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Abstract

This thesis concerns Integrated Information Theory (IIT), a branch of information
theory aimed at providing a fundamental theory of consciousness. At its core, lie
two powerful intuitions:

• That a system that is somehow more than the sum of its parts has non-zero
integrated information, Φ; and

• That a system with non-zero integrated information is conscious.

The audacity of IIT’s claims about consciousness has (understandably) sparked
vigorous criticism, and experimental evidence for IIT as a theory of consciousness
remains scarce and indirect. Nevertheless, I argue that IIT still has merits as a theory
of informational complexity within complexity science, leaving aside all claims
about consciousness. In my work I follow this broad line of reasoning: showcasing
applications where IIT yields rich analyses of complex systems, while critically
examining its merits and limitations as a theory of consciousness.

This thesis is divided in three parts. First, I describe three example applications
of IIT to complex systems from the computational neuroscience literature (coupled
oscillators, spiking neurons, and cellular automata), and develop novel Φ estimators
to extend IIT’s range of applicability. Second, I show two important limitations
of current IIT: that its axiomatic foundation is not specific enough to determine a
unique measure of integrated information; and that available measures do not behave
as predicted by the theory when applied to neurophysiological data.

Finally, I present new theoretical developments aimed at alleviating some of IIT’s
flaws. These are based on the concepts of partial information decomposition and
lead to a unification of both theories, Integrated Information Decomposition, or ΦID.
The thesis concludes with two experimental studies on M/EEG data, showing that a
much simpler informational theory of consciousness – the entropic brain hypothesis
– can yield valuable insight without the mathematical challenges brought by IIT.
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1. Introduction 24

The scientific study of consciousness is a supremely interesting endeavour. Among
many proposals, Integrated Information Theory (IIT) stands out as a candidate theory of
consciousness, although its genuine contributions are often mixed with the speculations
behind it. The main objective of this thesis is to push IIT as a useful measure of complexity,
to fairly assess its support as a theory of consciousness, and to open developments and
alternatives.

2. Information-theoretic foundations 30

The main working tool of this thesis is Shannon’s Information Theory. In this foundational
chapter we lay out the basic building blocks of Shannon’s theory we will use, and review the
existing IIT literature with proposed measures of integrated information, Φ. We outline the
intuitions behind each of these measures, and provide detailed procedures describing how to
compute them and how each element of the computation refers back to the ideas behind IIT.

3. Integrated information and metastability 50

We begin our exploration of integrated information in complex systems with networks of
coupled oscillators, frequently used as large-scale models of neural dynamics and capable
of exhibiting a rich variety of so-called metastable chimera states. We bring metastability
and integrated information together, by showing that these oscillators exhibit a critical peak
of Φ that coincides with peaks in other measures such as metastability and coalition entropy.

4. Integration and segregation in spiking neurons 60

Next, we study a model network of spiking neurons with different coupling configurations.
We find that information transfer and storage peak at two separate points for different values
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of the coupling parameter and are balanced at an intermediate point, where avalanches
follow a long-tailed, power law-like distribution and reproduce empirical findings in the
biological brain. In this way, we link together the balance between functional integration
and differentiation (à la IIT) with the appearance of power law-like avalanches.

5. Integrated information and distributed computation 74

As a final complexity case study, we consider distributed computation in cellular automata.
We relate IIT to distributed computation in two ways: at a global scale, Φ is higher for
complex, class IV automata; and at a local scale Φ is higher for emergent coherent
structures, like blinkers, gliders, and collisions. Together with the previous two examples,
this suggests Φ is, empirically, a good candidate for a universal marker of complexity.

6. Measuring integrated information 86

For it to be a fundamental theory of consciousness, IIT needs a robust axiomatic base
linking phenomenology to one or more measurable quantities. We explore the properties
of several proposed measures in simulation on simple, but non-trivial systems, and find a
striking diversity in the behaviour of these measures – no two measures show consistent
agreement across all analyses. We conclude that the axioms of IIT are underspecified, in
the sense that multiple measures consistent with the axioms show qualitatively different
behaviour in practice.

7. Empirical evidence for and against IIT 102

Regardless of its mathematical underpinnings, a minimum requirement for any theory of
consciousness is to make successful predictions on adult human brains. We review existing
experimental evidence for and against IIT as a theory of consciousness, and present new
comprehensive analyses on several datasets. The evidence is mixed, and in some cases
Φ, counterintuitively, is drastically increased in the unconscious state and reduced in the
psychedelic state. We discuss possible causes of this discrepancy and discuss the relevance
of these results to IIT’s current and future status.

8. Quantifying high-order interdependencies 116

We revisit the mathematical basis of early IIT, with the aim of providing new, more
suitable tools. Our investigation into the multivariate structure of information leads to
a new measure, the O-information, capable of characterising synergy- and redundancy-
dominated systems. We compare the O-information against Φ’s predecessor, the Tononi-
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Sporns-Edelman measure of neural complexity, and argue that the O-information is better
able to capture the intuitions behind the origins of IIT.

9. Integrated information decomposition 134

We deepen the connection between information decomposition and IIT, by outlining a
unified theory of Integrated Information Decomposition, ΦID. Most importantly, ΦID
reveals that what is typically referred to as ‘integration’ is actually an aggregate of several
heterogeneous phenomena, and can help us understand and alleviate the limitations of
existing Φ measures. Additionally, we link ΦID with fundamental principles of causal
emergence, providing theoretical support to our claims relating IIT and complexity.

10. Consciousness and information content 152

As an alternative to IIT, we consider another, much simpler informational theory of
consciousness known as the Entropic Brain Hypothesis (EBH). We present two examples
from the study of altered states of consciousness – musical improvisation and the psychedelic
state – and interpret the results in the light of EBH. We argue that the simplicity and
empirical success of EBH provide valuable lessons for IIT, and that a collective, open-
minded engagement between these and other theories are key for a cohesive, mature, and
productive science of consciousness.
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Introduction

Chapter summary

The scientific study of consciousness is a supremely interesting endeavour.
Among many proposals, Integrated Information Theory (IIT) stands out as a
candidate theory of consciousness, although its genuine contributions are often
mixed with the speculations behind it. The main objective of this thesis is to
push IIT as a useful measure of complexity, to fairly assess its support as a
theory of consciousness, and to open developments and alternatives.
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1.1 Of bits and brains

Consciousness. That’s a real problem. The kind of problem you didn’t realise you had, and
once you do, keeps you up at night asking yourself “how is this a thing?”

After all, the brain is just a physical system, made of physical elements we call neurons.
We know these neurons fairly well, thanks in part to the early work of Andrew Huxley –
coincidentally, grandson to Thomas Huxley, who gave name to the building where this PhD
research was carried out. And yet, these neurons go “click” in such precisely calculated
ways that it feels like something to be this mush of two kilograms’ worth of neurons between
our ears.

In fact, not only it feels like something to be a brain, but this how-it-feels can be altered in
outstanding ways. As a thought experiment, let us picture a computer, made of transistors,
that just as our neurons, go “click” in very precisely calculated ways. Next, let us sprinkle a
few micrograms of an alien substance, one the transistors have never encountered before.
Now we turn on the computer – and, miraculously, instead of setting on fire, the computer
produces a fast stream of sounds, images, and text it has never produced before.

As incredible as this seems, it is a powerful analogy for the brain effects of psychedelic
drugs like LSD. The effect of literally a handful of molecules per neuron makes the owner of
such a brain smell sounds, hear lights, and feel a profoundly different kind of consciousness.

So, how does this work? How is it that the interactions between neurons in the brain
generate endless streams of experience and behaviour? During the last 40 years, a number
of brave scientists have thrown their own brains at the problem, and have generated a
constantly-evolving sequence of theories of consciousness attempting to give a satisfactory
explanation to the problem.

Among these theories, one candidate stands out: the Integrated Information Theory
(IIT), developed by Giulio Tononi and a growing number of collaborators since 1994. At its
core, lie two powerful intuitions:

• That a system that is somehow more than the sum of its parts has non-zero integrated
information, Φ; and

• That a system with non-zero integrated information is conscious.

The core element of IIT is a measure of integrated information, Φ, that (broadly speaking)
attempts to quantify the information that is contained in the interactions between the parts of
a system and not within the parts themselves. At the moment there is no agreed-upon formula
for Φ, although many proposals have been put forward. Over time, the conceptualisation of
Φ has evolved: as a balance between integration and segregation, statistical interdependence
between subsystems, or causal irreducibility – terms that will become clear in the following
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chapters. Crucially, the formulation of Φ is linked to IIT’s axioms, which provide the
philosophical foundation that allows IIT to call itself a theory of consciousness.

For those that, like myself, come with a physicist’s mindset, Φ opens many more doors
than those of perception and consciousness. In particular, it brings strong reminiscences
of complexity science, the study of large systems made of locally interacting components
giving rise to emergent behaviour. Complexity, as new of a science as that of consciousness,
is also in search for its fundamental principles and unifying theories – a gap which, I argue,
IIT is uniquely equipped to fill if we strip it of its unfettered claims about consciousness and
keep its valuable information-theoretic contributions.

The development of IIT has been characterised by two parallel trends: a spark of genius
intuitions, that have driven theoretical and experimental neuroscience research since their
inception; coupled with a set of increasingly overambitious claims about the fundamental
nature of consciousness. My hypothesis is that IIT’s audacious claims about consciousness
have kept other scientists away, blurring the line between fact and speculation, and thereby
preventing some of its valuable ideas from reaching other areas of knowledge.

1.2 Objectives and motivation

This thesis is the result of a cocktail of one part fascination and one part frustration with
IIT. The reader with sharp theory-of-mind skills will find throughout this text a constant
tension between those two elements – hopefully, the kind of tension that leads to honest
self-criticism and scientific progress.

With these considerations in mind, and with the aim of making an honest and positive
contribution to neuroscience and complexity science, I set myself three research objectives:

1. To dissociate IIT’s claims as a theory of consciousness from its information-theoretic
contributions, and put the latter to use in complexity science;

2. To develop the mathematical basis of IIT; and

3. To provide an honest assessment of the evidence for and against IIT’s claims about
consciousness.

In doing so, I intend to bring IIT out of the secretive veil of the small theoretical neuro-
science community where it was born, so it can learn from other sciences and contribute all
the valuable insights it has to offer.
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1.3 Thesis organisation

This thesis is organised in three parts, that form a cohesive story but can be read indepen-
dently.

1. In Part I, I outline several example applications of IIT to the study of complex
systems. In order to do so, I also describe a few developments regarding the estimation
of Φ measures on non-linear systems. Through these applications I advocate for
IIT as a valuable unifying theory of complexity, that encompasses other seemingly
disconnected concepts like criticality, metastability, and distributed computation.

2. In Part II, I describe two limitations of IIT, both in theory and in practice. The
theoretical limitation stems from the fact that the basic foundations of IIT do not
uniquely determine a measure of integrated information; and the practical one is that
most proposed Φ measures do not in fact show the expected difference when applied
to conscious and unconscious brain states.

3. In Part III, I present developments and alternatives to standard IIT, on two fronts:

• On the theoretical side, I re-examine the intuitions behind IIT and its predeces-
sor, neural complexity, and recast them under the more mathematically solid
framework of Partial Information Decomposition.

• On the practical side, I describe two applications of a much simpler theory of
consciousness, the entropic brain hypothesis, to musical improvisation and the
psychedelic state. I argue that, as a much simpler theory, EBH can bring valuable
insights without the mathematical challenges of IIT.

1.4 Publications

Content from the following publications is directly relevant to this thesis:

1. P. Mediano, J.C. Farah and M. Shanahan (2016). Integrated Information and Metasta-
bility in Systems of Coupled Oscillators. arXiv: 1606.08313.

2. P. Mediano and M. Shanahan (2017). Balanced Information Storage and Transfer in
Modular Spiking Neural Networks. arXiv: 1708.04392.

3. P. Mediano and M. Shanahan (2015). An Unexpected Discrepancy in a Well-known
Problem: Kraskov Estimators Applied to Spiking Neural Networks. Proceedings of
the European Conference in Artificial Life (ECAL’15).
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4. P. Mediano, A. Seth and A. Barrett (2018). Measuring Integrated Information:
Comparison of Candidate Measures in Theory and Simulation. Entropy.

5. A. Barrett and P. Mediano (2019). The Φ Measure of Integrated Information is not
Well-defined for all Physical Systems. Journal of Consciousness Studies.

6. F. Rosas, P. Mediano, M. Gastpar and H. Jensen (2019). Quantifying High-order
Interdependencies via Multivariate Extensions of the Mutual Information. Physical
Review E.

7. P. Mediano*, F. Rosas*, R. Carhart-Harris, A. Seth and A. Barrett. Beyond Integrated
Information: A Taxonomy of Information Dynamics Phenomena. arXiv: 1909.02297.

8. D. Dolan, H. Jensen, P. Mediano, M. Molina-Solana, H. Rajpal, F. Rosas and J.
Sloboda (2018). The Improvisational State of Mind: A Multi-disciplinary Study of
an Improvisatory Approach to Classical Music Repertoire Performance. Frontiers in
Psychology.

In addition, these are other publications by the author that are relevant to the topic, but
not explicitly covered in this thesis:

9. L. Novelli, P. Wollstadt, P. Mediano, M. Wibral and J. Lizier (2019). Large-scale
Directed Network Inference with Multivariate Transfer Entropy and Hierarchical
Statistical Testing. Network Neuroscience.

10. A. Tacchetti*, H. F. Song*, P. Mediano* et al. (2019). Relational Forward Models
for Multi-Agent Learning. ICLR 2019.

11. F. Rosas, P. Mediano, M. Ugarte and H. Jensen (2018). An Information-theoretic
Approach to Self-organisation: Emergence of Complex Interdependencies in Coupled
Dynamical Systems. Entropy.

12. P. Wollstadt et al. (2018). IDTxl: The Information Dynamics Toolkit xl: A Python
Package for the Efficient Analysis of Multivariate Information Dynamics in Networks.
Journal of Open-Source Software.

13. S. McGregor and P. Mediano (2018). Adaptation Is Not Just Improvement Over Time.
Artificial Life.

14. S. McGregor and P. Mediano (2018). Measuring Fitness Effects of Agent-Environment
Interactions. Artificial Life.

15. T. Tax*, P. Mediano* and M. Shanahan (2017). The Partial Information Decomposi-
tion of Generative Neural Network Models. Entropy, 19(9), 474.
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16. K. Nikiforou, P. Mediano and M. Shanahan (2017). An Investigation of the Dynami-
cal Transitions in Harmonically Driven Random Networks of Firing-Rate Neurons.
Cognitive Computation 3 (9).

17. X. Arsiwalla, P. Mediano and P. Verschure (2017). Spectral Modes of Network
Dynamics Reveal Increased Informational Complexity Near Criticality. Procedia
Computer Science 108.

18. N. Dilokthanakul, P. Mediano, M. Garnelo et al. (2016). Deep Unsupervised Cluster-
ing with Gaussian Mixture Variational Autoencoders. arXiv: 1611.02648.



Chapter 2

Information-theoretic foundations

Chapter summary

The main working tool of this thesis is Shannon’s Information Theory. In this
foundational chapter we lay out the basic building blocks of Shannon’s theory
we will use, and review the existing IIT literature with proposed measures
of integrated information, Φ. We outline the intuitions behind each of these
measures, and provide detailed procedures describing how to compute them and
how each element of the computation refers back to the ideas behind IIT.
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2.1 Integrated information theory: A historical account

The basic principles of IIT can be traced back to the fruitful collaboration between Tononi,
Sporns, and Edelman (henceforth, TSE) in the early 90’s. In alignment with the exciting
complexity research emerging at the time [1], the trio set out to investigate what makes a
system “more than the sum of its parts” – and how this related to cognition and the brain.

In their work, this notion of greater-than-the-sum was embodied in the concept of dynami-
cal complexity, which was often portrayed as a balance between two competing tendencies:

• integration, to the extent that the system behaves as one; and

• segregation, to the extent that the parts of the system behave independently.

The concept of dynamical complexity evolved over time, and has been characterised using
different mathematical tools. In the original work, which we will refer to as IIT 0.1,1 TSE
developed a measure of coexisting global integration and local segregation called neural
complexity [2, 3]. Computing neural complexity involves weighting correlations within the
system across multiple scales, to capture this interplay between local and global interactions.

The term “integrated information,” and its characteristic symbol Φ, first appeared in 2003
with Ref. [4], which we refer to as IIT 1.0. This work introduced the idea of measuring
integration by partitioning the system, measuring the correlations across the “cruelest cut.”

The 2008 work of Balduzzi and Tononi [5], IIT 2.0, introduced a significant extension
over IIT 1.0 by explicitly incorporating time into the theory. In IIT 2.0, two time series are
integrated if they mutually affect each other’s temporal evolution, and so the basic object
of study becomes the mutual information of a system across time, instead of across space.
This provides a stronger link with neural dynamics, as it views integrated information as an
intrinsically dynamical process, as opposed to as a feature of static systems like IIT ≤ 1.0.

Finally, in its most recent iteration, Oizumi, Albantakis and Tononi [6] presented IIT 3.0,
which represents a substantial departure from IIT 2.0 and standard information-theoretic
tools. IIT 3.0 places a much stronger emphasis on causal interventions to elucidate the “in-
trinsic” informational properties of the system. However, this comes at a cost of a much more
intricate definition, with more unjustified choices, and a measure that is computationally
intractable except in the simplest or most carefully constructed cases.

Here, we focus on the earlier conceptions of integrated information because (i) they are
more readily applicable to empirical time series; (ii) they remain conceptually powerful
in theories of consciousness, and (iii) they promise general applicability to many other
questions in neuroscience and beyond, in which part-whole relations are of interest.

1To better organise the different iterations of IIT, we will backpropagate the numerical labelling system
introduced in 2014. It is unclear whether the 1994 work should be labelled as IIT 1.0 or 0.1 – clearly, the
marketing value of a major.minor versioning system wasn’t well appreciated back then. Since the term
“integrated information” itself only appeared in 2003, we will refer to the 1994 work as IIT 0.1.
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2.2 Notation, convention and preliminaries

In this section, we review the fundamental concepts needed to define and discuss the
candidate measures of integrated information. For a more comprehensive introduction, see
the standard textbook by Cover and Thomas [7]. In general, we will denote random variables
with uppercase letters (e.g. X , Y ) and particular instantiations with the corresponding
lowercase letters (e.g. x, y). Variables can be either continuous or discrete, and we assume
that continuous variables can take any value in Rn and that a discrete variable X can take
any value in the finite set ΩX . Whenever there is a sum involving a discrete variable X ,
we assume the sum runs for all possible values of X (i.e. the whole ΩX ). A partition
 = {M1,M2, ...,Mr} divides the elements of system X into r non-overlapping, non-empty
sub-systems (or parts), such that X = M1⋃M2⋃ ...⋃Mr and Mi⋂M j =∅, for any i, j. We
denote each variable in X as X i, and the total number of variables in X as n. When dealing
with time series, time will be indexed with a subscript, e.g. Xt .

Entropy H quantifies the uncertainty associated with random variable X—i.e. the higher
H(X) the harder it is to make predictions about X—and is defined as

H(X) =:−∑
x

p(x) log p(x). (2.1)

In many scenarios, a discrete set of states is insufficient to represent a process or time
series. This is the case, for example, with brain recordings, which come in real-valued time
series and with no a priori discretisation scheme. In these cases, using a continuous variable
X ∈ R, we can similarly define the differential entropy,

H[p] =:−
∫

p(x) log p(x)dx. (2.2)

However, differential entropy is not as interpretable and well-behaved as its discrete-
variable counterpart. For example, differential entropy is not invariant to rescaling or other
transformations on X . Moreover, it is only defined if X has a density with respect to the
Lebesgue measure dx; this assumption will be upheld throughout this thesis. We can also
define the conditional and joint entropies as

H(X |Y ) =: ∑
y

p(y)H(X |Y = y)

=−∑
y

p(y)∑
x

p(x |y) log p(x |y),
(2.3)

H(X ,Y ) =:−∑
x,y

p(x,y) log p(x,y), (2.4)
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respectively. Conditional and joint entropies can be analogously defined for continuous
variables by appropriately replacing sums with integrals.

The Kullback–Leibler (KL) divergence quantifies the dissimilarity between two probabil-
ity distributions p and q:

DKL(p∥q) =: ∑
x

p(x) log
p(x)
q(x)

. (2.5)

The KL divergence represents a notion of (non-symmetric) distance between two proba-
bility distributions. It plays an important role in information geometry, which deals with the
geometric structure of manifolds of probability distributions.

Finally, mutual information I quantifies the interdependence between two random vari-
ables X and Y . It is the KL divergence between the full joint distribution and the product of
marginals, but it can also be expressed as the average reduction in uncertainty about X when
Y is given:

I(X ;Y ) =: DKL (p(X ,Y ) ∥ p(X)p(Y ))

= H(X)+H(Y )−H(X ,Y )

= H(X)−H(X |Y ).
(2.6)

Mutual information is symmetric in the two arguments X and Y . We make use of the
following properties of mutual information:

1. I(X ;Y ) = I(Y ;X),

2. I(X ;Y )≥ 0, and

3. I( f (X);g(Y )) = I(X ;Y ) for any injective functions f ,g.

We highlight one implication of property 3: I is upper-bounded by the entropy of both X
and Y . This means that the entropy H(X) of a random variable X is the maximum amount of
information X can have about any other variable Y (or another variable Y can have about X).

Mutual information is defined analogously for continuous variables and, unlike differential
entropy, it retains its interpretability in the continuous case.2 Furthermore, one can track
how much information a system preserves during its temporal evolution by computing the
time-delayed mutual information (TDMI) I(Xt ;Xt−τ).

Next, we introduce notation and several useful identities to handle Gaussian variables.
Given an n-dimensional real-valued system X , we denote its covariance matrix as Σ(X)i j =:

2The formal derivation of the differential entropy proceeds by considering the entropy of a discrete variable
with k states, and taking the k→ ∞ limit. The result is the differential entropy plus a divergent term that is
usually dropped and is ultimately responsible for the undesirable properties of differential entropy. In the case
of I(X ;Y ) the divergent terms for the various entropies involved cancel out, restoring the useful properties of
its discrete counterpart.
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cov(X i,X j). Similarly, cross-covariance matrices are denoted as Σ(X ,Y )i j =: cov(X i,Y j).
We will make use of the conditional (or partial) covariance formula,

Σ(X |Y ) =: Σ(X)−Σ(X ,Y )Σ(Y )−1Σ(Y,X). (2.7)

For Gaussian variables,

H(X) =
1
2

log(detΣ(X))+
1
2

n log(2πe) , (2.8)

H(X |Y = y) =
1
2

log(detΣ(X |Y ))+ 1
2

n log(2πe) , ∀y , (2.9)

I(X ;Y ) =
1
2

log
(

detΣ(X)

detΣ(X |Y )

)
. (2.10)

All systems we deal with in this article are stationary and ergodic, so throughout the paper
Σ(Xt) = Σ(Xt−τ) for any τ .

2.3 Measures of integrated information
In this section, we review the theoretical underpinnings and practical considerations of
several proposed measures of integrated information, and in particular how they relate to
intuitions about segregation, integration and complexity. These measures are:

• Whole-minus-sum integrated information, Φ;

• Integrated stochastic interaction, Φ̃;

• Integrated synergy, ψ;

• Decoder-based integrated information, Φ∗;

• Geometric integrated information, ΦG; and

• Causal density, CD.

All of these measures (besides CD) have been inspired by the measure proposed by
Balduzzi and Tononi in [5], which we call Φ2008. Φ2008 was based on the information the
current state contains about a hypothetical maximum entropy past state. In practice, this
results in measures that are applicable only to discrete Markovian systems [8]. For broader
applicability, it is more practical to build measures based on the ongoing spontaneous
information dynamics—that is, based on p(Xt ,Xt−τ) without applying a perturbation to
the system. Measures are then well-defined for any stochastic system (with a well-defined
Lebesgue measure across the states), and can be estimated for real data using empirical
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distributions if stationarity can be assumed. All of the measures considered in this thesis are
based on a system’s spontaneous information dynamics.

Table 2.1 contains a brief description of each measure and a reference to the original
publication that introduced it.3 We refer the reader to the original publications for more
detailed descriptions of each measure. Table 2.2 contains a summary of properties of the
measures considered, proven for the case in which the system is ergodic and stationary, and
the spontaneous distribution is used.

Table 2.1: Integrated information measures considered and original references.

Measure Description Reference

Φ Information lost after splitting the system [5]
Φ̃ Uncertainty gained after splitting the system [8]
ψ Synergistic predictive information between parts of the system [9]
Φ∗ Past state decoding accuracy lost after splitting the system [10]
ΦG Information-geometric distance to system with disconnected parts [11]
CD Average pairwise directed information flow [12]

Table 2.2: Overview of properties of integrated information measures, proofs in Appendix A.3.

Φ Φ̃ ψ Φ∗ ΦG CD

Time-symmetric ✓ ✓ ××× ? ✓ ×××
Non-negative ××× ✓ ✓ ✓ ✓ ✓
Invariant to variable rescaling ✓ ××× ✓ ✓ ✓ ✓
Upper-bounded by time-delayed mutual information ✓ ××× ✓ ✓ ✓ ✓
Known estimators for arbitrary real-valued systems ✓ ✓ ××× ××× ××× ✓
Closed-form expression in discrete and Gaussian systems ✓ ✓ ✓ ××× ××× ✓

2.3.1 Minimum information partition

Key to all measures of integrated information is the notion of splitting or partitioning the
system to quantify the effect of such split on the system as a whole. In that spirit, integrated
information measures are defined through some measure of effective information, which

3Although the origins of causal density go as back as 1969, it hasn’t been until the last decade that it has
found its way into neuroscience. The paper referenced in the table acts as a modern review of the properties
and behaviour of causal density. This measure is somewhat distinct from the others, but is still a measure of
complexity based on information dynamics between the past and current state; therefore its inclusion here will
be useful.
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operationalises the concept of “information beyond a partition”  . This typically involves
splitting the system according to  and computing some form of information loss, via
(for example) mutual information (Φ), conditional entropy (Φ̃), or decoding accuracy (Φ∗)
(see Table 2.1). Integrated information is then the effective information with respect to the
partition that identifies the “weakest link” in the system, i.e. the partition for which the parts
are least integrated. Formally, integrated information is the effective information beyond
the minimum information partition (MIP), which, given an effective information measure
f [X ;τ, ], is defined as

MIP = arg min
f [X ;τ, ]

K()
, (2.11)

where K() is a normalisation coefficient. In other words, the MIP is the partition across
which the (normalised) effective information is minimum, and integrated information is the
(unnormalised) effective information beyond the MIP. The purpose of the normalisation
coefficient is to avoid biasing the minimisation towards unbalanced bipartitions (recall that
the extent of information sharing between parts is bounded by the entropy of the smaller
part). Balduzzi and Tononi [5] suggest the form

K() = (r−1)min
k

H(Mk
t ). (2.12)

However, not all contributions to IIT have followed Balduzzi and Tononi’s treatment of
the MIP. Of the measures listed above, Φ and Φ̃ share this partition scheme, ψ defines the
MIP through an unnormalised effective information, and Φ∗, ΦG and CD are defined via the
atomic partition without any reference to the MIP. These differences are a confounding factor
when it comes to comparing measures—it becomes difficult to ascertain whether differences
in behaviour of various measures are due to their definitions of effective information, to their
normalisation factor (or lack thereof), or to their partition schemes. We return to this topic
in the Discussion section below.

In the following, we present all measures as they were introduced in their original papers
(see Table 2.1), although it is trivial to combine different effective information measures
with different partition optimisation schemes. However, all results presented here are
calculated by minimising each unnormalised effective information measure over even-sized
bipartitions—i.e. bipartitions in which both parts have the same number of components.
This is to avoid conflating the effect of the partition scan method with the effect of the
integrated information measure itself.
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2.3.2 Whole-minus-sum integrated information Φ

We next turn to the different measures of integrated information. As highlighted above, a
primary difference among them is how they define the effective information beyond a given
partition. Since most measures were inspired by Balduzzi and Tononi’s Φ2008, we start
there.

For Φ2008, the effective information ϕ2008 is written as (following notation from [13])
the KL divergence between pc(X0|X1 = x) and Πk pc(Mk

0|Mk
1 = mk), where pc(X0|X1 = x)

(and analogously pc(Mk
0|Mk

1 = mk)) is the conditional distribution for X0 given X1 = x under
the perturbation at time 0 into all states with equal probability—i.e. given that the joint
distribution is given by pce(X0,X1) =: p(X1|X0)pu(X0), where pu is the uniform (maximum
entropy) distribution.4

Averaging ϕ2008 over all states x, the result can be expressed as either

I(X0;X1)−
r

∑
k=1

I(Mk
0;Mk

1), (2.13)

or

−H(X0|X1)+
r

∑
k=1

H(Mk
0|Mk

1). (2.14)

These two expressions are equivalent under the uniform perturbation, since they differ
only by a factor that vanishes if p(X0) is the uniform distribution. However, they are not
equivalent if the spontaneous distribution of the system is used instead—i.e. if p(Xt−τ ,Xt)

is used instead of pce(X0,X1). This means that, for application to spontaneous dynamics (i.e.
without perturbation), we have two alternatives that give rise to two measures that are both
equally valid analogs of Φ2008.

We call the first alternative whole-minus-sum integrated information Φ (ΦE in [8]). The
effective information ϕ is defined as the difference in time-delayed mutual information
between the whole system and the parts. The effective information of the system beyond a
certain partition  is

ϕ[X ;τ, ] =: I(Xt−τ ;Xt)−
r

∑
k=1

I(Mk
t−τ ;Mk

t ) . (2.15)

4The c and e here stand respectively for cause and effect. Without an initial condition, here that the uniform
distribution holds at time 0, there would be no well-defined probability distribution for these states. Further,
Markovian dynamics are required for these probability distributions to be well-defined; for non-Markovian
dynamics, a longer chain of initial states would have to be specified, going beyond just that at time 0.
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We can interpret I(Xt−τ ;Xt) as how good the system is at predicting its own future or
decoding its own past (which are equivalent because mutual information is symmetric).
Then, ϕ here can be seen as the loss in predictive power incurred by splitting the system
according to  . The details of the calculation of Φ (and the MIP) are shown in Box 1.5

Φ is often regarded as a poor measure of integrated information because it can be nega-
tive [11, 10]. This is indeed conceptually awkward if Φ is seen as an absolute measure of
integration between the parts of a system, though it is reasonable if Φ is interpreted as a “net
synergy” measure [14] – quantifying to what extent the parts have shared or complementary
information about the future (proven formally in Chapter 9). That is, if Φ > 0, we infer
that there is information in the whole which is not reducible to the parts (i.e. Φ > 0 is
a sufficient condition), but Φ ≤ 0 does not imply the opposite. Therefore, from an IIT
perspective, a negative Φ can lead to the understandably confusing interpretation of a system
having “negative integration,” but, through a different lens (net synergy), it can be more
easily interpreted as overall redundancy in the evolution of the system.

Box 1. Calculating whole-minus-sum integrated information Φ.

Φ[X ;τ] = ϕ[X ;τ,MIB] (2.16a)

MIB = argmin
ϕ[X ;τ,]

K()
(2.16b)

ϕ[X ;τ,] = I(Xt−τ ;Xt)−
2

∑
k=1

I(Mk
t−τ ;Mk

t ) (2.16c)

K() = min
{

H(M1
t ),H(M2

t )
}

(2.16d)

1. For discrete variables:

I(Xt−τ ;Xt) = ∑
x,x′

p(Xt−τ = x,Xt = x′) log
(

p(Xt−τ = x,Xt = x′)
p(Xt−τ = x) p(Xt = x′)

)

2. For continuous, linear-Gaussian variables:

I(Xt−τ ;Xt) =
1
2

log
(

detΣ(Xt)

detΣ(Xt |Xt−τ)

)
3. For continuous variables with an arbitrary distribution, we must resort to the

nearest-neighbour methods introduced by [15]. See reference for details.

5Note that we use the symbol Φ to refer to both Eq. (2.16a) specifically, and to integrated information
measures generically. The meaning should be clear from the context.
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2.3.3 Integrated stochastic interaction Φ̃

We next consider the second alternative for Φ2008 for spontaneous information dynamics:
integrated stochastic interaction Φ̃. Also introduced in Barrett and Seth [8], this measure
embodies similar concepts as Φ, with the main difference being that Φ̃ utilises a definition
of effective information in terms of an increase in uncertainty instead of in terms of a loss of
information.

Φ̃ is based on stochastic interaction ϕ̃ , introduced by Ay [16]. Akin to Equation (2.15),
we define stochastic interaction beyond partition  as

ϕ̃[X ;τ, ] =:
r

∑
k=1

H(Mk
t−τ |Mk

t )−H(Xt−τ |Xt). (2.17)

Stochastic interaction quantifies to what extent uncertainty about the past is increased
when the system is split in parts, compared to considering the system as a whole. The details
of the calculation of Φ̃ are similar to those of Φ and are described in Box 2.

The most notable advantage of Φ̃ over Φ as a measure of integrated information is that Φ̃
is guaranteed to be non-negative. In fact, as mentioned above, ϕ and ϕ̃ are related through
the equation

ϕ̃[X ;τ, ] = ϕ[X ;τ, ]+TC(M1
t ;M2

t ; . . . ;Mr
t ), (2.18)

where TC is the total correlation [17] of the modules,

TC(M1
t ;M2

t ; . . . ;Mr
t ) =

r

∑
k=1

H(Mk
t )−H(Xt). (2.19)

This measure is also linked to information destruction, as presented by Wiesner et al. [18].
The quantity H(Xt−τ |Xt) measures the amount of irreversibly destroyed information, since
H(Xt−τ |Xt)> 0 indicates that more than one possible past trajectory of the system converged
on the same present state, making the system irreversible and indicating a loss of information
about the past states. From this perspective, ϕ̃ can be understood as the difference between
the information that is considered destroyed when the system is observed as a whole, or
split into parts. Note, however, that this measure is time-symmetric when applied to a
stationary system; for stationary systems, total instantaneous entropy does not change with
time. Furthermore, we know that Φ̃ can exceed TDMI in some cases and that it quantifies a
mixture of both causal and simultaneous influences [10].
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Box 2. Calculating integrated stochastic interaction Φ̃

Φ̃[X ;τ] = ϕ̃[X ;τ,MIB] (2.20a)

MIB = argmin
ϕ̃[X ;τ,]

K()
(2.20b)

ϕ̃[X ;τ,] =
2

∑
k=1

H(Mk
t−τ |Mk

t )−H(Xt−τ |Xt) (2.20c)

K() = min
{

H(M1
t ),H(M2

t )
}

(2.20d)

1. For discrete variables:

H(Xt−τ |Xt) =−∑
x,x′

p(Xt−τ = x,Xt = x′) log
(

p(Xt−τ = x,Xt = x′)
p(Xt = x′)

)

2. For continuous, linear-Gaussian variables:

H(Xt−τ |Xt) =
1
2

logdetΣ(Xt−τ |Xt)+
1
2

n log(2πe)

3. For continuous variables with an arbitrary distribution, we must resort to the
nearest-neighbour methods introduced by [15]. See reference for details.

2.3.4 Integrated synergy ψ

Originally designed as a “more principled” integrated information measure [9], ψ shares
some features with Φ and Φ̃ but is grounded in a different branch of information theory,
namely the Partial Information Decomposition (PID) framework [19]. In PID, the informa-
tion that two (source) variables provide about a third (target) variable is decomposed into
four non-negative terms as

I(X ,Y ;Z) = Red(X ,Y ;Z)+Un(X ;Z|Y )+Un(Y ;Z|X)+Syn(X ,Y ;Z) ,

where Un is the unique information one source but the other doesn’t, Red is the redundancy
between both sources and Syn is their synergy.

Integrated synergy ψ is the information that the parts provide about the future of the
system that is exclusively synergistic—i.e. cannot be provided by any combination of parts
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independently:

ψ[X ;τ, ] =: I(Xt−τ ;Xt)−max


I∪(M1
t−τ ,M

2
t−τ , ...,M

r
t−τ ;Xt), (2.21)

where

I∪(M1
t−τ , . . . ,M

r
t−τ ;Xt) =: ∑

⊆{M1,...,Mr}
(−1)||+1I∩(1

t−τ , . . . ,
||
t−τ ;Xt), (2.22)

and I∩(1, . . . ,||;Z) denotes the redundant information sources 1, . . . ,|| have about
target Z. The challenge of PID is that it is, essentially, an underdetermined system of
equations. For example, for the case of two sources, Shannon’s information theory specifies
three quantities (I(X ,Y ;Z), I(X ;Z), I(Y ;Z)), whereas PID specifies four (S, R, UX , UY ).
Therefore, a complete operational definition of ψ requires a definition of redundancy
from which to construct the partial information components [19]. In this sense, the main
shortcoming of ψ , inherited from PID, is that there is no agreed consensus on a definition of
redundancy [20, 21].

