (2) whether the system could spot the mistakes foreseen by the 
participants. We asked them to perform 10 repetitions of the movement as closely as 
possible to the demonstration performance and to pay attention every element in the 
feedback interface. After this performance, they filled in a questionnaire regarding how 
accurate the system was at counting repetitions, displaying the correct range of motion in 
the dials, showing a green light for static bones and indicating the correct speed. Then, users 
were asked to do 10 repetitions of each mistake and look for elements of the interface that 
would spot these variations. After each performance, users were asked to fill in a 
questionnaire regarding how accurately the system spotted each one of them. Finally, each 

STUDY AT A GLANCE 

Goal: Evaluate our modelling and 
analysis approach 

Method: User testing 

Participants: 10 (20-41y.) 

Procedure: 10 reps of a movement of 
their choice. Inspection of the model 
and mistake detection. 

Results: 70% mistake recognition, 
high ratings for model accuracy 
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participant filled in a general questionnaire regarding the overall accuracy of the model, the 
detection of correct and incorrect instances of the movement and the repetition counting. 
They were also prompted to point out positive and negative aspects of the system. 

2.5.4.3 Results 

Participants chose movements of a wide variety, from common strength exercises (Dead 
Lift, Lateral Raise, Biceps Curl) to some amusingly named body gestures (The Lawnmower, 
Robot Elevator, Circulation Agent). These included both upper and lower body movements 
and could all be considered controlled and repeatable. 

When inquired about the accuracy of the model for each axis of each bone on a 5 point Likert 
scale, users rated it were very high (median = 5, mean = 4.7785, std = 0.7181) as shown on 
Figure 18. 

 

Figure 18 - Users’ responses regarding the accuracy of the model. Each column 
represents each of the 38 axes of bone movement (2 for each of the 19 bones). 

Users were also asked to rate how well the system spotted each of the 5 mistakes they came 
up with. Figure 19 shows users’ ratings of the mistake detection accuracy for all mistakes. 
Figure 20 shows users’ responses regarding how accurate the system was in counting 
repetitions, in displaying the correct range of motion, in displaying the correct posture in 
the traffic lights and in displaying the correct speed in the speed signs. 

 

Figure 19 - Each user was asked to rate the accuracy of the mistake detection for each 
of the 5 mistakes they came up with. This chart show that our system accurately 
detected around 70% of mistakes. 
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In the end, users gave their overall impressions of the system. Figure 21 shows the answers 
regarding how much they agree that: (1) the system was able to extract an accurate model 
of the demonstrated movement; (2) the system was able to detect a correct performance of 
the movement; (3) the system was able to count repetitions accurately; (4) the system was 
able to detect mistakes in the movement. Most responses were positive, with the exception 
of the one where due to the poor choice of the repetition counting dataset, the analysis did 
not work as expected. The consequence of a poor choice of a repetition counting limb is that 
all parameters were calculated at the wrong times, making the feedback unintelligible and 
the repetition counting meaningless.  

 

Figure 20 - Users’ responses regarding how accurately each interface element would 
indicate a correct execution when performing the movement in the same way as in 
the demonstration. 

Comments ranged from being very positive, recommending deployment in real world 
situations (”Very impressed with the ability to analyse body and movement repetitions. I would 
like to see this implemented in gyms”) to negative in the case where the system did not work 
as expected (”Counting repetitions was inaccurate. Feedback was confusing.”). Some 
participants complained about the amount of information on the screen (”Too many things 
going on to look at!”), the limitations of the tracking system (”It cannot track hand 
opening/closing.”) and limitations in the algorithm (”It didn’t pick up when I was going in the 
wrong direction”). Most responses, however, complimented the interface (”I really like the 
interface!”), the gamification of the movement communication (”It looks like a cool game!”) 
and how the feedback could be used to correct mistakes (”Feedback was easy to use as basis 
for correcting movement”). 

 

Figure 21 - Users’ responses regarding their perception of the system. 
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2.5.4.4 Discussion 

In general, participants were very positive about both the modelling and the analysis, as the 
high scores show. While this does not prove that the extracted model is entirely accurate, it 
does reflect that the extracted model makes sense in terms of ranges and general rotation 
of the bones to the users. 

Even though users seemed to agree with the extracted model, factors such as the difficulty 
in interpreting plots and the previously mentioned difficulty in estimating angles make it 
necessary for us to obtain more evidence of its accuracy. Among the interface elements, the 
speed meter was the one that performed the worst. We posit that this happened due to the 
nature of the movement analysis. The speed is measured after a repetition of the movement 
is completed, by comparing how long the user took to complete it with the duration of the 
repetition in the model. Because the displayed speed always regards the previous 
repetition, we noticed that users would speed up or slow down accordingly but with no 
effect in the warning signs (which would only change after the repetition was completed), 
which generated some frustration. With the exception of one movement our repetition 
counting algorithm counted all 10 repetitions very accurately. The one case where it failed 
was due to a poor choice of the repetition counting dataset, which by consequence, 
produced a poor model overall. 

Our results indicate that the system is able to extract an accurate model of controlled and 
repeatable movements and to generate automatically a feedback interface that provides 
feedback on the execution of the movement. The data in the user study also demonstrated 
some limitations in our approach. Whilst the analysis algorithm correctly identified most 
mistakes, there is still plenty of room for improvement. The negative cases were due to the 
user not being able to recognise the system’s feedback, limitations in the tracking system 
(for example, the Kinect can’t tell whether the hand is open or closed, which was an element 
present in some mistakes), limitations in the algorithm (for example, the analysis algorithm 
analyses each bone individually, so it would not detect mistakes that had to do with the 
relation of the movement of one bone to another). 

2.5.4.5 Limitations 

Although the Kinect proved to be very accurate in tracking coarse movements, when limbs 
were pointed directly at the camera, or occluded by the body, the overall tracking was 
severely penalised. The tracking of hands and feet was not precise enough to track some of 
the mistakes participants suggested. Also, due to the limitations of the tracking system, we 
limited the scope of this work to movements where the user was standing up and facing the 
camera, but there are a wide variety of movements in which the user is in positions that 
can’t be tracked by the Kinect. Another limitation imposed by the tracking system is that we 
treat each bone as a vector in the 3D space, without taking into account the rotation of the 
bone around its length. This means that there is currently no support for detecting rotations 
such as pronation and supination of the wrist. 

Another limitation regards our algorithmic approach. Our current implementation looks at 
the absolute orientation of the bones. Some of the mistakes participants suggested, 
however, in terms of the orientation of the bones in relation to one another. In future 
versions, we hope to add the support to model a hierarchy of bones that can be used to 
address this problem and suggest more valuable feedback. 

Our evaluation has two main limitations. First, we only evaluated the algorithmic approach 
with a single user each time. Even though the system was designed for remote collaboration 
between multiple users, more work is required to evaluate this aspect. The second 
limitation is the realism of the environment. In the real world, such system would be used 
by athletes and trainers or patients and physiotherapists. We evaluated the system for its 
expressiveness by letting the users choose their own movements, but further work is 



From Head to Toe: 
Body Movement for Human-Computer Interaction 

52 Modelling Body Movement for Activity Analysis and Feedback 

 

necessary to ensure that the system attends the requirements for specific application 
domains. 

In this work, we explored the general communication process between experts and novices 
when transmitting movement information as described in Figure 3 and built a system that 
is a first step in implementing it, focusing on how experts can use it to model movements 
and configure feedback. Even though it was outside the scope of this particular work, there 
is yet a lot to be done in how effectively this information is actually conveyed to novices and 
how much the feedback impacts their performances. 

2.6 Conclusion 

We began this chapter defining quality in the context of activity recognition. Our definition 
highlights the importance of a specification against which to measure quality. However, 
given the high complexity and number of degrees of freedom in full body movement, 
building a specification for a movement is not trivial. For this purpose, we proposed three 
approaches. 

Our first approach was inspired by other works in activity recognition. These works often 
record sensor data of users performing different activities and train a classifier that given a 
certain dataset, attributes a label corresponding to the activity being performed. However, 
instead of using different activities as class labels, our classes were the different ways of 
performing the same activity. We demonstrated that we can successfully classify different 
performances in this way with high precision and recall.  The main advantage of this 
approach is that users do not need to explicitly program the system. Instead, the algorithm 
observes correct and incorrect executions and learn to classify further performances. This 
also makes it easy to give feedback to the user, as each class of mistake will have a 
corresponding way of fixing it. However, this approach also presents some serious issues. 
First, by treating the quality recognition as a classification problem, the system does not 
quantify quality on any continuous scale. For example, if the algorithm detects that the 
range of motion of a movement is too short, it does not tell the user anything about how 
close he is to the optimum range. Even though this could be minimised by breaking the 
problem further into more classes (e.g. “way too short”, “too short”, “almost there”), this 
makes the classification problem harder and might still not give feedback with an 
appropriate granularity. The second problem is that there are countless possible mistakes 
that users can make when executing such movements. A classification approach would 
require the system to be trained on each of them, and the number of classes would quickly 
get too large. The third problem is that by requiring the trainer to demonstrate mistakes the 
system effectively makes him susceptible to injuries. Whereas for a large portion of 
mistakes, this would not be much of a problem, certain incorrectly performed movements 
could easily hurt or sprain the person demonstrating the mistake. Finally, the fourth issue 
is that the specification is encoded into a classifier, which makes it difficult for trainers to 
easily make modifications. For example, if the trainer wants to recommend a shorter range 
of motion for a certain user, he must train the system again, even if he already has a classifier 
for a large range of motion. 

To address these problems, our second approach relied on an explicit specification of the 
movement. We built an object-oriented framework that allows users to model the exercises 
according to common requirements for weight lifting and that could automatically create a 
feedback interface for it. This approach offers several advantages. First, it makes it easy to 
modify parameters of the movement. If the trainer requires a larger/shorter or 
faster/slower movement, it is as easy as changing the value of a variable. Second, it makes 
it easy to encode explicit knowledge from weight lifting books, as each instruction can be 
directly encoded into the system. Third, it allows the reuse of components, which is useful 
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for instructions repeated across many exercises. For example, many exercises require the 
feet to be still, shoulder-width apart. Once this instruction is programmed, it can be reused 
across all exercises. Despite these advantages, this approach also presents certain 
drawbacks. Our first study demonstrated that once the parameters are defined, the system 
leads to a better performance, however, the second study revealed that even expert weight 
lifters have difficulty in estimating these parameters. The system does allow for them to 
easily tweak the parameters, but this leads to a trial-and-error process that is hardly ideal. 
The final problem is that whereas the framework simplifies the encoding of explicit 
knowledge about the quality of movement, it fails in providing a platform for the encoding 
of tacit knowledge, which was nicely provided by the first approach. 

To maintain the advantages of both approaches, we developed MotionMA, a system that still 
uses a model as in the second approach, but infers the parameters of this model by 
demonstration, as in the first approach. We demonstrated that our system allows users to 
easily create feedback interfaces for a variety of movements, even for those that are not 
necessarily weight lifting movements. Also, because our system uses joint angles in its 
model, it can be used across multiple users, supporting a communication process in which 
an expert can demonstrate a movement and a novice can benefit from the feedback interface 
generated. We envision a future in which experts all around the world can record and sell 
feedback interfaces based on their own performance on an online coaching marketplace 
that can guide users into mimicking their execution. The results from the analysis 
algorithms can also be used for applications that gamify the exercising experience, adding 
yet another layer of feedback in which users can compete to improve performance statistics 
in a wider variety of contexts. For example, whereas nowadays it is easy to measure and 
compare the distance and speed at which athletes run, no similar metrics can be 
automatically computed for weight lifting activities. By monitoring the movement quality, 
users will not only be able to compare how much weight they can lift, but also whether they 
can lift it with a proper technique. 
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3 CAPTURING NONVERBAL CUES 

FROM BODY MOVEMENT  

“Every gesture is a gesture from the blood, every expression a symbolic utterance... 
Everything is of the blood, of the senses.” 

Henry Williamson 

 

The first proposition of this thesis is that there is more to be inferred from body movements 
and postures. Whereas in the previous chapter, we focused on the quality of movement, this 
chapter looks at the emotions conveyed by our body language. Emotion is a huge component 
of human behaviour. Every action we take, every conversation in which we engage, every 
thought that springs to our minds, all are substantially shaped by our current emotional 
state. If emotion plays such an important part in influencing interaction between humans, 
it is only natural that researchers attempt to incorporate emotional aspects into Human-
Computer Interaction—what is known as Affective Computing. In general, Picard defines 
Affective Computing as “computing that relates to, arises from, or influences emotion” [209]. 
Therefore, the focus of Affective Computing is in “creating technologies that can monitor and 
appropriately respond to the affective states of the user in an attempt to bridge the 
communicative gap between the emotionally expressive human and the emotionally deficit 
computer” [59].  

Whereas modalities such as facial expressions and physiological signals have been 
extensively explored for this purpose, little attention has been given to affective body 
expressions. Only recently there has been an increased interest in using them for affect 
recognition, as tracking body movements now is easier than ever. Works that attempt to do 
so usually employ techniques analogous to activity recognition, based on training classifiers 
from raw sensor data.  

In the previous chapter, we described several ways of working on a level of abstraction 
above raw data through a movement model to extract qualitative information about 
exercise execution. In this chapter, we use a similar approach to extract nonverbal cues for 
affective computing. We believe that working this way can provide significant advantages. 
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First, work on other modalities has successfully employed such approach to detect 
emotions. For example, work on facial expression analysis highly benefitted from the 
maturity of the Facial Action Coding System (FACS), which breaks them down into their 
component units. Second, working on a higher level of abstraction allows better 
communication of knowledge between computer science and psychology professionals, as 
it provides a standard for specifying movements and postures. Third, as work in Psychology 
finds correlations between emotions and their corresponding bodily behaviours, this 
knowledge can be directly injected into the recognition pipeline. 

Until recently, however, there was no standard way of specifying affective body expressions 
in the same way of facial expressions. An attempt to overcome this problem was made by 
Dael et al., who proposed the Body Action and Posture (BAP) coding system [60]. However, 
coding BAP labels manually is a long and tiresome process. In this chapter, we use the 
lessons learned from our works on weight lifting analysis to automatically extract BAP 
annotations.     

We begin with an overview of emotions and nonverbal signal annotation. We then describe 
the Body Action and Posture coding system and describe ways of automatically recognising 
emotions. Finally, we describe and evaluate our approach for extracting nonverbal cues 
from body data, in the form of a system prototype (AutoBAP). 

3.1 What are emotions? 

Despite being a crucial element in our lives, emotions have always been a difficult and 
fleeting concept for mankind to fully understand. In Plato’s dualism, the soul is structured 
separately by cognition, emotion and motivation. Aristotle, on the other hand, found such 
separation impossible, and suggested that these components are actually interwoven [231]. 
Other thinkers also had different ideas about emotions. Descartes thought that a few basic 
emotions underlie the whole of emotional life. Darwin suggested that emotions have an 
evolutionary origin and are therefore universal across cultures, strongly influencing the 
psychobiological school of thought of emotions. Contrary to this view is that of the emotions 
have a sociocultural origin, a view taken by many sociologists and anthropologists. Current 
theories believe that both factors shape our emotional responses [231]. 

Different conceptualisations of emotions have been proposed in Psychology, and are usually 
classified as discrete or continuous models. Discrete (also known as categorical) models of 
emotion closely resemble how we verbally refer to them, by giving them individual names. 
When we talk about ‘happiness’ or ‘sadness’, we are using a categorical model of emotions. 
Proponents of such theories found evidence for a small number of basic emotions that are 
universal [267,268]. Particularly influential were the works of Ekman and Friesen who 
demonstrated that Fore tribesman in Papua New Guinea, a preliterate traditional society 
with little contact with industrial societies, both expressed and recognised the same 
emotional facial expressions as Western cultures [75]. These authors proposed a set of six 
universal basic emotions (happiness, anger, sadness, disgust, surprise, and fear), later 
extending it (with the addition of contempt, guilt, shame, interest, embarrassment, awe and 
excitement) [77]. Other discrete models include Parrott’s tree structure [204] and Plutchik’s 
wheel [210]. Criticisms of these models include the lack of correspondences between 
discrete emotions and brain activity, the variability in facial expressions and behaviour and 
impossibility of specifying gradation in emotional responses [15]. 

Continuous (also known as dimensional) models of emotion represent states as a tuple in a 
multidimensional space. In these models, instead of giving them labels, emotions are 
specified in a spatial continuum: anger, for example, would be represented as a high-
arousal, negative-valence emotion. In Russell’s Circumplex model, emotions are distributed 
in a two-dimensional circle, with arousal and valence in the axes [227]. Mehrabian and 
Russell’s PAD model, specifies pleasure, arousal, and dominance as the axis [172]. Lovheim’s 
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cube specifies emotions in terms of the release of three hormones: dopamine, noradrenaline 
and serotonin [161]. These models enable researchers to visualise how close or apart 
emotions are in space and to characterise different intensities of the same emotion.  The 
disadvantage of these models is in that people do not normally think about emotions in 
terms of a multidimensional space, so it makes it more difficult to obtain ground truth from 
participants. However, because the emotions normally included in discrete models tend to 
be extreme and stereotypical, continuous models allow modelling more subtle variations in 
emotional states that are arguably more useful for affective systems. 

3.2 Annotating Nonverbal Signals 

The most widely researched modality in emotion research is facial expression. The Facial 
Action Coding System is a coding system that deconstructs facial expressions into action 
units (contractions and relaxation of facial muscles) and their temporal segments 
[73,74,76]. Automatic implementations of FACS include a system trained to automatically 
detect action units in order to differentiate fake from real expressions of pain [158] and to 
analyse expressions of neuropsychiatric patients [102]. Techniques to achieve this include 
analysing permanent and transient facial features in frontal face image sequences [266], 
using independent component analysis and support vector machines [51] and using Gabor 
wavelets with neutral face average difference [16]. 

An early notation system for body motion was Labanotation [152,153], which was originally 
developed to describe dance movements and is part of Laban Movement Analysis, which 
breaks movements down to Body, Effort, Shape and Space. DMAR [218] offers a graphical 
interface for dance experts to annotate dance concerts or clips, but it does not do it 
automatically. Birdwhistell’s coding system is based on linguistic principles [24]. It defines 
kinemes (analogous to phonemes in Linguistics), which are groups of movements which are 
not identical, but communicate the same meaning. This notation has been used to categorise 
the emotions in emoticons [214]. Attempts to facilitate the transcription of body 
movements include animating a 3D skeleton to annotate arms’ gestures [184], but this 
system still requires the annotator to match the animation to the video recording.  

More recently, Dael et al. proposed a coding system for the description of body movement 
on anatomical, form and functional levels, more suitable for coding nonverbal emotion 
expression [60]. Some advantages of this coding system are that it minimises observer bias 
by being supported by a reliable observation protocol; because it is not based on linguistic 
principles it is independent from other modalities such as speech; and it is generic enough 
to be used outside of emotion research. Presently, the authors perform the coding using the 
Anvil software, which is a manual annotation tool [140]. As of yet, there is no system that 
extracts the BAP coding automatically from body motion. In Section 3.4, we give more 
details on BAP. 

3.3 Automatic Recognition of Affective Body Expressions 

Most of the research on affect recognition focuses on facial expressions, prosodic features 
of speech or physiological signals (see Zeng et al. for a survey of methods [293]). As motion 
capture systems become more affordable and widespread, increasing attention has been 
given to the role of body expressions in affect recognition [137,142]. De Gelder offers twelve 
reasons for considering body expressions for affect recognition, including the fact that 
bodily expressions are recognised as reliably as facial expressions [90].  

Works on recognizing affect from body expressions can be distinguished depending on 
whether they are data-driven, or knowledge-driven; use acted, elicited, or natural 
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expressions; use communicative, functional, artistic, or abstract movements; and on the 
affective states they attempt to recognize. 

Data-driven approaches use the output of a motion capture system to select relevant 
features and train a classifier. An example is the work of Kapur et al., who recorded data 
using a Vicon motion capture system and trained different emotion classifiers with 
techniques such as logistic regression and decision trees [135]. Knowledge-driven 
approaches not only draw from results in Human Sciences to assist classification, but output 
results that contribute to this body of knowledge. Such works usually derive some labels 
from the raw data using notation systems such as Labanotation [229] or the Body Action 
and Posture Coding System (BAP) [61]. 

The nature of the affective expression can be acted, elicited or natural. Acted data is usually 
recorded from actors and the ground truth is considered the expression they were asked to 
perform. The quality of the data can be enhanced by using emotion elicitation processes 
derived from Psychology and Theatre methods, such as Stanislavski’s System [173]. Natural 
data is harder to record and annotate, but provide more realistic portrayals of emotions. 
While there has been a recent trend to-wards recording natural data, the number of such 
datasets is still small [137]. 

Affective states can be manifested in different types of movement [137]. Communicative 
movements are directly related to the expression of affect. Functional movements are the 
ones used to perform tasks and may be modulated by affect. Artistic movements are usually 
choreographed and exaggerated and abstract movements are used neither to communicate 
a meaning nor to accomplish a task. 

The affective states observed in previous work differs widely. Whilst early work tended to 
focus on trying to cover several emotions, recent work has moved towards understanding 
different qualities of fewer states (e.g. Griffin et al. distinguish types of laughter from body 
expressions [94]) or the states conveyed by specific movements (e.g. Gunes and Pantic 
classify different states using only head movements [97]).  

3.4 The Body Action and Posture Coding System 

BAP separates its behaviour variables into 12 categories: head orientation, action and 
posture; trunk orientation, action and posture; arms action and posture; whole body 
posture; gaze; action functions and other. In BAP, orientation labels are coded using an 
external frame of reference, namely the interlocutor. Posture labels can be of three types: 
(1) posture units (PU), which are broken down into (2) posture transition phase (PT) and 
(3) posture configuration phase (PC). Posture transition refers to the period of time to reach 
the end position and posture configuration is the period of time in which the posture is 
maintained. The direction of postures is coded according to the three orthogonal planes that 
cross the centre of mass of the body in the standard anatomical position. Actions change 
more frequently than postures, so they are coded differently as action units, which can be 
broken down into its different steps (action subunits). 

Even though the coding system attempts to be as objective as possible, it offers challenges 
to its automatic implementation. The first challenge is about how the data is segmented. The 
coding guidelines are very specific about the definition of onset and offset points for the 
segments, so it is important to define precisely the frames where the label begins and ends. 
However, when implementing it automatically, there will always be issues of noise and 
synchronisation between different sensors due to different sample rates. Second, even if the 
segmentation is correct, its labels depend on its context, so the same data segment may have 
different labels depending on the previous and next segment. Let’s take the example of a 
right head turn. If after turning the head the user holds the head to the right, it is labelled as 
a posture transition, but if it is followed by a left head turn, it is labelled as an action sub-
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unit. Moreover, if the user’s head posture was already annotated as being turned to the right 
before turning the head to the right, the head turn is considered part of the configuration 
phase and not labelled at all. 

3.5 AutoBAP 

Facial expressions and speech are rich sources of information and powerful modalities for 
automatic recognition of basic affective states and have been investigated for a long time in 
affective computing research [78,82]. With the availability and decreasing cost of ambient 
and on-body sensing systems, there has also been increasing interest in using bodily motion 
as well as gaze behaviour for the same purpose [144,300]. Researchers have for example 
tried to identify correlations of low-level movement features to affective states, such as the 
velocity of different body parts [209]. 

A key requirement for developing computational methods for affect recognition from 
speech, physical and visual behaviour is the availability of extensive and fully annotated 
datasets. Such annotation is currently performed manually using video annotation tools, 
such as Anvil or Elan, according to a specific coding system. One of the most well-known 
coding systems for facial expressions is the Facial Action Coding System (FACS) [73,74,76] 
and a similar system has recently been proposed for body actions and postures (BAP) [61]. 
High-quality manual annotation requires appropriate training of expert coders, making it a 
cumbersome and costly task. For example, it took Dael et al. on average 15 minutes to code 
each 2.5 seconds portrayal in the Geneva Multimodal Emotion Portrayals (GEMEP) corpus 
using the BAP coding system [12]. Moreover, the output is susceptible to subjective 
interpretation, mistakes and omissions. 

While attempts to automate this task for mature coding systems, such as the Facial Action 
Coding System, have been made [82], the same does not apply to annotating body 
expression. As the interest in affective body expressions increases, so does the demand for 
tools and methods to support research in the topic. However, to the best of our knowledge, 
there is currently no software tool available to annotate affective body expressions 
automatically. 

We aim to fill this gap by presenting AutoBAP, a prototype system that automatically 
annotates body and eye motion data according to the Body Action and Posture coding 
scheme using data from wearable sensors. AutoBAP uses hardcoded rules that implement 
the coding guidelines as well as decision trees trained with machine learning algorithms on 
data collected in a user study. The decision trees were trained during the system 
development so that our prototype doesn’t have to be trained for new users. Results from a 
user study demonstrate that our system is able to automatically extract 172 behaviour 
variables from wearable motion and gaze tracking data with good correspondence to 
manual annotation. 

AutoBAP is the algorithmic layer that sits between a wearable sensing system and a 
graphical user interface. Figure 22 shows an overview of our prototype.  
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Figure 22 - System Overview. Motion and gaze tracking data are captured with their 
corresponding tracking system and pre-processed in Matlab. Additionally, we use a 
computer vision toolkit to track a fiducial marker simulating an interlocutor. We then 
use the Weka machine learning toolkit to classify the data into initial categories and 
annotate it using hard-coded rules in Matlab. The system outputs an XML (.anvil) file, 
which can be visualised and edited in Anvil. 

In the bottom layer of our prototype lies the sensing system, which includes a wearable 
inertial sensors-based motion capture suit and a computer vision-based wearable eye 
tracker. We opted for wearable solutions as in the future we would like to use our approach 
to automatically annotate “in-the-wild”, i.e. out of the laboratory, behavioural data. In our 
prototype, we track motion using an Xsens MVN Biomech full body motion tracking system. 
This is an ambulatory 3D human kinematic measurement system that comprises 17 inertial 
measurement units (10 in the upper body and 7 in the lower body) and outputs 3D 
orientation and position of 23 body segments, 22 joints, body centre of mass and raw data 
from inertial sensors at a sample rate of 120Hz. It transmits its data wirelessly to MVN 
Studio (version 3.4) which synchronises it to the corresponding frames from an Allied 
Vision Technologies Prosilica GS650C Ethernet video reference camera (25Hz). Gaze 
tracking is performed with SMI Eye Tracking Glasses. This is a non-invasive video-based 
glasses-type binocular eye tracker with automatic parallax compensation at a sample rate 
of 30Hz, a spatial resolution of 0.1 degrees and a gaze position accuracy of 0.5 degrees over 
all distances. The glasses are connected with a USB cable to a Windows 8 laptop running the 
iViewETG software, which streams it wirelessly to another Windows laptop running a 
custom-built application that records and processes the data.  

AutoBAP is the layer above the sensing and is comprised of three components. First, it pre-
processes the sensor data. This involves synchronising different sample rates, merging data 
from different sensors and extracting derived features for the machine learning algorithms. 
Also, in this prototype we simulated an interlocutor with a fiducial marker placed next to 
the reference camera and used a computer vision algorithm to extract its position from the 
eye tracker’s scene camera. We do this in the pre-processing stage using the reacTIVision 
toolkit [134]. The second component is the decision tree algorithms. These trees were 
trained by machine learning algorithms from the Weka library [100] using user data. The 
data collection procedure is described in the next section. The output of the decision trees 
is then analysed by the third component, which implements the guidelines described in 
BAP’s coding guidelines document and manual. We implemented the rules in Matlab. 
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Finally, after annotating the data, this component down samples it back to the camera’s 
sample rate and creates an XML file with the annotation data. Section 3.5.1 provides an 
overview of the annotation extraction procedure.  

The top layer is the graphical user interface for visualising and editing the extracted 
annotation. In order to leverage the capabilities and familiar user interface of a widely used 
tool, we chose Anvil [140] for this purpose. In Anvil, the user can make any desired changes 
supported by the platform, such as adding, editing and removing labels (see Figure 23). 

 

Figure 23 - Anvil user interface. The user can see all labels generated by AutoBAP on 
a timeline as well as the video recording. 

3.5.1 Annotation Extraction 

In this section, we describe our approach to classifying actions and postures, which includes 
decision trees and hardcoded rules. We describe the collection and manual annotation of 
the data and the selection of features to train the decision trees. We then describe how we 
adjust the output of these classifiers to adhere to the coding guidelines using hard-coded 
rules. We exemplify our approach with the example of a right head turn. 

3.5.2 Data Collection 

The first step in our annotation extraction 
procedure is to use decision trees training with 
a machine learning algorithm to classify the 
data. In order to train our classifier and to 
evaluate it subsequently, we collected a motion 
tracking dataset that could cover all labels in 
the coding system. We collected data from 6 
participants, aged 18-31 (mean 24.7), of which 
4 were male and 2 were female. They had 
different body builds, ranging from 1.65m to 
1.82m of height (mean 1.74m) and from 59kg 
to 90kg (mean 73.7kg) of weight. Each data 
collection session involved only one participant and one researcher and took place at a quiet 
laboratory environment. The sensing setup consisted of the Xsens MVN Biomech full body 
motion tracking system and the eye tracker (see Figure 24). Participants stood 2m away 

STUDY AT A GLANCE 

Goal: Train an automatic behaviour 
classifier. 

Method: Data recording 

Participants: 4M/2F (18-31y.) 

