
FACULTY OF SCIENCE AND TECHNOLOGY

a thesis
submitted in partial fulfillment

of the requirements
for the degree of

Doctor of Philosophy

in

Computer Science

by

Michele Bottone

Agoric Computation:
Trust and Cyber-Physical Systems

Middlesex University London,

Department of Computer Science,

The Burroughs, London NW4 4BT, United Kingdom

MAY 2018

Declaration

I certify that this thesis, and the research to which it refers, are the product
of my own work, and that any ideas or quotations from the work of other
people, published or otherwise, are fully acknowledged in accordance with
the standard referencing practices of the discipline.

ii

Acknowledgements

A thesis is by definition a solitary endeavour, yet academic research is pri-
marily a social enterprise, and owes much to interactions with a long list of
people. The work featured in this thesis makes no exception. In addition to
the usual close suspects, which I have been thanking for much of my adult life
and shall remain anonymous, I would like to give heartfelt thanks to the fol-
lowing: my Director of Studies, Professor Franco Raimondi, for his guidance,
willingness to discuss anything in relaxed settings, and tireless administra-
tive duties; my other supervisor, Professor Raja Nagarajan, who encouraged
me to complete this doctorate alongside my day job, and suggested attend-
ing BCTCS where more or less the seeds were planted; several collaborators,
conference co-attendants and anonymous referees for improving my writing;
my managers Martin, Tony, Balbir and Miltos for funding my PhD; and my
office colleagues for countless lunches, patience, time spent together, and ran-
dom sanity-preserving discussions on a wide range of subjects, among them
Giuseppe, Kelly, Nikos, Taloue, Florian, Barny, Alessandro, Aga, Michael,
Lorenzo, Matteo, Elisabetta, K and Letti.

Contents

1 Introduction 3
1.1 Motivation . 4
1.2 Multi-Agent Systems . 5

1.2.1 BDI Logics . 6
1.3 Cyber-Physical Systems . 6
1.4 Towards Agoric Computation . 8

1.4.1 Agoras and Information . 8
1.4.2 Examples . 11

1.5 Research Questions . 11
1.6 Contribution and Thesis Overview . 13

2 Related Work 17
2.1 Mathematical Formalisms . 18

2.1.1 Probabilistic Models . 19
2.1.2 Graphical Models and Process Calculi 19
2.1.3 State-Machine Models . 20
2.1.4 Influence Systems . 21
2.1.5 Category-Theoretical Models . 22
2.1.6 Game-Theoretical Models . 23
2.1.7 Propagator Models . 23

2.2 Computational Trust and Cognitive Agents 25

3 Background 29
3.1 Microcontrollers, Sensors and Actuators 30
3.2 MQTT and Publish/Subscribe Protocols 31
3.3 Jason . 32
3.4 Brahms . 33
3.5 NetLogo . 34
3.6 Natural Deduction . 35
3.7 Graph Theory . 39

4 Models 41
4.1 From Raw Data to Perceptions . 42
4.2 Trust in Orchestrated Systems . 43
4.3 The Cost of Trust and Contradictory Information 46

4.3.1 Contradictory Information Transmission 46

iv Contents

4.3.2 The Logic (un)SecureNDsim . 47
4.3.3 Measuring Trust and Conflict Resolution 52

4.4 Block-free Distributed Ledgers . 53
4.4.1 DAG-based Cryptocurrencies . 54
4.4.2 The Tangle Process . 55
4.4.3 Consensus by Cumulative Weight 56
4.4.4 Tip Selection Strategies . 57
4.4.5 Mean Tip Approval Times . 59

5 Implementation 61
5.1 Implementing Bridges . 62

5.1.1 Connecting MQTT with Jason 62
5.1.2 Connecting MQTT with Brahms 63
5.1.3 Implementing Virtual Pheromones with MQTT and Jason 64

5.2 Monitoring Trust . 68
5.2.1 The Orchestrating System . 68
5.2.2 Environment and Communications Protocols 68
5.2.3 System Configuration . 69

5.3 Reasoning about Contradictory Information 71
5.3.1 Model Design . 72
5.3.2 Implementation . 72

5.4 Simulating DAG-based Distributed Ledgers 77
5.4.1 Random Uniform Growth . 77
5.4.2 Growth Using the MCMC Selection Algorithm 78

6 Evaluation 81
6.1 Evaluation of MQTT-Jason Bridges and AC Monitor 82

6.1.1 System Evaluation . 82
6.1.2 Performance . 83

6.2 Epistemic Costs of Trust . 85
6.2.1 Reaching Consensus . 86
6.2.2 Epistemic Costs . 90
6.2.3 Rankings . 93
6.2.4 Distrust and Epistemic Attitude 94
6.2.5 Time Complexity . 96

6.3 The Tangle DAG Multi-Agent Simulation 98
6.3.1 Initial Findings and Comparisons 98
6.3.2 Conjectures . 99
6.3.3 Multi-agent Analysis of Parasite Strategies 101

Contents v

7 Conclusion and Further Work 103
7.1 The State of Agoric Computation . 104

7.1.1 Publish-Subscribe Patterns . 104
7.1.2 Trust in Cyber-Physical Systems 104
7.1.3 Facets of Information . 105

7.2 Limitations of the Current Approach . 105
7.2.1 Simplicity . 105
7.2.2 Languages . 106
7.2.3 Verification . 106

7.3 Future Directions . 107

Bibliography 111

Abstract

In the past two decades advances in miniaturisation and economies of scale have led
to the emergence of billions of connected components that have provided both a spur
and a blueprint for the development of smart products acting in specialised environ-
ments which are uniquely identifiable, localisable, and capable of autonomy. Adopting
the computational perspective of multi-agent systems (MAS) as a technological ab-
straction married with the engineering perspective of cyber-physical systems (CPS) has
provided fertile ground for designing, developing and deploying software applications in
smart automated context such as manufacturing, power grids, avionics, healthcare and
logistics, capable of being decentralised, intelligent, reconfigurable, modular, flexible,
robust, adaptive and responsive. Current agent technologies are, however, ill suited for
information-based environments, making it difficult to formalise and implement multi-
agent systems based on inherently dynamical functional concepts such as trust and
reliability, which present special challenges when scaling from small to large systems of
agents. To overcome such challenges, it is useful to adopt a unified approach which we
term agoric computation, integrating logical, mathematical and programming concepts
towards the development of agent-based solutions based on recursive, compositional
principles, where smaller systems feed via directed information flows into larger hier-
archical systems that define their global environment. Considering information as an
integral part of the environment naturally defines a web of operations where compo-
nents of a systems are wired in some way and each set of inputs and outputs are allowed
to carry some value. These operations are stateless abstractions and procedures that
act on some stateful cells that cumulate partial information, and it is possible to com-
pose such abstractions into higher-level ones, using a publish-and-subscribe interaction
model that keeps track of update messages between abstractions and values in the
data. In this thesis we review the logical and mathematical basis of such abstractions
and take steps towards the software implementation of agoric modelling as a framework
for simulation and verification of the reliability of increasingly complex systems, and
report on experimental results related to a few select applications, such as stigmergic
interaction in mobile robotics, integrating raw data into agent perceptions, trust and
trustworthiness in orchestrated open systems, computing the epistemic cost of trust
when reasoning in networks of agents seeded with contradictory information, and trust
models for distributed ledgers in the Internet of Things (IoT); and provide a roadmap
for future developments of our research.

Chapter 1

Introduction

4 Chapter 1. Introduction

What magical trick makes us intelligent? The trick is that there is no trick.
The power of intelligence stems from our vast diversity, not from any single,
perfect principle. Marvin Minsky, The Society of Mind, p. 308

1.1 Motivation

A wide class of problems in computer science concerns the flow of information in a
collection of autonomous yet interconnected entities, which may be of fixed size or open
ended. Such interacting components, ubiquitous in nature, language and society, may
scale from a handful to several billions, and there is a complex interplay between local
characteristics and higher level functions defined on the components or the system as
a whole (to achieve its purpose), from which some global behaviour arises. One can
usually express the overall capabilities of the system as “the whole is more than the
sum of the parts” or as an “interactive system”. Such a system is a collection of sub-
systems, whose behaviour emerges from local interaction and self-organisation. Local
characteristics describe the data or ‘raw facts’, and it is often the case that they can
be described succinctly and dynamically in time and/or space by the use of appropriate
variables (also called factors, inputs, features, or signals), which greatly reduce the di-
mensionality of a problem to be solved, and render the resultant system fault-tolerant
despite being composed of groups of different, error-prone actors. There are various de-
scriptions and nomenclatures for such systems, but one striking feature that describes
successful, adaptive systems that make sense of data in a noisy world is their informa-
tion processing, which allows a system to extract relevant information more efficiently
despite the additional cost of doing the information processing. Understanding how the
bottlenecks that prevent large scale, efficient synthesis and feedback of such systems –
such as the well-known phenomenon of combinatorial explosion as the number of com-
ponent increases, and the presence of noise – are eased in real-world systems therefore
motivates the study of collective computation. Dimensionality reduction, in particular,
helps manage combinatorial explosion, gives a design cue to implementing scalable soft-
ware systems and has been the main motivation of this thesis. Indeed, along each of
these dimensions the internal mechanisms of the system continuously process and inte-
grate a stream of incoming data – or inputs – into readily available representations – or
outputs – which in turn become more data of the system. From the point of view of an
external observer or modeller, one can use a formalisation either in a forward-looking
manner (i.e. for prediction and simulation of the future states) or backward-looking
manner (i.e. for inference and testing of parameters and other local and global charac-
teristics). Situations where this interplay between interaction and information occurs
are ubiquitous, shaped by physical constraints, institutions, norms, evolution and so-
cial dynamics [Goldin et al. 2006] and when viewed as abstractions or computational
processes, have the potential of serving as a model of computation where the focus is

1.2. Multi-Agent Systems 5

on the dataflow or constraint propagation with interesting properties that mirror in
some way both naturally occurring phenomena and philosophical theories about the
logic of uncertainty and information – such as bayesian statistics, relational networks,
reinforcement learning.

Biological systems, and in particular sentient, social beings and cognitive actors such
as animals and humans, are able to solve problems concerning partial information easily,
thanks to favourable aspects such as reactivity, goal-oriented behaviour, narrow and
global optimisation capabilities in the face of constraints, ability to synthesise disparate
attributes, resilience to faults and contradictions, and flexible strategy selection. It
is likely that this requires not just reactive behaviour but pro-active behaviour in the
face of hypothetical scenarios, that makes use of abstract, conceptual and symbolic
reasoning in the form of patterns and rules as well as hard, numerical data, and the
work presented in this thesis aims to make some definite progress towards realising
a logical and computational framework for applications where information exchange
takes place. While progress has been made in understanding collective computation
[Flack 2017] it remains difficult to formalise and engineer such system in the face of the
complexities required to build such systems at scale.

1.2 Multi-Agent Systems

One perspective that has recently been popular in the computer science literature is
that of multi-agent systems (MAS), which have surfaced in academia [Wooldridge 2003],
industrial applications [Vrba 2013] and general public discourse [Shanahan 2015] as an
essential addition to the computer science toolbox. At a very basic level, multi-agent
systems consist of a dynamic collection of agents with their own beliefs and goals,
that interact with each other in a situated, shared environment, whose nature may be
physical or virtual, discrete or continuous.

The environment, in turn, allows actions and feedback – including reasoning and
communication – to be performed, such that the system meets some global requirements
towards solving problems. These specify further goals that can be met by agents acting
co-operatively, competitively or both to discover patterns and solutions, given available
resources and constraints. In multi-agent systems, coordination is required because of
dependencies, constraints, and partial information. An interesting aspect of these is
how a system reasons and decides, via commitments (a special kind of goal) and their
associated conventions, norms and deliberations [Jennings 2000]. For these reasons,
MAS can be built up from scratch using modules where the programs give an easily
customisable and testable model for these systems. Adopting the MAS perspective
of software agency allows us to naturally model, design, implement and reason about
several important problems in artificial intelligence through their shared characteristics
of autonomy (the agents are at least partially independent or self-aware), locality (no

6 Chapter 1. Introduction

agent has a full global view of the environment, or it is difficult to make use of it
in a complex system) and decentralisation (there is no designated controlling agent)
at a sufficiently high level of abstraction. In this context, intelligence is an emergent
property of a system and its inherent diversity and interaction, rather than a fixed
property of individual agents. In synthesis, an agent is usually considered to be an
entity with one or more of the following properties: autonomy, social ability, reactivity,
pro-activity [Wooldridge 2003]. A MAS could also be easily characterised by means of
its Beliefs, Desires, and Intentions (BDI).

1.2.1 BDI Logics

A popular theory of agency is the belief-desire-intention philosophy of [Bratmann 1999],
based on the Aristotelian concept of practical reasoning by humans, or how they ratio-
nally make decisions and take actions as a result of mental states. The BDI architecture
has proved to be popular in the specification, programming, and implementation of ar-
tificial agent technologies [Rao & Georgeff 1998a]. Loosely, within a reasoning cycle,
the agent has beliefs, based on what it perceives and communicates with other agents;
beliefs can produce desires, intended as states of the world that the agent wants to
achieve; the agent deliberates on its desires and decides to commit to some; desires
to which the agent is committed become intentions, to satisfy which the agent exe-
cutes plans that lead to action. The behaviour of the agent (i.e., its actions) is thus
explained or caused by what it intends (i.e., the desires it decided to pursue). Ideally,
within the BDI architecture, agents should react to changes in its environment as soon
as possible while keeping its proactive (i.e., desired-action-oriented) behaviour. BDI
logics provide the backbone of a readily formalisable rule-based system that be inte-
grated with message-passing and an agent communication infrastructure, is amenable
to customisable implementation and features prominently in current research as a rapid
prototyping tool.

1.3 Cyber-Physical Systems

An emerging and fascinating area of research is that of Cyber-Physical Systems (CPS),
namely orchestrations of computers and physical components in a dynamic environ-
ment. Computing devices and networks are used to monitor and control the physical
parts, possibly with tightly coupled feedback loops where computations continuously
affect physical processes and vice versa. Applications of such systems are manifold
[NIST] and include manufacturing and process control, autonomous automotive sys-
tems, medical devices, smart wearables, military systems, avionics and flight safety, air
traffic control, e-health and assisted living, power generation and distribution, energy
efficiency and conservation in buildings, water management systems, trains, access con-

1.3. Cyber-Physical Systems 7

trol and monitoring, livestock, physical and computational asset management, robotics
and and ever-increasing plethora of emerging technologies driven by real-life physical
and social processes. Designing such open systems requires an intimate understanding
of the joint dynamics of computers, software, networks, and the underlying physical
processes, where it is not enough to focus on expertise in either domain; by definition,
this area is set apart by its focus on the intersection of physical and computational
processes rather than their union [Derler et al. 2012, Akkaya 2016], and by their inher-
ently open dataflow structure. This joint dynamics opens unique sets of challenges for
researchers, modellers and designers which have largely to do with the composition of a
wide range of heterogeneous components and the information they continually produce
and that needs to be evaluated within the system by its computational units, and com-
ing up with good models of interaction is essential going forward. CPS usually combine
models and methods from electrical, biomedical, civil and mechanical, environmental,
aeronautical and industrial engineering with the models, methods and frameworks of
computer science and software engineering. It has been argued that such a heteroge-
neous set of models and methods do not combine easily and thus one should view CPS
as a separate engineering discipline [Lee 2015], although the same can be said for any
discipline where the focus is on solving problems. Often, as part of practical problem
solving, CPS have to learn, adapt and evolve in real time, much in the way animals
have been doing over very long time scales, and information processing and machine
learning integrated with control mechanism of tools and data in CPS naturally blur the
boundaries with artificial intelligence.

Several research directions have recently appeared which feature the broad theme
of this thesis, namely connecting and orchestrating a potentially large number of var-
iously ‘smart’ devices to humans and their environment in such a way that collective
computation emerges. In particular, CPS has emerged as an umbrella term for several
established and newer technologies, such as Industry 4.0, Machine2Machine, Ambient
Intelligence/Intelligent Environment, Sensor Networks, and the Internet of Things/Ev-
erything (IoT/E), harking back to [Wiener 1948]’s pioneering “scientific study of con-
trol and communication in the animal and the machine”. In particular, IoT systems
are implementations of CPS where one emphasises the intensively networked nature of
the constituent devices, leveraging the Internet and associated technologies to build a
swarm of heterogeneous sensors and actuators that interacts with the environment and
can dynamically solve problems in several domains of application and learn new rules
and patterns of behaviour, and autonomously adapting to changes at run-time, un-
der the implicit assumption that such systems are able to make real-time, autonomous
decisions as new information is processed. One classic example is that of a home am-
bient and entertainment system that continually adjusts to the human activity in the
background.

8 Chapter 1. Introduction

Despite the advances made in the past decades in the fields of artificial intelligence,
software agents, robotics and sensor miniaturisation, fully realised autonomy is still
some distance in the future. Desirable qualities of CPS should not only be flexibility
and a certain degree of autonomy, but also quantifiable, social characteristics such
as trust and reliability that enable the orchestrated system to operate smoothly and
mimimise risks to its integrity, as well to triangulate and where possible preserve social
and individual liberties such as privacy and free will by means of ethical considerations
[(STOA) 2016].

In broader autonomous systems such as those encountered in open systems and
CPS, the interplay between trust and reliability and the applicability of verification
techniques [Baier & Katoen 2008] such as model checking for validating a trust model
based entirely on logical inference has led to some paradoxes and malfunctioning when
something unexpected happens. This is a particularly important problem in many
systems, for instance for autopilot software and other emerging fields of application of
trust modelling [Lahijanian & Kwiatkowska 2016]. In contrast to time-honed domains
such as aviation and rail, another domain in which verification is important is that of
autonomous cars, due to the different nature of possible paths, the proximity of hazards
and the sheer volume of interactions with humans and other autonomous systems which
require a holistic approach to reasoning in the presence of risk and uncertainty and the
implementation of ethical systems. Data useful for information processing in CPS can
be either abundant or scarce, lying in plain sight or obscured, and the right balance
needs to be found to design them effectively and securely.

1.4 Towards Agoric Computation

In this Section, we set out the intellectual challenges that this thesis seeks to address,
and introduce the methodology of Agoric Computation that forms the core of our
contribution to the wider research area in its historical context. We also provide a
discussion of the nature of information with examples and an initial review of related
work.

1.4.1 Agoras and Information

When studying composite, open systems such as CPS, it is useful to use a market-
place metaphor for computation. Marketplaces are social constructs that have naturally
emerged to deal with the logic of uncertainty and information, and provide a mechanism
for filtering signal from noise and learning form data, even though these signals may
be themselves hard to interpret taken in isolation. The aspects of the coordination,
signalling and filtering problem that markets solve, i.e “how little the individual partic-
ipants need to know in order to be able to take the right action” are well understood

1.4. Towards Agoric Computation 9

in economics [Hayek 1937, Hayek 1945, Otteson 2002] and evolutionary computational
biology [Chastain et al. 2013]. We term such abstractions Agoric Processes1 to under-
line the distributed, dynamic, pro-active and mixed computational-physical nature of
such systems. Roughly speaking, within the confines of the title of the present work,
Agoric Computation is an attempt to formalise the computational processes that arise
in agoric environments viewed through the lens of MAS. Formally, for a fixed number
N , a multi-agent system can be defined by a set of agents Ag, which we take to be
a finite set Ag ≡ [N] = {1, 2, . . . , N}, and denote individual agents by some index
a ∈ Ag.

. Agoras are locations where some parties meet and interact for the purposes of ex-
changing something of value, and to communicate signals about concepts, ideas,
goods, and services, that involve information flows among diverse agents. People
meet or communicate, and explicitly or implicitly exchange information from oth-
ers, and this interaction may change some state carried by individuals. The fact
that humans (and the machines that substitute them) do a lot of different things
via interactions and working together emphasises the point that we are interested
in looking at a variety of different rules [Goldin et al. 2006].

. Information refers to – possibly unobservable – attributes, such as energy, opin-
ions, strategies, possessions, wealth, disease, spin, productivity, signals, and a
“marketplace” is some kind of discrete graph or network structure connecting
agents, i.e. describing their possibly changing relationships and local and global
behaviour.

Agoric processes are defined along two levels of abstraction:

. The geometry of interaction, i.e. a “meeting” model of the network between
connected agents, and/or

. An update rule – which is deterministic, but it can also be stochastic – that
determines agents’ responses, and provides the “information exchange” model.

The two levels of abstraction, the web of relations and the dynamic, are inseparable.
Loosely speaking, an agoric process is a marketplace together with information flows,
based on an iterated meet-and-exchange cycle for information propagation.

A blueprint for such computational processes was given by [Minsky 1986, 28.2],
who envisaged a society of heterogeneous agents that compete and cooperate to pro-
duce mental capabilities, although again the idea is very old [Hayek 1952, Hebb 1949,
Otteson 2002] and remains largely unimplemented in practice; see for instance

1In ancient Greece, the term αγoρὰ designated both a meeting and a market place.

10 Chapter 1. Introduction

[Wright & Aubé 1998, Baum 2003, Zenil et al. 2017]. In the late 1980s and early 1990s
there was considerable interest in distributed computational ecologies, software agents
undertaking limited resource allocation, their interactions, strategies, and knowledge,
and several attempts to deal with these systems were proposed that died out for lack
of a coherent and powerful theory [Miller & Drexler 1988, Huberman & Hogg 1988,
Huberman & Hogg 1995, Weiss 1995, Wellman 1999]. Like other ideas with a long and
fertile intellectual history – such as deep convolutional learning networks – often sig-
nificant progress is made when the right milieu and tools have been built up, and the
past two decades have experienced a trickle of incremental progress that has recently
led to an explosion of related techniques. Thus agents deal with a particular com-
modity called information. The great French mathematician René Thom called it a
“semantic chameleon” [Thom 1983], something that easily changes in correspondence
with the environment. In its different forms and appearances, the concept of infor-
mation becomes closely related to notions of constraint, communication, control, data,
form, education, knowledge, meaning, understanding, mental stimuli, pattern, percep-
tion, representation, and entropy. In its most restricted technical meaning, information
is an ordered sequence of possibly changing symbols [Floridi 2010]. Of course, few con-
cepts in science are as ubiquitous, elusive and pervasive as information, or lack thereof
[Norretranders 1998]. It is pervasive, because all branches of science rely on some notion
of information; on the other hand, it is also elusive because it is used to mean many
different and contrasting things, ranging in a spectrum from the semantic to the tech-
nical [Soofi 1994]. In a semantic context, the term information is used in an intuitive,
encompassing sense, and does not refer to a well defined logico-numerical quantity that
can be used for measuring the extent of differentials or behavioural drifting arising as a
result of changes in uncertain or deterministic states of nature. In a technical context,
information is taken – for example by physicists and statisticians, chemists and biol-
ogists – to mean a well-defined function that quantifies the extent and scope of such
differentials, in the spirit of Shannon information theory for uncertainty [Soofi 2000].
Two disciplines, computer science and molecular biology, have been very successful by
embracing information-theoretic notions. This has led not only to the generation of
vast amounts of data and information as the fields have advanced, but also to a new
understanding of the concept of information itself. From this brief discussion it is clear
that information as a polysemantic and flexible concept invites, and often requires, a
pluralistic interpretation rather than the straitjacket of a monistic interpretation. The
reason is that, emerging as it does from a social shadow, it is the basis of all communi-
cations: it helps us categorise the environment and react and cope with it, as a map,
model and approach. It can represent and convey a figment of reality, and can be used
to construct it. These two twin and distinct aspects of information, of representation
and communication, are intimately connected, and one cannot exist without the other.

1.5. Research Questions 11

1.4.2 Examples

A few by no means exhaustive motivating examples can give a flavour for the kind of
problems that can be approached by adopting this collective, interdisciplinary perspec-
tive, and all these problems have to do with storing, processing and exchanging infor-
mation dynamically and reducing the dimensionality of a very complex coordination
(i.e. information exchange) problem. In economics, markets and exchanges for material
goods and services have existed for millennia in forms ranging from simple barter to
billions of users. One need only think of street markets, supply chains, and today’s
online marketplaces and financial markets that are on a local, regional, international
and planet-wide scale.

Another mechanism, natural (human) language, is a form of consensus among its
users to express and communicate concepts, ideas, categories and actions. Meetings,
conferences, books and signs are just the kind of problems solved by language; where
they happen in sufficient temporal and spatial proximity – i.e. they become a conver-
sation – a dynamic structure of themes and topics and turn-taking arises between its
users.

The human brain is perhaps the most complex computational structure ever studied.
It is composed of parts called neurons that continuously orchestrate a rhythmical flurry
of local and global activity which is both of a conscious and unconscious nature, and
likewise, despite a century of scientific advances, it is still largely unknown [Baum 2003,
Pulvermuller 2002, Buzsaki 2006]. One long-standing hypothesis, now supported by
physiological evidence, is that such activity is organised in groups of self-organised
neurons, or cell assemblies that become activated and enable non-linear computation
and long-term memory [Hebb 1949, Palm 1981]. Understanding information processing
in such structures is one of the goals of Artificial Intelligence [Norvig & Russell 1999].

Another ubiquitous example of agoric computation is given by money. It has many
meanings and varying worth, and a widespread economic definition of money is given by
its functions as a unit of account, medium of exchange, and store of value. Yet, when
one reflects about the emergence of money at the dawn of society and its historical
and technological development, its most powerful function is that of being a currency
of trust, by means of which some information about stability and trustworthiness is
quantified, encoded, and memorised to facilitate exchange; agents no longer need to
barter things or actions and be subject to the double coincidence of wants.

1.5 Research Questions

The main research aims guiding our thesis can be summarised in the following question:
can we translate the unifying perspective of agoric systems into computational objects
and models that have relevance for solving everyday problems, perhaps by simulating

12 Chapter 1. Introduction

them as multi-agent systems before deploying them into production? As part of this
wider question, we also seek to address a few, more refined, objectives for our research,
namely

. Can we build software for such systems that is scalable and extensible?

. How do we move from raw data sensed from the environment to higher levels of
aggregation (such as trust)?

. Can we apply our approach to concrete CPS and IoT applications?

and with respect to these aims we have endeavoured to give answers in their proper
context. There are many mathematical frameworks and algorithms that revolve around
iterating a form of information propagation until it reaches a desired outcome or fixed
point; we prepare the ground for this in Chapter 2. These draw on a rich variety of quan-
titative modelling techniques that can be used to model information flow in multi-agent
systems and the basic idea of a dynamical system as a composition2 of smaller units
that are updated – and possibly created and destroyed – dynamically as computation
proceeds, where the flow can be from inputs (such as percepts, observations) to out-
puts (actions, decisions) and incorporates feedback from both the environment and the
agent’s goals. In principle, studying this kind of agoric computation is straightforward,
and gives scope for a common perspective.

In practice, despite their amenability to rule-based behaviour or procedures at var-
ious levels of abstractions in a social setting, a major shortcoming of the current state
of the art in agoric systems surveyed in the literature on open, autonomous systems
is given by the dearth of practical computation models that can orchestrate the re-
lationships between data and physical components, including controllers, sensors and
actuators, and in particular there is a distinct lack of software models that bridge
streaming sensor data into higher level abstractions, extracting features and perform-
ing actionable decisions on systems that are supposed to continually run, evolve and
adapt to environmental changes. That is, doing the ‘synthesis’ and ‘data feedback’ steps
of the computation and doing it at scale in a noisy environment remains a challenge for
software engineering, as reflected in the scant work done on software implementations
from these applications.

This becomes apparent in the lack of a truly computationally grounded model for
trust, which is of great importance in real-life systems. Trust is a quintessential example
of a forward-looking belief or state of expectation (positive or negative) towards other
agents’ actions and intentions of not exploiting the truster’s vulnerability, and is inti-
mately connected with how to model new situations and changes in the environment; in
contrast with reputation, one does not look back at some past attribute or experience

2i.e., as a choice of interfaces, assembling/composition, and nesting.

1.6. Contribution and Thesis Overview 13

but at at a future, ongoing higher level description that facilitates the functioning of a
system, and thus trust provides a natural testbed for a greater understanding of agoric
systems.

As these introductory considerations stress, the flow of information and its opera-
tional use in agoric systems is their most defining characteristic. To this effect, we dwell
for a large part of the thesis on software implementations where we can apply the “glue
of trust” to hold a system together. In particular, there is no obvious reason by which
one should not model trust as a higher level function stemming from the cost of remem-
bering information balanced with future opportunity, which relies on determinants such
as (a) the response of an agent – or group of agents – to other agents’ trustworthiness,
and vice versa, evaluated in response to new, possibly contradictory information; and
(b) the willingness of agents to accept risk and vulnerability arising because of partial
information, possibly evaluated as thresholds.

1.6 Contribution and Thesis Overview

In our work, we have adopted a theoretical perspective for the implementation of agoric
computation – i.e. calculi for trust, and graph based models for information net-
works; an engineering perspective, via software artefacts that implement our theory
programmed in Java, Jason, Brahms and NetLogo; and provided data analysis for the
validation of our proposal. This has involved implementing a streamlined, two-stage
approach for information processing, based on specifying the topology (or interaction
model) and the update rules (or information exchange model), in line with the discussion
of agoric computation of Subsection 1.4.1.

The work in this thesis has benefited from extensive discussions and interactions with
fellow researchers towards refining the theory and solving practical problems. Some of
the ideas discussed here have led to substantial collaborative work and to the implemen-
tation of code that resulted in the following publications in conferences and journals:

. [1] Mirco Bordoni, Michele Bottone, Bob Fields, Nikos Gorogiannis, Michael Mar-
golis, Giuseppe Primiero and Franco Raimondi (2015) Towards cyber-physical sys-
tems as services: the ASIP protocol. In: 2015 IEEE/ACM 1st International Work-
shop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), 17-17
May 2015, Florence, Italy.

. [2] Michele Bottone, Giuseppe Primiero, Franco Raimondi and Vincenzo De Florio
(2016) A model for trustworthy orchestration in the Internet of Things. In: 2016
12th International Conference on Intelligent Environments (IE), 14-16 Sept 2016,
London, United Kingdom.