Here, we take Griffith’s conceptual definition of ψ and we complement it with available
definitions of redundancy (see Box 3). For the linear-Gaussian systems, we study here we
use the minimum mutual information PID presented in Ref. [20].6 Although we do not show
any discrete examples here, for completeness, we provide complete formulae to calculate
ψ for discrete variables using Griffith and Koch’s redundancy measure [22]. Note that
alternatives are available for both discrete and linear-Gaussian systems [19, 23–26].

6Barrett’s derivation of the MMI-PID, which follows Williams and Beer and Griffith and Koch’s procedure,
gives this formula when the target is univariate. We generalise the formula here to the case of multivariate
target in order to render ψ computable for Gaussians. This formula leads to synergy being the extra information
contributed by the weaker source given the stronger source was previously known.
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Box 3. Calculating integrated synergy ψ

ψ[X ;τ, ] = I(Xt−τ ;Xt)−max


I∪(M1
t−τ , . . . ,M

r
t−τ ;Xt) (2.23)

1. For discrete variables: (following Griffith and Koch’s [22] PID scheme)

I∪(M1
t−τ , . . . ,M

r
t−τ ;Xt) =min

q ∑
x,x′

q(x,x′) log
(

q(x,x′)
q(x) q(x′)

)
s.t. q(Mi

t−τ ,Xt) = p(Mi
t−τ ,Xt)

2. For continuous, linear-Gaussian variables:

I∪(M1
t−τ , . . . ,M

r
t−τ ;Xt) = max

k
I(Mk

t−τ ;Xt)

3. For continuous variables with an arbitrary distribution: unknown.

2.3.5 Decoder-based integrated information Φ∗

Introduced by Oizumi et al. in Reference [10], decoder-based integrated information Φ∗

takes a different approach from the previous measures. In general, Φ∗ is given by

Φ∗[X ;τ, ] =: I(Xt−τ ;Xt)− I∗[X ;τ, ] , (2.25)

where I∗ is known as the mismatched decoding information, and quantifies how much
information can be extracted from a variable if the receiver is using a suboptimal (or
mismatched) decoding distribution [27, 28]. This mismatched information has been used in
neuroscience to quantify the contribution of neural correlations in stimulus coding [29], and
can similarly be used to measure the contribution of inter-partition correlations to predictive
information.

To calculate Φ∗, we formulate a restricted model q in which the correlations between
partitions are ignored,

q(Xt |Xt−τ) = ∏
i

p(Mi
t |Mi

t−τ), (2.26)

and we calculate I∗ for the case where the sender is using the full model p as an encoder and
the receiver is using the restricted model q as a decoder. The details of the calculation of Φ∗

and I∗ are shown in Box 4. Unlike the previous measures shown in this section, Φ∗ does not
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have an interpretable formulation in terms of simpler information-theoretic functionals like
entropy and mutual information.

Calculating I∗ involves a one-dimensional optimisation problem, which is straightfor-
wardly solvable if the optimised quantity, Ĩ(β ), has a closed form expression [27]. For
systems with continuous variables, it is in general very hard to estimate Ĩ(β ). However, for
continuous linear-Gaussian systems and for discrete systems, Ĩ(β ) has an analytic closed
form as a function of β if the covariance or joint probability table of the system are known,
respectively. In Appendix A.1, we derive the formulae.7 Conveniently, in both the dis-
crete and the linear-Gaussian case, Ĩ(β ) is concave in β (proofs in Reference [27] and in
Appendix A.1, respectively), which makes the optimisation significantly easier.

Box 4. Calculating decoder-based integrated information Φ∗

Φ∗[X ;τ, ] = I(Xt−τ ;Xt)− I∗[X ;τ, ] (2.27a)

I∗[X ;τ, ] = max
β

Ĩ(β ;X ,τ,) (2.27b)

1. For discrete variables:

Ĩ(β ;X ,τ,) =−∑
x′

p(Xt = x′) log∑
x

p(Xt−τ = x)q(Xt = x′|Xt−τ = x)β

+∑
x,x′

p(Xt−τ = x,Xt = x′) logq(Xt = x′|Xt−τ = x)β

2. For continuous, linear-Gaussian variables: (see appendix for details)

Ĩ(β ;X ,τ,) =
1
2

log(|Q||Σx|)+
1
2

tr(ΣxR)+β tr
(

Π−1
x|x̃ Πxx̃Π−1

x Σx̃x

)
3. For continuous variables with an arbitrary distribution: unknown.

2.3.6 Geometric integrated information ΦG

In Reference [11], Oizumi et al. approach the notion of dynamical complexity via yet
another formalism. Their approach is based on information geometry [30, 31], which
studies families of probability distributions as differentiable manifolds. The natural metric
in information geometry is the Fisher information metric, and the KL divergence provides a

7Note that the version written down in Reference [10] is incorrect, although their simulations match our
results; we checked results from our derived version of the formulae versus results obtained from numerical
integration, and confirmed that our derived formulae are the correct ones.
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natural measure of (asymmetric) distance between probability distributions. Information
geometry is the application of differential geometry to the relationships and structure of
probability distributions.

To quantify integrated information, Oizumi et al. [11] consider the divergence between
the complete model p(Xt−τ ,Xt) and a restricted model q(Xt−τ ,Xt) in which links between
the parts of the system have been severed. This is known as the M-projection of the system
onto the manifold of restricted models Q = {q : q(Mi

t |Xt−τ) = q(Mi
t |Mi

t−τ)}, and

ΦG[X ;τ, ] =: min
q∈Q

DKL (p(Xt−τ ,Xt)∥q(Xt−τ ,Xt)) . (2.28)

Key to this measure is that, in the partitioned system, it is only the connections that are
cut; correlations between the parts are still allowed on the partitioned system. Although
conceptually simple, ΦG is very hard to calculate (see Box 5): there is no known closed
form solution for any system, and we can only find approximate numerical estimates for
some systems. In particular, for discrete and linear-Gaussian variables, we can formulate
ΦG as the solution of a constrained multivariate convex optimisation problem [32].

Box 5. Calculating geometric integration ΦG

ΦG[X ;τ, ] =min
q

DKL(p∥q) (2.29a)

s.t. q(Mi
t+τ |Xt) = q(Mi

t+τ |Mi
t ). (2.29b)

1. For discrete variables: numerically optimise the objective DKL(p∥q) subject to
the constraints

∑
x,x′

q(Xt−τ = x′,Xt = x) = 1 and q(Mi
t |Xt−τ) = q(Mi

t |Mi
t−τ) ∀i.

2. For continuous, linear-Gaussian variables: numerically optimise the objective

ΦG[X ;τ, ] = min
Σ(E)′

1
2

log
|Σ(E)′|
|Σ(E)| ,

where Σ(E) = Σ(Xt |Xt−1), and subject to the constraints

Σ(E)′ = Σ(E)+(A−A′)Σ(X)(A−A′)T and

(Σ(X)(A−A′)Σ(E)′−1)ii = 0.

3. For continuous variables with an arbitrary distribution: unknown.
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2.3.7 Causal density

Causal density (CD) is somewhat distinct from the other measures considered so far, in the
sense that it is a sum of information transfers rather than a direct measure of the extent to
which the whole is greater than the parts. Nevertheless, we include it here because of its
relevance and use in the dynamical complexity literature.

CD was originally defined in terms of Granger causality [33, 34], but here we write it
in terms of Transfer Entropy (TE), which provides a more general information-theoretic
definition [35]. The conditional transfer entropy from X to Y conditioned on Z is defined as

TEτ(X → Y |Z) =: I(Xt ;Yt+τ |Zt ,Yt). (2.30)

With this definition of TE, we define CD as the average pairwise conditioned TE between
all variables in X ,

CD[X ;τ, ] =:
1

r(r−1) ∑
i ̸= j

TEτ(Mi→M j |M[i j]), (2.31)

where M[i j] is the subsystem formed by all variables in X except for those in parts Mi and
M j.

In a practical sense, CD has many advantages. It has been thoroughly studied in theory
[36] and applied in practice, with application domains ranging from complex systems to
neuroscience [37–39]. Furthermore, there are off-the-shelf algorithms that calculate TE in
discrete and continuous systems [40]. For details of the calculation of CD, see Box 6.

Causal density is a principled measure of dynamical complexity, as it vanishes for purely
segregated or purely integrated systems. In a highly segregated system, there is no infor-
mation transfer at all, and, in a highly integrated system, there is no transfer from one
variable to another beyond the rest of the system [12]. Furthermore, CD is non-negative
and upper-bounded by the total time-delayed mutual information (proof in Appendix A.2),
therefore satisfying what other authors consider an essential requirement for a measure of
integrated information [11].
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Box 6. Calculating causal density CD

CD[X ;τ, ] =
1

r(r−1) ∑
i ̸= j

TEτ(Mi→M j |M[i j]) (2.32)

1. For discrete variables:

T Eτ(X i→ X j |X [i j]) =

∑
x,x′

p
(

X j
t+τ = x′ j,Xt = x

)
log

⎛⎝ p
(

X j
t+τ = x′ j |Xt = x

)
p
(

X j
t+τ = x′ j |X j

t = x j,X [i j]
t = x[i j]

)
⎞⎠

2. For continuous, linear-Gaussian variables:

T Eτ(X i→ X j |X [i j]) =
1
2

log

⎛⎝detΣ
(

X j
t+τ |X j

t ⊕X [i j]
t

)
detΣ

(
X j

t+τ |Xt

)
⎞⎠

3. For continuous variables with an arbitrary distribution, we must resort to the
nearest-neighbour methods introduced by [15]. See reference for details.

2.3.8 Other measures

As already mentioned, all the measures reviewed here (besides CD) were inspired by the
Φ2008 measure, which arose from the version of IIT laid out in Ref. [5]. The most recent
version of IIT [6] is conceptually distinct, and the associated Φ-3.0 is consequently different
to the measures we consider here. The consideration of perturbation of the system, as
well as all of its subsets, in both the past and the future renders Φ-3.0 considerably more
computationally expensive than other Φ measures. We do not here attempt to consider the
construction of an analogue of Φ-3.0 for spontaneous information dynamics.

Recently, Tegmark [41] developed a comprehensive taxonomy of all integrated informa-
tion measures that can be written as a distance between a probability distribution pertaining
to the whole and one obtained as a product of probability distributions pertaining to the
parts. Tegmark further identified a shortlist of candidate measures, based on a set of explicit
desiderata. This shortlist overlaps with the measures we consider here, and also contains
other measures which are minor variants. Of Tegmark’s shortlisted measures, φ M is equiva-
lent to Φ̃ under the system’s spontaneous distribution, φ M

kk′ is its state-resolved version, φ oak

is transfer entropy (which we cover here through CD), and φ npk is not defined for continuous
variables. The measures ΦG and ψ are outside of Tegmark’s classification scheme.
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Integrated information in complex
systems





Chapter 3

Integrated information and metastability
in systems of coupled oscillators

Chapter summary

We begin our exploration of integrated information in complex systems with
networks of coupled oscillators, frequently used as large-scale models of neural
dynamics and capable of exhibiting a rich variety of so-called metastable chimera
states. We bring metastability and integrated information together, by showing
that these oscillators exhibit a critical peak of Φ that coincides with peaks in
other measures such as metastability and coalition entropy.
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3.1 Introduction

We begin our exploration of integrated information in complex systems by considering
systems of coupled oscillators. Systems of coupled oscillators are ubiquitous both in nature
and in the human-engineered environment, making them of considerable scientific interest
[42]. A variety of mathematical models of such systems have been devised and their
synchronisation properties have been the subject of much study. Typical studies of this
sort, such as the classic work of Kuramoto [43], have examined the conditions under which
systems of identical oscillators converge on a stable state of either full synchronisation or
desynchronisation, perhaps identifying an order parameter that determines a critical phase
transition from one state to the other. The collection of known attractors of such systems was
enlarged with the discovery of so-called chimera states, in which the system of oscillators
partitions into two stable subsets, one of which is fully synchronised while the other remains
permanently desynchronised [44]. In addition to being mathematically interesting, chimera
states have turned out to be empirically relevant in a wide variety of contexts, including
neural dynamics [45–47], superconducting materials [48], earthquakes [49], animal flocking
behaviour [50], and power grid networks [51].

Although systems of coupled oscillators that converge on stable states are both math-
ematically interesting and scientifically relevant, they are by no means representative of
all real-world synchronisation phenomena. For example, the brain exhibits synchronous
rhythmic activity on multiple spatial and temporal scales, but never settles into a stable
state. Although it enters chimera-like states of high partial synchronisation, these are only
temporary. Likewise, the chimera-like states of partial synchrony entered into by real flocks,
herds, and swarms are always transient, and never truly stable. A system of coupled os-
cillators that continually moves from one highly synchronised state to another under its
own intrinsic dynamics is said to be metastable.1 In Ref. [53], it was shown that a modular
network of phase-lagged Kuramoto oscillators will exhibit metastable chimera states under
certain conditions. Variants of this model have since been used to replicate the statistics of
the brain under a variety of conditions, including the resting state [45], cognitive control
[46], and anaesthesia [47], as well as the dynamics of superconducting materials [48].

The dynamical properties of metastable oscillators, however, have rarely been discussed in
conjunction with their informational properties. In particular, for the purposes of this thesis
we are interested in the capacity of these coupled oscillators to integrate information, as
measured by the tools introduced in Chapter 2. In this context, we can think of Φ measures
as a proxy for the concept ot dynamical complexity [3]: a system is said to have high
dynamical complexity if it exhibits a balance of integrated and segregated activity, where a

1Note that a system that traverses multiple highly synchronised states does not necessarily show chimera
states, see e.g. [52].
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system’s activity is integrated to the extent that its parts influence each other and segregated
to the extent that its parts act independently [54].

In this chapter, we connect these two lines of enquiry by demonstrating that modular
networks of coupled oscillators of the sort described in Ref. [53] not only exhibit metastable
chimera states, but also have high dynamical complexity according to IIT. Specifically, we
show that measures of both phenomena peak in the narrow critical region of the parameter
space wherein the system is poised between order and disorder. To our knowledge, this is
the first description of a dynamical system in which the three major complexity indicators
of criticality [55], metastability [56], and integrated information coincide. Moreover, as
our work shows, IIT offers a rich picture of dynamical complexity in this critical regime,
and constitute the first demonstration in this thesis that practical measures of integrated
information have application outside theoretical neuroscience and can be applied to the
analysis of complex systems.

3.2 Methods

We examine a system of coupled Kuramoto oscillators, extensively used to study non-linear
dynamics and synchronisation processes [57]. We build upon the work of Shanahan [53] with
a community-structured network of oscillators. The network is composed of 8 communities
of 32 oscillators each, with every oscillator being coupled to all other oscillators in its
community with probability 1 and to each oscillator in the rest of the network with probability
1/32. The state of each oscillator i is captured by its phase θi, the evolution of which is
governed by the equation

dθi

dt
= ω +

1
κ +1 ∑

j
Ki j sin

(
θ j−θi−α

)
, (3.1)

where ω is the natural frequency of each oscillator, κ is the average degree of the network,
K is the connectivity matrix and α is a global phase lag. We set ω = 1 and κ = 63. To
reflect the community structure, the coupling between two oscillators i, j is Ki j = 0.6 if
they are in the same community or Ki j = 0.4 otherwise. We tune the system by modifying
the value of the phase lag, parametrised by β = π/2−α . We note that the system is fully
deterministic, i.e. there is no noise injected in the dynamical equations.

We will analyse the trajectories of this system from two perspectives – through the concept
of metastability from dynamical systems theory, and through the tools of information theory
described in Chapter 2. In particular, we will use the measure of whole-minus-sum Φ given
in Eq. (2.16).
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3.2.1 Metastability

In this section we review the basic concepts behind metastability and how it is quantified,
following a similar description to that of Ref. [53].

The building block of the dynamical quantities we study in this chapter is the instantaneous
synchronisation R, that quantifies the dispersion in θ -space of a given set of oscillators.
In general, we denote as Rc(t) the instantaneous synchronisation of a community c of
oscillators at time t, given by

Rc(t) = |⟨eiθ j(t)⟩ j∈c| . (3.2)

To quantify metastability, we use the metastability index λ , which is defined as the average
temporal variance of the synchrony of each community c, i.e.

λc = vart Rc(t) (3.3a)

λ = ⟨λc⟩c . (3.3b)

Last, we also define global synchrony ξ as the average across time and space of instantaneous
synchrony,

ξ =
⏐⏐⟨Rc(t)

⟩
t,c

⏐⏐ . (3.4)

According to Eq. (3.2), Rc (and therefore ξ ) is bounded in the [0,1] interval. Rc(t) will
be 1 if all oscillators in c have the same phase at time t, and will be 0 if they are maximally
spread across the unit circle. This [0,1] bound on R allows us to place an upper bound on λ ,
namely λmax = 1/9. See Ref. [58] for details.

As defined in Eq. (3.3a), λc represents the size of the fluctuations in the internal synchrony
of a community. A system that is either hypersynchronised or completely desynchronised
will have a very small λc, whereas one whose elements fluctuate in and out of synchrony will
have a high λc. In other words, a system of oscillators exhibits metastability if its elements
remain in the vicinity of a synchronised state without falling into such a state permanently.

3.3 Results

We ran 1500 simulations with values of β distributed uniformly at random in the range
[0,2π) using RK4 with a stepsize of 0.05 for numerical integration. Each simulation was
run for 5×106 timesteps, of which the first 104 are discarded to avoid effects from transient
states. All information-theoretic measures are reported in bits.

We first study the system from a purely dynamical perspective, following the analysis in
Ref. [53]. Global synchrony and metastability are shown in Fig. 3.1. The first characteristic
we observe is that there are two well differentiated dynamical regimes – one of hypersyn-
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chronisation and one of complete desynchronisation, with strong metastability appearing in
the narrow transition bands between one and the other.

It is in this transition region where the oscillators operate in a critical regime poised
between order and disorder and complex phenomena appear. As the system moves from
desynchronisation to full synchronisation there is a sharp increase in metastability, followed
by a smoother decrease as the system becomes hypersynchronised. In the region 0< β <

π/8, the system remains in a complex equilibrium between an ordered and a disordered
phase.
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Figure 3.1: Global synchrony and metastability for different phase lags β for the whole [0,2π)
range. Rapid increase of metastability marks the onset of the phase transition.

3.3.1 Information-theoretic analysis

One feature of Φ (and of any other information-theoretic measure), compared to λ , is that it
need not be calculated directly from the state of the system. In other words, Φ is substrate-
agnostic, meaning that the relevant quantity for the calculation of Φ is not the physical
state of the system, but some informational state – the configuration of the system that we
consider to contain information. Therefore, we must define an informational state mapping,
that extracts the information-bearing symbols from the physical state of the system.

Although calculating Φ on the real-valued phases is possible, for simplicity we choose
the coalition configuration of the system as the informational state, defined as the set of
communities that are highly internally synchronised. To calculate the coalition configuration
at time t we calculate Rc(t) of each community and threshold it, such that

Xc
t =

{
1 if Rc(t)> γ
0 otherwise.
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We refer to γ as the coalition threshold. After calculating the coalitions, the history of the
system is reduced to a time series with 8 binary variables. Having a multivariate discrete
time series, it is now tractable to compute Φ. We use γ = 0.8 in all our analyses shown here.

As depicted in Fig. 3.2, Φ shows a similar behaviour to λ – it peaks in the transition
regions and shrinks in the fully ordered and the fully disordered regimes. We also compare
Φ with arguably the simplest information-theoretic measure – entropy H. The entropy of
the state of the network calculated on the coalitions Xt forms the coalition entropy Hc.
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Figure 3.2: Integrated information Φ and coalition entropy Hc in the phase transition. Within the
broad region between order and disorder in which Hc rises there is a narrower band in which complex
spatiotemporal patterns generate high Φ.

Both Φ and Hc peak precisely at the same point. Although both measures depend on
the chosen coalition threshold γ , the results are qualitatively the same for a wide range of
thresholds. Although it peaks in the same region as λ and Hc, we note that Φ reveals new
properties of the system by virtue of incorporating temporal information in its definition.
That is, to have a high Φ a system must exhibit complex spatial and temporal patterns. We
can verify this by performing a random time-shuffle on the time series. This shuffling leaves
λ and Hc unaltered, as they don’t explicitly depend on time correlations, but has a high
impact on Φ, which shrinks to zero. This indicates that Φ is sensitive to properties of the
system that are not reflected by other measures.

A continuous-time system, like the one considered here, can be integrated to an arbitrarily
fine temporal resolution. This gives us an opportunity to use Φ to investigate the behaviour
of the system at multiple timescales. Figure 3.3 shows the behaviour of Φ for several values
of τ , and compares it with standard time-delayed mutual information (TDMI) I(Xt−τ ;Xt).

The first thing we note is that Φ and TDMI have opposite trends with τ . TDMI decreases
for longer timescales, while Φ increases. At short timescales the system is highly predictable
– thus the high TDMI – but this short-term evolution does not involve any system-wide
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Figure 3.3: Integrated information Φ and time-delayed mutual information I(Xt−τ ;Xt) for several
timescales τ . See text for details.

interaction – thus the low Φ. Furthermore, at these timescales Φ is negative, which can be
interpreted as an indication of redundancy [20] in the evolution of the system: the parts
share some information, such that they separately contain more information about their past
than the whole system about its past. For larger τ TDMI decreases, as the evolution of the
system becomes harder to track. Simultaneously, Φ becomes higher, indicating that the
remaining TDMI has a stronger integrated component that is not accounted for by the TDMI
of the partitions of the system. Overall, we see a clear trend of TDMI diminishing at longer
timescales but becoming progressively more integrated in nature.

Finally, it is interesting to combine the insights from the dynamical and information-
theoretic analyses. Inspecting Figs. 3.1 and 3.2 we see that the peak in Φ is much narrower
than the peaks in λ and Hc. While some values of β do give rise to non-trivial dynamics,
it is only at the centre of the critical region that these dynamics give rise to integration. A
certain degree of internal variability is necessary to establish integrated information, but
not all configurations with high internal variability lead to a high Φ. This means that Φ is
sensitive to more complicated dynamic patterns than the other measures considered, and is
in that sense more discriminating.

We note that λ is a community-local quantity – that is, the calculation of λc for each
community is independent of the rest. Conversely, Φ relies exclusively on the irreducible
interaction between communities. These two quantities are nevertheless intrinsically related,
insofar as internal variability enables the system to visit a larger repertoire of states in which
system-wide interaction can take place.
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3.3.2 Robustness of Φ against measurement noise

We will now consider the impact of measurement noise on Φ, wherein the system runs
unchanged but our recording of it is imperfect. For this experiment we run the (deterministic)
simulation as presented in the previous section and take the binary time series of coalition
configurations. We then emulate the effect of uncorrelated measurement noise by flipping
each bit in the time series with probability p, yielding the corrupted time series X̂ . Finally
we recalculate Φ on the corrupted time series, and show the results in Fig. 3.4. To quantify
how fast Φ changes we calculate the ratio between the corrupted and the original time series,

η =
Φ[X̂ ,τ]
Φ[X ,τ]

. (3.5)

In order to avoid instabilities as Φ[X ,τ] gets close to zero, we calculate η only in the
region within 0.5 rad of the centre of the peak, where Φ[X ,τ] is large. The inset of Fig. 3.4
shows the mean and standard deviation of η at different noise levels p.
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Figure 3.4: Integrated information Φ for different levels of measurement noise p. Inset: (blue) Mean
and variance of the ratio η between Φ of the corrupted and the original time series. (red) Exponential
fit η = exp(−p/ℓ), with ℓ≈ 0.04.

We find that Φ monotonically decays with p, reflecting the gradual loss of the precise
spatiotemporal patterns characteristic of the system. The distortion has a greater effect on
time series with greater Φ, but preserves the dominant peak in β ≈ 0.15. The inset shows
that both the mean and variance of η decay as a clean exponential with p. Φ is highly
sensitive to noise and undergoes a rapid decline, as a measurement noise of 5% wipes out
70% of the perceived integrated information of the system.
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3.4 Conclusion

We have presented a community-structured network of Kuramoto oscillators and discussed
their collective behaviour in terms of metastability [53] and integrated information [5]. We
showed that the system undergoes a phase transition whose critical region presents a sharp,
clear peak of integrated information Φ that coincides with a strong increase in metastability.
To our knowledge, this is the first description of a dynamical system in which the three major
complexity indicators of criticality, high metastability, and high integrated information all
appear. The resulting confluence of two major research directions in complexity science
suggests that this is a system that merits further study.

In the context of the present model, the high internal variability of the system’s components
enables system-wide interaction, which in turn leads to high Φ. As we have seen, the system
presents a region of high metastability, but notably it is only within an even narrower band
that we find strong integrated information. The temporal profile of Φ gives us insight
about the effective interaction timescale between parts of the system, and may be used in
more heterogeneous systems to assess interdependencies more effectively. In this way we
provide evidence that complex dynamics – as quantified by the metastability index λ – are a
necessary but not sufficient condition for complex information processing – as quantified by
integrated information Φ.

Dynamical and information-theoretic measures provide different lenses through which
we can understand a system, and offer complementary views of its behaviour. Our findings
support the claim that Φ is a valuable tool for understanding complex spatial and temporal
behaviour in dynamical systems, particularly when combined with other analysis techniques.





Chapter 4

Balanced integration and segregation in
modular spiking neural networks

Chapter summary

Next, we study a model network of spiking neurons with different coupling
configurations. We find that information transfer and storage peak at two
separate points for different values of the coupling parameter and are balanced
at an intermediate point, where avalanches follow a long-tailed, power law-like
distribution and reproduce empirical findings in the biological brain. In this way,
we link together the balance between functional integration and differentiation
(à la IIT) with the appearance of power law-like avalanches.
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4.1 Introduction

Information theory has been an invaluable tool for neuroscience, and in the past few decades
it has been making great contributions to our understanding of neural computation and
coding [59]. This has inaugurated a whole research field bringing together both disci-
plines [60, 61]. The broad goal of this research is to describe neural computation in abstract
terms, to dissociate the cognitive process from its neural implementation. This has proven to
be a fruitful and interesting endeavour, since an abstract account would allow us to compare
the brain with other cognitive systems, both biological and artificial.

However, in deliberately ignoring the physical substrate of computations (much like we
did in Chapter 3), a purely information-theoretic view of the brain misses some interesting
research questions: what kinds of dynamical states lead to what kinds of computations?
Does a particular process make use of all resources available to the neurons? Could a given
computation be instantiated by a different dynamical process? To address these and other
questions we must consider the specific mechanisms by which the neural physical substrate
gives rise to emergent computations.

For these reasons we advocate a hybrid view of neural computation, in which information
and dynamics are two sides of the same coin [62]. Along these lines, several authors have
established connections between information-theoretic and dynamical properties of neural
networks at several scales: specific single-neuron-level mechanisms have been found to be
informationally optimal in some sense [63, 64], and on a larger scale criticality has been
linked to increased information transfer [65].

With these considerations in mind, in this chapter we proceed with our study of integrated
information in complex systems, now with an explicit focus on the link between information
processing and its neural physical substrate. Specifically, we study the effect of local and
global coupling in a modular network of spiking neurons [54], and match the findings in our
model with observed experimental data. As a further difference with respect to the previous
chapter, instead of using a single Φ-like measure to quantify the balance between functional
integration and segregation, we wish to dissociate these two, by using two separate measures
and comparing them across model configurations.

We find that information transfer and storage, acting as proxy measures for functional
integration and segregation respectively, peak at two separate points for different values of
the coupling parameter, and are balanced at an intermediate point. In this configuration,
avalanches in the network follow a long-tailed, power law-like distribution. Furthermore,
the avalanche statistics at this point reproduce empirical findings in the biological brain [66],
suggesting that the brain (or parts of it) may be operating in this balanced regime.



4.2 METHODS 61

4.2 Methods
4.2.1 Model specification

We consider a system similar to the one shown in Ref. [54]. The network consists of a total
of 1000 neurons, comprising one population of 200 inhibitory neurons and n = 8 populations
(or modules) of 100 excitatory neurons each.

A total of 1000 internal one-directional connections (or synapses) are added to each
excitatory module, such that any given pair of neurons are connected with probability 0.1 –
resulting in modules of 10% edge density. Synapses from excitatory to inhibitory neurons are
focal, with every 4 excitatory neurons in the same module projecting to the same inhibitory
neuron. Every inhibitory neuron is connected to all other neurons in the network. The delay
of each excitatory-excitatory synapse is sampled uniformly at random from the [1,20]ms
interval, and the delay of all other synapses is fixed at 1 ms.

Once initialised, the network is subject to a rewiring process, akin to the one proposed
by Watts and Strogatz [67]. Watts and Strogatz’s key result is that the network undergoes a
transition regime in which strong clustering coexists with short path lengths, making the
network simultaneously segregated and integrated – termed a ‘small-world’ network. Here
we seek to investigate how such small-world topological properties affect the dynamical and
informational behaviour of the network.

Figure 4.1: Schematic diagram of the model network. There are 8 excitatory modules (light blue)
connected to one another and to a larger inhibitory pool (light purple). Inhibitory neurons have
diffuse connections to all the network (blue round arrows), and each excitatory module has focal
connections to a different set of inhibitory neurons (blue pointed arrow, green dot) and long-range
connections to other excitatory modules (dashed gray arrows).

The rewiring process is only applied to the 800 excitatory neurons, and is implemented as
follows. With probability p, each synapse is detached from its target neuron, and assigned
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a new target picked uniformly at random from any excitatory module, thus introducing
inter-module synapses. This rewiring probability p effectively regulates the balance between
local intra-module coupling and long-range inter-module coupling, and is the main object of
analysis in this chapter.

Once the topology of the network is set, we add a dynamical model to simulate the spiking
behaviour of biological neurons. The dynamics of each neuron are simulated using the
Izhikevich model [68],

dv
dt

= 0.04v2 +5v+140−u+ I (4.1a)

du
dt

= a(bv−u) , (4.1b)

where v is the membrane potential (or voltage) of the neuron, u is an auxiliary recovery
variable and I is the incoming current from ingoing synapses or external sources. All
quantities are in arbitrary units. When the voltage of any given neuron goes above a certain
threshold we record a discrete spike event, such that

if v≥ 30, then

{
v← c

u← u+d .
(4.2)

When a pre-synaptic neuron i spikes, all of its post-synaptic neurons j receive an instanta-
neous pulse with current equal to the weight Wi j of the synapse between them after a delay
Di j associated with that synapse. The values for the a,b,c,d parameters for both excitatory
and inhibitory neurons are taken from Ref. [68]. All populations are slightly heterogeneous,
as neuron parameters are randomised.

Once the network topology and the neuron parameters are set, the network can be
simulated by numerically integrating Eqs. (4.1) and (4.2). We store all the spiking events
from excitatory neurons for future analysis and ignore the spikes in the inhibitory population.

4.2.2 Functional segregation and integration

In this section we introduce some further information-theoretic methods we will use to
analyse the system, complementing those in Chapter 2. The overall idea is that, instead
of using a Φ-like measure to quantify the balance between functional integration and
segregation, we wish to dissociate these two by using two separate measures inspired by
recent research on information processing in complex systems [69]. In particular, we use
active information storage [70] as a proxy for functional segregation; and a modified version
of Causal Density (c.f. Chapter 2) as a proxy for functional integration.
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Let us first describe active information storage, following Ref. [70]. The aim of AIS is
to quantify the information in a time series Xt that can be retrieved by measuring its entire
previous history. Mathematically,

AIS(Xt) = lim
k→∞

I(Xt ;Xt−1,Xt−2, ...,Xt−k) . (4.3)

In other words, AIS quantifies how much information about the history of the system is
useful in predicting the system’s next state. As the k→ ∞ limit in Eq. (4.3) is (for obvious
reasons) intractable, we write the finite-k approximation of the AIS of module i as

AISk(Mi,t) = I(M(k)
i,t ;Mi,t+1) , (4.4)

where X (k)
t is the k-dimensional embedding vector of X at time t, that contains the past k

values of Xt up to and including time t. The aim of this embedding vector is to perform
a state-space reconstruction of the underlying dynamical process [71], and is particularly
useful when dealing with non-Markovian systems like the one in this chapter.1 Further
discussion of the AIS can be found in Refs. [39, 70, 72].

In the context of IIT, we interpret AIS loosely as a measure of segregated functional
activity – information that is stored within each module separately.

In a similar fashion, to quantify functional integration we use Causal Density (CD), earlier
introduced in Chapter 2. However, following the same rationale as for AISk, we formulate an
embedding version of CD applicable to non-Markovian systems. In particular, the standard
conditional transfer entropy is replaced by the conditional mutual information between the
embedded time series,

CTEk(X → Y |Z) = I(X (k)
t ,Yt+1|Y (k)

t ,Z(k)
t ) , (4.5)

which is then used to define an embedded version of causal density, akin to Eq. (2.32) but
formulated in terms of vector embedings,

CDk(S) =
1

n(n−1)∑
i j

CTEk(Mi→M j|S[i j]) , (4.6)

where Mi represents the activity of module i and S[i j] represents the whole system with
variables Mi and M j removed.

1Note that an Izhikevich spiking neuron is Markovian at the level of dynamical variables v,u, but not at the
level of spikes.
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4.3 Results

We generate 400 networks with different values of p sampled uniformly at random in the
[0,1) interval, and another 200 with p sampled exponentially at random in the (10−2,1)
interval. This is to have dense coverage of the parameter space at the low end of the range.
The activity of each network is simulated using the NeMo library [73] for 200 s using the
RK4 method with a timestep of 0.2 ms, and subsampled to a resolution of 1 ms. The first
1 s of simulation is discarded to avoid transient effects. Information-theoretic quantities are
calculated using the implementation in Ref. [74] and are reported in bits.

4.3.1 Model behaviour

In this section we give a qualitative summary of the behaviour of the model that will help
interpretation of quantitative findings described in the rest of the chapter. Spike raster plots
of representative runs of the network with different values of p are shown in Fig. 4.2.

We begin with the fully modular network, the p = 0 case (bottom panel in Fig. 4.2). In
this setting there are no direct connections between the excitatory modules. When any
neurons in an excitatory module become active, the high density of intra-module synapses
ensures that all neurons in the module quickly become activated.

Through the focal excitatory-inhibitory synapses, the active module feeds charge to the
subset of inhibitory neurons assigned to it. These start spiking rapidly, and because of the
diffuse connections they shut down the activity in all other excitatory modules. This results
in competitive multistable dynamics, as one module gaining control of the network prevents
all others from doing so. In computational neuroscience this kind of competition mechanism
is known as Winner-Take-All (WTA). Subsequently, the active module saturates and the
refractory period of the neurons makes it cease firing, so that other module can take over.

At the other end of the parameter range, at p = 0.9 (top panel in Fig. 4.2), the dynamics
are very different. Topologically, this setting is closer to a fully random, Erdős-Rényi
network (which is the case exactly for p = 1). There is no notion of modules anymore, and
all excitatory neurons are statistically equivalent. The result is an interaction between a
uniform population of excitatory neurons with a smaller group of inhibitory neurons. This
is reminiscent of a known mechanism of oscillation generation – a PING architecture [75].
The interplay between excitation and inhibition and the synaptic delays between them make
the whole system oscillate. In this regime the modules are strongly correlated and cooperate
in maintaining the global oscillation.

Finally, at intermediate values of p (middle panel in Fig. 4.2), these two opposite trends
coexist. The dynamics of the system are more chaotic and there is no clear pattern. Local
and long-range coupling are balanced and both affect the emergent dynamics (we recall that
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Figure 4.2: Sample runs of the network for different values of the rewiring probability p. The values
are p = 0.9 (top), 0.2 (middle) and 0 (bottom). As p increases the system transitions from multistable
competitive dynamics to oscillatory cooperative dynamics.

the total number of connections is fixed, so an increase in long-range coupling is always at
the expense of a weaker intra-module coupling).

This transition is also interpretable as an emergent synchronisation phenomenon. For
low p the WTA mechanism pushes the modules out of phase, and the network is maximally
desynchronised. Conversely, for high p the modules blend together and the synchrony
between them increases.

In summary, the model we described features a transition from a competitive to cooperative
regime, controlled by a continuous parameter. This model naturally interpolates between
two neural circuits ubiquitously present in the cortex: PING oscillators and multistable WTA
circuits. As we describe below, it is between these two extremes where critical dynamics
and complex information processing take place.