Procedure: Sequence of specific 
movements to represent all 
behaviours in BAP 

Results: 172/274 labels successfully 
extracted with a Cohen’s Kappa >0.6 
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from the camera, which was mounted on a stand 1.12m above the floor, next to a 17” LCD 
display. Motion and eye tracking data were recorded separately. The average length of the 
recording for each participant was 9 minutes and 45 seconds. 

 

Figure 24 - Sensing setup. Participants were recorded by a Prosilica video camera (A), 
positioned next to a fiducial marker (B). They performed actions displayed on an LCD 
screen (C) whilst being tracked by an SMI eye tracker (D) and an Xsens Biomech 
motion capture suit (E). 

When participants arrived, they filled in a consent form and a personal details 
questionnaire. We then took measurements of each participant’s height, foot size, arm span, 
ankle height, hip height, hip width, knee height, shoulder width and shoe sole height. These 
are data that can be input in MVN Studio to improve the accuracy of the motion capture. We 
then assisted each participant in mounting straps with the motion sensors. Each participant 
was then asked to follow a script of actions so that each behaviour variable in the code 
appeared at least once in the data. This script was displayed on the LCD screen in a slide 
presentation showing the instruction and a photo of a person performing the desired 
posture or action. For example, in the case of the head, participants were instructed to turn 
left/right and hold the posture; turn left/right without holding the posture and turn 
left/right repeatedly. The same was done for head lateral and vertical tilts.  

We exported the data from MVN Studio to a XML file that contained the timestamped 
position, orientation, velocity and angular velocity of each segment in the global frame and 
the angle on each joint in their own reference frame. We used the SMI BeGaze software to 
export the data from the SMI glasses to a log file containing the timestamped gaze position 
in the scene camera reference frame. 

3.5.3 Manual Data Annotation 

We annotated each recording twice: once to use as input when training the decision trees 
and once to evaluate the final output of the system. We did not use BAP labels to train our 
classifiers because some behaviours may be assigned to completely different movements 
and impact training. For example, the transition phase for head turn towards the lateral 
middle position might be a left or right movement, as long as they end in the middle. To 
simplify the training, we annotated the data separately using labels that describe the 
movement or posture independently of the sequence of behaviours. In the same example, 
instead of annotating a transition phase to the middle, we annotated a right or left turn 
accordingly. This way, the machine learning could learn how to classify the direction of the 
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movement and the orientation of the posture and leave the annotation of what it means in 
the sequence of behaviours to the hardcoded rules. 

We also manually annotated the video recording from the reference camera using Anvil, 
based on the BAP specification file for this platform, which can be obtained from its authors’ 
website. Even though we had no formal training or practice with this particular coding 
system, since it had just been published, we followed the manual and additional guidelines 
carefully. We exported the annotation data using Anvil’s “Export Annotation Frame-by-
Frame” feature. This creates a tab-separated text file with a table in which each row 
represents a frame and each column, a label containing a Boolean value representing the 
presence or absence of the label in that frame. We then used the timestamps to synchronise 
the annotation data with the sensor data. All the annotation was performed by the same 
person. This second annotation was used to evaluate the final output of the system. 

3.5.4 Feature Selection 

Due to the complexity of human movement, using motion capture data to detect actions and 
postures also becomes a complex problem. For example, our tracking system can output for 
each sample up to 794 attributes (4D orientation, 3D position, 3D velocity, 3D acceleration, 
3D angular velocity and 3D angular acceleration for each of the 23 segments; 3D 
acceleration, 3D angular velocity, 3D magnetic field and 4D orientation for each of the 17 
sensors; 3D ZXY and 3D XZY angles for each of the 22 joints, the 3D position of the centre of 
mass and the timestamp), not counting other features that may be derived from those. At a 
sample rate of 120Hz, this quickly becomes an enormous amount of data, so selecting 
relevant features increases the speed of training and classification. 

Moreover, several behaviours are completely independent of one another. For example, a 
user may turn his head to any direction independently to his arms configurations. 
Therefore, classifying behaviours of the head, whilst taking into account the features related 
to the arm, may improve recognition performance on a training set, but cause erroneous 
classification on testing data. Therefore, selecting a relevant feature set, also reduces 
overfitting and increases the recognition performance for further datasets. 

Considering that the data were labelled according to the direction of movements and 
orientation of postures, we treated the annotation of each axis as a 5-class classification 
problem. For example, in the case of head turns the classes were: right turn, left turn, facing 
forward, facing to the right and facing to the left. We then used the angular speed to 
discriminate between movements and the joint angle to discriminate between postures, so 
that the output of this step would then be used in the subsequent classification procedure. 

Some arm postures such as crossed arms, however, involve a specific configuration of more 
than one axis and segment, so for these cases we used multiple features. Other labels that 
the coding system is less specific about also require multiple features, but in a less 
restrictive way. For example, lower limb movements are only coded regarding leg 
movement or knee bend, so we need to analyse the movement from all segments in either 
leg to look for movement. For gaze labels we use as features the distance vector between 
the gaze point and the fiducial marker as extracted by the computer vision algorithm. 

3.5.5 Decision Trees and Hardcoded Rules 

Extracting a BAP annotation file is a problem that is reduced to filling in a matrix with 274 
columns representing each behaviour and one row for each frame in the recording. Each 
cell in this matrix is a Boolean variable that represents the presence or absence of the 
behaviour in the frame. A naïve approach would be to train 274 classifiers, but this would 
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not take into account the relationship between behaviours. Therefore, we reduce the 
problem even further by grouping sets of exclusive labels. For example, the head cannot be 
turned to the left and to the right at the same time. Moreover, if the head is moving, it is not, 
in principle, in any posture (although it can happen, as we discuss in the next session). For 
each of these sets of behaviours we train a separate classifier using the appropriate feature 
set, effectively reducing our problem to 28 classifiers. In the case of the head, this leaves us 
with a separate classifier for head turns, vertical tilts and lateral tilts, with the output being 
one of five possibilities: the head is either turning to one direction or another, or is being 
held facing one the middle, one direction or another. We used the J48 decision tree training 
algorithm available in the Weka machine learning library using the simpler annotation as 
described previously. 

This procedure outputs a table with the predicted labels for each sample in each column, 
which can be noisy. We smooth the classification output by trying to estimate the onset and 
offset of each label from the dataset. We use an adaptation of Velloso et al.’s [277] approach 
to motion modelling to find these points and assign to the segment the mode of the labels it 
contain, but instead of looking for characteristic points in multiple periodic repetitions of 
data, we look for these points in a single instance of the movement. 

Once we can differentiate directions of movement and orientations of postures, we then 
take a step back and consider the position of each behaviour in the time series. We 
hardcoded rules that implement the coding guidelines in the BAP manual. For example, if 
the segment following a left head turn is a posture held facing forward, we annotate it as a 
transition phase of a lateral head turn towards a middle position (HTuM-PT), but it is 
followed by another movement, we label it as an action form sub-unit (Action form.Head-
ASU:HTuR). Moreover, if a pattern of repeated action sub-units is detected, we classify it 
differently (Action form.Head-ASU:HLR, in the case of repeated left and right head turns 
turning into a head shake). Also, we combine transitions and configurations to extract 
posture units. Figure 25 exemplifies the classification possibilities for a left head turn. 

 

Figure 25 - Example annotation extraction for a left head turn. Input is the data 
recorded using the motion capture system (A). We then analyse each component of 
the movement independently (B) and use machine learning to identify the direction 
of movement or the orientation of the posture (C). Using hard-coded rules that follow 
BAP’s coding guidelines, we analyse the temporal context of the segment and assign 
the appropriate label (D). Depending on the context, we also combine segments into 
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parts of larger actions such as head shakes and/or extract other labels such as 
posture units (E). 

3.5.6 Exporting the Annotation 

Our classifiers output a matrix in which each column contains a Boolean value for the 
presence or absence of each label and each row represents a data sample from the motion 
tracker. We reduce the sample rate of 120Hz to 25Hz in order to match the frame rate of the 
video recording by taking the 4 or 5 samples corresponding to each frame and creating a 
data point with the mode of the labels in that interval. We then group intervals with the 
same label and write it to an XML file according to the Anvil file format. This allows us to 
visualise and edit the annotation data using Anvil’s graphical user interface as if the 
annotation had been performed manually.  

3.5.7 Evaluation 

We evaluated the system using cross-validation, using the data from five participants for 
training and one for testing. We then compared the output of the system with manually 
annotated data by calculating the agreement between manual and automatic annotations 
using Cohen’s kappa [53] based on the presence or absence of a behaviour unit on each 
frame in the portrayal. This is a measure of inter-annotator agreement that takes into 
account the agreement occurring by chance. We considered the labelling successful when 
the kappa was over 0.6 [84]. Table 3 shows the reliably annotated labels. Posture units 
shown on the table include all related labels (PU – posture unit, PT - posture transition and 
PC - posture configuration). 

Table 3 - Behaviours annotated with Cohen's Kappa over 0.6 

Category Labels 

Head Facing, Averted, HTuL, HTuR, HTuM, HTiL, HTiR, HTiM, HVU, 
HVD, HVM 

Trunk Facing, Averted, TLF, TLB, TLMF, TLL, TLR, TLML, TRL, TRR, TRM 

Whole Body BF, BB, BMF, BL, BR, BML 

Arms LA/RA side, LA/RA front, LA/RA back, LH/RH neck, AA crossed, 
AA front, A hold A front/back, AA sym, AA asym 

Gaze Toward, Upward, Downward, Averted Sideways, Eyes Closed 

Head Action Form HTuL, HTuR, HTiL, HTiR, HVU, HVD, HVUD, HLR 

Trunk Action Form TLF, TLB, TLL, TLR, TRL, TRR, TLLR, TRLR, TLFB 

Arms Action Form AA sym, AA asym, wrist, elbow, shoulder, up, down, forward, 
backward, left, right, toward, updown, left-right, forward-
backward, circular, retraction 

Lower Limbs Knee bend, leg movement 

3.6 Limitations 

The labels we attempted to extract in this work were limited by the capabilities of the 
tracking system. In the future, we would like to explore additional sensing modalities to 
detect the remaining labels, such as hand tracking and touch sensors. 
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For this work, we recorded a scripted dataset to cover as many labels as possible, but this 
means that the actions were not natural. Future work will include recording unscripted 
affective data to improve the training dataset and to evaluate the classifiers in a realistic 
dataset. This will also allow us to explore the classification of action functions, such as 
emblems, illustrators and manipulators as well as the possibilities of using automatically 
extracted labels for affect recognition. 

In this first prototype we simulated the interlocutor as a fiducial marker and annotated gaze 
according to the distance between the gaze point and the fiducial marker as extracted by a 
computer vision toolkit. In the future, we would like to replace this for a face recognition 
system, so the system may be used in a real life setting. 

In this work, we attempted to annotate as many labels in BAP as possible. However, the 
coding system was initially created to code the data in a specific dataset, the Geneva 
Multimodal Emotion Portrayals (GEMEP) corpus, in which actors portray emotions while 
standing up and being recorded by face and upper body cameras [12]. Therefore, the scope 
of the coding system is limited to behaviours expressed in such a way. By capturing body 
expressions with a tracking system, the coding system could be extended in the future to 
cover more behaviours such as specific leg movements and sitting down postures. 

We started the paper by arguing for a combination of the low-level data provided by motion 
capture systems with high-level posture and action units annotated manually. In the future, 
we would like to extend the coding specification to leverage this combination. This way, 
automatically extracted labels could include additional data such as range of motion and 
average speed for action units and average orientation angle for posture units. 

3.7 Conclusion 

The Body Action and Posture coding system is still in its early days at the time of writing. As 
the coding system matures and increases in adoption, studies in Affective Computing will 
lead to a better understanding of how these labels correlate to affective states. Hence, the 
automatic extractions of such labels will make it feasible to implement affect recognition 
systems that take domain knowledge into account.  

Our study results show that AutoBAP can encode a wide range of BAP units. Some subtle 
postures were not picked up by our motion capture system despite the fact that we used 
state-of-the-art motion and gaze tracking systems. For example, the motion capture suit 
does not include sensors on the fingers, so in this prototype, we did not attempt to label 
finger actions. Also, even though Xsens’s proprietary algorithms extract a very accurate 
model of motion from the available sensors, the orientation of some segments where no 
sensors are attached to, such as the neck, are inferred from the orientation of other sensors. 
This makes the detection of some movements such as neck retractions and extensions more 
difficult. 

In this study, we recorded and annotated very specific and controlled scripted movements, 
in order to have an unambiguous and comprehensive dataset for training our algorithms. 
We demonstrated that our approach can classify these datasets accurately but we clearly 
need to validate our system using other datasets. Also, the training and testing data we used 
were labelled by the same person. We started from the assumption that the coding system 
is reliable enough so that two independent raters may end up with a reasonably similar 
result, as suggested by Dael et al. [61], but we can’t make any statements about how the 
system would perform when compared to third-party annotations. We limited the scope of 
this study to objective movements, so we did not attempt to classify action functions, such 
as emblems and illustrators. Due to the wide range of possibilities for such gestures, 
classifying them becomes a whole challenge on its own. 
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Our prototype is currently coupled to the chosen sensing system and annotation GUI, but 
we posit that our approach would be transferable to others. We chose Anvil as the export 
format as BAP’s original specification was published in this format. As it is an XML file and 
BAP is, in principle, compatible with other annotation tools, it should not be a problem to 
convert it to other formats. See Schmidt et al. for a description of an effort to convert 
between annotation formats [234]. Other eye trackers could also be used with few 
adjustments as long as it provides a scene camera to track the interlocutor or some other 
means to extract relative orientation and position. Using other motion trackers might be 
more complicated though. Motion capture systems vary widely in terms of accuracy and 
which segments they track. While a different implementation would be needed to match the 
new features to annotation labels, the implementation procedure we described could still 
be applied. 
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4 A SURVEY OF LOWER BODY 

INTERACTIVE SYSTEMS 

“The human foot is a masterpiece of engineering and a work of art.” 

Leonardo da Vinci 

 

We now begin to develop our second proposition—that the lower limbs can provide an 
effective means of interacting with computers beyond assistive technology. Before we 
began this investigation, our impression was that very little work had been conducted in the 
area. To our surprise, we found a substantial amount of literature scattered in HCI, 
Ergonomics, Accessibility, amongst other fields. Because this work had never been surveyed 
before, we conducted a thorough literature review, which is presented in this chapter. 

In December, 1968, Douglas Engelbart delivered what later became known as The Mother 
of All Demos. In this famous 90-minute presentation, Engelbart introduced the world to the 
mouse, amongst other prototypes of the fundamental elements of graphical user interfaces 
(GUI). Whereas it is widely known that Engelbart and his team created the mouse, it is often 
forgotten that before reaching this design, they explored different prototypes operated by 
the feet [78,79]. Since then, research in HCI and other fields has given rise to a large variety 
of computer interfaces operated by the feet, right through to work that employs the feet in 
mobile and wearable contexts, on interactive floors, and in smart environments. However, 
in spite of the volume of research conducted on the topic, there is no single reference that 
systematises the literature. This chapter aims at filling this gap, with a comprehensive 
review of foot-based interaction.  

Work in foot-based interaction emerged from different motivations: the feet provide an 
alternative to the hands for accessible input [42,249], they can reach areas that are 
awkward to reach with the hands such as floors [7] and the bottom part of walls [131], they 
provide a natural mapping to locomotion tasks [70,117], they provide additional input 
channels for assisting other modalities in complex tasks [91,242], etc. 

These different motivations have resulted in the development of a large variety of foot-
enabled devices, and research contributions from different communities. For example, the 
different foot mice and joysticks explored in accessibility research; the variety of sensor-
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enabled trainers and insoles created by the wearable computing community; and the 
diverse ways of tracking the feet unobtrusively with colour and depth cameras that resulted 
from computer vision research. 

This chapter reviews devices and interactions that involve our lower limbs. Considering 
that when we move our legs we invariably also move our feet, for the sake of simplicity, we 
refer to these as foot-based interactions. To display the breadth of research that has been 
conducted, the scope of this survey is broad, covering works that describe foot-operated, 
foot-worn, and foot-tracking devices; and studies that evaluate interactions afforded by the 
feet. Also, to put such interactions in context and to give a theoretical background to the 
understanding of users’ capabilities, we review the literature on the anatomy, biomechanics 
and psychology of the behaviour of the lower limbs. 

Regardless of the input or output modalities involved, HCI involves users, systems and the 
interactions between them. Understanding users helps the design of ergonomically optimal, 
more widely accessible and culturally compatible interfaces. Understanding systems 
provides both an awareness of tools available to capture input and provide output, as well 
as an appreciation of existing systems that provides inspiration and direction for future 
work. Understanding interactions provides a common vocabulary for the design of 
interactive systems as well as an awareness of user performance limitations. 

This work contributes an analysis of foot-based interactions based on these three lenses. 
From the user perspective (Section 4.2), we analyse the lower limbs’ anatomy and 
movement, as well as the implications for design created by the pose in which users interact 
with such systems. We also discuss accessibility and cultural issues. From the system 
perspective (Section 4.3), we first analyse the different ways of capturing input from the 
feet—mediated sensing, intrinsic sensing and extrinsic sensing—and how these systems 
differ in their properties. We also discuss their output and how they provide feedback to 
users. 

Finally, from the interaction perspective (Section 4.4), we analyse four categories of actions 
that users employ when interacting using their feet: deictic, manipulative, semaphoric and 
implicit actions. These three perspectives overlap substantially, as one perspective depends 
on the other to create interactive experiences, but they provide a structure for discussing 
the most important elements for designing interactions that use the feet as an input 
modality. 

Figure 26 shows our methodology. The survey presented on this chapter, highlights gaps in 
the literature that we address with a series of empirical studies in the next chapter. These 
studies informed the design of foot-based interaction techniques that we describe in section 
6.2. 
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Figure 26 – To explore the domain of foot-based interaction, we conducted a broad 
survey of foot based interaction (Chapter 4), a series of empirical studies (Chapter 5), 
and designed novel foot-based interaction techniques (Section 6.2) 

4.1 Related Work 

We are not the first to attempt to systematise the work on foot interaction. When Pearson 
and Weiser began the development of their moles, they provided a historical classification 
of the feet in the interaction with devices. In the pre-industrial era, their function was to 
transmit both power and control (e.g. the horseman’s stirrup, the farmer hay fork and 
shovel, the pipe’s organist’s bellows and foot keys, the potter’s kick wheel). With the advent 
of electricity and other means of providing power, their function shifted to control alone 
(e.g. car pedals, arcade games, gas pressure controls, guitar effects pedals). Finally, they 
were used for foot-mediated input for computers (e.g. flight controls for aircrafts and 
simulators and volume and sustain controls in music synthesisers) [206]. Whereas this 
classification puts the role of the feet as an interaction modality in a historical context, it 
does not provide a structure for modern devices. 

Rovers and van Essen’s taxonomy classifies foot interactions according to their complexity: 
(1) simple toggle actions (e.g. foot switches), (2) single parameter (e.g. pedals), (3) multiple 
parameters (e.g. moles) and (4) intelligent footwear (e.g. Adidas “1”) [226]. This 
classification is also not ideal for modern devices for two reasons. First, because of the 
miniaturisation and decrease in cost of electronic components, most systems provide 
multiple channels of input, and hence fall into the third category. Second, there is an overlap 
between the fourth category and the others, as intelligent footwear may also provide toggle 
actions and control one or more parameters. 

Because of the wide variety of foot-based interfaces found in the literature, rather than 
trying to find an all-encompassing taxonomy, in this paper, we analyse the literature under 
three different lenses: the users, the systems and the interactions between them. From the 
user perspective, we draw from the literature in Biomechanics and Kinesiology [157] to 
analyse specific movements of the lower limbs. Saffer performs a similar analysis for full 
body gestures and touch interfaces [228]. 
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From the system perspective we investigate input and output devices. Our classification 
borrows from general input devices taxonomies, such as Hinckley et al’s [111,113]. For 
certain categories of devices, we refer readers to more specific surveys, for example, on 
pedals [270] and on locomotion interfaces [117]. 

Finally, from the interactions perspective, we classify different actions that can be 
performed with the lower limbs. Karam and schraefel defined a taxonomy for hand gestures 
in HCI [136] and proposed five categories for gesture styles: deictic, manipulative, 
semaphoric, gesticulation and language gestures. For an overview of gesture taxonomies, 
see Billinghurst and Buxton [23]. 

4.2 Users’ Characteristics 

The design of interactive systems is usually optimised for the movement and capabilities of 
the hands. Therefore, it is essential to understand the strengths and limitations of the lower 
limbs, especially in comparison with the arms and hands, in order to design interfaces that 
take their motion range, weight and speed into account.  

We start our discussion of the user perspective by looking at the anatomy of the legs and 
feet (Section 4.2.1) and how the movement on each of their joints is used for interaction 
(Section 4.2.2). We then analyse how the pose of the user (sitting, standing, or 
walking/running) impacts interaction (Section 4.3.3). Finally, we look at accessibility issues 
(Section 4.2.4), as well as the nonverbal and cultural issues associated with the behaviour 
of the feet (Section 4.2.5). 

4.2.1 Anatomy 

One of the features that sets humans apart from other primates is upright walking, which 
could date from the earliest phase of human evolution [160]. Whereas our close cousins use 
all four limbs for locomotion, we only use our legs. This provided an evolutionary advantage 
as it allowed us to carry more food, to better gather small food from short trees, to expose 
less skin to direct sunlight, to free our hands to use tools or carry babies over long distances, 
to spend less energy when walking at reduced speeds, to see further whilst walking and to 
appear more threatening to predators [282]. The downside is that we lost speed and agility 
and have a much more reduced ability to climb trees [160]. Also, due to the constant muscle 
tension applied to stabilise our bodies and to the much shorter length of the toes compared 
to the fingers, we lost prehensility—the ability to grasp—in our feet. The direct implication 
for HCI is that graspable interfaces, such as the regular mouse, are unsuitable for the feet. 
Therefore, interfaces with moving parts often need to provide some way of securing itself 
to the foot, for example, by offering straps or high-friction surfaces. 

The foot is a complex structure comprising 26 bones (tarsals, metatarsals and phalanges), 
over 100 ligaments, muscles and tendons that work together to maintain balance and propel 
the human body. The bones of the foot are arranged in three arches, two along its length 
and one across it. These arches stabilise our bodies in the upright position while giving an 
elastic springiness to it [65]. The foot can be divided into three parts: the hindfoot (where 
the heel is), the midfoot, and the forefoot (where the ball and toes are). Because of this 
structure, the feet have a very distinctive and asymmetrical shape that can be recognised by 
vision-based systems [7]. In the gait cycle, these parts touch the ground in sequence, a 
pattern that has been explored in several projects to estimate user movement (Section 4.3). 

The entire lower extremity of our bodies weigh on average approximately 31.2% of our 
body mass, of which 19.4% is from the thighs, 9.0% from the legs and 2.8% from our feet 
[67]. Because the lower limbs weigh a lot more than the upper limbs, their movement tends 
to be more tiring and lead to cramps if used extensively [78]. 
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4.2.2 Kinematic Analysis of Joints 

For our purposes, the movement of the lower limbs is mostly performed by three joints on 
each leg: the ankle, the knee and the hip. Table 4 shows the distribution of the ranges of 
motion for each movement of these joints [223]. 

4.2.2.1 Ankle 

 The ankle joint is capable of three types of rotation, each in two directions: 
dorsiflexion/plantar flexion, abduction/adduction and inversion/eversion. Dorsiflexion is 
the movement that decreases the angle between the top of the foot and the leg. Plantar 
flexion is the movement that increases this same angle. These are the movements used to 
operate pedals [147]. Momentary pedals, which require users to push against a spring, 
require more force on the plantar flexion, since the spring assists the dorsiflexion, but 
rocker pedals require the user to push in both directions. Depending on where the foot is 
anchored, these movements can be interpreted as two separate gestures. If the foot is 
anchored at the ball, it is considered as heel tapping and if it is anchored at the heel, it is 
considered as toe tapping. Pedals typically anchor the foot at the heel, but in English et al.’s 
control, its vertical movement was anchored at the ball [79]. 

Inversion is an inward twisting movement, whereas eversion is an outward twisting 
movement. The range of motion along this axis is very limited. These movements are often 
combined with other rotations into supination (a triplanar movement in which the foot 
moves down and towards the centre of the body, combining inversion, plantar flexion and 
adduction) and pronation (a triplanar movement of the subtalar joint in which the foot 
moves up and away from the centre of the body, combining eversion, dorsiflexion and 
abduction). Supination and pronation are the movements typically used to move foot 
joysticks horizontally as they allow for a shift of weight of the foot with little movement. 

Abduction is the movement of the foot away from the centre line of the body and adduction 
is the movement towards it. As a gesture these movements are interpreted as heel rotations 
(if pivoting around the heel) or as toe rotations (if pivoting around the toe) [236]. An 
example of an interface that is controlled by abduction and adduction is Zhong et al.’s 
FootMenu [296], in which the user pivots the foot around the heel to control the horizontal 
movement of the cursor. 
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Table 4 - Normal ranges of motion of the lower limbs joints in male subjects, 30-40 
years old. 

  Range of Motion(˚)  

Joint Movement Mean SD  

Ankle Dorsiflexion 15.3 5.8 

 

Plantar Flexion 30.7 7.5 

Inversion 27.7 6.9 

 

Eversion 27.6 4.6 

Knee Flexion 143.8 6.4 

 

Extension 1.6 2.8 

Hip Flexion 120.3 8.3 

 

Extension 9.4 5.3 

Medial Rotation 32.6 8.2 

 

Lateral Rotation 33.6 6.8 

Abduction 38.8 7.0 

 

Adduction 20.5 7.3 
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4.2.2.2 Knee 

The knee has two degrees of freedom: rotation and flexion/extension. Because knee 
rotation assists foot abduction/adduction, we will not treat them separately. Knee flexion is 
the movement that decreases the angle between the leg and the ankle, whereas knee 
extension is the movement that increases it. As a gesture, these movements combine into a 
“kick” [193]. Han et al. investigated user accuracy in the direction and speed of kicks [104]. 
The authors found that targets should cover at least 24° and that users have difficulty in 
controlling the velocity of the kick, but can remember two broad ranges of velocity. 

4.2.2.3 Hip 

The hip rotates in three directions: flexion/extension, abduction/adduction and 
outward/inward rotation. Because rotations around the hip involve moving the whole leg, 
they are usually tiresome to be used for HCI, but they often assist the movement of other 
joints. For example, when standing upright, kicks can be enhanced by using the force from 
the leg. Abduction and adduction are used when moving foot mice horizontally. The hip can 
also be moved to shift the centre of mass of the body, which is used in pressure sensitive 
interfaces, such as the Wii Balance board. 

4.2.2.4 Toes 

Because the toes are harder to control than the fingers and are often covered by shoes, they 
are very seldom used for interaction. The exceptions are toe switches embedded into shoes, 
such as the one described by Thorp [265]  and the ACHILLE insole, that contains a toe switch 
for controlling a prosthetic arm [42]. 

4.2.2.5 Multiple Joints 

Different combinations of knee and hip movements allow the foot to move in different 
topologies. Pearson and Weiser presented four topologies for surface-based foot interaction 
that illustrate these movements when constrained by a desk well (i.e. the space under the 
desk) whilst seated (see Figure 27) [206]. A planar topology is defined by a plane that might 
be tilted by a certain angle. A cylindrical topology ideally has a radius equal to the height of 
the user’s knee, with the main axis crossing the knee. A toroidal topology is defined by a 
minor radius equal to the height of the knee centred at the knee and a major radius equal to 
the length of the thigh centred at the hip. Finally a spherical topology has a radius equal to 
the height of the knee centred at the knee. 

These different topologies aim at facilitating the movement for specific joints: in the 
spherical topology vertical and horizontal movements are optimised for the knee; in the 
toroidal topology, vertical movement is optimised for the knee and horizontal movement 
for the hip; and in the cylindrical topology, vertical movement is optimised for the knee. 
Vertical and horizontal movement in the planar topology and horizontal movement in the 
cylindrical topology require combinations of knee and hip movements to reach the whole 
space, but may be simpler for users to understand. 

All these topologies constrain the movement of the foot to a two-dimensional plane existing 
in the three-dimensional space. When this constraint is removed we have the free three-
dimensional movement common in movement-based interactions, such as in full body 
games. These movements use a combination of several joint rotations. 
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Figure 27 - Topologies for surface-based foot movements in a seated pose (adapted 
from Pearson and Weiser [206]): (A) Planar; (B) Cylindrical; (C) Toroidal; (D) 
Spherical 

4.2.2.6 Gait 

When walking/running, users will use combinations of all these movements. The gait cycle 
(i.e. the pattern of movement during walking) comprises four stages. It begins when the 
hindfoot touches the ground (heel strike). Then, the forefoot touches the ground, stabilising 
the foot and the body (forefoot contact) until the weight of the body is directly over the foot 
and the opposite foot is swinging from the rear of the body (midstance). Next, the heel lifts 
from the ground and the weight shifts to the front of the foot, as the opposite foot touches 
the ground (heel off). Finally, the foot pushes the body forward and enters the swing phase 
until the cycle restarts (propulsion). 

4.2.3 Pose 

The pose in which the system will be used significantly affects the design of the interface. 
We found in the literature three main poses in which foot-operated systems are used: 
sitting, standing and walking/running. We analysed how the poses affect different 
properties of the interaction, namely the users’ interaction range, the gesture vocabulary, 
fatigue, challenges for design and operation of other devices (Table 5). 