14 Chapter 1. Introduction

. [3] Michele Bottone, Giuseppe Primiero, Franco Raimondi, and Neha S Rungta
(2016) From raw data to agent perceptions for simulation, verification, and mon-
itoring. In: 12th International Conference on Intelligent Environment 2016:- 5th
International Workshop on Reliability of Intelligent Environments (WoRIE’16),
14-16 Sept 2016, London, United Kingdom.

. [4] Michele Bottone, Filippo Palumbo, Giuseppe Primiero, Franco Raimondi and
Richard Stocker (2016) Implementing virtual pheromones in BDI robots using
MQTT and Jason. In: 2016 5th IEEE International Conference on Cloud Net-
working (Cloudnet), 03-05 Oct 2016, Pisa, Italy.

. [5] Giuseppe Primiero, Michele Bottone, Franco Raimondi, and Jacopo Tagliabue
(2016) Contradictory information flow in networks with trust and distrust. In:
5th International Workshop on Complex Networks and their Applications (COM-
PLEX NETWORKS 2016), 01-06 Dec 2016, Milan, Italy.

. [6] Giuseppe Primiero, Franco Raimondi, Michele Bottone and Jacopo Tagliabue
(2017) Trust and distrust in contradictory information transmission. Applied Net-
work Science, 2 (12), ISSN 2364-8228, Springer.

. [7] Michele Bottone, Franco Raimondi, and Giuseppe Primiero (2018) Multi-agent
based simulations of block-free distributed ledgers. In: E3WSN2018, Co-located
with the 32nd IEEE International Conference on Advanced Information Network-
ing and Applications (IEEE E3WSN AINA-2018), 16-18 May 2018, Pedagogical
University of Cracow, Cracow, Poland.

My contribution to the publications cited above has been, as a rule, proposing and
discussing the extensions of the underlying models and programming them using agent
development environments, collecting and presenting data, and for four of them, writing
the papers in full. In particular, this has involved specifying models for applying the
glue of trust in information flows [2, 5.6], devising solutions to move from raw sensor
data to higher levels of abstractions or trust [3, 4] and performing applications to trust
in CPS and IoT [1, 7] with detailed evaluations.

This thesis is structured as follows: this introductory Chapter broaches the subject
matter on agoric computation as formalised information flow and the research ques-
tions that form the focus of this doctoral research; Chapter 2 gives a critical review
of the relevant literature related to modelling agoric open systems, in particular sev-
eral mathematical formalisations and programming frameworks that approach open
systems under different guises but can be shown to be manifestations of the same un-
derlying mechanism, and dwells on trust models and cyber-physical systems; Chapter 3
introduces preliminary concepts useful for fleshing out the vision of this thesis, namely

1.6. Contribution and Thesis Overview 15

cyber-physical components such as sensors, actuators, controllers, and software abstrac-
tions such as the communication protocols and the publish/subscribe framework, the
Java-based Jason and Brahms and NetLogo programming environments for multi-agent
systems, the natural deduction calculus, and graph theory; Chapter 4 provides the pro-
gramming models underlying four thematic areas in the work published to date as part
of this thesis, in particular bridging from low-level agent percepts and data to higher-
level representations of information, an operational formalisation of trustworthiness in
orchestrated systems, a proof system and natural deduction calculus and associated
algorithms for computing the cost of trust in several types of networks of agents seeded
with contradictory information which is then transmitted along the network, and a di-
rected graph structure for distributed ledgers; Chapter 5 presents in some detail the
software implementations for the four thematic areas of the preceding Chapter; Chapter
6 gives a reasoned evaluation of the results of some of the experiments performed that
have been published in workshops and conferences in the past two years, with anno-
tations; finally, Chapter 7 takes stock of the progress achieved in this thesis and the
current limitations of our approach and concludes with a roadmap and several leads for
further work and future extensions.

Chapter 2

Related Work

18 Chapter 2. Related Work

In Chapter 1 we gave an introductory treatment of the main focus of this thesis,
namely how to model the propagation of information and the exchange of relevant data
in open systems of agents. While the subject of static topologies and environment
has received considerable attention in the wider literature of several disciplines, that of
information flow in dynamic environments has received far less attention, and software
engineering applications are still in their infancy. In the rest of this Chapter, we give in
Section 2.1 a broad brush of related work in the areas that form the scope of our thesis,
deferring the detailed discussion of logical and programming approaches to Chapter
3; we also give an overview of the wider literature on trust in multi-agent systems in
Section 2.2.

2.1 Mathematical Formalisms

Approach Directional MAS Composable Scalable Implementation

1. Probabilistic X X X7 7 7

2. Graphical-Process X 7 X 7 7

3. State-Machine X 7 X X7 7

4. Influence-Systems X 7 7 X7 7

5. Category-Theoretical X X X X7 7

6. Game-Theoretical X7 X 7 7 7

7. Propagators X X X 7 7

Table 2.1: Current Formalisms for Agoric Computation

There currently exists a plethora of modelling and analysis approaches for agoric
open systems, which have led to thousands of new papers in the past decade alone.
The summary classification given in Table 2.1 is not intended to be exhaustive as,
appropriately enough, modelling approaches are interlinked and straddle these bound-
aries; however, it provides a quick synthesis and comparison of the currently existing
formalisms with respects to the gaps identified in Section 1.5, which anticipates the
critical evaluation of Subsections 2.1.1–2.1.7. In particular, we consider the following
shorthand: Directional probes whether the given approach provides a formalisation of
directed information flows; MAS considers whether it is directly transposable to the
language and techniques of multi-agent systems, especially the BDI logics; Composable
if the formalism allows a choice of interfaces, assembling/dissembling, composition and
nesting into higher hierarchies; Scalable if the approach works equally well for a few
components building to a very large but finite set of components; and Implementation
if there exists a working software engineering implementation and deployment of the

2.1. Mathematical Formalisms 19

previous characteristics. The symbols Xand 7 mean that the corresponding feature is
addressed – respectively, not addressed – by the relevant formalism; we use X7 to high-
light that is is only partially addressed. From the above considerations, we anticipate
that there remain considerable gaps in the existing approach to formalisation which
motivate the work presented in this thesis.

2.1.1 Probabilistic Models

The mathematical study of the “flow of information through networks” has tradition-
ally been the subject of the field known as Interacting Particle Systems, under the
lasting influence of [Liggett 1985, Liggett 1999]. This covers such diverse subfields as
statistical physics, epidemiology, broadcast algorithms on graphs, ad hoc sensor net-
works, and social learning theory (such as the transmission of gossip and so-called
memes over a social network). In these models, the specification of either the meet-
ing model (the geometry or topology) or update rule (the dynamics) is a proba-
bilistic one, where the next step occurs at random according to a specified distribu-
tion. In a recent series of papers, the probabilist David Aldous and his coauthors
have looked at some of these rules under the name Finite Markov Information Ex-
change Processes [Aldous 2013, Aldous & Lanoue 2012, Aldous et al. 2014]; see also
[Sainudiin & Welch 2015]. These models, broadly speaking, start from the structure
of a population of individuals with a well-defined topology and study the state of
the individuals as some token – which may be simply the description of its state, as
in epidemic models – is exchanged, and some property of the network is established.
[Louzada Pinto 2016] gives an extensive overview of probabilistic models for information
diffusion and opinion dynamics in social networks. These approaches are well suited
to formalising the directionality of information flows in a MAS setting and, depending
on the meeting model, can address levels of hierarchies although they are only par-
tialy composable; from the viewpoint of this thesis, purely probabilistic models are not
scalable and there exist no real-world implementations.

2.1.2 Graphical Models and Process Calculi

Ambient Calculus is a process algebra focused on mobility, introduced in
[Cardelli & Gordon 1998, Cardelli & Gordon 2000] as a single framework to describe
mobile agents, the environment where agents interact and the mobility of environments
themselves. As such, it encompasses both mobile computing, concerning computa-
tion that is carried out in mobile devices, and mobile computation, which is code that
moves between devices, such as apps or software agents. An ambient is thus an ab-
stract entity that can be used to model different elements in physical space (i.e. agents
and locations) and cyber space (i.e. programming scopes and variables and interac-
tions). Ambients inhabit a hierarchy of locations and create a tree structure that can

20 Chapter 2. Related Work

be dynamically reconfigured when agents or their ambient perform a set of capabilities
or actions. A formula in the ambient calculus may be both a representation of the
structure of an environment – how ambients are structured and nested – and its evo-
lution – how its structure changes through the execution of a given set of capabilities.
The ambient calculus formalises location effectively, but performs less well when de-
scribing the real-world, complex dynamical interactions of a large number of elements,
such as security intrusions [Jansen 2002]. Bigraphs [Milner 2009] were introduced by
Milner and coauthors as a modelling formalism and meta-calculus for unifying and un-
derstanding the complexity of seemingly disparate structures in ubiquitous computing
and calm technology [Weiser & Brown 1996]. The main idea of bigraphs is to consider
both communication and nesting within the same framework; to this effect a bigraph
consists, as the name implies, of two graphs: a place graph – which can be a tree or
even a forest – that captures notions of locality or containment, and a link graph that
models the communication or association between modules or units that may repre-
sent agents and environments. The place graph consists of a set of nodes, each of
which is given a control drawn from the bigraph signature, i.e. a unique name and
an arity that determines the number of connecting ports that are available at a given
node to be interconnected with edges in the link graph (controls can also be passive if
they engender no reaction, and because links live in a hypergraph, multiple ports may
connect to a single name). Bigraphs can be studied both visually, and by prefixing
terms or their names. Bigraphical reactive systems (BRS) extend the bigraph syntax
with a rigorously-defined semantics of dynamic behaviour, expressed as a set of reac-
tion rules of the form R → R′, where R is a redex and R′ is a reactum with which
the matched portion of the bigraph should be replaced, i.e. if this portion matches
the rule pre-condition, it is rewritten as stated in the post condition. Reaction rules
express the possible actions that agents may perform, and allow reasoning about the
evolution of topological configurations of the environment. Both ambient calculi and
bigraphical reactive systems generalise earlier formalisations for communicating agents,
such as the π-calculus [Milner et al. 1992, Riely & Hennessy 1998] and the join-calculus
[Fournet & Gonthier 1996, Fournet et al. 1996]. Despite their being well-suited with re-
spect to directionality flows and composability, graphical process calculi are ill-suited
to MAS environments and also find difficulty in achieving scalability and ease of imple-
mentation.

2.1.3 State-Machine Models

State-machine based models try to extend the algorithmic, functional, Turing-Machine
based model of computation into a more expressive architecture suitable for modelling
interaction of object-oriented and more generally distributed systems of computing
agents, which are large but finite. A formal model of interactive computation using se-

2.1. Mathematical Formalisms 21

quential interaction machines (SIM) was suggested by Wegner [Wegner & Goldin 1999]
as a substrate for computation which is potentially more powerful than non-interacting
algorithms. Informally, SIMs are stream-processing machines that model sequential
interaction by input-output streams, where each computation step may be viewed
as a complete Turing Machine computation – i.e. the working out of a computable
function – and introduces dynamic dependence of inputs on prior outputs. A re-
lated dynamic state-machine based mathematical framework allowing the modelling
of individual components and their interactions and changes was recently proposed
by [Attie & Lynch 2016]. Dynamic Input-Output Automata (DIOA), based on I/O
automata [Lynch & Tuttle 1989, Lynch 1996], are state-based machines that perform
three kinds of actions: input, output and internal, and produce an externally visible
trace or set of traces by removing all internal actions and replacing each state by its
external signature – i.e. its input and output actions – and replacing blocks of identical
external signatures by a representation. Unlike I/O automata, which are static, DIOA
model a dynamical system as an automaton that is one level higher in the hierarchy and
can be repeated and nested, allowing the creation, modification and distruction of entire
subsystems with a single action. Thus DIOA have the ability to dynamically change
their signatures (i.e. the set of actions in which the automaton can participate) and
create other I/O automata representing local and global configurations and to express
changing capabilities. DIOA also feature parallel composition, action hiding, and action
renaming operators. Much like graphical process calculi, SIMs and DIOAs suffer from
being unsuitable for the implementation of MAS environment, despite good theoretical
properties and partial scalability.

2.1.4 Influence Systems

Influence systems were proposed by [Chazelle 2012] as a level of abstraction based
on the language of the natural algorithms of Lindermayer type, or L-systems
[Prusinkiewicz et al. 1996]. An influence system is specified by two sets of functions, an
action function f and communication function G, the latter modelling the flow of infor-
mation in the influence network of the agents. It is a discrete-time dynamical system
x 7→ f(x) in (Rd)n, where n is the number of agents and d the dimension of the ambient
space, and each coordinate xi is a d-tuple encoding the location of an agent i. To any
state x one associates a directed1communication graph G(x) with one node per agent,
and each coordinate function fi on the map takes as input the neighbours of agent i in G
and their location, and outputs the new location fi(x) of agent i in (Rd). By separating
f and G the model enables the separation of the syntax (who talks to whom) from the
semantics (who does what), and both f and G can be arbitrary functions that can be
evaluated by deterministic or randomised algorithms. Simple influence systems have

1An undirected communication graph creates a bidirectional system.

22 Chapter 2. Related Work

been shown to explain several emergent phenomena and a subclass of these, diffusive
(i.e. if f keeps each agent within the convex hull of its neighbours) influence systems,
always converge to a consensus in a finite time. Influence systems formalise information
flows well and can partially scale, but perform poorly when viewed through the lens of
MAS logics, composability, and implementation.

2.1.5 Category-Theoretical Models

Informally, a category [Mac Lane 1998, Awodey 2006] consists of mathematical ob-
jects, morphisms or functions between objects, and structure-preserving maps be-
tween objects. An operad is similar to a category, with the difference that instead
of a homotopy set hom(X ,Y) of morphisms from any object X to any object Y,
one has a set hom(x1, . . . , xn; y) of operations from any finite list of labelled ob-
jects x1, . . . , xn to any object Y. For an operation f ∈ hom(x1, . . . , xn; y) one calls
the (x1, . . . , xn) the inputs of f and y the output of f . Operations can be nested
and composed in an operad, creating new operations; there also exist unary oper-
ations 1x ∈ hom(x;x) serving as identity mappings of compositions, and an asso-
ciative law that makes the composite of composites well-defined. Operads are simi-
lar to symmetric monoidal coloured categories [May 1972, Leinster 2004] and enable
one to define an algebra on them, that is a homeomorphism that turns the ab-
stract operations in the operad into operations on finite sets. Thus operads formalise
the intuitive notion of a structure that is constrained to have some form of consis-
tency or self-similarity. One interesting structure is the operad of wiring diagrams
[Vagner et al. 2015, Lerman & Spivak 2017, Spivak & Tan 2015, Rupel & Spivak 2014,
Spivak 2016, Yau 2017], studied by [Rupel & Spivak 2014, Spivak 2016, Lerman 2017,
DeVille & Lerman 2011] as a formal model for agent interaction. Much like on a com-
puter logic board, a wiring diagram is a fixed, network-like arrangement of nodes and
directed edges where each node is a box with differentiated input and output ports and
one can “zoom in or out” by cutting-and-pasting graphs into other nodes. The basic
idea of these diagrams is that if one inserts a wiring diagram into each of its interior
boxes, one obtains a new wiring diagram and can study a complex arrangement at any
level of granularity, via their hierarchical, modular structure. These structures are in
a sense, universal; for example the entire web of financial relations connecting banks,
firms, governments, and other economic agents can be described using the simple tran-
scription rules of double entry accounting [Katis et al. 2008], one of the oldest forms of
bookkeeping. Category theoretical models have the best fit of the possible frameworks,
allowing for directionality, MAS, composability and partial scalability. However, the
assumptions and details required for consistency of the framework make them ill-suited
for implementation through nimble computational objects.

2.1. Mathematical Formalisms 23

2.1.6 Game-Theoretical Models

The theory of games [Fudenberg & Tirole 1991, Myerson 1991] concerns the mathemat-
ical study of rational, strategic interactions between individuals and groups, rather than
ludic pursuits; i.e. agent behaviour in any situation where each agent’s optimal choice
may depend on a forecast of other agents’ responses. Such agents can act exclusively
out of their self interests, or cooperate towards a common goal, and develop strategies
as sequences of actions. Game theoretic approaches have been useful in many fields,
including computer science [Nisan et al. 2007]. The basic analytical structure of a game
- that of maximising some payoff or reward and/or minimising some cost or penalty
and looking for decision equilibria, or fixed points where actions do not change - allows
for a rich choice of applications, including static and dynamic games, with completely
observable and incomplete information, deterministic and stochastic, which we do not
review here. From the viewpoint of this thesis, a model for a game can be used to
establish whether some computational property holds; for example, game semantics
underpins programming languages and computation in a syntax-independent manner
[Abramsky 1997, Yamada 2017, Yamada & Abramsky 2017] and stochastic games have
been used to verify probabilistically (via the model checker PRISM) the correct reason-
ing and functioning of autonomous systems [Kwiatkowska 2013, Chen et al. 2013]. Fi-
nally, game theory can help design better multi-agent systems [Parkes & Wellman 2015]
and formalise lower-level representations of the data as local solutions to optimisation
problems that can then be fed into higher-level features representing more abstract as-
pect of the data gleaned from the environment, thus providing a semantics for the flow of
first-order information in deep learning [Balduzzi 2014, Balduzzi 2016]. Along with in-
fluence systems, game-theoretical approaches have been the worst-scoring among those
reviewed here, only fully compliant with a partially directional MAS modelling environ-
ment and have encountered difficulties in being amenable to composability, scalability
and implementation.

2.1.7 Propagator Models

The architecture of propagator networks was introduced by [Radul 2009,
Radul & Sussman 2010] as an expressive substrate for computation and as a
general-purpose distributed programming model, suitable for developing programs
that are robust, nimble, adaptable, and capable of dealing with fundamentally noisy,
uncertain and contradictory environments. It gives an interesting and powerful
formalism for constructing decomposable software agents.

The ingredients of a propagator network are cells and propagators. The cells’ job is to
remember things and thus permanently store state; conversely, the propagators’ job is to
compute and update the cells they are connected to. Compared to most programming
paradigms [Abelson et al. 1996], propagators are a bit like procedures in a language,

24 Chapter 2. Related Work

and cells are like memory locations. A big difference is that cells cumulate partial
information – which may involve arbitrary internal computations – and can therefore
have many propagators reading information from them and writing information to them
in a manner that is reminiscent of publish-subscribe patterns [Birman & Joseph 1987].

To visualise a propagator2 architecture, it helps to consider it as a special type of
wiring diagram; i.e. a system consists of computational boxes connected by wires. Each
box – the propagator – watches its ports – the cells it is connected to – and reacts to
the signals it understands, in turn transmitting new signals through other ports3.

Networks of propagators have no constraints on their topology, such as acyclicness,
and the flows through boxes and wires are inherently bidirectional: in principle, in-
formation can arrive on any port and it can propagate to any port. The ordering of
operations in propagator networks is undefined outside of the implicit ordering caused
by the structure of the propagator network itself (i.e. that a cell must update be-
fore a propagator attached to it may fire). This, along with the strong separation of
state from computation makes data propagation a flexible framework for concurrent
programs. Partial propagator networks may be abstracted and reused as “compound
propagators” by composition. As these compound propagators become active, they
construct the partial propagator network represented by the compound propagator,
permitting more complex operations, recursion and the construction of loops. This
message-passing view of information flowing through propagator networks that com-
pute in real time is the key characteristic of this programming model. The information
stored in a cell may be updated at any time by a propagator which sends a message
with new information to that cell, and as a result, updates it. The contents of that
message are merged with the data currently in the cell using an appropriate, iterative
merge operation. After a cell has changed its state by merging an update, any propa-
gators that have registered an interest in the cell wake up and begin to process, using
the new data as needed. These propagators may then send updates to other cells and
cause another cycle of cell merging and notification of propagators; this drives continued
computation. It is important to note that each cell maintains, in a way, not “a value”,
but “all the information it has about a value”, which could be nothing (nil, “I don’t know
anything”, or some concept of “no idea”), everything (something known with certainty:
for example, a number or interval), some logical proposition or belief, or a probability
or even contradictory information which must be resolved. Handling of contradictions
forms part of the software implementation of the network, rather than the underly-
ing propagator network, via the design of specific data structures, for example truth
maintenance systems (TMS) [Radul 2009, Radul & Sussman 2010] that have features

2Which, we remind, is a function that takes values based on data in zero, one, or more cells, and
may store output in one or more output cells.

3Each box ignores inputs it does not know how to handle, and combines evidence from multiple
ports to reach conclusions about the values that should be propagated to other ports.

2.2. Computational Trust and Cognitive Agents 25

which make them appropriate for handling both partial information and contradiction
resolution in their merge operation. Propagation networks can also be used to incorpo-
rate logical abstractions, with the objective of introducing flexible planning. For this, a
form of knowledge representation and logical connectives, propositional and deductive
calculi, as well as modal and temporal logics and model checking must be introduced.
A proposition in an epistemic construction can have beliefs attached and expressed in
terms of orthogonal axes of belief [Jacobi 2013]: acceptance, rejection, contradiction,
knowledge, and ignorance4, treating goals, knowledge and perceptions as independent
beliefs which may be connected by a network that propagates beliefs, so that each state
is only loosely connected to the others. Individual beliefs are mapped to cells, and the
rules that relate beliefs may be programmed as propagators which connect belief cells
and combine belief states to generate another. This propositional system is similar to
that of BDI logics, and as such supports the finding that propagators possess many of
the features required for modelling and engineering agoric systems, such as direction-
ality, composability; scalability and practical implementations have however not been
established.

2.2 Computational Trust and Cognitive Agents

Trust is a quintessentially social feature, and invites reasoning in a multi-agent frame-
work with the added complication of reasoning about delegation and transitivity, i.e.
who trusts whom, and whether third parties with social connections in common are also
trusted. Conversely, reasoning about trust naturally leads to questions about trustwor-
thiness in a system of agents, that is the expectation that someone/something can be
trusted, and to questions about trusted information and data provenance in contexts
where agents might have to rely on external sources to execute decisions effectively and
securely. Although trust as studied in the literature is mainly a human endeavour, the
subjects and objects of trust are not just limited to human agents, but can be extended
to and from computational devices and machines that can act autonomously.

An overview of trust in open systems and related approaches appears in the recent
collections [Reif et al. 2016] and [Abbass et al. 2018]; see also [Abbass et al. 2016] for its
application to data-rich autonomous systems. One aspect of distributed computational
thinking that is especially challenging is that of trust and its assessment, i.e. the quality
of being trustworthy. Trust learning is increasingly crucial in information exchange,
negotiation, and any other kind of social interaction amongst autonomous agents in
open systems; yet most current models for computational trust lack the ability to take
data and context into account when trying to predict future behaviour of a system of
interacting agents.

4Acceptance and rejection correspond to belief in the truth and falsehood of the proposition, re-
spectively.

26 Chapter 2. Related Work

One active topic of research in the domain of MAS is that of computational
trust models. Of the many social structures, norms and conventions that arise out
of the relationships of agents who engage in repeated interaction, several are borne
out of the attitudes or inclinations that individuals have towards each other. Trust
[Gambetta 1990, Bühlmann 1979] is one such mechanism for managing the uncertainty
about these autonomous components and the information they deal with. Closely re-
lated fiduciary concepts such as distrust, mistrust, trustworthiness and confidence are
quintessential characteristics of human and artificial societies; they are required for suc-
cessful transactions and exchange, and at the same time they play an important role in
reducing the complexity of coordination, cooperation, delegation and decision-making.
While a defining feature, the inherently social nature of trust [Gambetta 2001] also
makes it particularly challenging to study computationally.

Like agoras and information, these trust structures, norms and conventions are so
pervasive that it could be argued that they provide the foundation for any operational
notion of agency, and the breadth of situations where they can be applied is testament
to their explanatory power. At the same time they are notoriously difficult to pin down
computationally, pertaining to rationality and emotion, direct and indirect evidence,
empirical validation and reputation, morality and social standing, intransigence and
power, bias and pragmatism.

Trust is an an emergent property of multi-agent systems: it exists as a sequence
of decisions in time towards well-defined beliefs or actions, and it creates expectations
into the future. It often takes a long time to build trust, it can be self-reinforcing, and
it can quickly evaporate. It is also costly in that the trusting agent is exposed to risk,
i.e. the trusted agent, or trustee, may fail to execute some action or contract that it is
capable of fulfilling.

Research into trust-related models is a very active topic in artificial intelli-
gence and multi-agent systems [Pinyol & Sabater-Mir 2013], based on foundations
from many different disciplines: sociology [McKnight & Chervany 2001], cognitive
science [Castelfranchi & Falcone 2010], argumentation [Besnard & Hunter 2008],
statistical science [Teacy et al. 2006, Matt et al. 2010], game theory
[Burnett et al. 2011, Huang & Kwiatkowska 2017], network science [Golbeck 2006,
Mui 2002, Tsang & Larson 2014] to name a few.

In a computational trust model, one defines possibly multiple methods for calcu-
lating a truster agent’s trust in a trustee based on the agent’s own interactions with
the trustee, as well as on information that is available in the environment about the
trustee. The trust model then aggregates this information and evaluates it for a given
trustee or for the system as a whole.

Several influential theoretical models for computational trust have been advanced
before. One popular approach is based on quantified direct interaction [Marsh 1994] and
its extensions, which defines trust as a numerical value that arises out of three different

2.2. Computational Trust and Cognitive Agents 27

contextual notions, namely basic trust, general trust and situational trust. Relevant
information may be direct communications from other agents in the system, sharing
their own trust evaluations of the trustee, reputation, indirect experience, or any other
source, within each of these contexts. The second influential trust theory is based on the
socio-cognitive approach [Castelfranchi & Falcone 2001, Castelfranchi & Falcone 2010],
that contends that only a cognitive agent – i.e. one endowed with beliefs, goals, mental
attitudes, intentions – can trust another agent, because of the dynamic interaction of
preference, knowledge, expectation and new information, leading to a decision whether
to trust or not. In this interpretation, trust depends on the agent’s own general beliefs
and possibly prior opinion about the capability of the source to either (a) convey some
useful information; (b) perform some dependable action. If an agent needs to trust a
trustee, it is because it needs something from the trustee that could help it fulfill its own
goals. This capability can take, for instance, the form of shared goals or coincidence of
wants. Cognitive social trust then arises as an offshoot of cognitive agents who reason
for and against adopting beliefs, committing to goals and pursuing actions, and in par-
ticular the mental states of the trustee relating to actions in the future that might affect
the truster. Of course in the real world, information can be incomplete; accommodating
this, and the dynamic of trust, is particularly challenging when one considers that, in
most of the social trust models in the literature, an agent’s computational trust model
does not change when the agent senses a change in the environment. Within the cog-
nitive framework, [Herzig et al. 2009, Herzig et al. 2008, Koster et al. 2013] have for-
malised and studied modal epistemic logics based on BDI logics [Rao & Georgeff 1998b].
[Da Costa Pereira et al. 2015, Paglieri et al. 2014] suggested argumentation as a mech-
anism for constructing reasons for trusting or distrusting other agents, while a
dependence-based modal logic is explored in [Patti 2002, Singh 2011, Kramdi 2015].
[Parsons et al. 2012] have provided a taxonomy for argument schemes when reason-
ing about trust, and [Koster et al. 2013] study trust from the agent’s perspective
as a black box with the various information sources as input and a trustworthi-
ness evaluation of the trustee as output. Information propagation in trust problems
has been studied in [Guha et al. 2004, Ziegler & Laursen 2005, Quercia et al. 2007,
Hang et al. 2009, DuBois et al. 2011]. Other researchers have been combining an ar-
gumentative stance with evidential statistics [Matt et al. 2010] formulating trust in
the context of the subjective probabilistic definition [Jøsang et al. 2006], and using ei-
ther Bayesian approaches [Lahijanian & Kwiatkowska 2016], and stochastic multiplayer
games [Huang & Kwiatkowska 2017]. Trust-based interaction in mobile computing has
been investigated by [Setter et al. 2016], while the sudden trust collapse in networked
societies has been addressed in [Da Gama Batista et al. 2015].

Chapter 3

Background

30 Chapter 3. Background

In this Chapter we introduce the preliminaries and commonalities in this thesis. In
particular, we give a definition of CPS and the publish-subscribe protocol MQTT in
Sections 3.1 and 3.2, introduce various software tools used in this thesis, such as Jason
(Section 3.3), Brahms (Section 3.4) and NetLogo (Section 3.5), and the logical (Section
3.6) and mathematical (Section 3.7) underpinnings of our work. The following toolbox
summarises the background of tools and contexts used in the remainder.

Toolbox

1. Theory

. Natural Deduction: an inference system used to construct logical proofs
in steps

. Graph Theory: the natural abstraction for networks and other relation-
ships

2. Engineering Solutions

. Jason/AgentSpeak: a rule-based BDI agent programming language and
environment

. Brahms: an alternative, activity based programming environment

. NetLogo: an interactive agent modelling and simulation environment

3. Validation

. Cyber-Physical Systems: orchestrations of micro-controllers, sensors
and actuators

. MQTT: a lightweight communications protocol for publish/subscribe pat-
terns

3.1 Microcontrollers, Sensors and Actuators

CPS are typically built using multiple interacting components at varying levels of ab-
straction, modularity and connectivity. These usually serve a specific purpose in the
system, whether interfacing with the external environment, reading or writing data to
it, or processing and making sense of streams of data.

3.2. MQTT and Publish/Subscribe Protocols 31

. Sensors are components that accept and read data from the environment, and can
thus be thought of as input ports of a tightly coupled, modular, composite element.
Depending on its overall design, sensors in a cyber-physical system can be set
up and defined for a range of parameters (temperature, acceleration, pressure,
light, gyroscope, humidity, depth of field, etc) and sophistication, accuracy and/or
sensitivity.

. Actuators are, conversely, components that effect and write data to the external
environment, and perform some action on behalf of the system. Typical exam-
ples are servo motors, relays, displays, stepper motors, illuminators, hydraulic
arms, launchers, conveyors and so on. They can be connected to other parts or
components, justifying their classification as output ports.