4.3.2 Avalanche statistics

The seminal work of Beggs and Plenz [66] set out the search for criticality in neural systems,
in particular through the analysis of avalanche statistics. A neural avalanche is defined
as a period of continued spiking activity – i.e. a period in which the activity of a neural
population is continuously above a certain avalanche threshold. The avalanche size is the
total number of spikes fired by all neurons in the population between any two points of
below-threshold activity.
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By counting occurrences of avalanches in the network and recording their size we obtain
the avalanche size distribution, a very relevant mathematical construct subject of much
study in statistical physics and complex systems research. A common signature of critical
dynamics and phase transitions is that avalanche sizes follow a power law distribution [76],
defined as

P(s) ∝ s−α , (4.7)

where α is called the critical exponent. Beggs and Plenz’s key result is that measured
activity in the biological brain consistently follows a power law avalanche size distribution –
leading to the hypothesis that the brain operates in a critical regime. Although their claims
on criticality have been contested [77], their empirical finding of power law distributions in
neural recordings is widely accepted.

In this section we present the avalanche analysis of the resulting activity of our model. As
a general methodological note, we mention that estimating and evaluating power laws when
working with empirical data is remarkably complicated. In this analysis we use the methods
and implementation provided in Refs. [78, 79].

We generate and run networks for many values of p as described above and measure
avalanches in each module. To do this we calculate the mean firing rate of each module over
1 ms bins and run the analysis with an avalanche threshold of 3 spikes/ms. The distributions
of the 8 modules in the same run of the experiment are aggregated together to improve
statistics. Log-log avalanche size histograms are shown for evenly spaced values of p in
Fig. 4.3.
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Figure 4.3: Avalanche size distributions for different rewiring probabilities p. As connections
become delocalised (increasing p), the system shifts from supercritical (high probability of large
avalanches) to subcritical (low probability of large avalanches). The p-axis is reversed for visualisa-
tion purposes (p decreases going into the page).
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For low values of p, when connections are highly localised, the system is supercritical –
the avalanche size distribution is characterised by a prominent peak at the far tail, which
indicates that a disproportionately large fraction of the avalanches are strongly energetic and
saturate the modules.

Conversely, at high values of p the system is subcritical. Avalanches are weak and the
avalanche size distribution has a short exponential tail. This is probably caused by the
diffuseness of the connectivity pattern – rewiring keeps the global synaptic strength fixed,
but the influence of each burst of activity is spread across the whole network instead of
focalised in one single module.

It is at middle that the activity of the modules resembles the activity of a critical system.
Avalanche size distributions show power law-like statistics, with a characteristic straight line
in the log-log histogram and a small protuberance at the end, result of finite-size effects. To
test the claim that the behaviour of the system is closest to a power law at an intermediate
value of p, we perform a maximum-likelihood power law fit to each trial and calculate
the 1-sample Kolmogorov-Smirnov (KS) statistic between the measured data and the fitted
power law. The results, together with three representative histograms are shown in Fig. 4.4.
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Figure 4.4: Avalanche size distributions for three runs of the simulation, supercritical (red), subcriti-
cal (green) and critical (blue). Black line: reference α = 2 power law as reported by [66, Fig. 3A]
for 1 ms-binned LFP data. Inset: Kolmogorov-Smirnov statistic D comparing the data against a
theoretical power law with the estimated parameters. Filled colour circles in the inset correspond to
the runs shown in the main plot.

This figure more clearly shows the difference between critical, subcritical and supercritical
behaviour; and the KS statistic determines that at p = 0.3 the system’s avalanche size
distribution is closest to a power law. Furthermore, at that point the critical exponent of the
maximum-likelihood fit is consistent with the α ≈ 2 value found by Beggs and Plenz for
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1 ms-binned local field potential (LFP) data,2 by de Arcangelis and Herrmann in simulated
scale-free networks, and by Levina and Priesemann in recent studies of developing neurons
in vivo [66, 65, 80].

4.3.3 Information-theoretic analysis

In practice, the challenge behind computing information-theoretic measures amounts to
estimating probability densities for the involved quantities (e.g. p(Mi,t+1|M(k)

i,t ) and p(Mi,t+1)

in the case of AIS). For our analyses we use the nearest-neighbour estimators devised by
Kraskov, Stögbauer and Grassberger [15]. The KSG estimators are non-parametric and make
only weak assumptions on the local neighbourhoods of the estimated probability density,
which makes them a robust, flexible tool. Reported results are corrected with surrogate data
methods [81].

More importantly, we measure information storage and transfer with AIS and CD and
show the results in Fig. 4.5. AIS is calculated separately for each module and then the 8
modules are averaged for each run. Nonparametric CD is calculated as described in Eq. (4.6).
The embedding dimension k is fixed at 5 for all calculations.
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Figure 4.5: Active information storage (blue, left axis) and nonparametric causal density (red, right
axis) for different rewiring probabilities p. Each measure peaks at one side of the critical region
around p = 0.3 where the system shows power law-like statistics (see Fig. 4.4).

First we note that information storage dominates the low-p regime. Because of the WTA
competition mechanism, if a module is inactive it tends to remain inactive, whereas if it is

2Note that one of Beggs and Plenz’s results is that the exponent depends on the bin size, and that the
well-known 3/2 exponent later publicised corresponds to a bin size equal to the average inter-spike interval,
which is larger than 1 ms.



4.3 RESULTS 69

active it will most likely saturate and cease activity shortly after. This means that the recent
history of the module’s activity is highly informative of their future.

Regarding transfer, CD has a prominent peak in the mid-p region. As expected, there is
little transfer in the p = 0 or p = 1 extremes, away of the neighbourhood around the critical
transition. This is because in the low-p regime the modules are completely disconnected;
and in the high-p regime the modules are so correlated that module i no longer provides
information about j after conditioning on the rest of the modules.

More interesting is the neighbourhood around p = 0.3, where storage and transfer are
maximally balanced. This coincides with the point where the avalanche dynamics are closest
to a power law, as measured by the KS statistic and shown in Fig. 4.4. This suggests that
there is a configuration of the system in which the balance between local and global coupling
results in a balance between local information storage and long-range information transfer,
which moreover is accompanied by a near-critical avalanche distribution. This finding links
together three complementary views on neural computation: topological, informational and
dynamical complexity.

4.3.4 Criticality and linear interactions

As we have argued above, the system exhibits a transition from competitive to cooperative
dynamics as coupling shifts from short- to long-range. This transition is accompanied, in
the large scale, by power law-like avalanche statistics and a balance of information storage
and transfer. In this section we explore the signatures of the transition in the pairwise
relationships between the activations of different modules in the network.

To study the spectral aspects of the model’s dynamics, we analyse the time series of
module firing rates under three filtering conditions:

• Raw (unfiltered) data.

• After first-order differencing (X ′t = Xt−Xt−1).

• After second-order differencing (X ′′t = X ′t −X ′t−1).

Since time-differencing is essentially a highpass filter, by taking successive differences
we are effectively exploring higher regions of the network’s frequency spectrum. Figure 4.6
shows aggregated histograms of the activity of all pairs of modules for growing values of p
and the three filtering conditions.

For high p these joint distributions visually appear Gaussian, suggesting that the relation-
ships between module activations are mostly linear in this regime. For lower p, however, the
WTA dynamics are clearly visible and distributions are heavily nonlinear. Interestingly, the
transition between the linear and nonlinear regimes lies in the p ∈ (0.2,0.4) range, where
information processing is most diverse and avalanches exhibit power law-like statistics.
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Figure 4.6: Heatmaps depicting the joint density distribution of the activations of two modules
Mi

t ,M
j

t (i.e. for each timestep, activation of module i in the x axis and module j in the y axis,
aggregated for all pairs i ̸= j) for the raw time series (top), after first-order time differencing (middle)
and after second-order time differencing (bottom). As the rewiring probability p increases these
distributions become increasingly Gaussian, indicating that the relationship between the activations
becomes more linear.

As a rough quantitative measure for nonlinearity, we calculate how much information
is accounted for by linear relationships. To do so we compare MI between modules using
two methods: the nonparametric KSG estimator, and a parametric estimator under the
assumption that all interactions are linear with Gaussian noise.

The latter is referred to as the linear-Gaussian estimator, and it assumes that all variables
in the system are jointly distributed as a multivariate Gaussian distribution (i.e. assumes
that all histograms in Fig. 4.6 are Gaussian). In this case all relevant information-theoretic
quantities can be calculated analytically from the joint covariance matrix of the system [7,
Chapter 9]. Under this assumption, the nonlinear component of the distribution is ignored.
Therefore, the difference between the KSG and linear-Gaussian estimators is a good proxy
for how much weight the nonlinear component of a distribution carries.3

To illustrate the effect of this assumption-breaking on informational measures, in Fig. 4.7
we show the average MI between all pairs of modules (i.e. the MI between the two variables
shown in the histograms of Fig. 4.6) calculated with the linear-Gaussian estimator and with
the nonparametric KSG estimator.

3Note, however, that the linear-Gaussian MI is not a lower bound to the true MI [82].
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Figure 4.7: Mutual information between pairs of modules using linear-Gaussian (red) and nonpara-
metric (blue) estimators. The system has a stronger non-linear component in the higher frequencies
of the low-p regime, as indicated by the discrepancy between the two estimators.

As expected, the linear estimator always lies (up to random fluctuations) below the KSG.
By considering the linear effects only, linear methods effectively provide a lower bound
of the true MI. The linear-Gaussian estimator is very close to the KSG for high p but
consistently below it in the low-p range, which validates our claim that interactions shift
from nonlinear to linear with increasing p. Furthermore, the gap between both estimators
is more prominent in the differenced time series, indicating that lower frequencies, which
are more strongly suppressed by time-differencing, are mostly responsible for the linear
component of the mutual information between modules.

4.4 Conclusion

In this chapter we studied a simple modular spiking neural network and used it to explore the
relation between dynamics, information processing and underlying network topology. The
fully modular setting implements a WTA mechanism, whereas the fully random setting is
comparable to a PING oscillator – both of which are ubiquitous neural circuits in biological
brains. This model gives us a way of interpolating between the two in a continuous fashion
by varying a long-range connectivity parameter, p.

We find that for intermediate values of p the network passes through a near-critical regime
in which avalanches display power law-like statistics, with the same critical exponent as
found in biological brains [66]. Measures of information storage and transfer peak at either
side of the critical point, and the point where they are maximally balanced coincides with
the point where avalanches are closest to a power law.
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This transition can also be understood as a breakdown of linearity, with cooperative linear
interaction being prevalent when connectivity is global and delocalised, and competitive
winner-take-all interaction more prominent when connectivity is local.

Taken together, these findings link together three complementary views on neural compu-
tation: topological, informational, and dynamical complexity.



Chapter 5

Integrated information and distributed
computation in cellular automata

Chapter summary

As a final complexity case study, we consider distributed computation in cellular
automata. We relate IIT to distributed computation in two ways: at a global
scale, Φ is higher for complex, class IV automata; and at a local scale Φ is
higher for emergent coherent structures, like blinkers, gliders, and collisions.
Together with the previous two examples, this suggests Φ is, empirically, a good
candidate for a universal marker of complexity.
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5.1 Introduction

Cellular Automata (CA) are an important class of discrete dynamical models widely used in
the study of complex systems and distributed computation. They have been used in the study
of neural dynamics [83], ecological phenomena [84], and biological evolution [85], among
many other disciplines; and are a quintaessential example of complex behaviour arising
from simple local interactions [86]. Some particularly simple automata, most famously
elementary automaton 110, are known to be capable of universal computation [87].

Historically, these automata have been at the core of early information-theoretic studies
of complexity [88]. Their simplicity and flexibility make them excellent subjects of study –
even simple rules can display a broad diversity of behaviour, and their discrete state-space
makes it (relatively) easy to estimate probability distributions. It is through studying these
automata and similar systems that information theory has been successfully used to formalise
previously fuzzy concepts around complexity and self-organisation [89, 90].

Part of the early work on CA was due to their appeal as theoretical models of distributed
computation – they are Turing-complete, in the sense that they can emulate any Turing ma-
chine; but they are radically unlike Turing machines in the sense that there is no centralised
element (like the machine’s “head”) that performs the computation. Instead, it is groups
of cells that, by each following local rules, are able to collectively perform the computa-
tion. The idea that the brain may be studied as such a distributed computing device has
been tremendously influential throughout the cognitive sciences, embodied in the work on
connectionism and parallel distributed processing [91]. They have also influenced the study
of consciousness, nowhere more explicitly than in Baars’ global workspace theory [92, 93].

One peculiar feature of CA is that this distributed computation is instantiated by distinct
emergent structures, typically thought of as particles – coherent spatio-temporal structures
that may move and collide with one another, thereby instantiating certain kinds of com-
putation [94]. In his brilliant PhD thesis, Lizier [69] provided a comprehensive study of
information processing through emergent structures in ECA, which he achieved through the
formulation of local information-theoretic measures.

In this chapter we build on Lizier’s work by applying measures of integrated information
to the analysis of cellular automata. We show that, on a global scale, automata capable of
more sophisticated computation tend to have higher Φ; and, using a novel local measure of
integrated information, we show that this information is integrated in the aforementioned
emergent structures. These results support our claim that integrated information is a landmark
feature of the distributed computation and emergent dynamics observed in cellular automata.
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5.2 Methods
5.2.1 Elementary automata and complexity classes

Our analysis begins with Elementary Cellular Automata (ECA), which constitute a particular
subclass of CA. In ECA, agents (or cells) are arranged in a one-dimensional cyclic array
(or tape). The state of each cell at a given time step has two possible states, 0 or 1, and is
a boolean function of the state of itself and its immediate neighbours at the previous time
step. The same boolean function dictates the time evolution of all cells, inducing a spatial
translation symmetry. Hence, in the case of ECA, each of the 256 different boolean functions
of three binary inputs induces a different evolution rule. Rules are then enumerated from 0
to 255 and each ECA, irrespective of its number of agents, can be classified by its rule. For
a more detailed description of ECA and their numbering system, see Ref. [86].

Early influential work by Wolfram [95] introduced the notion of complexity class to
classify ECA in four groups. According to Wolfram, an ECA belongs to each class I-IV if
when started from random initial conditions it generates:

I A simple attractor with a very small number of states.

II Simple periodic attractors.

III Chaotic, seemingly random patterns.

IV Complex, highly structured patterns with persistent structures.1

In this way, rules of increasing class number display increasingly complex behaviour. In fact,
Wolfram hypothesised that all class IV automata may be Turing-complete – and, although
some of them have been proven to be so [87, 97, 98, 94], the problem of determining to
which class a particular CA belongs to is in general undecidable [99, 100], casting doubt
on the classification scheme itself. Nonetheless, for our purposes here we will consider an
automaton’s class number as an approximate indicator of the complexity of its behaviour,
and study its relation with Φ and other information-theoretic quantities.

5.2.2 Local information dynamics

In his PhD thesis and accompanying articles, Lizier [69, 101, 70, 102] used information
theory to study the local information dynamics of cellular automata, and convincingly
showed that computation is implemented in coherent, emergent structures known as particles.
Key to this finding was the focus on local (or pointwise) information measures, evaluated
throughout the temporal evolution of an ECA.

1This classification, originally made loosely by Wolfram based on visual inspection, was later formalised
in terms of fixed points, limit cycles, and strange attractors [96].
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As an example, the local mutual information is given by

i(x;y) = log
p(x,y)

p(x)p(y)
, (5.1)

which is the integrand of Eq. (2.6), such that the expected value of i is the standard mutual
information, I(X ;Y ) = E[i(x;y)]. By evaluating i on every x,y pair, we can elucidate which
particular combinations of symbols are responsible for the measured correlation between
X and Y . This reasoning has been successfully used recently in the context of information
decomposition [103], which will be explored further in Chapters 8 and 9.

Complementing the formulation of local measures, Lizier proposed a taxonomy of dis-
tributed information processing as composed of storage, transfer and modification.2 In this
framework, storage is identified with excess entropy, E = I(X (k)

t ;X (k+)
t+1 ), and transfer with

transfer entropy (c.f. Eq. (2.30)) – with their corresponding local versions

ek(xt) = log
p(x(k)t ,x(k

+)
t+1 )

p(x(k)t )p(x(k
+)

t+1 )
, (5.2)

tk(yt → xt) = log
p(xt+1|x(k)t ,y(k)t )

p(xt+1|x(k)t )
, (5.3)

where a subscript (k) indicates the vector embedding as used in Chapter 4, and x(k
+)

t is a
future embedding vector x(k

+)
t = {xt ,xt+1, ...,xt+k−1}.

In this chapter we extend the standard formulation of integrated information measures in
two ways: first, we add embedding vectors, so they are applicable to non-Markovian systems;
and second, we formulate pointwise measures to be applied on a local spatio-temporal scale.

Mathematically, these modifications are straighforward: we reformulate the effective
information in Eq. (2.16) to add embedding vectors,

ϕk[X ;τ,] = I(X (k)
t−τ ;Xt)−

2

∑
j=1

I(M j,(k)
t−τ ;M j

t ) , (5.4)

and apply the same partition schemes described in Sec. 2.3.1 to obtain a ‘big-phi’ integrated
information, Φk. Additionally, the equation above can be readily made into a local measure
by replacing mutual information with its local counterpart,

φk[xt ;τ,] = i(x(k)t−τ ;xt)−
2

∑
j=1

i(m j,(k)
t−τ ;m j

t ) . (5.5)

2Further discussion on this taxonomy, specifically about information modification, will be presented in
Chapter 9.
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5.3 Results

For all the results presented below, we follow the same simulation parameters used by Lizier
in his study of local information dynamics in ECA [69]. Specifically, we initialise a tape
of length 104 with random i.i.d. binary variables, discard the first 100 steps of simulation,
and run 600 more steps that are used to estimate the probability distributions used in the
information-theoretic measures described below.

5.3.1 Integrated information and complexity class

As a first experiment, we calculate the average integrated information of each ECA, Φk,
separating each automaton by its complexity class. We used the rules given in Wolfram’s
original article [95], as well as other clear-cut rules, and excluded border cases which did
not neatly fit into one single category. The results are shown in Figure 5.1.
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Figure 5.1: Integrated information grows monotonically with Wolfram class number. (Left) Ex-
amples of each complexity class (ECA rules 32, 56, 75, and 54, respectively), showing noticeable
differences in behaviour. Notice the presence of localised particles in the class IV rule. (Right)
Correspondingly, Φ is highest for the more complex classes IV and III, and lower (and often negative)
for the simpler behaviours in classes I and II.

The clear result is that complexity, as measured by Φ, correlates strongly with complexity
as discussed by Wolfram – automata of higher classes have consistently higher Φ than
automata of lower classes, and the difference between classes I,II and III,IV is stark. In
fact, some low-complexity rules (especially in class I, but also in class II) have negative Φ,
indicating a prevalence of redundancy in their dynamics (c.f. Chapter 9).
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It is worth noting the small difference between classes III and IV. This is likely related
to the blurriness of the line separating both classes – visually, it is hard to judge whether
structures are “coherent enough” and, formally, the problem of determining whether a
particular rule belongs to class III or IV is considered undecidable [99, 104]. Based on this,
we may temptatively suggest that the capacity to integrate information is a neccesary, but
not sufficient, condition for universal computation.

5.3.2 Integrated information at the edge of chaos

In his seminal 1990 article, Langton [96] took a step beyond Wolfram’s classification,
and argued that the complexity and universality observed in ECA may reflect a broader
phenomenon he called computation at the edge of chaos. In this view, computation is made
possible by indefinitely long transient states, a manifestation of critical slowing-down [105],
that form the particle-like structures seen in class IV rules.

Langton’s argument starts by defining a parameter λ , which represents the fraction of
neighbourhoods in a CA’s rule table that map to a non-quiescent state (i.e. a non-white
colour). Then, by initialising one automaton with an empty rule table and progressively
filling it with non-quiescent states, one can observe a transition point with exponentially
long, particle-like transients (Fig. 5.2a). Here we repeat Langton’s experiments using a
6-colour, range-2 CA, compute its average Φ, and show the results in Figure 5.2.

Interestingly, and in agreement with Langton’s argument, we see a peak of integrated
information for intermediate values of λ , coinciding with the automata’s transition to a
chaotic regime (Fig. 5.2b). It is rules in this critical region where computation is possible
that have the highest Φ, showing peak integrated information at the edge of chaos.

Another unusual feature of Fig. 5.2b is that there is a region where complex, high-Φ
automata coexist with simpler ones. This phenomenon was reported in Ref. [96] already:
different automata will make a “transition” at different values of λ . This motivated Langton
to analyse measures of complexity as a function of ∆λ , the distance from the transition
event for that particular automaton. As expected, when aligned by their critical λ value
and plotted against ∆λ (Fig. 5.2c), all curves align onto a consistent picture of integrated
information across the λ range.

For completeness, it is worth mentioning why at the right side of Figs. 5.2b and 5.2c Φ
does not vanish for high λ (as one may expect, given that the single-cell autocorrelation
does [96]). This is essentially due to the determinism and locality of the automaton’s rule:
given a spatially extended set of cells, it is always possible to predict the middle ones with
perfect certainty. At the same time, cutting the system with a bipartition will reduce the
spatial extent of this predictable region, so that the predictability of the whole is greater than
the predictability of the parts, and thus Φ> 0.



5.3 RESULTS 79

λ = 0.10 λ = 0.45 λ = 0.70

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

Langton’s λ

Φ

−0.6−0.4−0.2 0.0 0.2 0.4 0.6

0.0

0.5

1.0

Langton’s ∆λ

Φ

a) b)

c)

Figure 5.2: Integrated information peaks at the edge of chaos. (a) Sample runs from a random
cellular automaton with different λ values, starting from a blank tape with 20 randomised cells in the
middle. (b) Integrated information Φ peaks at an intermediate level of λ . (c) When plotted against
∆λ , the distance from a transition event, all runs align on a similar Φ profile.

5.3.3 Information is integrated by coherent structures

In the experiments above we have shown that more complex automata integrate more
information. However, this is not enough to make a case for Φ as a marker of distributed
computation – it may just be the case that medium-λ CA have higher Φ due to general
properties of their rule tables, or for some other reasons. In this section we address this
possible counter-argument by showing that the increase of Φ is due to the emerging particles,
and therefore can be directly associated with distributed computation.

To show this, we run large simulations of ECA rules 54 and 110, and evaluate several
local information measures in small fragments of both (Fig. 5.3). Specifically, we compute
Lizier’s measures of storage (excess entropy, ek) and transfer (transfer entropy, tk), as well
as our new local integrated information φk. Note that to measure transfer in either direction,
we compute the local TE from a cell to its left neighbour and to its right neighbour and show
the maximum of the two.
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Figure 5.3: Local information measures in cellular automata, applied to two simulations of rule
54 (top) and 110 (bottom). Excess entropy is high for static particles, transfer entropy for moving
particles, and integrated information Φ for both.

As expected, TE is high in gliders (moving particles), while excess entropy is high in
blinkers (static particles). More interestingly for our purposes, is that Φ is high in all of
them – gliders, blinkers, and the collisions between them.

When studied at a local scale in space and time, we see that information integration
encompasses the three categories – storage, transfer, and modification – and that Φ can
detect all of them without having been explicitly designed to do so. This reinforces our claim
that Φ is a generic marker of emergent dynamics, and is connected with known measures of
information processing. This connection will be made mathematically rigorous in Chapter 9
when we provide a decomposition of Φ and link it explicitly to TE and excess entropy.

5.4 Conclusion of Part I

In the last three chapters we have presented three case studies of integrated information
in complex systems of different sorts: coupled oscillators, spiking neurons, and cellular
automata. In all cases, Φ agreed with intuitive notions of complexity. This shows that Φ
represents the broad notion of complexity, both in the Tononi-Sporns-Edelman sense of bal-
anced integration and differentiation; and in the Wolfram sense of distributed computation.

It is worth noting that Φ is by no means the only quantity that peaks with the system’s
complexity – in cellular automata one could use the autocorrelation of a single cell, and in
coupled oscillators the variance of Kuramoto’s order parameter. The feature that makes Φ
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unique is that it is universally applicable across the board, and yields the desired results in
different kinds of systems without formulating idiosyncratic, ad-hoc measures.

This concludes our pragmatic argument that Φ can act as a unifying measure of complexity.
It is important to emphasise that we have presented an purely empirical case, showing
examples where Φ behaves as expected, but have given no theoretical explanation for why
this should be the case. Such a theoretical explanation will come in Chapter 9, when we
decompose Φ and identify some of its components as causally emergent dynamics.

In the next Part of this thesis, we switch gears back and return to considering IIT as
a theory of consciousness. We will argue that, although IIT may be a suitable theory of
complexity, there are limitations that (in its current form) stand in its way as a theory of
consciousness.





Part II

Drawbacks and limitations of
integrated information theory





Chapter 6

Measuring integrated information:
Comparison of candidate measures in
theory and simulation

Chapter summary

For it to be a fundamental theory of consciousness, IIT needs a robust axiomatic
base linking phenomenology to one or more measurable quantities. We explore
the properties of several proposed measures in simulation on simple, but non-
trivial systems, and find a striking diversity in the behaviour of these measures –
no two measures show consistent agreement across all analyses. We conclude
that the axioms of IIT are underspecified, in the sense that multiple measures
consistent with the axioms show qualitatively different behaviour in practice.
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6.1 Introduction

Measures of integrated information of the sort we used in Chapters 3–5 seek to quantify the
extent to which a whole system generates more information than the sum of its parts as it
transitions between states. Since the concept of integrated information can be operationalised
in many different ways, a whole range of distinct integrated information measures have come
into being in the literature [8, 9, 11, 10], as we reviewed in Chapter 2. Several of them are
beginning to see application to empirical data [106], or to large-scale simulations [107, 108],
yet a systematic comparison of the behaviour of the various measures on non-trivial network
models has not previously been performed.

All of these measures, however, have the potential to behave in ways which are not obvious
a priori, and in a manner difficult to express analytically. While some simulations of some
of the measures (Φ, Φ̃, CD) on networks have been performed [8, 12], and some analytical
understanding has been achieved for Φ and Φ̃ [10, 41], other measures (ψ , Φ∗, ΦG) have
not previously been computed on any model consisting of more than two components. Since
the ultimate goal of these measures is to provide a quantitative index of consciousness in
biological brains and other physical systems, we need to understand what features of the
target system drive the measures’ behaviour. Furthermore, given the plethora of measures
available, we need to understand their similarities and differences, and under what conditions
they agree or disagree.

In this chapter we provide such a comparison of the full suite of measures on non-trivial
network models, in order to shed light on their comparative practical utility. We consider
eight-node networks with a range of different architectures, animated with basic noisy vector
autoregressive dynamics. We examine how each measure is affected by network topology,
coupling strength and noise correlation, as well as its relation with simpler dynamical
controls like overall correlation. Based on these comparisons, we discuss the extent to which
each measure captures the co-existence of integration and segregation central to the concept
of dynamical complexity.

The main result of this exploration is a striking diversity in the behaviour of the measures –
no two of them show consistent agreement across all analyses. This is particularly worrying,
since all of them were proposed as representing the same notion of balanced integration
and segregation. Therefore, the main takeaway of this exercise is that all of these measures
behave very differently, despite all being consistent with the IIT principles. In other words,
the axiomatic basis of IIT is not specific enough to meaningfully narrow down a measure of
integrated information.
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6.2 Methods

In this study, we consider the following six measures, previously introduced in Sec. 2.3:

• Whole-minus-sum integrated information, Φ,

• Integrated stochastic interaction, Φ̃,

• Decoder-based integrated information, Φ∗,

• Geometric integrated information, ΦG,

• Integrated synergy, ψ ,

• Causal density, CD.

We use models based on stochastic linear auto-regressive (AR) processes with Gaussian
variables. These constitute appropriate models for testing the measures of integrated infor-
mation. They are straightforward to parameterise and simulate, and are amenable to the
formulae presented in the previous section. Mathematically, we define an AR process (of
order 1) by the update equation

Xt+1 = AXt + εt , (6.1)

where εt is a serially independent random sample from a zero-mean Gaussian distribution
with given covariance Σ(ε), usually referred to as the noise or error term. A particular AR
process is completely specified by the coupling matrix or network A and the noise covariance
matrix Σ(ε). An AR process is stable, and stationary, if the spectral radius of the coupling
matrix is less than 1 [109]. (The spectral radius is the largest of the absolute values of its
eigenvalues.) All the example systems we consider are calibrated to be stable, so the Φ
measures can be computed from their stationary statistics.

We shall consider how the measures vary with respect to: (i) the strength of connections,
i.e. the magnitude of non-zero terms in the coupling matrix; (ii) the topology of the network,
i.e. the arrangement of the non-zero terms in the coupling matrix; (iii) the density of
connections, i.e. the density of non-zero terms in the coupling matrix; and (iv) the correlation
between noise inputs to different system components, i.e. the off diagonal terms in Σ(ε).
The strength and density of connections can be thought of as reflecting, in different ways, the
level of integration in the network. The correlation between noise inputs reflects (inversely)
the level of segregation, in some sense. We also, in each case, compute the control measures

• Time-delayed mutual information (TDMI), I(Xt−τ ;Xt); and

• Average absolute correlation Σ̄, defined as the average absolute value of the non-diagonal
entries in the system’s correlation matrix.
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These simple measures quantify straightforwardly the level of interdependence between
elements of the system, across time and space, respectively. TDMI captures the total
information generated as the system transitions from one time-step to the next, and Σ̄ is
another basic measure of the level of integration.

We report the unnormalised measures minimised over even-sized bipartitions—i.e. bipar-
titions in which both parts have the same number of components. In doing this, we avoid
conflating the effects of the choice of definition of effective information with those of the
choice of partition search (see discussion on MIP in Sec. 2.3.1). See the Discussion for more
details on this topic.

6.2.1 Key quantities for computing integrated information measures

To compute the integrated information measures, the stationary covariance and lagged
partial covariance matrices are required. By taking the expected value of XT

t Xt with Equa-
tion (6.1) and given that εt is white noise, uncorrelated in time, one obtains that the stationary
covariance matrix Σ(X) is given by the solution to the discrete-time Lyapunov equation,

Σ(Xt) = A Σ(Xt) AT +Σ(εt). (6.2)

This can be easily solved numerically, for example in Matlab via use of the dlyap

command. The lagged covariance can also be calculated from the parameters of the AR
process as

Σ(Xt−1,Xt) = ⟨Xt(AXt + εt)
T⟩= Σ(Xt)AT, (6.3)

and partial covariances can be obtained by applying Eq. (2.7). Finally, we obtain the
analogous quantities for the partitions by the marginalisation properties of the Gaussian dis-
tribution. Given a bipartition Xt = {Mt ,Nt}, we write the covariance and lagged covariance
matrices as

Σ(Xt) =

(
Σ(Xt)mm Σ(Xt)mn

Σ(Xt)nm Σ(Xt)nn

)
,

Σ(Xt−1,Xt) =

(
Σ(Xt−1,Xt)mm Σ(Xt−1,Xt)mn

Σ(Xt−1,Xt)nm Σ(Xt−1,Xt)nn

)
,

(6.4)

and we simply read the partition covariance matrices as

Σ(Mt) = Σ(Xt)mm ,

Σ(Mt−1,Mt) = Σ(Xt−1,Xt)mm .
(6.5)
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6.3 Results
6.3.1 Two-node network

We begin with the simplest non-trivial AR process,

A =

(
a a
a a

)
, (6.6a)

Σ(ε) =
(

1 c
c 1

)
. (6.6b)

Setting a = 0.4, we obtain the same model as depicted in Figure 3 in Reference [10]. We
simulate the AR process with different levels of noise correlation c and show results for all
the measures in Figure 6.1. Note that, as c approaches 1, the system becomes degenerate, so
some matrix determinants in the formulae become zero causing some measures to diverge.
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Figure 6.1: (A) graphical representation of the two-node AR process described in Eq. (6.6). Two con-
nected nodes with coupling strength a receive noise with correlation c, which can be thought of as
coming from a common source; (B) all integrated information measures for different noise correlation
levels c.

Inspection of Figure 6.1 immediately reveals a wide variability of behaviour among
the measures, in both value and trend, even for this minimally simple model. A good
candidate measure of (dynamical) integrated information should tend to 0 as the noise tends
to becoming perfectly correlated (c→ 1) because, in that instance, the whole just becomes
a collection of copies of the parts (we don’t consider c = 1 because the Gaussian model
becomes singular in this limit). Only the measures ψ , Φ∗, and CD achieve this. ΦG is
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here unaffected by noise correlation,1 and Φ̃ grows monotonically with c. Furthermore,
Φ̃ diverges to infinity as c→ 1. On the other hand, Φ also decreases monotonically but
becomes negative for large enough c.

In Figure 6.2, we analyse the same system, but now varying both noise correlation c and
coupling strength a. As per the stability condition presented above, any value of a ≥ 0.5
makes the system’s spectral radius greater than or equal to 1, so the system becomes non-
stationary and variances diverge. Hence, in these plots, we evaluate all measures for values
of a below the limit a = 0.5.

Again, the measures behave very differently. In this case, TDMI and ΦG remain unaffected
by noise correlation, and grow with increasing coupling strength as expected. In contrast, Φ̃
and Σ̄ increase with both a and c. Φ decreases with c but shows non-monotonic behaviour
with a. Three of the measures, ψ , Φ∗, and CD, show properties consistent with capturing
conjoined segregation and integration—they monotonically decrease with noise correlation
and increase with coupling strength.
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Figure 6.2: All integrated information measures for the two-node AR process described in Equa-
tion (6.6), for different coupling strengths a and noise correlation levels c. The vertical axis is
inverted for visualisation purposes.

6.3.2 Eight-node networks

We now turn to networks with eight nodes, enabling examination of a richer space of
dynamics and topologies.

1According to an anonymous reviewer, ΦG does decrease with noise correlation in discrete systems,
although in this article we focus exclusively in Gaussian systems.
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We first analyse a weighted network optimised using a genetic algorithm to yield high Φ
(Figure 2b in [8]). The noise covariance matrix has ones in the diagonal and c everywhere
else, and now a is a global factor applied to all edges of the network. The (weighted)
adjacency matrix is scaled such that its spectral radius is 1 when a = 1. Similar to the
previous section, we evaluate all measures for multiple values of a and c and show the
results in Figure 6.3.
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Figure 6.3: All integrated information measures for the Φ-optimal AR process proposed by [8], for
different coupling strengths a and noise correlation levels c. Vertical axis is inverted for visualisation
purposes.

Moving to a larger network mostly preserves the features highlighted above. TDMI is
unaffected by c; Φ̃ behaves like Σ̄ and diverges for large c; and Φ∗ and CD have the same
trend as before, although now the decrease with c is less pronounced. Interestingly, ψ and
ΦG increase slightly with c, and Φ does not show the instability and negative values seen in
Figure 6.2. Overall, in this more complex network, the effect of increasing noise correlation
on Φ, ψ , Φ∗, and CD is not as pronounced as in simpler networks, where these measures
decrease rapidly towards zero with increasing c.

Thus far, we have studied the effect of AR dynamics on integrated information measures,
keeping the topology of the network fixed and changing only global parameters. We next
examine the effect of network topology, on a set of six networks:

A A fully connected network without self-loops.

B The Φ-optimal binary network presented in [8].

C The Φ-optimal weighted network presented in [8].

D A bidirectional ring network.
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E A “small-world” network, formed by introducing two long-range connections to a
bidirectional ring network.

F A unidirectional ring network.

In each network, the adjacency matrix has been normalised to a spectral radius of 0.9. As
before, we simulate the system following Equation (6.1), and here set noise input correlations
to zero (c = 0) so the noise input covariance matrix is just the identity matrix. Figure 6.4
shows connectivity diagrams of the networks for visual comparison, and Figure 6.5 shows
the values of all integrated information measures evaluated on all networks.

As before, there is substantial variability in the behaviour of all measures, but some
general patterns are apparent. Intriguingly, the unidirectional ring network consistently
scores highest for all measures (except for Φ̃ and CD), followed in most cases by the
weighted Φ-optimal network.2 On the other end of the spectrum, the fully connected
network A consistently scores lowest, which is explained by the large correlation between
its nodes as shown by Σ̄.

The results here can be summarised by comparing the rank assigned to the networks by
each measure (see Table 6.1). Inspecting this table reveals a remarkable alignment between
TDMI, ΦG, Φ∗, and ψ , especially given how much their behaviour diverges when varying
a and c. Although the particular values are different, the measures largely agree on the
ranking of the networks based on their integrated information. This consistency of ranking
is initially encouraging with regard to empirical application.

Table 6.1: Networks ranked according to their value of each integrated information measure (highest
value to the left). We add small-world index as a dynamics-agnostic measure of network complexity.

Measure Ranking

I(Xt ,Xt+τ) F C D E B A
ΦG F C D E B A
Φ F C B E D A
Φ∗ F C B E D A
Σ̄ C B A E D F
Φ̃ C F B D E A
ψ F C D E B A

CD C F B D E A
SWI C E B A D F

2Note that in Figure 6.5 the Φ-optimal networks B and C score much less than simpler network F. This
is because all networks have been scaled to a spectral radius of 0.9 – when the networks are normalised to a
spectral radius of 0.5, as in the original paper, then B and C are, as expected, the networks with highest Φ.
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A B C

D E F

Figure 6.4: Networks used in the comparative analysis of integrated information measures. (A) fully
connected network; (B) Φ-optimal binary network from [8]; (C) Φ-optimal weighted network from
[8]; (D) bidirectional ring network; (E) small world network; and (F) is a unidirectional ring network.