4.2.3.1 Interaction Range 

When seated, a user’s interaction range is limited to the feet’s reach. While swivel chairs 
allow for reaching locations beyond that by rotating or pushing the chair, chairs with no 
moving parts require users to either adjust their pose or clumsily reposition the chair when 
trying to reach further targets. Also, targets may be placed on the chair itself, for example, 
switches mounted on the legs of the chair. By standing upright, users are able to reach 
further and by walking towards targets, they can reach indefinitely far targets. 
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Table 5 - Properties of different poses 
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4.2.3.2 Gesture Vocabulary 

The type of contact between feet and floor in a pose determines the range of possible 
gestures. The sitting pose allows users to take their feet off the floor simultaneously, thus 
multi-feet and mid-air gestures are possible. Yet, lifting both feet repeatedly or for a 
prolonged time leads to fatigue. Standing limits the available vocabulary to single-foot 
gestures, as the other foot maintains the body’s balance. At the same time, however, the 
increased mobility allows for larger gestures, such as kicking or jumping, and for reaching 
further targets. When walking/running, arbitrary gestures are more difficult because the 
feet are busy in the gait cycle. Instead, the movement itself is often used as replacement, for 
example by mapping the real world movement to movement in virtual environments, or by 
using different walking patterns to issue commands [288]. 

4.2.3.3 Fatigue 

The pose in which the user interacts with the system will also dictate how long the user may 
interact with it. Users typically have no problem sitting down and to a lesser extent, standing 
upright, for long periods of time, but walking and running will be tiresome to different 
degrees depending on the user’s physical fitness. Whereas there are no long-term studies 
on foot interaction in HCI, piano players and car drivers are able to operate pedal-based 
interfaces for extended periods of time. 
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4.2.3.4 Challenges 

When users are sitting, they are often sat in front of their desks. This spatial configuration 
constraints the movement in two ways. First, the movement is restricted by the size of the 
desk well [206]. This not only limits the area where users may move their feet, but because 
the desk well is often cluttered with cables and power plugs, the movement may be affected. 
Second, the desk occludes the feet, which prohibits direct input devices, such as Multitoe [7]. 

When users are standing, movement is usually constrained by users’ balance, which will 
determine how well they can perform mid-air or floor-touch gestures in a stable manner. 
The biggest constraint in walking/running foot interaction is the limited attention and 
cognition as the user is busy moving through the world. Any deviation of users’ normal gait 
pattern may increase the risk of tripping or losing balance. 

4.2.3.5 Interaction with Other Devices 

The pose is also influenced by the choice of other devices with which the foot interface will 
interact. For example, when sitting down, foot interfaces are usually used to interact with 
desktop computers, together with mice and keyboards. When standing up, they are usually 
used for interaction with public displays, multitouch tables and mobile devices. When 
walking/running, the feet normally interact with music players, mobile devices and artistic 
installations. 

4.2.4 Accessibility 

Foot-operated interfaces offer an accessible alternative to hand-operated interfaces for 
people with problems in their hands, including arthritis, carpal tunnel syndrome, limb loss, 
etc. Several works in the literature investigate these devices explicitly for this purpose 
[42,249]. While these interfaces may provide relief for tired wrists, continued use may also 
strain the ankles, causing further pain and discomfort. It can also be more tiring and lead to 
cramps if used extensively [78]. 

Interfaces that are exclusively operated by the lower limbs create new accessibility 
problems. People in wheelchairs and crutches or with other disability or impairment on the 
lower limbs will have difficulty or even impossibility of using such devices. Also, short 
people might find difficult reaching far targets on the floor if sitting on a high chair. 

4.2.5 Nonverbal Behaviour & Cultural Issues 

Both scientific and anecdotal evidence suggest the feet give away clues to our internal states. 
Joe Navarro, an ex-FBI counter-intelligence officer and body language expert considers the 
feet as “the part of the body that is most likely to reveal a person’s true intentions”[183]. In 
social interactions, we tend to focus on each other’s faces, so the legs and feet tend to escape 
our attention. This makes the lower limbs particularly good at providing clues to how 
people are really feeling—what psychologists call nonverbal leakage [179]. 

In Section 4.2.1 we explained how our lower limbs evolved to support our bipedalism. As 
they became our main means of locomotion, our limbic system—the part of our brains 
responsible for, amongst other functions, our emotions and our fight-or-flight 
mechanisms—evolved to quickly activate the legs and feet to escape from danger or 
confront predators. Even though we do not face such challenges today, these hardwired 
evolutionary mechanisms still manifest themselves in our nonverbal behaviour. For 
example, quick movements of the feet are indicative of anxiety. In a study with students 
learning foreign languages, Gregersen reported that anxious students continuously 
bounced, jiggled and tapped that feet, whereas non-anxious students only crossed and 
uncrossed their legs a few times [93]. 
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Not only feet movements send nonverbal signals, but also the overall posture. For example, 
Mehrabian [171] relates the symmetry of leg posture to how relaxed the person is: the more 
asymmetrical the posture, the more relaxed the person. He defines four categories of 
symmetry in ascending degree of relaxation: symmetrical position of the legs with both feet 
flat on the floor and the insteps touching; symmetrical position of the legs with both feet flat 
on the floor and the insteps not touching; asymmetrical stance of the legs with both feet 
resting flat on the floor, asymmetrical stance of the legs with one or both feet partially lifted 
off the floor.  

The behaviour of our feet is also unconsciously influenced by the behaviour of the people 
around us—because of the so-called Chameleon Effect, we tend to mimic the behaviour of 
the people we are talking to. In Chartrand and Bargh’s study, participants were more likely 
to tap their feet during a task when their confederate was also tapping his feet [48]. Different 
leg postures also influence the rapport between people interacting. Harrigan et al. 
investigated nonverbal cues in physician-patient rapport and found that high rapport 
physicians were more likely to sit with their legs uncrossed, with their bodies orientated 
toward the patient, but there was no difference in feet movement between high-rapport and 
low-rapport doctors [105]. 

Certain behaviours of the legs and feet vary in different cultures. In several cultures, 
especially in South Asia, the feet are considered dirty and pointing with the feet or exposing 
the sole of the foot may be considered rude or insulting [132]. Wagner et al. investigated the 
social acceptability of touching on-body targets and found that targets on the lower limbs 
were significantly less acceptable than on the upper limbs [280]. In China, bound feet used 
to be considered sexually appealing in women and some men preferred never to see their 
feet, which were constantly concealed by shoes and wrapping. This practice was banned in 
1949 and the ban remains in effect since. 

Some leg postures can also be perceived differently by distinct cultures. For example, 
certain American men can perceive the way European men cross their legs (with one knee 
crossed over the other) as slightly effeminate [179]. However, with more cultural exchange 
around the world these cultural differences tend to be minimised as we can see both 
Europeans sitting with the ankle over the knee and Americans with one knee over the other 
[179]. 

These are just a few examples of how people’s psychological states and culture are 
perceived and manifested through their feet. For an in-depth treatment, see Morris [179] 
and Argyle [6]. We return to the topic of how this natural behaviour can be leveraged in HCI 
in section 4.4.3. 

4.3 Foot-Based Systems 

In the previous section we discussed how users’ body pose and movement affect the 
interaction. In this section we describe and categorise research prototypes and commercial 
systems that take input from the feet (Section 4.3.1) and discuss different ways of providing 
feedback in foot-based interactions (Section 4.3.2). 

4.3.1 Input Sensing 

Foot-operated input devices exist in a variety of shapes and sizes—from small foot mice, to 
room-sized augmented floors. In this section, we classify these devices into a taxonomy 
according to how they capture input from the feet: mediated, intrinsic and extrinsic sensing 
(see Table 6). Mediated sensing happens when the feet are not tracked directly, but rather 
through devices operated by them. Intrinsic sensing refers to when the feet are tracked 
through sensors directly attached to them and extrinsic sensing refers to when the feet are 
tracked through sensors placed on the environments. 
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Table 6 - Categories of foot input sensing 
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4.3.1.1 Mediated Sensing 

In mediated sensing, instead of tracking the feet directly, sensors track devices operated by 
the feet. This category comprises mechanical devices such as foot mice, trackballs and 
pedals, which contain moving mechanical parts that capture input from the feet. As a result, 
such devices provide immediate passive haptic feedback on the actual input action. They 
are usually found in the form of computer peripherals, and hence only capture input when 
the user is directly interacting with the device. 

The oldest, most widely known and most thoroughly studied foot interface is the pedal. 
Pedals are employed in a wide variety of contexts: cars, bicycles, boats, aircrafts, pianos, 
harps and guitar effects are some examples from outside the world of computing. Due to the 
safety-critical role that pedals play in cars and machinery operation, studies looked into 
finding optimal pedal designs, which go as far back as 1942 [13]. See Trombley [270] for a 
review of early work on pedal operation and Rosenblum [224] for a review of the role of 
pedals in pianos.  

The simplest form of a pedal is a binary switch. Examples include foot operated light and 
tap switches and transcription pedals that have multiple switches for controlling playback. 
As with any switch, they can be latching or momentary, depending on whether it returns to 
its initial state once the user releases it. As Sellen et al. point out, momentary pedals provide 
advantages for selecting the mode of operation of software systems because they require 
users to actively maintain the state by holding down the foot—its kinaesthetic feedback is 
more difficult to ignore reminding users of which mode they are currently in [238]. 
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Rather than sensing discrete states, pedals also allow for controlling continuous 
parameters, such as the acceleration of a car. In this mode, it is necessary to choose an 
adequate mapping between the pedal and the parameter being controlled: a 0-order control 
alters the value of the parameter directly, while a 1st-order control alters the rate of change 
of the parameter. For example, Kim et al. compared 0-order and 1st-order pedals for setting 
font sizes in a text entry task and found the performance of the 1st-order control to be 
comparable to the mouse [139]. Similarly to foot switches, continuous pedals can also be 
momentary or latching.  

Other examples of works that use pedals include controlling a 3D modelling application 
[10], text entry [66], supporting gaze input [91] and toggling the mode of operation of a 
piano keyboard [176]. Zhong et al. implemented a pivoting pedal that rotates around the 
heel in addition to up and down [296]. 

Safety-critical applications of pedals should also take into account some problematic issues. 
First, people seldom scrutinise the floor when they are working, so they might trip on 
pedals. Also, “riding the pedal”—which happens when the user stops pressing the pedal, but 
remains with the foot on top of it—is the most prevalent cause of accidental activation [14]. 

Despite the pedal being around for a long time, it was not the first foot operated interface 
for a computing system. Among the first alternatives for controlling a cursor, the same team 
that invented the mouse developed a knee control consisting of two potentiometers linked 
to a knee lever, which was controlled by the user by pushing the lever side-to-side or up 
and down [79]. 

The term foot mouse has been used for different kinds of foot-operated devices. In this 
chapter, we restrict the term to devices that work in the same way as the hand mouse, while 
being moved by the foot. Therefore, the physical property that is used as input is the 
position of the foot. These include commercial products such as the BiLiPro Foottime Foot 
Mouse (2006) and research prototypes such as the puck on a Wacom digitising tablet that 
Balakrishnan et al. used to control the camera in a 3D modelling application [10].  

Foot joysticks (also often called foot mice in the literature, e.g. [249]) are controls in which 
the user nudges the device in a specific direction to control the speed of movement of the 
cursor in that direction. The Versatron Foot Mouse (1984) is the first example of such 
interface and was controlled by sliding with the foot a rubber platform spring-loaded to 
return to the central position. The more recent No Hands Mouse (2009) uses two devices: 
one foot joystick to control cursor position and one to control mouse clicks. Such devices 
are usually mapped as 1st-order controls, similarly to hand-operated joysticks. Garcia et al. 
studied learning effects of users interacting with this device [88,89]. Research prototypes 
of foot joysticks include the works of Springer and Siebes [249] and Göbel et al. [91]. 

Large trackballs have also been used for foot-operated cursor control, such as the BIGtrack 
Trackball and the AbleTrack Trackball. Mouse clicks are usually operated by external foot 
switches. Pakkanen et al. suggest that such interfaces are appropriate for non-accurate tasks 
[195]. 

Pressure-sensitive boards use the distribution of the user’s weight to control two-
dimensional variables. An early video-game controller that used this principle was the 
Amiga Joyboard (1982), which contained the four directional latches of a joystick on the 
bottom of the board and by leaning in a certain direction, the user engaged these latches 
and controlled the game. The Nintendo Wii Balance Board (2007) uses four pressure sensors 
to measure the user’s centre of balance and has been used for several purposes beyond 
entertainment including fitness, navigating maps [235] and navigating 3D environments 
[287]. 

Pearson and Weiser created several early prototypes of foot interfaces, dubbed “moles” , as 
the “beasts are situated under-foot” [206]. These authors proposed the term for the category 
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of devices that are operated by the feet in a similar manner to the mouse, but it was not 
picked up by other authors. Instead, the term ended up referring to the multiple prototypes 
they built in the 1980’s that used a rig under the desk to simulate mouse input. In a second 
work, they implemented a planar mole featuring a pedal that slid in all four directions 
constrained to a plane [207]. In a third one, they built two versions of the swing mole, in 
which the cursor is controlled by the right foot, which slid left and right on a platform that 
rotated along an axis inside the desk well from the front desk edge [208]. 

A final category of mediated sensing input devices are locomotion interfaces for virtual 
reality. These devices use repetitive movement of the user’s limbs to navigate through 
virtual environments. For a full treatment of this category, we refer the reader to 
Hollerbach’s survey [117]. Hollerbach categorises locomotion interfaces as pedalling 
devices (e.g. bicycle simulator [35] and the Sarcos Uniport (1994)), as walking-in-place 
devices (e.g. Gaiter[264]), as foot platforms (e.g. Sarcos Biport, GaitMaster [126]) and as 
treadmills (e.g. the Sarcos Treadport, the Omni-Directional Treadmill [64]). 

4.3.1.2 Intrinsic Sensing 

Intrinsic sensing devices contain sensors directly coupled to the feet. These systems are 
typically wearable and self-contained, requiring little to no instrumentation on the 
environment, thus allowing users to move freely. Because of this increased mobility, these 
systems typically monitor users’ walking patterns to make inferences about the user. Such 
systems usually come in the form of sensors and actuators augmenting users’ insoles or 
their whole shoes. They are typically always-on, meaning that they continuously track users 
as long as they are wearing the device, without explicit user interference. 

The first documented wearable computer was in fact manipulated by the feet. Thorp 
describes how in the 1950’s and 1960’s he developed a wearable computer to predict the 
outcome of casino roulette wheels operated inconspicuously using a toe switch in his shoes 
[265]. The increased interest in Wearable Computing in the late nineties sprung a variety of 
projects interested in augmenting users’ shoes. In an early article on the topic, Mann 
mentions building trainers that measured his pace [166]. 

Wearable interfaces rely on sensors and devices worn by the user that capture information 
from the user’s feet. Table 7 shows the sensors used in previous work. The most common 
sensors in smart shoes are pressure sensors in the form of force sensitive resistors. By 
distributing such sensors on different points of the sole, it is possible to calculate the weight 
distribution of the user and infer gait patterns. Bend sensors work in a similar manner, by 
changing their resistance as they are flexed. These are usually installed in the middle of the 
foot to detect when the foot is bending, such as in the beginning and end of the gait cycle. 
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Table 7 - Sensors in selected prototypes of augmented shoes 
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Another widely employed category of sensors are inertial measurement units, which 
comprise different combinations of accelerometers, gyroscopes and magnetometers. With 
such sensors, it is possible to use movement information to estimate the position and 
orientation of the foot, which, in turn, can be used for analysing gait and for explicit 
interaction with computers. 

All the sensors described so far measure the movement, orientation and configuration of 
the foot, but sensors that attempt to make sense of the environment around it—both inside 
and outside the shoes—have also been explored in the literature, such as humidity, light and 
distance sensors. 

A challenge for wearable devices is how to power all these sensors and processing units. 
When we walk, we generate kinetic energy, which can be harnessed by augmented shoes 
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using piezoelectric elements. These components convert the mechanical stress created by 
the foot when pushing down against the floor into electric current. Even though the current 
generated is not much, it is enough to power active RFID tags [191] or low-power 
components.  

Paradiso et al. describe several iterations of trainers—dubbed Expressive Footwear— 
augmented with pressure, bend, position, acceleration and rotation sensors for interactive 
dance performances [198,199,200,201,202] and interactive therapy [203]. CyberBoots was 
another early work aimed at interactive performances, which consisted of boots that could 
be worn over the user’s shoes to detect walking and leaning patterns from pressure sensors 
mounted on the insoles [50]. More recently, other works that used foot mounted sensors 
for artistic purposes include geta clogs augmented with a Nintendo Wiimote and a pico 
projector for guitar performances [110] and sandals that detect foot tapping to create 
accompanying drums [196]. 

By installing sensors on users’ shoes, it is possible to unobtrusively monitor their gait 
patterns anywhere they go. Applications for this kind of technology include detecting 
abnormal gait patterns [49], identifying users by their gait [120], adjusting music tempo to 
match the user’s [114]; navigating in virtual environments [168]; inducing a specific 
walking cycle [281]; assisting navigation [86]; and even changing the noise of users’ 
footsteps [155]. A commercial example is the Nike+iPod (2006) line of trainers, which 
measures and records the distance and pace of a walk or run. From users’ gait pattern it is 
also possible to infer their trajectories using a technique called pedestrian dead reckoning. 
Fischer et al. describe how to achieve this using inertial sensors mounted on the foot [82]. 

Augmented shoes have medical applications. Morley et al. installed pressure, temperature 
and humidity sensors to measure environmental conditions inside diabetic patients’ shoes 
[178]. The commercial product SurroSense Rx System also aims at assisting diabetes patients 
by collecting pressure data on the insole to help prevent foot ulcers. Carrozza et al. installed 
switches on the insole of a shoe to control a prosthetic biomechatronic hand [42]. 

Motion sensors on the feet have also be used to detect gestures for explicit human-computer 
interaction, including using augmented shoes to emulate a conventional mouse [290] and 
keyboard [262]. Gesture-based foot interaction is particularly interesting for mobile 
devices. Crossan et al. investigated foot tapping for interacting with a mobile phone without 
taking it out of the pocket using an accelerometer on the top of the user’s feet [56]. Scott et 
al. investigated such gestures can be recognized using the sensors in a mobile phone inside 
the user’s pockets [236]. Alexander et al. collected a foot gesture set suggested by users to 
control a mobile device [2]. 

4.3.1.3 Extrinsic Sensing 

Interfaces in this category rely on sensors placed on the environment to capture data from 
users’ feet from the outside. They usually require little or no instrumentation on the user 
and are always-on as long as the user is within the tracked area. They typically offer little to 
no passive haptic feedback. 

Several studies of foot interaction rely on passive infra-red motion capture systems to 
track the feet. These systems use infra-red cameras to capture the light reflected by markers 
attached to different points on the user’s legs and feet. They are usually very accurate, but 
require several cameras depending on how large is the volume being tracked and require 
direct line of sight between the markers and the cameras. Moreover, the need for special 
markers attached on the users’ bodies makes them unsuitable for casual interactions. The 
Fantastic Phantom Slipper was a pair of slippers with reflective markers and vibration 
motors used for interacting with a virtual environment [150]. Quek et al. used a passive IR 
system to track users’ feet in order to estimate participants’ attentional focus from their feet 
posture [215]. 
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Vision-based systems use data from one or more colour cameras to extract the feet’s 
position and orientation. The advantage of such systems is that they require little more than 
a camera, making them easy to deploy. The downside usually comes in loss of accuracy and 
the need for direct line of sight. AR-Soccer is a football game using the camera in a PDA by 
extracting the contour of the user’s foot and detecting its collision with a virtual ball in order 
to kick the ball towards the goal [193]. Similarly, ur Réhman et al. tracked the feet using a 
mobile phone using template matching [219]. The Visual Keyboard used a vision-based 
approach to extract users’ feet in order to play a musical keyboard [129]. Vision methods 
have also been used to activate virtual pedals [239,292], predict driver behaviour [269] and 
control a first-person game [287]. 

Commercial depth cameras such as the Microsoft Kinect and the Asus Xtion made it easier 
to track the feet accurately in three dimensions. These cameras are usually cheap and fairly 
accurate, but they also require direct line of sight with the user. Han et al. used this approach 
to investigate kick gestures for mobile interaction [104]. At the time of writing, the available 
SDK of these systems is only able to track legs and feet when the users’ whole body is in the 
field of view. Some works aimed at extending this functionality to be able to track the feet 
when the rest of the body is not visible. Hu et al. proposed a method to accurately extract a 
3D skeleton of user’s legs and feet with a Kinect mounted on a walker for the elderly (a.k.a. 
a Zimmer frame), but it does not run in real time [119]. Bootstrapper recognizes users 
around a multitouch table by looking at their feet using Kinect sensors mounted on the table 
edges facing down [222]. In the next chapter, we describe the foot tracker we developed 
based on a Kinect sensor mounted under a desk [242]. Another similar approach is to use a 
laser range finder. Huber used such system to estimate spatial interest at public displays 
[122]. 

As the feet are most of the time in contact with the floor, feet tracking lends itself to using 
augmented floors, which can be implemented with a variety of sensors. The first few 
prototypes of interactive floors were built for dance performances: Magic Carpet used a grid 
of piezoelectric wires [197], LiteFoot used a matrix of optical proximity sensors [95] and Z-
Tiles used a modular architecture of hexagonal pressure-sensitive tiles [169,221]. Lopes et 
al. used a Dynamic Time Warping algorithm to classify foot gestures on a wooden board 
from audio data [159]. This approach is simple to deploy, but can only detect gestures rather 
than positions or orientations and may suffer from interference from other sources of noise. 
Other approaches for augmenting floors include pressure sensitive [192,230] and 
capacitive floors [128]. 

Camera-based floors sense users’ feet positions with computer vision techniques. 
iGameFloor used four webcams to track users from under a semi-transparent floor [96]. 
Multitoe is a high-resolution Frustrated Total Internal Reflection (FTIR) back-projected 
floor that allows for precise touch input [7]. GravitySpace used the same technology to 
reconstruct users’ poses in 3D above the floor from pressure imprints [31]. Kickables, in 
turn, used Multitoe to track tangibles that users manipulate with their feet [233]. Whereas 
these approaches are highly accurate and provide output on the same surface, they do not 
scale very well and are difficult to deploy, as they require a lot of changes in the 
infrastructure. An alternative would be to track users from above, such as in iFloor, but at 
the price of losing tracking accuracy [148]. A variety of companies sell top-projected 
interactive floors, including EyeClick, Luminvision and GestureTek and such installations 
have been deployed in shopping malls and other public spaces all around the world. 

The feet have also been used to interact with vertical surfaces. Jota et al. implemented 
interaction techniques for interacting with the bottom part of vertical displays, where the 
hands would not be able to typically reach [131].  

Because augmented environments and surfaces are often able to extract the position and 
orientation of the whole foot in two or three dimensions, systems can use this information 
in different ways: as a blob, as a hotspot or as relative motion. A blob is a set of points that 



From Head to Toe: 
Investigations on Full-Body Human-Computer Interaction 

84 A Survey of Lower Body Interactive Systems  

pertain to the foot. When in three dimensions, this is often called a point cloud. For example, 
FTIR-enabled floors see a 2D blob, whereas depth cameras see 3D point clouds. Using the 
feet as blobs effectively increases the size of the target, because any part of the foot can 
activate it. Due to the relatively large size of the feet, this is more prone to accidental 
activation, so targets should be large and well spread apart. Examples of works that track 
the feet as blobs include Paelke et al. and ur Rehman et al.[193,219]. 

Instead of using the whole blob, it is also possible to reduce it to a single or multiple 
hotspots. This allows for more precision in the interaction. For example, Simeone et al. 
[242] convert a point cloud to two points in 3D representing the tip of the foot and the ankle 
and Augsten et al. [7] convert it to a single point in 2D. Augsten et al. also investigated which 
positions users find intuitive for this hotspot. Their results indicate that there is no universal 
position agreed by all users, so in their system they implemented a calibration procedure 
that allows users to customise the position of the hotspot.  

The final approach is to ignore the absolute position and orientation of the feet and only 
take into account their relative movement. This is often used for gesture recognition, such 
as in Lopes et al. [159]. 

4.3.2 Output & Feedback 

In order to close the interaction loop, interactive systems must provide some kind of 
feedback or output. Types of output in foot-operated interactive systems include visual, 
auditory, haptic and thermal feedback. 

Visual feedback is the primary feedback modality for traditional computing systems, so it 
is of no surprise that a wide variety of foot-operated systems provide some kind of visual 
feedback. An important issue for visual feedback is the distinction between direct and 
indirect input devices. Direct input devices (e.g. a touch-enabled screen) have “a unified 
input and display surface”, whereas indirect devices (e.g. the mouse) do not “provide input 
on the same physical space as the output” [113]. 

Direct input can be implemented by using touch sensitive floor displays, such as Multitoe 
[7] or by overlaying the interface with the foot, either through Augmented Reality [193] or 
by projecting the interface on the floor [170]. This presents a challenge because the feet 
significantly occludes the screen. Moreover, in order to visualise the output, the user must 
look down, which can be tiring after extended periods of time. In indirect input, the feet and 
the display are separate. This creates the need for some representation of the feet on the 
screen, such as a cursor or other parameter that the feet are controlling. Because the input 
and output devices are separated, special attention must be paid to the mapping between 
the two, as incompatible mappings may be cumbersome for the user [45].  

Audio feedback is usually implemented in mobile systems, in order to reduce the cognitive 
visual overload. Because of the natural rhythmic pattern of our gait, several systems used 
input from the feet to modulate music, especially tempo, when the user is walking or jogging 
[22,175]. Another application area in which the feet are used to generate audio output is in 
artistic performances, by mapping dancers’ [202] and musicians’ [196] feet movements to 
music parameters. Stienstra et al. explored how auditory feedback can improve speed 
skaters’ performance by sonifying the data captured from force and acceleration sensors on 
the skates [256]. 

Haptic feedback consists of forces or vibrations applied on the users’ skin to stimulate their 
sense of touch. This has been implemented in a wide variety of augmented shoes in the form 
of vibration motors [168,281]. Rovers and van Essen presented an investigation and design 
guidelines for using haptic feedback at different points on the foot sole [225,226]. These 
authors’ findings suggest that users understand better vibration patterns in the longitudinal 
direction than in the transversal direction; users recognise static patterns in the transversal 
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direction, but are confused by moving patterns; and recognising more complex patterns 
such as a “zigzag” pattern is difficult. CabBoots [86] provides height/tilt actuation to help 
the user to navigate through an environments by using actuators inside the boots to create 
an angulation on the shoe sole and hence steer the user in the correct direction. A 
commercial example of mechanical actuation inside the shoe are the Adidas 1 (2005) 
trainers, which contained a motor in the middle of the sole that changed the compression 
characteristics of the heel pad. The Vectrasense Raven Thinkshoe (2004) did something 
similar but with an air bladder in the sole. One commercial example of haptic feedback on 
the feet for navigation is the Lechal Shoe, which vibrates to guide the user on the path he set 
on his smartphone. 

Thermal feedback can be produced by Peltier elements, which create a temperature 
differential on each of its sides. Matthies et al. included one in an insole and suggested that 
a rising temperature could be used to make the user unconsciously uncomfortable in 
situations such as to indicate the player is wounded or bleeding in a game or feedback on 
how many missed calls or unread messages the user has received [168]. They stress, 
however, that the human body tends to acclimate to thermal discomfort, becoming less 
responsive to a constant stimulus. The authors suggest alternating between hot and cold to 
maintain the sensory response. 

4.4 Foot-Based Interactions 

So far, we have analysed previous work in terms of users and systems, relating how different 
body poses and movements impact the design of systems that capture input from the feet 
and provide some kind of output. In this section, we deal with the dialogue between users 
and systems. More specifically, we are concerned with the different actions users perform 
with their feet for interaction. 

Karam and schraefel defined a taxonomy for hand gestures in HCI [136] and proposed five 
categories for gesture styles: deictic (gestures involving pointing), manipulative (“whose 
intended purpose is to control some entity by applying a tight relationship between the 
actual movements of the gesturing hand/arm with the entity being manipulated” [216]), 
semaphoric (“any gesturing system that employs a stylized dictionary of static or dynamic 
(...) gestures” [216]), gesticulation (gestures that accompany speech) and language gestures 
(such as sign language). 

We distinguish four categories of feet actions in HCI: semaphoric (Section 4.4.1), deictic 
(Section 4.4.2), manipulative (Section 4.4.2) and implicit (Section 4.4.3). We use the same 
definitions as Karam and schraefel for semaphoric, deictic and manipulative. Implicit 
actions comprise the nonverbal behaviour of the legs and feet as well as non-communicative 
actions, such as walking. 

4.4.1 Semaphoric 

Semaphoric actions are specific gestures belonging to a dictionary. We compiled a 
comprehensive list of gestures explored in the literature in Table 8. In Section 3.2 we 
showed how gestures derive from the degrees of freedom of the lower limbs. In this section 
we look at how these movements and their combinations are used in interactive systems. 

Touch-sensitive surfaces, inertial motion sensors and depth cameras made multitouch and 
mid-air gestures a reality for consumers [228]. By adapting these technologies for the feet—
e.g. multitouch floors [7], IMUs on the feet [104] and depth cameras under the desk [242] 
researchers have been incrementing the feet gesture vocabulary as well as understanding 
what are the appropriate mappings between gesture and functionality. 
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In a guessability study, Alexander et al. investigated users’ intuitive mappings between feet 
gestures and controls for mobile devices, compiling a gesture set with corresponding 
mappings phone and media control as well as map and browser navigation [2]. They 
identified two large sets of gestures: discrete and continuous. Furthermore, the authors 
compared four techniques for implementing continuous mappings for panning actions: 
displacement-based, rate-based hold, rate-based continuous and flick. Similarly to Kim and 
Baber’s findings for pedal operation [139], Alexander et al. found that users tend to prefer 
rate-based approaches.  