. Controllers are the glue that binds sensors and actuators together. These com-
ponents usually need to be programmed individually to take into account both
low-level implementation details and the high-level requirements of the applica-
tion – or function – of which the controllers are part. As the name implies, their
purpose is to control the flow of data and the logical computation in the system.
Modern controllers are highly modular, finely grained and miniaturised; even ap-
plication processors on a modern mobile platform such as a smartwatch, phone,
tablet or drone are often complex systems-on-a-chip. Specialised systems many
rely on a single microcontroller; most applications require several microcontrollers
interfacing and acting in concert. In the past decade, the Arduino microcontroller
platform has become hugely popular [Margolis 2011].

3.2 MQTT and Publish/Subscribe Protocols

The (topic-based) publish-subscribe pattern [Birman & Joseph 1987] has emerged as the
underlying communication mechanism of choice for a wide variety of CPS applications.
In this pattern, entities that create messages (the publishers) are not aware of the
potential receivers. They instead “broadcast” messages, whereas the receivers, on the
other hand, subscribe to messages; both the broadcast and/or subscription may be
performed through a broker. In topic-based publish-subscribe architectures each mes-
sage has a topic and subscribers only receive messages for the specific topic they are
interested in. Accordingly, publishers need to provide a topic for each message that is
generated.

There are a number of open protocols for messages using the publish-subscribe
communication model that are meant to provide a lightweight, asynchronous alternative
to HTTP/REST in the context of Cloud Computing and the Internet of Things for
coordinating many separate environments with minimal configuration and overhead,

32 Chapter 3. Background

among them MQTT, XMPP, and AMQP1.
Message Queue Telemetry Transport (MQTT) is a lightweight protocol initially

developed for wireless sensor networks [Hunkeler et al. 2008] and running on top of
TCP/IP connections. MQTT is very efficient and simple to implement, and was specif-
ically designed for high-latency, resource-constrained devices with low bandwidth and
power draw, features that make it ideal for use in embedded systems. MQTT messages
are characterised by a topic and by a Quality of Service (QoS). A broker is required
to dispatch messages from publishers to subscribers. When a client connects to the
broker, it is identified by an ID and it can perform the following actions: connect, dis-
connect, subscribe (to a topic), unsubscribe (from a topic) and publish a message under
a certain topic and at a given QoS. Topics are organised in a hierarchy: for instance,
the message t1/t2/t3/t4 has t1 as main topic, t2 as subtopic, t3 as subsubtopic, and
so on. Subscribers can specify patterns using the symbols + (matching one occurrence
of a topic) and # (matching any number of topics). For instance, t1/#/t4 will match
t1/t2/t3/t4, but t1/+/t4 will not.

MQTT provides three levels of Quality of Service:

• Level 0: the message is sent at most once (either by the client or by the broker),
with no guarantee of delivery.

• Level 1: the message is sent at least once, until a confirmation is received.

• Level 2: the message is sent exactly once.

Several open source implementations are available, both for brokers and for clients.
In our experiments we have employed the on-line broker HiveMQ2 and the associated
on-line MQTT client3. The latter allows both subscription and publishing of messages.
A local broker can also be implemented using the Python-based tool Mosquitto4.

3.3 Jason

Jason is essentially a rule-based system that makes use of the notion of planning implicit
in BDI logics [Bratmann 1999]. Its underlying structure is the concept of a reasoning
cycle we mentioned in Subsection 1.2.1, coupled with the notions of beliefs, desires,
intentions and plans. The software architecture of Jason is based on an extension of
the agent programming language AgentSpeak [Bordini et al. 2007] which is an abstract,

1The latter two have support for extensions to more complex scenarios, APIs and domains.
2http://broker.hivemq.com
3http://www.hivemq.com/demos/websocket-client/
4http://mosquitto.org/

http://broker.hivemq.com
http://www.hivemq.com/demos/websocket-client/
http://mosquitto.org/

3.4. Brahms 33

declarative programming language for implementing BDI agents with Prolog-like in-
structions, that can be extended to fit specific needs. Its syntax defines agent programs
as a set of logical beliefs, rules and plans, and is formally defined in the following way.

For S a finite set of symbols including predicates, actions, and constants, and V a
set of variables, one can define vectors of terms in first-order logic:

• If b is a predicate symbol and t a term, we define b(t) to be a belief atom.

• if bA(t) and bB(t) are belief atoms, where A and B can be conjunctions, disjunc-
tions or negations of belief literals, then the rule bA(t) : − bB(t) describes how
the latter is inferred from the former.

• If g(t) is a belief atom, then !g(t) and ?g(t) are goals, !g(t) denoting an achieve-
ment goal and ?g(t) a test goal.

• If p(t) is a belief atom or a goal, then +p(t) and −p(t) are triggering events with
+ and − denoting respectively the addition and deletion of a belief to be held or
goal to be achieved.

• If a is an action symbol and t a term, then a(t) is an action.

• If e is a triggering event, c1, . . . , cm are beliefs and q1, . . . , qn are goals or actions,
the rule e : c1, . . . , cm ← q1, . . . , qn defines a plan, with c1, . . . , cm its context and
q1, . . . , qn its body.

Jason programming [Hübner & Bordini 2006] revolves around plans, which are the
closest thing there is to a function or method in a declarative language. Actions in the
body of an expression are executed in sequence as a consequence of the triggering of the
plan, which can consist of belief addition and removal, requests to achieve and unachieve
(sub)goals, or built-in or user-defined internal actions that change the environment or
the agent’s mental state over time. In Jason, ground literals are also extended by strong
negation, annotations, and message passing.

Jason extends the AgentSpeak syntax into a flexible, extensible Java-based, open-
source development environment and interpreter, which is easily customisable. In par-
ticular, Jason allows for the definition of bespoke environments extending a base Envi-
ronment class in Java. We exploit this characteristic in our implementations in Section
5.1 to interact with an MQTT infrastructure.

3.4 Brahms

Brahms [Clancey et al. 1998] is a Java-like, BDI-based modelling language for agents,
with a specific target to model human-machine interactions. As a modelling environ-
ment it is perhaps closer to the possible implementation logic of complex scenarios: the

34 Chapter 3. Background

Brahms language allows for the representation of situated activities of agents in a geo-
graphical model of the world. Situated activities are actions performed by the agent in
some physical and social context for a specified period of time. The execution of actions
is constrained (a) locally, by the reasoning capabilities of an agent and (b) globally, by
the agents’ beliefs of the external world, such as where the agent is located, the state
of the world at that location and elsewhere, located artefacts, activities of other agents,
and communication with other agents or artefacts. The objective of Brahms is to repre-
sent the interaction between people, off-task behaviours, multitasking, interrupted and
resumed activities, informal interactions and knowledge, while being located in some
environment representative of the real world.

Brahms models [Bordini et al. 2009] are described using a Java-like syntax that
allows for inheritance. At each clock tick the Brahms simulation engine inspects the
model to update the state of the world, which includes all of the agents and all of the
objects in the simulated world. Agents and objects have states (factual properties) and
may have capabilities to model the world (e.g., a display is modelled as beliefs, which
are representations of the state of the environment). Agents and objects communicate
with each other; the communications can represent speech, reading, writing, etc. and
may involve devices such as telephones, radios, displays, etc. Agents and objects may
act to change their own state, beliefs, or other facts about the world. Brahms can
be extended using Java activities, which are activities declared and composited by the
modeller using the Java programming language, using a syntax like in the code snippet
in Figure 3.1.

3.5 NetLogo

NetLogo [Wilensky 1999] is a well-known, widely used, cross-platform modelling and
simulation environment for complex systems of concurrently interacting agents written
on top of the Java Virtual Machine that inherits much of its advanced concurrency
and library support [Tisue & Wilensky 2004], thus making it expressive and powerful
and customisable. It has extensive documentation and tutorials, and also comes with
the Models Library, a large collection of pre-written simulations that can be used and
modified. Freely available at at http://ccl.northwestern.edu/netlogo/docs/, it
was originally developed by Uri Wilensky of Northwestern University and subsequently
used by thousands of students, teachers and researchers worldwide. Its main attractive-
ness comes from its being based on a Logo [Papert 1980] dialect extended to support
agents and modern programming paradigms, well-suited for rapid prototyping of com-
plex scenarios, using “turtles” (agents), “agentsets” as collections of agents that can be
customised on the fly, “patches” (the spatial coordinates on which agents sit), “links”
(relationships between turtles), and “extensions” – libraries that enhance the core func-

http://ccl.northwestern.edu/netlogo/docs/

3.6. Natural Deduction 35

1 activities ::= activities [activity]
2
3 activity ::=
4 activity−one |
5 activity−two |
6 complex−activity |
7 super−activity
8
9 // [...]

10
11 complex−activity ::=
12 setup−agent |
13 create−agent |
14 create−object |
15 create−environment |
16 communicate |
17 broadcast |
18 get−data |
19 put−data
20
21 // [...]
22
23 super−activity ::=
24 super−activity activity−name({params−one, params−two})
25 {
26 {... link to Java code ...}
27 }

Figure 3.1: Brahms activity declaration

tionality of NetLogo. Of the latter, we make intensive use the nw extension5 to analyse
the network structure of our underlying models; this simple yet flexible construction
makes it straightforward, for example, to include multiple agent strategies and define
functions (as procedures) and study statistics of the data (reporters); and the built-in
interface and tools, in particular the 2D and 3D views, buttons, switchers, choosers and
plots provide an intuitive way to look for structure as the mixture of agent strategies
change. Our modelling of information transmission over networks (Section 5.3) and
the simulation environment of the growth of the Tangle (Section 5.4) are programmed
entirely in NetLogo.

3.6 Natural Deduction

The natural deduction calculus [Arthur 2016] is a deductive system that allows us to
construct proofs of tautologies in a sequence of steps. It consists of a set of rules of
inference for deriving consequences from premises, by building a proof tree whose root
– usually drawn at the bottom – is the proposition to be proved and whose leaves –
drawn at the top – are the initial assumptions or axioms. Thus, for instance, logical

5Available in versions 5.3.1 and 6.0.2.

36 Chapter 3. Background

deduction rules such as modus ponens

Φ Φ→ Ψ

Ψ

mean that the propositions above the line, the premises or antecedents which we know
to be true Φ and Φ → Ψ, allow us to conclude that Ψ is true. This simple way of
expressing things can be made arbitrarily complex by specifying metavariables: Φ and
Ψ need not be atomic propositions but can contain a whole family of logical statements
and propositions. Likewise, by compositing rules, we can introduce intermediate levels
in a complex rule. When we use an inference rule as part of a proof, the metavariables
are replaced in a consistent way with the appropriate kind of logical object.

Rules in the natural deduction systems are often of two kinds, which are self-
explanatory: introduction rules introduce the use of a logical operator, and elimination
rules eliminate it, like → that disappears in modus ponens. A useful convention when
writing and parsing proof systems is to write the name of the rule on the right hand
side of rule tree, with a suffix specifying the kind of rule. Some examples of natural
deduction rules are listed in the following paragraphs.

Conjunction

Conjunction (∧) has an introduction rule

Φ Ψ

Φ ∧Ψ
∧−intro

and two elimination rules:

Φ ∧Ψ

Φ
∧−elim(left)

Φ ∧Ψ

Ψ
∧−elim(right)

> Rule

The rule for > is called “unit” and is the simplest. Since it has no premises, this rule is
an axiom: something that can start a proof.

>
unit

Implication

To prove an implication of the form Φ → Ψ, we assume Φ, then reason under that
assumption to try to derive Ψ. If we are successful, then we can conclude that Φ→ Ψ.
In a proof, it is always valid to introduce a new assumption Φ and give it a name, then
reason under that assumption. Each distinct assumption must have a different name,
for example a in the example below:

3.6. Natural Deduction 37

[a : Φ]
assum

A proof is valid only if every assumption is eventually discharged in the proof tree
below the assumptions. This job is done for example in the implication introduction
rule, in Φ→ Ψ, one discharges a prior assumption [a : Φ] (Intuitively, if Ψ can be proved
under the assumption Φ, then the implication Φ→ Ψ holds without any assumptions).
One writes a in the rule name to show which assumption is discharged. This rule, and
modus ponens are the introduction and elimination rules for implications:

[a : Φ]
...
Ψ → −intro/a

Φ→ Ψ

Φ Φ→ Ψ

Ψ
→ −elim

Disjunction

Disjunction (∨), conversely, has two introduction rules

Φ

Φ ∨Ψ
∨−intro(left) Ψ

Φ ∨Ψ
∨−intro(right)

and one elimination rule:
Φ ∨Ψ Φ→ Γ Ψ→ Γ

Γ
∨−elim

Negation

A negation ¬Φ can be considered an abbreviation of Φ→ ⊥, with two rules

Φ→ ⊥
¬Φ

¬−intro ¬Φ

Φ→ ⊥
¬−elim

Falsity

The two rules for falsity in natural deduction

[a : ¬Φ]
...
⊥ RAA/a
Φ

38 Chapter 3. Background

⊥
Φ

EFQ

are known as reductio ad absurdum (RAA) and ex falso quodlibet (EFQ). The first
is the basis of proofs by contradiction, and says that if by assuming that Φ is false we
can derive a contradiction, then Φ must be true. The assumption a is discharged in the
application of this rule6.

Excluded Middle

Another classical tautology that is often used as an axiom is the the law of the excluded
middle, or tertium non datur (TND):

Φ ∨ ¬Φ
TND

Proofs

A proof of proposition Ψ in natural deduction starts from axioms and assumptions and
derives Φ with all assumptions discharged. Every step in the proof is an instance of
an inference rule with metavariables substituted consistently with expressions of the
appropriate syntactic class. A proposition that has a complete proof in a deductive
system is called a theorem of that system.

Soundness and Completeness

We say that a deductive system is complete if all true statements are theorems, i.e. have
proofs in the system. Completeness gives a measure of a deductive system’s power. For
propositional logic and natural deduction, this means that all tautologies have natural
deduction proofs. Conversely, a deductive system is called sound if all theorems are
true. Proof-writing can, in a certain sense, be considered the process of mechanising
the process of deduction, where the role of rules is to provide reasoning shortcuts. Rules
are sound if there is a way to convert a proof using them into a proof using the original
rules. In this case, we say that such added rules are called admissible.

6This rule is present in classical logic but not in intuitionistic (constructive) logic. In intuitionistic
logic, a proposition is not considered true simply because its negation is false.

3.7. Graph Theory 39

3.7 Graph Theory

Graph Theory [Bollobás 1998] studies networks [Newman 2010, Barabasi 2015] where
the emphasis is on barebones relationships between components. Formally, a graph is a
collection G = (V,E), where V is the set of nodes and E the set of edges. For each v ∈ V ,
the in-degrees and out-degrees are specified by din(v) =]{e = (c1, c2) ∈ E : c2 = v}
and dout(v) =]{e = (c1, c2) ∈ E : c1 = v}, with] denoting set cardinality. An edge
e ∈ E between two nodes v1, v2 ∈ V can be either oriented, if the link is described
by a direction v1 → v2 or v2 → v1, or undirected, in which case the relationship is
symmetrical. Additionally, a chain is a succession of nodes u = v0, v1, . . . , vk = v such
that vj ∈ A(vj−1)∀j = 1, . . . , k forms a directed or undirected path between them, and
we say that u indirectly references v.

In this framework, nodes encode agents and edges encode the existence of a one-
way (in the case or directed edges) or two-way relationship between nodes. Such a
relationship might be some user access or transaction approval, for oriented edges, or
reciprocal information transmission among them, in the case of undirected edges. If the
relationship described by e has some associated numerical characteristic, we say that
the edge is weighted, otherwise we say that it is unweighted and all edges have the same
weight in the graph.

For example, each agent vi ∈ V might have associated an atomic formula p repre-
senting some information (numerical sensors in the case of CPS or logical information,
as in Section 3.6); in this case vi(p) and vj(¬p) denote agents i and j knowing atomic
formulas p, and ¬p, respectively.

The notation vk() might denote an agent k who knows nothing yet, i.e. is holding
empty knowledge. Consequently, the edge case e(vi(p), vj()) denotes a transmission
channel from agent i to agent j such that the former can transmit p over to the latter,
and case e(vi(p), vj(¬p)) represents an admissible edge where two agents hold con-
tradictory information, requiring a resolution procedure; case e(vi(p), vj(), vk(¬p)) is
shorthand for the triad where one agent vj does not hold any knowledge yet receives
contradictory information from two distinct agents, i.e. there exist two edges between
three nodes.

There are various descriptions of a graph G; one could simply
enumerate its components, such as V = {1, 2, 3, 4, 5, 6} and E =

{(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), (4, 5), (4, 6)}, or draw a diagram of connected nodes
and edges, as in Figure 3.2(a).

A Directed Acyclic Graph (DAG) is a particular type of graph, where each edge
e ∈ E has a specific orientation and in addition there are no cycles, that is paths of
the type v = v1, . . . , vk = v for any v and k. For example, acyclicness means that the
tetrad of vertices {2, 3, 4, 5} in 3.2(b) is not closed, as it would if there were a direction
5 → 4. A useful description of a graph with N components is given by its adjacency

40 Chapter 3. Background

(a) (b)

Figure 3.2: (a) A simple 6-element graph and (b) its DAG version

matrix A, whose entry aij is 1 – or some other weight – if there is an oriented edge
between i and j and 0 otherwise. It follows that for undirected graphs, the adjacency
matrix is symmetrical, and by convention, if i = j has a nonzero entry, the graph has
loops.

Chapter 4

Models

42 Chapter 4. Models

In this Chapter, we present the outline of the underlying models for reasoning about
trust and trustworthiness in open systems, which have appeared in the published pa-
pers on which this thesis is based. Succinctly, they are practical manifestations of an
agoric system, i.e. how information transmission and processing might happen in real
situations; the same principle has been utilised in the context of four different frame-
works for interaction programmed in two agent development environments (Jason and
NetLogo). The first interaction model is based on the concept of bridging low-level and
high-level features using a MQTT bridge to Jason and Brahms; The second interaction
model improves on this bridging feature, introducing a functional implementation of
trustworthiness in open systems, and is again programmed in Jason. The third and
fourth interaction models are coded in NetLogo, and deal with fleshing out contradic-
tory information transmission and resolution in a system of sceptic or lazy agents, and
with implementing a trust-based distributed ledger allowing for attack strategies by
malicious or lazy agents, respectively.

4.1 From Raw Data to Perceptions

The work in the paper [Bottone et al. 2016c] considered the problem of connecting real
world data exchanged between sensors and actuators with the higher level of abstrac-
tion used in frameworks for MAS, identified a gap between the low-level communica-
tion mechanisms and the high-level, abstract activities performed in the formalism of
multi-agent systems, and developed a practical solution to this problems by means of
a software bridge using the MQTT publish-subscribe framework to interface with two
BDI agent modelling and programming languages: Jason/AgentSpeak and Brahms.
This provides a software link between the low-level communication infrastructure and
high-level modelling, simulation and verification environments that can be applied in
the context of CPS, IoT and Intelligent Environments.

Basically, in our model, low-level messages in a publish-subscribe infrastructure can
give rise to perceptions in a multi-agent system and, correspondingly, agents’ actions
can generate low-level messages and provide feedback. Our solution makes use of an
intermediate connector between the publish-subscribe communication layer and the
modelling framework for agents coded in Java that implements the MQTT publish-
subscribe client and listener, which we describe in detail in Section 5.1. An overview of
our bridging solutions is given in Figures 4.1 and 4.2; see Subsections 5.1.1 and 5.1.2
for the corresponding Java code.

4.2. Trust in Orchestrated Systems 43

Figure 4.1: Jason bridge

Figure 4.2: Brahms bridge

4.2 Trust in Orchestrated Systems

In the context of trust measurement in CPS, we have mentioned in Section 1.3 that
in orchestrated systems, this usually amounts to a dynamic, run-time evaluation and
monitoring of variables of interest such as temperature, pressure and depth and ex-
tracting features or events. An aspect distinct from simple monitoring of events is the
evaluation of the fidelity of the system of sensors and actuators, especially when these
include several types of monitors and users. This links the CPS/IoT paradigm to an-
other crucial aspect of smart environment design, namely their trustworthiness. This
can be thought of as the assessment of a state or quality – which can be quantitative or

44 Chapter 4. Models

qualitative – of engendering trust in the continual functioning of a system. Obviously,
it is important not just to be able to collect as much information as possible to optimise
functionalities. It is equally essential to overview standards of efficiency and security,
by condensing information into one (or a few) simple measures of operational efficiency,
to be able to identify malfunctioning and detect possible system intrusions that might
become safety critical.

In [Bottone et al. 2016b] we presented a theoretical model to characterise the trust-
worthiness of a fully functional IoT monitoring system by building upon the previous
work by [De Florio & Primiero 2015] for software-only systems, and evaluated our ap-
proach using a Jason implementation, which is presented in Section 5.2. In particular,
we show how to monitor individual sensor values in terms of fidelity functions that
trace three distinct behavioural functions dynamically at run-time and use the MQTT
publish/subscribe model to define controllers that connect the sensors to an actuator.
We further define a higher-order function to assess the overall fidelity of the system and
induce a trustworthiness evaluation to indicate the running conditions of the system,
according to a scale that includes stability and safety.

In [De Florio & Primiero 2015], a notion of fidelity for systems involving software
interacting with human users was introduced that relies on the idea that compliant
systems manifest a correspondence between domains of actions, yet such a property
might not always be perfect. If one is able to monitor and measure the drifting from an
ideal total compliance, then one is in a position to assess the level of trustworthiness
of said systems. In turn, one can evaluate which safety-security actions are required to
maintain the system in working operation.

Let us consider an open system denoted nOPS, interacting with n environments,
each based on sensors and actuators. nOPS will receive information from the sensors –
e.g. temperature and humidity – and send commands to the actuators – for example, the
sprinklers. Data from the sensors and activities performed by the actuators are raw facts
[r]i, 1 ≤ i ≤ n, accompanied by appropriate binary operations [u]i to form algebraic
structures. The internal representations of [r]i by nOPS are expressed by [q]i, 1 ≤ i ≤ n
internally in its monitoring system, together with operations [⊕]i corresponding to
[u]i. The latter is a somewhat faithful representation of the dynamic variation of
the corresponding class of facts. The mapping of raw facts to their representation in
nOPS is given by reflective maps Φi, bijective functions expressing perfect fidelity if
and only if the association of ([r]i, [u]i) to ([q]i, [⊕]i) is an isomorphism. The shifting
from perfect fidelity in the system representation is called drifting and it is expressed by
the association of an error component ∆i over time t to what could be called a function
φi of imperfect fidelity :

φi : [r]i → [q]i,

∀+ ∈ [u]i,∀ · ∈ [⊕]i : φi(r1 + r2) = φi(r1) · φi(r2) ·∆i(t).

4.2. Trust in Orchestrated Systems 45

The monitoring of raw facts and their representations can be performed through a
client for reading values of associated, asynchronously and continuously updated vari-
ables for each of the involved services. In [De Florio & Primiero 2015], such a client is
called Janus. The role of Janus is to retrieve periodically the value of each such variable
– such as CPU percentage, memory usage, etc – and store it in the associated mem-
ory cells. The values are then compared with “reference behaviours”, representing the
expected behavioural functions of a trustworthy system. Ideally, such reference values
would be those associated with a perfect fidelity function. Such a comparison may be
used to detect gradual or sudden behavioural driftings: for example, the former can be
associated to progressive deterioration of the system, the latter to instantaneous system
breakdown or a takeover.

In [Bottone et al. 2016b], we extended the model of Janus to a CPS/IoT paradigm.
We extended the Janus client to retrieve values from sensors and interact with actua-
tors. The state of each component as derived from the activities of the publish/subscribe
infrastructure can be compared to a set of behavioural functions, each specifically de-
signed to reflect a fidelity level. The Janus+Jason client we wrote in Jason/AgentSpeak
is then able to derive an overall evaluation on the system by composing such individ-
ual fidelity functions. Trustworthiness is identified as a second order property of the
system, induced cumulatively from such functions, and used to assess malfunctioning
and required intervention on the IoT platform. Each component c in the platform is
assigned a fidelity function: φc, c ∈ {s, a}, respectively for a sensor and an actuator,
such that φc : [r]c → [q]c expresses the value obtained by mapping the input value from
the component’s observable behaviour to the preselected expected fidelity function as-
sociated to that component. Fidelity is then approximated as the inversely proportional
function of the drifting from appropriate mappings φc. For a platform with two sensors
si, sj and two actuators ai, aj ,

φs = 1/f(∆(t)si ,∆(t)sj)

φa = 1/f(∆(t)ai ,∆(t)aj)

for some function f which can be weighted according to domain specific parameters.
Each φc is evaluated as displaying a “high”, “medium” or “low” fidelity level when com-
pared to the expected behaviour. The value ΦnOPS(t) = {φs, φa} denotes the global
fidelity value for the system parametrised over time. According to the extended theo-
retical model of Janus+Jason, we consider four levels of analysis of fidelity:

1. a trustworthy system identifies high levels of ΦnOPS(t), inducing optimal, sustain-
able working conditions;

2. an unstable system identifies high-to-medium φs and low φa levels, meaning that
monitoring is well-functioning but interaction with the environment through ac-
tuators might be poor, inducing reconfigurable working conditions;

46 Chapter 4. Models

3. an unsafe system identifies high-to-medium φa and low φs levels, meaning that
monitoring is poor, despite the fact that interaction with the environment through
actuators might be efficient, inducing unsecure working conditions;

4. an untrustworthy system identifies low-levels of ΦnOPS(t), inducing inadvisable or
below-safety working conditions.

Details of the system implementation and code examples are given in Section 5.2.

4.3 The Cost of Trust and Contradictory Information

In this Section, we describe the design of a logical calculus for modelling and resolv-
ing contradictory information distributed and transmitted in a network and compute
the associated epistemic cost of information when agents identify their communication
channels as trustful or distrustful. In the series of papers [Primiero et al. 2016] and
[Primiero et al. 2017] we offered a logical proof model for computing the cost of trust
and distrust in a network of agents possessing and sharing contradictory information. In
addition to the formal model, a simulation for a variety of network types is also presented
whose implementation is described in detail in Section 5.3. It is well known that the
processing of trust and distrust in communication channels is also affected, in addition
to the agents’ raw data and perceptions, by their epistemic attitude and social back-
ground. Negative trust, and the intimately related concepts of distrust, mistrust and
untrust are important and have found wide application in several academic disciplines,
as well as in interdisciplinary works in social networks [Newman 2010, Barabasi 2015]
and practical scenarios [van de Bunt et al. 2005].

4.3.1 Contradictory Information Transmission

We address two aspects that have been neglected in the literature: (a) in contexts with
contradictory information, understanding how positive and negative trust help or hinder
the dataflow; and (b) the epistemic costs of (negative) trust transitivity. An efficient
model of trust propagation highly depends on the epistemic and structural features
of the network in which trust is defined. In particular, understanding the conditions
of (dis)trust propagation and the costs related to topological and epistemic factors is
crucial both for dynamic network analysis and for access control models, where there
is a natural ordering of privileges in a hierarchy. The networks we study are based
on basic taxonomies addressed in the network science literature, such as total1, linear,
scale-free and random graph topologies.

In addition to a given network topology, we also assume are that there exists a
basic ranking of trustworthiness of agents in the network, such that for example might

1Sometimes also called complete graph in the literature.

4.3. The Cost of Trust and Contradictory Information 47

be used in user access control models, and that they have an epistemic attitude, i.e.
they can be characterised to behave according to well-defined rules in response to new
information, such as a requirement to check, verify, or reject new data that comes in.

4.3.2 The Logic (un)SecureNDsim

Agents in the logical calculus model underlying (un)SecureNDsim are qualified for sim-
plicity by two representative epistemic attitudes, yet the framework is expressive enough
to allow a whole spectrum of attitudes in more complex settings. The two types of agents
have the following qualities:

. sceptic agents pay an epistemic cost for performing a checking operation before
trusting the received information;

. lazy agents accept without checking information consistent with their current
knowledge, while they distrust information inconsistent with current knowledge.

In this context, positive trust is a property of the communication between agents
required when message passing is executed bottom-up in the access hierarchy, or as a
result of a sceptic agent checking information, while negative trust is the result of reject-
ing received contradictory information. Both these situations are associated with epis-
temic costs, which are a way to quantify whether a network that resolves contradictory
transmissions by rejecting information is more or less costly than one which facilitates
message passing by straightforward acceptance. A memoryless network will discard the
resulting determination after every computation each time the network is built; in the
published papers, we mostly focused on networks that preserve the memory of previ-
ously obtained trusted communications. The logical calculus (un)SecureNDsim is based
on the natural deduction calculus SecureND devised in [Primiero & Raimondi 2014] as
a logic for secure operations on atomic formulas for resources issued by subjects with
different privileges guaranteeing that trusted content is checked for consistency at ev-
ery operation, which was extended by [Primiero 2016] to the specification (un)SecureND

which introduces the semantics for two negative trust protocols, namely the misplace-
ment of trust (mistrust), and betrayal of trust (distrust). The extended logical calculus
(un)SecureNDsim, which we introduced in [Primiero et al. 2016] as a NetLogo simula-
tion environment, makes it possible to simulate contradictory information propagation
under trust in a network of ranked agents by studying the logical behaviour of a system
using resolution rules and procedures. In this paper we first implemented the algorithms
underlying the logical calculus, mapped formal derivations in various graph topologies
and published some initial results to experimentally test and evaluate the formal prop-
erties. In the follow-up paper [Primiero et al. 2017], further refinements and extensions
of (un)SecureNDsim in the context of applied network analysis and more comprehensive
experimental studies were presented, described in Section 5.3 of this thesis.

48 Chapter 4. Models

As we have mentioned, epistemic attitudes logically encode built-in behaviour of
agents and, while superficially rigid in how information transmission should be executed,
the logic can be extended to a graded spectrum of epistemic attitudes, as well as to
fractional behaviour, i.e. only a percentage of the total number of epistemic agents
check information. Agents’ operations are those typical of access control models, namely
reading (or message reading) and writing (respectively, message passing), enhanced by
the following operational semantics:

. verification is required either by a top-down reading operation, i.e., when mes-
sage passing is executed from below in the hierarchy, or by a reading operation
performed by a sceptic agent;

. falsification is formulated as closure of verification under negation and it follows
from reading contents that are inconsistent with the current knowledge of the
receiver, or from a reading operation performed by a lazy agent;

. trust is a function that follows from verification, when the content passed is con-
sistent with the knowledge of the receiver;

. distrust is formulated as closure of trust under negation and follows from falsifi-
cation.