A B C D E F

2

4

6

I(Xt−τ ;Xt)

A B C D E F

0.5

1.0

1.5

ΦG

A B C D E F

0.0

0.5

1.0

1.5

Φ

A B C D E F

0

2

4

6

Φ∗

A B C D E F

0.4

0.5

0.6

0.7

Σ̄

A B C D E F

0.5

1.0

1.5

2.0

Φ̃

A B C D E F
0

1

2

3

ψ

A B C D E F

0.01

0.02

0.03

CD

Figure 6.5: Integrated information measures for all networks in the suite shown in Figure 6.4,
normalised to spectral radius 0.9 and under the influence of uncorrelated noise. The ring and
weighted Φ-optimal networks score consistently at the top, while denser networks like the fully
connected and the binary Φ-optimal networks are usually at the bottom. Most measures disagree on
specific values but agree on the relative ranking of the networks.
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However, the ranking is not what might be expected from topological complexity measures
from network theory. If we ranked these networks by e.g. small-world index (SWI) [110,
111],3 we expect networks B, C, and E to be at the top and networks A, D, and F to be at
the bottom—very different from any of the rankings in Table 6.1. In fact, the Spearman
correlation between the ranking by small-world index and those by TDMI, ΦG, Φ∗, and
ψ is around −0.4, leading to the somewhat paradoxical conclusion that more structurally
complex networks integrate less information. We note that these rankings are very robust to
noise correlation (results not shown) for all measures except Φ. Across all simulations in
this study, the behaviour of Φ is erratic, undermining prospects for empirical application.
(This behaviour is even more prevalent if Φ is optimised over all bipartitions, as opposed to
over even bipartitions.)

6.3.3 Random networks

We next perform a more general analysis of the performance of measures of integrated
information, using Erdős–Rényi random networks. We consider Erdős–Rényi random
networks parametrised by two numbers: the edge density of the network ρ and the noise
correlation c (defined as above), both in the [0,1) interval. To sample a network with a given
ρ , we generate a matrix in which each possible edge is present with probability ρ and then
remove self-loops. The stochasticity in the construction of the Erdős–Rényi network induces
fluctuations on the integrated information measures, such that, for each (ρ,c), we calculate
the mean and variance of each measure.

First, we generate 50 networks for each point in the (ρ,c) plane and take the mean of each
integrated information measure evaluated on those 50 networks. As before, the adjacency
matrices are normalised to a spectral radius of 0.9. Results are shown in Figure 6.6.

ΦG increases markedly with ρ and moderately with c, Σ̄ increases sharply with both and
the rest of the measures can be divided in two groups, with Φ, ψ and CD that decrease
with c and TDMI, Φ̃ and Φ∗ that increase. Notably, all integrated information measures
except ΦG show a band of high value at an intermediate value of ρ . This demonstrates their
sensitivity to the level of integration. The decrease when ρ is increased beyond a certain
point is due to the weakening of the individual connections in that case (due to the fixed
overall coupling strength, as quantified by spectral radius).

Secondly, in Figure 6.7, we plot each measure against the average correlation of each
network, following the rationale that dynamical complexity should (as a necessary, but not
sufficient condition) peak at an intermediate value of Σ̄—i.e. it should reach its maximum

3The small-world index of a network is defined as the ratio between its clustering coefficient and its mean
minimum path length, normalised by the expected value of these measures on a random network of the same
density. Since the networks we consider are small and sparse, we use the 4th order cliques (instead of triangles,
which are 3rd order cliques) to calculate the clustering coefficient.
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Figure 6.6: Average integrated information measures for Erdős–Rényi random networks with given
density ρ and noise correlation c. The vertical axis is inverted for consistency with Figures 6.2 and
6.3.

value in the middle range of Σ̄. To obtain this figure, we sampled a large number of Erdős–
Rényi networks with random (ρ,c), and evaluated all integrated information measures, as
well as their average correlation Σ̄.

Figure 6.7 shows that some of the measures have this intermediate peak, in particular:
Φ∗, ψ , ΦG, and CD. Although also showing a modest intermediate peak, Φ̃ has a stronger
overall positive trend with Σ̄, and Φ an overall negative trend. These analyses further support
the notion that Φ∗, ψ , ΦG, and CD reflect some form of dynamical complexity, although
the relation between them remains unclear and not always consistent in other scenarios.

One might worry that these peaks could be due to a biased sampling of the Σ̄ axis—if
our sampling scheme were obtaining many more samples in, say, the 0.2< Σ̄< 0.4 range,
then the points with high Φ we see in that range could be explained by the fact that the
high-Φ tails of the distribution are sampled better in that range than in the rest of the Σ̄
axis. However, the histogram at the bottom of Figure 6.7 shows this is not the case—on the
contrary, the samples are relatively uniformly spread along the axis. Therefore, the peaks
shown by Φ∗, ψ , ΦG, and CD are not sampling artefacts.
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Figure 6.7: Integrated information measures of random Erdős–Rényi networks, plotted against the
average correlation Σ̄ of the same network; (bottom) normalised histogram of Σ̄ for all sampled net-
works.

6.4 Discussion

In this study, we compared several candidate measures of integrated information in terms of
their theoretical construction, and their behaviour when applied to the dynamics generated
by a range of non-trivial network architectures. We found that no two measures had precisely
the same basic mathematical properties (see Table 2.2). Empirically, we found a striking
variability in the behaviour among the measures even for simple systems; see Table 6.2
for a summary. Three of the measures, ψ , Φ∗ and CD, capture conjoined segregation
and integration on small networks, when animated with Gaussian linear AR dynamics
(Figure 6.1). These measures decrease with increasing noise input correlation and increase
with increasing coupling strength (Figure 6.3). Furthermore, on random networks with fixed
overall coupling strength (as quantified by spectral radius), they achieve their highest scores
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Table 6.2: Integrated information measures considered and brief summary of our results.

Measure Summary of Results

Φ Erratic behaviour, negative when nodes are strongly correlated.
Φ̃ Mostly reflects noise input correlation, not sensitive to changes in coupling.
ψ Reflects both segregation and integration.
Φ∗ Reflects both segregation and integration.
ΦG Mostly reflects changes in coupling, not sensitive to noise input correlation.
CD Reflects both segregation and integration.

when an intermediate number of connections are present (Figure 6.6). They also obtain their
highest scores when the average correlation across components takes an intermediate value
(Figure 6.7).

In terms of network topology, none of the measures strongly reflect complexity of the
network structure in a graph theoretic sense. At fixed overall coupling strength, a simple ring
structure (Figure 6.4) leads in most cases to the highest scores. Among the other measures:
Φ̃ is largely determined by the level of correlation amongst the noise inputs, and is not
very sensitive to changes in coupling strength; ΦG depends mainly on the overall coupling
strength, and is not very sensitive to changes in noise input correlation; and Φ generally
behaves erratically.

Considered together, our results motivate the continued development of ψ , Φ∗ and CD as
theoretically sound and empirically adequate measures of dynamical complexity.

6.4.1 Partition selection

Integrated information is typically defined as the effective information beyond the minimum
information partition [5, 4]. However, when a particular measure of integrated information
has been first introduced, it is often with a new operationalisation of both effective informa-
tion and the minimum information partition. In this paper, we have restricted attention to
comparing different choices of measure of effective information, while keeping the same
partition selection scheme across all measures. Specifically, we restricted the partition search
to even-sized bipartitions, which has the advantage of obviating the need for introducing a
normalisation factor when comparing bipartitions with different sizes. For uneven partitions,
normalisation factors are required to compensate for the fact that there is less capacity for
information sharing as compared to even partitions. However, such factors are known to
introduce instabilities, both under continuous parameter changes, and in terms of numerical
errors [8]. Further research is needed to compare different approaches to defining the
minimum information partition, or finding an approximation to it in reasonable computation
time [112].



98 CHAPTER 6. MEASURING INTEGRATED INFORMATION

In terms of computation time, performing the most thorough search, through all partitions,
as in the early formulation of Φ by Balduzzi and Tononi [5] requires time (nn). Restricting
attention to bipartitions reduces this to (2n), whilst restricting to even bipartitions reduces
this further to (n2). These observations highlight a trade-off between computation time
and comprehensive consideration of possible partitions. Future comparisons of integrated
information measures may benefit from more advanced methods for searching among a
restricted set of partitions to obtain a good approximation to the minimum information
partition. For example, Toker and Sommer use graph modularity, stochastic block models or
spectral clustering as informed heuristics to suggest a small number of partitions likely to be
close to the MIP, and then take the minimum over those. With these approximations, they
are able to calculate the MIP of networks with hundreds of nodes [112, 106]. Alternatively,
Hidaka and Oizumi make use of the submodularity of mutual information to perform
efficient optimisation and find the bipartition across which there is the least instantaneous
mutual information of the system [113]. Presently, however, their method is valid only for
instantaneous mutual information and is therefore not applicable to finding the bipartition
that minimises any form of normalised effective information as described above in the
section dedicated to the MIP.

Furthermore, each measure carries special considerations regarding partition search. For
example, for ψ , taking the minimum across all partitions is equivalent to taking it across
bipartitions only, thanks to the properties of I∩ [19, 20, 23]. Arsiwalla and Verschure [114]
used Φ̃ and suggested always using the atomic partition on the basis that it is fast, well-
defined, and, for Φ̃ specifically, it can be proven to be the partition of maximum information;
and thus it provides a quickly computable upper bound for the measure.

6.4.2 Continuous variables and the linear Gaussian assumption

We have compared the various integrated information measures only on systems whose
states are given by continuous variables with a Gaussian distribution. This is motivated
by measurement variables being best characterised as continuous in many domains of
potential application. Future research should continue the comparison of these measures on
a test-bed of systems with discrete variables. Moreover, non-Gaussian continuous systems
should also be considered because the Gaussian approximation is not always a good fit
to real data. For example, the spiking activity of populations of neurons typically exhibit
exponentially distributed dynamics [59]. Systems with discrete variables are in principle
straightforward to deal with, since calculating probabilities (following the most brute-force
approach) amounts simply to counting occurrences of states. General continuous systems,
however, are less straightforward. Estimating generic probability densities in a continuous
domain is challenging, and calculating information-theoretic quantities on these is difficult
[15, 115]. The AR systems we have studied here are a rare exception, in the sense that their
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probability density can be calculated and all relevant information-theoretic quantities have
an analytical expression. Nevertheless, the Gaussian assumption is common in biology, and
knowing now how these measures behave on these Gaussian systems will inform further
development of these measures, and motivate their application more broadly.

6.4.3 Empirical as opposed to maximum entropy distribution

We have considered versions of each measure that quantify information with respect to the
empirical, or spontaneous, stationary distribution for the state of the system. This constitutes
a significant divergence from the supposedly fundamental measures of intrinsic integrated
information of IIT versions 2 and 3 [5, 6]. Those measures are based on information gained
about a hypothetical past moment in which the system was equally likely to be in any one of
its possible states (the “maximum entropy” distribution). However, as pointed out previously
[8], it is not possible to extend those measures, developed for discrete Markovian systems,
to continuous systems. This is because there is no uniquely defined maximum entropy
distribution for a continuous random variable (unless it has hard-bounds, i.e. a closed and
bounded set of states). Hence, quantification of information with respect to the empirical
distribution is the pragmatic choice for construction of an integrated information measure
applicable to continuous time-series data.

The consideration of information with respect to the empirical, as opposed to maximum
entropy, distribution does, however, have an effect on the concept underlying the measure of
integrated information—it results in a measure not of mechanism, but of dynamics [116].
That is, what is measured is not information about what the possible mechanistic causes
of the current state could be, but rather what the likely preceding states actually are, on
average, statistically; see [8] for further discussion. Given the diversity of behaviour of
the various integrated information measures considered here even on small networks with
linear dynamics, one must remain cautious about considering them as generalisations or
approximations of the proposed “fundamental” Φ measures of IIT versions 2 or 3 [5, 6].

A remaining important challenge, in many practical scenarios, is the identification of
stationary epochs. For a relatively long data segment, it can be unrealistic to assume that all
the statistics are constant throughout. For shorter data segments, one can not be confident
that the system has explored all the states that it potentially would have, given enough time.

6.5 Final remarks

The further development, and empirical application of Integrated Information Theory re-
quires a good understanding of the various potential operational measures of information
integration. During the last few years, several measures have been proposed, but their be-
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haviour in any but the simplest cases has not been extensively characterised or compared. In
this study, we have reviewed several candidate measures of (dynamical/empirical) integrated
information, and provided a comparative analysis on simulated data, generated by simple
Gaussian dynamics applied to a range of network topologies.

Assessing the degree of dynamical complexity, integrated information, or co-existing
integration and segregation exhibited by a system remains an important outstanding chal-
lenge. Progress in meeting this challenge will have implications not only for theories of
consciousness, such as Integrated Information Theory, but more generally in situations where
relations between local and global dynamics are of interest. The review presented here
identifies promising theoretical approaches for designing adequate measures of integrated
information. Furthermore, our simulations demonstrate the need for empirical investigation
of such measures, since measures that share similar theoretical properties can behave in
substantially different ways, even on simple systems.



Chapter 7

Empirical evidence for and against IIT

Chapter summary

Regardless of its mathematical underpinnings, a minimum requirement for any
theory of consciousness is to make successful predictions on adult human brains.
We review existing experimental evidence for and against IIT as a theory of
consciousness, and present new comprehensive analyses on several datasets.
The evidence is mixed, and in some cases Φ, counterintuitively, is drastically
increased in the unconscious state and reduced in the psychedelic state. We
discuss possible causes of this discrepancy and discuss the relevance of these
results to IIT’s current and future status.
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7.1 Introduction

So far, our discussion of IIT as a theory of consciousness (and of its limitations as such)
has remained in abstract terms: the level of specification of its axioms, the robustness of its
definition, and other mathematical properties. And yet, we haven’t thus far addressed the
obvious question: is Φ in unconscious brains actually lower than in conscious ones? The
goal of this chapter is to attempt to provide an answer to that question.

In the spirit of Part I and our stated objectives (Sec. 1.2), throughout this chapter we will
be careful to dissociate the information-theoretic tools employed from any statements about
consciousness. In particular, we will distinguish between IIT, the collection of information-
theoretic tools and insights discussed earlier in this thesis; and IITC, the set of claims
concerning IIT as a theory of consciousness.

The chapter is structured as follows. We first discuss existing experimental evidence
for IITC, and argue that results have been overinterpreted and important details ignored.
Next, we present a comprehensive direct evaluation of Φ measures on altered states of
consciousness, and reach the unexpected result that Φ measures often show the opposite
behaviour to that predicted by IITC. Finally, we propose a small toy model that may help us
interpret these unexpected results, and suggests new avenues for methodological research
in consciousness neuroscience. Taken together, these pieces of evidence draw a complex
picture with no clear-cut conclusion at this stage. Empirical evidence does not seem to match
the theory’s predictions, although our statistical tools are poorly suited to fairly test those
predictions. We end this Part with a discussion of IIT’s current and future status, including
past hurdles and upcoming opportunities.

7.2 Existing experimental evidence for IITC

In this section we review the published empirical evidence for IITC, with the goal of
summarising the experimental findings, as well as putting them in context with IITC’s
predictions and with each other. The key results of the papers discussed here are presented in
Table 7.1. Note that this is by no means an exhaustive list of experimental applications of IIT.
We focus only on studies with direct relevance to the study of consciousness, and exclude
others – like the application of Φ measures to simulations of the C. elegans brain [106], to
neurological disease [117], or to other simulated systems [118] – that are not clearly linked
to IITC’s key claims about consciousness in healthy human brains.

First, let us comment on the early predictions of IITC put forward in some of the original
theoretical papers (e.g. Ref. [5]). These predictions include statements like the cerebellum
not playing a role in consciousness due to its feed-forward architecture; or Φ being low in
neurally inactive and hyperactive states like coma or seizures.
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These predictions, while correct and reasonably justified, are not enough to garner support
for IITC, because virtually every theory of consciousness has something to say about those
basic phenomena.1 In that sense, while the predictions are accurate, they are not specific –
they do not set IITC apart from many other proposals in a meaningful way.

With respect to the actual empirical results, two overarching patterns emerge:

1. Results are overall inconsistent; and

2. IIT methodology is only loosely applied.

Let us elaborate first on two examples showing inconsistent pieces of evidence. Consider
the results in Ref. [123] showing that Φ∗ is better than alternatives at classifying whether a
visual stimulus was consciously or unconsciously perceived. This is an important result, that
sets IITC apart from other theories by making statements about the structure of conscious
percepts. The limitation of Ref. [123], however, is they do not show Φ∗ to be actually higher
for consciously perceived stimuli, as opposed to just better as a classifier feature.

In principle, one could argue this is still valid – subjects are in wakeful rest, so their
“overall” Φ∗ may remain approximately unchanged. But, when considered in conjunction
with the earlier result that Φ∗ is higher for more “meaningful” stimuli [122], then we would
expect Ref. [123] to report higher Φ∗ when a face (instead of a random pixel mask) is
consciously perceived – which is not reported.

A similar, more obvious case of inconsistency is in the results of Refs. [120, 124].
Comparing subjects with and without propofol anaesthesia, Ref. [120] reports decreased
Φ under anaesthesia in the gamma band, while Ref. [124] reports lower Φ∗ in the alpha
band, but higher Φ∗ in all other bands. It should be noted that these two studies use different
measures of integrated information, which might explain the discrepancy (but it highlights
again the problem of underspecification discussed in Chapter 6).

The second, and perhaps more insidious problem, is that IIT methodology is loosely
applied in the experimental work mentioned, in such a way that the hypotheses being tested
are only surrogates for the central IITC claims. One example of this loose interpretation is
Casali et al.’s PCI experiment [125]. This case plays such a prominent role in the defence of
IITC that it deserves extended discussion in the subsection below.

7.2.1 PCI and causal interventions

In their landmark 2013 paper, Casali and colleagues made a remarkable contribution to ap-
plied consciousness science by introducing the Perturbational Complexity Index (PCI) [125].

1For example, a supporter of higher-order thought [119] or global workspace [93] theories will arrive at
the same conclusions through equally simple arguments.
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The procedure to estimate PCI consists of applying a TMS pulse to a subject’s brain, measur-
ing its response through EEG, and analysing the response via Lempel-Ziv complexity (c.f.
Chapter 10). Casali’s central result is that PCI correlates very well with clinically-defined
levels of consciousness, being higher for healthy awake subject, and lower for individu-
als sleeping or suffering from disorders of consciousness. Empirically, PCI is extremely
successful, and it remains the undisputed state-of-the-art of neurophysiological markers of
consciousness in clinical settings.

Proponents of IITC often mention PCI as a successful prediction of IITC [6, 126, 127],
typically presented as simply stating the obvious. Common points in the argument in-
clude that “PCI can gauge the intrinsic cause-effect power of the cortex,” and that it “is
high only if brain responses are both integrated and differentiated, corresponding to a dis-
tributed spatio-temporal pattern of causal interactions that is complex and hence not very
compressible” [126, p. 459].

Despite the excitement, and despite its unquestionable empirical success, I argue that PCI
does not constitute positive evidence to support the case for IITC, for multiple reasons:

1. In PCI, the perturbation used is of a very different kind compared to that in IIT 3.0. In
fact, one of the remarkable features of PCI is that the locus and intensity of the TMS
pulse do not matter – which is radically unlike the maximum-entropy perturbation
employed in IIT 3.0, a long procedure that involves carefully setting the system in
each one of its possible states and analysing the cause and effect information of each
one of its subsets.

2. Perturbational analyses tend to arrive at qualitatively similar result as their resting-state
analogues, albeit with a greater signal-to-noise ratio.2 Therefore, insofar as PCI uses
LZ, it is strongly correlated with LZ, and LZ is purely a measure of entropy (see
Chapter 10), the case for PCI as a measure of integrated information becomes much
weaker.

3. While having a high PCI does require the brain to be in a state with balanced integration
and differentiation, as we have extensively argued in Chapter 6 this restriction is not
specific enough. All the measures reviewed in Chapter 6 require this integration-
differentiation balance, but they do not enjoy the empirical success of PCI.

On the basis of these results, it is inappropriate to hold the PCI results as evidence for
IITC; and equating PCI with Φ only perpetuates the trend of underspecificity and ambiguity
in IIT research.

2Empirically, this really seems to be the case: Casali’s PCI paper gets to essentially the same result as
Schartner et al.’s studies using spontaneous LZ [47, 128, 129]; and Deco and Tagliazucchi’s results on intrinsic
ignition [130] also point towards essentially the same outcome as their earlier work [131] suggesting that
widespread correlation is stronger in wake than in N3 sleep.
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Far from being a setback, we see this as an opportunity for IIT research. Investigating
the source of the increase in signal-to-noise ratio due to the TMS is a promising avenue for
research in computational neuroscience of consciousness, which could inform both future
theory and experiment.

7.3 Novel experimental evidence against IITC
7.3.1 Datasets and methodology

For our own analysis, we pool together six different datasets related to markedly different
states of consciousness. These datasets span across multiple recording modalities (M/EEG,
ECoG), states of consciousness (sleep, anaesthesia, psychedelic state), and research centres.
Relevant details of each dataset can be found in Table 7.2.3

Table 7.2: Datasets used in experimental validation of IITC

Dataset
name Subjects NNN Modality Positive

condition
Negative
condition Reference

KTMD
anaesthesia

Macaque
monkeys

4 ECoG Awake Sedated [132]

Propofol
anaesthesia

Healthy
volunteers

7 EEG Awake Sedated [47, 133]

Psilocybin
(PSIL)

Healthy
volunteers

14 MEG Drug Placebo [134]

Ketamine
(KET)

Healthy
volunteers

19 MEG Drug Placebo [135]

LSD
Healthy

volunteers
15 MEG Drug Placebo [136]

Sleep
Epilepsy
patients

10 EEG Awake
Slow-wave

sleep
[137]

With the aim of facilitating comparisons, we select two conditions (i.e. states of con-
sciousness) from each dataset, and re-label them as positive or negative. This re-labelling is

3These analyses were done as part of a project in collaboration with Michael Schartner and Adam Barrett.
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shown in Table 7.2, and is done in such a way that, according to the predictions of IITC,
integrated information should be higher in the positive condition across all datasets.4

All datasets were cleaned and pre-processed as described in the original references, in all
cases including pre-selection, artefact rejection, and notch filtering. For the band-resolved
measures in Sec. 7.3.3, we use second-order Butterworth filters with the following cutoff
frequencies: delta, 1–4 Hz; theta, 4–7 Hz; alpha, 8–13 Hz; beta, 14–25 Hz; and gamma,
25–50 Hz. Finally, data was split into pseudo-stationary 2 s epochs.

The procedure followed to compute all measures was similar to that in Ref. [124], and
is as follows: first, a large sample of M sets of K different channels is selected at random.
Typically, M = 200 and K = {4,8,12}.5 For each of these subsets of K channels, measures
are computed according to the descriptions in Sec. 2.3 (i.e. including the bipartition search),
and bias-corrected using surrogate data methods [81]. Finally, each measure is averaged
across the M subsets to obtain a single scalar number for each subject and condition. Since
all the experiments employed a within-subjects design, we can make use of paired t-tests to
report p-values and effect sizes comparing the positive and the negative condition.

7.3.2 Broadband integrated information is lower in wakeful rest

We begin with a direct test of the central claim of IITC that integrated information is
higher during conscious states than during unconscious states. We evaluate the measures of
integrated information reviewed in Chapter 2 on the datasets described above, for several
values of integration timescale τ , and show the results in Fig. 7.1. Reported t-scores
correspond to the diference between the positive and the negative condition of each dataset,
such that scores greater than zero support IITC’s predictions.

It seems painfully ironic that all the measures that in Chapter 6 did not agree on a single
analysis now do agree, and they go against our predictions. In fact, these are most of the
times very strong effects, noticeably beyond the standard significance threshold of |t|= 1.96.

When inspected for each measure separately, results do not look much better: it is the more
recent measures (Φ∗, ΦG), that behave more strongly against the theoretical predictions. The
only measure that does to some extent follow the expected trend (for low τ) is whole-minus-
sum Φ – which, also ironically, has been the most criticised in the recent IIT literature due
to it being negative in some circumstances [9, 11, 10].

4This is only for the purpose of facilitating a comparison of results concerning the key claims of IITC. The
very concept of “level of consciousness” has been called into question, and it is particularly contentious to
speak of the psychedelic state as a “higher” state of consciousness [138].

5The limitation on low values of K comes from the computational demands imposed by the computation
of Φ measures, and from the difficulty of estimating joint probability distributions over many variables from
short segments of data.
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Figure 7.1: Broadband integrated information in six datasets of interest, for several integration
timescales τ . Reported t-scores correspond to the diference between positive and negative conditions
of each dataset, such that scores greater than zero support IITC’s predictions. All measures, with the
exception of whole-minus-sum Φ, go against IITC’s prediction, being higher for the unconscious
than the conscious state. (Dashed lines represent t =±1.96.)

7.3.3 Band-specific integrated information is inconsistent

In addition to the broadband analysis above, we present the results of all measures evaluated
on data pre-filtered for each frequency band (Fig. 7.2). Motivated by the result in Fig. 7.1
that measures tend to be closer to IITC’s prediction for lower timescales, we report t-scores
for τ =12 ms (although for all other timescales the results are qualitatively similar).

Unfortunately, this breakdown of integrated information by frequency band does not reach
any strong conclusions. Although some measures do align with IITC’s predictions in some
frequency bands, the results are inconsistent and no clear pattern emerges.

Take, for example, alpha-band ΦG under KTMD anaesthesia. This is a strong effect
(t > 5), which would, looking at the KTMD dataset alone, survive multiple comparisons and
provide a compelling result. However, this does not seem to generalise: alpha-band ΦG is
again in disagreement with IITC in the Propofol and Sleep datasets, calling into question the
KTMD result. Similar inconsistencies appear in gamma-band Φ or beta-band Φ∗, among
others. One might argue that these comparisons are unwarranted, and that the mechanism
behind the loss of integrated information in natural sleep is different from that under KTMD
anaesthesia. While that argument is valid, it does not get through the basic result that, in
their current state, integrated information measures do not provide a successful index of
consciousness in cases as clear as slow-wave sleep or general anaesthesia.
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Figure 7.2: Integrated information measures for all datasets, resolved by frequency band. No
consistent pattern emerges, and measures behave inconsistently across frequencies. (Dashed lines
represent t =±1.96.)

Interestingly, one consistent pattern does appear with psychedelics: most measures, in
all three psychedelic substances (with the exception of Φ̃ under PSIL) show a significant
increase with respect to a placebo in the θ band. This is a puzzling result, since the literature
on psychedelic neuroscience has not highlighted any special role of theta activity in the
psychedelic state, and instead tends to focus on the disruptions to alpha activity [136, 139].

Finally, note that our results do not reproduce Lee’s results of lower gamma-band Φ under
propofol [120], Chang’s results of reduced broadband Φ̃ in sleep [121], or Kim’s results of
reduced alpha-band Φ∗ under propofol or ketamine anaesthesia [124].
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7.4 Modelling the effect of unobserved activity on Φ

One particular requirement of IIT (especially in its later iteration [6]) is that one must
study systems at their smallest scale, examine all of their possible coarse-grainings, and
pick the one where its intrinsic cause-effect power is maximised – i.e. “where the action
happens” [140].

This proposal is theoretically appealing, but it is disappointingly far from our current
access to neuronal activity. One single M/EEG sensor aggregates the activity of thousands
or millions of neurons, and to avoid estimation problems we discard even more data and
consider only a handful of M/EEG channels at a time. Throughout this process we are
heavily subsampling the system of interest, which may have unintended consequences.

In other fields of neuroscience it is well known that subsampling can introduce undesired
measurement artifacts.6 However, in multivariate information theory subsampling has
not been studied in detail until recently [142], and, to the best of our knowledge, in IIT
subsampling has not been studied at all. In this section we put forward a temptative,
exonerating hypothesis: that the values of integrated information reported above may still be
compatible with the central IITC claims, but are heavily distorted by subsampling artefacts.

In support of our hypothesis, we study a bespoke toy model of “loss of consciousness.”7

Our model is a simple AR network (c.f. Chapter 6), made to vaguely resemble a subcortical
thalamic region coupled to two cortical hemispheres. Cortical nodes are strongly connected
within hemispheres and sparsely connected across them, and thalamic nodes have strong
connections with each other and weak diffuse connections to the whole cortex (Fig. 7.3a).

This model is inspired by the known role of thalamo-cortical drive in slow-wave sleep:
slow oscillations in deep sleep arise from the strengthening of thalamo-cortical feedback
loops, that entrain distant parts of the brain into coherent delta oscillations [143, 144].
Accordingly, in our model we fix the intra-cortical and intra-thalamic coupling matrices, and
simulate loss of consciousness by increasing thalamo-cortical coupling (Fig. 7.3b).

When we compute Φ on the whole cortex we observe that, as expected, Φ decreases as
the thalamo-cortical coupling strengthens. However, if we run the same simulation, but now
measure only one node from each hemisphere, a radically different picture appears: in the
subsampled system, Φ now increases as thalamo-cortical coupling is strengthened. This
spells a bleak future for practical applications of IIT – if we need access to all neurons in the
brain to be confident in our Φ estimates, the prospect of having a meaningful empirical test
of IITC in the near future becomes much less likely.

6For example, debate continues to rage in the statistical physics community as to whether neuronal
avalanches are critical or driven subcritical based on subsampling arguments [80, 141].

7The model is so simplistic that every neuroscientific reference around it deserves bold-font scare quotes.
We will omit these scare quotes in the interest of readability.
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Figure 7.3: Integrated information in an AR thalamo-cortical drive model. (a) Diagram of the
model, that includes a thalamus (purple) and two hemispheres (orange), with weak coupling between
them. (b) As we raise the thalamo-cortical coupling, Φ of the cortex is reduced (left), although if
we only measure one node in each hemisphere we will wrongly conclude it has increased (middle).
The problem can be alleviated by using appropriate state-space reconstruction methods, which can
recover the original downward trend (right).

Taken’s acclaimed theorem [71] shows that we can reconstruct the topology of a system’s
attractor through the delay embeddings of one variable, through a procedure known as
state-space reconstruction.8 In an attempt to alleviate the subsampling problem, we use
Barnett & Seth’s method of state-space estimates for Granger causality [146] and build a
new state-space estimate of Φ that we can evaluate on the same two nodes.

As shown in the right pane of Fig. 7.3b, with state-space reconstruction we are able to (at
least partially) recover the downward trend from the whole-cortex scenario by measuring
only two nodes. This suggests a possible way forward for practical IIT research, both in
terms of further experimental and simulation analyses, as well as formal theoretical work
linking statistical information theory with unobserved hidden variables [147].

It should be noted that this is in no way a serious model of sleep, thalamo-cortical
interactions or loss of consciousness. It is merely a proof of concept, loosely based on
established neuroscentific findings, that even in very simple systems subsampling may
have strong effects on observed experimental Φ results. Of course, this model is not a full
explanation of the results in Fig. 7.1, nor does it provide strong support for IITC, but it does
show those results may still be compatible with the IITC predictions.

8This methodology has already been employed successfully in the study of consciousness, although not
within IIT [145].
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7.5 Conclusion of Part II

After the applications to complex systems studied in Part I, in this Part we have focused on
properties of IIT relevant for a theory of consciousness. As a result, we have revealed two
limitations of IITC in its current form.

First, Chapter 6 presented a theoretical limitation: we reviewed and benchmarked multiple
Φ measures consistent with the principles of IIT and found a striking diversity in their
behaviour. This shows that the mathematical basis of IIT is not restrictive enough to
determine a unique measure of integrated information, and hints at the fact that there may
not be such a thing as a single universal measure of integration.

Second, Chapter 7 evaluated the experimental merit of IIT as a theory of consciousness,
both reviewing published literature and presenting new evidence. The result is that the
question is far from settled – published articles show little agreement, and Φ often has
the opposite trend from that predicted by IITC. Through toy models we show that these
paradoxical results may at least in part be attributed to the large number of unobserved
variables in contemporary neuroimaging techniques, and point to state-space reconstruction
as a potential way forward.

These two limitations, both theoretical and experimental, call for a more pragmatic and
evidence-driven research programme in IIT. In other words, it is best that we focus our
efforts on solving the actual problems of IIT, like making a theory that is applicable and
practical, and elucidating the conditions in which it can be meaningfully tested. In particular,
we argue that efforts to formulate (i) more specific measures of integrated information with
explicit operational meaning, and (ii) robust estimators from neuroimaging data, are likely
to benefit the development of IIT. The IITC goal is a formidable one, and as such it is to be
expected that various sorts of auxiliary tools will need to be developed before a meaningful
test can take place.



Part III

Beyond integrated information:
Developments and alternatives





Chapter 8

Quantifying high-order
interdependencies via multivariate
extensions of the mutual information

Chapter summary

We revisit the mathematical basis of early IIT, with the aim of providing new,
more suitable tools. Our investigation into the multivariate structure of infor-
mation leads to a new measure, the O-information, capable of characterising
synergy- and redundancy-dominated systems. We compare the O-information
against Φ’s predecessor, the Tononi-Sporns-Edelman measure of neural com-
plexity, and argue that the O-information is better able to capture the intuitions
behind the origins of IIT.
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8.1 Introduction

As argued in Chapter 6, some of the limitations encountered by IIT stem from the ambiguity
of the underlying concepts of integration and differentiation. Ultimately, these concepts
come from our intuitions from standard information theory, which (typically) deals with
bivariate systems. Indeed, in bivariate systems these concepts can be unambiguosly defined:
two variables are differentiated if they are statistically independent, or integrated if they
are perfectly correlated. However, these intuitions do not easily generalise to multivariate
systems with more than two elements.

We argue that, in essence, the mathematical challenges of IIT lie in the formalisation of
a multivariate theory of information. In an attempt to formalise the intuitive concepts of
integration and differentiation behind early IIT work [2, 3], in this chapter we take a step
back and re-examine what it means for a multivariate stochastic system to be “more than the
sum of its parts.” In particular, we contextualise our work from the perspective of the Partial
Information Decomposition (PID), which distinguishes different “types” of information
that multiple predictors convey about a target variable [19]. Two types of particular interest
for this work are redundancy, information that is conveyed by either predictor, and synergy,
information conveyed by both predictors jointly but not by either of them separately.

The main contribution of this study is the formulation of a new quantity, the O-information,
a measure able to distinguish between redundancy-dominated scenarios where three or more
variables have copies of the same information, and synergy-dominated systems charac-
terised by high-order patterns untraceable from low-order marginals. In contrast with
existing quantities that require a division between predictors and target variables [148],
the O-information is – to the best of our knowledge – the first symmetric quantity that
can measure intrinsic synergy in systems of more than three variables. Furthermore, we
argue that the O-information represents a more principled alternative to Tononi, Sporns and
Edelman’s neural complexity [2], and that the apparent trade-off between integration and
differentiation can be resolved through lessons from PID.

8.2 Fundamentals of multivariate information

The crux of multivariate interdependencies is that their information-theoretic descriptions are
not straighforward, as extensions of Shannon’s classical results to multivariate settings have
proven elusive [149]. The most established multivariate extensions of Shannon’s mutual
information are the total correlation [17] and the dual total correlation [150], which provide
suitable metrics of overall correlation strength. Their values, however, differ in ways that
are hard to understand, even gaining the adjective of “enigmatic” among scholars [151].
Another popular extension of the mutual information is the interaction information [152],
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which is a signed measure obtained by applying the inclusion-exclusion principle to the
Shannon entropy [153, 154]. Although this metric provides insighful results when applied
to three variables, its is not easily interpretable when applied to larger groups [19].

As a prelude for the definition of the O-information, below we discuss multivariate inter-
dependency via two dual persectives: as shared randomness and as collective constraints,
and describe their relation to these known extensions of the mutual information.

8.2.1 Entropy and negentropy

For every outside there is an inside and for every inside there is an outside. And
although they are different, they always go together.

Alan Watts, Myth of myself

Following the Bayesian interpretation of information theory, we define the information
contained in a system as the average amount of data that an observer would gain after
determining its configuration – i.e. after measuring it [155]. If each possible configuration
is to be represented by a distinct sequence of bits, source coding theory [7, Ch. 5] shows
that the optimal (i.e. shortest) labelling depends on prior information available before the
measurement. Information, hence, refers to how the observer’s state of knowledge changes
after measurement, quantifying the amount of bits that are revealed through this process.