Table 8 shows the gestures that emerged from our literature review. Toe tapping is the 
most common gesture across papers. We attribute its popularity to its low effort, to its 
historical operation in pedals and to it being analogous to a finger touch. A variation is the 
heel tap. The disadvantage of the heel tap is that it requires users to lift the weight of the 
leg if sitting or the whole body if standing, which can be demanding on the calf muscle. These 
gestures are often mapped to selecting an option or activating a certain functionality. 

In toe and heel rotation, the user pivots the foot with an abduction or adduction movement 
at the ankle. When performing this action, the foot remains anchored at the heel or toe, so 
it is usually more comfortable than the swipe, which involves moving the whole foot in a 
certain direction, requiring some leg effort. 

Toe and heel clicking gestures require users to use both feet at the same time. Clicking the 
heels in Western culture is often associated to film “The Wizard of Oz” (1939), in which 
Dorothy, the main character, clicks her heels to go back home. For this reason, heel clicking 
has been used to invoke the system (the interface’s home) by Laviola et al. [154]. 

Shaking the foot involves an irregular movement across multiple movement axes. The 
dismissive semantics associated with the gesture led participants in Alexander et al.’s study 
to map it to ignore an incoming call [2]. Because it is an easy gesture, with a very distinctive 
pattern—unlike tapping, for example, which can be mistaken with natural walking—it can 
be used as a Whack Gesture, i.e. inexact and inattentive interaction techniques that require 
minimum cognitive processing from the user [123]. 

As immortalised by Daniel Day-Lewis’s performance of the real story of Irish painter Christy 
Brown in My Left Foot (1989), some people are able to paint with their feet. Whereas this 
may sound incredibly hard for most users, it is still possible for them to trace basic shapes 
with their feet. In Alexander et al.’s study, the shape being traced was a circle, but it would 
also be possible to devise interaction techniques that use other shapes, such as a square or 
a triangle [2]. 

A foot gesture that has been particularly well studied is the kick. Han et al. investigated how 
well users can control the direction and velocity of their kicks in selecting radial targets 
[104]. The authors recommend using at most 5 targets with an angular width of 24o. In Jota 
et al. [131], kicks are used to transfer objects on a vertical screen between the foot-operated 
area and the hand-operated area. Schmidt et al. proposed tangibles for feet that users push 
and kick across a large interaction surface [233]. 

Stepping is the basic unit of the Walking-in-place (WIP) interaction technique [245]. The 
technique is commonly used for walking around virtual environments, as the 
proprioceptive information from the body movements makes the user feel more immersed 
in it. This technique has been used extensively in the Virtual Reality (VR) community and 
implemented in a wide variety of ways, including sensing in the head-mounted display 
[245], the Wii Balance Board [284] and the Kinect depth camera [295]. Because this 
technique is often used for VR locomotion, controlling speed and direction is critical. Among 
the solutions are the Gait-Understanding-Driven (GUD-WIP) [283], Low-Latency, Continuous 
Motion (LLCM-WIP) [81], and Speed-Amplitude- Supporting (SAS-WIP) [38] walking-in-
place techniques. 
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Table 8 - Dictionary of Semaphoric Foot Gestures 

Gesture Name Description e.g. 

 
Toe Tap User raises and lowers the toes [56] 

 
Heel Tap User raises and lowers the heel [262] 

 

Toe Rotation User pivots the foot around the toes [236] 

 

Heel Rotation User pivots the foot around the heel [236] 

 

Toe Click User touches both toes together [154] 

 

Heel Click User touches both heels together [154] 

 

Swipe User slides the foot in a given direction [154] 

 

Shake 
User moves the foot with short, quick, 
irregular vibratory movements 

[154] 

 

Shape Trace 
User draws the outline of a shape with 
the toes 

[2] 

 

Kick User vigorously moves the foot forward [104] 

 

Step 
User puts one foot in front of the other as 
if walking 

[70] 



From Head to Toe: 
Investigations on Full-Body Human-Computer Interaction 

88 A Survey of Lower Body Interactive Systems  

The gestures described so far sprung mostly from research prototypes, but are starting to 
appear in commercial products. For example, the Lechal footwear line uses foot gestures to 
tag locations, set destinations, and control navigation. 

4.4.2 Deictic & Manipulative 

Deictic actions are commonly understood as pointing gestures. When we use our foot to tap 
on a target on an augmented floor [7] or move a trackball over a target on a GUI [195], we 
are using deictic actions. Manipulative actions map elements of the physical configuration 
of the foot, such as position or orientation to properties of system objects. When we drag a 
foot to rotate a virtual cube [242], push a tangible object across the floor [233] or move a 
foot mouse to control the orientation of a scene camera [10], we are using manipulative 
actions. As both types of action involves getting the foot from an original configuration to a 
target configuration, although for different purposes, we examine them together. More 
specifically, in this section we review the literature on the movement times, accuracy, 
reaction times and learning effects of such actions. 

4.4.2.1 Movement Times and Accuracy.  

The most widely adopted model of human movement is Fitts’s Law, which was originally 
developed to predict movement times for hand pointing, but has been proved applicable in 
a wide variety of situations [83]. Its most common form is the Shannon formulation, 
proposed by MacKenzie [164], where MT is the time in seconds to reach the target, D is the 
distance to the target and W is the width of the target: 

𝑀𝑇 = 𝑎 + 𝑏 ×  log2 (
𝐷

𝑊
+ 1) 

Early work on measuring movement times for the feet was concerned with pedal 
operation—for a review, see Kroemer [147]. In this context, Drury applied Fitts’s Law to 
find optimal pedal positions [71]. He proposed a variation of Fitts’s Law that takes into 
account the width of the user’s shoe (S): 

𝑀𝑇 = 𝑎 + 𝑏 ×  (
𝐷

𝑊 + 𝑆
+

1

2
) 

This modification is due to the fact that Drury considered a target hit whenever any part of 
the participant’s shoe touched it, effectively increasing the size of the target. Hoffman 
argued that ballistic and visually controlled foot movements should be modelled differently 
[116]. He proposed that while Fitts’s law provides a good fit for visually controlled 
movements, ballistic movements are better modelled by the square root of the distance: 

𝑀𝑇 = 𝑎 + 𝑏 ×  √𝐷 

Despite being originally created to model movement times, Fitts’s Law can also be adapted 
to incorporate accuracy measurements. If end-point scatter data is available, this can be 
accomplished by using the effective distance (De) and effective width (We), where De is the 
mean movement distance from the start position to the end points and We is 4.133 times 
the standard deviation of the end points: 

𝑀𝑇 = 𝑎 + 𝑏 × log2 (
𝐷𝑒

𝑊𝑒
+ 1) 
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Research so far has found little influence of foot dominance on movement times and 
accuracy. Chan et al. conducted a study in which they found no effect of gender of foot 
dominance on movement times in a reciprocal tapping task whilst seated [44]. 

We summarise pointing performance results for different input devices in Table 9. 

Table 9 - Performance comparisons between hand the feet. Values correspond to 
ratios of task completion times and error rates for the feet versus the hand. 

Ref. Foot Device Hand Device Participants 
𝑭𝒐𝒐𝒕 𝑻𝒊𝒎𝒆

𝑯𝒂𝒏𝒅 𝑻𝒊𝒎𝒆
 

𝑭𝒐𝒐𝒕 𝑬𝒓𝒓𝒐𝒓

𝑯𝒂𝒏𝒅 𝑬𝒓𝒓𝒐𝒓
 

[116] None None 10 1.951  

[116] None None 10 1.72  

[249] Joystick Mouse 17 2.32 1.56 

[195] Trackball Trackball 9 1.6 1.2 

[66] Pedals Tilt 24 1.053 1.203 

[66] Pedals Touch 24 0.983 1.873 

[89] Joystick Trackball 16 1.584  

Notes: 1: Ratio between the reported coefficients of the indices of difficulty for visually controlled movements. 
2: Reported ratio for ballistic movements. 
3: Ratio between reported means for selection time and error rate in the text formatting task. 
4: Mean ratio between reported task completion times for the foot joystick and the mouse. 

4.4.2.2 Reaction Times 

Reaction time is the time elapsed between the presentation of a sensory stimulus and the 
corresponding behavioural response. A common model for reaction times is the Hick-
Hyman law [109,124], which predicts that the reaction time for a set of n stimuli, associated 
with one-to-one responses is: 

𝑅𝑇 = 𝑎 + 𝑏 ×  log2(𝑛) 

Simonen et al. compared reaction times of dominant hands and feet and found that reaction 
times were nearly the same in choice reaction time testing and the hand was slightly faster 
(125ms) than the foot in simple reaction time testing [243]. Reaction times are also 
dependent on the spatial mapping between foot controls and visual stimuli [45]. 

4.4.2.3 Learning Effects 

An often overlooked issue in foot interaction studies is the learning effect. Since most users 
seldom use their feet for computing tasks, a significant amount of the performance gap 
between hands and feet could be explained by the lack of practice. In a study comparing the 
learning effects of a foot mouse and a hand trackball over ten sessions, Garcia and Vu found 
that while participants quickly reached a performance ceiling with the trackball, practice 
with the foot mouse significantly improved performance [88,89]. 

These results indicate that the feet suffer an unfair advantage in studies comparing hand- 
and foot-operated interfaces without allowing enough time for practice. In an early 
evaluation of pointing devices, in a time when users unfamiliar with a hand mouse still 
existed, a knee control fared comparably to the mouse, outperforming other hand interfaces 
[79]. 
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4.4.3 Implicit 

Regardless of how the feet are tracked the input can be used for explicit or implicit 
interaction. Schmidt distinguishes explicit from implicit interaction in that whereas in 
explicit interaction, “the user tells the computer in a certain level of abstraction (…) what 
she expects the computer to do”, in implicit interaction, systems understand as input actions 
performed by the user that are not primarily aimed at interacting with a computerised 
system [232]. 

In Section 4.2.5 we showed that our lower limbs send nonverbal signals without our 
conscious knowledge. Analogously, several systems extract information from foot 
behaviour without us explicitly using this behaviour for interaction. 

On an individual scale, several smart shoes implement this kind of interaction. By 
monitoring users from within the shoes, these systems are able to infer the user’s identity 
[120], gait abnormalities [144] and monitor diseases such as diabetes [178]. 

On a public scale, augmented environments and surfaces are able to infer information about 
users unobtrusively by monitoring their feet posture. GravitySpace uses an FTIR-enabled 
floor to distinguish users, recognise poses and detect objects [31]. Bootstrapper recognises 
users by their shoes to personalise the usage of a multitouch table [222]. Smart Floor 
recognises users from their footstep profile [192]. 

Some works draw from Hall’s theory of Proxemics [101] to make inferences about user’s 
attention in regards to public displays. With laser range finders, Huber was able to 
distinguish users who were seeking information on a public display from those who were 
not solely based on their foot patterns [122]. Quek et al. also found high correlation between 
gaze orientation and feet position [215]. Considering that tracking the feet is arguably less 
invasive than the face or eyes, such approaches offer an interesting way to build context-
aware public displays. 

4.4.4 Multi-Modality 

The feet serve one of two purposes in explicit interaction: as the main control of an 
application (primary) or as supporting other interfaces in the interaction (secondary). 
Typically, the feet are used as the primary modality for input when the user’s hands are 
busy or dirty (e.g. [2]), the user has a disability or other accessibility issue that prevents him 
from using his hands (e.g. [249]) or it is awkward to reach the interface with the hands (e.g. 
[131]). 

Most commonly, the feet are used to support the task being carried out by the hands. 
Previous research has explored combinations of the feet with several different modalities 
including a keyboard [89], a multi-touch table [230], gaze [91], tangible interfaces [10,233], 
large displays [62,235], a mouse [242] and a CAVE [154]. Typical secondary tasks assigned 
to the feet include acting as a modifier (e.g. guitar effects pedals, transcription pedals, foot 
switches as hotkeys), manipulation support (e.g. camera control in 3D environments [10] 
and mode selection (e.g. mode selection in a text editor [238] and in a musical keyboard 
[176]). 

4.5 Discussion & Future Directions 

As basis for our discussion, we use the categories previously assigned to the surveyed works 
as a framework for analysing the design space of foot-based interaction and provide 
directions for future work. Table 10 how the works described in the previous sections 
populate this design space. 

Table 10 - Examples of instances of the design space of foot-based interactions 
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Pose Sensing Interaction Examples 

Sitting 

Mediated 

Semaphoric [238] 

Deictic & 
Manipulative 

[10,45,66,79,88,89,91,139,195,206,207,208,24
9,287,296] 

Intrinsic 

Semaphoric [196,262] 

Deictic & 
Manipulative 

[287,290] 

Extrinsic 

Semaphoric [242] 

Deictic & 
Manipulative 

[44,129,239,242,287] 

Implicit [31,269] 

Standing 

Mediated 

Semaphoric [236] 

Deictic & 
Manipulative 

[62,235] 

Intrinsic 

Semaphoric [2,56,154] 

Deictic & 
Manipulative 

[50,110] 

Extrinsic 

Semaphoric [7,70,128,131,159,230] 

Deictic & 
Manipulative 

[7,96,193,219] 

Implicit [31,122,215,222] 

Walking 
& 

Running 

Mediated 
Deictic & 

Manipulative 
[64,126,264] 

Intrinsic 

Semaphoric [288] 

Deictic & 
Manipulative 

[50,198] 

Implicit [86,114,120,155,175,178] 

Extrinsic 
Semaphoric [104] 

Implicit [31,119,192,281] 

 

The first thing that is immediately noticeable in Table 10 is that the cell with the highest 
number of works is that of Sitting, Mediated, Deictic & Manipulative interaction. These 
works mostly study foot-operated computer peripherals for the desktop setting. Given that 
this is the most traditional HCI setting, the high popularity of this kind of work is 
understandable. However, few works look at long-term deployments of these interfaces, so 
more research needs to be done on the effects of practice on user pointing performance. 

On the other hand, we also notice some empty cells (omitted from the table for space 
purposes).We found no works that investigate implicit interaction with mediated sensing, 
in any pose. Works that use mediated sensing to analyse human behaviour typically aim at 
understanding usage patterns or emotions, for example, by looking at the trajectory of the 
mouse [289] or how users press the buttons on a gamepad [259]. Therefore, we attribute 
the lack of studies of implicit user behaviour when interacting with foot-operated devices 
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to the limited number of use cases for such input devices and the small populations to which 
they are targeted. 

Similarly, even though there are plenty of works that look at implicit interaction with 
intrinsic sensing when walking and running, we found no such works explicitly aimed at 
sitting and standing users. This is explained by the fact that the parameter usually being 
monitored by such smart shoes is the user’s gait cycle. Possible directions for future 
research along these lines include using smart shoes to infer user states from their natural 
foot behaviour at their desks or even to infer conversation dynamics from interpersonal 
communication when standing upright. 

From the table, we also notice that different poses lend themselves well to certain types of 
interaction. In the Sitting pose, Aside from Mediated, Deictic & Manipulative interactions, 
we also notice a large number of works investigating Extrinsic, Deictic & Manipulative 
interactions, evidencing a popularity of works investigating explicit control of desktop 
computers. In the Standing pose, we see a concentration of works using Extrinsic sensing. 
This shows that sensing the feet from the outside is well suited to applications in which the 
user interacts with a fixed installation, such as public displays or interactive floors. In the 
Walking & Running pose, we see a large number of works exploring Implicit interaction, 
evidencing that gait monitoring is a topic that has been explored in depth. 

Based on the analysis of the papers reported in this survey, we achieved some insights, 
summarised in the following: 

Feet excel at performing simple tasks. Feet lend themselves to performing simple tasks, 
such as operating a car’s brakes. Yet, these tasks are as important as the tasks 
simultaneously performed by the user’s hands. Several works in the literature mention that 
the feet are suitable for tasks where the precision of positioning is not of primary 
importance [195], but the feet are also capable of accomplishing highly complex tasks, such 
as playing the organ’s baseline and manipulating three dimensional virtual objects [242]. 
However this requires a substantial amount of practice. The very few occurrences of such 
use cases suggest that hands—if they are not busy—are preferred for complex tasks. 

Feet interfaces can assist the hands, rather than replace them. Traditionally, foot-based 
input was only successful in cases where hand-based input was not a viable option, either 
because the hands were already busy with other controls or because they were not available 
for other reasons (e.g. carrying objects, being dirty, etc.) [2]. This is arguably due to the feet 
being less dexterous, incapable of grasping objects the way our hands do, and being busy 
with locomotion. Therefore, it is not surprising that, for example, we are not using foot mice, 
but pedals are more widely adopted, such as in gaming or transcription. Nevertheless, a lot 
of research has been put into comparing the hands and the feet, leading to results where the 
hands consistently outperform the feet. Few works, however, explore how they can be used 
concurrently. We believe that the feet can effectively complement the hands, offering 
additional input channels with no homing time. 

The performance of the feet might not be as bad as people think. Several works 
explored the possibility of reassigning cursor control from the hands to the feet, but in these 
experiments, the mouse consistently outperformed all foot interfaces (see Table 9). Garcia 
and Vu’s results, however, suggest that this may not be because the feet are inherently bad 
for this purpose, but rather, because of lack of training [88,89]. Future work must take these 
learning effects into account, allowing users to become sufficiently familiar with the input 
device for a fair comparison with hand interfaces. 

Foot-based input lends itself well to wearable computing. Wearable computing and 
augmented reality applications will benefit from foot-based input: users are on the go and 
interact spontaneously, with their hands often busy with other tasks (Section 4.1.2). At the 
same time, new sensing technology allows for capturing foot interaction with higher fidelity, 
allowing for both explicit and implicit interaction.  
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We still lack the understanding of how these interfaces work in the real world. 
Whereas there is a significant body of work on laboratory studies of foot-based interfaces, 
we still need to understand how these interfaces work when deployed for extended periods 
of time. Not only such in-the-wild studies could give us a better understanding of learning 
effects, it could provide insights on user acceptance of such interfaces. 

Interactive systems can further benefit from what the feel tell about users’ internal 
states. Even though the majority of the work in HCI that explores foot interfaces look into 
explicit interaction, by monitoring the feet, it is possible to recognise not only the activity in 
which the user engaged, but also internal states, such as attention, relaxation and anxiety 
(Sections 4.2.5 and 4.4.3 ). 

4.6 Conclusion 

In this survey we analysed foot interaction from the perspectives of the user, the systems 
and the interaction between users and systems. From the user perspective, we described 
the anatomy of the lower limbs and how it evolved. We then broke down the movements 
for each joint and related them to corresponding interaction techniques. We analysed the 
different poses in which users interact with foot interfaces — sitting, standing and 
walking/running — and how these poses influence the interaction. We then discussed how 
internal states are reflected by the behaviour of the lower limbs. 

From the system perspective, we analysed how systems can use the feet to capture input 
and provide feedback to the user. We classified foot-operated sensing as mediated, intrinsic 
and extrinsic. We described actual implementations of such devices in the research 
literature and in commercial applications. We then discussed the different ways that such 
systems output information to the user. 

Finally, from the interaction perspective, we categorised the foot actions into semaphoric, 
deictic, manipulative, and implicit. We compiled a dictionary of foot semaphoric gestures, 
aggregated foot performance results from previous work and described applications that 
infer internal states and activities from the posture and movement of the lower limbs. We 
then discussed applications that use the feet in combination with other input modalities. 

Foot-based input substantially shaped the design of many devices and systems that matter 
to us and that we interact with on a daily basis, from cars to musical instruments. Whereas 
mechanical systems have employed foot controls for a long time, electronic devices are 
seldom designed to benefit from this modality. We believe that by better understanding the 
role of the feet in HCI, we can better design interfaces that take input from our whole body.
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5 EMPIRICAL INVESTIGATIONS 

OF FOOT-BASED INTERACTION 

“Be sure you put your feet in the right place, then stand firm.” 

Abraham Lincoln 

 

The literature review presented in the previous chapter highlights the fact that despite a lot 
of work having been done on foot-based interaction, there is still a lack of understanding of 
the most fundamental aspects of the interaction process. In this chapter, we take an 
empirical approach to investigate such basic aspects of foot movement for desktop human-
computer interaction. First, we describe a custom-built foot tracker based on a Kinect 
sensor mounted under the desk developed to enable our investigation. We then describe 
the results of four user studies that examine different aspects of the interaction. In the first 
one, we use this tracker to derive one-dimensional and two-dimensional Fitts’s Law models 
of foot pointing performance.  In the second, we investigate whether users’ pointing 
performance is affected by the direction of movement. In the third, we investigate how the 
feet can be used for simultaneous manipulation of two parameters. In the fourth, we explore 
the parallel use of hands and feet for manipulating multiple parameters.  

Computer interfaces operated by the feet have existed since the inception of HCI [79], but 
such devices remained restricted to specific domains such as accessible input and audio 
transcription, being largely overshadowed by hand-based input in other areas. However, 
this overshadowing cannot be put down to lack of dexterity, as we regularly accomplish a 
wide variety of everyday tasks with our feet. Examples include the pedals in a car, musicians’ 
guitar effect switches, and typists’ use of transcription pedals. Recent technological 
advances renewed interest in foot-based input, be it for interacting with a touch-enabled 
floor [7], for hands-free operation of mobile devices [236], or for adding more input 
channels to complex tasks [242]. Despite this, we still lack a thorough understanding of the 
feet’s capabilities for interacting in one of the most common computing setups—under the 
desk. 
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In particular, unlike previous work that used trackballs [195], pedals [66], and foot mice 
[88], we wished to explore unconstrained feet movements. This removes the need for a 
physical device (as well as the related foot-to-device acquisition time) and provides a wide 
range of interaction possibilities (analogous to the ones available from a touch-screen over 
a mouse). 

We envision numerous applications to arise from this greater understanding. These include 
using your feet to scroll a page while the hands are busy with editing the document, 
changing the colour of a brush while moving it with the mouse, or manipulating several 
audio parameters simultaneously (using both the hands and the feet) to create novel 
musical performances. 

To address this gap we conducted a series of experiments exploring different aspects of 
foot-based interaction. In the first, we recorded 16 participants performing 1D and 2D 
pointing tasks with both feet to build the first ever ISO 9241-9 Fitts’s Law models of 
unconstrained foot pointing for cursor control. This first study provided some evidence that 
side-to-side movement is faster than backwards and forwards. To confirm this hypothesis, 
we conducted a second experiment in which participants performed 1D serial pointing 
tasks in each direction. In the third experiment, we investigated the manipulation of 
multiple parameters using one and two feet. In the fourth and final experiment, we 
evaluated the use of the feet together with the hand. 

In summary, (1) we built 1D and 2D ISO 9241-9 compliant movement time models for 
unconstrained foot pointing; (2) we found that unconstrained foot pointing is considerably 
slower than mouse pointing, but comparable to other input devices such as joysticks and 
touchpads; (3) we found no significant difference in performance between the dominant 
and non-dominant foot; (4) we found that left and right movement is easier than backwards 
and forwards; (5) the most comfortable movement for desktop foot interaction is heel 
rotation; (6) techniques that have a direct spatial mapping to the representation outperform 
the others; (7) when variables are shown separately, two feet work better than one; (8) we 
show that the feet perform similarly to the scroll wheel in tasks where the feet are used in 
conjunction with the mouse; and (9) we provide design guidelines and considerations based 
on our findings. 

5.1 Tracking the Feet under the Desk 

To track users’ feet we implemented a prototype based on the depth data from a Microsoft 
Kinect mounted under a desk (see Figure 28). Our system tracks the three-dimensional 
positions of the foot and ankle joints in relation to the floor, as well as the orientation of the 
foot. Richter et al. also use a Kinect to detect the users’ feet; in their work, the authors were 
concerned in isolating the feet to identify users standing by a multitouch table, rather than 
tracking for interactive purposes [222]. Hu et al. also used a custom-built foot tracker based 
on a Kinect, but their algorithm, despite providing a highly accurate model, does not work 
in real time. System calibration is not user dependent, so it only needs to be calibrated when 
the setup changes. In this step the system takes a snapshot of the background without the 
user’s feet. The user then draws on the image of the background a rectangle that will define 
the active area of the tracker. We use three corners of this rectangle (lower left, upper left, 
and lower right) to extract the floor plane and define the new basis for the coordinate 
system. The axes of the new coordinate system are formed by the normalised vectors 
parallel to the two edges formed by the lower left vertex with its adjacent vertices, and their 
cross-product. This vertex becomes the new origin. We then convert the data of subsequent 
frames to this new coordinate system. This change of basis allows more freedom in the 
camera positioning, as the system knows the position and orientation of the camera relative 
to the floor, allowing the camera to be positioned in a more suitable height or orientation 
depending on the physical configuration of the desk.  



From Head to Toe: 
Investigations on Full-Body Human-Computer Interaction 

96 Empirical Investigations of Foot-Based Interaction  

 

Figure 28- Experimental setup for my studies. Participants sat at the desk as they 
normally would, while their feet was tracked by a Kinect under the desk. 

To interact with the system, the user places the feet in the tracked area (see Figure 29a), 
and for every depth frame captured by the system (see Figure 29b), we convert the 
coordinate system (see Figure 29c) and subtract the background frame, hence isolating the 
user’s legs and feet (see Figure 29d). We then isolate the feet from the legs by thresholding 
the depth data at 0.1m above the floor (see Figure 29e). We finally fit ellipses that have the 
same second moment to the thresholded image of each foot and use their foci as the 
positions for the feet and ankles (see Figure 29f).  

 

Figure 29 - Feet tracking algorithm: (a) Colour image; (b) Raw depth, relative to the 
camera; (c) Depth, relative to the floor; (d) Legs isolated from the background; (e) 
Feet isolated form the legs; (f) Ellipses fitted to the mask. The foci of the ellipses are 
used as the joint positions for the feet and ankle. 

A problem commonly encountered in vision-based systems is lighting conditions and the 
area under the desk is particularly problematic in this sense as it is often very poorly lit. 
Because our approach does not rely on the colour feed from the camera, it works well in 
different lighting conditions. Another advantage of our approach is that we do not take 
previous tracking states into account, so if the system loses track of the feet momentarily 
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(e.g. if the user leaves his desk), it can instantly recover from erroneous states. Also, it does 
not need to be calibrated for different users. We implemented our tracker in Matlab, and it 
runs at a frame rate of approximately 25 frames per second on a Windows 8.1 PC with 32GB 
of RAM, with an Intel Core i7 CPU @2.90GHz. 

5.2 Models of Foot Pointing Performance 

In Chapter 4, we summarised previous works that attempted to quantify the performance 
of hand and foot pointing. These works evaluated several different foot interfaces, but the 
wide variety of experimental designs makes comparing results difficult. Further, these 
studies have only looked at 1st order devices (i.e. devices that control the rate of change of 
a value, rather than the value directly, such as the joystick and the pedals) and relative input 
devices (i.e. devices that sense changes in position, such as the mouse and the trackball) 
[111]. Hoffman investigated unconstrained absolute positioning, but with users tapping on 
physical targets rather than using the foot for cursor control. However, modern devices that 
take input from the feet, such as depth cameras [116] and interactive floors [7]use absolute 
positioning, making it important to study this kind of interaction. 

To fill this gap, we conducted an experiment in which 16 participants performed 1D and 2D 
pointing tasks with both feet, to build the first ever ISO 9241-9 Fitts’s Law models of 
unconstrained foot pointing for cursor control. This allows us to compare our model to 
those of other input devices based on the same standard using the mean throughput for 
each condition. We also tested for effects of task and foot on user performance. 

5.2.1 Participants 

We recruited 16 participants (11M/5F), aged 
between 20 and 37 years (median = 27), with 
foot sizes ranging from 23 to 30cm (median = 
26cm). Participants were inexperienced with 
foot interfaces and half of them were regular 
drivers. All participants were right handed, but 
one was ambidextrous. All participants were 
right footed. 

5.2.2 Apparatus 

The experiment was conducted in a quiet 
laboratory space, on a laptop with an 18-inch 
screen and 1920×1080 resolution. To track the 
feet, we used the foot tracker described in 
section 5.1. We made sure that only one foot was visible to the camera at any point in time, 
by asking participants to keep the opposite foot under the chair, and that the cursor control 
was assigned to the toes of whichever foot was in view. Mouse clicks were performed using 
a conventional mouse with disabled movement tracking. The tracker was calibrated with a 
1:1 CD gain, so that the cursor and foot movements matched exactly. 

STUDY AT A GLANCE 

Goal: Build performance models for 
unconstrained feet movements and 
test for the effects of foot and task 

Method: Within-subjects experiment 

Participants: 11M/5F (20-37y.) 

Independent variables: Foot side 
and task (1D or 2D) 

Dependent variable: Throughput 

Results: No difference between feet, 
1-D is faster than 2-D 
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Figure 30 - We recorded participants faces (A), and feet (B), synchronised with the 1D 
(C) and 2D (D) Fitts's Law tasks. 

Participants performed 1D and 2D Fitts’s Law tasks, for which we used Wobbrock et al.’s 
FittsStudy tool, an ISO-9241-9-compliant C# application to “administer conditions, log data, 
parse files, visualize trials and calculate results” [286]. The tool was configured to 
administer nine different combinations of A (amplitude) × W (width) defined by three levels 
of A {250, 500, 1000} crossed with three levels of W {20, 60,130}, yielding nine values of ID 
{1.55, 2.28, 2.37, 3.12, 3.22, 3.75, 4.14, 4.7, 5.67}. 