Agents are here presented in a contextually empty process of information trans-
mission and their evaluation is purely based on the evaluation of trustfulness and dis-
trustfulness on the basis of criteria of “popularity” – for example, the most trusted or
the least distrusted links – and “origin”, rather than on criteria such as the inherent, a
priori truthfulness of atoms of contradictory information. Thus, our logic, algorithms
and simulations focus on the role of trust and distrust as independent from truthfulness
criteria, while consistency requirements are crucial.

Adopting a proof-theoretical approach, we define syntactical rules that allow to
introduce a given function from premises, and one to eliminate it, i.e., to obtain a
conclusion without such a function. This allows us to declare the main properties
of the underlying access control model, and some meta-theoretical properties of the
related derivability relations and study the validity and role of trust instances. We
present the main logical derivations and results as in the extended formulation given in
[Primiero et al. 2017], while description of the NetLogo implementation and evaluation
is deferred to Sections 5.3 and 6.2.

Définition 1 The syntax of (un)SecureNDsim is defined by the following alphabet:

4.3. The Cost of Trust and Contradictory Information 49

V < := {lazy(vi), sceptic(vi)}
φV := pvi | ¬φV | Read(φV) | V erify(φV) |Write(φV) | Trust(φV)

ΓV := {φvi1 , . . . , φ
vi
n }.

In the above notation, V < indicates the set of lazy and sceptic agents, each denoted
by vi, vj , . . . The apex means that agents are ordered according to a dominance relation
< over V × V ; i.e. vi < vj means that agent vi has higher relevance (such as security
privileges) than agent vj . φV is a meta-variable for boolean atomic formulae closed
under negation and functions for reading, writing, verification and trust. Note that
the formal model of (un)SecureNDsim and the subsequent algorithms refer to atomic
information for simplicity, but the complexity of the formula representing the trans-
mitted information is entirely irrelevant for the results presented here. We also use Γvi

to express a set of formulae typed by one agent vi ∈ V , typically the sender, in which
a given formula φV is derivable. Γvi is called the context in which φvi is derived2. A
judgement Γvi ` φvj states that a formula φ is valid for agent vj in the context Γ of
formulas – including operations – of agent vj , thus expressing some operation that the
agent on the left-hand side of the derivability sign performs on information typed of the
agent on the right-hand side of the same sign. When message passing includes more
than one agent, this is encoded in the system by an extension of the context, denoted as
Γvi ; Γvj . Judgements can also be composed under information transmission procedures.
Summarising3, the following judgements of (un)SecureNDsim are valid for access control
given vi < vj :

. Γvj ` Read(φvi): reading is always allowed when messages come downwards from
above in the order relation;

. If Γvi ` Read(φvj), then Γvi ` V erify(φvj): messages coming upwards from below
in the order relation are passed on under a verification function;

. If sceptic(vi) and Γvj ` Read(φvi), then Γvj ` V erify(φvi), i.e. message passing
is additionally qualified by verification whenever a sceptic agent is on the receiving
side and it verifies the information;

. If lazy(vi) and Γvj ` Read(φvi), then Γvj ` ¬V erify(φvi): when a lazy agent is
on the receiving side, information is not verified;

2The empty context is denoted by · `.
3We refer to the original papers [Primiero et al. 2016, Primiero et al. 2017] for the full syntax and

logical implications.

50 Chapter 4. Models

. If Γvi ` Read(φvj) and Γvi ` ¬φ, then Γvi ` ¬V erify(φvj): when content read
from below contradicts current knowledge, refutation is modelled as negation of
verification.

Note that in the last two cases refuted verification leads to negated trust. The
complete logical proof system for (un)SecureNDsim is presented in Figure 4.3.

The first rules are for inductive construction of a context Γvi . Any such context
(or user profile) is required to be consistent in that it admits only one of φ and ¬φ
after a message passing operation is concluded. The context extension syntax Γvi ; Γvj

indicates that the extension of the profile for agent vi with a formula φ from agent
vj preserves consistency. Inconsistent extensions are not allowed in this proof system.
For privilege transfers from above, the rule read_down establishes that if a message is
owned by a user vi it can be read downwards. Correspondingly, rule read_elim is the
elimination rule, i.e., a message that is read (first premise) and preserves consistency
(second premise) can be owned, as expressed by the change of label in the formula
φ. For access from upwards in the dominance relation vi < vj , the rule verify_high
says that if a message owned by an agent vj is read from another agent vi higher in
the relation, then a verification action is required. Similarly, in rule verify_sceptic a
verification procedure is called when the receiver is sceptic, regardless of whether the
receiver is above or below (i.e. independently from the order or reception).

trust is the elimination rule for the verification procedure: if verify is called and
the message preserves consistency (i.e., is derivable in the current agent’s profile), then
the edge between the agents about that message is trusted. Thus trust elimination
corresponds to message passing according to write_trust. Note that (un)SecureNDsim

models information rejection through a simple consistency checking rule: every message
passing operation is eventually accepted if consistent. Rules for verification and trust
are not implemented in two cases: in rule unverified_contra when messages received
conflict with currently held contents; and in rule unverified_lazy when a lazy agent is
on the receiving side. When two received contents are inconsistent with one another they
are resolved via an additional definition based on popularity, i.e. by trust majorisation
or distrust minimisation as in the definitions below. Missing verification implies distrust,
and thus in turn passing the opposite message by distrust_elim. Standard logical
statements follow under this proof system. We can then state that the following formal
properties of (un)SecureNDsim for the proof system of Figure 4.3 hold:

. (Derivation) Any successful (un)SecureNDsim message passing operation is a
derivation tree including a Write− Read− (Verify− Trust)− Write series of
sequents, with the steps Verify and Trust optional for a lazy agent.

. (Satisfiability) An (un)SecureNDsim judgement Γvi ` Read(φvi) is satisfied if there
is a derivation D and a branch D′ ⊆ D with a final step terminating with such a
judgement.

4.3. The Cost of Trust and Contradictory Information 51

Atom
pvi ∈ φV

pvi ∈ φV
¬-Intro

¬pvi ∈ φV

· ` φvi
Γ-formation

φvi ∈ Γvi
φvi ∈ Γvi premise
Γvi ` φvi

Γvi ` φvi
read_down

Γvi ; Γvj ` Read(φvi)

Γvi ; Γvj ` Read(φvi) Γvj ` φvi
read_elim

Γvj ` φvj

Γvj ` φvj Γvi ` Read(φvj)
verify_high

Γvi ` V erify(φvj)

Γvj ` Read(φvi) sceptic(vj) ∈ V
verify_sceptic

Γvj ` V erify(φvi)

Γvi ` V erify(φvj) Γvi ` φvj
trust

Γvi ` Trust(φvj)

Γvi ` Read(φvj) Γvi ` Trust(φvj)
write_trust

Γvi `Write(φvj)

Γvi ` φvi Γvi ` Read(¬φj)
unverified_contra

Γvi ` ¬V erify(¬φvj)

Γvi ` Read(φvj) lazy(vi) ∈ V
unverified_lazy

Γvi ` ¬V erify(φvj)

Γvi ` ¬V erify(φvj)
distrust

Γvi ` ¬Trust(φvj)
Γvi ` ¬Trust(φvj)

distrust_elim
Γvi `Write(¬φvj)

Figure 4.3: The system (un)SecureNDsim

. (Validity) An (un)SecureNDsim judgement ΓV ` Read(φV) is valid if there is a
derivation D and for all branches D′ ⊆ D and for all agents vi ∈ V , there is a
final step terminating with such a judgement.

52 Chapter 4. Models

4.3.3 Measuring Trust and Conflict Resolution

Note that each derivation and branch can be analysed in view of its length to count
the number of trust rule instances occurring, or equivalently the number of times an
atomic message φ has been trusted in a given derivation D. This allows us to compute
the measure

|Trust(φV) |D=|V erify(φV) |D

for all vi ∈ V . Conversely, one can compute the number of times an atomic message φ
has been distrusted in a given derivation D:

|Distrust(φV) |D=|¬V erify(φV) |D

for all vi ∈ V . These two computable measures give rise to simple conflict resolution
formulas by trust majorisation or distrust minimisation for the case in which consistency
fails, namely

. (Conflict Resolution by Trust Majority) Given a derivation D1 terminating in
Γvi ` Write(φvi) and a derivation D2 terminating in Γvj ` Write(¬φvj), a new
step holds which takes as premises Γk ` Read(φvi) and Γk ` Read(¬φvj) respec-
tively, and concludes Γvk ` φvk if and only if

|Trust(φV) |D1>|Trust(¬φV) |D2

. (Conflict Resolution by Distrust Minority) Given a derivation D1 terminating
in Γvi ` Write(φvi) and a derivation D2 terminating in Γvj ` Write(¬φvj), a
new step holds which takes as premises Γk ` Read(φvi) and Γk ` Read(¬φvj)
respectively, and concludes Γvk ` φvk if and only if

|DisTrust(φV) |D1<|DisTrust(¬φV) |D2

Such conflict resolution rules say that one can resolve the conflicting merges at any
stage where branch merging occurs, either by (a) preserving the most trusted content, or
(b) preserving the least distrusted content. By the validity property of (un)SecureNDsim

above, one logically concludes that for each derivation D with a valid formula ΓV ` φV
there exists a graph G that is unanimously labelled by the atomic formula φ. Full
proofs and derivations of structural properties corresponding to the application of all
the rules in (un)SecureNDsim listed in Figure 4.3 are provided in the original paper
[Primiero et al. 2017].

4.4. Block-free Distributed Ledgers 53

4.4 Block-free Distributed Ledgers

In this Section, we focus on the nature of distributed ledgers, and in particular the
mathematical objects underlying the so-called Tangle [Popov 2017], as accumulated in-
formation flow. In Subsections 4.4.2, 4.4.3 and 4.4.4 we describe its mathematical
structure, attachment and consensus model and update rules and strategies; we defer
to Section 5.4 the description and implementation of an extensible, open-source multi-
agent simulation environment for such structures built in NetLogo and provide results
in context in Subsection 6.3.1.

Credit money [Simmel 1907], is a social mechanism which has evolved to trans-
fer trust between economic agents and whose usefulness arises as a network exter-
nality that facilitates transactions [Kocherlakota 1998, Nash Jr 2002]. The traditional
roles of money – or currency – are that of a unit of account, a store of value, and a
medium of exchange, and how money arises is still the subject of academic research
[Graeber 2011, Yasutomi 1995]. Cryptocurrencies attempt to replicate this memory
function and other characteristics of real-world money such as safety and consistency.
Early attempts at cryptographic cash relied on trusted authorities that maintained
centralised ledgers, such as banks and credit card companies. The main technological
advance of Bitcoin [Nakamoto 2008] was to introduce a distributed ledger secured by
the majority rule without any central authority, by means of a so-called blockchain
and standard cryptographic primitives like signatures and hash functions, and his sem-
inal paper spurred academic and practical interest. It also introduced the possibility
of transaction scripting as a way of enabling smart contracts and micro-transactions
based on distributed architectures which are suitable for CPS and the IoT.

The blockchain used by Bitcoin and its descendants is a time-linear data structure:
transaction data is stored in blocks which must each contain a reference to the block
that came before it. Blocks are created by specialised users called miners that perform
a cryptographic proof-of-work (PoW). It is natural to consider the temporal succession
of blocks as a directed flow of transactions linked together by consensus. The blockchain
algorithm has proved resilient to attacks and double spending, suffering only setbacks
in coin exchanges. However, as a cryptocurrency for lightweight systems in the IoT,
Bitcoin has two serious drawbacks which make it unsuitable for micro-payments; firstly,
because of the dependence on miners for processing and verification, the transaction fees
are relatively high and rising, especially in low throughput; secondly, it scales poorly
since the blockchain network performance degrades in the number of users. Thus,
Bitcoin suffers from scaling and fee issues are intimately connected to the mining system
and its incentive structure, which under consolidation of miners, reduce the degree of
decentralisation of the network. Mining pools now make up over 90 percent of the
hashpower in the Bitcoin network, and tend to be heavily concentrated geographically.
Verification delays for reaching consensus are also commonplace: because of the fixed

54 Chapter 4. Models

MB limit on the blocks, Bitcoin currently processes 3/4 transaction per second (txps)
and is capped at 7 txps, while Visa and MasterCard are capable of processing 60000

txps. Security of the protocol has also been called into question when miners can collude
or are exposed to geopolitical risk.

4.4.1 DAG-based Cryptocurrencies

A promising avenue of recent research and development has involved blockchain-free
currencies. In these approaches, the blockchain and its consensus algorithm are re-
placed by a directed graph of cross-verifying transactions based on the mathematical
properties of a Dyrected Acyclic Graph (DAG), which serves as a truly distributed ledger
and, generally speaking, reaches consensus by accumulation of information about the
state of the network. The essential idea is that to issue a transaction, users of the
distributed ledger must work to approve other transactions, thus checking for conflicts
and double spending, and when a transaction receives additional approvals by the chain
of ensuing transactions, it becomes accepted by the system with a high degree of con-
fidence. In a DAG, each node represents a transaction and each edge a reference, or
approval, of some other transaction in a specific direction. Such graphs are usually
built up from an initial parent root called the genesis transaction and evolve according
to precise rules, representing in this sense a lightweight generalisation of blockchain
(for an alternative construction where the direction of approval is reversed from par-
ent to child transactions, see [Boyen et al. 2017]). Several DAG-based cryptocurrencies
have been recently independently proposed and implemented, among them RaiBlocks
[LeMahieu 2017], DagCoin, Byteball [Churyumov 2015] and Iota [Foundation 2017],
which deviate from each other in the details of implementation and consensus pro-
tocols. RaiBlocks achieves consensus by using a deterministic block-lattice structure
where each account has its own balance-weighted blockchain which resembles the ac-
count’s transaction and balance history, and can only be updated by its owner, similar
to SPECTRE [Sompolinsky et al. 2017] with restrictive permissions. Byteball reaches
consensus by using a main chain of honest, trusted witnesses that reference one or
more previous transactions via a Markov Chain Monte Carlo (MCMC)4 selection pro-
cedure for referrals. Iota’s consensus model is based on the cumulative PoW of stacked
transaction where two previous transactions with low weight are selected. The latter
implementation, based on the mathematical construct called the Tangle [Popov 2017],
is particularly simple to describe, yet flexible and robust to use, and has several attrac-
tive features that make it well suited for CPS and IoT. More generally, as the results
of [Sompolinsky et al. 2017] on the DAG block voting mechanism imply, the way con-
sensus is achieved, despite the combinatorial explosion in transaction messages, can be

4A MCMC type of algorithm [Robert & Casella 2005] samples from a probability distribution, by
constructing a Markov chain that has the desired distribution as its equilibrium distribution, i.e. one
which is expected to converge to a desired distribution after a number of steps.

4.4. Block-free Distributed Ledgers 55

engineered in such a way that consensus is pruned and maintained by various forms of
optimisation to scale to todays’ and future centralised payment processing throughput,
and an agoric perspective provides a natural solution to this challenge by virtue of its
focus on efficient information processing.

4.4.2 The Tangle Process

The Tangle introduced by [Popov 2017] can be thought of as a dynamic process on the
space of oriented, rooted DAGs, which grows in time according to a Poisson clock for
the flow of arrivals where new nodes (i.e., new transactions) are continually attached
to the graph at locations which are chosen according to specific rules, and no nodes
or edges are ever deleted. More specifically, the Tangle is a graph T = (V,E), where
as customary V is the set of nodes and E the set of edges and for each v ∈ V , the
in-degrees and out-degrees are specified by din(v) =]{e = (c1, c2) ∈ E : c2 = v} and
dout(v) =]{e = (c1, c2) ∈ E : c1 = v}, with] denoting set cardinality. For v1, v2 ∈ V ,
v1 approves v2 if (v1, v2) ∈ E, written v1 # v2. Let A(u) = {v : (u, v) ∈ E} be the
set of nodes approved by u. If there exists a covering chain u = v0, v1, . . . , vk = v such
that vj ∈ A(vj−1)∀j = 1, . . . , k forms a directed path between them, we say that u
indirectly approves v. We call the set of nodes such that {v : din(v) = 0} the set of tips.
The following additional rules apply:

(a) within the set of all possible DAGs, each graph T ∈ T is finite and with out-degree
edge multiplicity at most 2, i.e. ∀v ∈ V, dout(v) ≤ 2;

(b) there exists a genesis root ρ ∈ V such that dout(ρ) = 0 and dout(v) = 2 ∀v ∈
V \{ρ};

(c) any other node v ∈ V references ρ, i.e. there is an oriented path of approvals from
this node to the genesis ρ; and

(d) there are no cycles, i.e. paths of the type v = v1, . . . , vk = v for any v and k.

From the assumptions above, it necessarily follows at any time t the state of the
Tangle T (t) can be concisely described by a sparse adjacency matrix, which is strictly
lower triangular; thus the state of this matrix over time is given by a first row of 0s,
a number of rows with 1s in the first column for each genesis transaction, and rows of
two 1s to the left of the diagonal thereafter. This can be efficiently stored in adjacency
lists, namely a collection of nodes and nonzero edge positions [Wikipedia 2018a]. More
generally, the Tangle is a continuous-time stochastic process on the space T∞ = ∪n1Ti ∪
Tn+1 ∪ . . . with initial state given by VT (0) = ρ, ET (0) = ∅ and evolving according to
the following rules:

56 Chapter 4. Models

• As a result of the flow of new transactions, the Tangle grows in time, i.e. for any
two times 0 ≤ t1 < t2, VT (t1) ⊂ VT (t2) and ET (t1) ⊂ ET (t2).

• For a fixed mean transactions per unit time λ > 0 the Poisson process Λ(t) :=

Pois(λ) gives the incoming transactions that then attach to T (t).

• Each transaction chooses two nodes v1, v2 and attaches a new node v to T with
oriented edges v1 → v and v2 → v, so that each tip unites to the set of nodes and
edge points of T (two-edge-multiplicity rule).

This kind of DAG-based process can also be generalised to unary or n-ary out-degree
multiplicities, and we can equip nodes with quantitative attributes such as attitudes or
other characteristics.

4.4.3 Consensus by Cumulative Weight

The Tangle achieves consensus by attaching to every transaction a positive integer
within some specified bounds and time limits5, which describes a trustworthiness prop-
erty of a transaction. The basic idea is that a transaction with a higher weight is more
important than a transaction with a lower weight in deciding attachment. With this in
mind, we can define on T the partial order with respect to approvals:

Px(t) = {y ∈ T (t) : y " x}

Fx(t) = {z ∈ T (t) : z # x}

such that we successively refine (or zoom into) a past P(t) and expand to a future
F(t) with respect to node x at a time t when they become attached. The consistency
and tip selection procedure works as follows. Define the cumulative weight of node x as
Hx(t) = 1 +]{Fx(t)}, which increases with the number of nodes that directly or indirectly
reference it. For any t > 0 if y # x then one necessarily has Hx(t) − H

y
(t) ≥ 1, which

implies that Hy(t) = 1 if y is a tip. We say that a transaction gets confirmed when it
reaches a threshold θ which is sufficiently high when relative to the network usage and
load. In real-world networks such as those used in the Iota platform, each incoming
node gets to decide which transaction gets orphaned or approved, thus propagating the
Tangle in time; see tangle.glumb.de for a visualisation showing the consensus model
based on live transaction data. It is evident that one can without loss of generality
assume the Markov property, as each successive state of the process will depend only

5Currently, Iota uses 3n, but for simplicity one can assume that each node has weight 1 to start
with.

4.4. Block-free Distributed Ledgers 57

on the current state of the Tangle. In the Iota whitepaper [Popov 2017], it is suggested
that the optimal growth is obtained by evaluating some statistics about the transactions,
which basically amount to updating their cumulative weights. Ideally, we would like
the graph to grow so that, eventually, all issued transactions are confirmed, according
to some “optimal” criterion.

4.4.4 Tip Selection Strategies

Let L(t) be the set of all vertices that are tips in the tangle at time t, and let L(t) =

]{x ∈ T (t) : Hx(t) = 1} be its cardinality. Note that in general, L(t) can be decomposed
into two sets of visible and hidden tips due to network delays, that is from the viewpoint
of an agent that is trying to approve previous transactions, only a subset of the total
number of tips extant at a given moment may be visible in a list of available tips.

Ideally, one would like the stochastic processes for both the Tangle and L(t) to be
well behaved in the limit of a large number of transactions. In [Popov 2017], theoretical
considerations are advanced for L(t) to be positive recurrent as t → ∞, i.e. P[L(t) =

k] > 0 for k ≥ 1, rather than transient or escaping to infinity, which would leave many
unapproved transaction orphaned. In practice, little is assumed in the implementation
of the distributed ledger, apart from the strict approval rule, i.e any new transaction
must reference two other transactions (tips) already in the Tangle. It is entirely possible
that two transactions, each posted by different users, or by the same user in a short
time frame, reference the same tips as each other; and in fact this happens all the time
because of network latency6. A node can choose tips in any way it finds convenient.
A particularly lazy node might try to approve a fixed pair of very old transactions,
without penalty, thus not contributing to the tip approval process and increasing the
likelihood that some of these might be orphaned. "Anything goes" effectively renders
the Tangle a random graph.

Random Tip Selection. The simplest strategy is for each new node to select
two tips uniformly at random from the list of available tips, and approve them. While
conceptually simple, this strategy has the disadvantage that it does not sufficiently
protect against lazy or malicious nodes. Under this hypothesis, in the steady state L(t)

should fluctuate around L0 = 2λ∆t in any interval ∆t. The drawback of this strategy
is that, especially for low network load, it can lead to opportunistic behaviour in that
lazy nodes may decide to repeatedly select the same transaction to attach new ones,
thus reducing the overall number of tips. This kind of structure can often be seen in
Tangle visualisers. It can also lead to malicious behaviour, where users try to use their
own algorithm to select tips to spam the network – artificially inflating the number of
tips by issuing many transactions that approve a fixed pair of transactions – and take

6One tip can be selected in good faith by two different nodes at the same time until “snapshotting”,
i.e. persistent storage.

58 Chapter 4. Models

it over, or attempt a double spend of funds – growing for example a parasite chain with
the usual attachment rules, and then attaching to the Tangle a “conflicting” transaction.

MCMC Selection Algorithm. A more sophisticated strategy to encourage “op-
timal” growth of the Tangle is to use a particle filter or Markov Chain Monte Carlo
(MCMC) algorithm to select two tips on the Tangle [Popov 2017, Popov et al. 2017].
This still selects at random, but introduces a bias towards “honest tips” by means of
an exponentially tilted random walk on the nodes of T (t), which become the sites of
walkers that walk the reverse-directed links from the genesis ρ (or any other cutset with
equal cumulative weight) to the tip. Note that while the out-degree of a node is fixed,
the in-degree has a distribution, and each node may use its own pseudo-random num-
ber generator to simulate the walks. Essentially, the typical MCMC strategy selection
algorithm will be alongside the lines of:

1. Choose a cutset, or suitable interval of nodes in chronological order. Usually the
particle walk starts at ρ or somewhere else deep in the Tangle; if the walk does
not start at the genesis, we set q ≥ 0 as the backtracking parameter.

2. Independently place N particles on that cutset.

3. Let them perform a random walk, with a transition from x to y only possible if y
approves x. (Optionally, repeat the walk, or select a high number of walkers N ,
if the two selected tips are not distinct).

4. The transition probabilities Pfxy between two nodes sharing a directed edge x" y

are proportional to some monotone, non-increasing function f of the difference
in cumulative weights Hx(t−h) − H

y
(t−h)

7. The particle is stopped when it hits a
node v ∈ L(t − h)8. Usually, f(s) = exp(−αs) with α ≥ 0 having the meaning
of inverse temperature (or measure of randomness). For any y and x one has the
Boltzmann-Gibbs distributions:

(1− q) exp
[
−α

(
Hx(t−h) −H

y
(t−h)

)]
∑

z:x∈A(z) exp
[
−α

(
Hx(t−h) −H

z
(t−h)

)] x ∈ A(y) (4.1)

where A(·) is as defined previously.

Intuitively, such a strategy spreads the approval process evenly along the most
recent tips in the Tangle. If α approaches 0, this strategy is equivalent to the uniform
random selection strategy; for high α it will tend to pseudo-deterministically assign
high probabilities to fixed paths indexed by the highest cumulative weight, and the

7In general, the node that issues the transaction might only know the state of the tangle network
with a delay, T (t− h).

8If h > 0, it might not even be a tip anymore.

4.4. Block-free Distributed Ledgers 59

number of tips will grow linearly in each time step. A transaction is confirmed with
a sufficiently high confidence level ι0 ≈ 1 if in the low temperature regime, the walk
ends in a tip that references the transaction. The rationale for choosing this type of
selection strategy compared to a simpler random tip choice is that in a well-behaved
Tangle, the hashing power of the network – measured by large increases in cumulative
weight – is higher than that of an attacker that tries to attach a long parasite chain
of transactions, whose cumulative weights would necessarily be much smaller than the
sites they reference, and thus parasite sites would have a low transition probability from
the main sites of the Tangle. See Section 4.1 of [Popov 2017] and [Popov et al. 2017]
for a game-theoretic justification.

Note that the Tangle T (t) as constructed induces a continuous time transient
Markov Chain with large state space even for a fixed time t. This means that the
corresponding adjacency and transition matrices suffer from combinatorial explosion,
and expanding access times9.

4.4.5 Mean Tip Approval Times

Also by assumption, the Poisson clock leads to exponentially-distributed inter-arrival
times between consecutive transactions: if we hypothesise λ to be the number of new
arriving transactions per unit time, the mean arrival time will be on average 1

λ and will
have a waiting-time of 0 as its mode. Thus10 the “wider” the Tangle T (t) is – i.e. the
larger it scales in terms of the incoming transactions and number of users – the more
instantaneous we can expect the Tangle propagation to be. Straightforward statistical
analyses of the public data from [Foundation 2017] confirm this to be the case.

9The sparse adjacency matrix for 10, 000 nodes, for example, requires 500MB, and 3GB for 25000,
which is still manageable on a 2015 vintage laptop but unwieldy for a large number of sequential writes.

10Disregarding for simplicity the proof-of-work nonces and network latency issues, which can be
nevertheless be modelled by a compound clock as the average number of revealed tips will be λ · h for
h the network delay in seconds, which is a constant.

Chapter 5

Implementation

62 Chapter 5. Implementation

In this Chapter, we describe the implementation details of the four modelling
frameworks described in the previous Chapters. In particular, Section 5.1 presents
the MQTT-Jason bridges written for the published papers [Bottone et al. 2016c],
[Bottone et al. 2016b] and [Bottone et al. 2016a]; Section 5.2 describes how the orches-
tration of information flow in a CPS might be leveraged to attain a trustworthiness
function of the whole system to enable real-time monitoring; Section 5.3 presents a
simulation of information transmission and epistemic costs of contradictory informa-
tion in a network; and Section 5.4 introduces a simulation environment for multi-agent
modelling and sampling of DAG-based cryptocurrency transactions.

5.1 Implementing Bridges

In this Section we present three implementations of software bridges between multi-
agent simulation environments and the publish-subscribe communications protocol
MQTT, corresponding to the diagrams in Figures 4.1 and 4.2.

5.1.1 Connecting MQTT with Jason

Jason is an example of multi-agent framework in which modellers have access to the ex-
ecution engine in such a way that the environment (and thus, the beliefs of the agents)
can be modified by means of Java code. Specifically, a new Environment can be cre-
ated by subclassing the Jason class Environment. Figure 5.1 reports excerpts from the
implementation of a bridge between a MQTT infrastructure and Jason. The new class
MQTTEnvironment subclasses the default Environment class and extends the initialisa-
tion method (line 3) with the connection to a MQTT broker and the subscription to
appropriate topics (lines 9 and 10). The key method here is messageArrived on line
16: this method is invoked when a message arrives from the broker. The message is
parsed appropriately with the method parse_message and a new percept is created in
Jason (line 18). This percept may result in a new belief in an agent and give rise to
new intentions. This environment has been employed to monitor the trustworthiness
of a software infrastructure for an air conditioning system, as described in the ensuing
Subsubsection 5.2.3.1, scaling to several hundreds of sensors. We also provide further
commentary of the performance of this system in Section 6.1.

Similarly, the Environment can be extended in a very simple way with new actions
that can be invoked by agents when they want to publish a MQTT message. The code
for this example is available online at https://bitbucket.org/bottone/mqttbridges;
we refer to it for additional details.

https://bitbucket.org/bottone/mqttbridges

5.1. Implementing Bridges 63

1 public class MQTTEnvironment extends Environment implements MqttCallback {
2
3 public void init (String [] args) {
4 // [...]
5 try {
6 client = new MqttClient(MQTT_BROKER, "JasonMQTTEnvironment");
7 client .connect();
8 // [...]
9 client .setCallback(this);

10 client .subscribe("TOPIC/#");
11 } catch (Exception e) {
12 e.printStackTrace();
13 }
14 }
15
16 public void messageArrived(String topic, MqttMessage message) throws Exception {
17 // [...]
18 addPercept(Literal.parseLiteral (parse_message(topic,message)));
19 // [..]
20 }
21 }

Figure 5.1: Jason - MQTT bridging environment.

5.1.2 Connecting MQTT with Brahms

In contrast to Jason, Brahms is an archetype of a framework in which developers are
not allowed to modify the state of agents directly. This means that it is not possible
to create new beliefs automatically whenever a new MQTT message is received. To
address this issue we have created an intermediate store for MQTT messages, which
should be run in parallel with Brahms. Even if beliefs cannot be created automatically,
as described above Brahms can be extended with Java actions that can be invoked by
agents. The key idea is to use these actions to query the external store. The latter,
in turn, acts as a buffer between the MQTT broker and the asynchronous actions of
Brahms’ agents.