For concreteness, consider an observer measuring a system of n discrete variables, XXXn =

(X1, ...,Xn). If the observer only knows that each variable X j can take values over a finite
alphabet  j, the amount of bits needed to specify the state of X j is log | j| (logarithms are
in base 2 unless specified otherwise). In contrast, if the observer knows that the system’s
behaviour follows a probability distribution pXXXn , the average amount of information in the
system reduces to the entropy H(XXXn) :=−∑xxxn pXXXn(xxxn) log pXXXn(xxxn) [155]. The difference,

 (XXXn) :=
n

∑
j=1

log | j|−H(XXXn) , (8.1)

is known as negentropy [156], and corresponds to the information about the system that is
disclosed by the knowledge of the statistics, before any measurement takes place [23].

Probability distributions are, from this perspective, a compendium of soft and hard con-
straints that reduce the effective phase space that the system can explore (hard constraints
completely forbid some configurations; soft constraints make them improbable). Conse-
quently, a given distribution divides the phase space in an admisible region quantified by the
entropy, and an inadmissible region quantified by the negentropy. Each part describes the
system’s structure from a different point of view: the entropy refers to what the system can
do, and the negentropy to what it can’t.
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8.2.2 The two faces of interdependency

Collective constraints
In the same way as  (XXXn) quantifies the strength of the overall constraints that rule
the system, the constraints that affect individual variables are captured by the marginal
negentropies  (X j) := log | j|−H(X j). Intuitively, the constraints that affect the whole
system are richer than individual constraints, as the latter do not take into account collective
effects. Their difference,

TC(XXXn) := (XXXn)−
n

∑
j=1

 (X j)

=
n

∑
j=1

H(X j)−H(XXXn) ,

(8.2)

quantifies the strength of the “collective constraints.” This quantity is known as total corre-
lation [17] (or multi-information [157]), and was briefly introduced earlier in Sec. 2.3.3. By
re-writing this relationship as  (XXXn) = ∑ j (X j)+TC(XXXn) one finds that the constraints
prescribed by the distribution are of two types: constraints confined to individual variables,
and collective constraints that restrict groups of two or more variables.

Example 1. Consider X1 and X2 to be binary random variables with pX1,X2(0,1)= pX1,X2(1,0)=
1/2. This distribution divides the total information (two bits) into H(X1,X2) = 1 and
 (X1,X2)= 1. Moreover,  (X1)= (X2)= 0 and therefore TC(X1,X2)= (X1,X2)= 1,
confirming that the constraints act on both X1 and X2. As a contrast, consider Y1 and Y2

binary random variables with distribution pY1,Y2(0,0) = pY1,Y2(1,0) = 1/2. In this case
 (Y1) = 0 while  (Y2) = (Y1,Y2) = 1, showing that the only constraint in this system
acts solely over Y2. Accordingly, for this case TC(Y1,Y2) = 0.

Shared randomness
As we did for  (XXXn), let us decompose H(XXXn) in individual and collective components.
To do this, we introduce the quantity R j = H(X j|XXXn

− j) as a metric of how independent X j

is from the rest of the system XXXn
− j = (X1, ...,X j−1,X j+1, ...,Xn). According to distributed

source coding theory [149, Ch. 10.5], R j corresponds to the data contained in X j that cannot
be extracted from measurements of other variables.1 The quantity ∑n

j=1 R j is known as the
residual entropy [158] (originally introduced under the name of erasure entropy [159]), and
quantifies the total information that can only be accessed by measuring a specific variable,

1In fact, a direct calculation shows that the variables XXXn are independent if and only if ∑ j R j = H(XXXn).
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Figure 8.1: The total information that can be stored in the system XXXn (∑n
j=1 log | j|) is decomposed

by a given state of knowledge (i.e. a probability distribution) into two parts: what is determined by
the constraints (the negentropy,  (XXXn)), and what is not instantiated until an actual measurement
takes place (the entropy, H(XXXn)). Both terms can be further decomposed into their individual and
collective components, yielding different perspectives on interdependency seen as either collective
constraints (measured by the total correlation TC(XXXn)) or shared randomness (corresponding to the
dual total correlation DTC(XXXn)).

i.e. the amount of “non-shared randomness.” Accordingly, the difference

DTC(XXXn) := H(XXXn)−
n

∑
j=1

R j (8.3)

is known as dual total correlation [150] (being also known as binding information [158]
and excess entropy [160]), and refers to the part of the joint entropy that is shared by two or
more variables – equivalently, information that can be obtained by measuring more than one
specific variable. As the entropy corresponds to the randomness within the system, the dual
total correlation quatifies the “shared randomness” that exists among the variables.

Example 2. Let us consider X1,X2 and Y1,Y2 from Example 1. For the former system
one finds that R1 = R2 = 0 and hence DTC(X1,X2) = H(X1,X2) = 1, which means that
the randomness within the system can be retrieved from measuring either X1 or X2. In
contrast, when considering Y1,Y2 one finds that R2 = 0 and R1 = H(Y1,Y2) = 1, and hence
DTC(Y1,Y2) = 0. This implies that the randomness of the system can be retrieved by
measuring only Y1.

Wrapping up, one can re-write Eq. (8.1) using Eqs. (8.2) and (8.3) and express the total
information encoded in the system XXXn in terms of constraints and randomness (Fig. 8.1):

n

∑
j=1

log | j|=  (XXXn)+H(XXXn)

=

[
TC(XXXn)+

n

∑
j=1

 (X j)

]
  

Collective and individual
constraints

+

[
DTC(XXXn)+

n

∑
j=1

R j

]
  

Shared and private
randomness

.
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8.3 O-information: Redundancy minus synergy
8.3.1 Definition and basic properties

The TC and DTC provide complementary metrics of interdependence strength. Following
Occam’s Razor, one might ask which of these perspectives allows for a shorter (i.e. more
parsimonious) description. This is answered by the following definition:

Definition 1. The O-information (shorthand for “information about Organisational struc-
ture”) of the system described by the random vector XXXn is defined as

Ω(XXXn) := TC(XXXn)−DTC(XXXn) (8.4)

=(n−2)H(XXXn)+
n

∑
j=1

[
H(X j)−H(XXXn

− j)
]
.

Intuitively, Ω(XXXn) > 0 indicates that the interdependencies can be more efficiently ex-
plained as shared randomness, while Ω(XXXn) < 0 implies that viewing them as collective
constraints can be more convenient. Note that Ω(XXXn) was first introduced as “enigmatic
information” in Ref. [151], although now that its properties have been revealed we choose
to give it a more appropriate name.

To develop some insight about the O-information, let us compare it with the interaction
information,2 which is a signed metric defined according to the inclusion-exclusion principle
by

I(X1;X2; ...;Xn) := ∑
γγγ⊆{1,...,n}

(−1)|γγγ|+1H(XXX γγγ) , (8.5)

where the sum is over all the subsets of indices γγγ ⊆ {1, ...,n}, with |γγγ| being the cardinality
of γγγ and XXX γγγ the vector of all variables with indices in γγγ . For n = 2, Eq. (8.5) reduces to the
well-known mutual information,

I(X1;X2) = H(X1)+H(X2)−H(X1,X2) .

For n = 3, Eq. (8.5) gives

I(X1;X2;X3)= I(Xi;X j)− I(Xi;X j|Xk) (8.6)

= I(Xi;X j)+ I(Xi;Xk)− I(Xi;X j,Xk)

for {i, j,k}= {1,2,3}, which, seen from a PID angle, is known to measure the difference
between synergy and redundancy in XXX3 [19]. Interestingly, although PID is an asymmet-
ric construction (predictors and targets cannot be swapped), Eq. (8.6) is fully symmet-

2The interaction information is closely related to the I-measures [154], the co-information [161], and the
multi-scale complexity [162].
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ric under permutations of all three variables. Specifically, redundancy dominates when
I(X1;X2;X3)≥ 0; e.g. if X1 is a Bernoulli random variable with p = 1/2 and X1 = X2 = X3,
then I(X1;X2;X3) = 1. In contrast, synergy dominates when I(X1;X2;X3)≤ 0, correspond-
ing to statistical structures that are present in the full distribution but not in the pairwise
marginals. For example, if Y1 and Y2 are independent Bernoulli variables with p = 1/2 and
Y3 = Y1 +Y2 (mod 2) (i.e. an xor logic gate) then I(Y1;Y2;Y3) =−1, since these variables
are pairwise independent while globally correlated [23]. Unfortunately, for n ≥ 4 the co-
information no longer reflects the balance between redundancy and synergy [19, Section
V].

In contrast with the interaction information, the next Lemma presents some basic proper-
ties of Ω.

Lemma 1. The O-information satisfies the following properties:

(i) Ω does not depend on the order of X1, ...,Xn.

(ii) Ω(X1,X2) = 0 for any pX1X2 .

(iii) Ω(X1,X2,X3) = I(X1;X2;X3) for any pXXX3 .

Property (i) shows that Ω reflects an intrinsic property of the system, without the need
of dividing the variables in groups with differentiated roles (e.g. targets vs predictors, or
input vs output). Property (ii) confirms that Ω captures only interactions that go beyond
pairwise relationships. Finally, Property (iii) shows that when n = 3 the O-information is
equal to I(X1;X2;X3). Interestingly, a direct calculation shows that if n> 3 then in general
Ω(XXXn) ̸= I(X1;X2; ...;Xn).

At this stage, one might wonder if the O-information could provide a metric for quantifying
the balance of redundancy and synergy, as the interaction information does for n = 3.
Intutively, one could expect redundant systems to have small DTC(XXXn) due to the multiple
copies of the same information that exist in the system, while having large values of TC(XXXn)

because of the constraints that are needed to ensure that the variables remain correlated.
On the other hand, synergistic systems are expected to have small values of TC(XXXn) due to
the few high-order constraints that rule the system, while having larger values of DTC(XXXn)

due to the weak low-order structure. These insights are captured in the following definition,
which is supported by multiple findings presented in the following sections.

Definition 2. If Ω(XXXn)> 0 we say that the system is redudancy-dominated, while if Ω(XXXn)<

0 we say it is synergy-dominated.
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8.3.2 Information decompositions

This section presents information decompositions that deepen our understanding of the
O-information, and will help us prove some of its useful properties. In the following, we
first introduce the partition lattice, which is then used to build decompositions of the TC,
DTC, and Ω.

The lattice of partitions
Let us characterise the possible ways in which one can sequentially decompose the system
described by XXXn. For this, consider partitions π = (ααα1|ααα2|...|αααm) of the set of indices
{1, ...,n}, which are collections of cells ααα j = {α1

j , ...,α
l( j)
j }⊂ {1, ...,n} that are disjoint and

satisfy
⋃m

j=1 ααα j = {1, ...,n}. The collection of all possible partitions of {1, ...,n}, denoted
by n, has a lattice structure3 enabled by the partial ordering introduced by the refinement
relationship, in which π2 ⪰ π1 if π2 is finer4 than π1 (or, equivalently, if π1 is coarser than
π2). A partition π2 is said to cover π1 if π2 ⪰ π1 and it is not possible to find another
partition π3 such that π2 ⪰ π3 ⪰ π1.5 For this partial order relationship, πsource = (12 ...n)
is the unique infimum of n, and πsink = (1|2|...|n) is the unique supremum of n.

A directed acyclic graph (DAG) n can be built, where the nodes are the partitions in
n, and a directed edge exists from π1 to π2 if and only if π2 covers π1.6 A path p in n

joining two partitions πa and πb is a sequence of nodes p = (π1, ...,πL), where π1 = πa,
πL = πb, and πi+1 covers πi for all i ∈ {1, ...,L−1}. The collection of all paths from πa to
πb is denoted by P(πa,πb).7 If the edge joining π1 and π2 has a weight v(π1,π2) associated,
then the corresponding path weight of p= (π1, ...,πL) is merely the summation of all edge
weights along p:

W (p;v) :=
L−1

∑
k=1

v(πk,πk+1) . (8.7)

3A lattice is a partially ordered set with a unique infimum and supremum. For more details on this
construction, see Ref. [163]

4If π1,π2 ∈ n with π1 = (ααα1|...|αααr) and π2 = (βββ 1|...|βββ s), π1 is finer than π2 if for each ααα i exists βββ k such
that ααα i ⊂ βββ k.

5It is direct to see that π2 covers π1 if and only if it is an “elementary refinement,” i.e. π2 can be obtained
from π1 by dividing one cell of π1 in two. Hence, if π2 covers π1 then |π2|= |π1|+1, where |π| is the number
of (non-empty) cells of π .

6Put simply, there is an edge from π1 to π2 if π2 results from taking π1 and splitting one of its cells in two.
7It is direct to check that πb ≻ πa if and only if P(πa,πb) ̸=∅. Moreover, all p ∈ P(πa,πb) have the same

length, given by |p|= ||πb|− |πa||, where |p| is the number of edges in the path.
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Figure 8.2: Double diamond diagram with the possible sequences of binary partitions of three
variables. Every path from the source node (H(XXX3) to the two sink nodes (H(X1)+H(X2)+H(X3)
and H(X1|X2X3)+H(X2|X1X3)+H(X3|X1X2)) corresponds to a decomposition of either TC(XXX3) or
DTC(XXX3).

Lattice decompositions of TC(XXXn) and DTC(XXXn)

Let us build some useful weight functions over n. We first assign to each node π =

(ααα1|...|αααL) ∈ n the value

H(π) := H
( L

∏
j=1

pXXXααα j

)
=

L

∑
j=1

H
(
XXXααα j

)
with XXXααα j = (Xα1

j
, ...,X

α l( j)
j
), which corresponds to the entropy of the probability distribution

∏L
j=1 pXXXααα j that includes interdependencies within cells, but not across cells. To each edge

of n we assign a weight
vh(π1,π2) := H(π2)−H(π1) . (8.8)

Since H(πa)≥ H(πb) if πa ⪰ πb, one can represent n under vh by placing nodes with more
cells in higher layers (see the upper half of Figure 8.2).

Alternatively, let us now consider the residual entropy of π = (ααα1|...|αααm) ∈ n, which is
given by R(π) := ∑m

k=1 Rαααk , with

Rαααk := H(XXXαααk |XXXααα1, ...,XXXαααk−1 ,XXXαααk+1 , ...,XXXαααm).
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The above quantity generalises the notion of residual entropy per individual variable given
in Section 8.2.2.8 With this, we introduce weights to each edge of n based on residuals,
given by

vr(π1,π2) := R(π1)−R(π2) . (8.9)

As residual entropy decreases when the partition is refined (see Appendix B.3), in this
case one can illustrate the corresponding DAG by placing nodes with more cells in lower
positions (see lower half of Figure 8.2).

Conveniently, for every edge vh and vr correspond to a mutual information or a conditional
mutual information term, respectively. This is illustrated in the edges of Figure 8.2 and
formalised in the Appendix.

The next result shows that the weights vh and vr provide decompositions for TC(XXXn) and
DTC(XXXn), respectively.

Lemma 2. Every path p ∈ P(πsource,πsink) provides the following decompositions:

TC(XXXn) =W (p;vh)

DTC(XXXn) =W (p;vr) .

Proof. See Appendix B.4.

Let us now leverage these results to develop a decomposition for the O-information. For
this, let us first introduce a new assignment of weights for the edges of n, given by

vs(π1,π2) := vh(π1,π2)− vr(π1,π2) . (8.10)

In contrast with Eqs. (8.8) and (8.9), these weights can attain negative values. The following
key result shows that the weights vs provide a decomposition of Ω(XXXn).

Proposition 1. Every path p ∈ P(πsource,πsink) provides the following decomposition:

Ω(XXXn) =W (p;vs) . (8.11)

Moreover, Eq. (8.11) is a sum of interaction information terms of the form in Eq. (8.6).

Proof. See Appendix B.5.

This finding extends property (iii) of Lemma 1 by showing that the O-information can
always be expressed as a sum of interaction information terms of three sets of variables (see
Corollary 1 below for an explicit example of this). As a consequence, the O-information
inherits the capabilities of the triple interaction information for reflecting the balance between

8In effect, Rαααk represents the portion of the entropy of the k-th cell that is not shared with other cells
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synergies and redundancies, and is applicable to systems of any size. This decomposition
of the O-information is analogous to the one introduced in Ref. [164] for the redundancy-
synergy index.

An inconventient feature of partition lattices is that they grow super-exponentially with
system size,9 and hence heuristic methods for exploring them are necessary. A particularly
interesting sub-family of P(πsource,πsink) are the “assembly paths,” which have the form (up
to re-labelling)

pa = {(12...n),(12...(n−1)|n), ...,(1|2|...|n)}. (8.12)

These paths can be thought of as the process of first connecting X1 and X2, then connecting
X3 to XXX2, and so on – i.e. as assembling the system by sequentially placing its pieces
together. The following corollary of Proposition 1 presents useful decompositions of
TC(XXXn), DTC(XXXn), and Ω(XXXn) in terms of assembly paths.

Corollary 1. For an assembly path as given in Eq. (8.12), the corresponding decompositions
of the TC, DTC and O-information are

TC(XXXn) =
n

∑
i=2

I(Xi;XXX i−1) , (8.13)

DTC(XXXn) = I(Xn;XXXn−1)+
n−1

∑
j=2

I(X j;XXX j−1|XXXn
j+1), (8.14)

Ω(XXXn) =
n−1

∑
k=2

I(Xk;XXXk−1;XXXn
k+1) , (8.15)

with XXXn
k = (Xk,Xk+1, ...,Xn) and XXXk = (X1, ...,Xk).

As a concluding remark, let us note that the decompositions presented by Corollary 1 are
valid for any relabeling of the indices (i.e. any ordering of the system’s variables). This
property is a direct consequence of the lattice construction developed in this subsection,
which plays an important role in the following sections.

9The number of the nodes of n grows with the Bell numbers, known for their super-exponential growth
rate [165]. To find the number of paths in P(πsource,πsink), note that if one starts from the sink and moves
towards the source, every step corresponds to merging two cells into one. Therefore, as selecting two out of m
cells gives

(m
2

)
choices, the total number of paths is given by

|P(πsource,πsink)|=
n

∑
m=2

(
m
2

)
=

n!(n−1)!
2n−1 ,

which grows faster than the Bell numbers.
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8.3.3 Characterising extreme values of Ω

Let us explore the range of values that the O-information can attain. As a first step, Lemma 3
provides bounds for TC(XXXn), DTC(XXXn), and Ω(XXXn).

Lemma 3. The following bounds hold:

• (n−1) log | | ≥ TC(XXXn)≥ 0,

• (n−1) log | | ≥ DTC(XXXn)≥ 0,

• n log | | ≥ TC(XXXn)+DTC(XXXn)≥ 0,

• (n−2) log | | ≥Ω(XXXn)≥ (2−n) log | |.

Where we use the shorthand notation | | := max j=1,...,n | j| for the cardinality of the largest
alphabet in XXXn. Moreover, these bounds are tight.

Proof. See Appendix B.6.

Let us introduce some nomenclature. A random binary vector XXXn is said to be a “n-
bit copy” if X1 is a Bernoulli random variable with parameter p = 1/2 (i.e. a fair coin)
and X1 = X2 = ... = Xn. Also, a random binary vector XXXn is said to be a “n-bit xor” if
XXXn−1 are i.i.d. fair coins and Xn = ∑n−1

j=1 X j (mod 2). Our next result shows that these two
distributions attain the upper and lower bounds of the O-information.

Proposition 2. Let XXXn be a binary vector with n≥ 3. Then,

1. Ω(XXXn) = n−2, if and only if XXXn is a n-bit copy.

2. Ω(XXXn) = 2−n, if and only if XXXn is a n-bit xor.

Proof. See Appendix B.7.

Corollary 2. The same proof can be used to confirm that for variables with |1| = ... =

|n| = m, the maximum Ω(XXXn) = (n−2) logm is attained by variables which are a copy
of each other, while the minimum Ω(XXXn) = (2− n) logm corresponds to when XXXn−1 are
independent and uniformly distributed and Xn = ∑n−1

j=1 X j (mod m).

Proposition 2 points out an important difference betwen the O-information and the
interaction information: if XXXn is an n-bit xor then Ω(XXXn) = 2−n is consistently negative
and decreasing with n, while I(X1; ...;Xn) = (−1)n+1 oddly oscillates between −1 and +1.
This result also points out the convenience of merging TC(XXXn) and DTC(XXXn) into Ω(XXXn),
as only the latter has the n-bit copy and the n-bit xor as unique extremes.
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Finally, note that Ω is continuous over small changes in pXXXn , as it can be expressed
as a linear combination of Shannon entropies (see Definition 1), which are themselves
continuous. Therefore, Proposition 2 guarantees that distributions that are similar to a n-bit
copy have a positive O-information, while distributions close to a n-bit xor have negative
O-information.

In summary, we have proposed a new multivariate extension of the mutual information,
Ω(XXXn), and argued that it quantifies the difference between overall redundancy and synergy
in p(XXXn). The main arguments are three:

1. For n = 3, Ω(X1,X2,X3) = I(X1;X2;X3).

2. For n> 3, Ω(XXXn) is a sum of redundancies minus synergies between subsystems of
XXXn.

3. Ω(XXXn) is maximised by a system consisting of 1 random bit and n−1 copies of it,
and minimised by a system composed by successive xor gates.

In the rest of this chapter we investigate the relation between Ω and other notions of
high-order effects coming from statistical mechanics and IIT 0.1. Further results on the
O-information, including bounds and further examples, are presented in Appendices B.1
and B.2.

8.3.4 Ω and high-order interactions in statistical mechanics

In a completely orthogonal line of research from PID, a popular approach to represent
high-order interactions in the statistical physics literature is via Hamiltonians that include
interaction terms with three or more variables [166]. For example, systems of n spins (i.e.
i = {−1,1} for i = 1, ...,n) that exhibit k-th order interactions are usually represented by
probability distributions of the form

pXXXn(xxxn) =
e−βk(xxxn)

Z
, (8.16)

where β is the inverse temperature, Z is a normalization constant (also known as the partition
function), and (xxxn) is a Hamiltonian given by

k(xxxn) =−
n

∑
i=1

Jixi−
n−1

∑
i=1

n

∑
j=i+1

Ji, jxix j

...− ∑
|γγγ|=k

Jγγγ ∏
i∈γγγ

xi ,
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where the last sum runs over all subsets γγγ ⊆ {1, ...,n} of size |γγγ| = k. For example, a
Hamiltonian with k = 2 corresponds to the standard Ising model.

According to Eq. (8.16), configurations with lower k(xxxn) are more likely to be visited.
Note that Ji quantify external influences acting over individual spins, while Jγγγ for |γγγ| ≥ 2
represent the strength of the interactions; in particular, if Ji,k > 0 then the pair Xi,Xk tend
to be aligned, while if Ji,k < 0 they tend to be anti-aligned. As a matter of fact, XXXn are
independent if and only if Jγγγ = 0 for all γγγ with |γγγ| ≥ 2. Models with k-th order interactions
have been studied via the maximum entropy principle [166], information geometry [167]
and PID [168].

Considering the results presented in previous sections, one could expect that systems
with high-order interactions (i.e. large k) should attain lower values of Ω than systems with
low-order interactions (i.e. small k). To confirm this hypothesis, we studied ensembles of
systems with k-th order interactions, and analised how the value of Ω is influenced by k.
For this, we considered random Hamiltonians with Jγγγ drawn i.i.d. from a standard normal
distribution and β = 0.1.

In agreement with intuition, results show that Ω is usually very close to zero for k = 2,
and becomes negative as k grows (Figure 8.3). These results suggest that the notion of
synergy measured by Ω is consistent with the traditional ideas of high-order interactions
from statistical physics.
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Figure 8.3: Mean value and 95% confidence intervals of Ω for ensembles of systems of n = 5 spins
with randomly generated Hamiltonians. By including high-order interaction terms, net synergy
increases and Ω decreases.
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8.4 Complexity and integrated information

In their seminal 1994 article, Tononi, Edelman, and Sporns devised a measure of neural com-
plexity (also known as TSE complexity) to describe the interplay between local segregation
and global integration [2, 3]. The TSE complexity is defined as

CTSE(XXXn) :=
n

∑
k=1

[
k
n

TC(XXXn) −Cn(k)
]
, (8.17)

where Cn(k) =
(n

k

)−1 ∑|γγγ|=k TC(XXX γγγ) is the average total correlation of the subsets γγγ ⊆
{1, ...,n} of size |γγγ| = k. By measuring the convexity of Cn(k) as function of k, the TSE
complexity attempts to distinguish scenarios that exhibit “relative statistical independence
of small subsets of the system [...] and significant deviations from independence of large
subsets” [2, Abstract], in the same spirit as our motivation behind Ω above.

To study the relationship between the TSE complexity and the O-information, it is useful
to consider an alternative expression of the former:

CTSE(XXXn) =
⌊n/2⌋
∑
k=1

(
n
k

)−1

∑
|γγγ|=k

I(XXX γγγ ;XXXn
−γγγ) , (8.18)

where Xn
−γγγ represents all the variables that are not in γγγ , and ⌊·⌋ is the floor function.

Motivated by this expression, let us introduce the quantity10

Σ(XXXn) := TC(XXXn)+DTC(XXXn)

=∑
i=1

I(Xi;XXXn
−i) . (8.19)

By noting the similarities between Eqs. (8.18) and (8.19), together with the fact that
CTSE(XXX3) = 1

3

[
C(XXX3)+DTC(XXX3)

]
, we can hypothesise that, qualitatively,

CTSE(XXXn) ∝ Σ(XXXn) . (8.20)

Monte Carlo simulations show that this approximation is justified: when evaluated on
distributions pXXXn sampled uniformly at random from the probability simplex, the correlation
between Σ and CTSE is consistently above 0.97 (Fig. 8.4a). Moreover, Σ outperforms other
proposed approximations of the TSE complexity.11

10The quantity TC+DTC has been introduced in the context of time series analysis as local exogenous
information, and given the suitable nickname of “very mutual information” [151].

11In [3, Fig. 2] the DTC (under the name “interaction complexity”) is proposed as a metric “related but
not identical to neural complexity.” Numerical evaluations show that the sum of TC and DTC, as proposed
in (8.20), is a more accurate approximation for the TSE complexity (results not shown).
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Figure 8.4: (a) The sum of the TC and DTC (denoted by Σ) is an accurate approximation of the
TSE complexity. Each dot corresponds to probability distribution over n binary variables, which are
sampled uniformly at random from the corresponding probability simplex. (b) CTSE (upper line) and
Ω (lower line) evaluated on a distribution resulting from a linear mixture between a copy (left) and
an xor (right). Figure shows the case n = 3, but results are qualitatively similar for larger systems.
Both of these results show that the TSE complexity conflates synergy and redundancy, and is better
thought of as a measure of overall correlation strength.

Figure 8.4a and Eq. (8.20) suggest that the TSE complexity is large when either the shared
randomness or the collective constraints are large. As a more direct example, we evaluate
CTSE in a distribution given by a linear mixture of the distributions of a 3-bit copy and a
3-bit xor, showing that CTSE has exactly the same value in both extremes, and hence that it
conflates redundancy with synergy (Fig. 8.4b).

Taken together, our results show that the TSE complexity is a good metric of overall
integration between parts of the system, but it generally fails to discriminate high- from
low-order phenomena. Overall, the fact that

Ω = TC−DTC ,

CTSE ∝ TC+DTC ,
(8.21)

suggests that the TSE complexity and the O-information are complementary, corresponding
to an insightful “change of basis” from an elementary constraints vs randomness represen-
tation. Effectively, while both TC and DTC provide two measures of roughly the same
phenomenon (interdependency strength), Ω and CTSE refer to different aspects: CTSE gives
an overarching account of the strength of the interdependencies within XXXn, and Ω indicates
whether these correlations are predominantly redundant or synergistic.
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8.5 Conclusion

We introduced the O-information, Ω, as the difference between strength of the collective
constraints and the shared randomness in a multivariate system. We argued that Ω captures
the net balance between synergy and redundancy, since (i) it is a sum of triple interaction
informations, (ii) it is maximised (minimised) by an n-bit copy (xor), and (iii) it correlates
with other notions of high-order effects from the statistical mechanics literature.

In the context of IIT, we propose the O-information as a modern, more principled analogue
to neural complexity [2] – our results suggest that the O-information is a better characterisa-
tion of Tononi, Sporns and Edelman’s insightful intuitions of coexisting local independence
and global information sharing. In fact, we found that neural complexity does not measure
statistical synergy as such, but total correlation strength. This suggests that Ω and TSE are
complementary metrics: neural complexity gives an overarching account of the strength
of the interdependencies within the system, and the O-information reveals whether these
interdependencies are predominantly redundant or synergistic. We take this as a step towards
a multi-dimensional framework that allows for a finer and more subtle taxonomy of complex
systems.

In the next chapter we fast-forward from 1994 to 2008, and extend the PID principles to
formulate a full-fledged decomposition of the integrated information measures in IIT 2.0.





Chapter 9

Integrated information decomposition

Chapter summary

We deepen the connection between information decomposition and IIT, by
outlining a unified theory of Integrated Information Decomposition, ΦID. Most
importantly, ΦID reveals that what is typically referred to as ‘integration’ is
actually an aggregate of several heterogeneous phenomena, and can help us
understand and alleviate the limitations of existing Φ measures. Additionally, we
link ΦID with fundamental principles of causal emergence, providing theoretical
support to our claims relating IIT and complexity.
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9.1 Introduction

As a final theoretical contribution, in this chapter we repeat the procedure we presented in
Chapter 8 with IIT 1.0 and CTSE, this time with IIT 2.0 and Φ. Again, this will require us to
reconsider the concepts of integration and differentiation, now in a dynamical setting.

According to the IIT line of reasoning, two systems are said to be integrated if they
mutually affect each other’s temporal evolution. From this perspective, it would seem that
integration can be stronger or weaker, and hence could be represented by a single scalar
number. This chapter shows that such a characterisation is incomplete, as integration can
differ not only in quantity but also in quality. We present a framework to decompose
different ‘modes’ of information dynamics, showing that even in small systems there are
many different effects at play, including storage, copy, transfer, erasure, and upward and
downward causation.

The key to this development is a substantial extension to PID, that allows us to formulate
a multi-target information decomposition. Applying PID to a stochastic dynamical system
setting, we consider the decomposition of the whole set of ‘cause’- and ‘effect’-type infor-
mational relationships, and obtain what we call the Integrated Information Decomposition,
ΦID.

This new framework enables a great deal of advancements in the study of IIT and
information processing in complex systems: it sheds light on modes of information dynamics
that have not been previously reported; it explains some of the alleged ‘flaws’ of early Φ
measures; it allows us to extend Lizier’s taxonomy with specific proposals for information
modification; and it provides a suggestive link with basic principles of causal emergence.

9.2 Decomposing multivariate information

Consider two interdependent processes that are measured at regular time intervals. The
excess entropy [169] of these processes, E, is the total amount of (Shannon) information
that is transferred through these processes from past to future, which is a well-known metric
to assess dynamical complexity [88]. While E is in general hard to compute [170], for
Markovian systems it simplifies to

E = I(X1,X2; Y1,Y2) , (9.1)

where XXX = {X1,X2} and YYY = {Y1,Y2} denote the past and future state of the system respec-
tively, and the subscript denotes variable index. We consider the decomposition of E into
modes of information dynamics, focusing on systems with Markovian dynamics, leaving
extensions to processes with memory for future work.
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9.2.1 Forward and backward information decomposition

Our approach is to decompose E using principles of the PID framework [19], that also
guided our formulation of Ω in Chapter 8. By focusing on how information flows from past
to future, one can consider a forward PID that decomposes the information provided by the
two past variables, X1 and X2, about the joint future (Y1,Y2) as

E =Red(X1,X2;Y1Y2)+Un(X1;Y1Y2|X2)

+Un(X2;Y1Y2|X1)+Syn(X1,X2;Y1Y2).

Intuitively, Red(X1,X2;Y1Y2) corresponds to redundant information provided by both X1 and
X2 about Y1Y2; Un(X1;Y1Y2|X2) (resp. Un(X2;Y1Y2|X1)) refers to the unique information that
only X1 (resp. X2) provides about Y1Y2; and finally, Syn(X1,X2;Y1Y2) accounts for the infor-
mation that X1 and X2 provide about Y1,Y2 only when they are observed together, henceforth
called synergistic information. Note that this synergistic information Syn(X1,X2;Y1Y2) is
the ψ integrated information measure in Sec. 2.3.4 proposed by Griffith [9].

Similarly, an equivalent decomposition can be built by considering the information that Y1

and Y2 contain about the past state (X1,X2). Correspondingly, a backward PID is given by

E =Red(Y1,Y2;X1X2)+Un(Y1;X1X2|Y2)

+Un(Y2;X1X2|Y1)+Syn(Y1,Y2;X1X2).

The forward and backward PID are related to the notions of cause (forward) and effect (back-
ward) information in IIT. These two information decompositions provide complementary,
but overlapping descriptions of the system’s dynamics. The next section explains how they
can be unified in a single and encompassing description.

9.3 Integrated information decomposition: ΦID

This section develops the mathematical framework of our contribution. The goal is to
provide a decomposition of E similar to the two above, but that applies to both cause and
effect information simultaneously. To do this, we solve PID’s limitation of having only one
single target variable, in order to allow for multi-target information decompositions. This
decomposition will be then applied to the measures in Sec. 2.3 and discussed in the broader
context of IIT.
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9.3.1 Double-redundancy lattice

Let us begin by first considering the redundancy lattice [19], which is used in PID to
formalise our intuitive understanding of redundancy. Let  be the collection given by

 := {{1},{2},{1,2},{{1},{2}}}, (9.2)

which are all the sets of subsets of {1,2} where no element is contained in another.1

The elements of  have a natural (partial) order relationship: for ααα,βββ ∈, one says that
ααα ⪯ βββ if for all b ∈ βββ there exists a ∈ ααα such that a⊂ b [19]. The lattice that encodes the
relationship ⪯ is known as the redundancy lattice (Fig. 9.1), and guides the construction of
the four terms in the PID.

{1}{2}

{2} {1}

{12}

Figure 9.1: Lattice of nodes in  arranged according to the partial ordering ⪯.

Our first step is to build a product lattice over ×, in order to extend the notion of
redundancy from PID to the case of multiple source and target variables (here X1, X2 and Y1,
Y2 respectively). Extending Williams and Beer’s [19] notation, we denote sets of sources
and targets using their indices only, with an arrow going from past to future.2 Hence, the
nodes of the product lattice are denoted as ααα → βββ for ααα,βββ ∈ , and a partial ordering
relationship among them is defined by

ααα → βββ ⪯ ααα ′→ βββ ′ iff ααα ⪯ ααα ′ and βββ ⪯ βββ ′. (9.3)

This relationship guarantees a lattice structure with 16 nodes, which is shown in Figure 9.2
and proven in Appendix C.1. An intuitive understanding of the product lattice is developed
in the sections below.

1In a general N-variable case,  is the set of antichains on the lattice (({1, ...,N}),⊆), discussed in
Ref. [19]. We focus on the bivariate case for clarity, although our results hold for any N.

2Note that although we use an arrow and we talk about past and future, this formalism is symmetric in
sources and targets.
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{1}{2}→{1}{2}

{1}{2}→{1} {1}{2}→{2} {1}→{1}{2} {2}→{1}{2}

{1}{2}→{12} {1}→{1}

{2}→{1}

{1}→{2}

{2}→{2} {12}→{1}{2}

{1}→{12} {2}→{12} {12}→{1} {12}→{2}

{12}→{12}

Figure 9.2: The double-redundancy lattice for two predictors and two targets, which is the product
of two lattices as shown in Figure 9.1.

9.3.2 Redundancies and atoms

The next ingredient in the PID recipe is a redundancy function, I∩, that quantifies the
‘overlapping’ information about the target that is common to a set of sources ααα ∈ [19].
Intuitively, I{1}{2}∩ is the information about the target that is in either source, I{i}∩ the
information in source i, and I{12}

∩ the information that is in both sources together. The partial
ordering relation between these quantities is the basis for the lattice in Fig. 9.1.

In this subsection, we extend the notion of overlapping information to the multi-target
setting. The key to do so is to define certain axioms that a multi-target information decom-
position must satisfy, and that inherit from the corresponding axioms in standard PID.

For a given ααα → βββ ∈×, the overlapping information that is common to sources ααα
and can be seen in targets βββ is denoted as Iααα→βββ

∩ and referred to as the double-redundancy
function. In the following, we assume that the double-redundancy function satisfies two
axioms:
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• Axiom 1 (compatibility): if ααα = {α1, ...,αJ} and βββ = {β1, ...,βK} with ααα,βββ ∈
and α j,βk non-empty subsets of {1, ...,N}, then the following cases can be reduced
to the redundancy of PID or the mutual information:3

Iααα→βββ
∩ =

⎧⎪⎪⎨⎪⎪⎩
Red(XXXα1, ...,XXXαJ ;YYY β1) if K = 1,

Red(YYY β1 , ...,YYY βK ;XXXα1) if J = 1,

I(XXXα1;YYY β1) if J = K = 1.

• Axiom 2 (partial ordering): if ααα → βββ ⪯ ααα ′→ βββ ′ then Iααα→βββ
∩ ≤ Iααα ′→βββ ′

∩ .