We recorded all sessions using additional cameras pointed at participants’ faces and feet, as 
well as the screen using the Open Broadcaster Software (see Figure 30). 

5.2.3 Procedure 

Participants first signed a consent form and completed a personal details questionnaire. The 
tasks were conventional ISO 9241-9 pointing tasks, in which targets appeared in blue on the 
screen. Participants selected targets by moving their feet so the cursor was above the target 
and by left-clicking the hand-held mouse. We chose this technique rather than foot tapping 
as we were interested in the time it takes to move the feet and the gesture time might delay 
the task unnecessarily. 

Participants performed both a 1D task (with vertical ribbons on either side of the screen) 
and a 2D task (with circular targets in a circular arrangement), with both their dominant 
and non-dominant foot. The order of tasks was randomized, but we ensured that the same 
foot was not used twice in a row. Each task comprised 9 IDs and was repeated in 13 trials 
(the first 3 discarded as practice). To summarize, each participant performed 2 feet × 2 tasks 
× 9 IDs × 13 trials = 468 movements. To make the friction with the floor uniform across all 
users, we asked them to remove their shoes and perform the tasks in their socks. 
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Figure 31 - Distribution of responses for the subjective reactions to the interaction 
technique (1-Low, 5-High). We modified the ISO 9241-9 questionnaire for the feet. 

After completing the tasks we asked participants to fill in a questionnaire adapted from the 
ISO 9241-9 standard for the use with the feet (see Figure 31). We also conducted an open-
ended interview about participants’ experience using the foot interface, what they liked and 
disliked about it, what strategies and movements they used to reach targets, etc. All 
interviews were transcribed and coded accordingly. 

5.2.4 Results 

Our analysis had two objectives: to build a Fitts’s Law performance model for each task and 
each foot and to check whether there was any difference in performance—as measured by 
the throughput—for different feet and tasks. 

 

 

Figure 32 - Distribution of mean throughputs per participant for each condition 
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To build the performance models, we computed the mean movement time (MT) and the 
mean 1D and 2D effective indices of difficulty (IDe) for each participant and for each 
combination of A×W. We then built the performance models using linear regression on 
these data, using the formulation described by Soukoreff and MacKenzie [247]. Table 11 
summarizes the movement time models, as well as the R-squared and the mean throughput 
averaged over the individual mean throughputs for each participant. To test for differences 
in performance for each condition, we compared the mean throughput (see Figure 32)—a 
metric that takes into account both speed and accuracy of the movement performance 
[247]—using a factorial repeated-measures ANOVA. We found a significant main effect of 
the task on the average throughput (𝐹(1,15) = 391, 𝑝 < .001), with an average TP of 1.75 
for the 1D task and 1.15 for the 2D task, but not of the foot (𝐹(1,15) = .75, 𝑝 = .09) or the 
interaction between foot and task (𝐹(1,15) = .41, 𝑝 = .12). 

 

After transcribing and coding the interviews, some consistent patterns of users’ opinions 
emerged. 

Movement Behaviours: In general, participants preferred to move around their hips and 
knees as little as possible, leaving as much of the movement as possible to the ankle joints. 
Participants reported five strategies for reaching targets on the screen: dragging the foot, 
lifting the foot, rotating the foot around the heel, rotating the foot around the toes and 
nudging the toes. At the beginning of the tasks, participants often started by dragging the 
foot across the floor, but quickly realized that this was tiring (“was a bit uncomfortable”, “I 
could instantly feel my abs working”, “more taxing and not really natural”). Four participants 
reported lifting the foot across the floor, but found that keeping the foot up was rather tiring 
(“I’d have more control and I don’t have the friction of the surface, but then I got very fatigued 
from keeping my whole leg up”).  

These strategies were used when targets were far apart; for shorter distances participants 
reached the targets by rotating the foot around the heels with the toes up, what they often 
referred to as “pivoting” (“most of the time, I just tried to move around my heel”). The 
reported advantages of heel rotation were the ease of movement, less fatigue, higher 
comfort and higher precision. Finally, for small adjustments and smaller targets, 
participants employed the toes in two ways: one participant reported rotating the foot 
around the toe and six participants reported bending and extending their toes, which would 
nudge the cursor towards the target (“when I wanted to do a fine grained, on the smaller 
targets, I would crunch my toes”). 

Differences between Tasks: All participants but one found the one-dimensional task 
easier than the two-dimensional one, which is reflected in the quantitative difference in 
throughput. This can be explained by the fact that moving left and right could be 
accomplished with heel rotation (the easiest movement, as participants reported), whereas 
back and forth movements required knee flexion and extension, either by dragging the foot 
on the floor or lifting it above it, both strategies that were reported as being tiring. 

Table 11 – Performance model for each condition with its corresponding r-
squared, mean throughput and error rate  

Condition Movement Time (ms) R2 Throughput (bit/s) Error Rate (%) 

1D Right 99 + 561 × 𝐼𝐷 0.88 1.75 8.43 

1D Left −56 +  609 × 𝐼𝐷 0.96 1.75 8.49 

2D Right 423 + 739 × 𝐼𝐷 0.85 1.16 7.64 

2D Left 372 + 789 × 𝐼𝐷 0.64 1.14 8.60 
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Challenges: The biggest challenges reported by participants were the cognitive difficulty in 
reaching small targets (“when the targets are smaller you need more precision so you need to 
focus”) and in coordinating the hands and feet (“it was weird starting, because you’d have to 
coordinate your thought process, your clicking and your feet, but I think as you went on, It was 
pretty quick to adapt”), fatigue (“a little fatigue influenced the outcome”), friction with the 
floor (“I don’t like this kind of rubbing with the floor”), and overshooting (“I knew that I was 
going to overshoot, so I just overshot and tried to click at the same time”). 

5.2.5 Discussion 

Our regression models are in line with previous work with our one-dimensional model 
being very similar to Drury’s (𝑀𝑇 = 189 + 550 × 𝐼𝐷) [71]. Hoffman found a much lower 
coefficient (𝑀𝑇 =  −71 + 178 × 𝐼𝐷) [116], but both him and Drury conducted experiments 
with physical targets rather than cursor control. As Drury noted, this effectively increases 
the sizes of the targets by the size of the participant’s shoe [71]. Also, whereas we use the 
Shannon formulation of ID, Drury used Fitts’s original formulation and Hoffman used the 
Welford formulation. 

Since our model is compliant with the ISO standard, we can compare our throughputs with 
other studies reported in literature. The typical range of throughput for the mouse is 
between 3.7 and 4.9 bit/s, considerably higher than the 1.2–1.7 range we found for the feet, 
but expected given users’ experience and practice with it [247]. The values we found, 
however, fall into the range for other input devices such as the isometric joystick (1.6–2.55) 
[247], the touchpad (0.99–2.9) [247] and video game controllers (1.48–2.69) [182]. 

By allowing participants to choose how to reach the targets, we obtained valuable insights 
into the most comfortable ways of using the feet. Although heel rotation was perceived as 
the most comfortable movement, most foot-operated interfaces do not use this movement 
(an exception is Zhong et al.’s Foot Menu [296]). Our results are also in line with Scott et al.’s 
in which users also reported that heel rotation was the most comfortable gesture, followed 
by plantar flexion, toe rotation and dorsiflexion [237]. The use of heel rotation is suitable 
for radial and horizontal distributions of targets. This kind of interaction could be used in a 
discrete (e.g. for foot activated contextual menus) or in a continuous fashion (e.g. controlling 
continuous parameters of an object while the hands perform additional manipulations). 

We investigated foot performance for seated users so our results apply to foot-only (e.g. 
mice for people with hand disabilities), and foot-assisted (e.g. driving simulators, highly-
dimensional applications) desktop interfaces. It remains to be seen how these results apply 
to standing users (e.g. using a touch-enabled floor). A second limitation is that our 
participants were not familiar with this kind of input device, which might affect the 
predictive power of our models if the device is used more frequently. 

5.2.6 Conclusion 

We presented ISO 9241-9 performance models for 1D and 2D foot pointing in a sitting 
position. Our results suggest little difference in performance between the dominant and 
non-dominant foot and that horizontal foot movements are easier to perform than vertical 
ones. We identified five strategies that participants used to reach targets and found that the 
preferred one was rotating the foot around the heel. We also found that the biggest 
challenges for foot-based interaction in a desktop setting are difficulties in reaching small 
targets, hand-feet coordination, fatigue, friction with the floor, and overshooting targets. 
These findings are important because they help us complete our understanding of the 
potential of foot-operated interfaces and provide guidance for future research in this 
emerging domain. 
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5.3 The Effect of Direction on Foot Pointing Performance 

One possible use for the feet in a seated position is to provide one-dimensional input, be it 
discrete (e.g. selecting an option in a menu) or continuous (e.g. changing the music volume). 
To better understand how to better design such interfaces, it is important to understand if 
there is a significant difference in the movement times and comfort across different 
directions. Therefore, we conducted a serial one-dimensional Fitts’s Law experiment. In this 
study, we tested the effects of the direction in which the targets were distributed (horizontal 
vs. vertical) and the foot (dominant vs. non-dominant) on the movement times and error 
rates.  

5.3.1 Participants 

For this experiment, we recruited 10 
participants (8M/2F), aged between 19 and 31 
years (mean 27), with posters on campus and 
adverts on social networks. All participants 
were right-handed and one was left-footed; 
seven participants were car drivers. Foot sizes 
ranged from 22 cm to 33 cm (mean 27.1 cm). 
None of the participants had ever used a foot 
mouse or similar foot-operated pointer before.  

5.3.2 Apparatus 

The experimental setup was the same as in the 
previous study (see Figure 28). Participants sat 
facing the monitor on a fixed chair. To make 
sure that the friction with the floor was the same across all participants, as well as to remove 
the additional friction from the shoe sole, we asked participants to take off their shoes and 
wear socks during the experiment. The system was calibrated to track an area of 50 cm × 
50 cm under the desk.  

To begin, participants signed a consent form and filled in a questionnaire. The task in our 
experiment was analogous to other Fitts’s Law experiments. The user was presented with a 
green and a red bar with a certain width (W) and separated by a certain distance (A) on the 
screen. For each trial, the user had to select the green bar, at which point the colours of the 
bars switched. 

To select a target, participants used their feet to position an on-screen cursor over the green 
bar and press the space bar. We chose to perform the activation this way rather than with a 
foot gesture, such as a tap or a touch on the floor, for several reasons: first, the movement 
responsible for the activation might interfere with the positioning of the cursor. Second, the 
gesture could influence the movement of the feet. 

For example, in order to select a target the user had to touch the corresponding point on the 
floor, he would be forced to move the cursor by lifting his foot off the floor, so as to minimise 
accidental activation. Conversely, if the selection was performed by tapping, dragging the 
foot on the floor would seem more intuitive. By using the hands to perform the activation, 
we freed participants to use whichever strategy they felt more suitable or comfortable for 
the task. We selected 14 combinations of W and A to yield exact indices of difficulty from 1 
to 7, using the Shannon formulation. Each ID combination was executed with each foot in 
both horizontal and vertical configurations. We balanced the order of the feet and the 
direction of the bars among participants but and ensured the task was not repeated with 
the same foot twice in a row so as to reduce fatigue. The order of difficulty was randomised. 

STUDY AT A GLANCE 

Goal: Compare the performance of 
foot pointing in the x and y axes. 

Method:  Within-subjects experiment 

Participants: 12(8M/4F) 

Independent Variables: Direction 
and Foot Dominance 

Dependent Variables: Throughput 

Results: No effect of foot dominance, 
but movement in the x axis is faster 
than in the y axis. 
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The complete procedure was repeated ten times. To summarise, each participant performed 
2 feet ×2 directions×14 ID combinations×10 repetitions = 560 movements. 

The system continually logged the position of the feet and cursor and a video camera placed 
under the desk recorded participants’ leg movement. At the end of the experiment 
participants filled in another questionnaire on the perceived difficulty and speed of the 
target selection on the top, right, bottom, left and centre of the screen for each foot. We also 
asked for suggested applications of foot-operated interfaces. 

5.3.3 Results 

To ease reporting, we use the following abbreviations: horizontal movement with the right 
foot (RH), vertical movement with the right foot (RV), horizontal movement with the left 
foot (LH) and vertical movement with the left foot (LV).  

 

Following the recommendations provided by Soukoreff and MacKenzie [247] we adjusted 
the data for accuracy, computing the Effective Index of Difficulty for each participant, for 
each condition, obtaining 140 pairs of IDe and MT for each group. From this data, we 
obtained the four Fitts’s Law regression models for our experiment (see Table 12), using 
the Shannon Formulation and the effective indices of difficulty. The logarithmic value of the 
index of difficulty significantly predicted the performance time for all conditions. The 
overall model with the logarithmic value of the index of difficulty also predicted the 
performance time well for RH ( 𝑅2 = 0.66, 𝐹1,138 = 268.4, 𝑝 < .001 ), LH ( 𝑅2 =

 0.66, 𝐹1,138 = 269.0, 𝑝 < .001), RV (𝑅2  =  0.55, 𝐹1,138  = 167.9, 𝑝 <  .001) and LV (𝑅2 =
 0.52, 𝐹1,138  =  149.2, 𝑝 < .001).  

 

Table 12 – Performance model for each combination of foot and direction as well 
as the r-squared and mean throughput. 

Condition Movement Time (ms) R2 Throughput 
(bit/s) 

Right Horizontal 128 + 449 × 𝐼𝐷 0.66 2.20 

Left Horizontal 102 + 497 × 𝐼𝐷 0.66 2.02 

Right Vertical −140 + 606 × 𝐼𝐷 0.55 1.94 

Left Vertical −138 + 608 × 𝐼𝐷 0.52 1.94 
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Figure 33 - Throughput for each foot in the horizontal and vertical tasks 

To compare the models we computed the mean of means of the throughput of each 
condition. The throughput is a measure that encompasses both the speed and accuracy of 
the movement. The values for the mean throughput in each condition are shown in Table 
12. We compared the throughputs using a factorial repeated-measures ANOVA. We found a 
significant main effect of the direction of movement, 𝐹1,11 = 14.06;  𝑝 < .05, but not of the 
dominance of the foot used, 𝐹1,11 = 4.62, 𝑝 = .081, on the task completion time. We also 

found no significant interaction effect between the foot and the direction of 
movement, 𝐹1,9 = 4.72, 𝑝 = .052 indicating that both feet perform roughly the same in both 

directions. Figure 33 shows the throughputs for each condition. These results suggest that 
it does not matter which foot is used, but moving it horizontally is faster than moving it 
vertically.  

Participants were consistent in their strategy for reaching targets: they would position their 
foot in the general target area and perform fine positioning in a second step. During vertical 
movement where the foot moved forward and backward, participants nudged their foot, 
wiggled their toes and flexed the foot for fine-positioning. For horizontal movement, users 
consistently reported pivoting the foot around the heel, only dragging if the target could not 
be reached by pivoting.  

Most users (70%) found using their dominant foot to select the bars on the left and right of 
the screen the easiest and most (also 70%) found using the non-dominant foot to select 
targets on the upper and lower edges the hardest task. We asked users for the hardest 
aspect of using the interface and responses indicated that fine-grained positioning is the 
biggest problem. 

Suggestions for tasks that could be improved by the use of the feet together with traditional 
input modalities pointed to the fact that it is not suitable for fine positioning, but it would 
be useful for mode switching (“switching tasks”, “switching between colours when drawing”, 
“changing tabs in a browser”), navigation (“scrolling”, “game exploration”, “Google maps”, 
“navigating a document”), and selection between a reduced number of options 
(“anything where you have a limited number actions to do”, “two or three big buttons”, “if there 
were large quadrants, it would be useful”). For real-world use, one participant said that he 
“(...) would not want the tracking to be always on. To toggle this mode, I would suggest holding 
down a key”.  

5.3.4 Discussion 

The intercepts and slopes shown in Table 12 are in line with previous Fitts’s Law studies. 
Soukoroff and MacKenzie suggested that intercepts should be between -200 ms to 400 ms 
and ours lied within this range. Further, none of the intercepts were significantly different 
than zero (p > .05), which is expected for a theoretical ID of zero. We therefore refrain from 
making any assumptions about the meaning of our intercepts and attribute the values to 
subject variability. We can also compare our models to those of other Fitts’s Law studies 
using a mouse in point-select tasks. In MacKenzie’s comparison of six such models [165], 
the slopes varied from 83 to 430 bits/ms, with bandwidths ranging from 2.3 to 12.0 bits/s. 
This makes the fastest group in our study (horizontal movements with the dominant foot) 
between 5% and 80% slower than the hand. This is also in line with the findings of Pakkanen 
and Raisamo, who found the feet to be 60% slower than the hands [195].  

Our results indicate that when manipulating one parameter with the feet, horizontal 
movements are faster than vertical movements and users tended to pivot their feet rather 
than drag them. This suggests that when designing controls for the feet, radial layouts might 
be more efficient than linear layouts. 
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5.4 Simultaneous Manipulation of Two Parameters 

The previous experiment focused on how the feet can be used to control one parameter. 
However, the feet have a greater bandwidth than one parameter as their positions and 
orientations in space can have meaning for input. In this experiment, we aimed to 
understand how people can use their feet to control two parameters at the same time. Is it 
better to use one foot to control multiple parameters or distribute these parameters across 
the two feet? Further, does the visual representation of the control of parameters affect the 
interaction? 

5.4.1 Participants and Apparatus 

For this experiment, we recruited a group of 12 
participants (8M/4F), aged between 19 and 42 
years (mean 28) using posters on campus and 
adverts on social networks. Two of the 
participants were left handed and footed and 
nine were drivers. Foot sizes ranged from 22 
cm to 32 cm (mean 26.7 cm). None of the 
participants had ever used a foot mouse or 
similar foot-operated pointer. The 
experimental setup was the same as for the 
previous experiment. 

5.4.2 Procedure 

Participants were first asked to sign a consent 
form and complete a personal information questionnaire. They were then given time to 
familiarise themselves with the interface. The goal of the study was to investigate how 
interaction technique and visualisation influence task completion time and error rate. To 
this end, participants were asked to manipulate two variables, within a certain threshold, 
while we varied the following two factors:  

- INTERACTION TECHNIQUE (3 levels): The two input values were manipulated by 
(1) XY position of 1 foot (1F); (2) X position of both feet (XX) and; (3) X position of 
one foot and Y position of the other (XY). 

- VISUALISATION (2 levels): Rectangle resizing and slider adjustment (described 
below). 

In the first visualisation, the task was to fit the dimensions of an adjustable rectangle to 
those of a target rectangle (see Figure 34a). The target values were the width and height of 
the destination rectangle while the threshold was represented by the thickness of the 
rectangle's stroke. In the second visualisation, participants were asked to set two sliders 
along a scale to different target values marked by red tags (see Figure 34b). Here, the target 
values were the centres of the tags and the threshold was represented by their thickness. 
We chose these two visualisations because in the first the two values were integrated (as 
the corner of the rectangle) while in the second the values were represented independently 
(as separate sliders). We hypothesised that these different visualisations might influence 
the performance depending on the number of feet used in the interaction. For each task, we 
measured the task completion time and error rate. 

STUDY AT A GLANCE 

Goal: Compare different foot-based 
interaction techniques for controlling 
multiple parameters 

Method: Within-subjects experiment 

Independent Variables: Interaction 
technique and visualisation 

Dependent Variables: Completion 
time and error rate  

Results: Fastest technique was using 
one foot in the rectangle visualisation.  
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Figure 34 - Tasks in the third experiment, using the rectangle resizing (A) and slider 
matching (B) visualisations. 

To summarise, each participant performed: 3 interaction techniques × 2 visualisations × 30 
repetitions (varying the target values and thresholds) = 180 tasks. 

5.4.3 Results 

Table 13 shows the mean task completion time and error rates for each condition. We 
compared the task completion times (see Figure 35) using a factorial repeated-measures 
ANOVA. Mauchly's test indicated that the assumption of sphericity had not been violated 
neither by the effects of the technique (𝑊 =  0.88, 𝑝 =  0.64) nor by the effects of the 
interaction between technique and visual representation ( 𝑊 =  0.53, 𝑝 =  0.11 ). 
Sphericity was not an issue for the effects of the visual representation because it had only 
two levels. All effects were reported as significant at 𝑝 < .05. There was a significant main 
effect of the technique, 𝐹2,22  =  14.82 and of the visual representation, 𝐹1,11  =  50.46 on 

the task completion time. There was also a significant interaction effect between the 
technique and the visual representation, 𝐹2,22  =  34.10  indicating that the interaction 

technique influence on participants' speed was different for the rectangle and slider 
representations of the task.  

 

 

 

Table 13 - Mean task completion time and mean error rates for each condition in 
experiment 3. 

 Rectangle Sliders 

 1F XX XY 1F XX XY 

Time (ms) 3428 5063 4161 9098 4625 4902 

Error Rate (%) 5.5 3.7 8.0 8.2 8.1 8.0 

Bonferroni post-hoc tests revealed that using one foot is significantly different than all other 
conditions in the slider representation (𝑝 < .05), but not in the rectangle one, as in this 
condition, it was not significantly different than using one foot horizontally and the other 
foot vertically (𝑝 = 0.38). The two conditions in which participants used both feet were not 
significantly different in any combination of techniques and representations at 𝑝 < .05. 
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Figure 35 - Movement times for each task (resizing the rectangle and setting the 
sliders) and technique (one foot - 1F, two feet horizontally - XX, one foot horizontally 
and one vertically - XY) 

We also compared accuracy using a factorial repeated-measures ANOVA. Mauchly's test 
indicated that the assumption of sphericity had not been violated neither by the effects of 
the technique ( 𝑊 =  0.78, 𝑝 =  0.42 ) nor by the effects of the interaction between 
technique and visual representation (𝑊 =  .91, 𝑝 =  .72). Our results showed no significant 
effect of the technique (F2,16 = 0.21, p = 0.82), of the visual representation (F1,8 = 4.47, p = 
0.067) or the interaction between them (F2,16 = 0.14, p = 0.87).  

5.4.4 Discussion 

Our results show that when manipulating multiple variables with the feet the visualisation 
strongly affects performance. The best performances amongst all conditions were 
interaction techniques 1F and XY in the rectangle representation, which were not 
significantly different at 𝑝 < .05. In these two conditions, there was a direct spatial mapping 
between the technique and the task, since in technique 1F, the foot moved together with the 
corner of the rectangle and in technique XY, the feet moved together with its edges.  

Users were confused when this spatial mapping was broken. The worst performing 
condition was using technique 1F for the slider task. Even though the underlying task was 
exactly the same, the change in visualisation caused the mean completion time to increase 
over twofold. This can be explained by how users would complete the task. In the slider task, 
participants would often set one slider at a time and in technique 1F, this meant moving the 
foot in one direction and then in the other. The problem is that users find it hard to move 
the foot in only one direction at a time. As we discovered in our previous study, when 
moving the foot horizontally, users tend to pivot their feet, rather than drag them, and this 
movement causes the cursor to move in both directions at the same time, resulting in users 
setting one slider, then setting the second one and having to go back and forth between them 
to make final adjustments. This was not a problem when controlling each value by a 
different foot. Regardless of whether the user tried to set both values at the same time or in 
sequence, moving one foot did not affect the other, so the visual representation was not an 
issue when using two feet. 



From Head to Toe: 
Investigations on Full-Body Human-Computer Interaction 

108 Empirical Investigations of Foot-Based Interaction  

An interesting effect we observed was in technique XY in the rectangle representation. Even 
though only one axis of the movement of each foot was being used to control the size of the 
rectangle, some participants would move both feet diagonally and symmetrically. One 
participant was even conscious of this, but kept on using this strategy: “I knew that each foot 
controlled only one dimension, but I found myself moving each one in both directions.'' This 
suggests that symmetrical movements might be more comfortable than independent ones 
when using two feet. 

 

5.5 Parallel Use of Feet and Hands 

The previous experiments investigated interactions using the feet alone. In this experiment 
we wanted to investigate the overhead caused by using the feet in parallel with one hand. 
More specifically, we wanted to test whether there is an effect of resizing technique 
(scrolling with the mouse wheel, the position of one foot, or the distance between two feet) 
on the completion times and accuracy of the task, while the hand repositions the same 
square.  

5.5.1 Participants and Apparatus 

For this experiment, we recruited a group of 13 
participants (11M/2F), aged between 19 and 
32 years (mean 26), with posters on campus 
and adverts on social networks. Two 
participants were right left and footed while 10 
participants were drivers. Foot sizes ranged 
from 22 cm to 34 cm (mean 28 cm). None of the 
participants had ever used a foot mouse or 
similar foot-operated pointer. The 
experimental setup was exactly the same as the 
one for the previous experiments. 

5.5.2 Procedure 

Upon arrival, participants signed a consent 
form and completed a personal information 
questionnaire. They were then given some time 
to familiarise themselves with the interface. The task consisted of resizing and positioning 
a square to match a destination square at a different place on the screen. In all experimental 
conditions, the positioning was done with the mouse but the size of the square would be 
manipulated by one of three controls: the scroll wheel of the mouse, the horizontal 
coordinate of one foot or the horizontal distance between the two feet. We chose the scroll 
wheel as it is widely used for manipulating continuous variables. When the size and position 
of the two squares were matched, the user would click with the mouse and the button would 
reappear in the centre of the screen. Each participant repeated this task 40 times for each 
condition, with the target square in different positions and with different sizes. We 
measured the task completion time and the error rate. In the end of the study participants 
were asked to rank their preference of interaction techniques. 

STUDY AT A GLANCE 

Goal: Investigate the overhead of 
using the feet in parallel with the 
hand. 

Method: Within-subjects experiment 

Participants: 12 (10M/2F)  

Independent Variables: Interaction 
technique 

Dependent Variables: Completion 
time and error rate 

Results: No significant difference 
between the techniques in time, but 
the scroll wheel yielded fewer 
mistakes 
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Figure 36 - Task in the fourth experiment. Participants were asked to translate and 
resize the black rectangle to match the red one. 

5.5.3 Results 

Figure 37 shows the mean task completion times and error rates for each condition. The 
mean task time was similar across all conditions: 2.50s for the scroll wheel, 2.63s for the 
two feet condition, and 2.95s for the one foot condition. We first compared the task 
completion times in each condition with a one-way repeated measures ANOVA. Mauchly's 
test indicated that the assumption of sphericity had not been violated, 𝑊 = 0.55, 𝑝 = 0.05. 
Our results showed a significant effect of the technique used for resizing on the task 
completion time, 𝐹2,22  =  5.08, 𝑝 < .05 . Post-hoc tests showed that using one foot was 

significantly slower than the other two conditions (𝑝 < .05), but no significant difference 
was found between using two feet and scrolling (𝑝 = .062). 

 

Figure 37 - Movement times for each technique in experiment 4. 

We also computed the error rates for each technique: 0.15 for the scroll wheel, 0.089 for the 
two feet and 0.081 for the one foot (see Figure 38). We then compared the error rates for 
the conditions using a one-way repeated measures ANOVA. Mauchly's test indicated that 
the assumption of sphericity had not been violated, 𝑊 = 0.96, 𝑝 = 0.86. Results show a 
significant effect of the technique on the error rate, 𝐹2,22  =  20.03, 𝑝 < .05 . Bonferroni 

post-hoc tests showed that using the scroll wheel was significantly more accurate than the 



From Head to Toe: 
Investigations on Full-Body Human-Computer Interaction 

110 Empirical Investigations of Foot-Based Interaction  

other two conditions (𝑝 < .05), but no significant difference was found between using one 
or two feet (𝑝 = 1.00). 

 

Figure 38 - Error rates of each condition in experiment 4. 

The most preferred technique was the scroll wheel, chosen as the top technique by 85% of 
participants. Participants were divided between the feet techniques, with eight preferring 
two feet and five preferring one foot. 

5.5.4 Discussion 

We chose an increment value for each step of the scroll wheel so that users would not 
overshoot the thickness of the stroke of the target rectangle, but it also caused the scroll 
wheel to be slower, so it might have fared better with adjustments in its sensitivity. In terms 
of task completion times, the feet performed similarly to the hands, showing little overhead 
for the task being performed, but with a significant decrease in accuracy. Taking into 
account that users are more familiar with the scroll wheel and none of our participants had 
any experience with foot-operated interfaces, from these results we speculate that with 
training, the feet could match (if not outperform) the scroll wheel as a means of providing 
continuous input to applications. 

Our results show that using two feet was significantly faster than using one. We suggest two 
explanations for this. First, because what mattered was the relative distance between the 
feet, users could place their feet wherever they felt most comfortable within the tracked 
area. Because in the one foot condition, what mattered was the absolute position of the foot, 
depending on how the user was seated, this position might not have been ideal, causing a 
decrease in performance. Second, as both conditions used the same calibration, moving two 
feet simultaneous would cause a twofold change in the size of the rectangle, as compared 
with moving just one foot, increasing the overall speed of the interaction. Despite being 
faster, almost 40% of participants still preferred one foot, citing that moving two feet was 
more tiring than moving just one. 

5.6 Guidelines and Design Considerations for Continuous 
Input  

Based on previous work, the quantitative and qualitative results from our experiments and 
our own experience while investigating the subject, we suggest a set of guidelines and 
considerations for designing desktop interactive systems that use feet movements as input.  
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Resolution: Our findings confirm the observations of Pakkanen and Raisamo that pointing 
with the feet should be limited to low fidelity tasks, in which accuracy is not crucial [195]. 
For example, when compared to using only the hands in experiment 4, the feet were 
significantly less accurate.  