Figure 5.2 reports excerpts of our implementation (the full code is again available
at https://bitbucket.org/bottone/mqttbridges). Notice that, differently from the
case of Jason described above, this code now runs independently from Brahms and it
is not an extension of any of the Brahms classes. Similarly to the Jason Environment,
the class MQTTStore implements the interface MqttCallback to be able to subscribe to
messages (line 1). This new store starts a TCP socket (defined in line 3, constructor
code omitted but available online). The constructor method starting at line 9 establishes
a connection with the broker and subscribes to appropriate topics. It also creates an
empty list of MQTT messages. Messages received from the broker and corresponding
to the appropriate topic are added to this list using the method messageArrived (lines
25 to 28). The method run is the method invoked by the TCP server whenever a new
connection is made to this class. Essentially, this is the standard method invoked by

https://bitbucket.org/bottone/mqttbridges

64 Chapter 5. Implementation

1 public class MQTTStore implements MqttCallback {
2
3 ServerSocket incomingSocket;
4 private MqttClient mQTTClient;
5 // Incoming MQTT messages are stored here
6 LinkedBlockingQueue<String> mQTTMessages = null;
7 // [...]
8
9 public MQTTStore() {

10 // [...]
11 mQTTClient = new MqttClient(BROKER_ADDRESS, CLIENT_NAME);
12 mQTTClient.connect();
13 mQTTClient.setCallback(this);
14 mQTTClient.subscribe(SUBSCRIBED_TOPIC+"/#");
15 // [..]
16 mQTTMessages = new LinkedBlockingQueue<>();
17 // [...]
18 }
19
20 public void run() {
21 // Here: wait for connections and return the
22 // list of MQTT messages received
23 }
24
25 @Override
26 public void messageArrived(String topic, MqttMessage message) {
27 mQTTMessages.add(topic+" "+new String(message.getPayload()));
28 }
29 }

Figure 5.2: Brahms - MQTT bridging environment.

Brahms Java activities to send and receive messages. To send a message, a Brahms
activity needs to provide a topic and an actual message. When a Brahms activity
requests the stored messages, the content of the list mQTTMessages (line 6) is returned
and the list is emptied. This approach makes the class MQTTStore a buffer between
the broker and the Brahms running instance, given that it is not possible to implement
MqttCallback directly in Brahms.

5.1.3 Implementing Virtual Pheromones with MQTT and Jason

Stigmergy is a biological mechanism of spontaneous, indirect coordination between
agents, where the trace left in the environment by an action stimulates the perfor-
mance of a subsequent action, by the same or a different agent. It was originally pro-
posed for social termites [Grassé 1959] and has found wider application outside social
biology [Holland & Melhuish 1999, Bonabeau 1999, Beni 2004].

Note that stigmergic markers need not correspond to physical traces; the concept
translates easily to virtual particles in the environment. In the work presented in the
paper [Bottone et al. 2016a], we implemented a virtual pheromone system based on

5.1. Implementing Bridges 65

1 public class SimpleMQTTSubscriberAndPublisher implements MqttCallback {
2
3 private MqttClient client ;
4 private static String BROKER_ADDR="tcp://broker.hivemq.com:1883";
5 private static String CLIENT_NAME="TestStigmergyBDI";
6
7 // The topic we are interested in .
8 private static String SUBSCRIBED_TOPIC="MQTTTest";
9

10 public SimpleMQTTSubscriberAndPublisher() {
11
12 // Connect to the broker:
13 client = new MqttClient(BROKER_ADDR, CLIENT_NAME);
14 client .connect();
15
16 // Set callback for subscriptions
17 client .setCallback(this);
18 client .subscribe(SUBSCRIBED_TOPIC+"/#");
19
20 // Publish a message under a topic
21 MqttMessage message = new MqttMessage();
22 message.setPayload("Hello World".getBytes());
23 client .publish("pubTopic/subtopic", message);
24 }
25 }

Figure 5.3: Java MQTT client (excerpts).

the bridging integration of MQTT and Jason that can be used for modelling swarm
robotics scenarios and to deploy complex and robust coordination across a variety of
robotic platforms with limited computational resource overhead, exploiting the rapid
increase in data transfer rates to offload tasks without hard real time requirements.

The Java code listed in Figure 5.3 shows how to create a client that connects to a
public broker (line 14), subscribes to a topic (line 18), and sends a message (lines 21 to
23). When a message whose topic matches the one specified on line 8 is generated, a lis-
tener (line 17) is invoked. In [Barbon et al. 2016], the potential of implementing MQTT
on resource-constrained devices such as Arduino and Raspberry Pi was explored. In
this work, we exploited the features offered by MQTT to dispatch and distribute infor-
mation about the virtual pheromone map shared by the robots embedding a Raspberry
Pi platform.

As before, a new Environment can be created by subclassing the Jason class
Environment, and the implementation details are very similar with minor changes to
the callback method, so that we refer again to Figure 5.1 from Subsection 5.1.1 for
excerpts of the bridging between a MQTT infrastructure and Jason. The new class
MQTTEnvironment subclasses the default Environment class and extends the initialisa-
tion method (line 3) with the connection to a MQTT broker and the subscription to
appropriate topics (lines 9 and 10). The key method here is messageArrived on line 16

66 Chapter 5. Implementation

MQTT Broker

Global Virtual Pheromone Map

Simulation Environment

publish /VPM/position/1 (16,15)

publish /VPM/position/2 (10,10)

subscribe /VPM/map/2 (10,10)

robot1

robot2

0.82

0.79

0.75

0.62

0.59

0.68 0.75

0.86

0.94

publish /VPM/map/2 localPheromoneMap

Current position

Next position

Figure 5.4: An example of how two BDI robots interact with the MQTT Broker in
order to send their positions to the back-end server and retrieve the local pheromone
map (the mark structure) around their position.

that is invoked when a message arrives from the broker. The message is appropriately
parsed and a new percept is created (line 18). This percept may result in a new belief in
an agent and gives rise to new intentions. Similarly, the Environment can be extended
in a very simple way with new actions that can be invoked by agents when they want
to publish a MQTT message.

5.1.3.1 Implementing Stigmergy in Jason

A stigmergic environment can be created by extending the default environment
GridWorldModel, following the approach presented in [Barbieri & Mascardi 2011]. In
particular, in the Java implementation of the Environment, we add a private field hold-
ing the intensity of pheromones in each cell of the grid. The intensity of pheromones in
the grid can be updated in two ways:

. (a) Directly by one of the agents: implementing a new internal action mark in the
Java environment to send the appropriate MQTT message to all the agents.

. (b) Via MQTT: the message is delivered to the Java environment by the callback
method described in Figure 5.3.

Agents implemented in Jason can get a local map of the intensity of pheromones in
their neighbourhood by invoking a new internal action getMarks implemented in the
environment. The local map is an array of nine triples in the form (x,y,i), where i is
the pheromone intensity, centred around the current position of the agent.

5.1. Implementing Bridges 67

The main difference between our approach and the one presented
in [Barbieri & Mascardi 2011] is that in our case we have multiple instances of
Jason agents, one per robot, running in parallel. Moreover, their approach relies on a
local server for messaging, while we employ MQTT as our communication mechanism.
This has the additional benefit of allowing the incorporation of agents implemented
in other frameworks, provided that they support MQTT messaging. Figure 5.4 shows
an example of how two BDI robots interact with the MQTT Broker in order to send
their positions to the back-end server and retrieve the local pheromone map (the mark
structure) around their position. All the robots present in the environment, equipped
with their own localisation system and wireless communication, subscribe to the
relative topics, where the local pheromone map will be received: /VPM/map/robotID.
At each time step, robots send their position to the back-end server publishing their
coordinates to the MQTT topic: /VPM/position/robotID. Then, the back-end server
updates the global virtual pheromone map and publishes the local pheromone map to
each robot by means of the dedicated topics /VPM/map/robotID. Finally, the robots
choose the new position among the nine possibilities as the pheromone coordinates
of the point with the higher intensity (i). In the absence of a local pheromone map,
robots choose the new position randomly.

The update process of the global pheromone map is based on the potential field
model [Susnea 2015]. At each time step, it computes the intensity at distance dk from
each pheromone k using equation 5.1:

p(dk) =

pk
(

1− dk
σ

)
if 0 < dk < σ

0 if dk ≥ σ
(5.1)

where p(dk) is the intensity of pheromone k at distance dk due to diffusion, σ is the
sensitivity range, and pk is the actual intensity of pheromone k. Due to the stigmergic
aggregation of all the N sources located within σ, the resulting pheromone intensity
sensed in an arbitrary location is given by equation 5.2:

P =
N∑
k=1

pk

(
1− dk

σ

)
. (5.2)

Assuming that the evaporation effect decreases the pheromone intensity linearly, it is
possible to update the resulting pheromone at time t as shown in equation 5.3:

P =
N∑
k=1

pk

(
1− dk

σ

)(
1− t− tk

τ

)
(5.3)

where tk is the time of creation of the pheromone k and τ is the evaporation parameter.
The value of P around the current position of the robot is returned to it as a mes-

68 Chapter 5. Implementation

sage (localPheromoneMap in Figure 5.4) published on the previously subscribed topic
/VPM/map/robotID, and thereafter the robot acts as if it has its own pheromone sens-
ing system [Susnea et al. 2009], choosing the next position as the maximum of the local
pheromone map (the blue square in Figure 5.4).

5.2 Monitoring Trust

In this section we describe how we encoded the fidelity functions in Jason for the paper
[Bottone et al. 2016b]. The overall setup is based on a MAS where each component is
a separate agent, introducing a special agent – the controller or Janus+Jason – that
oversees and evaluates the overall fidelity of the system.

5.2.1 The Orchestrating System

Within the Janus+Jason controller, we further define higher-order plans to assess the
overall fidelity of the system and induce a trustworthiness evaluation to indicate the
system’s running conditions, according to the fidelity scale including stability and safety
conditions introduced in Section 4.2. The software has been open sourced, with the
Jason and Java files available at https://bitbucket.org/mdxmase/janus-jason/.

5.2.2 Environment and Communications Protocols

The default Jason environment comes with built-in classes that make use of the
.send and .broadcast internal actions for single and multiple inter-agent commu-
nication, respectively. In addition to this infrastructure, we built a custom environ-
ment MQTTEnvironment to bridge between MQTT messages and Jason. The Java
class MQTTEnvironment does two things: it implements the MQTTCallback interface
for MQTT connection/disconnection and it sets up the topics in the publish/subscribe
format so that when a message is published, it adds the relevant percept to the belief
base together with the value of the sensor.

The following code snippet shows how the environment can make a connection to
an MQTT broker and how messages published under a certain topic can be trans-
lated into Jason beliefs in the method messageArrived by means of the internal action
addPercept.

1 /* Called before the MAS execution with the args informed in .mas2j */
2 @Override
3 public void init(String[] args) {
4 // [...]
5 try {
6 client = new MqttClient("tcp://localhost:1883", "JasonMQTTEnvironment");
7 client.connect();
8 // [...]
9 client.setCallback(this);

https://bitbucket.org/mdxmase/janus-jason/

5.2. Monitoring Trust 69

10 client.subscribe("MQTTJason/#"); // # is the wildcard for multiple topics
11 // [...]
12 }
13

14 public void messageArrived(String topic, MqttMessage message) throws Exception {
15 // Assuming a default format for publish messages:
16 // MQTTJason/sensorid/temperature [for temperature]
17 // MQTTJason/sensorid/humidity [for humidity]
18 String[] components = topic.split("/");
19 if (components[2].equals("temperature")) {
20 addPercept(Literal.parseLiteral("temp_sensor(" +
21 components[1] +
22 "," +
23 new String(message.getPayload()) +
24 ")"));
25 // [...]
26 }
27 }
28 }

5.2.3 System Configuration

In Jason, it is possible to create a pre-specified number of identical types of agents
using the same code, by using the multiplicity symbol #. The code snippet below
creates a system running on a single processor with four kind of agents: the controller,
temp_sensor (four instances), humi_sensor (eight instances), and one type of actuator,
airconditioner.

1 MAS janus_test {
2 infrastructure: Centralised
3 environment: MQTTEnvironment
4 agents:
5 controller;
6 temp_sensor #4;
7 humi_sensor #8;
8 airconditioner;
9 classpath: "/Path/paho.client.mqttv3-1.0.2.jar";

10 aslSourcePath: "src/asl";
11 }

5.2.3.1 The Individual Components

Humidity and temperature sensors. Both agents humi_sensor and
temp_sensor implement similar behaviours: they broadcast the values for
humidity and temperature respectively with a certain frequency. This is
done either by the built-in .broadcast(tell, humi_sensor(Me,H)) and
.broadcast(tell, temp_sensor(Me,T)) internal actions, or by bridging a value

70 Chapter 5. Implementation

for the real world. In our case, we have used two DHT22 temperature and humidity
sensors connected to two Raspberry Pi boards1.

Air Conditioner. We use an Air Conditioner as the model of an agent that has
to go through a predefined sequence of states. At the start it is in a waiting state. If it
receives a message turnon from the controller, it will go through states set_up, cooling,
cooldown, and waiting again. The turnon message is only accepted if it is in the waiting
state. Whenever there is a state variation, a message is broadcast so that it can be
monitored by the controller.

Controller. The most complex part of the application logic resides in this agent.
The controller continuously monitors the sensor values and does pattern matching of the
individual components’ behaviour, and prints the current state of the system according
to a fidelity function. In particular, we implement three possible behavioural pattern
functions for fidelity:

1. component values remain in a range,

2. values do not oscillate more frequently than X,

3. component goes through a sequence of states.

In the language of Section 4.2, Function 1 and Function 2 express sensor malfunction
and thus φs, while Function 3 denotes φa, i.e. drifting of the actuator’s value from the
fidelity pattern2. Intuitively, the latter can be thought of as more akin to an “erroneous
system deployment”, since actuator airconditioner is the terminal interfacing the
system’s users.

Each function is implemented as a rule associated to each component. These indi-
vidual rules are then used in the context of controller’s plans to raise a warning. For
the temperature sensors, the first rule checks the Fréchet distance between the current
value and a baseline value, defined as an affine periodic function on the hour of the day,
so that the baseline ranges between 15 (midnight) and 25 (noon), with a valid range
of baseline ±5 degrees. For the humidity sensors, Function 2 is defined as too many
requests in a given time window – for example a limit of 3 messages in 10 seconds.
Finally, for the airconditioner agent, the rule checks whether it has gone through the
correct sequence of states, thus something will be wrong if (a) there was no previous
message, thus we are at the start, but we don’t receive message “waiting”; or (b) there
was an illegal transition, encoded by listing all the possible transitions in sequence.

1 https://www.adafruit.com/products/385
2In [De Florio & Primiero 2015], where cyber-physical systems with users are under consideration,

the patterns for Function 1 and Function 2 are used to express machine fidelity, Function 3 denotes
user fidelity.

https://www.adafruit.com/products/385

5.3. Reasoning about Contradictory Information 71

5.2.3.2 System Fidelity

In the setting of [De Florio & Primiero 2015], fidelity driftings are calculated based on
system processes with variables of a given type that are associated with some shared
volatile memory segments and read/write access rights. Since Jason runs on top of the
Java virtual machine, we keep track of pattern violations directly in the controller
agent code. Fidelity is then approximated for each pattern type as the inversely pro-
portional function of the drifting in the reporting of raw facts, enabling a continuous
cycle of monitoring, perception, control and action.

In our Jason evaluation, the fidelity function corresponding to each pattern is defined
as a rule keeping track of violations and the dynamical evaluation of trustworthiness of
the system happens in the main controller loop at run-time as relevant plans for each
outcome are selected if certain patterns in the fidelity evaluation match as true. Each
plan also defines an action that is executed in response to each evaluation, for example
disabling a sensor or stopping the entire system.

In a system based on mechanical rules, the trustworthiness assessment produces four
outcomes based on the model in Section 4.2:

1. Trustworthy, with high levels of fidelity on all functions, inducing optimal, sus-
tainable working conditions;

2. Unstable, with high-to-medium values on Function 3, and low values on at least
one of Function 1 or Function 2, inducing reconfigurable working conditions;

3. Unsafe, with high-to-medium values on both Function 1 and Function 2, and low
levels on Function 3, inducing alarm-rising working conditions;

4. Untrustworthy, with low-levels of fidelity on all functions, inducing inadvisable or
below-safety working conditions.

We present further tests and elaborations on the performance of the Jason+Janus
client simulating the AC system described here in Subsection 6.1.2.

5.3 Reasoning about Contradictory Information

In this Section, we describe the implementation details behind the logical model
(un)SecureNDsim introduced in Section 4.3 and the experiments performed for the pa-
pers [Primiero et al. 2016] and [Primiero et al. 2017]. The following implementation
and ensuing experimental analysis primarily concern:

1. changes in the final distribution of contradictory information according to network
topology;

72 Chapter 5. Implementation

2. changes in the final distribution of contradictory information according to the
ranking and epistemic role of seeding agents;

3. the quantification of the epistemic costs for trust and distrust operations.

5.3.1 Model Design

The model of (un)SecureNDsim requires translating the proof system into portable pro-
cedures so that a implementation using any agent programming language is straightfor-
ward. In the case of the two published papers detailed in this section, all the program-
ming is done in NetLogo with the nw extension. Recall from Section 3.7 that a network
G = (V,E) is endowed with a set V = (v1, . . . , vn) of vertices representing agents and
a set E = (ei,j , . . . , en,m) of undirected edges encoding information transmission. For
each vi ∈ V let vi(p) and vj(¬p) denote agents i and j knowing atomic formulas p, and
¬p, respectively; vk() denotes an agent k who knows nothing yet. Consequently, case
e(vi(p), vj()) denotes a transmission channel from agent i to agent j such that the for-
mer can transmit p over to the latter, and case e(vi(p), vj(¬p)) represents an admissible
edge where two agents hold contradictory information, requiring a resolution procedure;
finally, case e(vi(p), vj(), vk(¬p)) is shorthand for the triad case where one agent vj does
not hold any knowledge yet receives contradictory information from two distinct agents,
i.e. there exist two edges between three nodes. Our NetLogo implementation preserves
the order relation ≤ over V × V from (un)SecureNDsim, allowing for the possibility of
a partial order in view of the different topologies; total networks where each agent has
a connection to everyone else, and linear ones – where each agent is connected to an
agent up in the hierarchy – have a total order, while scale-free networks, constructed
using the Barabasi-Albert preferential attachment mechanism3 and random networks –
of Erdös-Renyi type – only have partial orders as some elements may not be comparable.
We set the maximum number of vertices allowed at 300.

5.3.2 Implementation

The Transmission algorithm in Figure 5.5 describes how randomly seeded contradictory
information p,¬p spreads across the network G: for each edge between a node labelled
by p and one with an empty label, if the latter node is sceptic and, in this case, if it is
part of a predetermined 95% proportion of the sceptic population4, or if its ranking is
higher than that of the sender, it then calls the Verify procedure and it is added to the
network with the new label p. Note that here we have implemented a random selection

3Where each unattached node creates an edge to other agents using a probability proportional to
their existing neighbours.

4This sceptic proportion can be varied by the user in experimental setting by using a slider interface:
indicatively, there are no substantial differences with choices set between 95 and 55.

5.3. Reasoning about Contradictory Information 73

1 PROCEDURE Transmission(G)

2 G := (V,E)

3

4 FOR e(vi(φ), vj()) ∈ G
5 IF ((vj() ∈ sceptic) AND (random-float 1 =< 0.95)) OR

ranking(vj()) < ranking(vi(φ))

6 THEN Verify(e(vi(φ), vj())) AND G := G ∪ (vj(φ))

7 ELSEIF ((vj() ∈ lazy) AND (random-float 1 =< 0.80))
8 THEN Distrust(e(vi(φ), vj())) AND G := G ∪ (vj(¬φ))

9 ENDIFELSE
10 ENDFOR
11

12 FOR e(vi(φ), vj(), vk(¬φ)) ∈ G
13 SolveConflict(e(vi(φ), vj(), vk(¬φ)))

14

15 RETURN Trusted(G)

16 ENDPROCEDURE

Figure 5.5: Algorithm for Simple Information Transmission

of a 5% of sceptic agents who do not ask for verification; if the receiver is lazy and it is
part of a predetermined 80% of the lazy population, it calls the Distrust routine and
the new node is added with an opposite label (again, we have here set a random 20%

of sceptic agents who do not distrust the information).
Thus, the epistemic description of our agents follows the basic distinction between

lazy and sceptic agents of Subsection 4.3.2, but to provide a more realistic description
of our MAS, we allow for random changes of attitude, and this is reflected in the pro-
portions of sceptic and lazy agents in the network being sufficiently lower than 100.
In particular, we allow a very low rate of verification cases for lazy agents in networks
that have a majority of such agents; and a similar rate for sceptic agents that might
accept information without implementing verification in networks that have a balanced
distribution of lazy and sceptic agents. The MAS design implements three fixed dis-
tributions of this epistemic attitude across the networks coupled with a semi-random
implementation of the corresponding procedures, summarised into three configurations
of networks with different proportions of sceptics and their confirmation rates:

. overly lazy network: the proportion of sceptic nodes is set at 20%, with their
confirmation rate at 5%, the latter expressing the proportion of such agents that
will after all ask for verification;

74 Chapter 5. Implementation

1 PROCEDURE Verify(e(vi(φ), vj()))

2

3 set COSTTRUST+1
4 set TRUSTLINK e(vi(φ), vj(φ))

5 RETURN Trusted(G)

6 ENDPROCEDURE

Figure 5.6: Algorithm for Trust Costs Increase

. balanced network: the proportion of sceptic nodes is set at 50% and their confir-
mation rate at 95%, to account for a 5% of random sceptic agents who decide not
to ask for verification after all;

. overly sceptic network: the proportion of sceptic nodes is set at 80%, their confir-
mation rate at 100%, always implementing verification.

The rationale is as follows: we assume that in a network with a large majority of
agents with virtuous behaviour, this is preserved; whereas in a balanced network, we
allow a low number of virtuous agents to slip in their habits; finally, in a network largely
characterised by lazy behaviour, we still allow some of the agents to be influenced by
the few ones that have a sceptic attitude.

The procedure Verify is shown in Figure 5.6: its role is to increase the value of
costs associated with the number of trusted links. A successful confirmation procedure
establishes trust as a property characterising edges and it equals 0 at setup/initialisation
stage. Accepting information means in turn creating a trusted edge – marked green in
the simulation in Section 6.2.2 – and to acquire knowledge of the atom passed. A graph
G is relabelled to Trusted(G) by the procedure Transmission. Notice that passages
where the receiver agent is lazy or lower in the dominance relation do not generate a
trusted link. The subroutine Distrust is illustrated in Figure 5.7: it increases the value
of costs associated with the number of distrusted links and it labels the receiving node
with the contrary atom to the one received – i.e. it applies a negation.

When a node labelled by an atom p (by a previous interaction) is linked to another
node labelled by the contradictory ¬p, the routine SolveConflict is started. Two
versions of this resolution strategy are presented below.

The first version, detailed in see Figure 5.8, takes into account the number of links
with nodes labelled by p, the number of links with nodes labelled by ¬p and sums
them to the respective overall rankings, obtaining values ScoreP and Score¬P. This
implementation sensibly refines the pure majority by counting of the formal system
in Section 4.3.2, by adding the ranking of the agents involved as a parameter of the
related score. For each pair of edges from nodes with contradictory information p,¬p to

5.3. Reasoning about Contradictory Information 75

1 PROCEDURE Distrust(e(vi(φ), vj()))

2

3 set COSTDISTRUST+1
4 set DISTRUSTLINK e(vi(φ), vj(¬φ))

5 RETURN Trusted(G)

6 ENDPROCEDURE

Figure 5.7: Algorithm for Distrust Costs Increase

1 PROCEDURE SolveConflict(e(vi(φ), vj(), vk(¬φ)))

2

3 TotalP = #(Vi(φ), Vj())

4 Total¬ P = #(Vk(¬φ), Vj())

5 ScoreP = 1/ranking(Vi(φ)) + (TotalP/#V)

6 Score¬P = 1/ranking(Vi(¬φ)) + (Total¬ P/#V)

7

8 FOR e(vi(φ), vj(), vk(¬φ)) ∈ Transmission(G)

9 IF (ScoreP > Score ¬P)
10 THEN G := G ∪ vk(φ)

11 ELSEIF (ScoreP = Score¬P)
12 THEN G := G ∪ vk(¬φ)

13 IF (random-float 1 >= 0.5)
14 THEN (vk(φ))

15 ELSE (vk(¬φ))

16 ENDIF
17 ENDFOR
18

19 RETURN Trusted(G)

20 ENDPROCEDURE

Figure 5.8: Algorithm for Conflict Resolution by Trust Majorisation

an unlabelled node, if the value of ScoreP is higher than the value of Score¬P, the new
node is labelled by p, otherwise by ¬p. We assume here a context in which agents refer
to a popularity criterion of most trusted in order to choose which of two contradictory
pieces of information to preserve.

The second version, shown in Figure 5.9, analyses the number of distrusted links
appended to each neighbour with each contradictory piece of information and selects

76 Chapter 5. Implementation

1 PROCEDURE SolveConflict2(e(vi(φ), vj(), vk(¬φ)))

2

3 let d1 #DISTRUSTLINK e(vi,...n(φ), vj())

4 let d2 #DISTRUSTLINK e(vk,...m(¬φ), vj())

5

6 IF (length d1 > length d2)
7 THEN G := G ∪ (vj(¬φ)) AND Distrust(e(vi(φ), vj(¬φ)))

8 ENDIF
9

10 IF (length d1 < length d2)
11 THEN G := G ∪ (vj(φ)) AND Distrust(e(vk(¬φ), vj(φ)))

12 ENDIF
13

14 IF (length d1 = length d2)
15 IF (random-float 1 =< 0.5)
16 THEN G′ := G ∪ (vj(¬φ)) AND Distrust(e(vi(φ), vj(¬φ)))

17 ELSE G′ := G ∪ (vj(φ)) AND Distrust(e(vk(¬φ), vj(φ)))

18 ENDIFELSE
19 ENDIF
20 ENDPROCEDURE

Figure 5.9: Algorithm for Conflict Resolution by Distrust Minorisation

the new label from the least distrusted one, proceeding by random choice when an equal
number of distrusted links is detected. Here a context is assumed in which agents refer
to a popularity criterion of least distrusted in order to choose which of two contradictory
pieces of information not to preserve. It then executes the procedure Distrust on the
selected link.

The observer-property of trustworthiness – i.e., the total number of trusted links –
and distrustfulness – i.e., the total number of distrusted links – first defined in Subsection
4.3.3 are at any given time a known property of the network and are used to perform
conflict resolution. The procedure ensures that clearP, trusted and distrusted links
obtained by a first message passing operation are preserved in subsequent executions of
the procedure Transmission over the same graph to analyse their effect on epistemic
costs.

5.4. Simulating DAG-based Distributed Ledgers 77

5.4 Simulating DAG-based Distributed Ledgers

In this Section, we describe the implementation of the Tangle DAG simulation environ-
ment introduced in Section 4.4. It is clear that after the genesis transaction, the growth
of T is uniquely described by the attachment rules, i.e. the tip selection mechanism. The
behaviour of this process in the long run is akin to a random graph in a random environ-
ment and, like similar models such as diffusion-limited aggregation [Wikipedia 2018b]
is simple to state but difficult to analyse mathematically; however a simulation and a
visual representation aid considerably in eliciting its structure and properties. Our mod-
els and analyses of the growth of the Tangle are implemented entirely in NetLogo; code
and examples are freely available at https://bitbucket.org/mdxmase/iotasim/. We
also build a strategy selector menu which can be used to implement different strategies
in function of other node internal variables in addition to the cumulative weight.

5.4.1 Random Uniform Growth

The simplest version of our NetLogo code, based on the random growth of Subsection
4.4.4 with instantaneous approvals, makes it easy to generate fast, efficient samples of
the Tangle. For example, one can easily scale and visualise in real time up to tens
of thousands of nodes being added and confirmed; on a machine with 16GB of RAM
and a 2.7GHz multicore i5 processor running MacOS 10.13 or Ubuntu 17.10 this takes
about 10 minutes. We define two initial global parameters, genesis for the genesis
transaction(s), and lambda for the average number of incoming tips, which is assumed
to be drawn from a Poisson distribution via a reporter function. We also assume that
turtles (called nodes by the use of a breed keyword) have an internal variable cw that
records their cumulative weight. Likewise, directed links (breeded as edges) are used to
construct the Tangle structure. Other internal variables are possible and commented in
the more complicated models. The procedure setup-tangle initialises the Tangle by
creating a star network of edges directed from the initial tips to the genesis, and sets
their initial cw which, for simplicity, is 2 for the genesis and 1 for the tips. Thereafter,
the procedure grow-tangle does three things, implemented as further procedure calls:
a) it finds tips to attach – i.e. it approves nodes created by the Poisson clock; b) it
updates the internal variable cw by incrementing it if a node has an incoming edge; and
c) it advances the simulation by one discrete tick. Optionally, it can also update the
spatial layout and any visual feedback before the tick command is given, for example
by colouring nodes with similar cw. Both main procedures above, and the ancillary
approve-nodes, update-cw procedures and incoming-tips reporter, take less than 20
lines of terse code, visible in the snippets of Figure 5.12. The typical shape of a large
random Tangle sample and of its adjacency matrix is shown in Figures 5.10a and 5.10b;
its depth is described by the layering of cumulative weight, and its width by the average
incoming tips λ, which is user-modifiable.

https://bitbucket.org/mdxmase/iotasim/

78 Chapter 5. Implementation

(a) (b)

Figure 5.10: The “typical” shape of a random Tangle at T1010, with 1039 nodes, ρ = 3,
λ = 10, and its adjacency matrix A.

To highlight its information accumulation nature, we also implemented a simple
“colour history” of the Tangle by adding two lines of code in the grow-tangle procedure
to change the node colour once its internal variable cw has been updated. NetLogo cur-
rently supports a simple 0-139 fractional scale from predefined discrete colour swatches;
in Figure 5.11 colour hues cycle through this scale5.

5.4.2 Growth Using the MCMC Selection Algorithm

We replicated the Tangle growth strategy using the MCMC-type algorithm,
which we simplified for computational tractability by experimenting with the
array and network extension primitives nw:turtles-in-radius, nw:path-to,
nw:turtles-in-reverse-radius and recursive ask one-of in-edge-neighbors calls
until we found a satisfactory solution, and packaged it into a rw-tips approval pro-
cedure that for each random list of new tips created by the Poisson clock, initialises
the chains based on a num-walkers parameter and manually backpropagates the Tan-
gle edges to the two selected tips. This is less efficient than random uniform choice
of tips, but speeds the computations by a factor of 10 compared to an algorithm that
searches the state space at every tick via the transition matrix and a list copy, which is

5It is also possible to use a more complex RGB/RGBA colour rendering, as in
set color [245 231 42], by specifying a list of integers to increase.