By exploiting these axioms, one can define ‘atoms’ that belong to each of the nodes via
the Moebius inversion formula. Concretely, the integrated information atoms Iααα→βββ

∂ are
defined as the quantities that guarantee the following condition for all ααα → βββ ∈×:

Iααα→βββ
∩ = ∑

ααα ′→βββ ′⪯ααα→βββ
Iααα ′→βββ ′

∂ . (9.4)

In other words, Iααα→βββ
∂ corresponds to the information contained in node ααα → βββ and not

in any node below it in the lattice. These are analogues to the redundant, unique, and
synergistic atoms in the forward and backward PID above, but using the product lattice as a
scaffold. By inverting this relationship, one can find a recursive expression for calculating
I∂ as

Iααα→βββ
∂ = Iααα→βββ

∩ − ∑
ααα ′→βββ ′≺ααα→βββ

Iααα ′→βββ ′

∂ . (9.5)

With all the tools at hand, we can deliver the promised decomposition of E in terms of
atoms of integrated information.

Definition 3. The Integrated Information Decomposition (ΦID) of a system with Markovian
dynamics is the collection of atoms I∂ defined from the redundancies I∩ via Eq. (9.5), which
satisfy

E = I(XXX ;YYY ) = ∑
ααα,βββ∈

Iααα→βββ
∂ . (9.6)

It is direct to see that ΦID of two time series gives 16 atoms that correspond to the
lattice shown in Figure 9.2, which are computed from a linear transformation over the 16
redundancies. Interestingly, Axioms 1 and 2 allow us to compute all the I∩ terms once a

3We use the shorthand notation XXXα = (Xi1 , ...,XiK ) for α = {i1, ..., iK}.
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single-target PID redundancy function Red(·) has been chosen, with the sole exception of
I{1}{2}→{1}{2}∩ . All this is summarised in the following result.

Proposition 3. Axioms 1 and 2 provide unique values for the 16 atoms of the product lattice
(see Figure 9.2) after one defines (i) a single-target redundancy function Red(·), and (ii) an
expression for I{1}{2}→{1}{2}∂ .

In the same way as in PID the definition of Red(·) gives 3 other terms (unique and synergy)
as side-product, Proposition 3 shows that in ΦID the addition of the double-redundancy
function I{1}{2}→{1}{2}∂ gives 15 other terms for free.4

Throughout the rest of the article we outline how ΦID can be used to revise theories of
information dynamics and integrated information, and how it can provide more detailed
analyses of systems of interest.

9.3.3 Simple examples

To start developing our intuition about the ΦID atoms, let us decompose the mutual infor-
mation between the present of one variable, Xi, and its own future, Yi, i.e. the information
storage in variable i [69]:

I(Xi;Yi) = I{1}{2}→{1}{2}∂ + I{1}{2}→{i}∂

+ I{i}→{1}{2}∂ + I{i}→{i}∂ .
(9.7)

Here, I{1}{2}→{1}{2}∂ corresponds to redundant information in the sources that is present in

both targets; I{1}{2}→{i}∂ is the redundant information in the sources that is eliminated from
the j-th source ( j ̸= i) and hence is only conserved in Yi; and similarly for the remaining
atoms.

As another example, consider the transfer entropy from i to j (with i ̸= j):

I(Xi;Y j|X j) = I{12}→{1}{2}
∂ + I{12}→{ j}

∂

+ I{i}→{1}{2}∂ + I{i}→{ j}
∂ .

(9.8)

As before, I{12}→{1}{2}
∂ is the synergistic information present in the joint past (X1,X2) that

can be read through either Y1 or Y2, and similarly for the rest of the terms.

In the following section we explore the possibilities offered by this decomposition, and
its implications for causal analysis, IIT, and complex systems in general.

4Note that our framework does not prescribe a particular formula for I{1}{2}→{1}{2}∂ . A discussion on this
issue can be found in the supplementary material.



140 CHAPTER 9. INTEGRATED INFORMATION DECOMPOSITION

9.4 Results
9.4.1 Limitations of conventional causal discovery methods

Mutual information and transfer entropy (or linear variants of them, to which our conclusions
also apply) are the building blocks of most popular methods of statistical causal discovery.
We now show that these metrics have two kinds of limitations: they conflate multiple effects
in counterintuitive ways, and they fail to capture some effects altogether.

First, let us focus on the decomposition of information storage in Eq. (9.7). Note that,
although X2,Y2 are not in this mutual information, I(X1;Y1) shares the term I{1}{2}→{1}{2}∂
with I(X2;Y2) by virtue of them being considered part of the same multivariate stochastic
process. Therefore, if one uses simple mutual information as a measure of storage one may
include information that is not stored exclusively in a given variable, which may lead to
paradoxical conclusions such as the sum of individual storages being greater than E.

Next, consider the terms in the decomposition of transfer entropy in Eq. (9.8). Note that,
of these, I{i}→{ j}

∂ is the only ‘genuine’ transfer term – all others correspond to redundant or
synergistic effects involving both variables in past or future. Furthermore, one of the ‘extra’
terms (I{i}→{1}{2}∂ ) is shared with I(Xi;Yi), in a somewhat counterintuitive overlap between
storage and transfer. Similar concerns have been discussed in the literature [171], showing
that transfer entropy per se cannot be taken as a pure measure of information transfer.

Finally, from the decompositions of the mutual information and conditional mutual
information as shown above, it is clear that none of these quantities are able to capture the
ΦID terms of the form Iα→{12}

∂ . These terms correspond to ‘synergistic effects’ (i.e. causes
whose effects only manifest on groups, rather than individual variables) and are neglected
by standard causal discovery methods.

9.4.2 Information processing in complex systems

Based on ΦID, and building on Lizier’s work [69], we propose an extended taxonomy of
information dynamics, with 6 disjoint and qualitatively distinct phenomena:

Storage: Information that remains in the same source set, even if it includes collective
effects. Includes I{1}{2}→{1}{2}∂ , I{1}→{1}∂ , I{2}→{2}∂ , and I{12}→{12}

∂ .

Copy: Information that becomes duplicated. Includes I{1}→{1}{2}∂ , and I{2}→{1}{2}∂ .

Transfer: Information that moves between variables. Includes I{1}→{2}∂ , and I{2}→{1}∂ .

Erasure: Duplicated information that is pruned. Includes I{1}{2}→{1}∂ , and I{1}{2}→{2}∂ .



9.4 RESULTS 141

Downward causation: Collective properties that define individual futures. Includes I{12}→{1}
∂ ,

I{12}→{2}
∂ , and I{12}→{1}{2}

∂ .

Upward causation: Collective properties that are defined by individuals. Includes I{1}→{12}
∂ ,

I{2}→{12}
∂ , and I{1}{2}→{12}

∂ .

While downward causation has been discussed in the past [171], upward causation
and synergistic storage (I{12}→{12}

∂ ) have not been reported in the literature. This revised
taxonomy leads to less ambiguous, quantifiable descriptions of information dynamics in
complex systems, in addition to grounding abstract concepts such as upward and downward
causation, as well as notions like integrated information.

9.4.3 Different types of integration

One important conceptual result of our framework is that there are multiple qualitatively
different ways in which a multivariate dynamical process can integrate information through
combinations of redundant, unique, or synergistic effects. As elementary examples, consider
the following systems of 2 binary variables:

• A copy transfer system, in which x1,x2,y1 are i.i.d. fair coin flips, and y2 = x1 (i.e.
one bit is shifted).

• The downward XOR, in which x1,x2,y2 are independent identically distributed fair
coin flips, and y1 ≡ x1 + x2 (mod 2).

• The parity-preserving random (PPR), in which x1,x2 are i.i.d. fair coin flips, and
x1 + x2 ≡ y1 + y2 (mod 2) (i.e. yyy is a random string of the same parity as xxx).

COPY XOR XOR

Φ = 1 Φ = 1 Φ = 1

I{1}→{2}∂ =1 I{12}→{1}
∂ =1 I{12}→{12}

∂ =1

Figure 9.3: Example systems of logic gates. All of them have the same integrated information, but
their information dynamics are different. This difference is captured by a full ΦID decomposition,
that shows the only non-zero atoms are transfer (left), downward causation (centre), and synergistic
storage (right).
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These three systems (Fig. 9.3) are ‘equally integrated,’ in the sense that the dynamics of
the whole cannot be perfectly predicted from the parts alone and the integrated information
measure Φ = 1 for all of them [172, 8]. However, they integrate information in qualitatively
different ways: in effect, the integration in the copy system is entirely due to transfer
dynamics (I{1}→{2}∂ ); the downward XOR integrates information due to downward causation

(I{12}→{1}
∂ ); and PPR due to synergistic storage (I{12}→{12}

∂ ). All the other ΦID atoms in
each of these systems are zero (proofs in Appendix C.5).

9.4.4 Measures of integrated information

In Chapter 6 we showed that many of the different measures of integrated information that
have been proposed in the literature behave inconsistently, even in very simple systems, but
we did not explain why this is the case. In this subsection we use ΦID to dissect and compare
four of the measures of integrated information (Φ, ψ , ΦG) and dynamical complexity (CD)
introduced earlier in this thesis (c.f. Chapter 2).

Importantly, not all of these measures are able to detect the presence of non-trivial
statistical structure in the previously mentioned systems. In fact, although all measures
detect the integration in the copy transfer system, CD and even more recent measures like Φ∗

and ΦG [11, 10] are zero for the PPR system above – i.e. they do not detect all synergistic
effects. Of the currently available measures, only Φ and Griffith’s ψ [9] are able to capture
the integration in the PPR system.

As a systematic exploration, one can determine which measures are sensitive to which
modes of information dynamics by calculating whether each measure is zero, positive, or
negative for a system consisting of only one particular ΦID atom (Table 9.1; proofs in
Appendix C.5). The main result is that each measure captures a different combination
of ΦID atoms: although generally most of them capture synergistic effects and avoid (or
penalise) redundant effects, they differ substantially. In particular, they differ most in their
treatment of atoms that include synergistic effects, Iα→{12}

∂ , which had not been previously
reported in the literature.

The key conclusion is that these measures are not simply different approximations of a
unique concept of integration, but that they are capturing intrinsically different aspects of
the system’s information dynamics. While aggregate measures like these can be empirically
useful, it is important to remember that they are measuring different combinations of different
effects within the system’s information dynamics. Echoing the conclusions of Chapter 6:
these measures behave differently not only in practice, but also in principle.
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Table 9.1: Sensitivity of integrated information measures to ΦID atoms. For each measure, entries
indicate whether the value is positive (+), negative (-) or 0 in a system in which the given ΦID atom
is the only non-zero atom.

ΦID atoms Measures
Φ CD ψ ΦG

I{1}{2}→{1}{2}∂ - 0 0 0

I{1}{2}→{i}∂ 0 0 0 0

I{1}{2}→{12}
∂ + 0 0 0

I{i}→{1}{2}∂ 0 + 0 +

I{i}→{i}∂ 0 0 0 0

I{i}→{ j}
∂ + + 0 +

I{i}→{12}
∂ + 0 0 0

I{12}→{1}{2}
∂ + + + +

I{12}→{i}
∂ + + + +

I{12}→{12}
∂ + 0 + 0

9.4.5 Why whole-minus-sum Φ can be negative

The ΦID framework can be further leveraged to provide elegant explanations of certain
behaviours of integrated information and dynamical complexity measures. For example,
whole-minus-sum Φ (Sec. 2.3.2), which is calculated as

Φ = I(X1,X2;Y1,Y2)− I(X1;Y1)− I(X2;Y2) (9.9)

for a bivariate process, can sometimes take negative values. This feature, which has been
used as an argument to discard Φ as a suitable measure of integrated information [9, 11],
can be explained as follows. By applying the decomposition in Eq. (9.4), one finds that

Φ = −I{1}{2}→{1}{2}∂

}
Red

+Syn(X1,X2;Y1Y2)+ I{1}{2}→{12}
∂

+I{1}→{12}
∂ + I{2}→{12}

∂

}
Syn

+I{1}→{2}∂ + I{2}→{1}∂ .
}

Un

Hence, Φ accounts for all the synergies in the system (the seven terms in Fig. 9.2 with
{12} in either side), the unique information transferred between parts of the system, and,
importantly, the negative of the bottom node of the ΦID lattice. The presence of this negative
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double-redundancy term shows that in highly redundant systems Φ can be negative. This is
akin to Williams and Beer’s [19] explanation of the negativity of the interaction information,
applied to multivariate processes. Based on this insight, one can formulate a ‘corrected’ Φ
by adding back the double-redundancy:

Φc := Φ+ I{1}{2}→{1}{2}∂ ,

which now includes only synergistic and unique transfer terms.

We computed Φc numerically for a simple example, using an extension of the PID
presented by James et al. [173]. Mimicking the setting in Fig. 6.1 but with discrete variables,
let us consider a system in which y1,y2 are noisy AND gates of x1,x2 and the correlation
between the noise components of y1 and y2 is a free parameter. We calculated Φ and Φc with
respect to the system’s stationary distribution. Plots of the standard and corrected Φ for this
system are shown in Fig, 9.4, and details of the computation can be found in Appendix C.6.

ANDAND

Correlated noise

0 0.2 0.4 0.6 0.8 1
−0.3

−0.2

−0.1

0

0.1

Noise correlation

Φ
Φc

Figure 9.4: Standard and corrected Φ in a two component noisy AND system with varying correlation
in the noise to each component. As the correlation increases, Φ drops below zero reflecting an increase
in redundancy. Adding back the double-redundancy term results in a non-negative measure that, as
expected, vanishes to zero in the fully correlated system.

As expected, Φ drops below zero as synergy decreases and redundancy increases with
noise correlation, replicating the results in Fig. 6.1. Interestingly, however, after adding the
double-redundancy term, the corrected version Φc tends to zero for high noise correlation,
which is more similar to some of the other measures highlighted in Chapter 6, e.g. CD
and Φ∗. This example shows that using ΦID we can formulate new measures of integrated
information, that capture specific sets of information effects and that may have different
properties to suit the target application.
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9.4.6 Why unnormalised causal density can exceed TDMI

In Oizumi et al. [11], the authors correctly point out that the sum of conditional pairwise
transfer entropies (or unnormalised Causal Density; uCD) in a system can exceed the total
mutual information I(XXX ;YYY ), which is problematic for considering this as a measure of
integrated information [11].5 This quantity, given by

uCD = TEZ1→Z2 +TEZ2→Z1

= I(X1;Y2|X2)+ I(X2;Y1|X1) , (9.10)

can also be readily decomposed using ΦID. By applying Eq. (9.4) to the expression of uCD,
we find that

uCD =Un(X1;Y2|X2)+ I{12}→{2}
∂

+Un(X2;Y1|X1)+ I{12}→{1}
∂

+2I{12}→{1}{2}
∂ .

Besides the unique and synergistic terms that one would expect in a measure of informa-
tion transfer [174], there is in addition a double-counting of a downward causation ΦID
atom, I{12}→{1}{2}

∂ . Specifically, uCD double-counts synergistic information in the past
that is transferred redundantly to the future, and this can cause uCD to be greater than
I(X1,X2;Y1,Y2). This is because in the calculation of both transfer entropies the targets are
considered independent of each other.

This finding makes it straightforward to design systems for which uCD is maximal,
highlighting this effect (i.e. a system that has only I{12}→{1}{2}

∂ > 0): for example, a
system where x1,x2 are independent fair coin flips and y1 = y2 = x1⊕ x2. Indeed, for this
system uCD = 2 bit > I(X1,X2;Y1,Y2) = 1 bit. Hypothetically, if one wanted to devise a
uCD-based measure of integrated information that is upper-bounded by I(XXX ;YYY ), we could
simply subtract I{12}→{1}{2}

∂ from Eq. (9.10), as we did earlier with Φ and I{1}{2}→{1}{2}∂ in
Figure 9.4.

Furthermore, this decomposition also shows that there are many common atoms in the
ΦID expansions of CD and ΦWMS, which might explain why CD has sometimes been
considered together with measures of integrated information [12, 172].

5Note that the original definition of causal density is normalised by L(L−1), and has been proven to be
bounded by mutual information (Appendix A.3).
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9.5 Formalising causal emergence through ΦID

Perhaps the most fundamental theoretical problem in complexity science is that of providing
a rigorous theory of causal emergence. The philosophy literature, for example, is rife with
proposals for how to taxonomise and reason about emergence. One standard approach is to
distinguish between two types of phenomena:

• strong emergence, that corresponds to the somewhat paradoxical case of supervenient
properties with irreducible causal power; and

• weak emergence, that occurs when a collective property cannot be derived from the
interactions between elements at lower levels via explanatory shortcuts, but only via
exhaustive simulation [175].6

While the idea of weak emergence is usually accepted [176], strong emergence is widely
considered to be either impossible, or “uncomfortably like magic” [175]. This judgement
is not fully unfounded – a property that is simultaneously supervenient (i.e. that can be
computed from the microstate of the system), and that has irreducible causal power (i.e. that
“tells us something” that the microstate doesn’t) can indeed seem paradoxical. Nonetheless,
as we show here this paradox is no more than a lack of imagination, and a lack of familiarity
with the (admittedly counterintuitive) laws of multivariate information dynamics.

Inspired by Seth [177], we present a practically useful and ontologically innocent frame-
work to study causal emergence based on ΦID. We take the perspective of an experimentalist
who has no prior knowledge of the phenomenon of interest, but has sufficient data to generate
an accurate statistical description of it. We put forward a definition of causal emergence
which is logically and statistically consistent, and provides a practical tool to test (and
possibly reject) hypotheses about emergence in scenarios of interest, based purely on data.
Here we provide a brief outline of the theory, and leave the details for a future publication.

Let us begin directly by stating our proposed definition of of causal emergence:

Definition 4. For a system with past state XXX and future state YYY , a supervenient feature
V = f (XXX) is said to exhibit statistical causal emergence iff

Un(V ;YYY |X1, ...,Xn)> 0. (9.11)

This definition directly represents the intuitions behind previous formulations of emer-
gence – Eq. (9.11) implies that V predicts something about the future state of the system
that cannot be predicted from any single subsystem. Note that this requires us to provide a
definition the unique information given a set of variables – which is presented, along with
all other proofs for this section, in Appendix C.7.

6This is strongly related to Wolfram’s concept of computational irreducibility [86].
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Based on Definition 4, we can use PID to derive a criterion for emergence that does not
depend on our knowledge of the emergent feature V :

Proposition 4. A system has a casually emergent feature iff Syn(X1, ...,Xn;YYY )> 0.

The above result has an interesting consequence: by inspecting the system’s statistics we
can determine whether or not it has any emergent properties, without knowing what those
properties are. With this feature-agnostic criterion of emergence, a direct calculation with
ΦID allows us to decompose this synergy into two terms,

Syn(X1, ...,Xn;YYY ) :=(XXX t)+(XXX t) , (9.12)

where  and  denote downward causation and causal decoupling respectively, and are
essentially generalisations of the concepts of downward causation and synergistic storage
introduced for n = 2 in Sec. 9.4.2. These two quantities satisfy the following propositions:

Proposition 5. A system has downward causation (XXX t)> 0 iff there exists an emergent
feature V such that Un(V ;Yk|X1, ...,Xn)> 0 for some k ∈ {1, ...,n}.

Proposition 6. A system has causal decoupling (XXX t)> 0 if there exists an emergent feature
V such that Un(V ;V ′|X1, ...,Xn)> 0, where V = f (XXX) and V ′ = f (YYY ).

Matching our intuitions, a feature with downward causation is a collective property with a
sort of “enslaving” effect on single agents. Perhaps most interestingly, a causally decoupled
feature is one that has “a life of its own” – a sort of statistical ghost, that perpetuates itself
over time without any individual agent influencing or being influenced by it.

This proposal, while theoretically appealing, suffers from all the challenges of PID,
including the estimation of joint probabilities over many variables and the computation of
the ΦID atoms themselves. As an alternative, let us introduce the quantity

Ψ(V ) := I(V ;V ′)−∑
j

I(X j;V ′) , (9.13)

as a general measure of information about the dynamics of V that cannot be accounted for
by individual agents. Using this quantity we can formulate a practical criterion to detect
statistical causal emergence:

Proposition 7. Ψ(V )> 0 is a sufficient condition for V to be causally emergent.

Therefore, although calculating whether a system has any emergent feature (with Proposi-
tion 4) may be computationally difficult, if we have a candidate feature V we believe may be
emergent, we can compute the simple quantity in Eq. (9.13), that depends only on standard
mutual information and pairwise marginals.
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9.6 Discussion

We propose ΦID as a novel information-theoretic framework to study high-order interactions
in time-series data. By unifying integrated information theory (IIT) and partial information
decomposition (PID), the ΦID framework allows us to decompose information flow in a
multivariate stochastic process into interpretable, disjoint parts. This allows systematic
studies of unexplored modes of information dynamics – including modes of synergistic
storage, and upward and downward causation – in a purely data-driven fashion.

9.6.1 Towards multi-dimensional measures of complexity

Besides the importance of having an encompassing taxonomy of information dynamics
phenomena, this frameworks suggests, following Feldman and Crutchfield [178], that there is
no theoretical basis to a purported all-encompassing scalar measure of dynamical complexity.
The richness of complex dynamics is vast, and the prospect of subsuming all into a single
number is unreasonable. Scalar measures might still have great practical value in certain
experimental or theoretical contexts;7 nevertheless, a general theory of complex systems
(biological or otherwise) cannot be reduced to a single, one-size-fits-all measure.

Instead, we argue that the real strength of a complexity measure is in its specificity –
what is it measuring, and how? A well-determined measure captures one specific aspect
of a system’s dynamics, and it does so clearly and explicitly. In this sense, our framework
provides a solid basis upon which to design principled measures of complexity, and can
allow us to disentangle and understand other measures.

9.6.2 Integration measures conflate transfer and synergy

Using ΦID, one is able to inspect previous measures of integrated information, explaining
similarities and differences between them, and fixing some of their shortcomings. Most
importantly, we have shown that what is usually refer to as ‘integration’ is in fact an aggregate
of several different information effects, typically including transfer and synergy phenomena.
Moreover, different measures capture different effects in various proportions, which explains
the heterogeneity among existing measures reported in Chapter 6. By employing ΦID one
can tailor measures for targeting specific mixtures of effects, according to the information
processes one wishes to analyse.

7For example, measures that accurately discriminate between neural configurations corresponding to
conscious and unconscious states in a particular experimental paradigm [125].
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9.6.3 Causal analysis

As presented, ΦID is a generic tool to decompose multivariate mutual information, which
can be directly used to perform causal analysis. Most integrated information measures
can be roughly divided between those that describe integration in a system based on its
causal properties [6], and those that use the system’s attractor statistics, known as dynamical
integration measures [172].8 Given a system’s conditional probability distribution p(YYY |XXX),
one can use ΦID to perform either a causal or a dynamical analysis by using the stationary
attractor distribution p(XXX), or a maximum entropy distribution on XXX . However, note that a
few additional assumptions need to hold to interpret the results in a strict causal sense; in
particular, the conditional distribution p(YYY |XXX) needs to be equivalent to a do() distribution
in Pearl’s sense [179], and the system must satisfy the faithfulness and causal Markov
conditions.9

9.6.4 Limitations and future extensions

Naturally, our method inherits some of the limitations of PID. In particular, there is still no
consensus on which of the various proposed decompositions is preferable for performing
numerical evaluations of the PID atoms [173].

Given the long-standing challenges and the formidable mathematical difficulty of PID,
it is natural to think that a consensus on ΦID is unlikely to be achieved in the near future.
Yet, just as the theory of power series becomes simpler when considered over the (more
complicated) complex plane, it is our hope that the dynamical insights and challenges
introduced by the ΦID framework might serve to provide new intuitions to tackle the current
limitations of PID.

9.6.5 Integrated information as a universal signature of emergence

In Chapters 3-5 we presented examples of integrated information in complex systems,
and made a pragmatic case that, empirically, it matches our intuitions on what constitutes
complex, emergent behaviour.

In this chapter, we have outlined a rigorous theory of causal emergence, both in the
aggregate (Proposition 4), and in terms of decomposed downward and decoupled causation
(Propositions 5 and 6). Importantly, we were able to identify these concepts with specific
synergistic atoms in ΦID, which are the ones captured by (at least some of) the integrated

8Intuitively, a causal analysis reveals what the system could do, while a dynamical analysis based on
attractor statistics reveals what the system actually does.

9Also, note that the maximum entropy distributions employed by some causal integration frameworks are
well-defined for discrete Markovian systems, but in general may not always exist [180].



150 CHAPTER 9. INTEGRATED INFORMATION DECOMPOSITION

information measures introduced in Chapter 2. Therefore, those measures constitute viable
tools to detect causally emergent dynamics in general complex systems.

In particular, we highlight the original whole-minus-sum Φ is especially attractive for this
purpose, since includes all relevant ΦID atoms (Table 9.1), and, unlike PID-based measures
like ψ , it does not depend on the specifics of a PID measure, allowing us to establish
sufficiency conditions using standard information-theoretic tools.

In short, the decomposition of Φ, and the formulation of a rigorous theory of causal
emergence, provide theoretical support to our argument for integrated information as a
universal signature of causal emergence.



Chapter 10

Consciousness and information content:
The entropic brain hypothesis

Chapter summary

As an alternative to IIT, we consider another, much simpler informational
theory of consciousness known as the Entropic Brain Hypothesis (EBH). We
present two examples from the study of altered states of consciousness – musical
improvisation and the psychedelic state – and interpret the results in the light
of EBH. We argue that the simplicity and empirical success of EBH provide
valuable lessons for IIT, and that a collective, open-minded engagement between
these and other theories are key for a cohesive, mature, and productive science
of consciousness.
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10.1 Introduction

In Chapter 7 we argued that, although theoretically appealing, the predictions of IITC have
proven difficult to evaluate using Φ measures on neuroimaging data. These difficulties
arise from multiple fronts: computational challenges associated with estimating Φ measures
in high-dimensional spaces, unpredictable behaviour of Φ measures in partially observed
systems, and possible confounding factors in the dynamics of conscious and unconscious
brains.

As an alternative to IITC, in this chapter we consider a much simpler theory of conscious-
ness, the Entropic Brain Hypothesis (EBH) [181]. The EBH puts forward a bold proposition:
that richness of psychological content is correlated with richness of signal diversity, or
information content, in the neural activity. This “signal diversity” can be operationalised
using standard entropy estimators, making the EBH predictions straightforward to test on
neurophysiological data.

In the study of altered states of consciousness, the predictions of EBH clearly align with
our intuitions and with experimental results: brain entropy is lower in NREM sleep [137]
and in disorders of consciousness like vegetative and minimally conscious states [125];
and it is an accurate marker of epileptic seizures [182] and depth of anaesthesia [183].
Furthermore, entropy is dramatically increased under the effects of psychedelic drugs [129],
and, empirically, is an unreasonably effective tool – results are robust to different data pre-
processing and filtering methods, as well as to different types of surrogate data controls [137].
Overall, EBH is a simple, interpretable theory with clear predictions, and very successful
experimental results in agreed-upon paradigmatic cases.

In this chapter we present two brief examples of analyses conducted and interpreted
following the EBH. In the first study, we show that brain entropy is increased with stronger
external stimulation, and that, in agreement with subjective reports, the entropy-enhancing
effects of LSD are larger in inward-focused states of lower external stimulation. In the
second study, this one focused on musical performance, we argue for musical improvisation
as a distinct state of mind in its full right, and describe it in terms of EBH’s primary
states.1 Finally, we conclude with a discussion of the relation between EBH and IIT, and
argue that the simplicity and empirical success of EBH provide valuable lessons for future
developments of IIT.

10.2 Entropy and Lempel-Ziv complexity

The key requirement to empirically test EBH’s predictions is a practical measure of signal
diversity. To this end, the Lempel-Ziv complexity (LZ), originally introduced in 1976 [185],

1A full description of the study on musical improvisation can be found in the original reference [184].
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is a popular tool to quantify the uncertainty contained in time series data. Intuitively, LZ
measures the diversity of the patterns present in a particular signal. In this section we lay
out the basics of the LZ algorithm and discuss its interpretation in relation to the EBH.

LZ is calculated in two steps. First, the value of a given signal Xt of length T is binarised,
typically using its mean value as a threshold.2 The resulting binary sequence is scanned
sequentially and divided in distinct patterns (more on this below), and the resulting number
of patterns is the LZ complexity itself, C(Xt). In complexity science jargon, we say that LZ
identifies signal complexity with richness of content [186] – a signal is regarded as complex
if it is not possible to provide a brief (i.e. compressed) representation of it.

A popular way of interpreting LZ is as an approximation to the Kolmogorov complexity –
the length of the shortest program able to reproduce a given sequence of symbols in a Turing
machine [187]. However, we argue that this view is brittle in theory and of limited use in
practice: first, the Kolmogorov complexity of a finite string of any length can differ by an
arbitrarily large constant depending on the Turing machine used [7], making comparisons
between Kolmogorov complexities estimated from finite data essentially meaningless. Sec-
ond, we do not actually think the discretised neural signal is generated by a Turing machine,
which makes the experimental explanatory power of this interpretation debatable.

Instead, a simpler and more parsimonious interpretation of LZ is as an efficient estimator
of the entropy rate of Xt [188]. Mathematically,

lim
T→∞

C(Xt)

∆T
= H(Xt |XXX t−1

−∞ ) with ∆T =
T

log2 T
. (10.1)

The entropy rate is an established measure of unpredictability in a time series: one half of
the entropy rate is the probability of making an error with the best informed guess about the
next sample [189]. Throughout the rest of the chapter we use this normalised quantity as an
estimator of brain entropy, and refer to it generically as LZ.

One element we have not yet addressed, and that is common cause of confusion in
the neuroscience literature, is how exactly to divide the signal into patterns to compute
C(Xt). This comes from the fact that there are multiple LZ compression algorithms, most
prominently LZ76 [185], LZ77 [190], and LZ78 [191]. The common implementation,
using a dictionary to explicitly store all the patterns, corresponds to the LZ78 algorithm.
In contrast, LZ76 and LZ77 use a sliding window construction to compute the number of
patterns without the need to store them. In this work we use the original LZ76 algorithm,
as described by Kaspar and Schuster [192]. While it is possible to obtain entropy rate
estimates from LZ77 or LZ78, these are substantially less straightforward than simply using
Eq. (10.1).

2Common alternatives are thresholding over the median, after detrending the signal, or using the Hilbert
transform. To the best of our knowledge, no solid theoretical reasons or comprehensive experimental studies
exist to prefer one over the other.
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10.3 Sensory stimuli and the psychedelic state

Psychedelic substances, such as LSD and psilocybin, are able to induce profound changes in
subjects’ perception, cognition, and conscious experience. In addition to their long-known
uses for self-exploration and introspection, there is now evidence that psychedelics may
enable effective treatments for various mental health conditions [193].

The therapeutic mechanisms of psychedelics, however, are not yet fully understood,
although they are thought to be related to their acute positive effect on brain entropy [129].
A recent conceptual framework to understand these phenomena is the “RElaxed Beliefs
Under pSychedelics” (REBUS) model [194], that posits that the entropy-enhancing effects
of psychedelics help reorganise tight and possibly self-damaging beliefs (or priors) the
subject may have about themselves or the world around them. This model, while still
speculative, is consistent with other mainstream theories of brain function, such as the
free-energy principle [195], and fits experimental data, including Lebedev’s findings that
acute entropy increase under psychedelics predicts later personality changes [196]. Given
the importance of these entropic effects, understanding what internal and external factors
mediate them may prove useful towards developing safe and effective therapies.

To this extent, in this first study we investigate whether changes in external stimuli have
a measurable effect on the entropy of brain dynamics in human subjects. We use the data
originally presented by Carhart-Harris et al. [136]. Twenty subjects participated in the study,
and attended two experimental sessions – one in which they received a placebo, and one in
which they received an i.v. administration of 75 µg of LSD. The order of the sessions was
randomised separated by two weeks and blind to the participants.

MEG recordings of several minutes of length were collected under four conditions:

• Resting state, eyes closed.

• Listening to music, eyes closed.

• Resting state, eyes open.

• Watching a video, eyes open.

The music tracks were taken from the album “Yearning” by Robert Rich and Lisa Moskow;
and the video was composed of segments of the “Planet Earth” documentary series produced
by the BBC. Throughout this paper we will refer to these conditions as ‘Closed’, ‘Music’,
‘Open’, and ‘Video’.

Segments with excessive artefacts were identified by visual inspection and removed, and
remaining artefacts were cleaned with ICA. Data was notch-filtered at 50 Hz, and source-
reconstructed in a dense mesh throughout the cortical sheet matching the standard template
in the Fieldtrip toolbox [197]. Source time series (or virtual sensors) were reconstructed,
segmented in 2 s epochs, and compressed with the LZ76 algorithm outlined above.



10.3 SENSORY STIMULI AND THE PSYCHEDELIC STATE 155

10.3.1 Increased signal diversity under external stimulation

Our first result is that richer external stimuli induce a strong increase in MEG signal diversity,
as measured by LZ complexity. Hotelling’s T 2 tests reject the null hypothesis that all stimuli
have the same effect (p< 0.001) and trends are clearly visible, both at the group and subject
level (Fig. 10.1). Similar outcomes are obtained using other statistical procedures, such as
ANOVA or the linear mixed-effects model discussed below.
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Figure 10.1: Data from the non-drug baseline condition, showing external stimulation increases LZ
complexity. For each measure, data are provided per subject (right) and averaged across subjects
(left; error bar is standard error). LZ complexity is reported in bits/sample.

As expected, there is a large LZ increase between the closed- and open-eyes conditions,
observed throughout the whole brain. However, we also find measurable differences between
the conditions with and without music, eyes closed (paired t-test, p< 0.01) and with and
without video, eyes open (paired t-test, p< 0.001).

Exploring the effect of stimuli more rigorously, we now test whether stimulus richness
has an effect beyond the mere effect of opening one’s eyes. To do that we formulate two
binary variables, eyes open and stimulus presence, based on the experimental conditions
and according to the following table:

Experimental conditions Model variables

Eyes open Stimulus
Eyes closed, no music 0 0

Eyes closed, music 0 1
Eyes open, no video 1 0

Eyes open, video 1 1

We then fit a linear mixed-effects (LME) model using the presence of stimulus as predictor
variable, and subject identity and eyes open as random effects. This model reveals a
significant positive effect of stimulus on LZ (log-likelihood ratio test against null model
without stimulus, p< 0.01). Therefore, the trends in Fig. 10.1 cannot be explained merely
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by the presence or absence of visual stimulation, and must be related to the structure of such
stimulation – in this case, the music and the video being played.

This result seems to differ from a recent analysis by Bola et al. [198], which reported
finding no correlation between EEG signal diversity and ‘informativeness’ of auditory
stimuli (i.e. the speed at which a speech recording was played). We hypothesise that Bola et
al. did not find significant results because the difference between the experimental conditions
used were too subtle. Nonetheless, this suggests that exploring which features of perceptual
stimuli elicit an increase in signal diversity is an open research problem.

10.3.2 Stronger stimulus weakens drug effect

After finding that richer stimuli drive an increase in MEG signal diversity, we set out to
investigate how this relationship is modulated under the effect of LSD. As before, we
compute LZ complexity and fit a LME model, this time using drug and stimulus as predictor
variables, and subject identity as a random effect (Fig. 10.2a). For the model shown in the
figure we assumed the four experimental conditions were ordered (i.e. had integer values),
but all our results remain if this assumption is relaxed (i.e. conditions are one categorical
variable).
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Figure 10.2: Stronger external stimulation reduces the enhancing effect of LSD on brain signal diver-
sity. (a) Linear mixed-effects models fit to LZ complexity, illustrating the significant drug×stimulus
interaction term (p< 0.001). (b) Drug×stimulus log-likelihood ratio (LLR) for the LME model. For
reference, the p = 0.05 threshold in this comparison corresponds to LLR ≈ 9, and higher LLR values
imply lower p-values. In regions with a with high LLR (bright yellow hue) external stimuli such as
music or video strongly reduced the effect of LSD.
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The first result is that LZ increases dramatically under the effects of LSD (drug term of the
LME is significantly above 0, with p< 0.001), replicating previously reported results [129].
This effect is strong and widespread, observable in all stimulus conditions. Additionally, and
in agreement with the results above, this LME model also reveals a strong positive effect of
stimuli on LZ irrespective of drug (p< 0.001).

Finally, and in what constitutes the main result of this study, we assess the effect of the
drug×stimulus interaction. We do this by formulating two models: a full model where
all terms are present, and a pruned model where the interaction term has been removed.
We fit both models to the data, and the full model is strongly preferred over the null
model by log-likelihood ratio tests (p < 0.01), which indicates a significant interaction
effect.3 Furthermore, this interaction effect is negative – i.e. increased external stimulation
reduces the effect of the drug. Spatially, the effect is located predominantly in the posterior
temporal lobe, although in the case of LZ the effect is also seen throughout the parietal lobe
(Fig. 10.2b).