Visibility & Proprioception: In a desktop setting, the desk occludes the feet, which 
prevents direct input interfaces, such as the floor-projected menus in Augsten et al [7]. 
Moreover, foot gestures suffer from the same problems as other gestural interactions (see 
Norman [186] for a discussion of such problems), which are amplified by this lack of 
visibility of the limbs. Our second study showed that when designing such interactions, on-
screen interfaces should provide a direct spatial representation of the movement of the feet. 
However, the lack of visibility of the feet is somewhat compensated by the user's 
proprioception: the inherent sense of the relative positioning of neighbouring parts of the 
body. Therefore, even though the user is not able to see their feet they still knows where 
they are in relation to their body. 

Fatigue: Similarly to mid-air gestures, users report fatigue after extended periods of time 
using leg gestures. In all of our studies, participants reported that, in order to minimise 
fatigue, they preferred pivoting the foot around the heel to dragging the feet across the floor. 
Fatigue must also be taken into account when designing interactions where any foot is off 
the floor. In our experiment, when moving the feet across the floor, users preferred dragging 
the foot to hovering it over the floor. 

Balance: Foot gestures performed whilst standing up only allow for one foot to be off the 
floor at the same time (except when jumping). While sitting down, the user is able to lift 
both feet from the floor at the same time, allowing for more complex gestures with both feet. 
To prevent from fatigue, such complex gestures should be limited in time and potentially 
also space. In this work, even though we tracked the feet in three dimensions, we only took 
into account their two-dimensional position in relation to the floor. It remains an open 
question how adding a third dimension could affect the interaction. 

Chair & Spatial Constraints: The kind of chair where the user is seated may influence the 
movement of the feet. For example, the rotation of a swivel chair might help with moving 
the foot horizontally. Further, when both feet are off the floor, swivel chairs tend to rotate 
as the user moves which may hamper interaction. The form factor of desks, chairs and 
clutter under the desk also affect the area in which the user can perform gestures. This also 
offers opportunities for interaction, as physical aspects of the space can help guide the 
movement of the feet or serve as reference points. Another aspect that needs to be taken 
into account are the properties of the floor, which might influence the tracking (shiny floors 
will reflect the infra-red light emitted by the Kinect, creating additional noise) and 
interaction (floors covered in carpet or anti-slip coating may slow down feet movements, 
while smooth flooring may speed them up). 

Rootedness: Mid-air gestures often suffer from the problem of gesture delimiters, similar 
to the classic Midas touch problem [127], as it is hard to tell specific actions and gestures 
from natural human movement [18]. This is less of a problem for feet gestures in a seated 
stance, because when sat down, most leg and foot movement consists of postural shifts, 
reducing the number of movements that might be recognised as false positives in gesture 
recognition systems. We addressed this problem in our studies by defining an area on the 
floor where the feet would provide input for the system, but in applications where it would 
be desirable to track the feet at all times, it is necessary to pay special attention to designing 
gesture delimiters that are not part of users' normal lower limb behaviour. 

Footedness: The same way that people favour one hand they also favour one foot and, even 
though they are often correlated, there are exceptions to this rule, with approximately 5% 
of the population presenting crossed hand-foot preference [63]. Our findings indicate there 
is no significant difference between the dominant foot and the non-dominant one. These 
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results, however, reflect the performance of users with no experience with foot-based 
interfaces. It is not clear if this similarity in performance still holds for experienced users. 
Further, it is necessary to consider which foot will be used in the interaction, as crossing 
one foot over the other to reach targets on the opposite side might be too uncomfortable. 

Hotspot: Touch-based interfaces, despite suffering from the phenomenon of `fat-fingers', 
can still provide a high resolution of input due to the small relative size of the contact area 
between the finger and the touch-sensitive area. Feet, however, provide a large area of 
contact with the floor. The designer can then opt for reducing the foot to a point or using 
the whole contact area as input. The former has the advantage of providing high resolution 
input, but users' perceptions of the specific point on the foot that should correspond to the 
cursor is not clear, as demonstrated by Augsten et al. [7]. Using the whole of the foot sole 
makes it easier to hit targets (as shown by Drury's modification of Fitts's Law [71]), but 
increases the chance of hitting wrong targets. Hence, if using this approach, the designer 
needs to leave enough space between targets as to prevent accidental activation. 

5.7 Limitations 

In this work, we described four experiments that attempt to characterise some fundamental 
aspects of the use of foot movements for interacting with desktop computers. These 
experiments, however, have some limitations. We collected data from a relatively small 
number of participants, so more precise estimates of the true value of the times and error 
rates presented here can certainly be achieved in experiments with larger pools of 
participants. Also, our participant pool was not gender-balanced in every study and did not 
cover a wide age range. We present results using only one tracking system that has several 
limitations of its own. For example, our prototype was implemented in Matlab, achieving a 
frame rate of 25fps, but the tracking speed could be improved by porting the system to a 
faster language, such as C++. While our results are in line with the ones in related work, 
further work is necessary to assess whether they translate to other foot interfaces.  

5.8 Conclusion 

In this work we took a bottom-up approach to characterising the use of foot gestures while 
seated. We implemented a foot tracking system that uses a Kinect mounted under a desk to 
track the users’ feet and used it to investigate some fundamental characteristics of this kind 
of interaction in three experiments. 

First, we presented ISO 9241-9 performance models for 1D and 2D foot pointing in a sitting 
position. Our results suggest little difference in performance between the dominant and 
non-dominant foot and that horizontal foot movements are easier to perform than vertical 
ones. We identified five strategies that participants employed to reach targets and found 
that the preferred one was rotating the foot around the heel. We also found that the biggest 
challenges for foot-based interaction in a desktop setting are difficulties in reaching small 
targets, hand-feet coordination, fatigue, friction with the floor, and overshooting targets. 
These findings are important because they help us complete our understanding of the 
potential of foot-operated interfaces and provide guidance for future research in this 
emerging domain. 

Second, we studied the performance of each foot in controlling a single parameter in a 
unidimensional task. Our results showed no significant difference between the dominant 
and non-dominant foot, but it showed that horizontal movement on the floor is significantly 
faster than vertical. Also, users showed a preference for pivoting their feet rather than 
dragging them. Third, we looked at controlling two variables at once, comparing the use of 
one foot against the use of two (each foot using the same movement axis or different ones). 
Our results showed that the visual representation of the variables do matter, with the 
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performance for techniques that have a direct spatial mapping to the representation 
outperforming the others. It also showed that when the variables being manipulated are 
shown separately (such as in independent sliders), it is preferable to use two feet rather 
than one. Fourth, we analysed the use of the feet in parallel to the hands, showing that the 
feet perform similarly to the scroll wheel in terms of time, but worse in terms of accuracy, 
suggesting that with training and more accurate tracking systems, the feet could be used to 
support hand based interaction in a desktop setting. 

Future work will focus on using these insights to design and implement techniques that can 
possibly enhance the interaction by supporting the hands in everyday computing tasks. 
While we provide some guidelines for design, it is still an open question as to which tasks 
can effectively be supported by the feet and the size of the cognitive overhead of adding 
such an interactive modality. 
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6 MULTIMODAL BODY 

MOVEMENT FOR 3D 

INTERACTION 

“Think with your whole body.” 

Taisen Deshimaru 

 

This chapter investigates our third and final proposition: that by treating body movements 
as multiple modalities, rather than a single one, we can enable novel user experiences. We 
propose breaking the sensing of the full body amongst multiple sensors, which together can 
provide more detailed tracking and enable up close interactions. We believe that 
multimodal interaction can offer several advantages, including improving the performance 
of current interaction techniques, enabling previously impossible interactions, and 
inspiring novel applications. 

To investigate the topic, we chose the domain of 3D User Interfaces (3DUI) for several 
reasons. First, it offers a complex and multi-dimensional set of tasks that can highly benefit 
from the additional degrees of freedom provided by multimodal input. Second, recent 
technological advances, such as affordable stereoscopic displays and commercially 
available virtual reality headsets created a renewed interest in 3D interaction. Third, as the 
physical world around us is also three-dimensional, interaction techniques designed for 
3DUIs can often be extended into other contexts, such as Ubiquitous and Mobile Computing. 

The overall objective of this chapter is to explore full body multimodal interactions. 
Whereas sensors such as the Microsoft Kinect already offer full body sensing capabilities, 
they require a long distance between the user and the sensor. However, in most of our 
interactions with computing systems, we are quite close to them: sitting in front of our 
desktop computers, holding our mobile phones, standing in front of a public interactive 
kiosk, or lying in bed with our laptop over our legs. Whereas wearable tracking systems can 
offer full body tracking irrespective of the distance to the computer, they require user 
instrumentation, making it obtrusive and often uncomfortable.  
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To address this problem, we propose distributing the sensing of different body parts to 
multiple remote sensors. This approach offers several advantages. First, as each sensor has 
a specific body part to focus, they can be placed closer to the body, enabling up close 
interactions. Second, as a consequence of this, they can offer a higher sensing resolution. For 
example, whereas the Kinect cannot recognise finger gestures when tracking the whole 
body from far away, it can do so when placed near the hands. Third, by using remote 
sensors, we require no user instrumentation, allowing for more casual interactions. 

In particular, we propose breaking body sensing into three. We track users’ hands and 
fingers with a depth sensor placed above users’ hands; users’ eyes and head with an infra-
red remote eye tracker; and users’ feet with another depth camera facing down.  

This chapter demonstrates how such a multi-sensor setup can benefit 3D interaction. We 
first investigate how the eyes can support mid-air gestures in 3D selection tasks. We 
conducted a user study that demonstrates how our multimodal approach provides a faster 
and more natural way of performing this task (Section 6.1). We then propose different foot-
based interaction techniques to accomplish the canonical 3DUI tasks (Section 6.2). Finally, 
we bring it all together into a full body sensing platform in the form of an augmented arcade 
machine that enable public, playful and casual multimodal interactions (Section 6.3).  Figure 
Figure 39 shows how the studies on foot interaction and gaze + gesture come together in 
enabling us to develop our full-body sensing system. 

 

Figure 39 - We bring the findings and sensing setups from our empirical studies 
together into a full-body up-close sensing setup for games in the form of an arcade 
machine. 

6.1 Gaze-Assisted Mid-Air 3D Selection 

Interaction fidelity—the degree with which the actions used for a task in the UI correspond 
to the actions used for that task in the real world [30]—is an active topic of research in 3D 
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user interfaces (3DUI). Interfaces based upon free-space spatial input offer this fidelity for 
3DUI due to their multiple degrees of freedom and high integration of dimensions of control 
(i.e. many degrees of freedom can be controlled simultaneously with a single movement) 
[29,112]. In particular, recent advances in unobtrusive motion capture (e.g. Kinect, Leap 
Motion) created a renewed interest in mid-air gestures for 3DUI. 

In immersive virtual reality environments and on stereoscopic displays, such interactions 
allow users to manipulate virtual objects using interaction metaphors that relate more 
closely to real world interactions, for example, by using an isometric mapping between the 
virtual and physical spaces, users can reach virtual objects directly where they see them. 
However, a large number of 3D activities, such as gaming, graphic design and 3D modelling 
still rely on conventional monoscopic desktop displays. This setup creates a discontinuity 
between the physical and the virtual environments, and therefore do not allow users to 
directly grasp objects in three dimensions. In this desktop context, common mid-air 
interaction techniques for 3D selection are Raycasting (in which the user’s hand controls a 
2D point that determines the direction of pointing) and the Virtual Hand (in which the user 
controls a 3D representation of his hand and makes selections by intersecting it with virtual 
objects) [29]. See Argelaguet et al. for a survey of selection techniques for 3D interaction [5].  

As the eyes provide a natural indication of the focus of the user’s interest, eye trackers have 
been used for pointing in a wide variety of contexts without necessarily requiring a 
representation on the screen, showing higher speeds than conventional techniques [240].  
Even though gaze pointing for computing input has been investigated since the 80’s, studies 
on gaze pointing for 3DUI started with work by Koons et al., who built a multimodal 
interface integrating speech, gaze and hand gestures [145]. Early work was also conducted 
by Tanriverdi and Jacob, who found it to be faster than an arm-extension technique with a 
6DOF magnetic tracker in a VR environment [261]. Cournia et al. found conflicting results 
that suggest gaze is slower than a hand-based Raycasting technique with a wand [54]. These 
works only investigated selection tasks, but in practice, common 3D interaction tasks 
involve further manipulation steps after selection, such as translation and rotation. Given 
that gaze alone is impractical for all steps, several works combined gaze with additional 
modalities, but few explored the context of 3D user interfaces. In particular, when using 
gaze for selection and mid-air gestures for manipulation, is there a cost in performance in 
switching modalities? 

Even though gaze has been explored in a variety of multimodal configurations [255], few 
works explored the combination of gaze and mid-air gestures. Kosunen et al. reported 
preliminary results of a comparison between eye and mid-air hand pointing on large screen 
in a 2D task that indicate that pointing with the eyes is 29% faster and 2.5 times more 
accurate than mid-air pointing [146]. Hales et al. describe a system in which discrete hand 
gestures issued commands to objects in the environment selected by gaze [99]. Pouke et al. 
investigated the combination of gaze and mid-air gestures, but in the form of a 6DOF sensor 
device attached to the hand [211].  They compared their technique with touch, and found 
that the touch-based interaction was faster and more accurate. 

The conflicting results of these papers highlight the importance of further investigating gaze 
selection for 3DUI, particularly considering that technical advances made eye tracking 
technology significantly more accurate, precise and robust than the devices and techniques 
used in previous works. In this work, we present an investigation of gaze selection for mid-
air hand gestural manipulation of 3D rigid bodies in monoscopic displays. We conducted a 
study with three tasks. In the first task, we compared three 3D interaction techniques for 
selection and translation: a 2D cursor controlled by the hand based on Raycasting, a 3D 
cursor controlled by the hand analogous to a Virtual Hand and Gaze combined with mid-air 
gestures. In the second task, we also compared the same three techniques but in a selection 
and translation task involving multiple objects. In our pilot studies we found that when 
participants used the Gaze + Mid-Air Gestures technique, they reached out for objects even 
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though they did not have to. We hypothesised that this action was due to the clutching 
required for manipulation. To test this hypothesis, users performed a third task, in which 
we compared the selection time in the case where users were only required to select an 
object to the case where they also had to translate the object after selecting it. 

Our results show that gaze selection is faster and more preferred than conventional mid-air 
selection techniques, particularly when users have to switch their focus between different 
objects. We also discovered a significant difference in the time to pinch after the object was 
gazed at between selection only tasks and selection followed by translation, indicating that 
the context of the selection impact the selection confirmation time. 

6.1.1 Related Work 

Human Prehension: Prehension is formally defined as “the application of functionally 
effective forces by the hand to an object for a task, given numerous constraints” [163], or more 
informally, as the act of grasping or seizing. Different authors proposed ways of modelling 
this process. In Arbib’s model, the eyes (perceptual units), arms and hands (motor units) 
work together, but under distributed control to reach and grasp objects [4][163]. The 
perceptual schema uses the visual input provided by the eyes to locate the object and 
recognise its size and orientation. The motor schema can be divided into two stages: 
reaching (comprised of a quick ballistic movement followed by an adjustment phase to 
match the object’s location) and grasping (including adjusting the finger and rotating the 
hand to match the object’s size and orientation, followed by the actual grasping action). 
Paillard’s model begins with the foveal grasping, in which the head and the eyes position 
themselves towards to object. Then, according to shape and positional cues, the arms and 
hands locate and identify the object, in open and closed loops, until finally grasping it, 
performing mechanical actions and sensory exploration [194][163].  

In the context of mid-air gestures for 3D user interfaces, reaching is analogous to selection 
and grasping to the confirmation of the selection. In this work, we investigate how human 
prehension can be supported in a desktop monoscopic 3D environment. In all conditions we 
studied, grasping (confirmation) was performed by a pinch gesture, similar to how we 
would grasp physical objects, but the selection step varied across conditions. The 3D cursor 
includes a reaching step similar to normal prehension, only offset due to the discontinuity 
between the virtual and physical worlds. The 2D cursor also contains a reaching step, but 
only in two dimensions. The Gaze condition only requires foveal grasping, as when the user 
looks at the object, she only needs to pinch to confirm the selection. However, as we show 
in the results of task 3, when the user grasps the object for further manipulation, she still 
reaches out for it. 

Mid-Air Interaction for 3D Manipulation: Due to our familiarity in manipulating physical 
objects with our hands, a considerable effort of the HCI community has been put into 
developing input devices and interaction techniques that leverage our natural manual 
dexterity to interact with digital content. An important interaction paradigm in 3D 
interaction is isomorphism: a strict, geometrical, one-to-one correspondence between hand 
motions in the physical and virtual worlds [29]. Even though isomorphic techniques are 
shown to be more natural, they suffer from the constraints of the input device (e.g. the 
tracking range of the device) and of human abilities (e.g. the reach of the arm) [30]. When 
targets are outside the user’s arm reach, techniques such as Go-Go [212]  and HOMER can 
be used to extend the length of the virtual arm [27]. 

Gaze in Multimodal Interactions: Gaze-based interaction is known to suffer from a few 
challenges [253]: inaccuracy (due to the jittery nature of eye movements and technological 
limitations), double-role of visual observation and control, and the Midas Touch problem 
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(the unintentional activation of functionality due to eye tracking being always-on [127]). To 
address these problems gaze is usually combined with other input modalities and devices. 

Stellmach et al. investigated combinations of gaze with a wide variety of modalities [255], 
including a keyboard [254], tilt gestures [254][251], a mouse wheel [251], touch gestures 
[251][252][253] and foot pedals [92]. A common interaction paradigm in gaze-based 
interaction is that of gaze-supported interaction—gaze suggests and the other modality 
confirms [252]. An example of a gaze-supported interaction technique is MAGIC pointing, 
which warps the mouse cursor to the area around the gaze pointing [294]. Fine positioning 
and selection confirmation are performed normally with the mouse. 

These works have shown that multimodal gaze-based techniques are intuitive and versatile 
enough to work in a wide variety of contexts, ranging from small mobile devices to large 
public displays [271].In this work, we have a similar goal to Stellmach and Dachselt, that of 
seamless selection and positioning [253]. Whereas in their work, they achieved this with 
different touch-based techniques for mobile devices, the context of 3D user interfaces 
requires extra degrees of freedom that are better suited for mid-air gestures.  

Gaze and Mid-Air Gestures: Kosunen et al. reported preliminary results of a comparison 
between eye and mid-air hand pointing on large screen in a 2D task that indicates that 
pointing with the eyes is 29% faster and 2.5 times more accurate than mid-air pointing 
[146]. The techniques investigated in their paper are analogous to our 2D Cursor and our 
Gaze technique, as they also used a pinch gesture for selection confirmation. In this paper, 
we extend their work to 3D manipulation, also comparing them to a 3D cursor. Also, their 
task involved 2D translation of objects, whereas ours involves 3D translation.  

Pouke et al. investigated the combination of gaze and mid-air gestures, but in the form of a 
6DOF sensor device attached to the hand [211]. Their system supported tilt, grab/switch, 
shake and throw gestures. They compared their technique with a touch-based one, and 
found that the touch-based interaction was faster and more accurate, mainly due to 
accuracy issues with their custom-built eye tracker. We aimed to minimise tracker accuracy 
problems, by using a commercial eye tracker with a gaze estimation error of 0.4 degrees of 
visual angle. Our study also differs from theirs in that the mid-air gestures investigated by 
them were based on a tangible device, rather than hands-only gestures. 

Yoo et al.’s system tracked the user’s head orientation (as an approximation for the gaze 
point) and the 3D position of the hands for interacting with large displays [291]. Bowman 
et al. investigated pointing in the direction of gaze, but also approximating it to the head 
orientation [29]. Such approximations only work when the user is looking straight ahead. 
Hence they are only suitable for large scale interactions, such as with large displays and fully 
immersive virtual environments. In a desktop setting, the head orientation is not a good 
approximation for the point of regard, as the user is constantly facing the same direction. 

Cha and Maier proposed a combination of gaze and mid-air gestures for a multi-display use 
case [43]. These authors presented architectural implementation details of their system, but 
did not present any evaluation results or interaction design decisions.  

6.1.2 Experimental Setup 

We recruited 12 right-handed participants (6M/6F), aged between 20 and 43 years 
(median=28). Three wore glasses and one wore contact lenses in the study. Figure 40 shows 
our experimental setup. Participants sat in front of an 18’’ laptop running a custom 
application built in the Unity game engine. Gaze was tracked at 30fps using a Tobii EyeX 
tracker mounted under the display, with an average gaze estimation accuracy of 0.4 degrees 
of visual angle. Hands were tracked using an Asus Xtion PRO LIVE sensor, with resolution of 
640x480 (30Hz) mounted facing down on a 0.82m×1.0m rig. Pose estimation and gesture 
recognition were performed using 3Gear Systems’ Nimble SDK. 
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We implemented three interaction techniques for selecting and translating objects in our 
3D scene: 

 Gaze (Gaze-Supported Mid-Air Gestures): the user looks at the object he wishes 
to select, pinch, move his hand to translate the object, and releases the pinch to 
disengage from the interaction. 

 2D Cursor (Raycasting): the user moves his hand on the plane parallel to the 
screen (up/down and left/right), which moved a cursor on the camera plane of 
the scene (moving the hand towards and away from the screen had no effect on 
the cursor). Targets were selected by hovering over them, (similar to a mouse 
cursor) and pinching. Then, the user moved his hand to translate the object and 
released the pinch to disengage from the interaction. Note that in this interaction 
technique, whereas the selection step uses only the XY coordinates of the hand, 
the translation step uses all three (XYZ).   

 3D Cursor (Virtual Hand): the user moves his hand around the space above the 
desk, which moved a sphere cursor in the virtual environment in three 
dimensions. Because we used an isomorphic mapping between the physical space 
and the 3D scene, any movement of the hand was directly translated in an 
equivalent movement of the cursor. To select an object, the user intersects the 
sphere cursor with the desired object and pinches. The user then moves his hand 
to translate the object and releases the pinch to disengage from the interaction. 

 

 

Figure 40 - Gaze selection for 3DUI: the user selects the object by looking at it (A), 
pinches (B), and moves her hand in free-space (C) to manipulate it (D). 

Upon arrival, participants completed a consent form and a demographics questionnaire. We 
calibrated the eye and hand trackers with the manufacturers’ default procedures. 
Participants then performed three 3D interaction tasks, described in the following sections. 
After all tasks were completed, we conducted an open-ended interview about their 
experience in using the interaction techniques. 
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6.1.3 Task 1: Translating a Single Object 

6.1.3.1 Procedure 

In Task 1, we compared completion times for 
two hand-based and one gaze-based selection 
techniques in a translation task. Participants 
were presented with a 3D environment 
containing one blue and one red cube (see 
Figure 41). The task was to pick up the blue 
cube with a pinch gesture, match its position to 
that of the red cube by moving their right hand 
whilst pinching, and drop it at the position of 
the red cube by releasing the pinch. When the 
blue cube intersected with the red cube, the red 
cube would turn green, indicating that the 
object could be released.  

Participants performed the tasks in three 
blocks, each with 18 trials for each technique, in a counter-balanced order, for a total of 3 
blocks × 3 techniques × 18 trials = 162 interactions. In each trial, the starting position of the 
cubes changed, but the distance between them remained constant. In the final block, after 
completing all trials for each technique, participants completed a questionnaire in which 
they rated each technique on a 7-point scale with respect to speed, accuracy, ease of learning 
and use, eye, hand and arm fatigue, intuitiveness, mental and physical effort, comfort, 
suitability for the task and personal preference. After completing all blocks they ranked the 
techniques in terms of speed, accuracy, comfort and personal preference. We discarded the 
first block from further analyses as a practice round. 

 

Figure 41 - Task 1: Users picked up the blue cube by looking at it and pinching. They 
then moved this cube until it touched the red cube, which, in turn, changed its colour 
to green. 

6.1.3.2 Results 

We compared the mean completion times between each technique across all trials, as well 
as the times of each step of the task, namely the time to acquire the blue cube (Acquisition), 
the time to pinch to confirm the selection (Confirmation) and the time to move it to the red 
cube (Translation). We tested the effects of the technique on the dependent variables using 
a one-way repeated-measures ANOVA (Greenhouse-Geisser corrected in case Mauchly’s 
test revealed a violation of sphericity) and post-hoc pairwise t-tests (Bonferroni corrected).  

STUDY AT A GLANCE 

Goal: Compare the task times for each 
step of a translation task using 3 
interaction techniques 

Method: Within-subjects experiment 

Participants: 6M/6F (20-43y)  

Dependent variables: Acquisition, 
Translation and Confirmation times 

Independent variables: Interaction 
technique (Gaze, 2D and 3D cursor) 

Results: Gaze is significantly faster 
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The mean trial completion time using Gaze (3.76s) was 21.3% shorter than using the 2D 
Cursor (4.78s) and 37.0% shorter than using the 3D Cursor (5.97s) (see Figure 42). The 
effect of technique on mean completion time was significant (𝐹2,22 = 24.5, 𝑝 < .01) with 

significant differences between all combinations of techniques (p<.05). 

 

Figure 42 - Average task 1 completion time separated by step. 

The Acquisition Time using Gaze (161ms) was 87.2% shorter than using the 2D Cursor 
(1.25s), and 91.9% shorter than using the 3D Cursor (1.98s), with a significant effect of the 
technique (𝐹2,22 = 194.5, 𝑝 < .01). Post-hoc tests showed significant differences between 

all combinations of techniques at p<.05. We did not find a significant effect of the technique 
neither on the confirmation time (𝐹1.2,13.2 = 3.1, 𝑝 = .07) nor on the translation time ( 
𝐹2,22 = .12, 𝑝 = 0.88). 
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Figure 43 - Questionnaire after task 1. Gaze received higher scores than the other 
techniques along most dimensions. 

In the questionnaires, Gaze received higher scores than the other two techniques along all 
dimensions (see Figure 33), except for eye fatigue, for which it scored the lowest of all three 
(but the difference was not statistically significant). Eleven participants ranked gaze as their 
preferred technique overall, with only one user preferring the 2D cursor. Nine users 
indicated the 3D cursor as the worst technique and three indicated the 2D cursor. A similar 
pattern was found for Accuracy, Speed and Comfort rankings (see Figure 44). 
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Figure 44 - Order of preferred techniques after task 1. Gaze was consistently the most 
preferred technique. 

6.1.3.3 Discussion 

The results from Task 1 are in line with Tanriverdi and Jacob [261]. Even though their setup 
was VR-based, it seems that Gaze also outperform other 3D selection techniques in 
monoscopic displays. Unlike Cournia et al., Gaze also outperformed Raycasting for selection, 
but as suggested by these authors, Raycasting performed better than Virtual Hand [54].  

Both Tanriverdi and Jacob, and Cournia et al. investigated 3D selection, but not in the 
context of further manipulation. We also included a translation task to analyse whether the 
selection technique influenced the completion time of subsequent manipulation tasks (for 
example, by requiring clutching or adjustment of the hand position after selection). Because 
we found no significant difference in the confirmation and translation tasks, we cannot 
affirm that these interaction techniques have any effects on the manipulation task time, 
even though we observed certain hand clutching in the Gaze and 2D Cursor conditions. As 
shown in Figure 42, the only significant cause for the difference in the task completion time 
was in the object acquisition. 
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6.1.4 Task 2: Sorting Multiple Objects 

6.1.4.1 Procedure 

In Task 1, we showed that the acquisition time 
using gaze is significantly shorter than using 
the other techniques. However, Gaze is known 
to suffer from inaccuracies, due to the jittery 
nature of eye movement, calibration issues and 
gaze estimation error. The goals of the second 
task were twofold: to investigate whether eye 
tracking inaccuracies would impair object 
selection in cluttered environments and to 
investigate how the faster selection times 
enabled by gaze can speed up tasks in which 
the user is required to rapidly manipulate 
different objects in sequence. We hypothesised 
that, because users do not have to necessarily 
move their hands to pick up new objects with Gaze, the fact that they could start the 
manipulation from wherever their hands were would speed up switching between objects. 

 

Figure 45 - Task 2: Users picked up each chess piece and moved it to the appropriate 
side of the virtual environment. 

Participants were presented with the same environment, now containing six black and six 
white chess pieces (see Figure 45). The right and left walls were coloured in white and black, 
respectively. Participants were asked to pick up each chess piece and move it to the 
appropriate wall. When the object collided with the corresponding wall, it disappeared. If 
the object collided with the wrong wall, it did not disappear, but we incremented an error 
counter. Each participant performed three blocks of 12 trials. In the last trial, after each 
technique, they answered the same questionnaire as before. After all blocks were 
completed, they completed the preference ranking questionnaire again. 

6.1.4.2 Results 

The mean time to put away each piece with Gaze (2.27s) was 38.4% shorter than with the 
2D cursor (3.67s) and 49.4% shorter than the 3D cursor (4.47s) (see Figure 3-B). We found 
a significant effect of the technique on Completion Time ( 𝐹2,22 = 37.7, 𝑝 < .01 ) and 

significant differences between all combinations at  𝑝 < .05.  

The mean rate of incorrectly placed pieces with the 3D Cursor (1.92%) was 71.3% smaller 
than with the 2D cursor (6.70%) and 82.7% smaller than the Gaze (11.1%). We found a 

STUDY AT A GLANCE 

Goal: Compare the interaction 
techniques in a cluttered environment 

Method: Within-subjects experiment 

Participants: 6M/6F (20-43y)  

Dependent variables: Task 
completion time and error rate. 