5.4. Simulating DAG-based Distributed Ledgers 79

Figure 5.11: NetLogo rendering of colour-coded layers of the cw variable

computationally expensive for a large (≥ 100) number of walkers.

80 Chapter 5. Implementation

Figure 5.12: NetLogo Tangle DAG simulator code view

Chapter 6

Evaluation

82 Chapter 6. Evaluation

In this Chapter, we give a reasoned evaluation of the results corresponding to the
underlying models presented in Chapter 4 and their implementation as described in
Chapter 5, and discuss the computational costs of the simulations and their relevance
to real-world performance, whereas the overall evaluation with respect to the objectives
of this thesis can be found in Chapter 7.

6.1 Evaluation of MQTT-Jason Bridges and AC Monitor

In this Section, we offer considerations and evaluations for the experiments based on
our bridging solutions discussed in Sections 4.1, 4.2, 5.1 and 5.2.

6.1.1 System Evaluation

It should be noted that the multi-agent systems implemented for the pa-
pers [Bottone et al. 2016a] and [Bottone et al. 2016b], and in particular
[Bottone et al. 2016c] share a common architecture based on Java bindings to
the chosen MAS simulation environment (in this case, Brahms and Jason). Ultimately,
when setting up the bridges between MQTT and the multi-agent system, once the
helper methods and the appropriate interface to the messaging protocol and clien-
t/server callbacks are implemented for one application, it is relatively straightforward
to modify and extend this framework to test it using a different protocol and broker,
and the performance and results of the simulation only vary in function on the number
of agents modelling each component and the computational power of the CPU and
RAM bandwith used in experiments, as each agent makes a system call for each
percept. In particular, the systems developed in Section 5.1 have been tested over a
typical load of dozens of robots, in the case of the stigmergic approach, while the one
described in Section 5.2 has involved a setup consisting of hundreds of components.

We have found that, as a rule, system performance scales well with the number of
agents up to a few hundreds (500 being a typical example), by which point the dual
computational overhead given by the Jason/Brahms BDI implementations starts to bite
into the percept messaging callbacks and slows down the system. Nevertheless, for the
type of real world systems envisaged in these experiments, the performance and compu-
tational cost expended for a system running on a single machine behaves as expected,
with the lightness of MQTT and the informational overload feature reduction given
by the particular model implemented with the publish/subscribe topic segmentation
efficiently parcelling information flow within the system.

The model given in [Bottone et al. 2016b] has proved to be quite robust to the pro-
gressive increase in messages vis-a-vis the mapping to four trustworthiness evaluations,
even with the simple rotation of states described in Subsubsection 5.2.3.1. This is a
key feature we observed in practice. Note that, unlike the setting of the experiments

6.1. Evaluation of MQTT-Jason Bridges and AC Monitor 83

performed in the ensuing Sections, the multi-agent systems studied here adopt a Cen-
tralised scheduler overseen by the MAS environment built using Brahms and Jason,
rather that a truly distributed architecture based on a network topology. For this rea-
son, performance bottlenecks are entirely ascribable to the inter-process communication
of the centralised MAS system, and performance using, say, a decentralised agent com-
munications protocol such as FIPA/JADE (discussed in [Bordini et al. 2007]) has not
been investigated and has been left for future extensions.

6.1.2 Performance

We present below a quantitative evaluation of the performance of two representative
agoric systems that we implemented; we repeat here the experimental setups for clarity.

Stigmergy

The stigmergic system in [Bottone et al. 2016a] consisted of two parallel simulations as
described in Subsection 5.1.3: a virtual one using the Jason/BDI Java frameworks run-
ning in Eclipse, performed on a Macbook Pro 2012 with 16GB of RAM, and a 2D graph-
ical environment as in Figure 5.4; and a second, more limited live experiment consisting
of four robots incorporating the MIRTO robotic platform [Androutsopoulos et al. 2018],
moving on a scaled down 5×5 square enclosure where each position in the grid contains
exactly one robot and robots change positions by following black lines arranged in a
triangular Petersen mesh, shown in Figure 6.1(left). The Mirto robot, with two mo-
tors, infrared sensors, geared motors with wheels, bump contact sensor, potentiometer,
buzzer and LCD screen connected to an Teensy Arduino microcontroller and a Rasp-
berry Pi 3 and support for other sensors and actuators, is well suited as an inexpensive
and resource-limited, yet expressive, capable and expandable system that can be used
to interact with its environment. Unlike the Jason simulation setting, the MIRTOs have
to implement an inter-agent communications protocol on their Raspberry Pi boards for
communicating to the MQTT broker and a mechanism for reading environmental vari-
ables. This was done in the following way: a map of the mesh environment is coded
on a coordinating back-end server on a laptop to which the robots are connected on
a wireless network, and robots are only allowed a fixed distance from their position
for each step in the simulation, corresponding to grid positions on which the virtual
pheromone map is broadcast: the local pheromone readings in the form (x,y, i) where
the nine-cell marks and the intensity i are in the form of MQTT messages which are
processed by custom code on the Raspberry Pi and sent back to the laptop. Initially
robots are at the four corners and continuously read their position and compare it to
the pheromone map. If they bump into the enclosure walls or another robot, they reg-
ister that direction as inaccessible and turn at random until they find a line, and try to
advance a fixed distance, then query the laptop for a pheromone trace, until they find

84 Chapter 6. Evaluation

one, and update the global pheromone map according to the procedure described in
Subsection 5.1.3. In this scaled-down experiment, we observed that the robots exhibit
flocking behaviour. The results of the Jason MAS experiment are shown in the right
Table in Figure 6.1; for each instance of Jason we ran a batch of 100 simulations of the
MAS, and recorded the computational cost of the simulations in terms of three compo-
nents: (a) the number of agents, (b) the number of MQTT broker messages per minute
(MPM), and the memory cost in megabytes (MCM), averaged over the simulation run1;
We use these two markers to provide an estimate of the performance of the system as
its complexity increases; we note that for a large part the performance of the system is
constrained by the size of its virtual environment, given by the global pheromone map,
as the number of robots increases.

]Agents Average Average
] MPM MCM

10 33.17 56MB
50 169.43 311MB
100 358.91 705MB

Figure 6.1: Left: The live environment for the MIRTO experiment. Right: Table of
computational costs for the Jason simulation from [Bottone et al. 2016a]

AC System

We tested the performance of the Janus+Jason client by instantiating up to several
hundreds temperature and humidity sensors. Running times were acceptable up to a
system size of 500 components, when the overhead of the Java virtual machine in Jason
becomes too much to handle for a quad-core Retina MacBook Pro 2014 with 8GB of
RAM. Given that real-life smart home systems tend to be in the dozens of components
and large systems – such as those of a skyscraper – are composed of thousands of sensors
and actuators, initial evaluation has been deemed encouraging.

Table 6.2 gives a bird’s eye overview of the average cost of the simulations for the
MAS corresponding to the paper [Bottone et al. 2016b], described in Section 5.2.1 in
terms of the same markers as above, namely the number of agents/components, MPM,
MCM and an additional one given the cumulative number of callbacks to state change
(CSC), which is used to roughly reflect the proportion of times that the system does
not pass in a waiting state, normalised for the overall number of states (4 in this
case). We recall that in our setup, the Air Conditioner is modelled as a standalone

1The simulation was run on Eclipse Luna for MacOS, where the relevant process is sandboxed.

6.2. Epistemic Costs of Trust 85

agent to which the remaining N − 1 sensors broadcast their values – either simulated
or bridged from the DHT22 sensor readings, equally subdivided between temperature
and humidity sensors. As before, the sandboxing ensures that it straightforward to
measure the requirements of the simulation. We observe that across al performance
measures, the system requirements increase slightly higher than the expected linearity
in the number of components, but remain in the linear class within the simulation range.

]Agents Average Average Average
] MPM MCM CSC

11 47.51 71MB 328
51 190.02 408MB 864.76
101 422.68 893MB 2451.98
251 1586.47 1761MB 6620.59
501 2287.51 3934MB 18434.02

Figure 6.2: Computational costs for the AC system used in [Bottone et al. 2016b]

6.2 Epistemic Costs of Trust

In this section we present experimental results and an evaluation of the simulations
performed for the model of Sections 4.3 and 5.3. We ran the experiments over the four
different types of networks. Unlike random networks, scale-free networks better repre-
sent the topology of graphs occurring in complex systems such as large social networks.
On the other hand, linear networks are more common in hierarchical structures encoun-
tered in conditions of user access control where there exists a hierarchy of permissions.
The experiments in this section have been executed on a machine with 7.7 GB of RAM
running 64bit Ubuntu 15.10. Data from several scale-free networks of fixed dimensions
between 10 and 300 nodes were systematically collected. The seeding of contradictory
information is done by associating an atom p to a lazy node, and its negation to a
sceptic one, although this association can be altered at will. The code and result of the
experiments are available at https://bitbucket.org/bottone/securendsim.

A first set of experiments has been done on what we call a memoryless network,
meaning that for each successive run of the algorithm, the structure of the graph is
re-plotted. As a result, all previous trusted edges are forgotten, meaning that the next
information distribution is not affected by the previously established links. For these
network types, we have run a total of 240 executions of the main algorithm, subdivided
into 30 runs for each size of 10, 20, 30, 40, 50, 100, 200, 300 nodes. The following results
can be consistently observed across experiments:

https://bitbucket.org/bottone/securendsim

86 Chapter 6. Evaluation

. The knowledge plot, i.e. the final labelled graph, is never consistent with the
previous execution;

. There is no systematic distribution of consensus across the 30 runs;

. There is no systematic relation between the resulting knowledge plot and the costs
of the information transmission;

. There is no systematic relation between the knowledge plot and the ranking of
the initially seeded nodes (i.e. the labels at the beginning).

The above findings indicates that memoryless networks do not offer a reliable exper-
imental setting to investigate issues of consensus and epistemic costs of trusted graphs.

The second set of experiments was performed again on several networks of different
size, but ensuring at each run of the main algorithm that the trust graph obtained
during a previous run is preserved. This is obtained by executing at the end of each run
a procedure called clearP (detailled in Subsection 5.3.2) that eliminates all labels from
the graph yet preserves ranking and trusted links. In this way we can better average on
the number of trusted and distrusted links which are created and destroyed during each
execution. Under these experimental conditions, we then analyse consensus (Subsection
6.2.1), epistemic costs (Subsection 6.2.2), ranking of the seeding nodes (Subsection
6.2.3), epistemic attitude (Subsection 6.2.4) and time complexity (Subsection 6.2.5) in
networks with trust and distrust.

6.2.1 Reaching Consensus

A graph that satisfies consensus is called a unanimous graph. Network configuration
directly affects consensus results in memory-preserving networks with trust only, see
top graph of Figure 6.3, summarised as:

. Total networks reach consensus most often;

. Scale-free networks always perform better than linear or random ones in terms of
number of runs that reach consensus;

. The data for random networks is not overly reliable, as full labelling might not
be reached (proportionally often in the number of nodes); For this reason, a
timeout is set at 1000 steps2. The proportion of runs that timeout is given in the
bottom graph of Figure 6.3, showing a non-strictly linear increase. Accordingly,
the number of runs that reach consensus is bound to decrease.

2A step indicates here one message passing operation.

6.2. Epistemic Costs of Trust 87

Figure 6.3: Top: Comparison of consensus between networks with trust. Bottom:
Proportion of timeouts in random networks.

In particular, for scale-free networks (labelled as sw in the Figures that follow) the
clustering of lazy nodes is inversely proportional to the construction of trusted edges
and in larger networks disadvantageous to consensus reaching transmissions. Increasing
the number of nodes while keeping the sceptic-lazy proportion unchanged, we are also
bound to increase the probability of clusters of lazy nodes, thus to reduce the number
of trusted edges, in turn progressively reducing the number of runs in which consensus
is obtained. Results for the three configurations – i.e lazy, balanced and sceptic scale-
free networks – are plotted in Figure 6.4. These results show that in smaller networks
(10 to 30 nodes), clusters of lazy nodes occur relatively often: the results for the three

88 Chapter 6. Evaluation

configurations are grouped in a restricted area, between 13 and 23 runs with consensus
over 30. In these small networks, the denser groups of lazy nodes balance the reduced
number of trusted links by sceptics. Once network size increases, the positioning of lazy
nodes becomes more sparse. This topological factor crucially influences the number of
runs in which consensus is reached: in general, overly sceptic networks perform better
at becoming unanimous graphs. This can also be interpreted by saying that lazy nodes
are less strict in preserving their labelling, i.e more prone to change their minds.

Figure 6.4: Consensus in scale-free networks

As shown in the top graph of Figure 6.5, networks with trust and distrust present an
inverse correlation between size and the number of transmissions that reach consensus:
the smaller the network, the more often full labelling with a unique formula is obtained
(i.e., it is easier to reach consensus). Despite some differences in the reached peaks
by lazy and balanced networks, the overall behaviour is similar in all configurations:
balanced networks have the highest absolute number of such runs, while networks with
higher proportion of sceptic agents have the lowest number of consensus reaching trans-
missions. Networks with distrust significantly differ from those with trust only for the
total amount of consensus-reaching transmissions. We show this for balanced networks
in the bottom graph of Figure 6.5, as the same holds for lazy and sceptic networks: the
presence of a distrust routine has a strong impact on the ability of the network to reach
consensus in the presence of contradictory information, with no more than 9% of runs
reaching a full labelling by either p or ¬p (network of 40 nodes), while in the case of
networks with trust only this value reaches 63% (for networks of the same size).

The experimental results on consensus shown above empirically support the prop-
erties of (un)SecureNDsim derivations provided in Subsection 4.3.2. To observe this,

6.2. Epistemic Costs of Trust 89

Figure 6.5: Consensus in scale-free networks with distrust. Top: for all lazy, balanced
and sceptic configurations. Bottom: for balanced networks only.

consider that total networks are graphs in which the number of edges between nodes is
maximal, corresponding to derivations with the maximal number of branches, one for
each pair of agents (vi, vj) appearing respectively in the premises and in the conclusion.
Similarly, overly sceptic networks are graphs corresponding to derivations where more
instances of the verify_sceptic rule are used. In both cases, the number of executions
resulting in consensus are maximal. On the other hand, linear networks are graphs cor-
responding to derivations where the number of agents for which the ranking can be
transitively established is maximal, and overly lazy networks are graphs corresponding
to derivations where more agents implement the unverified_lazy rule.

90 Chapter 6. Evaluation

6.2.2 Epistemic Costs

The second type of experimental analyses we performed concerns epistemic costs. This
term refers to the computational expenses required to perform verification and dis-
trust operations: these correspond in the natural deduction calculus to instances of
rules verify_high and verify_sceptic for trust and rules unverified_contra and
unverified_lazy for distrust; in the algorithm they correspond to the Verify and
Distrust procedures. The effect of these procedures in the network is to generate
trusted and distrusted links, respectively. Given there are proportionally more nodes
than links and a message might pass more than once over a given node through several
senders, the values for costs are expected to be higher than those for links. In addition,
given the conditions for Verify are more than those for Distrust, the values of trust
can be expected to be higher than those for distrust. The aim is to assess these values
in the different topologies, to evaluate the proportion between trust and distrust costs
and to use them as parameters to evaluate these actions with respect to consensus and
complexity. We start by comparing balanced scale-free with random and linear net-
works with trust only, as in the top graph of Figure 6.6. The results can be summarised
as follows:

. Random networks are by far the most epistemically expensive;

. Linear networks are slightly less expensive than scale-free ones, by a very small
margin. If one is balancing costs against information diffusion, scale-free networks
should always be preferred to linear ones, since the associated costs do not diverge
much3;

. Given the previous observation on consensus and timeouts, it is obvious that
random networks are the worst performing.

We now compare in more detail average trust costs in scale-free networks in all agent
configurations (balanced, overly lazy and overly sceptic). The results are plotted in the
bottom graph of Figure 6.6. By definition, a network with a higher number of sceptic
nodes and confirmation requests will have higher trust costs. For small networks up to
40 nodes the costs are within a small range between 9 and 52; the difference increases
significantly between larger overly lazy and overly sceptic networks. Cost difference
remains comparably restricted for balanced and overly lazy networks (with a minimum
difference of 15 average points at 50 nodes). This suggests that if one is trying to
balance trust costs against consensus, large lazy networks should be preferred over
balanced ones, as in the latter case the number of runs with uniform labelling tends to
drop, while the costs still increase.

3As in general, scale-free networks are more resilient than linear ones.

6.2. Epistemic Costs of Trust 91

Figure 6.6: Top: Comparison of average costs of trust. Bottom: Average costs of trust
in scale-free networks.

Figure 6.7 and the associated Table show that the average rate of links and trust
costs is inversely proportional: the former increases from random, through linear, scale-
free and total networks, while the latter decreases. Given the fixed number of sceptic
agents across the various topologies, the decrease in costs should be mainly associated
with the ranking of agents and their order, while the increase in trusted links is purely

92 Chapter 6. Evaluation

due to the number of links in the network. From these data it appears that random
networks perform the worst, as the required costs are high but the obtained links are
less than in scale-free or linear networks.

Trust in total networks

Trust in linear networks

Trust in random networks

Trust in scale-free networks

 0

 3000

 6000Trusted Links 0

 500

 1000

 1500

 2000

Trust Costs

 0

 20

 40

 60

 80

 100

Runs

Average Average
Trusted Links Trust Cost

Random 47.78 940.92
Linear 77.78 434.16
Scale-free 102.21 415.42
Total 971.44 385.11

Figure 6.7: Trust distribution and average costs

The different topologies display a similar pattern with respect to distrust values. As
shown in Figure 6.8 and the associated Table of average values, random networks are
the most expensive with respect to distrust, and have the lowest number of distrusted
links; linear networks remain constrained in the number of distrusted links, with costs
decreasing; scale-free networks do not show a sensibly better behaviour, with compara-
ble number of distrusted links and costs; and finally, total networks perform best, with
the highest levels of links and relatively lower costs. As shown in the graph, the di-
verging behaviour of total and random networks is remarkable: the former have almost
stable distrust costs with increasing distrusted links, while the latter have stable links
with increasing costs.

Distrust in total networks

Distrust in linear networks

Distrust in random networks

Distrust in scale-free networks

 0

 500

 1000

Distrust Links

 0

 2000

 4000

Distrust Costs

 0

 20

 40

 60

 80

 100

Runs

Average Average
Distrust Links Distrust Cost

Random 35.4 167.38
Linear 71.82 130.18
Scale-free 75.29 134.5
Total 264.13 103.1

Figure 6.8: Distrust distribution and average costs

6.2. Epistemic Costs of Trust 93

The comparison between tables shows that the average number of trusted and dis-
trusted links grows in parallel, while the related costs decrease in a similar vein across
the different topologies. Nonetheless, this proportion is not linear. Trust propagates at a
much higher rate than distrust in these balanced networks, and there is a small difference
between scale-free and linear networks, where the former presents more distrust than
trust cost when compared to the latter. These observations suggest that trust in scale-
free networks is a more frequent and more relevant property in information transmission
than in linear graphs in general, and that the latter are less affected than scale-free ones
by distrust propagation.

We now briefly compare these experimental results with the meta-theoretical prop-
erties of the (un)SecureNDsim structural derivations from Subsection 4.3.2. Lemma 2 in
[Primiero et al. 2017] states that, given a fixed number of sceptic agents in a derivation,
the resulting value of trust instances, defined as epistemic costs, is only due to the appli-
cations of the verify_high rule. The applications of the rule in question map directly
to the number of order relations satisfied by agents in the derivation, and hence to the
number of agents that are higher in the order than the agent appearing in the conclu-
sion. Our experimental results show that this cost value is higher in random networks
than in graphs with a linear order, where the latter correspond to derivations such that
∀vi, vj ∈ V.(vi < vj)∨ (vi > vj). In the latter ones, a higher number of transitively valid
relation (due to the totality of the graph) means fewer instances of the verify_high
rule are applied. For the case of distrust costs, [Primiero et al. 2017, Lemma 3] states
that, given a fixed number of lazy agents, the value of distrust instances is only due
to the applications of the unverified_contra rule. The explanation above, mapping
order relation to topologies, holds in this latter case as well.

6.2.3 Rankings

To analyse results based on the ranking of the seeding nodes, we consider the correlation
between ranking and consensus in scale-free networks and investigate:

. whether a strictly higher ranking for one of the seeding nodes implies a greater
chance to obtain a unanimous graph labelled by the same formula;

. which type of scale-free networks (among overly sceptic, balanced and overly lazy)
has the higher probability to reach a unanimous graph from a seed with higher
ranking.

The results of our analysis are plotted at the top of Figure 6.9. This plot reports
the proportion of runs that reach consensus about a label from a higher ranked seed
(the RHS axis). Results can be summarised as follows:

94 Chapter 6. Evaluation

1. there is no strict correlation between a highly ranked seed and the labelling of the
network: the number of cases where the consensus is reached and the label is the
same as the one from the higher ranked seed is relatively small (min 1

7 , max 8
26);

2. an overly sceptic scale-free network offers the highest probability to obtain a
unanimous graph labelled with the input of the higher ranked node among the
seeds; the comparison between the lazy and the balanced network sees the former
obtain better results in general, and the latter only for significantly large networks.

The next evaluation of the data concerns the correlation of ranking of the seeds with
costs: namely, we investigate whether information transmission from equally ranked
seeds is more or less expensive than transmission from differently ranked ones. The
results for overly lazy, balanced and overly sceptic scale-free networks are plotted at the
bottom of Figure 6.9. The results can be summarised as follows:

1. contradictory information transmission from differently ranked nodes tends to
be more expensive than from equally ranked nodes in balanced and overly lazy
networks: here the costs are induced by a less stable labelling for the information
transmitted by higher ranked nodes;

2. in lazy networks, the higher costs of differently ranked seeds tend to collapse for
maximally large networks, where the costs are less than the corresponding seeding
with equally ranked nodes.

3. contradictory information transmission from equally ranked nodes tends to be
more expensive than from differently ranked nodes in overly sceptic networks:
this can be a symptom of the greater overall epistemic balance of the sources
spreading information, combined with the more common attitude of agents to
require confirmation.

6.2.4 Distrust and Epistemic Attitude

In the ensuing experiments, we focus on scale-free networks only and their distrust be-
haviour. First, we consider distrust as a parameter of the proportion of lazy agents in
a network of 300 nodes, with a random assignment of labels to seeding agents (lazy/s-
ceptic). As shown in Figure 6.10, there is a strict correlation between the proportion of
sceptic and the distrust behaviour: the more lazy agents are present in the network, the
higher its overall distrust value. While this is obvious in view of the algorithm design,
it is interesting to remark that in the case of a fully sceptic network (where no lazy
agents are allowed), the value of distrust is to be associated entirely with the presence
of contradictory information, and hence it can be used as a parameter of contradiction

6.2. Epistemic Costs of Trust 95

Figure 6.9: Top: Higher ranked seeds in consensus reaching network. Bottom: Costs
and Ranking.

diffusion. The associated Table offers average values over 100 runs. It illustrates that
conflict resolution is responsible on average for roughly 10% of the network’s distrusted
edges, with costs averaging at around a fraction 1

7 of those of a highly lazy network
(i.e., with 10% of sceptic agents).

96 Chapter 6. Evaluation

Distrust in SW networks parametric to sceptic proportion

 0
 200

 400
 600

Av. Distrust Links 0

 200

 400

Av. Distrust Costs
 0

 20

 40

 60

 80

 100

% Sceptic

% Sceptics Av. Distrusted Av. Distrust
Links Cost

10% 575.45 350.92
30% 170.11 276.79
50% 129.98 213.36
80% 69.2 113.83
100% 32.25 45.35

Figure 6.10: Distrust behaviour and epistemic attitude

We now extract the values for a balanced network (i.e., with 50% of sceptic agents)
and compare them to the initial distribution of seeds qualified as lazy-sceptic agents.
As Figure 6.11 shows, there is a strict correlation of the final distribution of distrust
values with the initial condition of the network: the range of minimal values for both
distrust costs and number of distrusted links is relatively stable, while their maximum
value decreases when moving from a configuration that has two sceptic agents as initial
nodes to one that has two lazy ones. The result on distrust across the network is less
influenced by the role of agents distributing the information than by the role of agents
receiving it.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

Sceptic-Sceptic Lazy-Sceptic Lazy-Lazy

C
o

s
ts

Low Distrust Costs
High Distrust Costs

 90

 100

 110

 120

 130

 140

 150

 160

Sceptic-Sceptic Lazy-Sceptic Lazy-Lazy

C
o

s
ts

Min no of Distrusted Links
Max no of Distrusted links

Figure 6.11: Initial nodes’ epistemic attitudes and distrust

6.2.5 Time Complexity

The final analysis concerns the time complexity calculated as running time efficiency.
Recall that each step in the simulation expresses one message transmission or equiv-
alently a epistemic operation of verification or distrust. For the purposes of our ex-
periments, running time complexity is computed as a function relating the size of the
network (in terms of the number of nodes) with the number of time steps required for
termination (i.e. to fully label the graph), using the same data for networks of fixed

6.2. Epistemic Costs of Trust 97

Figure 6.12: Top: Time complexity. Bottom: Best fit comparisons.

dimensions between 10 and 300 nodes as in Section 6.2, with a total of 30 data points
spaced every 10 nodes. We wish to know whether and in which way the network topol-
ogy affects this relation. We find that the computational complexity of the algorithm
belongs to the linear class. In Figure 6.12, we concentrate on the average values of a bal-
anced scale-free network and compare them against linear, random and total networks.
This comparison is shown in the top graph of Figure 6.12. For the random network, in

98 Chapter 6. Evaluation

view of the time-out conditions mentioned in Subsection 6.2.1, the graph only reports
the values for the terminating runs. The results can be summarised as follows:

1. Linear networks are the most computationally expensive in terms of the time it
takes for the procedure to terminate;

2. Scale-free are at most as expensive as random ones;

3. Total networks have a linear increase of the computational complexity in the
number of nodes and require the shortest time to terminate.

The difference between total networks (the cheapest ones) and linear networks (the
most expensive ones) is over 150 steps. The algorithm has complexity O(n), see the
dotted line of the bottom graph of Figure 6.12 for the best fit of a linear function to
the data for scale-free and random networks.

Obviously, compared to the balanced network cases, time complexity of an overly
lazy scale-free network will be lower than that of a balanced one, as a result of the lower
number of confirmation steps that are required to fully label the graph. Correspond-
ingly, time complexity of an overly sceptic network will be higher, as a result of the
higher number of confirmation steps required to fully label the graph.

6.3 The Tangle DAG Multi-Agent Simulation

In this Section, we present and evaluate experimental results from the paper
[Bottone et al. 2018] for the Tangle DAG random graph model simulations introduced
in Section 5.4.

6.3.1 Initial Findings and Comparisons

The interface setup is shown in Figure 6.13, which also shows the Netlogo 3D View in
action while the Tangle is being simulated using a spring-loaded layout started at the
origin, and different colours for cutsets, and two graph and node statistics, namely the
number of tips not and the cumulative weight cw. In our exploratory simulations, we
replicated the theoretical intuitions of the whitepaper [Popov 2017] and the simulations
of [Kusmierz 2017] in that the incoming tip process bounds the random fuctuations of
the number of tips in T (t) in a narrow band around a multiplicative constant of λ and
λ t for the uniform random (Figure 6.14c) and MCMC tip selection strategies (Figure
6.14d), respectively; and that the cumulative weight of nodes grows linearly in time
after the initial burn-in, as in Figure 6.14b, while the edge distribution shape (Figure
6.14a) remains mostly unchanged around an average of 4 as the Tangle grows. We
also found that the Tangle samples have a pleasing visual structure, already apparent
in Figure 5.11 of Section 5.4. The viewing perspectives of the NetLogo simulator also

6.3. The Tangle DAG Multi-Agent Simulation 99

Figure 6.13: The NetLogo Interface View with a 3D rendering

simplify inspection of nodes when looking for further structure, enabling zooming in and
out of the current visualisation, and the nw and filename extensions provide facilities
for saving data in graphml and text file format for further processing or for using the
simulations as graphical environments for more complex agent strategies.

6.3.2 Conjectures

The preliminary analysis of the Tangle T in NetLogo has also revealed an interesting
phenomenon, which is more prominent for some values of α in the range 0.01 − 0.7.
The DAG structure naturally induces a hierarchy of cutsets in terms of the variable cw,
which reveals how the parameter λ really drives the width of the network, acting as
a bottleneck when the random clock creates a low number of new nodes. Figure 6.15
gives a clearer view of this phenomenon.

In addition to what is currently known about the desirability of exponentially biased
tip selection strategies as studied in [Popov 2017, Popov et al. 2017], we would like to
find out if there is some optimality principle to drive tip selection. We first observe
that the architecture of the Tangle Markov Chain can be viewed as a special case of a
directed network that has become commonplace in the Deep Learning literature, where
each hidden layer is one state of the chain, and the initial genesis transaction is in a par-

100 Chapter 6. Evaluation

(a) (b)

(c) (d)

Figure 6.14: Statistics from a random sample of 25256 nodes, stopped at T1010, ρ = 10, λ = 25,
α = 0.01. (a) Edge distribution: d(v) := 2 + din(v). (b) cw of genesis node at T1010, ρ = 10,
λ = 25, α = 0.01. The other nodes have the same behaviour. (c) Number of tips after T1010
ρ = 10, λ = 25, α = 0.01 stays on average around λ. (d) Number of tips after T1010, 25256

nodes. ρ = 10, λ = 25, α = 2 drifts linearly in the number of ticks.

ticular sense the higher-level representation of the information stored in the distributed
ledger T . Such networks are often randomly initialised and updated. The Tangle of
course is not a collection of neurons, but it is very much an artificial information-
processing structure. The transition probability in (4.1) of Subsection 4.4.4 provides a
mean-field criterion for signal propagation deep into the network, as recently discovered
for DNNs by [Shoenholz et al. 2017]. An information-theoretical explanation called the
information bottleneck based on the Bellman optimality principle has been suggested
by [Schwartz-Ziv & Tishby 2017]. If we denote with T a compressed variable, such an
algorithm minimises minp(t|x) I(X;T)− βI(T ;Y) with I(X;T) and I(T ;Y) the mutual
information between X;T and T ;Y , respectively, and β a Lagrange multiplier, which

6.3. The Tangle DAG Multi-Agent Simulation 101

Figure 6.15: Bottleneck views in the igraph visualisation package

provides a growth bound for action by independent agents and walkers on the structure
[Tishby & Polani 2010]. Just as a DNN is designed to learn how to describe a feature X
to predict a function Y and eventually compress X to only hold the information related
to Y, in the same vein one might arrive at an efficient, robust representation of informa-
tion in the distributed ledger that is expressive, relevant information-rich and resistant
to attack and propagates information in the network efficiently and instantaneously
[Poole et al. 2016].