These results agree with the multitude of studies and reports that have highlighted the
importance of the environment in which the drug is taken and the subject’s mood and
expectations prior to the substance use – factors commonly known as set and setting. More
broadly, these results have implications for our understanding of the psychedelic state and the
application of psychedelics in psychotherapy. If the therapeutic mechanisms of psychedelics
do depend on their acute entropy-enhancing effects, these findings could provide therapists
with guidelines to modulate the patient’s entropy by means of music, video, or a balance
between inward- and outward-focused states.

10.4 The improvisational state of mind

In this study, we focus on another conjecture of the EBH: that brain entropy not only is
higher in states of richer conscious content, but that this difference is due to the interplay
between two kinds of conscious states. EBH makes the distinction between secondary
states, characteristic of the experience of adult humans; and primary states to which the
mind regresses under specific conditions, such as in response to severe stress, psychedelic
drugs or in REM sleep. Physiologically, brain entropy is increased in primary states, which
correlates with greater diversity and richness of experiential content; and is suppressed in
secondary states, which give rise to more regular and stable cognitive processes enabling
metacognitive functions like reality-testing and self-awareness.

Although primary consciousness may be a suboptimal mode of cognition, they seem to
be more than a mere psychological atavism. Plenty of reports show how events involving

3We additionally performed 2-way ANOVA tests, which also detected a significant interaction effect
(p< 0.05).



158 CHAPTER 10. CONSCIOUSNESS AND INFORMATION CONTENT

primary states can bring deep experiences and have profound therapeutic effects [199, 200].
In effect, the high entropy of primary states seems to allow one to overcome the inability
to think and behave in a flexible manner, narrow-mindedness and aggressive self-critical
attitudes.

In this study we take the EBH out of its home base of psychedelic state, and ask if it is
applicable to the domain of musical experience, and in particular musical improvisation. Is
the improvisational state of mind a primary state? Could one find traces of primary states in
musicians and audience during improvisational performance?

10.4.1 Experiment and data acquisition

The experiment consisted of a live chamber music concert by a professional trio (piano,
flute, singer), in the presence of an invited audience of 22 adults with varying levels of
musical expertise. During the experiment each piece was performed twice: once in strict
mode (corresponding to a prepared interpretation, as close as possible to the written score),
and once in what they described as an improvised, or “let-go,” mode (corresponding to
the improvisatory approach, in which performers are free to deviate from the score in
extemporised gestures).

Raw EEG signals of the three performers and four audience members were measured
using CE-certified devices with electrodes positioned according to the 10–20 electrode
positioning system [201]. The reference electrode was placed behind Cz and the ground
electrode on the forehead. All locations were cleaned with abrasive gel and conductive gel
was used to ensure low skin impedance. EEG data were collected at 250 Hz, and bandpass
filtered between 2 and 40 Hz. Bad channels and bad epochs were visually identified and
removed from the analysis.

The neural signal was split in segments of 2 s, which provides enough data points to have
an accurate estimation of LZ while being short enough to not compromise the stationarity of
the data. The values of each segment were then binarised using the corresponding median
value as a threshold. The LZ was finally calculated for each temporal segment of each
electrode, and then averaged across time and electrodes to obtain one LZ value per subject
per condition. Statistical significance is determined with t-tests (paired when possible, and
unpaired elsewhere) and effect sizes are measured with Cohen’s d.

10.4.2 Increased signal diversity in the improvisational state

Based on the properties of LZ outlined above, we investigated the complexity of the measured
EEG signals of all 7 subjects in both conditions, under a working hypothesis that LZ is
higher during the improvised than during the prepared condition. Our main result is that
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Figure 10.3: Lempel-Ziv complexity in strict and improvised musical performances. (a) LZ increase
in the improvised performance. (b) 6 of the 7 subjects show effect sizes consistent with the overall
trend. (c) The increase comes from the right hemisphere. (d) Topographical maps for the LZ increase,
with red for positive values and blue for negative ones. Colour map range: −1≤ d ≤ 1.

LZ does in fact increase in the improvised condition, by a difference of 0.010 bit (95% CI:
0.002–0.016, N = 7, two-sample t-test p = 0.024), shown in Figure 10.3a.

The small p-value for the group-level test, despite the very small number of subjects in the
study, is caused by the fact that the observed LZ increase is very consistent across subjects,
with 6 of the 7 participants showing changes in the same (positive) direction (Fig. 10.3b).
While results among the audience are mixed, all three musicians show substantial increases
in LZ during the improvised performance, and this effect is most significant in the singer
and the pianist.

Following up on our main result, and in agreement with common neuroscientific theories,
we find that the LZ increase is mainly localised in the right hemisphere (average difference in
LZ increase between right and left hemisphere: 0.010 bit, 95% CI: 0.004–0.016, p = 0.003).
The right hemisphere is conventionally associated with cognitive processes like creativity
and divergent thinking, which may indicate that musicians were more engaged in a creative
process during the improvised performance, and were less likely to enter the logic-driven
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and rule-following states usually associated with the left hemisphere. Figure 10.3c shows
the average difference in LZ increase and Figure 10.3d its spatial distribution.

In the context of the EBH, we interpret these results as a quantitative signature of a shift
from a secondary toward a primary state of consciousness during musical improvisation,
characterised by a more flexible creative process.

This opens an interesting connection between primary states and states of flow [202]. In a
more speculative tone, we raise the tentative idea that all states of flow are primary states
(but not vice-versa). In other words, all the descriptions associated with feelings of flow are
consistent with the characteristics of primary states of cognition, while it is clear that not all
primary states involve flow. If true, this could add LZ to the small set of known biomarkers
of flow states [203].

10.5 Discussion

These studies, together with the myriad other reports in the literature, strongly suggest
that the bold intuitions behind EBH are not entirely unfounded. While it does not make
any predictions about its structure, EBH’s claim that the richness of conscious content is
correlated with richness in information content is strongly supported by the evidence. In
light of this success, it is worth examining the relation between EBH and IIT so we can
discover, synergistically, what we can learn from both together that we wouldn’t learn from
either of them on their own.

10.5.1 Lempel-Ziv complexity and Φ

Methodologically, this chapter diverges substantially from all others in this thesis: instead
of the dynamic, high-order correlations discussed everywhere else, in this chapter we
used simple, single-channel entropy, and found it a clear and robust neural correlate of
consciousness. Given the huge disparity between the LZ presented and reviewed here,
and the Φ results in Chapter 7, it is natural to ask whether there is any relation between
the two, and if LZ can help us formulate principled and more empirically powerful Φ
measures. Interestingly, a recent simulation study showed that LZ and Φ are in fact strongly
correlated [204] (although this has only been shown in the small logic-gate networks on
which Φ-3.0 can be computed).

As a start, we can try to speculate why it is that Φ and LZ are so correlated in these simple
systems. One possible hint comes from a standard result in symbolic dynamics [205]: when
a Markovian system is coarse-grained, the resulting dynamics are in general non-Markovian.
In IIT language, this could mean that when we partition the system during the calculation of
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Φ, we are not “being fair” to the parts, because we are unjustly maiming their predictive
power. It could be that the system is perfectly predictable, but with longer memory.

Maybe this hints at the role of non-Markovianity of the neural system. Perhaps then it
is not so surprising that embedding methods able to deal with non-Markovian dynamics
have been so successful in consciousness neuroscience [145]. If this line of reasoning holds
any ground, it would be bad news for a fundamental, causal version of IIT (since, as we
have argued before [180], these kinds of Φ measures are not defined for non-Markovian
processes), but it would open an exciting line of research at the interface between these two
informational theories of consciousness.

10.5.2 The ‘brain’ in ‘entropic brain’

A common criticism to the entropic brain hypothesis (e.g. Ref. [206]) is that a naive
interpretation of it might suggest that conscious level is maximised in a maximally entropic
state, in which the neurons are disconnected and therefore statistically independent – akin
to the disordered phase of an Ising-style model. In this dynamical regime no substantial
information processing is possible [207], and is evidently not how the brain operates. This
reasoning might also suggest that an ideal gas is somehow “maximally conscious” amongst
other thermodynamical systems, a claim that would make any philosopher of mind shiver.

However, this is an example of the danger of taking analogies with simple models too
seriously. In a critical Ising model, if the spins are disconnected (e.g. by setting the coupling
to J = 0) the system shifts to the disordered, maximally entropic state. In contrast, in a slice
of actual brain tissue, if the neurons are disconnected (e.g. through pharmacological agents),
the dynamical range of neurons is drastically reduced [208] – i.e. they just shut down. In
plain words: predictions based on an Ising model simply do not hold.

A more charitable way of interpreting the claims of the entropic brain hypothesis is that
subject to the physiological constraints of the human brain, states of higher entropy are states
of richer contents of consciousness. This weaker form of the EBH does seem supported by
the evidence, as argued in the two studies above and in the broader literature.

This move, however, comes at a cost: we are confining EBH’s domain of applicability, in
a somewhat arbitrary way. In contrast, modern IIT remains insistent on tackling the “hard”
“problem,” and being a fundamental theory of consciousness. Learning from EBH, it may be
beneficial to whip up a weak IITC, as opposed to the dominant strong IITC, that aims at
explaining consciousness “only” as created by human brains. To some, conceptual elegance,
in exchange for actual predictive power, might seem like a worthwile price to pay.
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10.6 Conclusion of Part III

In this Part, we have presented developments and alternatives to IIT, both as a collection of
information-theoretic tools, and as a theory of consciousness.

In Chapters 8 and 9 we proposed Partial Information Decomposition [19] as a framework
to understand high-order interactions, which are of crucial importance for IIT. Using PID,
we made two direct contributions to IIT:

• First, we showed that neural complexity, the flagship measure of IIT 0.1 does not
faithfully represent a balance between global integration and local segregation. We
proposed a new measure, the O-information, that represents these intuitions more
directly.

• Second, we presented a unification of IIT and PID, ΦID, and used it to explain the
seemingly paradoxical results of Chapter 6. In addition, ΦID allowed us to alleviate
the shortcomings of previously proposed measures in IIT 2.0.

Taken together, these contributions show the benefits of a principled, structured approach
to the problem of studying integrated information – instead of imposing a large number
of arbitrary choices on a measure of integrated information, we started from a more basic
theory of multivariate information and used it to refine our intuitions of integration and
segregation.

Finally, we presented two studies analysing M/EEG data of subjects in altered states of
consciousness, and interpreted the results using the Entropic Brain Hypothesis [181]. We
argued that a marker as simple as brain entropy is extremely effective in practice, in stark
contrast with the elaborate Φ measures of Chapters 6 and 7, for which experimental evidence
is mixed and inconclusive.
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Conclusion
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11.1 Summary of thesis contributions

The results presented in this thesis have achieved the objectives laid out in Section 1.2: we
have applied Integrated Information Theory to the study of complex neural systems, we
have reviewed existing and novel evidence regarding IIT as a theory of consciousness, and
have presented new developments to its mathematical basis. In the following, we list our
contributions chapter by chapter.

Literature review of integrated information measures. We have provided a compre-
hensive review of proposed measures of integrated information, including a comparison of
their basic properties (and the corresponding proofs). For each measure, we gave a general
information-theoretic description, avoiding, to the extent possible, the specialised jargon of
recent IIT.

Link between Φ and criticality in metastable coupled oscillators. We showed that a
network of coupled Kuramoto oscillators, when tuned close to its critical point, exhibits
both high metastability and high integrated information. This is the first description of a
dynamical system in which the three major complexity indicators of criticality, metastability,
and integrated information coincide.

Link between Φ and power law-like avalanches in spiking neurons. We presented a
simple model network of spiking neurons which, by tuning its topology through a single
parameter, undergoes a transition between two dynamical regimes, characterised by dom-
inant information storage or transfer, respectively. The intermediate point, with balanced
integration and segregation, is the point where neural avalanches most closely approximate
power law statistics, and estimated exponents match empirical findings in in vitro recordings.

Link between Φ and distributed computation in cellular automata. We first showed
that Φ in cellular automata correlates with intuitive notions of complexity, as given by Wol-
fram’s complexity classes, and later strengthened this result through extensive simulations
in the context of Langton’s edge of chaos hypothesis. We then analysed a novel pointwise
version of Φ at a local scale in space and time, and confirmed that information is integrated
by coherent structures like gliders, blinkers, and collisions.

Taken together, these results support our proposal of Φ as a universal marker of dynamical
complexity in complex systems. This idea was first presented and argued qualitatively through
the examples in Chapters 3-5, and later formalised with the full decomposition of Φ and the
identification of a theory of causal emergence within it in Chapter 9.
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Comprehensive comparison study of Φ measures in simulation. We provided the most
extensive simulation study of integrated information measures to date, and observed a
striking variety of behaviour among proposed measures even in simple systems. From these
results, we pushed forward the conclusion that the axiomatic basis of IIT is underspecified,
in the sense that measures that roughly represent the same intuitions in theory behave very
differently in practice.

Literature review and novel evidence regarding IIT as a theory of consciousness. We
performed, for the first time, a literature review of Φ measures applied to neuroimaging data,
and concluded that at this stage experimental evidence does not warrant a direct association
between Φ and levels of consciousness. However, a simple model suggests this discrepancy
may be attributed to the large number of unobserved variables in contemporary neuroimaging
techniques, and points to state-space reconstruction as a potential way forward.

These two limitations, both theoretical and experimental, call for a more pragmatic and
evidence-driven research programme in IIT. In particular, we argue that efforts to formulate
(i) more specific measures of integrated information with explicit operational meaning, and
(ii) robust estimators from neuroimaging data, are likely to benefit the development of IIT.

New measure of high-order interdependecies in large systems. We proposed a novel
measure of high-order interdependecies, the O-information, that is more scalable and
interpretable than the alternatives. We showed that neural complexity, the flagship measure
of IIT 0.1 does not faithfully represent a balance between global integration and local
segregation, while the O-information represents these intuitions more directly.

Decomposition of integrated information and explanation of previous results. We
unified IIT with another branch of information theory, Partial Information Decomposition,
to provide a full decomposition of integrated information, or ΦID. Most importantly, ΦID
reveals that what is typically referred to as ‘integration’ is actually an aggregate of several
heterogeneous phenomena, and can help us understand and alleviate the limitations of
existing Φ measures.

Case studies of information theory in altered states of consciousness. We presented
two experimental studies of altered states of consciousness – the psychedelic state and
musical improvisation – analysed and interpreted using the (comparatively much simpler)
framework of the Entropic Brain Hypothesis. We argued that the considerable success of
the simple measures in this framework, such as Lempel-Ziv complexity, should be learnt
from and incorporated in future IIT research.
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11.2 Future work

Several directions for future work have been proposed throughout this thesis, coming both
from the limitations highlighted in Part II and from the new developments presented in
Part III. Here we summarise these ideas and link them to relevant ongoing work in the
research community.

First, in order to eliminate the ambiguity in our intuitions of integration and differentia-
tion, as highlighted in Chapter 6, it might help to formulate measures of integration with
operational meaning. Measures with operational meaning are more grounded, and easier to
handle and reason about. The recent work on operational definitions of redundancy may be
relevant [209, 210], and the axiomatic basis of IITC will need to be re-evaluated [211].

Once a suitable, unambiguous measure (or set of measures) of integrated information
has been identified, we can relate it to the decomposition in Chapter 9 and investigate not
only the amount of integrated information, but also its structure. For example, the double-
redundancy lattice (Fig. 9.2) gives a structure of dynamical information that is different
from the one suggested in other IIT literature [6, 11]. An exploration of their differences,
mathematical properties and empirical success is a very interesting follow-up to this work.

Overall, this is part of a broader trend to move beyond IIT as a theory of conscious level
(focused on ‘Big Phi’ as a scalar index), and towards a more comprehensive theory of
conscious content. This could be related to more elaborate mathematical structures, for
example coming from category theory [212].

On a separate front, we have much to learn from the unreasonable effectiveness of LZ as
a marker of conscious level. As suggested by Ref. [204], in certain small systems there is an
empirical correlation between LZ and Φ-3.0, although the origin of this correlation and its
relation to neural dynamics is not established. Therefore, it is worthwile to investigate the
role of non-Markovianity in neural dynamics, as a way to bridge the gap between Φ and
LZ. For example, this could be done through Takens vector embeddings [213] or explicit
state-space models [146].

On this same line of research, there is plenty of space for theoretical work to extend, in a
principled manner, the functionality of LZ as an analysis tool. For example, one important
limitation of the LZ algorithm is that it only returns the estimated value of the entropy
rate, and nothing else – it does not provide an explicit model that can be evaluated at will.
Such a model could be extremely useful, since it would allow us to do things like obtain a
time-resolved (i.e. pointwise) estimate of surprise, allowing us to inspect LZ-like entropy
with temporal granularity; to fit the model in one time series and evaluate it in another,
giving us a notion of relative entropy or divergence; and to inspect the model itself to analyse
not only how many, but what kinds of patterns appear. To this end, variable-order Markov
models [214] are promising candidates as general data-efficient models of time series data.
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11.3 Parting thoughts

It is hard not to feel overwhelmed by the unsurmountableness of the problems tackled here.
After all, when it comes to consciousness science, this thesis has brought more questions
than answers: If, upon closer inspection, integration is so ambiguous and ill-defined, did the
original IIT 0.1 intuitions have any value to begin with? If we follow the leads in Part III and
try to fix IIT with PID, given the lack of consensus in the PID literature doesn’t ΦID just
perpetuate the ambiguity of Φ, but sixteen times over? More fundamentally, if experimental
evidence for IITC is so thin, and the maths are so hard, why keep working on it?

To answer these difficult questions, I shall steal the words of the accomplished epistemic
anarchist Paul Feyerabend. In his outstanding polemic Against Method [215], Feyerabend
convincingly argues that there is no such thing as a “scientific method,” and that the
advancement of knowledge is a fundamentally irrational endeavour.

This is necessarily the case, for any new cosmology or world-view is bound to clash
with the status quo, and be deemed irrational by the standards of its time. In this sense,
Copernicus and Galileo’s ideas were irrational at their times, and so were Einstein’s and
many others’ – or, closer to home, those of Shannon himself. As beautifully portrayed by
Hamming [216]:

Courage is one of the things that Shannon had supremely. You have only to think
of his major theorem. He wants to create a method of coding, but he doesn’t
know what to do so he makes a random code. Then he is stuck. And then he
asks the impossible question, “What would the average random code do?” He
then proves that the average code is arbitrarily good, and that therefore there
must be at least one good code. Who but a man of infinite courage could have
dared to think those thoughts? That is the characteristic of great scientists; they
have courage. They will go forward under incredible circumstances; they think
and continue to think.

While we advocate for an open and transparent engagement with experimental evidence,
we cannot reasonably demand the same level of adherence to “facts” from a theory of
consciousness as we demand from theories in other branches of science. In the words
of Feyerabend, “this is like arranging a fight between an infant and a grown man, and
announcing triumphantly, what is obvious anyway, that the man is going to win” [215,
p. 108]. Therefore, a new science of consciousness must find its own path, and be allowed
to make mistakes, as a child playing air-guitar plays no wrong notes.
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In one of his most inspiring passages, Feyerabend calls [215, p. 113]:

This need to wait, and to ignore large masses of critical observations and
measurements, is hardly ever discussed in our methodologies. Disregarding
the possibility that a new physics or a new astronomy might have to be judged
by a new theory of knowledge and might require entirely new tests, empiri-
cally inclined scientists at once confront it with the status quo and announce
triumphantly that ‘it is not in agreement with facts and received principles’.
They are of course right, and even trivially so, but not in the sense intended by
them. For at an early stage of development the contradiction only indicates that
the old and the new are different and out of phase. It does not show which view
is the better one. [...] How shall we proceed in order to bring about such a fair
comparison? The first step is clear: we must retain the new cosmology until it
has been supplemented by the necessary auxiliary sciences. We must retain it in
the face of plain and unambiguous refuting facts.

If we could listen to Feyerabend, he would no doubt prompt us to disregard the over-
whelming odds against, and follow our gut. Radical ideas that transform science do not
come from capital-R Reason. Radical ideas fight, and survive – and they survive because of
“prejudice, passion, conceit, errors, sheer pigheadedness” [215, p. 116].

If History is of any guide, it is naive curiosity and fascination that move us forward. And,
after all, the fact remains that the problem of consciousness is so devilishly interesting,
that despite the ups and downs, the highs and lows, one can’t but continue staying up at
night asking oneself “how is this a thing?”
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Information-theoretic foundations

A.1 Derivation and concavity proof of I∗

A.1.1 Derivation of I∗ in Gaussian systems

Here, we provide a closed-form expression for the mismatched decoding information in a
Gaussian dynamical system. For clarity, we omit the X ,τ, arguments of Ĩ and write it as a
function of β only. The formula for Ĩ(β ) for a stationary continuous random process is

Ĩ(β ) =−
∫

dx p(x) log
∫

dx̃ p(x̃)q(x|x̃)β +
∫

dx̃
∫

dx p(x, x̃) logq(x|x̃)β , (A.1)

where p(x) is the distribution for Xt , p(x, x̃) is the joint distribution for (Xt ,Xt−τ), and q(x|x̃)
is the conditional distribution for Xt given Xt−τ under the partitioning in question. The
function Ĩ(β ) also depends on Xt , τ and  , but for the sake of clarity we omit all arguments
except for β , which is the parameter of interest here. When Xt is Gaussian with covariance
matrix ΣX (and mean 0 without loss of generality), we have

p(x) = (2π)−n/2|ΣX |−1/2exp
[
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2
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)]
, (A.2)

where we define
ψ(x,M) =: xTMx (A.3)

for a vector x and a matrix M. Furthermore,

q(x|x̃) = (2π)−n/2|ΠX |X̃ |−1/2exp
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2
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, (A.4)

where ΠX is the block diagonal covariance matrix for Xt under the partition, ΠXX̃ =:
Σq(Xt ,Xt−τ) = ΠT

X̃X is the block diagonal auto-covariance matrix associated with the parti-
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tion, and ΠX |X̃ is the partial covariance

ΠX |X̃ = ΠX −ΠXX̃ Π−1
X ΠX̃X . (A.5)

We start with the integral∫
dx̃ p(x̃)q(x|x̃)β = (2π)−nβ/2|ΠX |X̃ |−β/2(2π)−n/2 |ΣX |−1/2

∫
dx̃exp() , (A.6)
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If we write
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then
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X |X̃ ΠXX̃ Π−1

X , (A.9a)

BT = βΠ−1
X |X̃ ΠXX̃ Π−1

X Q−1 , (A.9b)

R1 = βΠ−1
X |X̃ −β 2Π−1

X |X̃ ΠXX̃ Π−1
X Q−1Π−1

X ΠX̃X Π−1
X |X̃ , (A.9c)

so ∫
dx̃exp() = exp

(
−1

2
xTR1x

)∫
dyexp

(
−1

2
yTQy

)
= exp

(
−1

2
xTR1x

)
(2π)n/2|Q|−1/2 .

(A.10)

Hence, using Equations (A.2) and (A.6), we obtain the first term in Equation (A.1):

−
∫

dx p(x) log
∫

dx̃ p(x̃)q(x|x̃)β =
nβ
2

log2π+
1
2

log
(
|Q| · |ΣX | · |ΠX |X̃ |β

)
+

1
2

tr(ΣX R1) .

(A.11)

Now, moving on to the second term in Equation (A.1),∫
dx̃

∫
dx p(x, x̃) logq(x|x̃)β =−βn

2
log2π− β

2
log |ΠX |X̃ |−

β
2

I1 , (A.12)
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where

I1 =
∫

dx̃
∫

dx p(x, x̃)ψ
(

x−ΠXX̃ Π−1
X x̃,Π−1

X |X̃

)
=
∫

dx p(x)ψ
(

x,Π−1
X |X̃

)
+

∫
dx̃ p(x̃)ψ

(
x̃,Π−1

X ΠX̃X Π−1
X |X̃ ΠXX̃ Π−1

X

)
−2

∫
dx̃

∫
dx p(x, x̃)xTΠ−1

X |X̃ ΠXX̃ Π−1
X x̃

= tr
(

Π−1
X |X̃ ΣX

)
+ tr

(
Π−1

X ΠX̃X Π−1
X |X̃ ΠXX̃ Π−1

X ΣX

)
−2 tr

(
Π−1

X |X̃ ΠXX̃ Π−1
X ΣX̃X

)
, (A.13)

where ΣX̃X =: Σ(Xt−τ ,Xt). Thus, the second term in Equation (A.1) is given by∫
dx̃

∫
dx p(x, x̃) logq(x|x̃)β =− βn

2
log2π− β

2
log |ΠX |X̃ |

+
1
2

tr(ΣX R2)+β tr
(

Π−1
X |X̃ ΠXX̃ Π−1

X ΣX̃X

)
,

(A.14)

where
R2 =−βΠ−1

X |X̃ −βΠ−1
X ΠX̃X Π−1

X |X̃ ΠXX̃ Π−1
X . (A.15)

Finally, putting all the terms in Equations (A.11) and (A.14) together, we obtain

Ĩ(β ) =
1
2

log(|Q| · |ΣX |)+
1
2

tr(ΣX R)+β tr
(

Π−1
X |X̃ ΠXX̃ Π−1

X ΣX̃X

)
, (A.16)

where

Q = Σ−1
X +βΠ−1

X ΠX̃X Π−1
X |X̃ ΠXX̃ Π−1

X , (A.17)

R = −βΠ−1
X ΠX̃X Π−1

X |X̃ ΠXX̃ Π−1
X −β 2Π−1

X |X̃ ΠXX̃ Π−1
X Q−1Π−1

X ΠX̃X Π−1
X |X̃ . (A.18)

We note that this formula for Ĩ(β ) has been verified with numerical methods, and it is not
the same as the formula reported by Oizumi et al. [10].

A.1.2 Ĩ(β ) is concave in β in Gaussian systems

Throughout this proof, we will rely multiple times on the the book Convex Optimization
by Boyd and Vandenberghe [32]. Our aim is to show that Ĩ(β ) is concave in β , which
means it has a unique maximum and can be treated with standard convex optimisation tools.
Throughout this proof, we follow Boyd and Vandenberghe’s notation: a function f is said to
be convex, convex downwards or concave upwards if f (ax+by)≤ a f (x)+b f (y), for all
real non-negative a,b with a+b = 1.
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We start with the second term in Equation (A.1),∫
dx̃

∫
dx p(x, x̃) logq(x|x̃)β = β

∫
dx̃

∫
dx p(x, x̃) logq(x|x̃), (A.19)

which is linear in β . Moving to the first term, using Equation (A.4) it can be rewritten as

−∫
dx p(x) log

[∫
dx̃ p(x̃)q(x|x̃)β

]
=−∫

dx p(x)
[
−nβ

2 log2π− β
2 log |ΠX |X̃ |

]
−∫

dx p(x) log [p(x̃)exp(−β f (x, x̃))dx̃] .

We see that the only nonlinear term in Ĩ(β ) is

−
∫

dx p(x) log
[∫

dx̃ p(x̃)exp(−β f (x, x̃)
]
, (A.20)

where
f (x, x̃) =

1
2

ψ
(

x−ΠXX̃ Π−1
X x̃,Π−1

X |X̃

)
. (A.21)

Now, we draw from two lemmas presented in [32]:

• An affine function preserves concavity, in the sense that a linear combination of convex
(concave) functions is also convex (concave).

• A non-negative weighted sum preserves concavity. Since p(x)> 0, the outer integral in
Equation (A.20) preserves concavity,

With these two remarks, we know that, to prove the concavity of Ĩ(β ), we just need to
prove the concavity of

− log
[∫

dx̃ p(x̃)exp(−β f (x, x̃))
]
. (A.22)

This is known as a log-sum-exp function, which, as per Section 3.1.5 of [32], is convex in
β . Finally, the minus sign in the last equation flips the convexity and we conclude that Ĩ(β )
is concave in β .

A.2 Bounds on causal density

We now prove that causal density is upper-bounded by time-delayed mutual information,
satisfying what other authors have considered a fundamental requirement for a measure of
integrated information [11]. As before, we omit the arguments to CD for clarity. We begin
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by writing down CD in terms of mutual information:

CD =
1

n(n−1) ∑
i̸= j

TEτ(X i→ X j|X [i j])

=
1

n(n−1) ∑
i̸= j

I(X i
t ;X j

t+τ |X
[i]
t ),

(A.23)

where as before X [i]
t represents the set of all variables in Xt except X i

t . We will use the chain
rule of mutual information [7],

I(X ;Y,Z) = I(X ;Z)+ I(X ;Y |Z). (A.24)

Using this chain rule and the non-negativity of mutual information, we can state that
I(X i

t ;X j
t+τ |X

[i]
t )≤ I(Xt ;X j

t+τ), and therefore

CD≤ 1
n(n−1) ∑

i̸= j
I(Xt ;X i

t+τ). (A.25)

Also by the same chain rule, it is easy to see that I(Xt ;X i
t+τ)≤ I(Xt ;Xt+τ). Then,

CD≤ 1
n(n−1) ∑

i ̸= j
I(Xt ;Xt+τ) . (A.26)

Given that the sum runs across all n(n−1) pairs, we arrive at our result

CD≤ I(Xt ;Xt+τ). (A.27)

A.3 Properties of integrated information measures

We prove the properties of in Table 2.2 of the main text. We will make use of the properties
of mutual information introduced in Section 2.2, repeated here for convenience:

MI-1 I(X ;Y ) = I(Y ;X),

MI-2 I(X ;Y )≥ 0,

MI-3 I( f (X);g(Y )) = I(X ;Y ) for any injective functions f ,g,
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A.3.1 Whole-minus-sum integrated information Φ

Time-symmetric Follows from (MI-1).

Non-negative Proof by example. If X i
t = X j

t , we have Φ = (1−N)I(X i
t ;X i

t−τ)≤ 0.

Rescaling-invariant Follows from (MI-3) when Balduzzi and Tononi’s [5] normalisation
factor is not used.

Bounded by TDMI Follows from (MI-2).

A.3.2 Integrated stochastic interaction Φ̃

Time-symmetric Follows from H(Xt |Ht−τ) = H(Xt−τ |Ht), which can be proved starting
from the system temporal joint entropy

H(Xt ,Xt−τ) = H(Xt |Xt−τ)+H(Xt−τ)

= H(Xt−τ ,Xt) = H(Xt−τ |Xt)+H(Xt),

and using the fact that by the ergodic property H(Xt) = H(Xt−τ). The
same logic applies to all parts of the system:

Non-negative Follows from the fact that Φ̃ is an M-projection (see Reference [11]).

Rescaling-invariant Follows from the non-invariance of differential entropy [7] (regardless
of whether a normalisation factor is used).

Bounded by TDMI Proof by counterexample. In the two-node AR process of the main text
Φ̃→ ∞ as c→ 1, although TDMI remains finite.

A.3.3 Integrated synergy ψ

Time-symmetric Proof by counterexample—for the AR system with

A =

(
a a
0 0

)
, Σ(ε) =

(
1 0
0 1

)
.

We have ψ = 1
2 log

(
1+a2) , while, for the time-reversed process, ψ =

1
2 log

(
1+a4). Note that this proof applies only to the MMI-PID used

in this paper and presented in [20].

Non-negative Follows from I∪(X ,Y ;Z)< I({X ,Y};Z) [19].
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Rescaling-invariant Follows from (MI-3) and the fact that I∩ is also invariant (see property
(Eq) in Section 5 of [9]).

Bounded by TDMI Follows from the non-negativity of I∪ [19].

A.3.4 Decoder-based integrated information Φ∗

Non-negative Follows from I∗[X ;τ, ]≤ I(Xt ;Xt−τ), proven in Reference [28].

Rescaling-invariant Assume that the measure is computed on a time series of rescaled
data X r

t = XtA, where A is a diagonal matrix with positive real num-
bers. Then, its covariance is related to the covariance of the original
time series as Σr

X = E
[
X r

t
TX r

t
]
= E

[
ATXT

t XtA
]
= A2ΣX . We can anal-

ogously calculate ΠX ,ΠXX̃ ,ΠX |X̃ and easily verify that all A’s cancel
out, proving the invariance.

Bounded by TDMI Follows from I∗[X ;τ, ]≥ 0, proven in Reference [28].

A.3.5 Geometric integrated information ΦG

Time-symmetric Follows from the symmetry in the constraints that define the manifold
of restricted models Q [11].

Non-negative Follows from the fact that ΦG is an M-projection [11].

Rescaling-invariant Given a Gaussian distribution p with covariance Σp, its M-projection in
Q is another Gaussian with covariance Σq. Given a new distribution p′

formed by rescaling some of the variables in p, the M-projection of p′

is a Gaussian with covariance A2Σq with A a diagonal positive matrix
(see above), which satisfies DKL(p∥q) = DKL(p′∥q′) and therefore ΦG

is invariant to rescaling.

Bounded by TDMI TDMI can be defined as the M-projection of the full model p to a
manifold of restricted models QMI = {q : q(Xt ,Xt−τ) = q(Xt)q(Xt−τ)}
[11]. The bound ΦG ≤ I(Xt ;Xt−τ) follows from the fact that QMI ⊂ Q.

A.3.6 Causal density

Time-symmetric Follows from the non-symmetry of transfer entropy [217].

Non-negative Re-writing CD as a sum of conditional MI terms, follows from (MI-2).
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Rescaling-invariant Follows from (MI-3).

Bounded by TDMI Proven in Section A.2.



Appendix B

Quantifying high-order
interdependencies via multivariate
extensions of the mutual information

B.1 Statistical structures across scales

In this section we study how the O-information is related to statistical structures of subsets
of XXXn – i.e. structures at different scales of the system. For simplicity, we assume in this
section that | | is finite.

In the next proposition we present some fundamental restrictions between the total
correlation of subsystems and the value of Ω(XXXn).

Proposition 8. If Ω(XXXn)≥ 0, then for all m ∈ [n−1]

min
|γγγ|=m

TC(XXX γγγ)≥Ω(XXXn)− (n−m−1) log | | . (B.1)

If Ω(XXXn)≤ 0, then for all m ∈ [n−1]

max
|γγγ|=m

TC(XXX γγγ)≤Ω(XXXn)+(n−2) log | | . (B.2)

Both bounds are tight if |Ω| ≥ (n−m+1) log | |.

Proof. See Appendix B.8.
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Corollary 3. The following bounds hold for all γγγ ⊆ {1, ...,n} with |γγγ|= m:

min
{

m−1,
Ω(XXXn)

log | | +(n−2)
}
≥ TC(XXX γγγ)

log | |

≥max
{

0,
Ω(XXXn)

log | | − (n−m−1)
}
.

Corollary 3 shows that positive values of Ω constrain subgroups to be correlated: if
Ω(XXXn)≥ (n−m−1) log | | then all groups of m or more variables must have some statis-
tical dependency. Negative values of Ω, on the other hand, impose limits on the allowed
correlation strength: if Ω(XXXn)≤−(n−m−1) log | | then the correlation of all groups of
m or more variables is upper-bounded. As an example, for | |= 2 and m = 2 the bounds
given in Corollary 3 are

max{1,Ω(XXXn)+n−2} ≥ I(Xi;X j)

≥min{0,Ω(XXXn)− (n−3)} ,

for all i, j ∈ {1, ...,n}, which shows that the bounds related to Ω are only active when
n−3≤ |Ω| ≤ n−2.

In conclusion, the sign of Ω determines whether the constraint is a lower or upper bound,
and |Ω| determines which scales of the system are affected, with smaller groups being harder
to constrain – i.e. requiring higher absolute values of Ω. The relationship between the
system’s scales and the values of Ω is illustrated in Figure B.1.

The next result corresponds to the converse of Corollary 3, and shows how interactions at
different scales limit the achievable values of Ω.

Corollary 4. For a given γγγ ⊂ {1, ...,n} with |γγγ|= m, the following bounds on Ω hold:

n−m−1+
TC(XXX γγγ)

log | | ≥
Ω(XXXn)

log | | ≥ −(n−2)+
TC(XXX γγγ)

log | | .

By comparing it with Lemma 3, this result shows that a large TC(XXX γγγ) does not allow Ω
to reach its lower bound. On the other hand, small values of TC(XXX γγγ) decrease the upper
bound, forbidding high values of Ω. Additionally, note that fixing the value of only one
subset of m variables reduces the range of values of Ω from 2(n−2) to 2(n−2)− (m−1).
The following example illustates these findings.

Example 3. Let us consider a system XXXn of binary variables, two of which are related by
the marginal distribution

pX1X2(x1,x2) =
(1−η)1−|x1−x2|η |x1−x2|

2
.
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Ω(Xn)

−(n− 2)

−(n− 3)

−1

0

1

n− 3

n− 2

Lower bound
in all (n-1)-plets

Upper bound
in all (n-1)-plets

Upper bound
in all pairs

Lower bound
in all pairs

...

...

...

...