Independent variables: Interaction 
technique (Gaze, 2D and 3D cursor) 

Results: Gaze is significantly faster, 
but more error-prone 
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significant effect on Error Rate (𝐹2,22 = 8.19, 𝑝 < .01). The post-hoc tests showed significant 

differences only between Gaze and the 3D Cursor (𝑝 < .05). No considerable differences 
were found in the questionnaire responses between the first and second task. 

 

Figure 46 - Average trial completion times in task 2. Gaze was significantly faster than 
the other two techniques. 

6.1.4.3 Discussion 

The task completion times in Task 2 were significantly shorter than in Task 1. The reason 
for this is that whereas the selection step required precision, the translation step did not—
as soon as the object hit the correct wall, the task was complete. For the hand-based tasks 
this represented a similar gain in speed (30% for the 2D Cursor and 34% for the 3D Cursor), 
but a much higher gain in speed for the gaze technique (66%). This shows that, even though 
it comes at a price of accuracy, Gaze is particularly well suited for tasks in which there is 
constant switching between different objects being manipulated. Examples of such tasks 
include organising furniture in architectural applications, playing speed-based 3D puzzle 
games and switching between different tools in a 3D modelling application. 
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6.1.5 Task 3: Selection Time 

6.1.5.1 Procedure 

In our pilot studies, we noticed an interesting 
phenomenon when observing participants 
using gaze-assisted mid-air gestures. In the 
Gaze condition, once participants looked at the 
object, they could pinch from wherever their 
hands were and start manipulating the object 
from there. However, users still slightly 
reached out to the general position of the 
object, either to open up space for subsequent 
manipulations or due to a natural tendency to 
reach out as when handling real objects. 

 

Figure 47 – Task 3: We compared the selection time between only selecting the object 
to the selection time with subsequent manipulation. 

We hypothesized that this “clutching” before the translation would delay selection 
confirmation when compared to selecting the object without any subsequent manipulation. 

To test this, we conducted a third task with the same 3D environment (see Figure 47a).  In 
one condition, a white cube appeared at random positions, but always at the same Y 
coordinate and at one of two Z coordinates (one in the foreground and one in the 
background). To reset the gaze point, between each trial the cube would show up at the 
centre of the environment. Participants were asked to look at the cube and make a pinch 
gesture, after which the cube would disappear. To avoid participants predicting the timing 
of the pinch gestures, we added a random delay uniformly distributed between 500 ms and 
1.0 s before each trial. The second condition was similar to the first, but after pinching, the 

user was asked to drag the white cube to a red cube at centre of the environment (see Figure 
47b). Participants performed three blocks, each containing 20 trials of each task (not 
counting the gaze-resetting steps), for a total of 3 blocks × 2 tasks × 20 trials = 120 
interactions.  

6.1.5.2 Results 

We compared the time to perform the pinch gesture after having acquired the object with 
their gaze. The time in the Selection Only condition (557 ms) was 26.5% shorter than in the 
Selection + Translation (758 ms) (see Figure 48). A Welch’s t-test revealed that this 
difference was significant (𝑡11 = −2.69, 𝑝 < .05).  

STUDY AT A GLANCE 

Goal: Compare selection times 
between a selection-only and a 
selection followed by manipulation 
scenarios. 

Method: Within-subjects experiment 

Participants: 6M/6F (20-43y)  

Dependent variables: Time to pinch. 

Independent variables: Task 
(Selection x Selection + Translation) 

Results: Time to pinch is significantly 
longer when the user subsequently 
manipulates the object. 
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Figure 48 - Selection times in task 3. Users took longer to select the object when they 
were going to manipulate it afterwards. 

6.1.5.3 Discussion 

Our results show that the time taken to select an object with Gaze is significantly longer 
when the user plans on manipulating it afterwards. We offer three possible explanations for 
this phenomenon. First, when the user must translate the object after picking it, there is an 
additional planning step in the prehension process, adding some extra time for cognitive 
processing.  Second, it is our natural behaviour to reach out in the general direction of where 
objects are. Third, with Gaze, even though the object can be selected from wherever the 
hand is, this initial position must allow enough room for the subsequent manipulation. 
Therefore, if the user’s hand is not in an appropriate position, she must clutch it before 
picking the object up. From our observations, we believe the third explanation to be the 
most likely one. 

6.1.6 Discussion 

The results of Task 1 show that the acquisition time varied significantly between 
techniques, with Gaze being the fastest, followed by the 2D Cursor. We did not find a 
significant modality switch latency, as once the object was acquired, participants took 
approximately the same time to pick it up with a pinch gesture and move it to the target. As 
the results from Task 2 show, the advantage of Gaze is even stronger in tasks in which 
multiple objects are manipulated in sequence. This gain in speed comes at the cost of 
accuracy, particularly in densely populated environments. Participants’ opinions on the 
techniques also confirmed that Gaze was the most popular technique.  

In task 3, we discovered a significant difference in the time to pinch after the object was 
gazed at between selection only tasks and selection followed by translation. Although this 
difference is negligible for practical purposes, it reveals an interesting aspect of human 
behaviour when interacting using gaze. Even though the system was calibrated so that no 
clutching was necessary, participants still reached out in the general direction of where the 
object was positioned before pinching, similarly to how they would do with physical objects. 
Gaze selection elegantly supports this natural behaviour.  This result suggests that gaze 
selection should be analysed in the context of the subsequent tasks, and not as an 
independent phenomenon. 



From Head to Toe: 
Investigations on Full-Body Human-Computer Interaction 

128 Multimodal Body Movement for 3D Interaction  

We conducted our experiment in a desktop environment. The presented techniques could, 
however, be extended to standing interaction with large displays and immersive 
environments. Moreover, in stereoscopic displays, as the hands do not need to intersect the 
objects, Gaze-selection can be used without breaking the 3D illusion. Another limitation was 
that we only looked at translation tasks, but the same could be investigated for rotation and 
scaling. 

Gaze-assisted mid-air manipulation allows users to select objects far away and manipulate 
them comfortably as if they were within reach. This allows users to rest their wrists on the 
desk, minimising the Gorilla Arm problem. This technique is are also particularly useful for 
monoscopic displays, where the inherent discontinuity between the virtual and the physical 
spaces do not allow for direct manipulation and often require an extra step for positioning 
the cursor on the target. In fact, participants reported not having to think about this step at 
all and that all they had to do was to think about the object and pinch, allowing for an 
arguably more immersive experience and an interaction with more fidelity.  

6.1.7 Conclusion 

In this work we evaluated gaze as a modality for object selection in combination with mid-
air hand gestures for manipulation in 3DUI. Whereas previous works have found conflicting 
results on the performance of gaze for 3D interaction, we found that gaze outperforms other 
mid-air selection techniques and supports users’ natural behaviours when reaching out for 
objects. Our findings suggest that gaze is a promising modality for 3D interaction and that 
it deserves further exploration in a wider variety of contexts. In particular, in future work 
we would like to explore how gaze can modulate the mapping between the physical and 
virtual environments, making it easier to reach distant objects, for example. Another avenue 
for investigation is how gaze can be incorporated into existing 3D applications. 

6.2 Foot-Based Interaction Techniques for 3DUIs 

The previous section investigated how gaze and mid-air gestures can be combined to create 
improved three-dimensional interactions. For that purpose we combined the hand and 
finger tracking capabilities of an overhead depth camera with the eyes and head tracking 
enabled by a remote eye tracker. In this section, we look at the other half of the body: the 
lower limbs. Inspired by the work presented in Chapters 4 and 5, we explored how foot 
movements can augment 3D interaction.  

3D interaction tasks are inherently multi-dimensional, requiring highly expressive input 
devices capable of providing at least three degrees of freedom [107]. Conventional input 
devices such as keyboards and mice are not designed for this purpose, so previous research 
has explored new interfaces that take into account the user’s 3D spatial context to facilitate 
interaction [28]. In this context, our feet can provide an additional interaction space. When 
their movements are suitably tracked, the input can be combined with the input expressed 
by our hands to form a more expressive interaction intent. 

Technological advancements such as depth cameras and high precision touch-sensitive 
displays made mid-air and multitouch gestures a reality for a wide audience outside 
research labs. Whereas much work has explored the advantages of hand gestures for 3D 
interaction, feet gestures have been underexplored, especially in desktop settings. We aim 
to contribute in this domain through an exploratory investigation focused on the use of feet 
movements in the desktop setting. As a testbed environment, we built interaction 
techniques supporting 3D modelling tasks. Our work is motivated by the fact that even 
though gestural input can provide the necessary degrees of freedom for 3D interaction, they 
present challenges for stereoscopic displays, such as breaking the illusion of 3D [37]. This 
illusion is not hindered by foot interaction, as the feet are out of the user’s field of view. 
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In traditional interaction users often have to switch the function of the mouse between 
several modes of operation, to cope with the high number of degrees of freedom required. 
For example, in a 3D modelling application, the user may move an object with the mouse on 
a 2D plane, use the mouse to rotate the camera and move it along the third axis, again with 
the mouse. In this example, by delegating camera control to the feet, users can enhance their 
performance by parallelising tasks that would normally be performed in sequence. 

To investigate the possibilities of feet in 3D interaction, we used the foot tracker described 
in section 5.1. We then implemented four applications where the feet support each of the 
four fundamental 3DUI tasks [29]. To better understand the advantages and disadvantages 
of such modality, we conducted an exploratory user study with 7 participants where they 
interacted with our application and provided feedback in an interview. 

This section contributes the design of four interaction techniques supporting fundamental 
3D tasks, a discussion of users’ feedback and guidelines for designing such interactions in 
the future. 

6.2.1 Lower Body in 3D Interaction 

The idea of using the feet to support three-dimensional manipulation was originally 
proposed by Choi and Ricci, who demonstrated an early application in which walking and 
leaning actions would rotate a cylinder in different axes [50]. Sangsuriyachot et al. 
controlled the rotation of a cube displayed on a tabletop with foot gestures tracked by a 
platform where the user stood [230]. Balakrishnan et al. used pedals and a foot mouse to 
select modes and control the camera in a 3D modelling application, while the hands 
manipulated a shape-sensitive tape that controlled an object on the screen [10]. This work 
builds on top of these by allowing for continuous and discrete input while freeing the feet 
from additional devices. 

One of the primary functions of the feet in daily life is to support us while we walk, which 
makes navigation in virtual environments an intuitive application for them in HCI. Foot 
gestures that have been used for this purpose include leaning [62,154] and walking in place 
[185]. While we are interested in three-dimensional virtual environments, the focus of this 
work is on augmenting traditional desktop interaction, where it is not possible to lean or 
walk. 

Previous work that evaluated the physical capabilities of the feet concluded that the feet can 
be from 1.6 [195] to 2 times [116] as slow as the hands, but this difference can be reduced 
with practice [88]. Researchers have demonstrated that the feet are suitable for tasks such 
as mode selection [238], non-accurate spatial tasks [195] and performing secondary tasks 
whilst the hands are busy [2]. This work aims to draw on these strengths to support the 
hands in manipulating three-dimensional interfaces. 

6.2.2 Feet Support for the Canonical 3D Interaction Tasks 

Bowman et al. suggest four main categories of 3D interaction tasks [28]: navigation, 
selection, manipulation and system control. For each category we implemented and 
evaluated a prototype demonstrating an interaction technique addressing it. 

6.2.2.1 Navigation 

In 3D modelling applications, users can manipulate the camera viewpoint by controlling the 
position and orientation of the camera. Common camera controls include dolly, roll, truck, 
orbit and pan. In conventional setups, this is usually achieved by holding a modifier key and 
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dragging the mouse. This forces the mouse to perform multiple functions, multiplexed over 
time. 

 

Figure 49 - Camera orbit with the feet. The horizontal offset (blue) changes the 
azimuthal angle and the vertical offset (red) changes the elevation angle around the 
current selected object. 

In our implementation, the user moves the dominant foot to affect the camera’s azimuthal 
and polar angles (see Figure 49). Foot tracking is relative to the starting foot location. The 
tracking is controlled by a key on the keyboard that toggles between an enabled and 
disabled state. Moving the foot causes the camera to orbit around the currently selected 
object. Horizontal movements affect the azimuthal angle, while vertical movements affect 
its polar angle. Using the foot to control the camera movement leaves the hands free to 
perform other tasks requiring higher precision. For example, positioning an object so that 
it matches to visual features in the environment that need to be observed from multiple 
orientations, e.g. an architectural application where the user needs to place a tree so that it 
does not occlude house windows. Foot-based camera manipulation can support these tasks 
by allowing users not to interrupt their interaction flow, performing in parallel tasks that 
would have been performed in sequence. 

During pilot testing we observed that mapping camera XY trucking/dolling to the non-
dominant foot can easily lead to fatigue. Two mapping choices are possible: relative or 
absolute. With relative mappings, users would need to perform multiple forward/backward 
or right/left movements with their foot: a first movement causes the camera to advance; a 
second movement is needed to return to the starting position (e.g. by not tracking it while 
it is lifted) and perform another movement. Depending on the size of the environment and 
the rate of change associated to this movement, traversing it would lead to fatigue as 
multiple back and forth movements would need to be performed. 

Absolute mappings, i.e. mapping the feet-tracked area to the whole environment so that 
moving the foot between the boundaries would result in placing the camera in the 
corresponding location. For this to be feasible, users would need to see an on-screen world-
in-miniature representation of the environment. By visualizing the position of their non-
dominant foot through a pointer in this representation, users would have a better 
understanding of the location they are about to move the camera to. We believe this 
approach to have more potential and we will explore it in future work. 
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6.2.2.2 Object Manipulation 

 

Figure 50 - Object rotation with the feet. The horizontal and vertical offsets of the 
right foot affect the object's yaw (blue) and pitch (respectively). The vertical offset of 
the left foot affects its roll (green). 

We wanted to explore whether feet-based mappings could be used to provide a way to 
manipulate an object while the user focuses his hands on tasks requiring higher precision. 
Analogously to the previous application, we mapped yaw and pitch to horizontal and 
vertical movements of the dominant foot, respectively (see Figure 50). In addition, roll was 
controlled by using horizontal movements by the non-dominant foot. We chose to map 
rotation to the feet as similar considerations as those made in the previous example can be 
applied on their use on manipulations affecting object translation. This can be combined 
with mouse and the keyboard to provide a full 6DOF manipulation alternative to specialist 
input devices, so that the hands control translation while feet are mapped to rotation. 

6.2.2.3 Selection 

Foot input can also be used to express discrete inputs by means of foot gestures, such as a 
swipe. A foot-based swipe gesture is a rapid gesture performed by the user either to the 
right or to the left of the starting position (see Figure 51). Foot swipes can also be used 
vertically. The gesture is detected by analysing the velocity of the movement and comparing 
it to an empirically determined threshold. A cool-down period of 250ms avoids unintended 
multiple gestures. In chapter 5, we determined that lateral movements are easier than 
frontal ones. Indeed, horizontal foot swipes can be achieved by keeping the foot still and 
pivoting it left and right, whereas vertical swipes require the user to drag the foot forward 
or backward. In our implementation, horizontal swipes allow users to switch the currently 
selected object to the one whose 2D screen projection is to the right or to the left of the 
starting one.  
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Figure 51 - Object selection with the feet. The user iterates over objects by performing 
a swiping gesture either to the right or to the left. 

This technique can be used in a wide range of scenarios where users would normally have 
to switch between a manipulation and a selection mode. In a modelling application, users 
need to move from object to object to perform different operations on them. Foot swipes 
provide a convenient alternative for changing the currently selected object, without 
breaking the interaction flow. Foot-swipes can also be implemented to enable semantic 
selection within an object (i.e. selecting vertices, edges or faces) by mapping each foot to 
one of these two selection operations. 

6.2.2.4 System Control 

Finally, we designed a “radial foot menu” divided into four quadrants, each associated to a 
different colour parameter (e.g.: hue, saturation, brightness and alpha, see Figure 52). The 
dominant foot controlled a slider affecting the currently selected function from the menu, 
while the non-dominant foot selects the property to be changed. 

 

Figure 52 - Radial foot menu. The position of the right foot selects the parameter to 
be controlled and the vertical offset of the left foot selects the value, in this case, the 
saturation of the object's texture. 

Adjusting material properties is a task that requires the user to visualise the effect of the 
changes on the model it is applied to. If further changes are necessary, the user has to return 
to the editing environment and make adjustments. Foot-based movements can support this 
task by allowing users to visualise the effect that parameter adjustments can have on the 
model they are working on. In this way, the hands are free to manipulate the object and 
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observe it from different viewpoints while continuing to make adjustments. Once satisfied 
with the results, a modifier fey can disable foot-tracking and finalise the operation. 

6.2.3 User Study 

6.2.3.1 Participants & Apparatus 

To better understand the advantages and 
disadvantages of such modality and to get user 
feedback on the interactions it affords, we 
conducted an informal user study with 7 
participants (3M/4F), with ages varying from 
19 to 30 (mean 26.3). All participants had prior 
experiences with 3D movies; five reported to 
regularly drive a car; none had any prior 
experience with a foot mouse or similarly foot-
operated device. Our experimental setup (see Figure 53) used an Asus VG278h 3D monitor 
to display the applications. The stereoscopic effect was obtained using DirectX 11.1’s native 
support by computing the stereo pairs, without resorting to an automatic driver 
implementation. We used a custom 3D engine using SharpDX’s DirectX11 C# port. 

 

Figure 53 - Experimental setup: users performed the 4 canonical 3D interaction tasks 
displayed on a stereoscopic display with the feet tracked by a Kinect sensor 

6.2.3.2 Procedure 

Participants were asked to use the four applications previously described and to provide 
feedback in a questionnaire and in a structured interview. In the camera manipulation task, 
they were asked to rotate the camera to read a number written on a hidden side of a cube; 
in the object manipulation task, users were asked to rotate a cube in its 3 axes so that the 
side containing the number was visible and upright (the orientation of the cube was reset 
so that the number was randomly hidden again); in the selection task, users were asked to 
select specific objects by foot-swiping left and right to iterate over a group of spheres in a 
3D environment; in the system control task, users were asked to select the saturation 
property in a radial menu and change its value in order to make the selected object 
greyscale. After each task, we conducted an interview and participants filled in a Likert scale 
questionnaire. The experiment took approximately half an hour for each participant. 

STUDY AT A GLANCE 

Goal: Validate foot-based 3D 
interaction techniques 

Method: Exploratory user study 

Participants: 7 (3M/4F) 

Procedure: Use foot techniques to 
accomplish the 4 canonical 3D tasks 
and provide qualitative feedback. 
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6.2.3.3 Results 

Participants were able to quickly grasp how to operate the four different techniques. They 
reported low signs of frustration (M = 2.0; SD = 1.05, from 1 – very low to 5 – very high) and 
a low cognitive demand (M = 1.93; SD = 1.12). When asked whether they would be to 
coordinate their hands with one or both feet, they all replied positively (M = 4.39; SD = 0.69), 
with some distinctions. Two participants shared the opinion that feet are better used for 
coarse control tasks such as camera manipulation, whereas object rotation was deemed to 
require more precision. Thus, using feet-based movements for secondary tasks appears a 
more promising direction, as this leaves the hands free for fine-grained manipulations. 

Participants observed that they were able to use their feet so to get the desired results. They 
confirmed our assumptions that pivoting is more comfortable than sliding one’s foot across 
the floor. The floor surface used in our experiment consisted of carpet which, as noted by 
participant #1, introduced some friction. The main issues we observed in this regard 
concerned the difficulty in estimating whether feet were still in the tracked area and how to 
avoid unwanted movements, which we address in the next section. 

On the suitability of foot-movements for 3D interaction, participant #1 said: “[They are] 
good for continuous 3D interactions that don’t have to be perfect, you can do many different 
things at the same time”.  

Participant #6 thought that: “Camera manipulation felt easier than rotating the object, as I 
think that it is better when the object that you are working on is fixed; object rotation might 
be easier to perform by having each foot control one axis”. 

On the ease of use and comfort, participant #2 said: “Foot movements might help the health 
of the user, as it adds activity during computer work”.  

Participant #4 stated that: “Simpler feet movements are easier to perform, so I would be 
able to coordinate [foot movements] better with hands movement”.  

Participant #1 expressed some concerns about unwanted movements: “If I move my feet 
accidentally, and this is something I often do, it would probably trigger some unwanted 
stuff. Also, if I have to move too much with my legs, it might be too exhausting”.  

Participant #2 stated that: “Rotation should not require the user to twist the foot too much”. 

6.2.4 Discussion 

During our study, we collected a number of observations and suggestions that we discuss in 
the following paragraphs.  

Limitations. In our implementation, feet tracking could be enabled or disabled by pressing 
an associated key. Once enabled, participants explored the interaction techniques without 
reverting to a non-tracked state. This introduced a form of the “Midas Touch” problem, 
where participants accidentally performed unintentional movements which affected the 
state of the system, causing some frustration. In a real application scenario, users need an 
unobtrusive way to enable and disable the tracking. The keyboard key is one of the options 
we have explored.  

An alternative approach consists in dividing the floor between tracking and rest areas. Only 
when feet enter in the tracked area, the system is affected. Further options consist in using 
a foot-tapping gesture (i.e. lifting one’s toes and tapping the floor) to toggle between tracked 
and untracked states. The microphone in the Kinect can be used to detect the audible impact 
and support the detection of the gesture. Another alternative consists in raising one’s toe 
and pivoting the foot to enable tracking and, at the same time, affect the environment. 

Estimating the tracked area’s boundaries was another of the issues we observed. 
Participants were not aware of where exactly these boundaries were. We believe that this 
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can be addressed by displaying a warning icon when the user is in proximity of the 
boundaries of the tracked area. Another issue we noticed is that, due to limitations in the 
depth-sensing technology, it became hard to distinguish when both feet were close together. 

Design Guidelines. As we have previously highlighted, foot-based UIs can play an effective 
role in supporting primary tasks by delegating secondary ones to the feet. Users can use 
their hands to perform fine-grained manipulations with other input devices while feet can 
be used to control those aspects that would otherwise require frequent mode switching (i.e. 
between manipulation and system-control modalities). To avoid confusion, applications 
should inform users when tracking is active and provide the option to undo feet actions 
directly through feet gestures.  

Hand-Foot Coordination. Based on our observations, we believe that in order to minimise 
users’ cognitive burden, each modality should be assigned to actions that can be performed 
independently, e.g. assigning hands to manipulation and feet to camera rotation. Mappings 
that require integration of DOFs split across modalities should be avoided. The extents to 
which foot and hands are able to work in parallel on different aspects of a common goal will 
need to be evaluated in future studies. Visualizing feedback of how feet are affecting the 
system might improve coordination.  

Fatigue. In order to maximise the potential of this novel approach to 3D interaction, we 
believe it is important to focus on the design of foot mappings that are comfortable to the 
users. We have observed how horizontal foot movements were preferred by participants, 
whereas vertical foot movements were deemed to have higher potential for causing fatigue. 
In addition, pivoting movements were preferred over sliding movements. Thus, it appears 
that in-place movements hold more potential than dragging one’s feet across the floor. 
Friction hinders the latter, while pivoting appears to be easier to control and requires less 
effort. Our observations indicate that short foot motions, in terms of amplitude and actual 
movement, were the most comfortable and less fatiguing ones. 

6.2.5 Conclusion 

In this section we have presented an exploration of feet-based interaction techniques 
supporting 3D tasks. Through an informal user study we determined that foot-movements 
are easy to learn and can be used to perform 3D manipulations and control the system. We 
described how it is possible to address the limitations emerged during the study. 

6.3 Multimodal Full-Body Sensing in an Arcade Machine 

In the previous two sections, we demonstrated novel ways in which the upper body (via 
mid-air gestures and gaze) and the lower body (via free-form feet movements) can be used 
in 3D user interfaces. We believe that a subdomain of 3DUI that can strongly benefit from 
this multimodal setup is gaming. However, we recognise that the complexity of sensing 
setup makes it unlikely that players will have access to this kind of interactions at home. To 
address this problem we propose incorporating all the different sensors in to a single 
unified platform, in the form of an augmented arcade machine. 

6.3.1 Introduction 

“Absolutely, it can come back. Creativity will bring anything back. There’s so much 
technology out there that can’t be packaged in the home environment.” 
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Nolan Bushnell, founder of Atari and arcade pioneer,  
when asked whether arcade machines can come back [133] 

Arcade machines represent an important chapter in the history of video games. At a time 
when computers were too bulky and expensive for household use, people of all ages could 
get together at specialty shops and play the addictive coin-operated games. The arcade 
phenomenon peaked in the late 70’s and early 80’s, an era dubbed The Golden Age of arcade 
games. The advent of the home console brought an end to this era in the West, though 
arcades are still relatively popular in emerging Asian markets to this day. 

 

 

Figure 54 - Arcade+: Input is captured via combinations of a joystick, buttons, eye 
tracking, feet tracking, hand tracking and touch gestures 

Despite their declining popularity, arcade machines enable players to have access to input 
devices that they might not have at home. In this section, we propose bringing back the form 
factor of arcade machines as a means of deploying and evaluating multi-modal games. We 
designed and built Arcade+ (see Figure 54), an arcade machine augmented with modern 
input devices to deploy and evaluate novel multi-modal interaction techniques for gaming. 
Our system offers gaze, mid-air gestures, feet and multi-touch sensing as well as 
conventional arcade joystick and buttons. Its modular design allows for adding and 
replacing input devices. We also make our designs available for the community to build 
upon and extend. 

The contributions of this work are: (1) a sensing platform that can simultaneously track 
players’ eyes, finger gestures, touch, and feet at close range; (2) three games that 
demonstrate how the availability of a whole body sensing setup can inspire novel game 
mechanics; (3) the schematics and instructions to replicate our design. 

6.3.2 Full Body Expressions in Gaming  

Body movements are progressively gaining a more central role in gaming. Most modern 
consoles enable some form of motion input, ranging from simple accelerometers in mobile 
phones to full body tracking using depth cameras. Bianchi-Berthouze argued that the reason 
for this is that body movement “affects cognitive and emotional processes” and “the increased 
involvement of body movement during game plays results in increased enjoyment” [21]. 

Bianchi-Berthouze et al. suggested that full-body movement facilitate the immersion in 
virtual environments, enables affective elements of human communication and unleashes 
regulatory properties of emotion, finding statistically significant relations between body 
movement and engagement [20].  
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Players’ movements depend on their goals and setting. In games that require full body 
movements, when the goal of the player is to win, they tend to use small, controlled 
movements, whereas when their goal is to relax, they tend to use more realistic moves 
[205]. In a desktop setting, whereas engaged players often sit still to help focus their 
attention on the game, disengaged players tend to fidget, lean back and yawn [19]. 

In a gaming context, Bianchi-Berthouze distinguished five types of body movement: task-
control movements (those set by game designers to control the game), task-facilitating 
movements (to assist the player in distributing cognition over body resources), role-related 
movements (related to the role adopted by the player in the game scenario), affective 
expressions (that reflect the affective state of the player) and expressions of social behaviour 
(that facilitate and support interaction between players) [21].  

Whole body movements have also been used in Exertion Interfaces for games. An Exertion 
Interface is one that “deliberately requires intense physical effort” and they have been widely 
used for gaming, especially for sports games [180].  

6.3.3 The History of Arcade Machines 

The origins of Arcade machines can be traced back to carnival games, such as target 
shooting and fishing for prizes. David Gottlieb’s Baffle Ball (1931) was the first pinball 
machine to replicate this pay-per-play business model with a coin slot. For an inspiring 
catalogue of vintage arcade machines, see Ford [85]. These machines were often built by the 
same manufacturers of gambling machines. This raised substantial controversy because of 
the connection between gambling and organised crime, to the extreme of New York banning 
pinball machines from 1942 until 1976. Galaxy Game (1971), built at Stanford University, 
was the first coin-operated video game and was soon followed by Computer Space (1971), 
the first mass-produced video arcade game. Computer Space received a lukewarm response, 
as it proved too complex next to gambling machines in bars and too confusing next to pinball 
machines in arcade shops [69]. The arcade business really showed its potential with the 
release of Pong (1972), which, with its simple rules—‘avoid missing ball for high score’—
became the first commercially successful coin-operated video game, selling over 35,000 
units. The Golden Age of arcades in the late 70’s and early 80’s yielded several commercial 
hits coming from all over the world, especially from Japan. Space Invaders (1978), Asteroids 
(1979), Pac-Man (1980), Donkey Kong (1981), among others, sold hundreds of thousands of 
units and created popular icons that remain relevant even today. 

Several reasons contributed to the end of this era [69]. First, to make it a profitable business, 
arcade games relied on ramping up the difficulty in order to make the player lose and allow 
another user to try it, which naturally frustrated many players. As home consoles entered 
the market, their business model allowed for games with more depth and longer play times. 
Second, the popularity of arcade machines generated a large number of similar games being 
made, effectively saturating the market. Third, a moral crusade led by concerned parents 
resulted in lawsuits against video game arcades leading to restrictions and even bans across 
the U.S. 

The late 90’s and 2000’s brought a renewed interest in arcades with the release of games 
that explored novel ways of interacting with them. The rich and specific form factor of these 
machines allowed for input devices that created new experiences that home consoles 
simply could not provide. Time Crisis (1996) and its light gun, Dance Dance Revolution 
(1999) and its dance pads, Mario Kart (2005) and its camera, all became successful 
examples of the additional value that arcade machines could provide over home consoles. 
In this work, we propose using the classic form factor of Arcade machines as a tool for 
research on modern multi-modal interaction techniques for gaming. 
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6.3.4 Arcade+ 

The design of Arcade+ was guided by three principles. First, we wanted to remain true to 
the classic form factor of 80’s machines. Second, we wanted to enable novel user 
experiences by using the whole body as a game controller. Third, we wanted to provide a 
reproducible and extensible design for the community to replicate and improve. 