6.3.3 Multi-agent Analysis of Parasite Strategies

Currently, our simulated multi-agent system only implements a mixture of naive par-
asite strategies such as building an offline linear network and incrementally attaching
it to the main Tangle at successive, evenly-spaced points, which tend to have a neg-
ligible effect for sufficiently large λ. A further step for the analysis presented here,

102 Chapter 6. Evaluation

which we reserve for future work, is to study the evolution of the Tangle information
structure under sophisticated attack vectors, which is often found in biological virus
attacks. For example, in Section 4.2 of [Popov 2017], a possible splitting attack scheme
towards a Tangle network implementing a MCMC algorithm based on dynamic load-
balancing of different branches containing conflicting information is mentioned; these
complex strategies could be modelled in our framework by using NetLogo to simu-
late the environment and implementing agents as malicious nodes using a high-level
planning framework based on the Belief-Desire-Intention architecture, either in NetL-
ogo directly or by linking with the Jason development environment as recently done in
[Ramirez & Fasli 2017]. Additionally, we consider endowing the nodes of T with further
internal variables, such as smart contract items γ that can be used to deal with trust
and distrust, and study contradictory information resolution alongside the approach
adopted in [Primiero et al. 2017].

Chapter 7

Conclusion and Further Work

104 Chapter 7. Conclusion and Further Work

In this thesis, we have presented our progress towards a practical implementation
of scalable and extensible information-based multi-agent systems within the framework
of agoric computation. In what follows, we take stock of what has been achieved with
respect to the central aim of the body of work underlying this thesis, and offer concluding
remarks and suggestions for future work.

7.1 The State of Agoric Computation

In this Section, we give a brief summary of the main contributions of our thesis with
respect to the research aims and how they have been supported.

7.1.1 Publish-Subscribe Patterns

In particular, we have established that the publish-subscribe programming pattern,
when coupled with open-source multi-agent development environments and rule-based
programming, provides a viable infrastructure for building abstractions based on the
context and theories reviewed in Chapters 2 and 3, and that once one addresses informa-
tion flows in open systems within a coherent framework for filtering raw facts and local
data into higher-order representations describing the overall functioning of the system,
one can build robust, effective systems that mimic real world behaviour. Clearly, the
way components and agents ‘talk’ to each other in the pursuit of collective computation
via lightweight messaging protocols is an essential part of any engineered system con-
sisting of a large number of components, providing a common language for computation
in much the same way, for instance, electrical impulses via the central nervous system
provide a communication language for coordination and effecting and feeding back local
changes in the human body that dispenses with the low-level subsystems occurring in
the central and peripheral parts.

7.1.2 Trust in Cyber-Physical Systems

We have also shown that simple mathematical rules for consistency based, for instance,
on the natural deduction calculus allow for contradiction handling and assessing the
epistemic cost of trust under computational constraints the context of typical, fixed
network models that can be easily simulated and used to monitor and analyse the emer-
gence of trust as an overall assessment of agoric systems and the effect of contradictory
information in the presence of various proportions of epistemic attitudes possessed by
agents. In addition, we have shown that starting from simple selection rules for one can
build large yet relatively lightweight dynamic graphs (or ledgers) for embodying trust
and cross-verifying a growing body of transactions, which holds promise for building
trusted data interchange. More work, of course, needs to be done to confirm the va-
lidity of these computational model for trust but, at its face value, the basic idea is

7.2. Limitations of the Current Approach 105

appealing: that by pruning, selection and variation/exploration it is possible to build
robust systems that align incentives, extract actionable information and replicate some
of the attractive real-world characteristics of marketplaces in the face of a deluge of
data, bringing to fruition the thus far unrealised vision of agoric computing.

7.1.3 Facets of Information

More generally, the variety of forms that ‘information’ may take in an agoric system is
one of the strengths of this approach. Out of an infinite choice of possible modalities,
we have specifically addressed three special cases: those of information carried, received
and transmitted by agents as a numerical quantity, the case of information as a logical
statement and its negation (coupled with binary epistemic modalities for agents), and
that of information as an internal variable for accumulated, cross-verified transaction
graphs in a trust network. Work is also underway to apply the principles presented in
this thesis to a computationally grounded formalism to model trust as currency in a
system of agents, mentioned in Section 7.3.

7.2 Limitations of the Current Approach

No discussion would be complete without an overview of the overall limitations of the
agoric computation framework. Three critiques could be advanced as to the present
direction.

7.2.1 Simplicity

The first one is the valid criticism that by focusing on simple, rule-based approaches,
the resulting engineered systems end up being too simple to be relevant, since in real-life
systems and production software feedback loops, bugs and errors reign supreme, and –
for instance – sensor data and transaction handshakes exhibit a lot of noise. In the case
of the natural deduction calculus-based approach, for instance, a spectrum of epistemic
modalities and rankings of agents has yet to be attempted, and it is not as clear-cut
that the same results would hold for the kind of networks we study. We counter that
the vast majority of complex systems often descend from simple rules and advance by a
thousand cuts by Ockham’s razors; in the field of software engineering, for example, it
is hard to beat in terms of reliability the code1 that has sent in space both Saturns and
the Space Shuttles in the last four decades, which is very simple, almost error-free code
and has been recently published on GitHub for the Apollo 112. Many other natural and
artificial systems achieve great complexity despite the limited set of actions available

1In contrast to software, hardware fails surprisingly often in mission-critical contexts.
2https://github.com/chrislgarry/Apollo-11

https://github.com/chrislgarry/Apollo-11

106 Chapter 7. Conclusion and Further Work

to their subcomponents, and one could contend that decomposability of rules and high
level function is almost a necessary condition for expressive, robust systems. Relatedly,
the case of agoric systems where the number of components varies substantially in any
direction as time progresses is more difficult to study and formalise than systems based
on a fixed or growing number of components; an example for data is given by RAID
architectures, where the main aim is to preserve the integrity and contents of the system
rather than achieving internal representation; such scenarios would constitute a rigorous
testbed of the agoric approach.

7.2.2 Languages

The second, related critique concerns the software tools that have been used to validate
this approach. In principle, any Turing-complete programming language can be used
to formally validate the agoric computation approach, and one could contend that a
large part of the performance of a system reflects the implementation of the software
tool used rather than the multi-agent system per se. Despite the common, Java virtual
machine-based basis of the systems we studied, one could easily counterpoint that using
two software simulation environments to test what should be a unifying framework is a
bit of an odd choice. However, our framework for agoric computation is not defined by
a simple language for expressing rules, but instead expresses a methodology and a set of
principles for constructing robust, relevant abstractions that are nevertheless grounded
in real facts and data.

7.2.3 Verification

The third critique which we envisage is that we have said little in the way of mathe-
matical verification and model-checking in the body of work presented in this thesis.
However, its main focus lies elsewhere and a self-contained discussion of these tech-
niques would easily take up a dedicated monograph. We point out that the same
variety of forms for information that we have addressed in the archetypal models of
Chapters 4 and 5 is easily amenable to the automated validation techniques inherent
in model checking and automated theorem proving because of how agoric processes are
constructed. At its core, verification takes a set of inputs such that a logical statement,
program or theorem, parses it in a prover or checker and produces a set of outputs –
which could be a set of binary outcomes such as valid/not valid, or a formal proof, or
a counterexample. All rules, statements and programs must be stated in formal logic,
where the assumptions are apparent. This thesis has briefly touched on the practical
applicability of proof systems such as propositional, natural deduction, higher order
logic and BDI logics, which can fruitfully be subject to techniques such as automated
resolution [Harrison 2009], process calculi, and Gentzen calculi [Poggiolesi 2011], and
these can be used to prove the robustness of the agoric approach. Future work should,

7.3. Future Directions 107

in due course, look at the formal specification of agoric multi-agent models in such a
way that they behave as expected at large scale – in the ballpark of millions rather than
the hundreds and thousands studied here – while still maintaining their nimbleness.

7.3 Future Directions

In the preceding Section 7.1, we have mentioned work on a computationally grounded
system for trust that is currently in preparation and review. In the context of banking
networks and autonomous interactive systems, trust-derived concepts and informational
efficiency are crucial. We describe this in more detail in the following notes, along with
related thematic areas that we are currently investigating.

In particular, the following work is being pursued:

. A computationally grounded formalism to model trust in a system of agents. Here
trust is expressed by a function derived from the local states of agents and from
the observable states of other agents within the semantics of Interpreted Systems
[Fagin et al. 1995]. This approach allows the simulation of trust relations, and
trust thresholds for related fiduciary concepts such as untrust, mistrust, distrust
between agents and a detailed analysis of their dynamics, where the focus is on
the interplay between the flow of information in a collection of autonomous yet
interacting entities, and some properties of the system such as opacity3 so that the
sudden collapse of trust in networks can be studied; this is useful, for instance, for
simulating regulatory scenarios for government officials. Money, or its time equiv-
alent, is as good a yardstick to measure trust [Simmel 1907], and it has been one
of the insights of [Minsky 1986] that assigning mental currencies to loosely compa-
rable alternatives competing for certain limited resources in a society of agents is
one explicit way to compute things and study their evolution. Our starting point
is [Yasutomi 1995]’s classic conceptual model of the emergence of money, whereby
agents {Ag1, . . . , AgN} produce one type of item (or good, or token) to be con-
sumed, which might be an item of information of something else that engenders
trust (for simplicity, we suppose that agent i produces item i). Agents interact
via random search of the agent space and elementary pairwise transactions where
they exchange items according to specific rules and take turns, and the state
of the system evolves via three bookkeeping vectors of holdings, demand, and a
world-view of how trusted another agent is, which models their preferences; such
a system has been replicated for different network topologies by [Paolucci 2013],
and we build on this by stressing the temporal, informational element to fiduciary
modelling. Trust is distinct from reputation in that the latter is a belief about

3Or transparency: i.e. the degree by which something is visible to other components.

108 Chapter 7. Conclusion and Further Work

some known past attribute4; in contrast, trust is forward-looking, and encodes a
belief that some trusted agent will not exploit the truster’s dependence and vul-
nerability5, and can be conceptually imagined as the mental process of leaping, via
a suspension of belief, across the chasm of the unknowable from an interpretation
(and experience) to a state of expectation (positive in the case of trust, nega-
tive for distrust) towards other agents’ actions and intentions [Nooteboom 2002].
This extrapolation, or “leap of faith” makes it both more difficult to measure, and
more interesting to study from a computational, information theoretic perspective
since trust and trustworthiness are intimately connected with how to model new
situations and possibly changes in the environment; this is reflected by extending
the world view of agents by a further bookkeeping vector encoding their future
expectation of trustworthiness.

. Lattice based models and propagator networks. In previous unpublished work,
we explored the feasibility of the lattice theory of information based on discrete,
decomposable combinatorial structures [Shannon 1953], which is sufficiently gen-
eral to serve as a basis for models of phenomena in an arbitrarily structured and
countable space of possibilities6. In this formulation, information is something
that has a value and is common to agents a ∈ Ag at a given time, i.e. an equiv-
alence class of all ways of describing the same information possessed by agents.
Such equivalence classes serve as the basic information elements of a system, and
are parametrised by set partitions whose algebraic lattice superstructure satis-
fies a closure and consistency property. Values can be positive, or negative, and
roughly correspond to perceptions of benefit and cost. Values embody variety
and diversity within the environment; the key assumption is that a quantitative,
universal, and domain independent representation of value is required for a model
of exchange, just like in Minsky’s society, and serves as a store of information
that can be used for integration and transformation. Beliefs about these values
can be quantified within a categorical, logical, numerical or symbolic system. Be-
liefs about values, when mapped to a probability space, give rise to distributions.
and one can build a quite powerful mathematical theory of integrated dynami-
cal systems using, for instance, partition-dependent functional stochastic integra-
tion [Rota & Wallstrom 1997], which turns out to be quite useful in computation
and concurrency. More recently, lattice-based data structures have been used
by [Kuper & Newton 2013] in the context of deterministic parallel programming,

4Which can be analysed in hindsight, weighing capabilities and statistics, and common pitfalls such
as adverse selection mitigated.

5And thus can be analysed as expectation, and its pitfalls as moral hazard long studied using
game-theoretical techniques.

6As such it was conceived by Shannon as a theory of information for communication problems in
which there exist a possibly large number of information sources simultaneously in operation.

7.3. Future Directions 109

and several other authors, e.g. [Kmett 2017, Meiklejohn & Van Rooy 2015] have
noticed that the propagators models of Subsection 2.1.7 in Chapter 2 represent
monotone function between join-semilattices, thus one can recast a propagator
network as a hypergraph with propagators for hyperedges, and join-semilattices
for nodes, thus unifying several of the mathematical formulations of Chapter 2.
One useful property is that if every semilattice is finite, naive propagation termi-
nates and yields a deterministic, rather than nondeterministic result, regardless of
scheduling strategy, redundant firings, or evaluation order: conflict-free Conver-
gent Replicated Data Types (CRDTs), Datalog, SAT solving, functional reactive
programming, and constraint programming all fit into this mould.

. The PAC approach to information flow in a dynamic network. In this vein, we
mentioned the information bottleneck theory in the context of the evaluation of
the DAG structure of our work on distributed ledgers in Subsection 6.3.2. The
perception-action loop [Tishby & Polani 2011] provides a principled information-
theoretical framework for sensing and acting under information constraints, and
thus a path to easily simulate biological and AI-inspired systems, by replicating
the feedback loop of reasoning organisms in real life: that is, most goal-oriented
systems in noisy, constantly changing environments balance the cost of storing
information about the past against the payoff of achieving the desired goals in
the future, using standard mathematical concepts such as mutual information,
distortion-rate theory, the Bellman-Laplace equation for first-order conditions and
Partially Observable Markov Decision Processes (POMDP). In particular, one
could generalise POMDP7 to allow the agents to update their policies based on
new data as the simulation (or time) unfolds, of otherwise handle unexpected con-
tingencies as conditions change, which fits broadly with the areas of study of this
thesis. as in the wider literature in cognitive agents, the focus is on perceptions-
goal oriented hypotheses generation, directed by active predictions and useful
decisions that are then tested by external o internal information gathering. The
main aim is to reduce decision complexity, maximise the environment information
gain, and increase robustness to model fluctuations.

7See also, from a model checking perspective, [Kwiatkowska 2013].

Bibliography

[Abbass et al. 2016] Hussein A Abbass, George Leu and Kathrin Merrick. A Review of
Theoretical and Practical Challenges of Trusted Autonomy in Big Data. IEEE
Access, vol. 4, pages 2809–2830, 2016. (Cited on page 25.)

[Abbass et al. 2018] Hussein A Abbass, Jason Scholz and Darryn J Reid, editors. Foun-
dations of trusted autonomy, volume 117 of Studies in Systems, Decision and
Control. Springer, 2018. (Cited on page 25.)

[Abelson et al. 1996] Harold Abelson, Gerald Jay Sussman and Julie Sussman. The
structure and interpretation of computer programs. MIT Press, 2nd édition,
1996. (Cited on page 23.)

[Abramsky 1997] Samson et al. Abramsky. Semantics of Interaction: An Introduction
to Game Semantics. In Semantics of Logic and Computation. Publications of
the Newton Institute, 1997. (Cited on page 23.)

[Akkaya 2016] Ilge Akkaya. Data-Driven Cyber-Physical Systems via
Real-Time Stream Analytics and Machine Learning. PhD the-
sis, EECS Department, University of California, Berkeley,
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-159.html,
October 2016. (Cited on page 7.)

[Aldous & Lanoue 2012] David Aldous and Daniel Lanoue. A lecture on the averaging
process. Probability Surveys, vol. 9, pages 90–102, 2012. (Cited on page 19.)

[Aldous et al. 2014] David Aldous, Daniel Lanoue and Justin Salez. The Compulsive
Gambler Process. arXiv:1406.1214 [math.PR], 2014. (Cited on page 19.)

[Aldous 2013] David Aldous. Interacting Particle Systems as Stochastic Social Dynam-
ics. Bernoulli, vol. 19, no. 4, pages 1122–1149, 2013. (Cited on page 19.)

[Androutsopoulos et al. 2018] K Androutsopoulos, L Aristodemou, J Boender, M Bot-
tone and E Al. MIRTO: an Open-Source Robotic Platform for Education. In
European Conference of Software Engineering Education (ECSEE2018), 14-15
June 2018 (Accepted/In press), June 2018. (Cited on page 83.)

[Arthur 2016] T W Richard Arthur. Natural deduction: An introduction to logic with
real arguments, a little history, and some humour. Broadview Press, 2016. (Cited
on page 35.)

112 Bibliography

[Attie & Lynch 2016] Paul C Attie and Nancy A Lynch. Dynamic input/output au-
tomata: A formal and compositional model for dynamic systems. Information
and Computation, vol. 249, pages 28–75, August 2016. (Cited on page 21.)

[Awodey 2006] Steve Awodey. Category theory. Oxford University Press, 2006. (Cited
on page 22.)

[Baier & Katoen 2008] Christel Baier and Joost-Pieter Katoen. Principles of model
checking. MIT Press, 2008. (Cited on page 8.)

[Balduzzi 2014] David Balduzzi. Cortical Prediction Markets. In Proceedings of the
14th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2014), Paris, France, May 5-9, pages 1265–1272, 2014. (Cited on
page 23.)

[Balduzzi 2016] David Balduzzi. Grammar for Games: a Gradient-Based, Game-
Theoretic Framework for Optimization in Deep Learning. Frontiers in Robotics
and AI, vol. 2:39, pages 1–14, January 2016. (Cited on page 23.)

[Barabasi 2015] Albert Barabasi. Network science. Cambridge University Press, 2015.
(Cited on pages 39 and 46.)

[Barbieri & Mascardi 2011] Matteo Barbieri and Viviana Mascardi. Hive-BDI: Extend-
ing Jason with Shared Beliefs and Stigmergy. In ICAART (2), pages 479–482.
Citeseer, 2011. (Cited on pages 66 and 67.)

[Barbon et al. 2016] Gianluca Barbon, Michael Margolis, Filippo Palumbo, Franco Rai-
mondi and Nick Weldin. Taking Arduino to the Internet of Things: the ASIP
programming model. Computer Communications, 2016. (Cited on page 65.)

[Baum 2003] Eric B Baum. What is thought? MIT Press, 2003. (Cited on pages 10
and 11.)

[Beni 2004] Gerardo Beni. From swarm intelligence to swarm robotics. In International
Workshop on Swarm Robotics, pages 1–9. Springer, 2004. (Cited on page 64.)

[Besnard & Hunter 2008] Philippe Besnard and Anthony Hunter. Elements of argu-
mentation. MIT Press, 2008. (Cited on page 26.)

[Birman & Joseph 1987] K. Birman and T. Joseph. Exploiting Virtual Synchrony in
Distributed Systems. SIGOPS Oper. Syst. Rev., vol. 21, no. 5, pages 123–138,
November 1987. (Cited on pages 24 and 31.)

[Bollobás 1998] Bela Bollobás. Modern graph theory. Springer, 1998. (Cited on
page 39.)

Bibliography 113

[Bonabeau 1999] Eric Bonabeau. Editor’s introduction: stigmergy. Artificial Life, vol. 5,
no. 2, pages 95–96, 1999. (Cited on page 64.)

[Bordini et al. 2007] R. H. Bordini, J. F. Hübner and M. J. Wooldridge. Program-
ming Multi-Agent Systems in AgentSpeak Using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007. (Cited on pages 32 and 83.)

[Bordini et al. 2009] Rafael H Bordini, Mehdi Dastani, Jürgen Dix and Amal El Fallah
Seghrouchni, editors. Multi-agent programming: Languages, tools and applica-
tions. Springer, 2009. (Cited on page 34.)

[Bottone et al. 2016a] Michele Bottone, Filippo Palumbo, Giuseppe Primiero, Franco
Raimondi and Richard Stocker. Implementing Virtual Pheromones in BDI
Robots Using MQTT and Jason (Short Paper). In 2016 5th IEEE International
Conference on Cloud Networking (Cloudnet), 03-05 Oct 2016, Pisa, Italy., pages
196–199, 2016. (Cited on pages 62, 64, 82, 83 and 84.)

[Bottone et al. 2016b] Michele Bottone, Giuseppe Primiero, Franco Raimondi and Vin-
cenzo De Florio. A Model For Trustworthy Orchestration in the Internet of
Things. In Proceedings of the 12th International Conference on Intelligent En-
vironment 2016, London (UK), 14-16 Sept. 2016, pages 171–174, 2016. (Cited
on pages 44, 45, 62, 68, 82, 84 and 85.)

[Bottone et al. 2016c] Michele Bottone, Giuseppe Primiero, Franco Raimondi and
Neha S Rungta. From Raw Data to Agent Perceptions for Simulation, Veri-
fication, and Monitoring. In 12th International Conference on Intelligent En-
vironment 2016:- 5th International Workshop on Reliability of Intelligent Envi-
ronments (WoRIE’16), pages 66–75. IOS Press, 2016. (Cited on pages 42, 62
and 82.)

[Bottone et al. 2018] Michele Bottone, Franco Raimondi and Giuseppe Primiero. Multi-
agent based simulations of block-free distributed ledgers. In Accepted In: E3WSN,
Co-located with the 32nd IEEE Conference AINA-2018, 16-18 May 2018, Ped-
agogical University of Cracow, Poland, 2018. (Cited on page 98.)

[Boyen et al. 2017] Xavier Boyen, Christopher Carr and Thomas Haines. Blockchain-
Free Cryptocurrencies: A Framework for Truly Decentralised Fast Transactions.
https://eprint.iacr.org/2016/871.pdf, 2017. (Cited on page 54.)

[Bratmann 1999] M.E. Bratmann. Intention, Plans, and Practical reason. Cambridge
University Press, 1999. (Cited on pages 6 and 32.)

[Bühlmann 1979] Niklas Bühlmann. Trust and power. Wiley, 1979. (Cited on page 26.)

114 Bibliography

[Burnett et al. 2011] Chris Burnett, Timothy J Norman and Katia Sycara. Trust
Decision-Making in Multi-Agent Systems. In IJCAI2011 – 22nd International
Joint Conference on Artificial Intelligence, 2011. (Cited on page 26.)

[Buzsaki 2006] Gyorgy Buzsaki. Rhythms of the brain. Oxford University Press, 2006.
(Cited on page 11.)

[Cardelli & Gordon 1998] Luca Cardelli and Andrew D Gordon. Mobile Ambients. Elec-
tronic Notes in Theoretical Computer Science, vol. 10, pages 198–201, 1998.
(Cited on page 19.)

[Cardelli & Gordon 2000] Luca Cardelli and Andrew D Gordon. Mobile Ambients. The-
oretical Computer Science, vol. 240, no. 1, pages 177–213, June 2000. (Cited on
page 19.)

[Castelfranchi & Falcone 2001] Cristiano Castelfranchi and Rino Falcone. Trust and
deception in virtual societies, chapter Social Trust: A Cognitive Approach, pages
55–90. Springer, 2001. (Cited on page 27.)

[Castelfranchi & Falcone 2010] Cristiano Castelfranchi and Rino Falcone. Trust theory:
A socio-cognitive and computational model. Wiley, 2010. (Cited on pages 26
and 27.)

[Chastain et al. 2013] Erick Chastain, Adi Livnat, Christos Papadimitriou and Umesh
Vazirani. Algorithms, games, and evolution. Proceedings of the National
Academy of Sciences, vol. 111, no. 29, pages 10620–10623, 2013. (Cited on
page 9.)

[Chazelle 2012] Bernard Chazelle. Natural Algorithms and Influence Systems. Commu-
nications of the ACM, vol. 55, no. 12, pages 101–110, 2012. (Cited on page 21.)

[Chen et al. 2013] Taloue Chen, Vojtech Forejt, Marta Kwiatkowska, David Parker and
Aistis Simaitis. PRISM-games: A Model Checker for Stochastic Multi-Player
Games. In Proceedings of TACAS’13, 2013. (Cited on page 23.)

[Churyumov 2015] Anton Churyumov. Byteball: A Decentralized System for Storage
and Transfer of Value, 2015. (Cited on page 54.)

[Clancey et al. 1998] W. J. Clancey, P. Sachs, M. Sierhuis and R. Van Hoof. Brahms:
Simulating Practice for Work Systems Design. International Journal of Human-
Computer Studies, vol. 49, no. 6, pages 831–865, 1998. (Cited on page 33.)

[Da Costa Pereira et al. 2015] Célia Da Costa Pereira, Andrea Tettamanzi and Serena
Villata. A Computational Model of Trust Based on Message Content and Source.

Bibliography 115

In Proceedings of the 2015 International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’15), pages 1849–1850, 2015. (Cited on page 27.)

[Da Gama Batista et al. 2015] J Da Gama Batista, J-P Bouchaud and D Challet. Sud-
den Trust Collapse in Networked Societies. The European Physical Journal B,
vol. 88, no. 10.1140/epjb/e2015-50645-1 55, 2015. (Cited on page 27.)

[De Florio & Primiero 2015] Vincenzo De Florio and Giuseppe Primiero. A method
for trustworthiness assessment based on fidelity in cyber and physical domains.
CoRR, vol. abs/1502.01899, 2015. (Cited on pages 44, 45, 70 and 71.)

[Derler et al. 2012] Patricia Derler, Edward A Lee and Alberto Sangiovanni Vincentelli.
Modeling Cyber–Physical Systems. Proceedings of the IEEE, vol. 100, no. 1,
pages 13–28, January 2012. (Cited on page 7.)

[DeVille & Lerman 2011] R.E. Lee DeVille and Eugene Lerman. Dynamics on Net-
works I: Combinatorial Categories of Modular Continuous-Time Systems.
arXiv:1008.5359v2 [math.DS], 2011. (Cited on page 22.)

[DuBois et al. 2011] Thomas DuBois, Jennifer Golbeck and Aravind Srinivasan. Pre-
dicting Trust and Distrust in Social Networks. In Privacy, Security, Risk and
Trust (PASSAT) and IEEE Third Inernational Conference on Social Computing
(SocialCom), pages 418–424, 2011. (Cited on page 27.)

[Fagin et al. 1995] Ronald Fagin, Joseph Y Halpern, Yoram Moses and Moshe Y Vardi.
Reasoning about knowledge. MIT Press, 1995. (Cited on page 107.)

[Flack 2017] Jessica C Flack. Coarse-graining as a downward causation mechanism.
Philosophical Transactions of The Royal Society A, vol. 375, no. 20160338, 2017.
(Cited on page 5.)

[Floridi 2010] Luciano Floridi. Information: A very short introduction. Oxford Univer-
sity Press, 2010. (Cited on page 10.)

[Foundation 2017] IOTA Foundation. IOTA: A Cryptocurrency for the Internet of
Things, 2017. (Cited on pages 54 and 59.)

[Fournet & Gonthier 1996] Cédric Fournet and Georges Gonthier. The reflexive chemi-
cal abstract machine and the join-calculus. In Proceedings of 23rd ACM Sympo-
sium on Principles of Programming Languages (POPL’96), St Petersburg, FLA,
pages 372–385, 1996. (Cited on page 20.)

[Fournet et al. 1996] Cédric Fournet, Georges Gonthier, Jean-Jacques Levy, Luc
Maranget and Didier Rémy. A Calculus of Mobile Agents. In CONCUR’96

116 Bibliography

– Proceedings of the 7th International Conference on Concurrency Theory, vol-
ume 1119 of Lecture Notes in Computer Science, pages 406–421. Springer-Verlag,
1996. (Cited on page 20.)

[Fudenberg & Tirole 1991] Drew Fudenberg and Jean Tirole. Game theory. MIT Press,
1991. (Cited on page 23.)

[Gambetta 1990] Diego Gambetta, editor. Trust: Making and breaking cooperative
relations. Blackwell, 1990. (Cited on page 26.)

[Gambetta 2001] Diego Gambetta. Can we trust trust? In Diego Gambetta, editor,
Trust: Making and Breaking Cooperative Relations, chapter 13, pages 213–237.
Basil Blackwell, 2001. (Cited on page 26.)

[Golbeck 2006] Jennifer Golbeck. Combining Provenance with Trust in Social Networks
for Semantic Web Content Filtering. In IPAW’06 – Proceedings of the 2006
international conference on Provenance and Annotation of Data, Chicago, IL
–May 03 - 05, 2006, pages 101–108. Springer Berlin / Heidelberg, 2006. (Cited
on page 26.)

[Goldin et al. 2006] Dina Goldin, Scott A Smolka and Peter Wegner, editors. Interac-
tive computation: The new paradigm. Springer-Verlag Berlin Heidelberg, 2006.
(Cited on pages 4 and 9.)

[Graeber 2011] David Graeber. Debt: The first 5000 years. Melville House Publishing,
2011. (Cited on page 53.)

[Grassé 1959] Plerre-P Grassé. La reconstruction du nid et les coordinations interindi-
viduelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stig-
mergie: Essai d’interprétation du comportement des termites constructeurs. In-
sectes sociaux, vol. 6, no. 1, pages 41–80, 1959. (Cited on page 64.)

[Guha et al. 2004] R Guha, Ravi Kumar, Prabhakar Raghavan and Andrew Tomkins.
Propagation of Trust and Distrust. In WWW2004, May 17–22, New York NY,
pages 403–412, 2004. (Cited on page 27.)

[Hang et al. 2009] Chung-Wei Hang, Yonghong Wang and Munindar P Singh. Opera-
tors for Propagating Trust and their Evaluation in Social Networks. In Decker,
Sichman, Sierra and Castelfranchi, editors, Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems (AAAMAS 2009),
pages 1025–1032, 2009. (Cited on page 27.)