Figure B.1: Diagram of how values of the O-information impose limits on the strength of interactions
– as measured by TC(XXX γγγ) – at different scales. Positive (negative) values of Ω put lower (upper)
bounds on subsets of XXXn, and higher absolute values of Ω put bounds on subsystems of smaller sizes.

That is, X1 and X2 are fair coins linked by a binary symmetric channel with crossover
probability η [7, Sec. 7]. Hence, TC(XXX2) = I(X1;X2) = 1−H(η), with H(η) =−η logη−
(1−η) log(1−η) being the binary entropy function. By considering m = 2, Corollary 4
states that

n−2−H(η)≥Ω(XXXn)≥−
(
n−3+H(η)

)
,

which is illustrated in Figure B.2. Moreover, using Eq. (8.15) one can verify that the upper
bound (solid red line) is attained when X2 = X3 = ...= Xn, while the lower bound (solid blue
line) is attained when X3, ...,Xn−1 are independent fair coins and Xn = ∑n−1

j=1 X j (mod 2).1

B.2 Ω as a superposition of tendencies

This section explores sufficient conditions that make a system have a small O-information.
As a preliminary step, the next result shows that Ω is additive for systems with independent
subsystems.

1Interestingly, despite the correlation between X1 and X2, an n-bit xor still enables the most synergistic
configuration attainable.
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Figure B.2: Bounds of the O-information when two variables are connected via a binary symmetric
channel with crossover probability η (see Example 3).

Lemma 4. If pXXXn(xxxn) = ∏m
k=1 pXXXαααk (xxxαααk) for some partition π = (ααα1|...|αααm), then

Ω(XXXn) =
m

∑
k=1

Ω(XXXαααk) .

Proof. Let us consider the case π = (ααα1,ααα2), as the general case is then guaranteed by
induction. Using Eqs. (8.13) and (8.14) it is direct to check that, due to the independence,
TC(XXXn) = TC(XXXααα1)+TC(XXXααα2) and DTC(XXXn) = DTC(XXXααα1)+DTC(XXXααα2). Then, the de-
sired result follows from induction on the number of cells and the definition of Ω.

Corollary 5. Ω(XXXn) = 0 for all systems whose joint distribution can be factorised as

pXXXn(xxxn) =
n/2

∏
k=1

pX2k−1X2k(x2k−1,x2k) . (B.3)

Proof. Using Eq. (B.3) and Lemma 4 we find that

Ω(XXXn) =
n/2

∑
k=1

Ω(X2k−1,X2k) = 0 ,

where the last equality is a consequence of the O-information being zero for sets of two
variables, as shown in Proposition 1.

Corollary 5 states that having disjoint pairwise interactions is a sufficient condition for
Ω = 0 to hold. However, this condition is not necessary: from Lemma 4 we can see that a
system composed by redundant (Ω> 0) and synergistic (Ω< 0) subsystems can attain zero
net O-information due to “destructive interference.”
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As a consequence, the O-information can be understood as the result of a superposition of
behaviours of subsystems. Therefore, Ω = 0 can take place in two qualitatively different
scenarios: systems in which redundancies and synergies are balanced, or systems with only
disjoint pairwise effects. Some of these cases can be resolved by considering the information
diagram of TC(XXXn) and DTC(XXXn) (c.f. Figure 8.2), or by studying the O-information of
parts of the system. However, it is important to remark that redudancy and synergy can
coexist either in disjoint subsystems or within the same variables. An insightful example of
the latter case can be found in Ref. [218, Section 2].

As a final remark, note that systems where pairwise interdependencies are overlapping (e.g.
pairwise maximum entropy models [219]) cannot be factorised as required by Corollary 5,
and hence can have either positive or negative O-information.2

B.3 R(π) decreases for finer partitions

Lemma 5. Let us consider two partitions πa = (ααα1|...|αααK) and πb = (βββ 1|...|βββ J) such that
πb ⪰ πa. Then, R(πb)≤ R(πa).

Proof. Let us assume that πa = (ααα1|...|αααK}, πb = (βββ 1|...|βββ J) such that πb ⪰ πa, and con-
sider a path p= (π1, ...,πL) in P(πa,πb) so that π1 = πa and πL = πb. To prove the Lemma
suffices to show that R(π j+1)≤ R(π j) for j = 1, ...,L−1. As π1, ...,πn are related by cov-
ering relationships, one just needs to prove the inequality for two partitions such that one
covers the other.

Consider π1,π2 ∈ n such that π2 covers π1. As both partitions differ only in one
elementary refinement, let us without loss of generality assume that the refinement is done
on the last cell of π1; i.e. π1 = (ααα1|...|αααm) and π2 = (ααα1|...|αααm−1|α̃ααm|α̃ααm+1) so that
α̃ααm∪ α̃ααm+1 = αααm and α̃ααm∩ α̃ααm+1 =∅. Then

R(π1)−R(π2) = Rαααm− (Rα̃ααm +Rα̃ααm+1)

= I(XXX α̃ααm;XXX α̃ααm+1|XXXααα1...XXXαααm−1)

≥ 0 ,

proving the desired result.
2For a detailed discussion of this issue for the case of three variables see [23, Sec. 5].
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B.4 Proof of Lemma 2

Proof. Consider a path p ∈ P(πsource,πsink), so that p = (π1, ...,πL) with π1 = πsource and
πL = πsink. Then, by using Eqs. (8.7) and (8.8), a direct calculation shows that

W (p;vh) =
L−1

∑
j=1

[
H(π j+1)−H(π j)

]
= H(πsink)−H(πsource)

=
n

∑
i=1

H(Xi)−H(XXXn) .

Similarly, using Eqs. (8.7) and (8.9) gives

W (p;vr) =
L−1

∑
j=1

[
R(π j)−R(π j+1)

]
=R(πsource)−R(πsink)

=H(XXXn)−
n

∑
i=1

H(Xi|XXXn
−i) .

Both results make use of the fact that W (p;vh) and W (p;vr) are telescopic sums and all but
the first and last terms cancel out.

B.5 Proof of Proposition 1

Proof. Let us consider a path p ∈ P(πsource,πsink). Then,

W (p;vs) =
L

∑
j=1

vs(π j,π j+1) (B.4)

=
L

∑
j=1

vh(π j,π j+1)−
L

∑
k=1

vr(πk,πk+1)

= TC(XXXn)−DTC(XXXn) = Ω(XXXn),

which proves the first part of the theorem.

Thanks to Eq. (B.4), one can prove the second part of the Theorem by showing that if
πa,πb ∈ n such that πb ⪰ πa, then vs(π1,π2) is equal to an interaction information. To show
this, first note that if πb ⪰ πa then both partitions differ only in one elementary refinement.
Without no loss of generality, we assume that the refinement is done on the last cell, such
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that πa = (ααα1|...|αααm) and πb = (ααα1|...|αααm−1|α̃ααm|α̃ααm+1) such that α̃ααm ∩ α̃ααm+1 = ∅ and
α̃ααm∪ α̃ααm+1 = αααm. Then,

vs(πa,πb) = vh(πa,πb)− vr(πa,πb)

=
[
H(πb)−H(πa)

]
−
[
R(πa)−R(πb)

]
= I(XXX α̃ααm;XXX α̃ααm+1)

− I(XXX α̃ααm;XXX α̃ααm+1 |XXXααα1...XXXαααm−1)

= I(XXX α̃ααm;XXX α̃ααm+1;XXXααα1 ...XXXαααm−1) ,

which proves the desired result.

B.6 Proof of Lemma 3

Proof. Let us first note that

log | | ≥ I(Xi;X j|Xk)≥ 0 , (B.5)

log | | ≥ I(Xi;X j;Xk)≥− log | | , (B.6)

for all i, j,k∈{1, ...,n}. Above, Eq. (B.6) follows from noting that I(Xi;X j;Xk)= I(Xi;X j)−
I(Xi;X j|Xk), and applying the bounds in Eq. (B.5). The lemma is proved by applying these
inequalities on Eqs. (8.13), (8.14), (8.15), and (8.19). Finally, the tightness of the bounds is
a direct consequence of the tightness of Eqs. (B.5) and (B.6).

B.7 Proof of Proposition 2

Proof. Let us first prove the first statement. By considering XXXn to be a n-bit copy, a direct
calculation using Eqs. (8.13) and (8.14) shows that TC(XXXn) = n−1 and DTC(XXXn) = 1, and
therefore the upper bound is attained. To prove the converse, let us start by assuming that
Ω(XXXn) = n−2. By applying (B.6) to each term in (8.15), is clear that I(X j;XXX j−1;XXXn

j+1) = 1
holds for all j ∈ {1, ...,n}. In particular I(X2;X1;XXXn

3) = 1 holds, which due to Eq. (8.15)
implies that I(X2;X1|XXXn

3) = 0 and hence I(X2;X1) = 1, which in turns implies that X1 and
X2 are Bernoulli distributed with parameter p = 1/2, and also that X1 = X2. By relabelling
the variables and following the same rationale one can prove that every pair of variables are
equal to each other, which proves that XXXn is a n-bit copy.

Let us prove the second statement. By considering now XXXn to be a n-bit xor, using
Eqs. (8.13) and (8.14) it is direct to check that TC(XXXn) = 1 and DTC(XXXn) = n− 1, and
hence the lower bound is attained. To prove the converse, let us assume that XXXn is such that
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Ω(XXXn) = 2−n. By considering the bounds given by Eq. (B.6) in Eq. (8.15), this implies that
I(X j;XXX j−1;XXXn

j+1) =−1 for all j ∈ {2, ...,n−1}, and in particular I(XXXn−2;Xn−1;Xn) =−1.
Due to Eq. (B.6), this implies in turn that I(XXXn−2;Xn−1) = 0, and via relabeling one can
prove that XXXn−1 are jointly independent. Moreover, I(XXXn−2;Xn−1;Xn) = −1 also implies
that I(Xn−1;Xn|XXXn−2) = 1, which implies that

I(XXXn−1;Xn) = I(Xn−1;Xn|XXXn−2)+ I(XXXn−2;Xn) = 1.

This equality implies that Xn is Bernoulli distributed with p = 1/2, and that Xn is a deter-
ministic function of XXXn−1. Moreover, the fact that I(X1;Xn|XXXn−1

2 ) = 1 implies that for given
XXXn−1

2 then Xn is a function of X1, while via relabelling one finds that I(X1;Xn) = 0. Since
the only functions with these properties are functions isomorphic to an n-variate xor, this
proves the desired result.

B.8 Proof of Proposition 8

The following proof uses Lemma 6, which is stated and proved afterwards in this Appendix.

Proof. To prove Eq. (B.1), first note that

Ω(XXXn) = TC(XXXn−1)−DTC(XXXn−1|Xn)≤ TC(XXXn−1) .

Then, the inequality follows form a direct application of Lemma 6. As TC(XXXm) ≥ 0, the
equality becomes non-trivial when

Ω(XXXn)− (n−m−1) log | | ≥ 0 .

To prove Eq. (B.2), note that by using Eqs. (8.13), (8.14), and (8.15) one can find that

Ω(XXXn) =TC(XXXm)−DTC(XXXm|XXXn
m+1)

+
n−1

∑
j=m+1

I(X j;XXX j−1;XXXn
j+1)

≥TC(XXXm)− (n−2) log | |.

Above, the inequality is due to I(X j;XXX j−1;XXXn
j+1) ≤ log | | and DTC(XXXm|XXXn

m+1) ≤ (m−
1) log | |. As the above relationship does not depend on the labelling of the X’s, this proves
Eq. (B.2). As TC(XXXm)≤ (m−1) log | |, the equality becomes non-trivial when

Ω(XXXn)+(n−2) log | | ≤ (m−1) log | | .
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Lemma 6. If | |= mini=1,...,n |i|, then

min
|γγγ|=m

TC(XXX γ)≥ TC(XXXn)− (n−m) log | | .

Proof. A direct calculation using Eq. (8.13) shows that

TC(XXXn) = TC(XXXm)+
n

∑
j=m+1

I(X j;XXX j−1)

≤ TC(XXXm)+(n−m) log | |.

As the labelling of the indices can be modified without changing this result, this suffices to
prove the desired result.





Appendix C

Integrated information decomposition

C.1 The product of two lattices is a lattice

A lattice is a partially ordered set (,⪯) for which every pair of elements a,b has a well-
defined meet a∧b and join a∨b, which correspond to their common greatest lower bound
(infimum) and common least upper bound (supremum), respectively [163]. Here we prove
that, if (,⪯) is a lattice, then the product lattice (×,⪯∗) equipped with the order
relationship

α → β ⪯∗ α ′→ β ′ if and only if α ⪯ α ′ and β ⪯ β ′, (C.1)

is also a lattice, where α,β ,α ′,β ′ ∈. As a corollary of this, given that the set and partial
ordering relationship used in PID are a lattice [19, 220], then the set and partial ordering
relationship used in ΦID are also a lattice.

For compactness, let us use the notation γ = α → β and γ ′ = α ′→ β ′ for γ,γ ′ ∈×.
To prove the lattice structure of (×,⪯∗) it suffices to show that

1. γ ∧∗ γ ′ := α ∧α ′→ β ∧β ′ is a valid meet; and

2. γ ∨∗ γ ′ := α ∨α ′→ β ∨β ′ is a valid join.

Note that the fact that (,⪯) is a lattice implies that α ∧β and α ∨β are well-defined for
all α,β ∈.

Let us begin with the meet, for which we use m = γ ∧∗ γ ′ as a shorthand notation. First,
one can directly check that m⪯∗ γ and m⪯∗ γ ′, given the definition of ⪯∗ above and the
fact that α ∧α ′ ⪯ α (and similarly for α ′, β , and β ′). Next, we need to prove that for any
γ ′′ = α ′′→ β ′′ ∈× such that γ ′′ ⪯∗ γ and γ ′′ ⪯∗ γ ′, we have γ ′′ ⪯∗ m (i.e. that m is the
greatest lower bound of γ and γ ′). To see this, note that the conditions γ ′′ ⪯∗ γ and γ ′′ ⪯∗ γ ′
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imply the following four statements:

α ′′ ⪯ α ,

α ′′ ⪯ α ′ ,
β ′′ ⪯ β ,

β ′′ ⪯ β ′ .

Using these relationships and the ∧ operator from , one can show that α ′′ ⪯ α ∧α ′ and
β ′′ ⪯ β ∧β ′, which in turn implies that γ ′′ ⪯∗ m. Finally, the proof for the join is analogous,
replacing ∧ with ∨ and ⪯ with ⪰.

C.2 Decomposing PID atoms

Equation (4) in the main text shows how to decompose redundancies in the product lattice in
terms of ΦID atoms. Here we provide a more general statement, that allows us to decompose
not only redundancies, but also other PID atoms. The goal of this appendix is to build
stronger connections between PID and ΦID, and to extend Proposition 1 to allow greater
flexibility for specifying a ΦID function.

For the forward PID, and borrowing the notation from Williams and Beer [19], given a
non-empty set of ‘future’ variables F ∈ ({Y1, ...,YN}) and an an element of the redundancy
lattice α ∈, let us denote by ΠF(α;F) the α atom of the PID decomposition for I(XXX ;F),
such that

I(XXX ;F) = ∑
α∈

ΠF(α;F) . (C.2)

We use an analogous notation for the backward PID, with a corresponding non-empty set of
‘past’ variables P ∈ ({X1, ...,XN}) and β ∈, such that

I(P;YYY ) = ∑
β∈

ΠB(P;β ) . (C.3)

Then, these quantities can be further decomposed in ΦID atoms as

ΠF(α;F) = ∑
γ⪯F

Iα→γ
∂ , (C.4a)

ΠB(P;β ) = ∑
γ⪯P

Iγ→β
∂ . (C.4b)
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Note that the sum runs only across one of the sets (instead of both as it does in Eq. (4) of
the main text), and that every element in ({1, ...,N}) is also in , and hence the partial
order relationship in the sums above is well-defined. As a few examples, in a bivariate
system the following forward PID atoms decompose as:

Red(X1,X2;Yi) = ΠF({1}{2};Yi) = I{1}{2}→{1}{2}∂ + I{1}{2}→{i}∂ ,

Syn(X1,X2;Yi) = ΠF({12};Yi) = I{12}→{1}{2}
∂ + I{12}→{i}

∂ ,

Un(X1;Y1Y2|X2) = ΠF({1};Y1Y2) = I{1}→{1}{2}∂ + I{1}→{1}∂ + I{1}→{2}∂ + I{1}→{12}
∂ .

These decompositions can be used to prove Proposition 1 of the main text. Adopting a
view of ΦID as a linear system of equations, one needs 16 independent equations to solve
for the 16 unknowns that are the ΦID atoms. Of those, 9 are given by standard Shannon
mutual information (specifically, I(Xi;Yj), I(X1X2;Yi), I(Y1Y2;Xi), and I(X1X2;Y1Y2), for
i, j = {1,2}) decomposed with Eq. (4) of the main text, and 6 are given by the single-target
PIDs (Red(X1,X2;Y1), Red(X1,X2;Y2), and Red(X1,X2;Y1Y2), as well as the 3 corresponding
backward PIDs) decomposed by the expression above. Finally, one only need to add one
individual ΦID atom to make the 16 equations needed, and the system can be solved for all
other atoms.

Taking these results together, Proposition 1 in the main text can be generalised as follows:
a valid ΦID can be defined not only in terms of redundancy, but also in terms of unique
information or synergy. This is equivalent to the case of PID, for which decompositions
based on unique information [173] or synergy [221, 210] have been proposed. In fact, for
the numerical results in Fig. 5 of the main text we use a ΦID based on unique information
defined below.

C.3 Computing the ΦID atoms

In Ref. [173], James, Emenheiser and Crutchfield introduce a PID based on a new measure
of unique information, Idep, which we succinctly describe here. To define Idep, they first
define a constraint lattice  on a set of variables (formally defined as the set of antichain
covers with the natural partial ordering). Specifically, given a constraint σ and a probability
distribution p, consider the set ∆p(σ) of distributions that match marginals in σ with p:

∆p(σ) = {q : p(γ) = q(γ),γ ∈ σ} .

For example, the constraint σ = {(X ,Y ),(X ,Z)} determines the set of distributions q such
that q(x,y) = p(x,y) and q(x,z) = p(x,z). In addition, the elements of  (i.e. the nodes in
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the lattice) have an associated value of an information-theoretic measure f [pσ ] evaluated on
pσ = argmax{H[q] : q ∈ ∆p(σ)}.

Let us focus on the bivariate PID: denote by L the collection of edges of the constraint
lattice for the variables X ,Y,Z, and let f be the joint mutual information I(XY ;Z). For a
link (σ1,σ2) ∈ L, one can evaluate the change in f along the link via the operator ∆σ1

σ2; e.g.
∆σ1

σ2I(XY ;Z) = Iσ1(XY ;Z)− Iσ2(XY ;Z). Additionally, for any γ ∈({X ,Y,Z}) let us define
E(γ) to be the set of all links that contain γ only at one side, i.e.

E(γ) = {(σ1,σ2) ∈ L : γ ∈ σ1,γ /∈ σ2}. (C.5)

Then, the unique information is defined by

Idep(X → Z|Y ) = min
(σ1,σ2)∈E(X ,Z)

∆σ1
σ2I(XY ;Z) . (C.6)

That is, the unique information is the smallest perturbation that is seen when adding the
dependency between X and Z. For further details, and a more pedagogical introduction, we
refer the reader to the original paper [173].

This measure can be naturally generalized to the ΦID setting by replacing I(XY ;Z) above
with the full joint mutual information I(XXX ;YYY ) and formulating the appropriate constraint
lattice for (XXX ,YYY ). More precisely:

Definition 5. Double-unique information based on dependencies. For a given set of vari-
ables (XXX ,YYY ), and two indices i and j, the double-unique information based on dependencies
is defined as

I{i}→{ j}
∂ ,dep := min

(σ1,σ2)∈E(Xi,Y j)
∆σ1

σ2I(XXX ;YYY ). (C.7)

This definition is applicable to any probability distribution, on either both discrete and
continuous random variables. In practice, the difficulty of calculating Idep amounts to the
difficulty of calculating maximum-entropy projections, which for Gaussian and discrete
distributions is easily done with off-the-shelf software – in the case of discrete variables,
for example using the dit package [171]. Once the double-unique information has been
calculated, the same lattice can be reused to compute the unique information atoms for all
6 single-target PIDs, and together with the 9 MIs, these 16 numbers fully determine the
numerical values of every ΦID atom.

It is important to recall that, as mentioned in the main body of the paper, the two axioms of
ΦID do not uniquely determine I{i}→{ j}

∂ . An exploration of alternative decompositions and
their theoretical and practical implications for ΦID will be covered in a separate publication.
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C.4 Results of section ‘Different types of integration’

Here we present calculations for the example systems in Fig. 4 of the main text. These
proofs hold for all ΦID that satisfy the partial ordering axiom of Iα→β

∩ (Axiom 2 in the main
text), have a non-negative double-redundancy function I{1}{2}→{1}{2} ≥ 0, and satisfy the
following bound that follows from the basic properties of PID (c.f. [23]):

Red(X ,Y ;Z)≤min{I(X ;Z), I(Y ;Z)} . (C.8)

Let us examine the three systems in turn:

• For the copy transfer system, Y2 = X1, while X2 and Y2 are independent i.i.d. fair
coin flips. Since Y2 is independent from the rest of the system, Red(X1,X2;Y2) =

Red(X1,X2;Y2) = 0, and due to partial ordering I{1}{2}→{1}{2}∩ = 0. Finally, using the
Moebius inversion formula it follows that I{1}→{2}∂ = I(X1;Y2) = 1 and all other atoms
are zero.

• In the downward XOR system, X1 and X2 are i.i.d. fair coin flips, Y1 = X1⊕X2, and
Y2 is independent of the rest. Then, it is clear that I(X1,X2;Y1,Y2) = I(X1,X2;Y1) =

1, while I(X1;Y1) = I(X2;Y1) = 0. Additionally, note that I{12}→{1}{2}
∩ = 0, since

Red(Y1,Y2;X1X2) ≤ I(Y2;X1X2) = 0. All this implies that all the redundancies (and
hence all the atoms) below {12}→ {1} are zero, and hence I{12}→{1}

∂ = 1 due to the
Moebius inversion formula.

• Finally, consider the PPR system where X1,X2,Y1 are i.i.d. fair coin flips and Y2

is such that X1⊕X2 = Y1⊕Y2. Then I(X1,X2;Y1) = I(X1,X2;Y2) = I(X1;Y1,Y2) =

I(X2;Y1,Y2)= 0. This implies that all redundancies (and hence atoms) except I{12}→{12}
∩

are zero, and hence using again the Moebius inversion formula I{12}→{12}
∂ = I(X1,X2;Y1,Y2)=

1.

C.5 Results of section ‘Measures of integrated informa-
tion’

In this appendix we prove the results in Table 1 of the main text, that shows whether each of
four measures of integrated information (Φ, CD, ψ , ΦG) are positive, negative, or zero in a
system containing only one

ΦID atom. A succinct definition of each measure is given below, and a comprehensive
review and comparison of these and other measures can be found in Ref. [172].
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Throughout this section we focus on bivariate systems, and use i, j as variable indices,
with i ̸= j. To complete the proof we will first show that it is possible to build systems with
exactly one bit of information in one ΦID atom, and we will then compute the four measures
on those systems.

Let us begin with the design of systems with one specific ΦID atom. Intuitively, this can
be accomplished with a suitable combination of COPY and XOR gates for redundant and
synergistic sets of variables, respectively. More formally, the procedure to build a system
with Iα→β

∂ = 1 and all other atoms equal to zero is as follows:

1. Sample w from a Bernoulli distribution with p = 0.5.

2. Sample xxx based on α:

• If α = {1}{2}, then x1 = x2 = w.

• If α = {i}, then xi = w and x j is sampled from a Bernoulli distribution with
p = 0.5.

• If α = {12}, then xxx is a random string with parity w.

3. Sample yyy based on β analogously.

In all cases there will be one bit of information (w) shared between XXX and YYY , hence
I(XXX ;YYY ) = 1 for any choice of α,β . This can be proven using the fact that for any α,β , one
has H(W ) = 1, H(W |XXX) = H(W |YYY ) = 0, and p(xxx,yyy,w) = p(xxx|w)p(yyy|w)p(w). To do so, let
us start from the mutual information chain rule:

I(XXX ;YYYW ) = I(XXX ;W )+ I(XXX ;YYY |W )

= I(XXX ;YYY )+ I(XXX ;W |YYY ) .

Rearranging the above terms, one can find that

I(XXX ;YYY ) = I(XXX ;W )+ I(XXX ;YYY |W )− I(XXX ;W |YYY ) ,

where I(XXX ;W ) = H(W )−H(W |XXX) = 1 and I(XXX ;YYY |W ) = 0. Finally, one finds that

I(XXX ;W |YYY ) = H(XXX |YYY )+H(W |YYY )−H(XXXW |YYY )
= H(XXX |YYY )+H(W |YYY )− (H(XXX |YYY )+H(W |XXXYYY )) = 0 ,

which concludes the proof that I(XXX ;YYY ) = 1. Furthermore, following a procedure similar
to those in the previous section, it can be shown that any ΦID that satisfies the axioms
described above (partial ordering, non-negative double-redundancy, and upper-bounded
redundancy) correctly assigns 1 bit of information to Iα→β

∂ , and 0 to all other atoms.
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Now that we have built these 16 single-atom systems, let us move to the integration
measures of interest. For CD, ψ , and Φ, we will proceed by decomposing them in terms
of ΦID atoms and checking whether each atom is positive (+), negative (–), or absent (0)
from the decomposition to obtain the results in Table 1 of the article. Let us begin with CD,
defined as the sum of transfer entropies from one variable to the other:

CD =
1
2

2

∑
i=1

I(Xi;Yj|X j)

=
1
2

2

∑
i=1

(
I{i}→{1}{2}∂ + I{i}→{ j}

∂ + I{12}→{1}{2}
∂ + I{12}→{ j}

∂

)
.

(C.9)

Similarly, for ψ the atoms can be extracted from the decomposition of Syn(X1,X2;Y1Y2) in
Eq. (C.4a):

ψ = Syn(X1,X2;Y1Y2)

= I{12}→{1}{2}
∂ + I{12}→{1}

∂ + I{12}→{2}
∂ + I{12}→{12}

∂ .
(C.10)

For Φ, the atoms can be extracted from the decomposition of Eq. (9) in the main text:

Φ = I(X1X2;Y1Y2)− I(X1;Y1)− I(X2;Y2)

=−I{1}{2}→{1}{2}∂ + I{1}{2}→{12}
∂ +ψ +

2

∑
i=1

(
I{i}→{ j}
∂ + I{i}→{12}

∂

)
.

(C.11)

The ΦG case is slightly more involved, since it is not easily decomposable into a sum
of ΦID atoms. According to the definition of ΦG [11], for a system given by the joint
probability distribution p(XXX ,YYY ) one has

ΦG = min
q∈G

DKL(p∥q) ,

where G is the manifold of probability distributions that satisfy the constraints

q(Yi|XXX) = q(Yi|Xi) . (C.12)

Therefore, it suffices to check whether the probability distribution of the system satisfies the
constraints in Eq. (C.12) — if it does, then ΦG = 0, and otherwise ΦG > 0 —, which can be
easily verified for each system separately to obtain the ΦG column in Table 1, concluding
the proof.
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C.6 Results of section ‘Why whole-minus-sum Φ can be
negative’

In this appendix we describe the details of the noisy AND system and how to compute its
ΦID to yield the results shown in Figure 4 of the main text.

Given the past state of the system x1x2, the next state is given by

y1 = (x1 · x2)⊕n1

y2 = (x1 · x2)⊕n2 ,

where n1,n2 are two auxiliary noise variables sampled from Bernoulli distributions with
parameter p = 0.2, and they are sampled independently with probability 1− c and set to be
identical to each other with probability c. This results in a system that, for c = 0, consists of
two separate AND gates with some noise, and for c = 1 a system of two perfectly correlated
components that at each time step change state with probability 0.2. All information-
theoretic functionals are computed with respect to the system’s stationary distribution.

To compute the ΦID atoms we follow the procedure described above based on James et
al.’s Idep measure. To minimise numerical problems with the maximum-entropy projections
involved, instead of computing all relevant quantities separately we compute one single
constraint lattice for the whole system X1X2Y1Y2 and read off all relevant quantities:

• 9 values of mutual information, which can be directly read from the corresponding
nodes in the lattice;

• 6 values of single-target PID unique information, which can be obtained as the
minimum of suitable subsets of the lattice according to Eq. (C.6); and

• One ΦID double-unique information according to Eq. (C.7).

Together, these 16 numbers fully determine all 16 ΦID atoms, and the resulting linear system
of equations can be easily solved.

C.7 Formalising causal emergence

We begin by generalising the notion of synergy for the case of n variables as follows:

Syn(X1, ...,Xn;Y ) := ∑
ααα∈

Iααα
∂ , (C.13)

where  = {ααα ∈ : { j} /∈ ααα, j = 1, ...,n}. In other words,  is contains all sets of sources
ααα , such that in any ααα there is no singleton source. i.e. |a| > 1 ∀a ∈ ααα . Intuitively,  is
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the collection of PID atoms that correspond to the information about the target that is not
contained in any individual agent.1

Next, let us define the set (k) = {ααα ∈ : ∃ j ̸= k,{ j} ∈ ααα,{k} ∈ ααα}, that denotes the
collection of atoms that correspond to the information that Xk holds redundantly with at least
one other agent X j.2 With this set, we can define an analogue of the unique information, as

Un(Xn;Y |X1, ...,Xn−1) := I(Xn;Y )− ∑
ααα∈(n)

Iααα
∂ . (C.14)

Let us denote the set of atoms in this quantity as  (k) = {ααα ∈ : ααα ⪯ {k},ααα /∈(k)}.
This corresponds to all the atoms where {k} is the only singleton – which, importantly, is in
general not just I{k}∂ . Intuitively, this is the information that Xn has access to, that no other
agent has access to on their own (although groups of other agents may).3 In the following,
we denote the set complement by a superscript c, for example c = {ααα ∈ : ααα /∈ }.

In addition, we will need the following lemmas:

Lemma 7. Data processing inequality for unique information: if Z−X1−X2, ...,Xn
t ,Y is a

Markov chain, then

Un(X1;Y |X2, ...,Xn)≥ Un(Z;Y |X2, ...,Xn) . (C.15)

Proof. Consider the set of sources βββ to be equal to ααα but with the index 1 replaced by the
index correpsonding to Z. Using this notation, let us assume that the redundancy function
satisfies predictor monotonicity: if Z−X1−X2, ...,Xn, then (by assumption)

Iααα
∂ ≥ Iβββ

∂ . (C.16)

Furthermore, let us denote by ̃ (1) the set of all the βββ ’s that corresponds to the ααα’s that
belong to  (1). Then, a direct calculation shows that

Un(X1;Y |X2, ...,Xn) = ∑
ααα∈ (n)

Iααα
∂ (C.17)

≥ ∑
ααα∈̃ (n)

Iβββ
∂ = Un(Z;Y |X2, ...,Xn) . (C.18)

1For example, for n = 2 we obtain the standard synergy  = {{12}}, and for n = 3 we have  =
{{12},{13},{23},{12}{13},{12}{23},{13}{23},{12}{13}{23},{123}}.

2Again, in the n = 2 case we recover the standard redundancy (1) = (2) = {{1}{2}}; and as an
example for n = 3 we have (1) = {{1}{2},{1}{3},{1}{2}{3}}.

3And again, for n = 2 we recover  (i) = {{i}}, but for n = 3 we have e.g.  (1) = {{1},{1}{23}}.
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Lemma 8. The following equality holds:

Un(XXXn;Y |X1, ...,Xn) = Syn(X1, ...,Xn;Y ) . (C.19)

Proof. Begin by considering the PID of n sources X1, ...,Xn on the lattice n, and define
its set  as above. Now we add an additional n+ 1st variable that is simply all of them
concatenated, Xn+1 = XXXn, and build a PID on the lattice n+1.

Note that the nodes in n+1 that precede {n+1} are those in , but with the singleton
{n+1} appended to them; and by the Deterministic Equality axiom of PID [209], we have
that  (n+1) =  . Then, it is direct to see that

Un(XXXn;Y |X1, ...,Xn) = ∑
ααα∈ (n+1)

Iααα
∂ = ∑

ααα∈
Iααα
∂ = Syn(X1, ...,Xn;Y ) . (C.20)

Lemma 9. Consider a feature V that exhibits causal emergence over XXX. Then, there exists
no deterministic function g(·) such that V = g(Xk) for any k = 1, ...,n.

Proof. Proof by contrapositive. Let us assume that g(·) does exist, and H(V |Xk) = 0 for
some k. Then, this implies that

Un(V ;YYY |X1, ...,Xn)≤ Un(V ;YYY |Xk) (C.21)

≤ I(V ;YYY |Xk) (C.22)

= 0, (C.23)

which shows that Vt cannot exhibit emergent behaviour.

Now we begin with the proofs of our statements about causal emergence in Sec. 9.5.
With these definitions and lemmas in hand, we can link the original Definition 4 of causal
emergence in terms of unique information, with the equivalent criterion in terms of synergy
in Proposition 4.

Proof of Proposition 4. If Syn(X1, ...,Xn;YYY )> 0, then by Lemma 8 it is clear that the feature
V = XXX exhibits causal emergence.

To prove the converse, note that if Syn(X1, ...,Xn;YYY ) = 0 then by Lemma 8 we have
Un(XXXn;Y |X1, ...,Xn)= 0, and by Lemma 7 we have Un(V ;Y |X1, ...,Xn)≤ Un(XXXn;Y |X1, ...,Xn)=

0 for any V = f (XXX).
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Since we can decompose PID atoms in terms of ΦID atoms (Appendix C.2), now we can
split this aggregate causal emergence into downward and decoupled components:

Syn(X1, ...,Xn;YYY ) = ∑
ααα∈,βββ∈

Iααα→βββ
∂ (C.24)

= ∑
ααα∈,βββ∈c

Iααα→βββ
∂ + ∑

ααα∈,βββ∈
Iααα→βββ
∂ . (C.25)

The result follows from identifying  and  with the two terms in the RHS:

(XXX t) := ∑
ααα∈,βββ∈c

Iααα→βββ
∂ (C.26)

(XXX t) := ∑
ααα∈,βββ∈

Iααα→βββ
∂ . (C.27)

Where c is the set complement of  , and therefore contains all the sources in which there
is at least one singleton.

Using these definitions, we can now complete the remaining proofs regarding necessary
and sufficient conditions for downward causation and decoupled causality.

Proof of Proposition 5. Note that, by the properties of ΦID and Lemma 8, the following
bounds hold

Un(XXX ;Yk|X1, ...,Xn) = Syn(XXX ;Yk)≤(XXX t)≤
n

∑
k=1

Syn(XXX ;Yk) =
n

∑
k=1

Un(XXX ;Yk|X1, ...,Xn)

Then, from the left side of this expression and Lemma 7, it is direct to see that just one
non-zero Un(XXX ;Yk|X1, ...,Xn) suffices to make (XXX t) non-zero, and therefore there exists an
emergent feature V = XXX . Similarly, from the right side of this expression and Lemma 7, it is
direct to see that if all Un(V ;Yk|X1, ...,Xn) are zero, then (XXX t) = 0.

Proof of Proposition 6. We prove that if (XXX t) > 0, then there exists a V,V ′ such that
Un(V ;V ′|X1, ...,Xn) > 0. If (XXX t) > 0, then there must be at least one positive ΦID atom
Ia→b
∂ > 0, for some a,b ∈  . Define the set γγγ as the least upper bound of a and b that is a

subset of {1, ...,n}, and the feature V = f (XXX) = XXX γγγ , with the corresponding V ′= f (YYY ) =YYY γγγ .
Then, Un(V ;V ′|X1, ...,Xn)≥ Ia→b

∂ > 0.

Proof of Proposition 7. Consider the quantity Ξ = I(XXX ;V ′)−∑k I(Xk;V ′), which is Ψ but
using XXX instead of V . By the data processing inequality, and since V−XXX−YYY−V ′ is a Markov
chain, we have Ψ≤ Ξ. At the same time, by performing a normal PID decomposition on Ξ
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with target V ′ we have

Ξ = ∑
ααα∈

Iααα
∂ −

n

∑
k=1

∑
ααα⪯{k}

Iααα
∂ ≤ ∑

ααα∈
Iααα
∂ , (C.28)

where the inequality comes from the fact that some terms (in fact, all except the {k}) are
double-counted in the negative component of Ξ, i.e. in ∑k I(Xk;V ′). Then, by the PID data
processing inequality, each one of the atoms of the decomposition of with target V ′ is less
than or equal to the same atom of the decomposition with target YYY , and therefore by the
definition of  we have Ξ≤ Syn(X1, ...,Xn;YYY ). Hence, if Ψ> 0 then Syn(X1, ...,Xn;YYY )> 0
and by Proposition 4 the system is causally emergent.
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