 

Figure 55 - Arcade+ Components: (a) Asus Xtion PRO Live; (b) Tobii EyeX; (c) Kinect 
for Windows; (d) Pioneer speakers; (e) Iiyama Multitouch Display; (f) Joystick and 
Buttons 

Figure 55 shows our arcade machine, with dimensions of 1.95m×0.92m×0.79m. It is 
supported by an aluminium structure made of 45x45L profiles and its cabinet is made of 
plywood. It is powered by a Windows PC with an Intel i7 Quad Core 3.60GHz CPU, 16GB of 
memory, a GTX 970 Nvidia Geforce graphics card. For output, we included an Iyama 
TF2234MC-B1X frameless 22’’ touch-enabled screen, which is scratch- and water-proof. We 
also installed a 190W set of Pioneer car speakers and amplifier for audio output. 

For input, we included traditional arcade buttons and a joystick on a removable panel 
attached to the front of the machine that communicate with the PC through an Arduino UNO. 
By making the dashboard removable, we can create different modular designs that can be 
switched according to the game. For example, we can have one with another display for 
dual-screen games or another with a set of light pistols for rail shooters. We included a Tobii 
EyeX tracker installed below the screen to allow for gaze-enabled games. The tracker is 
mounted on a tilting platform to allow users to adjust it to their height. We also added a 
button next to the eye tracker to trigger the calibration procedure. An Asus Xtion PRO Live 
installed above players’ hands allows mid-air gestural interaction. Hand pose recognition is 
performed using 3Gear’s Nimble SDK, which is able to track precise finger gestures. 
Additionally, we installed a Microsoft Kinect for Windows under the dashboard to track the 
feet, using the foot tracker developed by Simeone et al. [242]. The system was designed in 
Autodesk Inventor and we made the source files for the structure and casing available online 
at http://eyecardeproject.blogspot.de. The website also contains the hardware and 
software specifications of our system, as well as a guide on how to replicate it. 
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6.3.5 Games 

To illustrate the capabilities of the system in enabling multi-modal games and inspiring new 
game mechanics, we implemented three games: Feyerball Mage (see Figure 56a), StarGazing 
(see Figure 56b) and Virus Hunt (see Figure 56c). All games were built with the Unity game 
engine. The idea behind the games was to let the different combinations of modalities 
inspire new mechanics. The three games respectively combine full body and gaze; arcade 
controls and gaze; and touch and gaze. 

 

Figure 56 - (A) Feyerball Mage: throw fireballs with mid-air gestures at the direction 
of the gaze point, and navigate with foot gestures; (B) StarGazing: gaze reveals 
asteroids that can be shot at with the arcade buttons; (C) Virus Hunt: touch the viruses 
to kill them, but avoid looking directly at them. 

6.3.5.1 Feyerball Mage 

   

Aim Turn / Throw 
Fireball 

Walk 

Feyerball Mage is a first-person game (see Figure 56a), in which the player controls the title 
character. The game explores the play concept of combining full body interaction with gaze. 
The goal is to find all pieces of an ancient artefact that are scattered around an island, 
populated by trolls. The game tracks players’ hands (rendered on the screen) and eyes. By 
making a pinch gesture and releasing it, the mage throws a fireball in the direction of the 
gaze point. Users can walk forward by stepping in place and turn around by moving their 
hands towards the edge of the screen. This game contributes the first exploration of how 
gaze tracking can be combined with full body tracking in a game environment. 

6.3.5.2 StarGazing 

   

Spotlight / Aim Move Shoot 

In StarGazing (see Figure 56b), players must protect their spaceship from incoming 
asteroids. However, the darkness of space prevents them from seeing the asteroids, unless 
players aim the spotlight controlled by the eyes. Therefore, players must scan the 
environment with their eyes searching for asteroids and shoot them with the arcade buttons 
to destroy them. StarGazing was designed to explore the play concept of limiting the field of 
view to reduce the effectiveness of saccades. Saccades are the rapid movements made by 
our eyes when switching between fixations. With such movements, users can quickly switch 
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between looking at different targets on the screen. By limiting the field of view, we 
effectively remove players’ peripheral vision within the game environment, forcing users to 
scan the environment continuously. 

6.3.5.3 Virus Hunt 

  

Increase Infection Kill Virus 

In Virus Hunt (see Figure 56c), players accumulate points by killing off viruses in the 
bloodstream. To kill a virus, the user touches it on the screen. However, if she looks at a 
virus, it infects a new cell, worsening the infection. Therefore, players must kill the viruses 
using only their peripheral vision. The game was designed to explore two play concepts: the 
combination of touch input and gaze for gaming and the use of the peripheral vision as a 
game mechanic. Incorporating touch gestures into gaze interaction creates challenges for 
eye tracking, because the hands often occlude the user’s eyes from the tracker. Whereas this 
is a problem for critical applications, this challenge can actually be used in game design. For 
example, games can offer incentives both for touching the screen and ensuring that gaze is 
tracked, creating a trade-off that the user must balance. The use of peripheral vision is also 
an exciting opportunity for gaze-enabled games. Whereas in traditional games, players must 
quickly spot and follow moving targets, our game forces players to go against their instincts 
and not look at the newly spawned viruses. 

6.3.6 Discussion 

In this work we augmented the classic arcade machine to create a novel multimodal sensing 
system. Leveraging this form factor offers several advantages. First, it creates a nostalgic 
atmosphere that makes the deployment of interactive applications naturally playful. For 
example, Kruyff et al. also used an arcade machine to increase battery recycling awareness 
through playful interaction the Alkaline Arcade. Instead of inserting coins, players insert 
drained batteries, which they then send to recycling [149]. Second, arcade machines provide 
a very social gaming experience, as they are an object of interest in public environments, 
often creating a “honeypot effect” in which people surround players to cheer and observe 
[34]. The attention of bystanders can be simultaneously a blessing and a curse. In a survey 
of the culture around Dance Dance Revolution, Höysniemi identified that whereas this social 
setting allows them to play with their friends, make new friends and receive support from 
the audience, it can also lead to bad audience behaviours including disturbing and 
interfering, making fun, creating a bad atmosphere, etc [118]. Third, arcade machines 
enable players to use input devices to which they normally would not have access at home. 
This opens the door to deploying and evaluating multi-modal interaction techniques 
previously restricted to research labs. The three games we implemented demonstrate how 
novel game mechanics can stem from a multimodal sensing platform. 

We designed Arcade+ to support a variety of combinations of multimodal interactions. In 
particular, we are interested in gaze-supported interaction techniques for gaming 
[258,272]. Even though multi-modal gaze-supported techniques have been widely explored 
in HCI, they are yet to be implemented in gaming contexts. For example, Stellmach et al. and 
Turner et al. proposed several techniques combining multitouch gestures and gaze 
[252,271]. Kosunen et al., Cha and Maier and Velloso et al. combined gaze and mid-air 
gestures [43,146,279]. Our system also allows for combinations of multitouch and mid-air 
gestures such as the ones explored by Bruder et al. [36,37].  Further, our system supports a 
variety of foot gestures, such as Simeone et al.’s gestures for 3D interaction, and Velloso et 
al.’s  techniques based on free-form feet movements [242,273]. We hope that by supporting 
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the sensing of multiple modalities in a single platform, we foster the development of games 
that incorporate these full-body techniques. 

With the advent of personal fabrication, the increasing popularity of the DIY culture and the 
buzzing of online communities sharing open-source hardware and software, the possibility 
of end-users building their own custom arcade machines is stronger than ever [52]. Building 
arcade machines is an active topic in the DIY community [52]. In 1997, Italian programmer 
Nicola Salmoria released the first version of MAME—Multiple Arcade Machine Emulator—
multi-platform emulator that allows users to play old arcade games in modern computers, 
with the goal of preserving video game heritage. Since then, multiple people have built 
custom PC cases for MAME machines that mimic old arcade machines [213]. Multiple blogs 
and websites also provide instructions on how to build DIY arcade machines ranging from 
Hodges et al.’s pocket-sized .NET Gadgeteer example [115] to Sørensen’s detailed guides in 
his Project MAME’s website [246]. All these examples, however, aim at rescuing the original 
form factor and functionality of old arcade machines. Our goal is to leverage the social and 
cultural affordances of traditional machines, while extending their original capabilities with 
modern devices. 

The sensing devices in Arcade+ are all commercially available. However, the setup provides 
many capabilities beyond their conventional ones. Whereas depth cameras such as the 
Kinect are able to track the user’s full body, they require a minimum of 1.4 meters to 
between the sensor and the player. At this distance, the sensor can only detect coarse 
gestures, unable to infer detailed information such as finger poses. Further, the eye tracker 
requires users to be close to the tracker, not only because of the sensor, but also because 
the further the user is from the display, the smaller the targets are in terms of visual angle. 
By splitting the sensing of the upper body and lower body, we are able not only to track the 
whole body close to the display, but also to track precise finger, eye and foot gestures. 
Another advantage of this setup explored by the game is offloading navigation to the feet in 
order to free the hands to perform playful and expressive gestures, rather than keeping 
them on the controls. 

6.3.7 Conclusion 

In this section, we proposed bringing back arcade machines for the deployment and 
evaluation of multi-modal games. We designed and built a prototype of Arcade+, a system 
that offers multitouch gestures, mid-air gestures, foot, and gaze tracking capabilities. We 
also made the CAD files and instructions available for other researchers to replicate and 
contribute to the project. To demonstrate the capabilities of our system, we built three 
games that explore different combinations of input modalities, novel play concepts, and 
multimodal game mechanics. 

We see three distinct directions for future work. First, we will incorporate additional 
modalities and features into our design. We are working on a second dashboard with 
another multitouch screen to explore dual-screen games (e.g. Wii U games) and indirect 
touch interaction techniques [241,271]. Another feature that we will explore is how to 
enable multiplayer sensing. Such setup presents challenges to infra-red-based tracking due 
to sensor interference, but because of the inherently social nature of arcade machines, it is 
an interesting direction to pursue. Further, whereas in this iteration, we focused on enabling 
multimodal sensing, in future work we will also explore novel ways of providing feedback, 
including stereoscopic 3D and haptics. 

The second direction is in developing and evaluating additional games for the platform. The 
examples we describe in the paper aim at demonstrating the possibilities that our 
multimodal sensing enables. However, these prototypes only scratch the surface of the 
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plethora of possible applications. As we explore the affordances of the setup, we will gain a 
better understanding of how to leverage the characteristics of this setup into game design. 

The third direction is deploying and evaluating applications other than games. Whereas our 
focus is on evaluating games, we see a huge potential for using Arcade+ to investigate other 
types of multimodal interactive systems. As a research tool, arcade machines bring 
playfulness and social interaction to system evaluation, while turning prototypes into public 
objects of interest. 

6.4 Conclusion 

This chapter was led by the proposition that by treating the body movements as multiple 
modalities, rather than a single one, we can enable novel user experiences. Due to the 
inherent difficulty of tracking the whole body up close, we proposed to distribute the 
sensing across multiple sensors and treat them separately. In our user studies, we evaluated 
different aspects of the interactions that this sensing setup affords. 

First, we conducted an empirical investigation of how the eyes can support mid-air hand 
gestures in 3D selection. Our study was comprised of three tasks. In the first task, we 
compared how gaze selection fares against a Virtual Hand and a Raycasting technique. We 
showed that gaze is significantly faster, and that this advantage lies in the substantially 
faster target acquisition with the eyes. In the second task, we demonstrated that the eyes 
are particularly good for tasks in which users must switch between multiple objects in 
sequence, at the cost of some loss of accuracy. Our third task was designed to demonstrate 
how the subsequent manipulation affects the selection task. We showed that when users 
are planning to move the object after selecting they take significantly more time to select it, 
as they reach out for it, even though the interaction technique does not require them to. 

After demonstrating how gaze and mid-air gestures can be combined to provide a superior 
experience, we set out to explore the ways in which the feet can support three-dimensional 
interaction tasks. We designed foot-based interaction techniques for the four canonical 
3DUI tasks—navigation, object manipulation, selection and system control. Our user study 
demonstrated that the tasks are easy to use and to learn, but more work is required to fully 
understand how they can support real tasks. 

These two works looked at the upper body and the lower body separately. To bring them 
all together, we designed and built Arcade+, an augmented arcade machine that enables up 
close, full-body, multimodal interactions involving mid-air and multitouch hand gestures, 
feet movements, gaze, and head movements, as well as traditional arcade controls. We 
demonstrated how the availability of a multimodal sensing platform can inspire novel user 
experiences through the design on three games.  

In regards to our proposition, these works highlight three things. First, the combination of 
multiple modalities can lead to enhanced task performance. For example, by combining gaze 
and mid-air gestures, we achieve superior results than with any of the two modalities by 
themselves. Second, offloading certain tasks to alternative modalities not only frees the 
hands, but also allows simultaneous control of multiple degrees of freedom. For example, in 
many 3D modelling applications, the mouse switches between different modes of operation, 
sometimes controlling the camera, sometimes manipulating the object. By assigning the 
camera control to the feet, users can simultaneously manipulate the object while changing 
perspective, similar to how sculptors work. Third, by sensing different modalities 
separately, we achieve a more detailed and precise full body tracking. For example, the 
Kinect is able to track the whole body at a distance. However, by focusing each sensor in one 
specific body part, we achieve not only a higher granularity of detail (e.g. finger movement 
and hand gestures), but also enable interactions closer to the display. 
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7 CONCLUSION 

“Research is to see what everybody else has seen, and to think what nobody else 
has thought.” 

Albert Szent-Gyorgyi 

 

In this thesis, we investigated the research space of Bodily Interaction in three directions: 
implicit interaction, lower limb interaction and multimodal interaction. Our work was 
guided by the propositions that there is more to be inferred by natural users’ movements 
and postures; that the lower limbs can provide an effective means of interacting with 
computers beyond assistive technology; and that by treating body movements as multiple 
modalities, rather than a single one, we can enable novel user experiences. This chapter 
summarises our contributions, discusses the lessons learned from our investigations, and 
suggests directions for future work. 

7.1 Reflections on the Research Questions 

Our propositions led to the design of three research questions that guided the direction of 
this thesis. The first question was how do we specify movements for quality analysis? 
Based on our discussions about quality, we reached the conclusion that when analysing 
quality, it is of utmost importance to first establish a baseline against which we can compare 
further executions of that movement. In the weight lifting domain, this seemed rather 
straightforward at first. Exercises are well defined and described, and performing the 
movement accordingly is often seen as indicative of expertise in the area. However, what 
we found is that even for common exercises there is a huge variation in the movement 
execution not only between different experts but between how experts say they perform 
the movement and how they actually do. This led us through an iterative exploration of 
different approaches for achieving a specification that not only could be used for subsequent 
analyses of executions by other people, but that supported the tacit nature of movement 
communication. In the second domain we investigated, Affective Computing, how emotional 
states are conveyed through movement is an even more ambiguous specification problem. 
On one hand we, as humans, are instinctively able to recognise and distinguish different 
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affective states of other people by how their bodies behave. On the other hand, explicitly 
and unambiguously specifying which movements and postures are connected to these 
different states is a challenging problem and an open question even in the Affective Sciences. 
Our approach was therefore to break whole body movements and postures into their finer-
grained components. Similarly to the approach taken to analyse weight lifting exercises in 
Chapter 2, our approach for labelling body expressions in Chapter 3 relied on users 
demonstrating different small, canonical movements that together create affective 
expressions.  

The second question was how can the feet be used for direct input to interactive 
systems? This question was guided by the insight that even though foot-based interfaces 
exist since the inception of Human-Computer Interaction, there was no comprehensive 
understanding of how the feet work as an input modality. Again, our approach was to look 
not at the body as a whole but at an individual body part. However, whereas in Chapters 2 
and 3 we analysed different joints and bones independently of each other, but still observed 
the whole body; in Chapters 4 and 5, we specifically focused on the lower limbs. Our 
investigations led to several new insights, including that even though feet movements are 
considerably slower and less accurate than the hands, they still perform similarly to other 
input devices less used than the mouse, such as game controllers and touchpads. Other 
findings include that both feet perform similarly and that the direction of movement 
impacts the pointing performance. 

At this stage, having looked at the body as whole in Chapters 2 and 3, and specifically at the 
feet in Chapters 4 and 5, our next goal was  to understand how different body parts, 
understood as independent input modalities can collaborate to complete certain tasks. 
Therefore, our third question was how can combinations of input modalities support 
complex interactive tasks? We first explored gaze and mid-air gestures, modalities that 
had been investigated extensively by themselves, but not together, in the domain of 3D user 
interfaces. We showed how their inherently different characteristics can overcome their 
individual shortcomings, leading to a superior user experience. We then applied our insights 
from Chapters 4 and 5 into designing interaction techniques for the same domain. Finally, 
we brought together these two sensing setups and their corresponding interaction 
techniques into a full body sensing system for gaming in the form of an arcade machine.  

The explorations of the research questions in the thesis highlight an approach of 
investigating body movements that rather than looking at full body interaction as a black 
box, explores the design opportunities and challenges of each individual body part as an 
input modality and how they can together enable novel user experiences.  

7.2 Contributions 

Each direction that we explored yielded distinct contributions, summarised in the 
following: 

1. Implicit Interaction: We contribute a formalisation of the concepts of quality and 
of qualitative activity recognition, as well as systems and algorithms that implement 
different approaches to them. Based on the literature on quality in other areas, we 
define it as the adherence of the execution of an activity to its specification, and we 
define a qualitative activity recognition system as a system that observes the user's 
execution of an activity and compares it to a specification. As these definitions 
highlight the need for an activity specification, we contribute three approaches for 
extracting it: (1) demonstrating the correct execution, as well as possible mistakes; 
(2) manually specifying a model that analyses incoming data in an object-oriented 
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fashion; (3) demonstrating the correct execution and extracting the activity model 
automatically. All approaches successfully encoded movement information and 
provided feedback on the quality of execution. We show that our third approach 
combines the advantages of allowing users to encode tacit information by 
demonstrating the movement without having to estimate movement parameters 
explicitly (we found that experts’ estimates of such parameters are significantly 
different to their performance), while still allowing users to manually modify 
movement parameters if they wish.  

2. Lower Body Interaction: We contribute a comprehensive survey of lower body 
human-computer interaction and an empirical characterisation of unconstrained 
foot movements for computing input. We described the human factors of lower limb 
interaction; systems that involve the lower body; and the different types of 
interactions that the feet enable. Our survey also sets the scene for an in-depth 
analysis of some of the fundamental aspects of foot-based interaction. To enable 
computing input with free-form foot movements in a desktop setting, we built a foot 
tracker based on a Kinect sensor mounted under the desk. With this equipment we 
conducted a series of studies that evaluate different aspects of such interaction. 
First, we built Fitts’s Law performance models for unconstrained foot pointing. We 
then showed that left and right movements are easier and faster than forward and 
backward ones. We also showed that the footedness of users does not significantly 
impact the performance. Our results indicate that the mapping between foot 
controlled parameters and visual feedback strongly influences the interaction, and 
that the overhead incurred by the addition of a foot controlled parameter on hand-
based interaction is not significant. 

3. Multimodal Interaction: We contribute an exploration of the novel user 
experiences that are afforded by a multi-sensor full body tracking platform. We 
demonstrated that the eyes can effectively speed up other mid-air gesture-based 3D 
selection techniques and that the feet can provide an alternative for the canonical 
3D interaction tasks (navigation, object manipulation, selection and system 
control). Finally, to enable playful multimodal full-body up close interactions, we 
built an augmented arcade machine. Our prototype is able to simultaneously sense 
mid-air gestures, multitouch gestures, gaze position, head movements, feet 
movements, as well as to receive input from traditional arcade controls. 

7.3 Lessons Learned 

So far, we have presented the individual results from our research. We now reflect on the 
lessons learned in these years of research on bodily interaction and how they relate to the 
propositions we started with. 

- Movement information is often communicated implicitly, and systems that 
support this communication process should take this into account. A 
considerable amount of information is transmitted tacitly through our body 
movements and postures. In our investigations on supporting the communication 
process between expert weight lifters and novices, we found the best results when 
our system emulated this process. This is a powerful insight in the design of teaching 
systems in general. By replicating a real world communication process we were able 
to not only provide a more satisfying user experience, but also contribute an 
innovative algorithm to model and analyse movement information. These insights 
from Chapter 2 were also incorporated in the design of the system presented in 
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Chapter 3, as we teach the system to label body expressions by demonstrating them 
beforehand. 

- Quality analysis brings another layer of information to activity recognition. 
Despite a considerable amount of work having been conducted in activity 
recognition, little attention has been given to quality. However, quality recognition 
and activity recognition can strongly benefit each other. On one hand, recognising 
which activity is being performed can be a first step to recognising the activity’s 
quality. For example, in a gym environment, an activity classifier can determine 
which exercise the user is doing and trigger the appropriate quality analyser. On the 
other hand, quality data can be used to infer further contextual cues. For example, if 
the system detects a poor quality of activity, it can infer that the user is tired or not 
concentrated enough. Chapters 2 and 3 both investigate movement quality under 
our definition, but from different angles. Whereas in Chapter 2, the movement 
quality relates to how well an exercise is being performed, in Chapter 3, we focus on 
the emotional quality of the movement. Considering our definition of quality as how 
close the movement is to a certain specification, we can model the affective content 
of a movement of where it is in a large possibility space of combinations of 
expressions.  

- Analysing affective body expressions at a higher level can be advantageous 
across multiple research areas. Even if previous research has shown that it is 
possible to classify emotions from body movements with data-driven classifiers, 
this is of little use for researchers outside affective computing. By working with 
behaviour labels, such as the ones we extracted with AutoBAP, research in affective 
computing can lead to insights that can benefit psychology and emotion research, 
and vice versa. A standard set of labels not only enables a cross-disciplinary 
common language, but also enables researchers to explain the reasons behind the 
classification of a certain expression. In a data-driven classifier, this kind of 
information is encoded into the classifier, but not in an explicit way.  

- The lower body can be used as a valuable complementary modality for 
computing input. As we have shown in our survey, many works have employed the 
legs and feet for HCI, but with different backgrounds and purposes. In our survey, 
we achieved several insights, including that the feet excel at performing simple 
tasks, feet interfaces can assist the hands rather than replace them, the performance 
of the feet might not be as bad as people think, that foot-based input lends itself well 
to wearable computing, that we still lack the understanding of how these interfaces 
work in the real world, and that interactive systems can further benefit from what 
the feet tell about users’ psychological states. We hope that with this increased 
understanding of the possible roles and capabilities, we see more and more 
interesting applications for feet, both as a primary and as a complementary modality 
for computing input. 

- Treating different body parts as different modalities can inspire many novel 
multimodal applications. Before starting this work, we usually thought of body 
movements as a single modality. As we began to conceptually separate them, we 
started to see how they can be used in cleverer ways to enhance existing interaction 
techniques (e.g. how gaze can speed up mid-air selection), create novel techniques 
(e.g. our foot-based 3DUI techniques), and inspire exciting new applications (e.g. our 
multimodal games). Throughout the thesis we took different approaches to 
deconstructing body movements: in Chapters 2 and 3, we created models for 
individual joints and segments; in Chapters 4 and 5, we investigated the feet as an 
individual body movement. However, in Chapter 6, we started bringing these 
insights together and in a sense “reconstructing” the whole body, but now as a sum 
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of parts rather than a black box. Our arcade demonstrates this concept, but enabling 
full body interaction, but treating each body part as an independent modality. 

7.4 Future Directions 

This thesis opened the doors to several new research directions. In this section, we suggest 
a few of these as potential future work. 

The work on implicit interaction stemmed from an interest in Ubiquitous Computing and 
the vision of an interconnected web of devices that collaborate to create novel user 
experiences. Given this goal, the gym offers several advantages as a testbed context. It is a 
closed environment, where users perform a finite set of tasks, using a determined set of 
objects and equipment, and they can strongly benefit from receiving feedback on their 
activities. However, despite all these advantages, very little work had been conducted in 
adding computational support to weight lifting.  

Our vision was that of a gym where every dumbbell, barbell and weight was augmented 
with microcontrollers, sensors, actuators and networking capabilities. These devices could 
reason amongst themselves and the user’s exercise program to provide feedback on the 
activities and suggest other exercises. Whereas we proposed several solutions for the 
problem of exercise analysis and feedback, there are many other areas that must be 
investigated to achieve this vision.  

First, future work should make an effort in deploying such systems out in the wild. Despite 
our user studies demonstrating that the systems work in a controlled setting, the gym 
environment presents much more complex challenges, including social (e.g. turn-taking in 
using the equipment), technical (e.g. making the systems robust enough to survive high 
impact with the floor) and ethical (e.g. if the system leads to a user injuring himself). Second, 
we tried to support the communication of movement information when experts and novices 
were far apart, but there are many opportunities for designing systems that assist this same 
communication process when they are co-located, including novel on-body visualisations of 
important movement aspects, and motivational technologies, such as gamification, to 
improve performance. Third, we explored the domain of weight lifting, but these techniques 
could possibly be extended into other domains. Since the publication of our work, other 
researchers have expanded these areas. For example, Spina et al. used an IMU approach that 
also allowed a trainer to demonstrate the exercise for the user to perform, but for physical 
rehabilitation exercises [248]. Tang et al. built Physio@Home, a system for the same domain 
using an augmented mirror [260].  With a similar aim of sharing movement information, 
Anderson et al. built YouMove, a system that also provides feedback through an augmented 
mirror [3]. Additional domains to be explored include dance, other sports, and games. 

Chapter 3 contributed a system to support the recognition of emotions from affective body 
expressions, by working on a higher level. However, we stopped at the labelling of objective 
nonverbal cues, without making any judgement on their emotional content. We see three 
general directions for future work: towards the coding system itself, towards the automatic 
annotation and towards affect recognition. In terms of the coding system, future work 
should look into expanding the labels for the lower body. As shown in our survey of foot-
based interactions, the lower limbs can offer significant insights into our psychological 
states, but the current manual for the Body Action and Posture coding system is more 
focused on the upper body, with few labels to classify lower limb behaviours. In terms of the 
automatic annotation, more work needs to be conducted into making the movement capture 
less obtrusive. The motion capture suit we used is highly accurate, but requires heavy user 



Eduardo Velloso 

 

149 

 

instrumentation, which can affect their natural behaviours. Moreover, it does not cover 
certain body parts, such as the fingers, so other solutions for tracking smaller movements 
are necessary. Finally, as the coding system matures, research from Psychology will provide 
more insights into how the individual bodily nonverbal cues relate to particular emotional 
states, making their automatic annotation a valuable tool in recognising affect 
automatically. 

Our work on foot interaction revealed several open research questions. We evaluated 
certain aspects of foot interaction, but we only focused on abstract tasks. More work must 
be conducted on concrete applications. Also, a longer term study is necessary to understand 
how users’ performances change over time. All our participants were novices to foot 
interaction, so it is still unclear if our results generalise to expert users. Finally, we believe 
that there are several opportunities for further work on using the feet to support the hands. 
We hope with the development of our multimodal arcade machine, we will see more 
interaction techniques that combine the feet with other input modalities. 

We built Arcade+ to demonstrate how a multimodal sensing platform can inspire novel user 
experiences in the form of new game mechanics. However, the possibilities for future use of 
this platform are not limited by games. We envision using it as a platform to deploy and 
evaluate other interactive systems in public spaces. Another interesting aspect to 
investigate is the social impact of this form factor. Arcade machines suggest a playful, social 
and casual nature, which can positively influence users’ perceptions and experiences. 

Body movements allow us to experience digital content in a similar way to how we 
experience the physical world around us. Our research has tackled many aspects of this kind 
of interaction.  We showed that observing users’ implicit movements, incorporating the 
lower body in interactive systems and combining input from multiple body parts can create 
novel and exciting user experiences and we hope that future commercial systems can also 
take these aspects into account. 
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Appendix 1 - Pre Questionnaire for the study in Section 2.4.6 
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Appendix 2 - Post-study questionnaire for the study in Section 2.4.6 
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Appendix 3 - Pre-Study Questionnaire for the study in Section 2.4.7 
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Appendix 4 – Parameter estimation questionnaire for the study in Section 2.5.7 
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Appendix 5 - Pre-study questionnaire for the study in Section 2.5.4 
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Appendix 6 - Questionnaire in which participants described movements and 
evaluated the model extracted for it in Section 2.5.4 
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Appendix 7 - Pre-Study Questionnaire for the study in Section 5.1 
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Appendix 8 - Post-Study Questionnaire for the study in Section 5.1 
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Appendix 9 - Pre-Study Questionnaire for the study in Section 5.2 
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Appendix 10 - Post-study questionnaire for the study in Section 5.2 
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Appendix 11 - Pre-study questionnaire for the study in Section 6.1 

 



Eduardo Velloso 

 

193 

 

 

 
  



From Head to Toe: 
Investigations on Full-Body Human-Computer Interaction 

194 

 

Appendix 12 - Questionnaire for each condition in Section 6.1.3 
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Appendix 13 - Questionnaire after all conditions in Section 6.1.3 
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Appendix 14 - Questionnaire for each condition in Section 6.1..4 
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Appendix 15 - Questionnaire after all conditions in Section 6.1.4 
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Appendix 16 - Pre-study questionnaire for the study in Section 6.2 
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Appendix 17 - Post-Study Questionnaire for the study in Section 6.2 
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