[Harrison 2009] John Harrison. Handbook of practical logic and automated reasoning.
Cambridge University Press, 2009. (Cited on page 106.)

Bibliography 117

[Hayek 1937] F A Hayek. Economics and Knowledge. Economica, vol. IV (new series),
pages 33–54, 1937. (Cited on page 9.)

[Hayek 1945] F A Hayek. The use of knowledge in society. American Economic Review,
vol. 35, no. 4, pages 519–530, 1945. (Cited on page 9.)

[Hayek 1952] F A Hayek. The sensory order. University of Chicago Press, 1952. (Cited
on page 9.)

[Hebb 1949] Donald O Hebb. The Organization of Behavior: a Neurophysiological
Theory. John Wiley & Sons, 1949. (Cited on pages 9 and 11.)

[Herzig et al. 2008] Andreas Herzig, Emiliano Lorini, Jomi F Hübner, Jonathan Ben-
Naim, Olivier Boissier, Cristiano Castelfranchi, Robert Demolombe, Dominique
Longin, Laurent Perrussel and Laurent Vercouter. Prolegomena for a logic of
trust and reputation. In Proceedings of the 3rd International Workshop on
Normative Multiagent Systems (NorMAS2008), pages 143–157. Springer, 2008.
(Cited on page 27.)

[Herzig et al. 2009] Andrea Herzig, Emiliano Lorini, Jomi F Hübner and Laurent Ver-
couter. A logic of trust and reputation. Logic Journal of the IGPL, vol. 18, no. 1,
pages 214–244, 2009. (Cited on page 27.)

[Holland & Melhuish 1999] Owen Holland and Chris Melhuish. Stigmergy, self-
organization, and sorting in collective robotics. Artificial life, vol. 5, no. 2, pages
173–202, 1999. (Cited on page 64.)

[Huang & Kwiatkowska 2017] Xiaowei Huang and Marta Kwiatkowska. Reasoning
about Cognitive Trust in Stochastic Multiagent Systems. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), 2017. (Cited
on pages 26 and 27.)

[Huberman & Hogg 1988] Bernardo A Huberman and Tad Hogg. The Behavior of
Computational Ecologies. In B A Huberman, editor, The Ecology Of Com-
putation, pages 77–115. North Holland, 1988. (Cited on page 10.)

[Huberman & Hogg 1995] Bernardo A Huberman and Tad Hogg. Distributed Compu-
tation as an Economic System. Journal of Economic Perspectives, vol. 9, no. 1,
pages 141–152, 1995. (Cited on page 10.)

[Hübner & Bordini 2006] J.F. Hübner and R.H. Bordini. Jason, 2006. http://jason.
sourceforge.net. (Cited on page 33.)

http://jason.sourceforge.net
http://jason.sourceforge.net

118 Bibliography

[Hunkeler et al. 2008] U. Hunkeler, H. L. Truong and A. Stanford-Clark. MQTT -
A publish/subscribe protocol for Wireless Sensor Networks. In Communication
Systems Software and Middleware and Workshops (COMSware) 2008. 3rd in-
ternational conference on, pages 791–798. IEEE, 2008. (Cited on page 32.)

[Jacobi 2013] Ian Campbell Jacobi. Dynamic application of problem solving strategies :
dependency-based flow control. PhD thesis, MIT EECS, 2013. (Cited on page 25.)

[Jansen 2002] Wayne A Jansen. Intrusion detection with Mobile Agents. Computer
Communications, vol. 25, no. 15, pages 1392–1401, September 2002. (Cited on
page 20.)

[Jennings 2000] Nicholas R Jennings. On Agent-based Software Engineering. Artificial
Intelligence, vol. 117, no. 2, pages 277–296, 2000. (Cited on page 5.)

[Jøsang et al. 2006] Audun Jøsang, Stephen Marsh and Simon Pope. Exploring Differ-
ent Types of Trust Propagation. In Ketil Stølen, WilliamH. Winsborough, Fabio
Martinelli and Fabio Massacci, editors, Trust Management, volume 3986 of Lec-
ture Notes in Computer Science, pages 179–192. Springer Berlin Heidelberg,
2006. (Cited on page 27.)

[Katis et al. 2008] Piergiulio Katis, Nicoletta Sabadini and Robert F C Walters. On
Partita Doppia. arXiv:0803.2429 [math.CT], 2008. (Cited on page 22.)

[Kmett 2017] Edward Kmett. Propagators. Lambda Jam Conference, Brisbane AUS,
April 28-29 2016, 2017. (Cited on page 109.)

[Kocherlakota 1998] Naranaya R Kocherlakota. Money is Memory. Journal of Economic
Theory, vol. 81, no. 2, pages 232–251, 1998. (Cited on page 53.)

[Koster et al. 2013] Andrew Koster, Marco Schorlemmer and Jordi Sabater-Mir. Open-
ing the Black Box of Trust: Reasoning about Trust Models in a BDI Agent.
Journal of Logic and Computation, vol. 23, no. 1, pages 25–58, 2013. (Cited on
page 27.)

[Kramdi 2015] Seifeddine Kramdi. A modal approach to model computational trust.
PhD thesis, Université de Toulouse, 2015. (Cited on page 27.)

[Kuper & Newton 2013] Lindsey Kuper and Ryan R Newton. LVars: Lattice-based
Data Structures for Deterministic Parallelism. In HPC’13 Proceedings of the
2nd ACM SIGPLAN workshop on Functional high-performance computing -
Boston, Massachusetts, USA — September 23 - 23, 2013 , pages 71–84, 2013.
(Cited on page 108.)

Bibliography 119

[Kusmierz 2017] Bartosz Kusmierz. The first glance at the simulation of the Tangle:
discrete model, November 2017. (Cited on page 98.)

[Kwiatkowska 2013] Marta Kwiatkowska. Model Checking and Strategy Synthesis for
Stochastic Games: From Theory to Practice. In Proceedings of the 43rd In-
ternational Colloquium on Automata, Languages, and Programming (ICALP
2016), pages 4:1–4:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.
(Cited on pages 23 and 109.)

[Lahijanian & Kwiatkowska 2016] Morteza Lahijanian and Marta Kwiatkowska. Social
Trust: a Major Challenge for the Future of Autonomous Systems. AAAI Fall
Symposium on Cross-Disciplinary Challenges for Autonomous Systems, AAAI,
AAAI Press. To appear, 2016. (Cited on pages 8 and 27.)

[Lee 2015] Edward A Lee. The Past, Present and Future of Cyber-Physical Systems:
A Focus on Models. Sensors, vol. 15, no. 3, pages 4837–4869, February 2015.
(Cited on page 7.)

[Leinster 2004] T Leinster. Higher operads, higher categories. London Mathematical
Society Lecture Note Series 298. Cambridge University Press, 2004. (Cited on
page 22.)

[LeMahieu 2017] Colin LeMahieu. RaiBlocks: A Feeless Distributed Cryptocurrency
Network, December 2017. (Cited on page 54.)

[Lerman & Spivak 2017] Eugene Lerman and David I Spivak. An algebra of open con-
tinuous time dynamical systems and networks. arXiv:1602.01017v2 [math.DS],
2017. (Cited on page 22.)

[Lerman 2017] Eugene Lerman. Networks of Open Systems. arXiv:1705.04814
[math.OC], 2017. (Cited on page 22.)

[Liggett 1985] T M Liggett. Interacting particle systems. Springer, 1985. (Cited on
page 19.)

[Liggett 1999] T M Liggett. Stochastic interacting systems: Contact, voter, and exclu-
sion processes. Springer, 1999. (Cited on page 19.)

[Louzada Pinto 2016] Julio Cesar Louzada Pinto. Information diffusion and opinion
dynamics in social networks. PhD thesis, Université Pierre et Marie Curie -
Paris VI, 2016. (Cited on page 19.)

[Lynch & Tuttle 1989] Nancy A Lynch and M Tuttle. An introduction to input/output
automata. Quarterly 2(3), Centrum voor Wiskunde en Informatica, Amsterdam,
The Netherlands, September 1989. (Cited on page 21.)

120 Bibliography

[Lynch 1996] Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996. (Cited
on page 21.)

[Mac Lane 1998] Saunders Mac Lane. Categories for the working mathematician.
Springer, 2nd édition, 1969,1998. (Cited on page 22.)

[Margolis 2011] Michael Margolis. Arduino cookbook. O’Reilly Media, 2011. (Cited on
page 31.)

[Marsh 1994] Stephen Paul Marsh. Formalising Trust as a Computational Concept.
PhD thesis, University of Stirling, 1994. (Cited on page 26.)

[Matt et al. 2010] Paul-Amaury Matt, Maxime Morge and Francesca Toni. Combining
statistics and arguments to compute trust. In Proceedings of the 10th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2010), 2010. (Cited on pages 26 and 27.)

[May 1972] May. The geometry of iterated loop spaces. Springer-Verlag, 1972. (Cited
on page 22.)

[McKnight & Chervany 2001] D Harrison McKnight and Norman L Chervany. Trust
and Distrust Definitions: One Bite at a Time. In Rino Falcone, Muhandar Singh
and Y H Tan, editors, Trust in Cyber-societies, volume 2246 of Lecture Notes
in Computer Science, chapter 22-54. Springer Berlin / Heidelberg, 2001. (Cited
on page 26.)

[Meiklejohn & Van Rooy 2015] Christopher Meiklejohn and Peter Van Rooy. Lasp: a
Language for Distributed, Coordination-Free Programming. In Proceedings of
PPDP’15, July 14-16, Siena, Italy. ACM, 2015. (Cited on page 109.)

[Miller & Drexler 1988] Mark S Miller and K Eric Drexler. Markets and Computation:
Agoric Open Systems. In B A Huberman, editor, The Ecology Of Computation.
North Holland, 1988. (Cited on page 10.)

[Milner et al. 1992] Robin Milner, J G Parrow and D G Walker. A Calculus of Mobile
Processes, I and II. Information and Computation, vol. 100, no. 1, pages 1–
40;41–77, September 1992. (Cited on page 20.)

[Milner 2009] Robin Milner. The space and motion of communicating agents. Cam-
bridge University Press, 2009. (Cited on page 20.)

[Minsky 1986] Marvin L Minsky. The society of mind. Simon & Schuster, 1986. (Cited
on pages 9 and 107.)

Bibliography 121

[Mui 2002] Lik Mui. Computational Models of Trust and Reputation: Agents, Evolu-
tionary Games, and Social Networks. PhD thesis, MIT, 2002. (Cited on page 26.)

[Myerson 1991] Roger B Myerson. Game theory: Analysis of conflict. Harvard Univer-
sity Press, 1991. (Cited on page 23.)

[Nakamoto 2008] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System,
October 2008. (Cited on page 53.)

[Nash Jr 2002] John Forbes Nash Jr. Ideal Money. Southern Economic Journal, vol. 69,
no. 1, pages 4–11, July 2002. (Cited on page 53.)

[Newman 2010] Mark Newman. Networks: An introduction. Oxford University Press,
2010. (Cited on pages 39 and 46.)

[Nisan et al. 2007] Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay V Vazirani,
editors. Algorithmic game theory. Cambridge University Press, 2007. (Cited on
page 23.)

[NIST] NIST. Cyber Physical Systems. Online in https://www.nist.gov/el/cyber-
physical-systems. (Cited on page 6.)

[Nooteboom 2002] Bart Nooteboom. Trust: Forms, foundations, functions, failures and
figures. Edward Elgar, 2002. (Cited on page 108.)

[Norretranders 1998] T Norretranders. The user illusion. Penguin, 1998. (Cited on
page 10.)

[Norvig & Russell 1999] Peter Norvig and Stuart J Russell. Artificial intelligence: A
modern approach. Prentice Hall, 1999. (Cited on page 11.)

[Otteson 2002] James Otteson. Adam Smith’s Marketplace of Life. Cambridge Univer-
sity Press, 2002. (Cited on page 9.)

[Paglieri et al. 2014] Fabio Paglieri, Cristiano Castelfranchi, Celia da Costa Pereira,
Rino Falcone, Andrea Tettamanzi and Serena Villata. Trusting the messenger
because of the message: feedback dynamics from information quality to source
evaluation. Computational and Mathematical Organization Theory, vol. 20,
no. 2, pages 176–194, 2014. (Cited on page 27.)

[Palm 1981] Günther Palm. Towards a Theory of Cell Assemblies. Biological Cyber-
netics, vol. 39, pages 181–194, 1981. (Cited on page 11.)

[Paolucci 2013] Mario Paolucci. Agent-based approaches in economic and social com-
plex systems vii, volume 10 of Agent-Based Social Systems, chapter Money Emer-
gence on a Network Topology, pages 61–71. Springer, 2013. (Cited on page 107.)

122 Bibliography

[Papert 1980] Seymour Papert. Mindstorms: Children, computers, and powerful ideas.
Basic Books, 1980. (Cited on page 34.)

[Parkes & Wellman 2015] David Parkes and Michael P Wellman. Economic Reasoning
and Artificial Intelligence. Science, vol. 349, pages 267–272, 2015. (Cited on
page 23.)

[Parsons et al. 2012] Simon Parsons, Katie Atkinson, Karen Haigh, Karl Levitt, Pe-
ter McBurney, Jeff Rowe, Munindar P Singh and Elizabeth Sklar. Argument
Schemes for Reasoning about Trust. In Proceedings of COMMA 2012, 2012.
(Cited on page 27.)

[Patti 2002] Viviana Patti. Programming Rational Agents: a Modal Approach in a Logic
Programming Setting. PhD thesis, Dipartimento di Informatica — Universitá
degli Studi di Torino, 2002. (Cited on page 27.)

[Pinyol & Sabater-Mir 2013] Isaac Pinyol and Jordi Sabater-Mir. Computational trust
and reputation models for open multi-agent systems: a review. Artificial Intelli-
gence Review, vol. 40, no. 1, pages 1–25, June 2013. (Cited on page 26.)

[Poggiolesi 2011] Francesca Poggiolesi. Gentzen calculi for modal propositional logic.
Springer, 2011. (Cited on page 106.)

[Poole et al. 2016] Ben Poole, Subhaneil Lahiri, Malthra Raghu, Jascha Sohl-Dickstein
and Surya Ganguli. Exponential expressivity in deep neural networks throught
transient chaos, June 2016. (Cited on page 101.)

[Popov et al. 2017] Serguei Popov, Olivia Saa and Eugenio Finardi. Equilibria in the
Tangle. ArXiV, December 2017. (Cited on pages 58, 59 and 99.)

[Popov 2017] Serguei Popov. The Tangle. (v 1.4), November 2017. (Cited on pages 53,
54, 55, 57, 58, 59, 98, 99 and 102.)

[Primiero & Raimondi 2014] Giuseppe Primiero and Franco Raimondi. A typed natural
deduction calculus to reason about secure trust. In 2014 Twelfth Annual Inter-
national Conference on Privacy, Security and Trust, Toronto, ON, Canada, July
23-24, 2014, pages 379–382, 2014. (Cited on page 47.)

[Primiero et al. 2016] Giuseppe Primiero, Michele Bottone, Franco Raimondi and Ja-
copo Tagliabue. Contradictory information flow in networks with trust and dis-
trust. In 5th International Workshop on Complex Networks and their Appli-
cations (COMPLEX NETWORKS 2016), 01-06 Dec 2016, Milan, Italy, 2016.
(Cited on pages 46, 47, 49 and 71.)

Bibliography 123

[Primiero et al. 2017] Giuseppe Primiero, Franco Raimondi, Michele Bottone and Ja-
copo Tagliabue. Trust and Distrust in Contradictory Information Trasmission.
Applied Network Science, vol. 2, no. 12, pages 1–30, 2017. (Cited on pages 46,
47, 48, 49, 52, 71, 93 and 102.)

[Primiero 2016] Giuseppe Primiero. A Calculus for Distrust and Mistrust. In Trust
Management X - 10th IFIP WG 11.11 International Conference, IFIPTM 2016,
Darmstadt, Germany, July 18-22, 2016, Proceedings, pages 183–190, 2016.
(Cited on page 47.)

[Prusinkiewicz et al. 1996] P. Prusinkiewicz, A. Lindenmayer, J.S. Hanan and F.D
Fracchia. The algorithmic beauty of plants. Springer-Verlag, 1996. (Cited
on page 21.)

[Pulvermuller 2002] Friedermann Pulvermuller. The neuroscience of language: On
brain circuits of words and serial order. Cambridge University Press, 2002.
(Cited on page 11.)

[Quercia et al. 2007] Daniele Quercia, Stephen Hailes and Licia Capra. Lightweight
Distributed Trust Propagation. In Proceedings of the Seventh IEEE International
Conference on Data Mining, pages 282–291, 2007. (Cited on page 27.)

[Radul & Sussman 2010] Alexey Radul and Gerald Jay Sussman. The Art of the Prop-
agator. Technical report MIT-CSAIL-TR-2009-002, Massachusetts Institute of
Technology, 2010. (Cited on pages 23 and 24.)

[Radul 2009] Alexei A. Radul. Propagation Networks: A Flexible and Expressive Sub-
strate for Computation. PhD thesis, MIT, 2009. (Cited on pages 23 and 24.)

[Ramirez & Fasli 2017] Wulfrano Arturo Luna Ramirez and Maria Fasli. Integrating
NetLogo and Jason: a Disaster-Rescue Simulation. In Proceedings of 9th Com-
puter Science and Electronic Engineering Conference (CEEC), 27-29 Sept. 2017,
pages 213–218. IEEE, 2017. (Cited on page 102.)

[Rao & Georgeff 1998a] A S Rao and M P Georgeff. Decision procedures for BDI logics.
Journal of Logic and Computation, vol. 8, no. 3, pages 293–344, 1998. (Cited
on page 6.)

[Rao & Georgeff 1998b] A S Rao and M P Georgeff. Decision procedures for BDI logics.
Journal of Logic and Computation, vol. 8, no. 3, pages 293–344, 1998. (Cited
on page 27.)

[Reif et al. 2016] W. Reif, G. Anders, H. Seebach, S. Jan-Philipp, E. André, J. Hähner,
C. Müller-Schloer and T Ungerer, editors. Trustworthy open self organising open
systems. Springer, 2016. (Cited on page 25.)

124 Bibliography

[Riely & Hennessy 1998] J Riely and M Hennessy. A typed language for distributed
mobile processes. In Proceedings of the 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 378–390, 1998. (Cited on
page 20.)

[Robert & Casella 2005] C Robert and R Casella. Markov chain monte carlo in practice.
Chapman and Hall, 2005. (Cited on page 54.)

[Rota & Wallstrom 1997] G C Rota and T C Wallstrom. Stochastic integrals: a combi-
natorial approach. Annals of Probability, vol. 25, no. 3, pages 1257–1283, 1997.
(Cited on page 108.)

[Rupel & Spivak 2014] Dylan Rupel and David I Spivak. The operad of temporal
wiring diagrams: formalizing a graphical language for discrete-time processes.
arXiv:1307.6894 [math.CT], July 2014. (Cited on page 22.)

[Sainudiin & Welch 2015] Raazesh Sainudiin and David Welch. The Transmission Pro-
cess: A Combinatorial Stochastic Process on Binary Trees over the Contact
Network of Hosts in an Epidemic. Technical report, School of Mathematics and
Statistics, University of Canterbury, NZ, 2015. (Cited on page 19.)

[Schwartz-Ziv & Tishby 2017] Ravid Schwartz-Ziv and Naftali Tishby. Opening the
black box of Deep Neural Networks via Information, April 2017. (Cited on
page 100.)

[Setter et al. 2016] T Setter, A Gasparri and M Egerstedt. Trust-Based Interactions in
Teams of Mobile Agents. In American Control Conference, Boston MA, 2016.
(Cited on page 27.)

[Shanahan 2015] Murray Shanahan. The technological singularity. MIT Press, 2015.
(Cited on page 5.)

[Shannon 1953] C E Shannon. The lattice theory of information. IEEE Transactions
on Information Theory, vol. 1, no. 1, pages 105–107, February 1953. (Cited on
page 108.)

[Shoenholz et al. 2017] Samuel S Shoenholz, Justin Gilmer, Surya Ganguli and Jascha
Sohl-Dickstein. Deep Information Propagation, April 2017. (Cited on page 100.)

[Simmel 1907] Georg Simmel. The philosophy of money. Routledge, 1907. (Cited on
pages 53 and 107.)

[Singh 2011] Munindar P Singh. Trust as Dependence: A Logical Approach. In Proceed-
ings of the 10th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’11), pages 863–870, 2011. (Cited on page 27.)

Bibliography 125

[Sompolinsky et al. 2017] Yonathan Sompolinsky, Yoad Lewenberg and Aviv Zohar.
SPECTRE: Serialization of Proof-of-Work Events - confirming Transactions via
Recursive Elections, 2017. (Cited on page 54.)

[Soofi 1994] E S Soofi. Capturing the intangible concept of information. Journal of
the American Statistical Association, vol. 89, pages 1243–1254, 1994. (Cited on
page 10.)

[Soofi 2000] E S Soofi. Principal Information Theoretic Approaches. Journal of the
American Statistical Association, vol. 95, pages 1349–1353, 2000. (Cited on
page 10.)

[Spivak & Tan 2015] David I Spivak and Joshua Z Tan. Nesting of dynamic systems
and mode-dependent networks. arXiv:1502.07380v3 [math.DS], December 2015.
(Cited on page 22.)

[Spivak 2016] David I. Spivak. The operad of wiring diagrams: formalizing a graphical
language for databases, recursion, and plug-and-play circuits. arXiv:1305.0297
[cs.DB], October 2016. (Cited on page 22.)

[(STOA) 2016] EPRS European Parliamentary Research Service Scientific Fore-
sight Unit (STOA). Ethical Aspects of Cyber-Physical Systems. Online in eu-
roparl.europa.eu, June 2016. (Cited on page 8.)

[Susnea et al. 2009] Ioan Susnea, Grigore Vasiliu, Adrian Filipescu, Adriana Serbencu
and Adrian Radaschin. Virtual pheromones to control mobile robots. A neural
network approach. In 2009 IEEE International Conference on Automation and
Logistics, pages 1962–1967. IEEE, 2009. (Cited on page 68.)

[Susnea 2015] Ioan Susnea. Engineering Human Stigmergy. International Journal of
Computers Communications & Control, vol. 10, no. 3, pages 420–427, 2015.
(Cited on page 67.)

[Teacy et al. 2006] W.T. Luke Teacy, Jigar Patel, Nicholas R Jennings and Michael
Luck. TRAVOS: Trust and Reputation in the Context of Inaccurate Information
Sources. Journal of Autonomous Agents and Multi-Agent Systems, vol. 12, no. 2,
pages 183–198, Marchs 2006. (Cited on page 26.)

[Thom 1983] René Thom. Mathematical models of morphogenesis. Wiley, 1983. (Cited
on page 10.)

[Tishby & Polani 2010] Naftali Tishby and Daniel Polani. Information Theory of Deci-
sions and Actions. In V Cutsuridis, A Hussain and J Taylor, editors, Perception-
Action Cycle, Springer Series in Cognitive and Neural Systems. Springer, 2010.
(Cited on page 101.)

126 Bibliography

[Tishby & Polani 2011] Naftali Tishby and Daniel Polani. Information Theory of Deci-
sions and Actions. In Cutsuridis V, Hussain A and Taylor J, editors, Perception-
Reason-Action Cycle: Models, Architectures and Hardware, Springer Series in
Cognitive and Neural Systems, pages 601–636. Springer, New York, NY, 2011.
(Cited on page 109.)

[Tisue & Wilensky 2004] Seth Tisue and Uri Wilensky. NetLogo: A Simple Environ-
ment for Modeling Complexity. Presented at the International Conference on
Complex Systems, Boston, May 16–21, 2004. (Cited on page 34.)

[Tsang & Larson 2014] Alan Tsang and Kate Larson. Opinion Dynamics of Skeptical
Agents. In Alesssio Lomuscio, Paul Scerri, Anna Bazzan and Michael Huhns, ed-
itors, Proceedings of the 13th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2014), pages 277–284, 2014. (Cited on
page 26.)

[Vagner et al. 2015] Dmitri Vagner, David I Spivak and Eugene Lerman. Algebras of
Open Dynamical Systems on the Operad of Wiring Diagrrams. Theory & Appli-
cations of Categories, vol. 30, no. 51, pages 1793–1822, 2015. (Cited on page 22.)

[van de Bunt et al. 2005] Gerhard G. van de Bunt, Rafael P.M. Wittek and Maurits C.
de Klepper. The Evolution of Intra-Organizational Trust Networks: The Case
of a German Paper Factory: An Empirical Test of Six Trust Mechanisms. In-
ternational Sociology, vol. 20, no. 3, pages 339–369, 2005. (Cited on page 46.)

[Vrba 2013] Pavel Vrba. Review of Industrial Applications of Multi-agent Technologies.
In Service Orientation in Holonic and Multi Agent Manufacturing and Robotics,
volume 472 of Studies in Computational Intelligence, chapter 21, pages 327–338.
Springer, 2013. (Cited on page 5.)

[Wegner & Goldin 1999] Peter Wegner and Dina Goldin. Interaction, Computability,
and Church’s Thesis, 1999. (Cited on page 21.)

[Weiser & Brown 1996] Mark Weiser and John Seely Brown. Designing Calm Technol-
ogy. PowerGrid Journal, 1996. (Cited on page 20.)

[Weiss 1995] Gerhard Weiss. Distributed Reinforcement Learning. Robotics and Au-
tonomous Systems, vol. 15, pages 135–142, 1995. (Cited on page 10.)

[Wellman 1999] Michael P Wellman. Algorithms fof Decentralised Resource Allocation,
1999. (Cited on page 10.)

[Wiener 1948] Norbert Wiener. Cybernetics: Or control and communication in the
animal and the machine. MIT Press, 1948. (Cited on page 7.)

Bibliography 127

[Wikipedia 2018a] Wikipedia. Adjacency List, 2018. (Cited on page 55.)

[Wikipedia 2018b] Wikipedia. Diffusion-Limited Aggregation, 2018. (Cited on page 77.)

[Wilensky 1999] Uri Wilensky. NetLogo. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, Illinois, 1999. (Cited on
page 34.)

[Wooldridge 2003] Michael A Wooldridge. An Introduction to MultiAgent Systems.
John Wiley & Sons, 2003. (Cited on pages 5 and 6.)

[Wright & Aubé 1998] Ian Wright and Michel Aubé. The
Society of Mind Requires an Economy of Mind.
http://www.cs.bham.ac.uk/research/projects/cogaff/Wright_ Aube_ eom.pdf,
1998. (Cited on page 10.)

[Yamada & Abramsky 2017] Norihiro Yamada and Samson Abramsky. Dynamic
Games and Strategies. arXiv:1601.04147v3 [cs.LO], January 2017. (Cited on
page 23.)

[Yamada 2017] Norihiro Yamada. Game-theoretic Model of Computation.
arXiv:1702.05073v2 [cs.LO], 2017. (Cited on page 23.)

[Yasutomi 1995] Ayumu Yasutomi. The Emergence and Collapse of Money. Physica
D: Nonlinear Phenomena, vol. 82, no. 1-2, pages 180–194, April 1995. (Cited on
pages 53 and 107.)

[Yau 2017] Donald Yau. Operad of Wiring Diagrams. arXiv:1512.01602 [math.CT],
2017. (Cited on page 22.)

[Zenil et al. 2017] Hector Zenil, Angelika Schmidt and Jesper Tegnér. Causality, Infor-
mation and Biological Computation: An algorithmic software approach to life,
disease and the immune system. arXiv:1508.06538v5, 2017. (Cited on page 10.)

[Ziegler & Laursen 2005] Cai-Nicolas Ziegler and Georg Laursen. Propagation Models
for Trust and Distrust in Social Networks. Information Systems Frontiers, vol. 7,
no. 4:5, pages 337–358, 2005. (Cited on page 27.)

	Introduction
	Motivation
	Multi-Agent Systems
	BDI Logics

	Cyber-Physical Systems
	Towards Agoric Computation
	Agoras and Information
	Examples

	Research Questions
	Contribution and Thesis Overview

	Related Work
	Mathematical Formalisms
	Probabilistic Models
	Graphical Models and Process Calculi
	State-Machine Models
	Influence Systems
	Category-Theoretical Models
	Game-Theoretical Models
	Propagator Models

	Computational Trust and Cognitive Agents

	Background
	Microcontrollers, Sensors and Actuators
	MQTT and Publish/Subscribe Protocols
	Jason
	Brahms
	NetLogo
	Natural Deduction
	Graph Theory

	Models
	From Raw Data to Perceptions
	Trust in Orchestrated Systems
	The Cost of Trust and Contradictory Information
	Contradictory Information Transmission
	The Logic (un)SecureNDsim
	Measuring Trust and Conflict Resolution

	Block-free Distributed Ledgers
	DAG-based Cryptocurrencies
	The Tangle Process
	Consensus by Cumulative Weight
	Tip Selection Strategies
	Mean Tip Approval Times

	Implementation
	Implementing Bridges
	Connecting MQTT with Jason
	Connecting MQTT with Brahms
	Implementing Virtual Pheromones with MQTT and Jason

	Monitoring Trust
	The Orchestrating System
	Environment and Communications Protocols
	System Configuration

	Reasoning about Contradictory Information
	Model Design
	Implementation

	Simulating DAG-based Distributed Ledgers
	Random Uniform Growth
	Growth Using the MCMC Selection Algorithm

	Evaluation
	Evaluation of MQTT-Jason Bridges and AC Monitor
	System Evaluation
	Performance

	Epistemic Costs of Trust
	Reaching Consensus
	Epistemic Costs
	Rankings
	Distrust and Epistemic Attitude
	Time Complexity

	The Tangle DAG Multi-Agent Simulation
	Initial Findings and Comparisons
	Conjectures
	Multi-agent Analysis of Parasite Strategies

	Conclusion and Further Work
	The State of Agoric Computation
	Publish-Subscribe Patterns
	Trust in Cyber-Physical Systems
	Facets of Information

	Limitations of the Current Approach
	Simplicity
	Languages
	Verification

	Future Directions

	Bibliography

